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ABSTRACT 

 

A modified He’s homotopy perturbation method is used to calculate the periodic solutions 

of a nonlinear pendulum. The method has been modified by truncating the infinite series 

corresponding to the first-order approximate solution and substituting a finite number of 

terms in the second order linear differential equation. As can be seen, the modified 

homotopy perturbation method works very well for high values of the initial amplitude. 

Excellent agreement of the analytical approximate period with the exact period has been 

demonstrated not only for small but also for large amplitudes A (the relative error is less 

than 1% for A < 152º). Comparison of the result obtained using this method with the exact 

ones reveals that this modified method is very effective and convenient. 

 

Keywords: Nonlinear oscillator; Approximate solutions; Homotopy perturbation method. 

PACS: 02.30.Jr, 02.30.Lt, 02.20.-f. 
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1. Introduction 

In all areas of physics and engineering and, in general, in most of real world applications, 

there are some simple systems for which the equations governing their behaviour are easy 

to formulate but whose mathematical resolution is complicated [1, 2]. This is because, in 

most situations, these systems are governed by nonlinear equations forming a nonlinear 

system. Problems of nonlinear oscillations in conservative systems have a long history and 

of all such systems, perhaps the paradigm that is usually considered is the simple 

pendulum [2-4]. Application of Newton’s second law to this physical system gives a 

differential equation with a non-linear term (the sine of an angle). It is possible to find the 

integral expression for the period of the pendulum and to express it in terms of elliptic 

functions and to find the exact solution in terms of the Jacobi elliptic function sn(u;m) [4]. 

Although it is possible in many cases to replace the non-linear differential equation by a 

corresponding linear differential equation that approximates the original equation, such 

linearization is not always feasible. In such cases, the actual non-linear differential 

equation must be directly dealt with.  

It is very difficult to solve nonlinear problems and, in general, it is often more 

difficult to get an analytic approximation than a numerical one to a given nonlinear 

problem [2]. There are several methods used to find approximate solutions to nonlinear 

problems, such as perturbation techniques [2, 5-10], variational approaches [11-20], 

decomposition [20-22], parameter expansion [23], exp-function [24-26] or harmonic 

balance based methods [2, 27-30]. Most of these techniques have been used to obtain 

analytical approximate solutions for the nonlinear pendulum [9, 27, 31-33]. Excellent 

reviews on some asymptotic methods for strongly nonlinear equations can be found in 

detail in Refs. [31] and [34]. In general, given the nature of a nonlinear phenomenon, the 

approximate methods can only be applied within certain ranges of the physical parameters 

and to certain classes of problems. 

In the present paper we obtain an approximate expression for the periodic solutions 

of a nonlinear pendulum by means of a modified perturbation technique, the so-called 

He’s homotopy perturbation method [31, 33-49]. As Lima [50] pointed out, the simple 

pendulum oscillatory motion is among the most investigated motion in physics and many 

nonlinear phenomena in many fields of science and technology are governed by 

pendulum-like differential equations.  
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The homotopy perturbation method is a combination of the classical perturbation 

technique and homotopy concept as used in topology. In the homotopy perturbation 

method, which requires neither a small parameter nor a linear term in a differential 

equation, a homotopy with an imbedding parameter p ∈ [0,1] is constructed. In Ref. [31] a 

basic idea of homotopy perturbation method for solving non-linear differential equations is 

presented while in Appendix A, we briefly described the basis of the method when it is 

applied to a nonlinear oscillator. The homotopy perturbation method has been applied to 

obtain analytical approximate solutions for different nonlinear oscillators. However, the 

first-order approximation is usually analyzed and only for nonlinear oscillators for which 

the restoring force has a polynomial form higher-order approximations have been derived 

[35, 51]. This is due to the fact that very complex equations appear when the method is 

applied to obtain higher-order approximations to nonlinear oscillators for which the 

restoring force has not a polynomial form. Beléndez et al [41] proposed a modification in 

the method that allows us to obtain easier this higher-order analytical approximation. This 

approach consists of the He’s homotopy perturbation method with the extra simplification 

of considering a finite number of terms (N) in the first and second order approximate 

solution. For simplicity and convenience we choose N = 1 for the first order, N = 2 for the 

second order approximate solutions and so on. In this paper this modified method is 

applied to obtain approximate analytical solutions for nonlinear phenomena governed by 

pendulum-like differential equations. The results presented in this paper reveal that the 

method is very effective and convenient for conservative nonlinear oscillators for which 

the restoring force has not a polynomial form. 

