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Abstract

The chemical effects of acoustic cavitation are obtained in sono-reactors built-up from a vessel and an ultrasonic
source. In this paper, simulations of an existing sono-reactor are carried out, using a linear acoustics model, accounting
for the vibrations of the solid walls. The available frequency range of the generator (19 kHz-21 kHz) is systematically
scanned. Global quantities are plotted as a function of frequency in order to obtain response curves, exhibiting several
resonance peaks. The attenuation coefficient of the wave is taken as a variable parameter, in absence of the precise
knowledge of the bubble size distribution, and its influence is studied. The concepts of acoustic energy, intensity
and active power are recalled, along with the general balance equation for acoustic energy. The latter is used as a
convergence check of the simulations. Finally, it is shown that the interface between the liquid and the solid walls
cannot be correctly represented by the simple approximations of either infinitely soft, or infinitely hard boundaries.
Moreover, the liquid-solid coupling allows the cooling jacket to receive a noticeable part of the input power, although it
is not in direct contact with the sonotrode. It may therefore undergo cavitation and this feature opens the perspective
to design sono-reactors which avoid direct contact between the working liquid and the sonotrode.
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1. Introduction which are responsible for a specific chemistry, known
as sonochemistry [3].

When a liquid is irradiated by a high-power ul- Various experimental devices can be used to pro-
trasonic wave, numerous radially oscillating micron- duce this phenomenon. The most common one is a
sized bubbles appear. The phenomenon is known as horn transducer, diving in the liquid and creating
acoustic cavitation [1, 2]. The strong collapse, fol- large acoustic pressure in its vicinity. Other systems
lowing the explosive expansion of these bubbles, in- involve a transducer with larger emitting area, from
duces extreme conditions inside or near the bubbles, the bottom (sometimes referred as “cup-horn reac-

tors”), or various transducers sticked to plane walls,
the latter system being commonly known as ultra-

Email address: louisnarQenstimac.fr (O. Louisnard). sonic bath

I Corresponding author

Preprint submitted to Elsevier 29 February 2008



It is generally accepted that horn transducers, as
they are very thin, emit more or less a spherical
wave, thus decaying rapidly as the distance from
the tip increases. Besides, transducers with larger
area rather create standing waves, by reflexion of
the emitted waves on the vessel wall. This difference
has indeed consequences on the self-organization of
bubbles in an astonishing variety of spatial struc-
tures [4]. Horn transducer are known to produce an
intense cavitation field near its tip, while the stand-
ing waves created by large-area transducer can at-
tract bubbles at or near antinodes, possibly far from
the emitting surface.

However, a clear distinction between the two con-
figurations is not fully justified by theoretical acous-
tics. A horn-type transducer emitting in a thin ves-
sel may also create standing waves, whereby a large
area transducer emitting in a giant vessel would not.
The relevant parameter is not only the ratio of the
transducer size to the vessel dimensions, but also the
ratio of the vessel dimensions to the acoustic wave-
length. In fact, any closed acoustic system presents
normal vibration modes at definite frequencies, and
resonates when excited at these frequencies. Some
available commercial systems exploit this property,
and adjust automatically the working frequency (in
areasonable range), in order to excite a normal mode
of the vessel. One of the motivation of this paper is
to assess the existence of these resonance modes by
simulation.

The question arises if such resonant behaviors can
be reasonably predicted by linear acoustics. At first
sight, it might sound doubtful, since high-amplitude
waves are subject to nonlinear phenomena, even in
homogeneous liquids. Moreover, the presence of cav-
itation bubbles modifies the acoustic properties of
the effective medium, decreasing the effective sound
velocity, and introducing dispersion and nonlinear
phenomena [5, 6, 7]. However, in most cases, the
bubbles are concentrated in relatively small regions
of the liquid, and one could expect that linear acous-
tics may at least give a qualitative idea of the acous-
tic field and the approximate location of the various
resonance frequencies, in the first step of the design
of a sono-reactor.

