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Entropy-based study of imaging quality
in holographic optical elements
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A method for obtaining the best image plane for holographic optical elements by the use of the concept of entropy
is described. This method is applied to in-line holographic lenses with different values of spherical aberration.
Numerical results show that for holograms with large aberrations the best image plane (obtained by the use of
the concept of entropy) is different from the minimum-aberration-variance plane.

Recently the concept of entropy has been used in
optics to locate coherent propagation planes that are
interesting from an optical viewpoint,' and the study
of the two-image depth-from-focus problem has been
considered in terms of entropy loss in a linear filter.2
In digital image processing the concept of entropy
has been used as a means of recovering pictorial
information in degraded photographs.' 4 The for-
mation of images with incoherent light,5 the study
of partial polarization, and coherence theory6 are
other fields in which an entropic method has been
used. Dahne and Lanzl7 have described an auto-
matic focusing technique for a computer-controlled
optical microscope based on the concepts of entropy.
Other maximum principles have been used in image
restoration.8

In this Letter we suggest the use of the concept of
entropy to locate the position of the best image plane
for a holographic optical element (HOE) in the pres-
ence not only of small but also of large aberrations.
Let us outline the properties of hologram aberration
derived by Champagne.9 We assume that the HOE
is located on the XY plane and that the point source
Q(Xq, yq, zq) of a spherical wave is defined in terms
of the parameters Rq, aq, and 7,, as can be seen in
Fig. 1 of Ref. 10. Here q = r, o, c, and i denote the
reference, object, reconstruction, and image points,
respectively. The recording and the reconstruction
wavelengths are Ar and Ac, respectively. According
to Refs. 9, 11, and 12 the phase aberration at a point
(x, y) in the exit pupil plane A (x, y) is given by

A(x,y) = Jc(XY) - ¢Ai(X,y) ± [;bo(X,Y) - kr(xy)];
(1)

the ± refers to the positive and the negative first
diffraction orders from the hologram, and qq is the
phase of a spherical wave. Its value in the plane of
the hologram is'2

0q(Xy) = A [r(x, y) - Rq]. (2)
Aq

The phase aberration A is related to the wave
aberration W according to A = 2(27r/Ac)W. Using
Eqs. (1) and (2) we can write W(x, y) asW = rc -ri j(ro -rr) - [R. -Ri ± /(Ro -Rr)]X

(3)

where /u denotes the
distance Rg and the
image point are given

wavelength shift AcAr. The
angle ag of the Gaussian

by 9

Re R, R,, R, 

sin ag = sin ac + pz(sin ao - sin a,.). (5)

Equation (4) defines the radius Rg of the reference
sphere centered on the Gaussian image point, G.
We introduce a local coordinate frame X'Y'Z' fixed
to point G as the origin. The Z' axis is defined
by the principal ray that runs from the center of
the hologram to Gaussian image point G. For
simplicity we choose the X'Y' plane as the image
plane so that (x',y') are coordinates of an image
point in this plane, and the coordinates of this
image point in the XYZ coordinates system are
(xi,yi,zi). The intensity of the image in a plane
normal to the chief ray (Z' axis) at a distance z'
from the center of the HOE may be written as"3

I (x', y'; z')

1 | ff A(x, y)exp[iA(x, y; x', y'; z')]dxdy |
B 2~ i (6)

where A(x, y) = 1 (uniform amplitude) and S
represents the area of the exit pupil where the
integration is done. In Eq. (6), B is the amplitude
at the Gaussian image point (x' = y' = 0) in the
absence of aberrations. Intensity can be interpreted
as a probability-density function, provided that it
is adequately normalized3'4 as
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Fig. 1. (a) Entropy and axial irradiance for hologral
lenses with a diameter of 5 cm, (b) ray tracing: I
marginal plane; LC, last confusion plane; M, medi
plane (minimum aberration variance); G, Gaussian ph

P(x', A'; Z') = (x', y'; z')
ffIA I(x', y'; z')dx'dy'

where A' is the integration area in the imn
plane. For an image plane situated at a z' positi
we can define the entropy of the image forn
on this plane as

S(z') = -ff P(x', y'; z')ln[P(x', y'; z')]dx'dy',

holographic lenses with spherical aberration. To
illustrate our method, from Eq. (8) we numerically
evaluate the entropy along the Z axis for two
holographic lenses with diameters D = 5 cm and
D = 8 cm recorded with a divergent spherical wave
whose curvature radius is R, = -120 cm and with
a convergent spherical wave with the source point
separated Ro = 60 cm from the hologram center with
a recording wavelength of Ar = 633 nm. The two
source points are situated on the axis normal to the
holographic plate. The hologram is reconstructed
with a collimated beam (Rc = °°) and the wavelength
used in the recording step. Using Eq. (4), we obtain
the Gaussian point position that is situated 40 cm
from the HOE. Axial irradiance is also numerically
evaluated from Eq. (6), with x' = y' = 0.