 

2. Solution procedure 

The non-dimensional differential equation describing the free, undamped simple 

pendulum is 

 
  

! 

d
2
x

dt
2

+ sin x = 0  (1) 

with initial conditions 
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! 

x(0) = A and
dx

dt
(0) = 0  (2)  

 
The periodic solution x(t) of Eq. (1) and the period T depend on the amplitude A. 

For small x, the equation of motion approximates that of a linear oscillator 

 

  
  

! 

d
2
x

dt
2

+ x = 0  (3) 

 

whose solution is     

! 

x(t ) = Asin t  and then the dimensionless period is     

! 

T =1 for small A.  

Eq. (1) is not amenable to exact treatment and, therefore, approximate techniques 

must be resorted to. There exists no small parameter in Eq. (1), so the standard 

perturbation methods cannot be applied directly. Due to the fact that the homotopy 

perturbation method requires neither a small parameter nor a linear term in a differential 

equation [31, 51], one possibility to approximately solve Eq. (1) is by means the homotopy 

perturbation method. Eq. (1) can be re-written in the form 

 

 
  

! 

d
2
x

dt
2

+ x = x " sin x  (4) 

 
For Eq. (4) we can establish the following homotopy 

 

 
  

! 

d
2
x

dt
2

+ x = p(x " sin x)  (5) 

 
where p is the homotopy parameter. When p = 0, equation (5) becomes the linearized 

equation and for the case p = 1, Eq. (5) becomes the original problem. Now the homotopy 

parameter p is used to expand the solution x(t) and the square of the unknown angular 

frequency ω as follows 

       

! 

x(t) = x
0
(t) + px

1
(t) + p

2
x

2
(t) +K (6) 
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! 

1="2
# p$

1
# p

2$
2
#K (7) 

 

where αi (i = 1, 2, …) are to be determined. 

Substituting Eqs. (6) and (7) into Eq. (5) gives 

 

      

! 

( " " x 0 + p " " x 1 + p
2 " " x 2 +K) + (#2

$ p%1 $ p
2%2 $K)( x0 + px1 + p

2
x2 +K)

= p ( x0 + px1 + p
2
x2 +K) $ sin(x0 + px1 + p

2
x2 +K)[ ]

 (8) 

 

and equating the terms with identical powers of p, we can obtain a series of linear 

equations, of which we write only the first three 

 

     

! 

" " x 0 +#2
x0 = 0 ,         

! 

x0(0) = A, " x 0(0) = 0  (9) 

! 

" " x 1 +# 2
x1 = (1+$1)x0 %sin x0,               

! 

x1(0) = " x 1(0) = 0 (10) 

    

! 

" " x 
2

+#2
x

2
=$

2
x

0
+ (1+$

1
)x

1
% x

1
cos x

0
,        

! 

x2(0) = " x 2(0) = 0 (11) 

    

! 

M 

 

In Eqs. (9)-(11) we have taken into account the following expression  

 

 

      

! 

f (x) = f (x
0

+ px
1

+ p 2x
2

+K) "

" f (x
0
) + px

1
# f (x

0
) + p2 x

2
# f (x

0
) +

1

2
x

1

2 # # f (x
0
)

$ 

% & 
' 

( ) 
+ O( p3

)

 (12) 

where     

! 

" f ( x) = df (x) / dx . 

The solution of Eq. (9) is 

     

! 

x0(t ) = Acos"t  (13) 

 

Substitution of this result into the right side of Eq. (10), we obtain the following 

differential equation for x1 
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! 

" " x 1 +# 2
x1 = (1+$1)Acos#t %sin(Acos#t) (14) 

 
It is possible to do the following Fourier series expansion 

 

  

! 

sin(Acos"t) = a2n+1

n=0

#

$ cos[(2n +1)"t] = a1 cos"t + a3 cos3"t +K (15) 

where 

 
    

! 

a
2n+1

=
4

"
sin(Acos#

0

" /2

$ )cos
2n+1#d# = 2(%1)

n
J

2n+1
(A)  (16) 

 

where θ = ωt and J2n+1 is the (2n+1)-order Bessel function of the first kind. The first term 

of this expansion can be obtained by means of the following equation 

 

     

! 

a1 = 2J1( A) (17) 

 

where 

! 

J1(A)  is the first order Bessel function of the first kind. Substituting Eq. (17) into 

Eq. (14) gives 

 

! 

