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ABSTRACT 

 

We apply He’s homotopy perturbation method to find improved approximate solutions 

to conservative truly nonlinear oscillators. This approach gives us not only a truly 

periodic solution but also the period of the motion as a function of the amplitude of 

oscillation. We find that this method works very well for the whole range of parameters 

in the case of the cubic oscillator, and excellent agreement of the approximate 

frequencies with the exact one has been demonstrated and discussed. For the second 

order approximation we have shown that the relative error in the analytical approximate 

frequency is approximately 0.03% for any parameter values involved. We also 

compared the analytical approximate solutions and the Fourier series expansion of the 

exact solution. This has allowed us to compare the coefficients for the different 

harmonic terms in these solutions. The most significant features of this method are its 

simplicity and its excellent accuracy for the whole range of oscillation amplitude values 

and the results reveal that this technique is very effective and convenient for solving 

conservative truly nonlinear oscillatory systems. 

 

Keywords: Truly nonlinear oscillators; Approximate solutions; Homotopy perturbation 

method.
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1. Introduction 

 

The study of nonlinear problems is of crucial importance not only in all areas of physics 

but also in engineering and other disciplines, since most phenomena in our world are 

essentially nonlinear [1, 2] and are described by nonlinear equations. It is very difficult 

to solve nonlinear problems and, in general, it is often more difficult to get an analytic 

approximation than a numerical one for a given nonlinear problem [2]. There are several 

methods used to find approximate solutions to nonlinear problems [3], such as 

perturbation techniques [4-14] or harmonic balance based methods [15-22]. An 

excellent review on some asymptotic methods for strongly nonlinear equations can be 

found in detail in Ref. [23]. In general, given the nature of a nonlinear phenomenon, the 

approximate methods can only be applied within certain ranges of the physical 

parameters and/or to certain classes of problems [11]. 

In this paper, we will show how to solve conservative truly nonlinear oscillators 

[24] by using the homotopy perturbation method [23], which yields a very rapid 

convergence of the solution series. This method requires neither a linear term nor a 

perturbation parameter, and if this parameter exists, the method does not require the 

parameter to be small. This perturbation approach has been applied not only to 

nonlinear oscillators [25-27] but also to other nonlinear problems [28-37].  

In section 2 we briefly review the alternative Lindstedt-Poincaré perturbation 

procedure [8, 13]. In section 3 we outline He’s homotopy perturbation method for 

conservative truly nonlinear oscillators. In section 4 we illustrate the applicability of this 

method by means an illustrative example of the simplest conservative truly nonlinear 

oscillator. In section 5 we compare the approximate frequencies and periods of the 

motion and approximate solutions obtained with the approximate periods and solutions 

constructed using the harmonic balance method, as well as with the exact frequency and 

solution for the example analyzed. For the cubic oscillator we will see that only two 

iterations leads to high accuracy of the solution, providing an effective and convenient 

mathematical tool for this kind of nonlinear oscillators. We  also compare the analytical 

approximate solutions and the Fourier series expansion of the exact solution. This 

allows us to compare the coefficients for the different harmonic terms in these solutions. 
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Finally, we present our conclusions in section 6 and an appendix contains the exact 

solution for the conservative truly nonlinear oscillator analyzed in this paper. 

 

 

2. Alternative Lindstedt-Poincaré method 

 

We consider a nonlinear oscillator governed by the following dimensionless nonlinear 

differential equation 

 
    

 

d2
x(t )

dt
2

+ x(t ) + !g( x(t )) = 0 (1) 

with initial conditions 

 
    

 

x(0) = A and
d x

dt
(0) = 0  (2) 

 
In Eq. (1)     

 

F( x) = !x !"g(x) is the dimensionless restoring force and g(x) is a nonlinear 

function. For this oscillatory system the restoring force,     

 

F( x), has two terms, the first 

term, -x, is a linear term, while the second term, -εg(x), is a nonlinear term, where ε is a 

positive parameter. Eq. (1) corresponds to a conservative system and its “potential 

function” is 

 
    

 

V ( x) =
1

2
x

2
+ ! g( x)dx"  (3)  

 

and E is the “total energy” of the nonlinear oscillator. This system oscillates with an 

unknown frequencyω (thus a period T = 2π/ω). In Eq. (1) the nonlinear term     

 

!g( x)  is 

treated as a perturbation to the equation of motion of an harmonic oscillator and ε is the 

perturbation parameter. The angular frequency for the linear oscillator (for ε = 0) is 1. 

