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ABSTRACT 

 

The second-order harmonic balance method is used to construct three approximate 

frequency-amplitude relations for a conservative nonlinear singular oscillator in which the 

restoring force is inversely proportional to the dependent variable. Two procedures are 

used to solve the nonlinear differential equation approximately. In the first the differential 

equation is rewritten in a form that does not contain the     

 

y
!1 expression, while in the 

second the differential equation is solved directly. The approximate frequency obtained 

using the second procedure is more accurate than the frequency obtained with the first one 

and the discrepancy between the approximate frequency and the exact one is lower than 

1.28%. 
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Mickens [1] has recently analyzed the nonlinear differential equation 
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Mickens has also shown that all the motions corresponding to Eq. (1) are periodic [1, 3]; 

the system will oscillate within symmetric bounds [-A, A], and the angular frequency and 

corresponding periodic solution of the nonlinear oscillator are dependent on the amplitude 

A. Integration of Eq. (1) gives the first integral 
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where the integration constant was evaluated using the initial conditions of Eq. (2). From 

Eq. (3), the expression for the exact period, Tex(A), for the nonlinear oscillator given by 

Eq. (1) taking into account the initial conditions in Eq. (2) is 
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The transformation 
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t
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 reduces this equation to the form 
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From Eq. (5), the exact value for the angular frequency is given by the expression 
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It is difficult to solve nonlinear differential equations and, in general, it is often 

more difficult to get an analytic approximation than a numerical one for a given nonlinear 

oscillatory system [3, 4]. There are many approaches for approximating solutions to 

nonlinear oscillatory systems. The most widely studied approximation methods are the 

perturbation methods [5]. The simplest and perhaps one of the most useful of these 

approximation methods is the Lindstedt-Poincaré perturbation method, whereby the 

solution is analytically expanded in the power series of a small parameter [3]. To 

overcome this limitation, many new perturbative techniques have been developed. 

Modified Lindstedt-Poincaré techniques [6-8], homotopy perturbation method [9-15] or 

linear delta expansion [16-18] are only some examples of them. A recent detailed review 

of asymptotic methods for strongly nonlinear oscillators can be found in reference [4]. The 

harmonic balance method is another procedure for determining analytical approximations 

to the periodic solutions of differential equations by using a truncated Fourier series 

representation [3, 19-25]. This method can be applied to nonlinear oscillatory systems 

where the nonlinear terms are not small and no perturbation parameter is required. 

The main objective of this paper is to approximately solve Eq. (1) by applying the 

harmonic balance method, and to compare the approximate frequency obtained with the 

exact one and with another approximate frequency obtained applying the harmonic 

balance method to the same oscillatory system but rewriting Eq. (1) in a way suggested 

previously by Mickens [1]. The approximate frequency derived here is more accurate and 

closer to the exact solution. The error in the resulting frequency is reduced and the 

maximum relative error is less than 1.3% for all values of A. 

In order to approximately solve Eq. (1), Mickens has rewritten this equation in a 

form that does not contain the 
  

 

y
!1 expression [1] 
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It is possible to solve Eq. (7) by applying the harmonic balance method. Following 

the lowest order harmonic balance method, a reasonable and simple initial approximation 

satisfying the conditions in Eq. (7) would be 
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The substitution of Eq. (8) into Eq. (7) gives 
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 then expanding and simplifying the resulting expression gives 
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and the solution for the angular frequency, 

    

 

!
M1
(A), is  
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1.414214
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and the percentage error of this approximate frequency in relation to the exact one is 
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!ex

#100 = 12.8%  (12) 

 
Mickens [1] also used the second-order harmonic balance approximation 
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y
2
(t) = A

2
cos!t + B

2
cos3!t  (13) 

 

to the periodic solution of Eq. (7). Substitution of Eq. (13) into Eq. (7), simplifying the 

resulting expression and equating the coefficients of the lowest harmonics to zero gives 

two equations and taking into account that A = A2 + B2, Mickens [1] obtained A2 = 10A/9 

and B2 = -A/9, and the second-order approximate solution (Eq. (13)) to Eq. (7) can be 

written as follows 
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where the second-order approximate frequency, 
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(A), is given by 
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and the percentage error is 
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#100 = 1.55%  (16) 