" " x 1 +# 2
x1 = (1+$1)Acos#t % a1 cos#t % a2n+1

n=1

&

' cos[(2n +1)#t] (18) 

 

No secular terms in x1(t) require eliminating contributions proportional to cosωt on 

the right-side of Eq. (18) 

 

! 

(1+"1)A # a1 = 0 (19) 

 

Substituting Eq. (17) into Eq. (19) and reordering, we obtain 

 

 
    

! 

"
1

=
a

1

A
#1=

2J
1
(A)

A
#1 (20) 
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From Eqs. (7) and (20), writing p = 1, we can easily find that the first order approximate 

frequency is  

 

! 

"1(A) =
2J1(A)

A
 (21) 

 

Now in order to obtain the correction term x1 for the periodic solution x0 we 

consider the following procedure. Taking into account Eqs. (18) and (19), we re-write Eq. 

(18) in the form  

 

! 

" " x 1 +#2 x1 = $ a2n+1

n=1

%

& cos[(2n +1)#t] (22) 

 

with initial conditions 

! 

x1(0) = A  and     

! 

" x 1(0) = 0 . The periodic solution to Eq. (22) can be 

written as follows 

 
    

! 

x1(t ) = b2n+1

n=0

"

# cos[(2n +1)$t] (23) 

 

Substituting Eq. (23) into Eq. (22) gives 

 

 
    

! 

"#2 4n(n +1)b2n+1

n=0

$

% cos[(2n +1)#t] = " a2n+1

n=1

$

% cos[(2n +1)#t] (24) 

 

and then we can write the following expression for the coefficients b2n+1 

 

 

    

! 

b2n+1 =
a2n+1

4n(n +1)"2
=

2(#1)n
J2n+1( A)

4n(n +1)"2
          (25) 

 

for n ≥ 1. Taking into account that x1(0) = 0, Eq. (23) gives 

 



 
 
 
 

 
 
 

9 

 
    

! 

b
1

= " b
2n+1

n=1

#

$  (26) 

 

To determine the second-order approximate solution it is necessary to substitute 

Eq. (23) into Eq. (11). Then secular terms are eliminated and parameter α2 can be 

calculated. However, it is difficult to solve the new differential equation because, as x1(t) 

has an infinite number of harmonics, it would be necessary to multiply this infinite series 

by 

! 

cos x
0
. At this moment we consider a modification in He’s homotopy perturbation 

method to simplify the solution procedure. x1(t) has an infinite number of harmonics, 

however we can truncate the series expansion in Eq. (23) and we can write an approximate 

equation     

! 

x1
( N )

(t )  in the form [41]  

 

 
    

! 

x1
(N )

= b2n+1

n=0

N

" cos[(2n +1)#t]       and       
    

! 

b1
(N )

= " b2n+1

n=1

N

#  (27) 

 

which has only a finite number of harmonics. Comparing Eqs. (23) and (27), it follows 

that 

 
    

! 

lim
N "#

x1
( N )

(t ) = x1(t ) (28) 

and 

 
    

! 

lim
N "#

b1
(N )

= b1  (29) 

 

In the simplest case we can consider N = 1 in Eq. (27) and we obtain  

 

     

! 

x1
(1)(t ) = b1

(1) cos"t + b3 cos3"t = b3(cos3"t # cos"t ) (30) 

 

where we have taken into account that from Eq. (27) we obtain     

! 

b1
(1)

= "b3 . Eq. (30) has a 

similar form than the second order approximate solution considered in harmonic balance 
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methods. It is possible to do this approximation because the absolute value of the 

coefficient b2n+1 decreases when n increase as we can easily verify from Eqs. (25).  

From Eq. (25) the following expression for the coefficient b3 is obtained 

 

 
    

! 

b
3

=
a

3

8"2
 (31) 

where from Eq. (16) we have 

     

! 

a
3

= "2J
3
(A)  (32) 

 

Substitution of Eq. (30) into Eq. (11) gives the following equation for x2(t) 

 

 

! 

" " x 2 +# 2
x2 =$2x0 + (1+$1)x1

(1)
% x1

(1)
cos x0  (33) 

 

and taking into account Eqs. (13), (20), (30) and (31), Eq. (33) becomes  

 

 

    

! 