This alternative Lindstedt-Poincaré perturbation approach resembles the standard 

Lindstedt-Poincaré method and is based on the expansion of the solution x(t) and ω2 in 

powers of ε [8] 

 
      

 

x(t ) = x0(t ) + !x1(t ) + !
2

x2(t ) + … (5) 
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!
2

= 1+ "!1 + "
2
!2 + … (6) 

 

In Eq. (6) ω is the unknown frequency and the first term of the series expansion, 1, is 

the square of the frequency of the harmonic oscillator (for ε  = 0), i.e., the factor that 

multiplies the linear term, x(t) in Eq. (1). It is possible to rewrite Eq. (6) as follows 

 

 
    

 

1 = !
2
"#!1 "#

2
!2 "… (7) 

 

The alternative Lindstedt-Poincaré perturbation procedure is based on the substitution of 

Eqs. (5) and (7) into Eq. (1). This substitution gives 

 

 
      

 

( ! ! x 0 + " ! ! x 1 + "
2

! ! x 2 + …) + (#2
$"#1 $"

2
#2 $…)( x0 + "x1 + "

2
! ! x 2 + …)

+ "g( x0 + "x1 + "
2

! ! x 2 + …) = 0
 (8) 

 

where primes denote differentiation with respect to t. Setting the coefficients of the 

various powers of ε to zero leads to the following system of linear differential equations 

 

     

 

! ! x 0 + "
2
x0 = 0   (9) 

     

 

! ! x 1 +"
2
x1 = "1x0 # g(x0 )   (10) 

     

 

! ! x 2 + "
2
x2 = "2x0 + "1x1 # x1 ! g ( x0 )  (11) 

 
    

 

! ! x 3 + "
2
x3 = "3x0 + "2x1 + "1x2 # x2 ! g (x0 ) #

1

2
x1

2
! ! g ( x0 )  (12)  

   

 

! 

The initial conditions are replaced by 

 
     

 

x0(0) = A,         

 

! x 0(0) = 0 ,     
    

 

x j (0) = 0 ,     
    

 

! x j (0) = 0 ,     j ≥ 1 (13) 

 
In Eqs. (8)-(12) we have taken into account the following expression [10] 
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g( x) = g(x0 + !x1 + ! 2
x2 + …) " g(x0 ) + !x1 # g (x0 ) + !2

x2 # g (x0 ) +
1

2
x1

2 # # g (x0 )
$ 

% 
& 

' 

( 
) 

+ !3
x3 # g (x0 ) + x1x2 # # g ( x0 ) +

1

6
# # # g (x0 )

$ 

% 
& 

' 

( 
) + O(!4 )

 (14) 

 

In Eqs. (11) and (13) we choose the value of the coefficients ωn in order to remove any 

secular term from the perturbation equation of order n.  

 

 

3. He’s homotopy perturbation method 

 

We consider the following more general dimensionless equation of motion of a 

nonlinear oscillator  

 
    

 

d2x(t )

dt 2
+ f (x(t )) = 0 (15) 

 

with the initial conditions in Eq. (2). In this equation     

 

F( x) = ! f (x) is the dimensionless 

restoring force and f(x) is a nonlinear function. If f(x) does not have For small x, if f(x) 

does not have a dominant term proportional to x, then Eq. (15) is said to be a “truly 

nonlinear oscillator” [24]  Eq. (15) corresponds to a conservative system and has the 

“potential function” 

 
    

 

V ( x) = f (x)dx!  (16)  

 

This system oscillates with an unknown frequencyω (thus a period T = 2π/ω).  