 

As we pointed out previously, the main objective of this paper is to solve Eq. (1) 

instead of Eq. (7) by applying the harmonic balance method. Substitution of Eq. (8) into 

Eq. (1) gives 
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cos" t +
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In order to apply the first order harmonic balance method to Eq. (17) we have to 

expand Eq. (17) and to set the coefficient of 

 

cos! t  (the lowest order harmonic) equal to 

zero. To take this, firstly we do the following Fourier series expansion 
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where the first term of this expansion can be obtained by means of the following equation 
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Substituting Eq. (18) into Eq. (17) and taking into account Eq. (19) gives 
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For the lowest order harmonic to be equal to zero, it is necessary to set the 

coefficient of cosωt equal to zero in Eq. (20), then 
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Consequently, in this limit, the low-order harmonic balance method applied to Eq. 

(1) gives exactly the same results as the low-order harmonic balance method applied to 

Eq. (7). 

In order to obtain the next level of harmonic balance, we express the periodic 

solution to Eq. (1) with the assigned conditions in Eq. (2) in the form of [19-22] 
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where 

 

u(t) is the correction part which is a periodic function of t of period   

 

2! /"  and 
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 Substituting Eq. (22) into Eq. (1) gives 
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Wu and Lim [19-21] presented an approach by combining the harmonic balance method 

and linearization of nonlinear oscillation equation with respect to displacement increment 

only, u(t). This harmonic balance approach will be used to approximately solve Eq. (24). 

Linearizing the governing Eq. (24) with respect to the correction u(t) at y1(t) leads to 
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To obtain the second approximation to the solution, u(t) in Eq. (22), which must 

satisfy the initial conditions in Eq. (26), we take into account the second-order harmonic 

balance approximation in Eq. (13) which can be written as follows 
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  (27) 

where we have taken into account that A = A2 + B2. From Eqs. (8), (22) and (27) we can 

see that u(t) takes the form 
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u(t) = B
2
(cos3!t " cos!t) (28) 

 

where B2 is a constant to be determined. 

Substituting Eqs. (22), (8) and (28) into Eq. (25), expanding the expression in a 

trigonometric series and setting the coefficients of the terms   

 

cos!t  and     

 

cos3!t  equal to 

zero, respectively, leads to 
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From Eqs. (29) and (30) we can obtain B2 and ω2 as follows 
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With this value for B2, Eq. (27) can be written 
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The percentage error for the second order approximate frequency is 
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percentage error =
!ex "!WL2

!ex

#100 = 2.71%  (34) 

 

which is higher than the percentage error for the second approximate frequency obtained 

by Mickens when harmonic balance method is applied to Eq. (7).  

As we can see substitution of Eq. (22) into Eq. (1) does not give the same result as 

substitution of Eq. (8) into Eq. (7) and application of the second-order harmonic balance 

method to Eq. (7) give a more accurate frequency than application of Wu and Lim’s 

approach to Eq. (1). These questions have been analyzed in detail in references [23] and 

[25] for other oscillators analyzed by first-order harmonic balance method and one would 

wait to obtain better results when the harmonic balance method is applied to Eq. (1) 

instead of to Eq. (7). This would be due to the fact that when we substitute Eq. (13) into 

Eq. (7) we obtain an equation that includes only three even powers of cosωt: 1 (cos0ωt), 

cos2ωt and cos4ωt and then there are only three contributions to the coefficient of the first 

term 1 (cos0ωt), from 1 (cos0ωt), cos2ωt and cos4ωt, and two contributions to the 

coefficient of the second harmonic cos(2ωt), from cos2ωt and cos4ωt,  Therefore, 

substituting Eq. (13) into Eq. (7) produces only three terms, 1, cos(2ωt) and cos(4ωt). 