" " x 
2

+#2
x

2
=$

2
Acos#t +

a
1
a

3

8 A#2
(cos3#t % cos#t)

%
a

3

8#2
(cos3#t % cos#t)cos(Acos#t)[ ]

 (34) 

 

It is possible to do the following Fourier series expansion 

 

      

! 

(cos3"t # cos"t )cos( Acos"t ) = b2n+1

n=0

$

% cos[(2n +1)"t] = c1 cos"t + c3 cos3"t +K  

  (35)  

 

where the first term of this expansion can be obtained by means of the following equation 
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! 

c1 =
4

"
(cos3# $ cos# )cos( Acos# )

0

" /2

% cos#d# = $
8

A
2

[J2( A) $ AJ3( A)] (36) 

 

From Eqs. (34) and (36), the secular term in the solution for x2(t) can be eliminated if  

 

 
    

! 

"
2
A#

a
1
a

3

8A$2
#

a
3
c

1

8$2
= 0 (37)  

 

Eq. (37) can be solved for α2 and we obtain 

 

 
    

! 

"
2

=
3J

3
(A)

2A
3#2

AJ
1
(A) $ 4J

2
(A)[ ] (38) 

 

From Eqs. (7), (20) and (38), and taking p = 1, we can easily obtain the following 

expression for the second order approximate frequency 

  

    

! 

"2( A) =
1

2A

2AJ1( A) + 4A
2
J1

2( A) # 2A
2
J1( A)J3( A) + 8AJ2( A)J3( A) # 8A

2
J3

2( A)  

  (39) 

With the requirement of Eq. (37), we can re-write Eq. (34) in the form 

 

 
    

! 

" " x 2 +#2
x2 =

a1a3 cos3#t

8A#2
$

a3

8#2
c2n+1

n=1

%

& cos[(2n +1)#t] (40) 

 

with initial conditions     

! 

x2(0) = 0  and     

! 

" x 2(0) = 0 . The general solution of this equation is 

 

 
    

! 

x2(t ) = d2n+1

n=0

"

# cos[(2n +1)$t] (41) 

 

Substituting Eq. (41) into Eq. (40) gives 
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! 

"#2 4n(n +1)d2n+1

n=0

$

% cos[(2n +1)#t] =
a1a3 cos3#t

8A#2
"

a3

8#2
c2n+1

n=1

$

% cos[(2n +1)#t] (42) 

 

and then we can write the following expression for the coefficients d2n+1 

 

 
    

! 

d3 =
a3(c3 A" a1)

64A#2
 (43) 

 

 
    

! 

d2n+1 =
a3c2n+1

32n(n +1)" 4
    for   n ≥ 2 (44) 

 

where ω is given by Eq. (39) and c3 can be calculated as follows 

 

    

! 

c3 =
4

"
(cos3# $ cos# )cos( Acos# )

0

" /2

% cos3#d# =
8

A
3

[11AJ2( A) $ ( A
2$60)J3( A)] (45) 

 

Taking into account that x2(0) = 0, Eq. (41) gives 

 

 
    

! 

d
1

= " d
2n+1

n=1

#

$  (46) 

 

and truncating the infinite series in Eq. (41), it is possible to obtain the following second-

order approximate solution for x2 

 

 

! 

x
2
(N )
(t) = d2n+1

n=0

N

" cos[(2n +1)#t]     and     
    

! 

d1
(N )

= " d2n+1

n=1

N

#  (47) 
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which has only a finite number of harmonics. Comparing Eqs. (41) and (47), it follows 

that 

 
    

! 

lim
N "#

x2
( N )

(t ) = x2(t ) (48) 

and 

 
    

! 

lim
N "#

d
1

(N )
= d

1
 (49) 

 

As we are analyzing the second-order approximation we consider N = 2 in Eq. 

(47), in other words, only three harmonics (n = 0, 1, 2). In this situation, it is easy to verify 

that  

 
    

! 

d
5

=
a

3
c

5

192" 4
 (50) 

 

where ω is given by Eq. (41) and c5 can be calculated as follows 

 

    

! 

c5 =
4

"
(cos3# $ cos# )cos( Acos# )

0

" /2

% cos3#d# =

= $
8

A
5

[35( A
2 $ 48)J2( A) $ (10080 $ 420 A

2
+ A

4 )J3( A)]

 (51) 

 

From Eq. (47) we obtain the following value for d1 

 

 
    

! 

d1
(2)

= " d2n+1 =

n=1

2

# " d3 " d5   (52) 

 

Taking this into account,     

! 