If we compare Eq. (15) with Eq. (1), we conclude that Eq. (14) corresponds to a 

nonlinear oscillatory system for which there is no linear term and no perturbation 

parameter exists. In Eq. (14) the nonlinear function f(x) can not be treated as a 

perturbation and thus it is evident that the alternative Lindstedt-Poincaré perturbation 

procedure summarized in section 2 cannot be applied to Eq. (15). 
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However, we will show that with some “small” modifications it is possible to 

apply the alternative Lindstedt-Poincaré method to Eq. (15). We will also show that, 

unlike the standard perturbation methods, this modified alternative Lindstedt-Poincaré 

perturbation procedure is applicable to truly nonlinear oscillatory systems (without a 

linear term). This modified alternative Lindstedt-Poincaré approach was developed by 

He and is known as “homotopy perturbation method” [23].  

To apply the alternative Lindsted-Poincaré method, a linear term and a 

perturbation parameter are necessary so we need to introduce them in Eq. (15). Firstly, it 

is possible to introduce a linear term by rewriting Eq. (15) as follows   

 

 
    

 

d2x(t )

dt 2
+ x(t ) = x(t ) ! f (x(t ))  (17) 

 
and secondly, a “perturbation parameter” λ can be introduced in the following manner 

 

 
    

 

d2x(t )

dt 2
+ x(t ) = ! x(t ) " f ( x(t ))[ ]  (18) 

 
When we set λ equal to one we recover the original equation (Eq. (15)) that does not 

contain a term proportional to x. Now we use the parameter λ to expand the solution x(t) 

and the square of the unknown angular frequency ω  as follows 

 

 
      

 

x(t ) = x0(t ) + !x1(t ) + !
2

x2(t ) + … (19) 

 

 
    

 

1 = !
2
" #$1 " #

2
$2 "… (20) 

 

Substituting Eqs. (19) and (20) into Eq. (18) gives 

 

 

      

 

( ! ! x 0 + " ! ! x 1 + "
2

! ! x 2 + …) + (#2
$ "%1 $ "

2
%2 $…)(x0 + "x1 + "

2 x2 + …)

= " ( x0 + "x1 + "
2 x2 + …) $ f (( x0 + "x1 + "

2 x2 + …))[ ]
 (21) 
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and equating the terms with the identical powers of λ, we can obtain a series of linear 

equations, of which we write only the first four 

 

     

 

! ! x 0 + "
2
x0 = 0   (22) 

    

 

! ! x 1 +"
2 x1 = (1+ #1)x0 $ f ( x0 )   (23) 

    

 

! ! x 2 + "
2x2 = #2x0 + (1+ #1)x1 $ x1 ! f (x0 )  (24) 

    

 

! ! x 3 + "
2x3 = #3x0 + #2x1 + (1+ #1)x2 $ 3x2 ! f (x0 ) $

1

2
x1

2
! ! f ( x0 )  (25) 

    

 

! 

The initial conditions are replaced by 

 
     

 

x0(0) = A,         

 

! x 0(0) = 0 ,     
    

 

x j (0) = 0 ,     
    

 

! x j (0) = 0 ,     j ≥ 1 (26) 

 

In these equations we have taken into account an expression for 
    

 

f !2xn(t )
n= 0

"

#
$ 

% 
& 

' 

( 
)  

similar to Eq. (14). In Eqs. (23) and (25) we choose the value of the coefficients αn in 

order to remove any secular term from the perturbation equation of order n.  

 

 

4. The cubic oscillator 

 

The cubic oscillator is a truly nonlinear oscillator. This is the simplest symmetrical truly 

nonlinear oscillator and its potential is 

 

 
    

 

V ( x) =
1

4
! x

4 ,         β > 0 (27) 

 
For this oscillator, the dimensionless restoring force f(x) is given by the following 

equation 

     

 

f ( x) = !" x3,         β > 0 (28) 
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Substituting Eq. (28) into Eq. (15) gives the following equation of motion of a 

nonlinear oscillator  

 
    

 

d2
x(t )

dt
2

+ ! x
3

= 0 ,         β > 0 (29) 

 
with initial conditions     

 

x(0) = A and     

 

! x (0) = 0. Eq. (29) corresponds to a mechanical 

oscillator for which the restoring force is proportional to the cube of the displacement. 