Even in the restricted frame of linear acoustics,
there remains the problem of the suitable bound-
ary conditions. Precedent studies generally treat the
vessel boundaries either as infinitely rigid walls [§],
or infinitely soft [9]. Solid boundaries may in fact
be thin enough to vibrate and deform, and these
effects must be considered, if one seeks precisely

the resonant modes of the system. Simulations of
a sono-reactor accounting for vibrations of the ves-
sel wall have been recently published [10], and show
the effect of the vessel wall thickness in a rectangu-
lar cell for two frequencies, 100 kHz and 140 kHz.
Here we present the response of an experimental
sono-reactor, including a cooling jacket, excited by a
cup-horn type transducer. The simulation presented
hereafter account for the vibration of the bound-
aries, and possible transmission of sound into the
cooling jacket. The frequency is systematically var-
ied in the range available for the generator used, the
resonances of the whole structure are sought and
characterized by calculating several global quanti-
ties as functions of frequency.

Besides, we recall the concepts of acoustic energy
density, acoustic intensity and active power, which
are sometimes confusingly used. It is first recalled,
on rigorous arguments, that if no wave escapes from
the sonoreactor, the active power is nothing else
than the power dissipated in the liquid. The latter
can be estimated by recording the initial tempera-
ture increase, which forms the basis of the calori-
metric method [11].

2. Equations of the problem
2.1. Linear acoustics in the liquid

The linear propagation of an acoustic wave is de-
scribed by the linearization of the Euler equations
[12]:
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where v(x, t) is the liquid velocity field associated to
the acoustic wave, p(x, t) the local acoustic pressure,
and py, ¢; are the density and the sound speed of the
liquid, respectively.

We assume mono-harmonic waves at angular fre-
quency w. In what follows, we will use the complex
notation
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Equations (1), (2) transform to



iwP + ptV.V =0, (5)
iwpV =—-VP, (6)

and eliminating V between the two equations yields
the well-known Helmholtz equation

V2P +k}P =0, (7)

where k; = w/¢; is the wavenumber.
2.2. Boundary conditions for the liquid

The free surface in the reactor, if any, is generally
represented by an infinitely soft boundary, that is
p = 0, or P = 0 in the case of mono-harmonic waves.

On the radiating surface of the transducer, one
generally assumes that the normal displacement is
known. This is an over-simplification, and a cor-
rect representation would involve the modelization
of all parts of the transducer, including the piezo-
ceramics, and an appropriate coupling with the
fluid. In a first approach, we will however use this
simplification here. Noting Uy the complex ampli-
tude of the transducer displacement, and using (6),
the boundary condition for the fluid reads

VPn = pw?Uy, (8)

where n is the normal pointing outward the liquid.

In past studies, the walls of the vessel enclosing the
liquid have been either also considered as infinitely
soft (P = 0) [9], or infinitely rigid [8]. The lat-
ter condition imposes a zero normal velocity, which,
for mono-harmonic waves, using (6), translates to
V P.n = 0. To relax any of these two simple approx-
imations, the vibration of the solid parts must be
properly accounted for.

2.3. Vibration of the solid

Neglecting the volumic forces, the vibrations of
an elastic solid are given by:
9%ug —

Ps W = V.O', (9)
where p; is the solid density. us(x,y, z,t) is the dis-
placement field and & the elastic stress tensor given
by

Ev
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where F is the Young modulus, v the Poisson ratio,
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T the identity tensor, Tr the trace operator, and €
the strain tensor:

€= % [%us +7 %us} . (11)

For mono-harmonic vibrations, the displacement
field is set as
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so that Eq. (9) becomes
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2.4. Boundary conditions for the solid

The boundary conditions for the solid may either
prescribe any component of the displacement field,
or the components of the stress acting on the surface.
On the boundaries in contact with air, the three
components of the stress are to be ascribed to zero.

2.5. Liquid-solid interface conditions

The coupling between the liquid and solid vibra-
tions are obtained by writing two interface condi-
tions on such surfaces. The first one is a cinematic
condition, and just states that the displacement is
continuous on each side of the interface, so that the
condition

Oug
ot

must hold, n being the normal vector pointing out-
ward the liquid. For mono-harmonic waves, derivat-
ing this relation and using (6) yields

VPn = pw?Ug.n, (17)

n (16)

v.n =

which is used as a boundary condition for linear
acoustics in the liquid.

The second condition is a dynamic one, and states
that the normal force per unit area exerted on the
solid boundary in contact with the liquid is just the
pressure of the liquid, which reads

Sn=—Pn. (18)

This continuity equation is used as a boundary con-
ditions for equation (9) governing the vibration of
the solid.