x2
(2) can be written as follows  
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! 

x2
(2)(t ) = d1

(2) cos"t + d3 cos3"t + d5 cos5"t =

= d3(cos3"t # cos"t ) + d5(cos5"t # cos"t )

 (53) 

 

From Eqs. (6), (13), (30) and (52), and taking p = 1, one can easily obtain the following 

expression for the second-order approximate solution 

 

    

! 

x
a
(t ) = x0(t ) + x1

(1)(t ) + x2
(2)(t ) = ( A" b3 " d3 " d5 )cos#2t + (b3 + d3 )cos3#2t + d5 cos5#2t =

= A"
a3

8#2
2
"

a1a3

64A#2
4

+
a3c3

64#2
4
"

a3c5

192#2
4

$ 

% 
& 

' 

( 
) cos#2t +

a3

8#2
2

+
a1a3

64A#2
4
"

a3c3

64#2
4

$ 

% 
& 

' 

( 
) cos3#2t +

a3c5

192#2
4

cos5#2t

 

  (54) 

 

which has a similar form to the third-order approximate solution considered in harmonic 

balance methods. 

 

 

3. Comparison with the exact solution 

We illustrate the accuracy of the modified approach by comparing the approximate 

solutions previously obtained with the exact period     

! 

T
ex

= 2" /#
ex

 for the nonlinear 

pendulum. There are some nonlinear oscillatory systems whose nonlinear differential 

equations have exact solutions [2] such as a particle-in-a-box, the antisymmetric, constant 

force oscillator, the Duffing oscillator or the nonlinear pendulum. For the nonlinear 

pendulum it can be obtained that the exact solution of Eq. (1) can be expressed in terms of 

the Jacobi elliptic function sn(u;m) [2, 4], while the exact period can be expressed in terms 

of the complete elliptic integral of the first kind [2]. The exact value of the period of 

oscillations can be obtained integrating Eq. (1). In Ref. [2] we can see as the exact period 

can be derived and its value is 

 )(
2

0ex kKTT
!

=  (55) 
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where k =     

! 

sin2( A / 2)  and K(k) is the complete elliptic integral of the first kind defined as 

follows 

 
    

! 

K(k ) =
d"

1- k sin2"
0

# /2

$  (56) 

 

For the second order approximation, the relative error between the approximate 

and the exact values of the period is less than 1% for A < 152º.  

For small values of A it is possible to do the power series expansion of the exact 

and approximate angular periods Tex(A) (Eq. (55)) and     

! 

T2( A) = 2" /#2( A) (Eq. (39)). 

Doing these expansions, the following equations can be obtained 
 

 
      

! 

T
ex

= 2" 1+
1

16
A

2
+

11

3072
A

4
+

173

737280
A

6
+

22931

1321205760
A

8
+K

# 

$ 
% 

& 

' 
(  (57) 

 
 

 
      

! 

T
2

= 2" 1+
1

16
A

2
+

11

3072
A

4
+

173

737280
A

6
+

23898

1321205760
A

8
+K

# 

$ 
% 

& 

' 
(  (58) 

 
These series expansions were carried out using MATHEMATICA. As can be seen, 

in Eq. (58), the first four terms are the same as the first four terms obtained from the 

expansion of the exact period Tex (Eq. (57)), whereas the fifth term of the expansion of the 

exact period is 
  

! 

22931

1321205760
 compared with 

  

! 

23898

1321205760
 obtained in our study, that is, the 

relative error in this term is 4.2%. As we can see the second-order approximate period 

    

! 

T2( A) = 2" /#2( A) obtained in this paper provides excellent approximations to the exact 

period Tex(A) for high values of the oscillation amplitude A. 

The normalized exact periodic solution     

! 

x
ex

/ A  (see Appendix, Eq. (B22)) 
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! 

x
ex

(t )

A
=

2

A
arcsin sin

A

2

" 

# 
$ 

% 

& 
' sn K sin2 A

2

" 

# 
$ 

% 

& 
' 

" 

# 
$ 

% 

& 
' ( t ;sin2 A

2

" 

# 
$ 

% 

& 
' 

) 

* 
+ 
+ 

, 

- 
. 
. 

/ 
0 
1 

2 1 

3 
4 
1 

5 1 
 (59) 

 

and the second-order approximate periodic solution,     

! 

x
a

/ A in Eq. (54), are plotted in 

Figure 1 for A = 140º. In this figure, parameter h is defined as follows 

 

  
    

! 

h =
t

T
ex

( A)
 (60) 

 

It can be observed that the second-order approximate solution provides excellent 

approximation to the exact periodic solution. 