As we can see the linear term, x, is omitted in the equation and for all values of β the 

motion is always nonlinear. It is clear that none of the standard methods for constructing 

a perturbation solution to this equation apply since these procedures assume that when β 

= 0 the resulting differential equation is that for the harmonic oscillator [24]. One 

example of this nonlinear oscillator is a cube-law air track oscillator [38]. The motion of 

a ball-bearing oscillating in a glass tube that is bent into a curve [23] is another example, 

as well as the motion of a mass attached to two identical stretched elastic wires for small 

amplitudes when the length of each wire without tension is the same as half the distance 

between the ends of the wires [39]. 

The alternative Lindstedt-Poincaré method does not work for this example. 

However, we can apply the homotopy perturbation method considered in section 3. Eq. 

(29) can be rewritten as follows 

 

 
    

 

d2
x(t )

dt
2

+ x = !(x "# x
3) ,         β > 0 (30) 

 
Taking into account Eqs. (19)-(26), we have the following linear differential equations 

 

     

 

! ! x 0 + "
2
x0 = 0   (31) 

    

 

! ! x 1 +"2
x1 = (1+ #1)x0 $% x0

3  (32) 

    

 

! ! x 2 + "2
x2 = #2x0 + (1+ #1)x1 $ 3% x1x0

2  (33) 

    

 

! ! x 3 + "2
x3 = #3x0 + #2x1 + (1+ #1)x2 $ 3% x2x0

3 $ 3% x1
2
x0  (34)  

    

 

! 
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The solution of Eq. (31) is 

 
      

 

x0(t ) = Acos!t  (35) 

 
Substitution of Eq. (35) into Eq. (32) gives 

 

 
    

 

! ! x 1 +"2
x1 = (1+ #1 $

3

4
% A

2 ) Acos"t $
1

4
% A

3 cos3"t  (36) 

 
No secular terms in x1(t) requires that 

 

 
    

 

!1 = "1+
3

4
# A

2  (37) 

and the solution of Eq. (36) is 

 

 
    

 

x1(t ) = !
1

32"2
# A

3(cos"t ! cos3"t ) (38) 

 
The existence of computer algebra software, such as MATHEMATICA, allows 

the procedure to be extended to higher orders. 

Proceeding exactly in the same way at the second order it is possible to obtain 

 

 
    

 

!2 = "
3

128#2
$ 2

A
4 ,    

    

 

x2(t ) = !
1

1024"4
# 2

A
5(cos"t ! cos5"t )  (39) 

 

and for the third order 

 

   

 

!3 = 0  ,    
    

 

x3(t ) = !
1

32768"6
# 3

A
7 (7cos"t ! 6cos5"t ! cos7"t ) (40) 

 

Therefore, taking into account Eqs. (37) and (40), it is possible to obtain the 

approximate frequency, the period and the solution for each approximation.  
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Therefore, the first approximation to the periodic solution is given by 

 

 
    

 

!a1( A) =
3

2
" A = 0.866025 " A  (41) 

 

 
    

 

Ta1( A) =
4!

3 " A

=
7.25520

" A

 (42) 

 

 
    

 

xa1(t ) =
23

24
Acos!a1t +

1

24
Acos3!a1t = 0.958333Acos!a1t + 0.041666Acos3!a1t  

  (43) 

For the second approximation we have  

 

 
    

 

!a2( A) =
1

4
6 + 30 " A = 0.846951 " A  (44) 

 

 
    

 

Ta2( A) =
8!

6 + 30 " A

=
7.41859

" A

 (45) 

 

    

 

xa2(t ) =
A

4(6 + 30)2
(251+ 46 30)cos!a2t + 2(6 + 30 )cos3!a2t + cos5!a2t[ ]

= 0.954538Acos!a2t + 0.043564Acos3!a2t + 0.0018979Acos5!a2t

 (46) 

 

And for the third approximation we have  

 

  
    

 

!a3( A) = !a2( A) =
1

4
6 + 30 " A = 0.846951 " A (47) 

 

  
    

 

Ta3( A) = Ta2( A) =
8!

6 + 30 " A

=
7.41859

" A

 (48) 
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xa3(t ) = 0.953959Acos!a2t + 0.0440606Acos3!a2t + 0.0018979Acos5!a2t

+ 0.00008268Acos7!a2t
 (49) 

 

5. Comparison with the exact and other approximate solutions 

 

We illustrate the accuracy of the modified approach by comparing the approximate 

solutions previously obtained with the exact period Tex and other results in the literature. 