When ray aberrations are considered, it is possi-
ble to mix one aberration with another in order to
minimize the size of the ray spot on an image plane.
In the case of spherical aberration, it is possible to
balance the effect of spherical aberration by observ-
ing the image not on the Gaussian plane but on a
defocused image plane, and the circle of least confu-
sion is on a plane that is three fourths of the way
between the Gaussian image plane and the marginal
image plane. However, based on diffraction, the op-

)hic timum amount of defocus is different from the one
Ma, found with geometric optics, and for small aberra-
Lum tions it is used to reduce the variance of the aber-
tne. rations across the exit pupil of the lens. For small

aberrations, as the Strehl ratio is maximum when
the aberration variance is minimum, the best image
plane is one that corresponds to the minimum vari-
ance. For small values of spherical aberration based
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and numerical calculations are necessary for
obtaining this entropy. In this case, entropy should
be interpreted as a property of the way in which
energy is distributed on an image plane intensity,
and, in this sense, entropy gives us a measure of
the aberrations in the considered plane. The lowest
entropy plane will be the best image plane in the
sense of minimal aberrations. In the presence of
aberrations this plane is different from the plane
that contains the Gaussian image point. The plane
with the lowest entropy is chosen as the best image
plane. For an optical system with a circular exit
pupil, the aberration-free irradiance distribution is
the Airy pattern, and it is centered at the Gaussian
image point. The quality of the image is limited only
by the diffraction of the object radiation at the exit
pupil of the system. Then the value for the entropy
obtained for this image plane will be the lowest
value of the entropy for this optical system. To
illustrate our entropy-based study of quality images
in HOE's, we use the above-mentioned definition of
entropy to obtain the best image plane for two in-line
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Fig. 2. (a) Entropy and axial irradiance for holographic
lenses with a diameter of 8 cm, (b) ray tracing (notation
is the same as that of Fig. 1).
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5 cm. The lowest value of the entropy and the maxi-
mum axial irradiance are at the same image plane, ly-
ing midway between the marginal and the Gaussian
planes. The minimum-entropy plane corresponds in
this case to the plane with minimum variance be-
cause spherical aberration is small. Figure 2 shows
the axial irradiance, the entropy, and the ray trac-
ing for different values of the z position at the im-
age plane when the diameter is 8 cm. In this case
the spherical aberration increases, and, as we can see
from Fig. 2, there are different planes with maximum
axial irradiance, but only one gives us minimum en-
tropy, and it is different from the Gaussian plane
and from the medium plane, where the aberration
variance is minimum. There is a maximum value
for the axial irradiance in the medium plane, but
this plane does not have a minimum entropy value.
Figure 3 shows the diffraction pattern for three dif-
ferent image planes: (a) the Gaussian plane, (b)
the minimum-aberration-variance plane, and (c) the
minimum-entropy plane, for the case of D = 8 cm.
As predicted, the best image plane in the sense of
minimal aberrations is the minimum-entropy plane,
and this plane does not coincide with medium plane
M, where the aberration variance is minimum. This
happens because the hologram has large aberrations.

Summarizing, we have proposed a method for eval-
uating the image quality in HOE's, and the concept of
entropy could be used to choose the best image plane
in the sense of minimal aberrations. To illustrate
our method we have shown some numerically eval-
uated examples for in-line holographic lenses when
spherical aberration is present. The results shown
in Figs. 2 and 3 support our initial suggestion for the
use of the concept of entropy to locate the best image
plane in HOE's. Finally, the study presented in this
paper can also be extended to conventional optics.

This work was supported by the Direcci6 General
d'Ensenyaments Universitaris i Investigaci6 de la
Generalitat Valenciana, Spain, project GV-1165/93.

(c)
Fig. 3. Diffraction patterns for a lens diameter equal
to 8 cm in (a) Gaussian plane (G), (b) the minimum-
aberration-variance plane (M), (c) the minimum-entropy
plane.

on diffraction the best image is in a plane lying mid-
way between the marginal and the Gaussian planes
(the medium plane). This plane is different from the
plane that contains the circle of least confusion of the
geometric optics. The point of the best image plane,
the one for which the irradiance is maximum, is the
diffraction focus.

To obtain the entropy values, we chose the size of
the integration plane by taking into account the val-
ues of the sizes of both the marginal and the parax-
ial planes and used the bigger of the two. Figure 1
shows the axial irradiance for the lens studied, the
calculated entropy, and the ray tracing for the par-
ticular case in which the diameter lens is equal to
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