3. Energy consideration
3.1. Conservation of acoustic energy

If attenuation due to energy absorption is ignored,
the equation of acoustic energy conservation can be
readily deduced from Egs. (1), (2), and reads [12]

%///eadvz//—l.nd& (19)
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where V' is an arbitrary volume of fluid, S its
boundary. The quantity
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is the acoustic energy density (in W/m?), which is
the sum of the kinetic energy and the potential com-
pressional energy of the liquid, and

I=pv (21)

is the acoustic intensity (in W/m?). Both e, and I
are local quantities, and it should be recalled that
I is a vector field, which streamlines represent the
path followed by acoustic energy. Equation (19) just
expresses that the acoustic energy variations in a
volume of fluid, results from the difference between
the energy flux entering and the one leaving this vol-
ume. From a mechanical point of view, this equation
is just the consequence of the kinetic energy the-
orem: the surface integral is the power of external
pressure forces on S, the integral of % piv? is the to-
tal kinetic energy in V, and the volume integral of
%pQ/(plcf) is the opposite of the power of internal
pressure forces.

3.2. Active power

Cavitation experiments are commonly character-
ized by the acoustic power sent to the liquid through
the sonotrode surface. First, we would like to re-
call that, for periodic waves, non-dissipative linear
acoustics predicts a null value for the latter quantity
on average over one period, in the case of perfectly
reflecting boundaries.

Indeed, the acoustic energy e, reads, with expres-
sions (3), (4):
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so that the left-side of Eq. (19) is zero on average
over one acoustic period. Besides, using (3), (4), the
acoustic intensity I is found to read

I= %3% (PV™) + oscillating terms, (23)
where R denotes the real part of a complex number.

Now, let’s consider the case of a sono-reactor
excited by the vibrating surface Ssonotrode Of a
sonotrode, and closed by boundaries Spoundaries,
of unspecified type for now. When averaged over
one period, the energy conservation equation (19)
becomes therefore

Pactive - Pbound (24)

where

Pictive = // —%%(PV*)ndS, (25)

sonotrode

S,
Pbound = // %éR(PV*)I’l ds. (26)

Sboundaries

Integral (25) is the power entering the liquid through
the sonotrode area, and is termed as active power,
while (26) is the power lost through the other (pas-
sive) boundaries of the liquid. Thus Eq. (24) states
that, once the standing wave has built-up, the liquid
cannot store more energy on average over one pe-
riod. All the energy entering the liquid per unit-time
is lost by boundaries. When the boundaries do not
transmit any wave to the external air, Pyounq is zero.
This is the case for example in the simple cases of
infinitely soft (P = 0) or infinitely rigid boundaries
(V = 0). In the more complex case where Shoundaries
is the internal wall of the solid vessel, its external
wall being unconstrained, it can be demonstrated
that Ppound is still zero. Therefore, in all these cases,
equation (24) merely states that, without absorption
of ultrasonic energy and/or transmission of some en-
ergy to an external space, the acoustic power Pactive
transmitted to the liquid by the sonotrode should
be zero.

3.3. Attenuation and energy dissipation

The latter result sounds paradoxical, but orig-
inates from the non-dissipative character of the
medium which is implicitly assumed in Egs. (2). It
is therefore meaningless to try to predict the active
power transmitted to a reactor with non-dissipative
linear acoustics. Dissipation in acoustic waves oc-
curs for various reasons: viscosity of the medium,



diffusion of compressional heat energy at finite rate,
and relaxation delay in the case of gases. For linear
mono-harmonic wave, this effects can be represented
by a complex wavenumber (or sound velocity)

k =k, — i, (27)

where a > 0 is the attenuation coefficient, and k, =
w/¢;. In the case of cavitation, the dissipation occurs
at the level of each bubble, and origin from viscous
friction, heat diffusion in the bubble, and acoustic
radiation [13, 14, 15, 16]. The corresponding sound
velocity and attenuation factor of linear acoustic
waves in a bubbly liquid can be expressed easily,
once the bubbles size-distribution function is known
[6]. The latter theory has been used by several au-
thors, but setting an arbitrary Gaussian-shaped dis-
tribution of bubble sizes [17, 18, 19]. Moreover, it is
well known that, owing to Bjerknes forces, the cavi-
tation bubbles are not homogeneously distributed in
the whole liquid, but rather arrange in complex lo-
calized structures [4]. Owing to the lack of a theory
yielding a physical choice of the attenuation factor,
we chose to treat the latter quantity as a variable
parameter in the simulations presented hereafter.