However, Eq. (17) includes all odd powers of cosωt, which are cos2n+1ωt with n = 0, 1, 2, 

…,  ∞, and then there are infinite contributions to the coefficient of the first harmonic 

cosωt, that is, 1 from cosωt, 3/4 from cos3ωt, 5/8 from cos5ωt, …, 
    

 

2
!2n 2n + 1

n

" 

# 
$ 

% 

& 
'  from 

    

 

cos
2n+1

!t , and so on. Therefore, substituting Eq. (27) into Eq. (1) produces the infinite set 

of higher harmonics, cosωt, cos3ωt, …, cos[(2n+1)ωt], and so on, and the second-order 

angular frequency in Eq. (32) would have to be more accurate than the frequency given in 

Eq. (15). But we obtained the opposite result. The reason is that we have not applied the 

exact second-harmonic balance method to Eq. (1), but a linearized approximation to this 

method.  

In order to verify this affirmation, we consider a new approach to obtain higher-

order approximations using harmonic balance method. Instead of considering the 

assumption in Eq. (25), first we do the following series expansion 
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and substituting Eq. (35) into equation (1) gives 
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To obtain the second approximation to the solution, u(t) in Eq. (22), which must 

satisfy the initial conditions in Eq. (23), takes the form 
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where c2 is a constant to be determined. 

Substituting Eqs. (8), (22) and (37) into Eq. (36) gives 
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Substituting Eq. (39) into Eq. (38) gives 
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It is possible to state the following Fourier series expansion 
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and where     

 

!( z)  is the Euler gamma function [26]. 

Substituting Eqs. (41) and (42) into Eq. (40), we obtain 
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and setting the coefficients of the resulting items   

 

cos!t (j = 0) and     

 

cos3!t  (j = 1) equal to 

zero, respectively, yields 
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which can be written as follows 
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In Eq. (47) the following relations have to be taken into account 
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while in Eq. (48) the following expressions have been considered 
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These results have been obtained using Mathematica®. 

From Eqs. (46) and (47) and once again by using Mathematica ® we can obtain ω2 
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and B2 as follows 
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With this value for B2, Eq. (22) can be written 

 

     

 

y
2
(t) = 1.101581Acos(!

2
t) " 0.101581Acos(3!

2
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The percentage error for the second order approximate frequency is 

 

 
    

 

percentage error =
!ex "!2

!ex

#100 = 1.275% (55) 

 

As we can see, this error is lower than the error obtained by Mickens (1.55%) and we can 

conclude this is the percentage error obtained when the second-order harmonic balance 

method is exactly applied to Eq. (1). 

The second order harmonic balance method was used to obtain three approximate 

frequencies for a nonlinear singular oscillator. The first approximate frequency, 
    

 

!
M 2

, was 

obtained by rewriting the nonlinear differential equation in a form that does not contain 

the     

 

y
!1 term; while the second and the third ones, 

    

 

!
WL2

 and 
  

 

!
2
, were obtained by solving 

the nonlinear differential equation containing the     

 

y
!1 term. The second-order approximate 

frequency 
    

 

!
WL2

 is obtained by using the approach by Wu and Lim [19-21]. This approach 

can be described as a linearisation of the harmonic balance method, and works pretty well 

for the chosen problems. Because the harmonic balance method does not eliminate the 
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secular terms systematically, it is difficult to obtain second and higher order approximate 

solutions by the harmonic balance method. But this approach eliminates this difficulty and 

may be applied to other nonlinear oscillators. We can conclude that equations (52) and 

(53) are valid for the complete range of oscillation amplitude, including the limiting cases 

of amplitude approaching zero and infinity. Excellent agreement of the approximate 

frequencies with the exact value was demonstrated, and discussed, and the discrepancy 

between the third approximate frequency, ω2, and the exact value never exceeds 1.28%. 

The approximate frequency, ω2, derived here is the best frequency that can be obtained 

using the first-order harmonic balance method, and the maximum relative error was 

reduced as compared with approximate frequencies 
    

 

!
M 2

 and 
    

 

!
WL2

. Finally, we discussed 

the reason why the accuracy of the approximate frequency, ω2, is better than that of the 

frequency 
    

 

!
M 2

 obtained by Mickens. This reason is related to the number of harmonics 

that application of the second-order harmonic balance method produces for each 

differential equation solved. 
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