In particular we will consider the solution of Eq. (29) by means of the harmonic balance 

method [15]. This method is a procedure for determining analytical approximations to 

the periodic solutions of differential equations using a truncated Fourier series 

representation [17]. Like the homotopy perturbation method, the harmonic balance 

method can be applied to nonlinear oscillatory problems where a linear term does not 

exist, the nonlinear terms are not small, and there is no perturbation parameter. 

However, it is very difficult to use the harmonic balance method to construct higher-

order analytical approximations because this method requires solving analytical 

solutions of sets of algebraic equations with very complex nonlinearities [18].  

By applying the first approximation based on the method of harmonic balance, 

Mickens achieved the following expressions for the frequency and the period [15] 

 

 
    

 

!M 1( A) =
3

2
" A = 0.866025 " A (50) 

 

 
    

 

TM 1( A) =
4!

3 " A

=
7.25520

" A

 (51)  

 
and the approximate solution 

 
     

 

xM 1(t ) = Acos!M 1t  (52) 
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While applying the second approximation based on the method of harmonic 

balance, Mickens obtained [15] 

 

     

 

!M 2( A) = 0.8507 " A (53) 

 

 
    

 

TM 2( A) =
7.3859

! A

 (54) 

 

     

 

xM 2(t ) = 0.9569Acos!M 2t + 0.0431Acos3!M 2t  (55) 

 

Calculation of the exact period proceeds as follows. Integrating Eq. (29) and 

using the initial conditions we arrive at  

 

 
    

 

1

2

dx

dt

! 

" 
# 

$ 

% 
& 

2

+
1

4
' x

4
=

1

4
' A

4 (56) 

 
From the representation above, we can derive the exact period Tex as follows (see the 

Appendix) 

  
    

 

Tex( A) =
4

A !
K(1/ 2) =

7.41630

! A

 (57) 

 

where K(m) is the complete elliptical integral of the first kind [40]. The exact frequency 

is given by the following expression 

 

 
    

 

!ex( A) =
2"

4K(1/ 2)
A # = 0.84721 # A (58) 

 

The exact solution to Eq. (29) is (see the Appendix) 
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xex(t ) = Acn ! At ;
1

2

" 

# 
$ 

% 

& 
'  (59) 

 

where cn is the Jacobi elliptic function which has the following Fourier expansion [41] 

 

 
    

 

cn(u;m) =
2!

m K(m)

q
n+1/ 2

1+ q
2n+1

cos
(2n + 1)! u

2K(m)

" 

# 
$ 

% 

& 
' 

n=0

(

)  (60) 

where  

 

 
    

 

q(m) = exp !
" K( # m )

K(m)

$ 

% 
& 

' 

( 
)  (61) 

 

and 

     

 

! m = 1" m  (62) 

 

With these results, the Fourier expansion of Eq. (59) becomes 

 

    

 

xex(t ) = Acn ! At ;
1

2

" 

# 
$ 

% 

& 
' =

2( 2A

K(1/ 2)

exp[(n + 1/ 2)( ]

1+ exp[(2n + 1)( ]

" 

# 
$ 

% 

& 
' cos[(2n + 1)

n=0

)

* +ext] (63) 

 

where we have taken into account Eq. (58) and from Eq. (61)     

 

q(1/ 2) = exp(!" ) . 

The first terms of this Fourier expansion are 

 

 

      

 

xex(t ) = 0.95501Acos!ext + 0.043050Acos3!ext

+ 0.0018605Acos5!ext + 0.0000804Acos7!ext + …

 (64) 

 

In order to compare the approximate and the exact periods we obtain the 

following expressions 
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! ATex( A) = 7.41630   (65) 

     

 

! ATM 1( A) = 7.25520    Relative error = 2.2% (66) 

     

 

! ATa1( A) = 7.25520    Relative error = 2.2% (67) 

     

 

! ATM 2( A) = 7.3859    Relative error = 0.41% (68) 

     

 

! ATa2( A) = 7.41859    Relative error = 0.031% (69) 

  

As we can see, the approximate periods TM1 and Ta1 are equal, but Ta2 is more 

accurate than Mickens’ period TM2 and can provide excellent approximations to the 

exact frequency for the whole range of values of the oscillation amplitude. Therefore, 

for any values of β, it can be easily proved that the relative error of the approximate 

period Ta2 obtained in this paper is 0.031% in the whole solution domain (  

 

0 < ! < ") 

and for the complete range of oscillation amplitude, including the limiting cases of 

amplitude approaching zero and infinity. However, for Mickens’ period TM2 the relative 

error is 0.41%, i.e., more than thirteen times the relative error for Ta2.  