 

  

4. Conclusions 

The homotopy perturbation method has been used to obtain the second-order approximate 

frequency for the nonlinear oscillations of a simple pendulum. Although the lowest order 

homotopy perturbation method approximation to the nonlinear pendulum [33] is good for 

high values of oscillation amplitude (Eq. (21)), the second analytical approximation 

derived here is even better. Excellent agreement between the second-order approximate 

period, T2(A), and the exact one has been demonstrated and discussed, and the discrepancy 

of this second-order approximate period with respect to the exact one is less than 1% for A 

< 152º. We think that the method has great potential and can be applied to other strongly 

nonlinear oscillators with non-polynomial terms. 

 

Appendix A [31, 51] 

The homotopy perturbation method provides an approach to introduce an expanding 

parameter in the nonlinear equation governing the behaviour of the oscillatory system. To 

illustrate the basic ideas of this method, we consider the following nonlinear differential 

equation for a conservative nonlinear oscillator  
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! 

d2x(t )

dt2
+ f (x(t )) = 0 (A1) 

 

with initial conditions in Eq. (2). In this equation     

! 

F( x) = " f ( x)  is the dimensionless 

restoring force and f(x) is a nonlinear function. Eq. (A1) corresponds to a nonlinear 

oscillatory system for which there is no linear term and no perturbation parameter exists. 

In Eq. (A1) the nonlinear function f(x) cannot be treated as a perturbation and thus it is 

evident that standard perturbation techniques cannot be applied to Eq. (A1). Following the 

homotopy perturbation method, firstly a linear terms is introduced in Eq. (A1) by rewriting 

this equation as follows 

 
    

! 

d2x

dt2
+ x = x " f ( x)  (A2) 

 

and secondly, a “perturbation parameter” p can be introduced in the following manner 

 

 
    

! 

d2x

dt2
+ x = p x " f (x)[ ] (A3) 

 

The embedding parameter p monotonically increases from zero to unit as the trivial 

problem. For p = 0 we obtain  

 
    

! 

d
2
x

dt
2

+ x = 0 (A4) 

 

which is continuously deformed to the original problem, Eq. (A1). So if we can construct 

an iteration formula for Eq. (A3), the series approximations comes along the solution path, 

by incrementing the imbedding parameter p from zero to one; this continuously maps the 

initial solution into the solution of the original Eq. (A1). This is a basic idea of homotopy 

method, which is to continuously deform a simple problem easy to solve into the difficult 

problem under study. 
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 The basic assumption is that the solution of Eq. (A3) can be written as a power 

series in p 

      

! 

x = x
0

+ x
1
p + x

2
p

2
+ ... (A5) 

 

Setting p = 1 results in the approximate solution of Eq. (A1). 

 

  

Appendix B [2, 4] 

In order to obtain the exact solution of Eq. (1), this equation is multiplied by     

! 

dx / dt , so 

that it becomes 

 
    

! 

dx

dt

d
2
x

dt
2

+ sin x
dx

dt
= 0  (B1) 

which can be written as 

 
    

! 

d

dt

1

2

dx

dt

" 

# 
$ 

% 

& 
' 

2

( cos x

) 

* 

+ 
+ 

, 

- 

. 

. 
= 0  (B2) 

 

From Eqs. (B2) and (2) we can obtain 

 

 
    

! 

dx

dt

" 

# 
$ 

% 

& 
' 

2

= 2 cos x ( cos A( ) (B3) 

 

which can be written as follows 

 
    

! 

dx

dt

" 

# 
$ 

% 

& 
' 

2

= 4 sin
2 A

2

" 

# 
$ 

% 

& 
' ( sin

2 x

2

" 

# 
$ 
% 

& 
' 

) 

* 
+ 

, 

- 
.  (B4) 

Now let 

 
    

! 

y = sin
2 x

2

" 

# 
$ 
% 

& 
'  (B5) 

and 
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! 

k = sin
2 A

2

" 

# 
$ 

% 

& 
'  (B6) 

 

From Eqs. (2), (B5) and (B6) we have     

! 

y(0) = k . 