It is instructive to see how the energy balance (24)
can be generalized to the case of dissipative wave
propagation, without detailing the physical origin of
dissipation, but knowing the attenuation factor a.
It is shown in appendix (A) that the energy balance
equation (24) becomes

Pactive = Pbound + Pdiss; (28)

P 2
Piss :///a| | dVvv (29)
i pLa

and Pyctive, Poouna are still given by (25), (26). The
integral (29) is positive, and represents the opposite
of the mechanical power of the dissipative internal
forces. Equation (28) therefore states that the active
power entering the medium, either flows out through
other boundaries, or is dissipated in the medium.
This relation is useful to check the validity of the
simulation results.

where

3.4. The plane wave hypothesis

The hypothesis of plane traveling waves (PTW)
for a vibrating boundary emitting in a liquid al-
lows to obtain simple expressions of velocity, acous-
tic pressure, and therefore of the active power sent
through the emitter

PTW_1|P0|2S _1 VoI2S
active — im sonotrode = §plcl| 0| sonotrode
(30)
where | Py| and | V| are the peak values of the acous-
tic pressure and fluid velocity, respectively, on the
sonotrode’s surface. This expression would have the
advantage to deduce directly the active power to
the amplitude of the emitter. We will show how-
ever that this approximation, for a closed geometry
where standing wave are expected, definitely yields
unrealistic results.

4. The problem solved
4.1. Experimental configuration studied

The experimental setup simulated is represented
in Figure 1. Since it presents axial symmetry, only
one half of a cut plane is represented. The sonotrode
emits from below in a liquid in contact with air on
its upper surface, and limited laterally by thin glass
walls. The sono-reactor also presents a cooling jacket
to maintain the temperature constant along an ex-
periment. A Teflon ring prevents the fluid to leak
downward and maintains the whole setup. The lig-
uid in the reactor and in the cooling jacket is water
with properties p; = 1000 kg.m™3 and ¢; = 1500
m.s~!. The elastic properties are E = 73 GPa, v =
0.17 for glass and E = 0.5 GPa, v = 0.46 for Teflon.
The liquid height is fixed to A = 72 mm, counted
from the vibrating surface of the sonotrode. The lat-
ter is assumed to vibrate vertically with an ampli-
tude of 1076 m.

The sonotrode is constituted internally from a
sandwich transducer excited by a variable frequency
generator (20 kHz - 100 W, Undatim) [8]. The sys-
tem is able to scan the emission frequency between
19 kHz and 21 kHz, and records the frequency for
which the electrical impedance on the transducer
terminals is minimal. This allows experimentally to
work at a frequency at which the system presents a
resonance, if any.

4.2. Simulation strategy

The problem defined in section 2 is solved with the
COMSOL software, varying the frequency by small
steps in the range [19 kHz,21 kHz]. Scalar quantities
representative of the global vibration of the system
are computed and plotted as functions of frequency,
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Fig. 1. Geometry studied. Only one-half of the reactor is
drawn.

in order to get a clear picture of the system’s reso-
nances.

The computed quantities can be chosen among
the following:
— the average acoustic energy stored in the liquid:

1 1|P?
ra= ][ <4pl 'V'2+4|plc|2> av, @)
1
14

— the average acoustic energy stored in the solid
walls, either Teflon and glass. The latter quantity
can be written as

E.s =/// BpswﬂUS%;m(z:s*)} av,
Vi

walls
(32)
where the first term represents the kinetic energy
density, and the second is the deformation energy
density of the solid.
— the average acoustic pressure in the liquid:

Po=y [[[ 11V
14

— the power dissipated in the liquid

P 2
Pdiss = //‘/Oéu dv; (34)
S pa

where V' may be the volume of the working liquid,
of the cooling liquid in the jacket, or the sum of
both,

— the active power entering the liquid through the
sonotrode

Pactivc = // *%FR(PV*)D ds. (35)

Ssonotrode

As seen above, from Eq. (28), the two quantities Pyiss
and Pyetive should be the equal, which is checked
for each simulation as a convergence test. Besides, a
mesh convergence study has been performed.

5. Results and discussion.
5.1. Response curves

Figure 2 displays the mean acoustic pressure in
the reactor as a function of frequency, with zero
attenuation, in the following case: cooling jacket
filled with water (thick solid line), cooling jacket
empty (thin solid line), internal walls considered as
hard boundaries (dashed line), or as soft boundaries
(dash-dotted line). In the two latter cases, the vibra-
tion of the glass and Teflon walls are not accounted
for, and it is clearly seen that the response curves
differ significantly from the ones obtained by prop-
erly taking into account the walls vibration.