The normalized periodic exact solution, xex(t)/A, achieved using Eq. (59), 

Mickens’ first order approximate periodic solution, xM1(t)/A (Eq. (52)), and the proposed 

first order approximate solution, xa1(t)/A (Eq. (43)) are plotted in Figure 1, where h is 

defined as follows 

 
    

 

h =
A !

4K(1/ 2)
t  (70) 

 

This figure is valid for all values of oscillation amplitude and for β > 0. In Figure 2 we 

compare the normalized exact solution, xex(t)/A, with the approximate solutions obtained 

by means of the second-order harmonic balance method, xM2(t)/A (Eq. (55)), and the 

second order approximation obtained using the homotopy perturbation method, xa2(t)/A 

(Eq. (46)). As we can see, xa2(t)/A (red line) coincides with the exact solution xex(t)/A 

(black line). We can not see the black line because it is under the red line. Figure 2 

shows that the second approximate analytical solution obtained by means of He’s 

homotopy perturbation method provides a most excellent approximation to the exact 
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periodic solution. Figures 1 and 2 also show that Eqs. (43) and (46) can provide better 

approximations than Eqs. (52) and (55), respectively, to the exact periodic solutions. 

If we compare the approximate solutions for the first and the second 

approximations with the Fourier expansion of the exact solution (Eq. (64)), we can see 

that xa1(t) is a better approximation than xM1(t), although the periods for this 

approximation are equal. For the second approximation the approximate solution xa2(t) 

is a better approximation than xM2(t) and the approximate period obtained using the 

second order homotopy perturbation method is also better than the period obtained by 

means of the second order harmonic balance method. Obviously, xa3(t) is the best 

approximation. If we compare xa3(t) (Eq. (49)) with the first four terms of the Fourier 

expansion of xex(t) (Eq. (64)) we can see that the relative errors for these terms are 0.1%,   

0.02%, 0.02%  and  0.03%, respectively.  

Finally, we compare the values of the solution when the value of the time t is 

equal to one exact period. For t = Tex we have     

 

xex(Tex ) = A  and the results for the 

different analytical approximate solutions are 

 

     

 

xM 1(Tex ) = 0.990283A Relative error = 1.0% (71) 

     

 

xa1(Tex ) = 0.991848A Relative error = 0.8% (72) 

     

 

xM 2(Tex ) = 0.999666A  Relative error = 0.03% (73) 

     

 

xa2(Tex ) = 0.999998A Relative error = 0.0002% (74) 

 

These results are an indication of the accuracy of the homotopy perturbation 

method as applied to this particular problem and show that it provides an excellent 

approximation to the solution of Eq. (29). 

 

 

6. Conclusions 

 

The homotopy perturbation method has been applied to obtain analytical approximate 

solutions for truly nonlinear problems that are conservative and periodic. The major 
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conclusion is that this perturbation scheme provides excellent approximations to the 

solution of these nonlinear systems with high accuracy and, in particular, the results for 

the cubic oscillator are valid for the whole solution domain. The analytical 

representations obtained using the homotopy perturbation technique give excellent 

approximations to the exact solutions for the whole range of values of oscillation 

amplitude. These approximate solutions are better than the approximate solutions 

obtained using the harmonic balance method. For the second order approximation, the 

relative error of the analytical approximate frequency obtained using the homotopy 

perturbation approach for the cubic oscillator is 0.031%, while the relative error is 

0.41% when the harmonic balance method’s second order approximation is considered. 

An interesting feature considered in this paper is the comparison between the analytical 

approximate solutions and the Fourier series expansion of the exact solution. This has 

allowed us to compare the coefficients for the different harmonics. In summary, He’s 

homotopy perturbation method is very simple in its principle, and it can be used to solve 

other conservative truly nonlinear oscillators with complex nonlinearities. 