It is easy to obtain the value of     

! 

dx / dt  as a function of     

! 

dy / dt  as follows. Firstly, 

from Eq. (B6) we have 

 
    

! 

dy

dt
=

dy

dx

dx

dt
=

1

2

dx

dt
cos

x

2

" 

# 
$ 
% 

& 
'  (B7) 

and secondly 

 
    

! 

dy

dt

" 

# 
$ 

% 

& 
' 

2

=
1

4
cos

2 x

2

" 

# 
$ 
% 

& 
' 

dx

dt

" 

# 
$ 

% 

& 
' 

2

=
1

4
1- sin

2 x

2

" 

# 
$ 
% 

& 
' 

( 

) 
* 

+ 

, 
- 

dx

dt

" 

# 
$ 

% 

& 
' 

2

=
1

4
1. y

2( )
dx

dt

" 

# 
$ 

% 

& 
' 

2

 (B8) 

 

Then, we have 

 
    

! 

dx

dt

" 

# 
$ 

% 

& 
' 

2

=
4

1( y
2

dy

dt

" 

# 
$ 

% 

& 
' 

2

 (B9) 

 

Substituting Eqs. (B5), (B6) and (B9) into Eq. (B4) gives 

 

 
    

! 

dy

dt

" 

# 
$ 

% 

& 
' 

2

= k(1( y2 ) 1(
y2

k

" 

# 
$ $ 

% 

& 
' '  (B10) 

 

We define a new variable z as follows 

 
  

! 

z =
y

k
 (B11) 

 then Eq. (B10) becomes 

 
    

! 

dz

dt

" 

# 
$ 

% 

& 
' 

2

= (1( z
2 )(1( kz

2 ) (B11) 

where 0 < k < 1, and 
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! 

z(0) =1         
    

! 

dz

dt

" 

# 
$ 

% 

& 
' 

t=0

= 0 (B12) 

Solving Eq. (B11) for dt gives 

 
    

! 

dt = ±
dz

(1- z2 )(1" kz
2 )

 (B13) 

 

The time τ to go from point (1,0) to the point (z,dz/dt) in the lower half –plane of the graph 

of dz/dt as a function of z, is 

 
    

! 

t = "
du

(1- u
2 )(1" ku

2 )
1

z

#  (B14) 

 

Eq. (B14) can be re-written as follows 

 

 
    

! 

t =
du

(1- u
2 )(1" ku

2 )
0

1

# "
du

(1- u
2 )(1" ku

2 )
0

z

#  (B15) 

 

which allows us to obtain t as a function of z and k as 

 

     

! 

t( z) = K(k ) " F(arcsin z;k )  (B16) 

 

where K(m) and F(ϕ;m) are the complete and the incomplete elliptical integral of the first 

kind, defined as follows 

 
    

! 

K(m) =
du

(1- u
2 )(1"mu

2 )
0

1

#  (B17) 

 

 
    

! 

F(";m) =
dz

(1- u
2 )(1#mu

2 )
0

"

$  (B18) 

and z = sinϕ. 

Eq. (B16) can be written as follows 
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! 

F(arcsin z;k ) = K(k ) " t  (B19) 

 

which can be written in terms of the Jacobi elliptic function sn(v;m) 

  

     

! 

z = sn( K(k ) " t ;k )  (B20) 

 

In terms of the original variables Eq. (B20) becomes 

 

 
    

! 

sin
x

2

" 

# 
$ 
% 

& 
' = sin

A

2

" 

# 
$ 

% 

& 
' sn K sin

2 A

2

" 

# 
$ 

% 

& 
' 

" 

# 
$ 

% 

& 
' ( t ;sin

2 A

2

" 

# 
$ 

% 

& 
' 

) 

* 
+ 
+ 

, 

- 
. 
. 
 (B21) 

 

which allows us to express x as a function of t as follows 

 

 
    

! 

x(t ) = 2arcsin sin
A

2

" 

# 
$ 

% 

& 
' sn K sin2 A

2

" 

# 
$ 

% 

& 
' 

" 

# 
$ 

% 

& 
' ( t ;sin2 A

2

" 

# 
$ 

% 

& 
' 

) 

* 
+ 
+ 

, 

- 
. 
. 

/ 
0 
1 

2 1 

3 
4 
1 

5 1 
 (B22) 
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FIGURE CAPTIONS 

 

 

Figure 1.-  Comparison of normalized approximate periodic solution xa/A (circles and 

dashed line) with the normalized exact solution xex /A (continuous line) for an 

oscillation amplitude A = 140º.  
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FIGURE 1 