 

 

Appendix. Exact solution for the cubic oscillator 

 

Consider the differential equation with single-term positive-power nonlinearity 

 

 
    

 

d2
x(t )

dt
2

+ ! x
3

= 0 ,         β > 0 (A1) 

 
with initial conditions  

     

 

x(0) = A     and     
    

 

dx(0)

dt
= A  (A2) 

 
Integration of Eq. (1) gives the first integral 

 

 
    

 

1

2

dx

dt

! 

" 
# 

$ 

% 
& 

2

+
1

4
' x

4
=

1

4
' A

4 (A3) 
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where the integration constant was evaluated using the initial conditions of Eq. (A2). 

Since Eq. (A1) has the first-integral in Eq. (A3), it can be concluded that all the 

solutions are periodic [5]. 

Solving Eq. (A3) for t gives 

 

 
    

 

t( x) = !
2

"
dx

A
4 ! x

4A

x

#  (A4) 

 

The linear transform x = Au reduces this equation to the form 

 

 
    

 

t( x) =
1

A

2

!
dx

(1" u
2 )(1+ u

2 )x / A

1

#  (A5) 

 

The integral in Eq. (A5) can be written in terms of elliptical integrals as follows [40] 

 

    

 

dx

(1! u
2 )(1+ u

2 )x / A

1

" =
dx

(1! u
2 )(1+ u

2 )0

1

" !
dx

(1! u
2 )(1+ u

2 )0

x / A

"  (A6) 

 

The first integral is 

 
    

 

dx

(1! u
2 )(1+ u

2 )0

1

" = K(!1) =
1

2
K(1/ 2) (A7) 

 

and the second integral can be expressed as follows [40] 

 

    

 

dx

(1! u
2 )(1+ u

2 )0

x / A

" = K(!1) ! F arcsin(x / A);!1)( )  

    

 

=
1

2
K 1/ 2( ) !

1

2
F

"
2
! arcsin(x / A); 1/ 2

# 

$ 
% 

& 

' 
(  
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=
1

2
K 1/ 2( ) !

1

2
F arccos(x / A); 1/ 2( ) (A8) 

 

where K(m) and F(ϕ;m) are the complete and the incomplete elliptical integrals of the 

first kind defined as follows [40] 

 

 
    

 

K(m) =
dx

(1! u
2 )(1! mu

2 )0

1

"  (A9) 

 

 
    

 

F(! ;m) =
dx

(1" u
2 )(1" mu

2 )0

z

# ,           

 

z = sin!  (A10) 

 

In Eqs. (A7) and (A8) we considered the following relations [40] 

 

 
    

 

K(!m) =
1

1+ m

K
m

1+ m

" 

# 
$ 

% 

& 
'  (A11) 

 

 
    

 

F(! ;" m) =
1

1+ m

K
m

1+ m

# 

$ 
% 

& 

' 
( " F

)
2
"! ;

m

1+ m

# 

$ 
% 

& 

' 
(  (A12) 

 

Eqs. (A6)-(A8) allow us to write Eq. (A5) as follows 

 

 
    

 

t( x) =
1

! A

F arccos(x / A); 1/ 2( ) (A13) 

 

This equation can be inverted to give x as a function of t. Doing this gives 

 

 
    

 

x(t ) = Acn F ! At ; 1/ 2( )  (A14) 
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where cn(z;m) is the Jacobi elliptic function [41]. 

The period of the oscillations of the cubic truly nonlinear oscillator can be 

obtained from Eq. (A13) as follows 

 

 
    

 

T = 4t(0) =
4

! A

K(1/ 2) (A15) 
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FIGURE CAPTIONS 

 

 

Figure 1.-  Comparison of first order approximate solutions obtained using the 

homotopy perturbation (red line) and the harmonic balance method (blue 

line)  with the exact solution (black line).  

 

Figure 2.-  Comparison of second order approximate solutions obtained using the 

homotopy perturbation (red line) and the harmonic balance method (blue 

line)  with the exact solution (black line). The black line can not be seen 

because it is under the red line. 
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FIGURE  1 
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