The peaks observed in the response curve corre-
spond to global resonances of the whole mechani-
cal system formed by the liquid coupled with the
solid walls. In absence of dissipation, the amplitude
of these peaks should be infinite, which would tra-
duce an infinite accumulation of acoustic energy in
the system. This does not appear on Fig. 2 owing to
the discretization of the frequencies. It is interesting
to note that the response curves, with the cooling
jacket respectively filled and empty, present approx-
imately the same set of peaks, shifted in frequency,
except for peak II which is specific to the filled cool-
ing jacket, which demonstrates the strong influence
of the operating conditions on the response of the
system.

We now focus on the case where the cooling jacket
is filled with water (Fig. 2, thick solid line). Fig-
ure 3 displays the instantaneous acoustic pressure
p(r, z,t) at wt = 0, /2 and 7 near peak IV (f =
20610 Hz). White zones correspond to large posi-
tive acoustic pressures, while black ones correspond
to large negative acoustic pressures. Both black or
white regions therefore indicate the loci of pressure
antinodes, while gray ones represent pressure nodes.

The deformed boundary (magnified) is also dis-
played, in order to illustrate the coupling between
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Fig. 2. Response curves of the sono-reactor. Thin solid line:
cooling jacket empty. Thick solid line: cooling jacket filled.
Dashed line: solid boundaries considered infinitely rigid.
Dash-dotted line: solid boundaries considered as infinitely
soft.

Fig. 3. Pressure field p(r, z,t) and wall deformation near
peak IV (f = 20610 Hz) at times wt = 0, wt = 7/2, wt = 7.
The wall displacement is magnified 100 times.

the vibrations of the fluid and the solid. The lat-
ter effect is remarkable in the breathing behavior of
the cooling jacket: for wt = 0, the negative pressure
sucks the glass walls, while the positive pressure re-
pels them for wt = 7. Similar behaviors have been
evidenced in Ref. [10]. The uniform gray color ob-
served for wt = /2 corresponds to the phase at
which the acoustic pressure crosses zero uniformly
in the reactor. At this time, the velocity field takes

its maximal value both in the liquid and the solid.
This behavior is well-known for standing waves, and
it can be shown that in absence of dissipation, pres-
sure and velocity are indeed in phase quadrature, so
that, from Eq. (23), the acoustic intensity is zero ev-
erywhere. It is thus retrieved that the acoustic power
is zero, in absence of dissipation.

And interesting feature observable in Fig. 3 is the
presence of a pressure antinode inside the cooling
jacket, which suggests that cavitation can appear in
a cavity insulated from the sonotrode by a glass wall.
This is indeed often observed experimentally, and
we emphasize that this effect demonstrates clearly
the role of the wall vibrations, and the need of their
proper representation in reliable simulations.

Another important point is that, at this reso-
nant frequency, the pressure antinode appears far
from the emitter. The emitting area of sonotrodes
are known to suffer erosion, because cavitation
near solid surfaces produces liquid jets and shock
waves, responsible for the destructive effects [20].
The present simulation suggests that, exciting the
sono-reactor near a resonant frequency could help
to avoid this problem. This has been mentioned in
precedent studies, and confirmed experimentally [9].

To pursue this issue, it is instructive to examine
the pressure field obtained far from a resonance, for
example at f = 19500 Hz (see the response curves
in Fig. 2). Figure 4 shows that in this case, the pres-
sure antinode is located near the emitter, and the
pressure amplitude rapidly decreases with the dis-
tance from the emitter. This behavior is commonly
observed experimentally, and the decay of acoustic
pressure far form the sonotrode is often attributed
to attenuation of the wave by cavitation bubbles.
Since no attenuation was introduced in the simula-
tion of Fig. 4, the present result demonstrates that
this is not necessary the case. The pressure field ob-
served rather indicates that the sonotrode mainly
emits a diverging spherical wave, which has strongly
decayed in amplitude when it reaches the bound-
aries. Nevertheless, as seen in Fig. 4 it is still strong
enough to excite the breathing mode of the cooling
jacket.

5.2. Effect of attenuation

The orders of magnitude of pressure indicated in
Fig. 2, 3, 4 may sound unrealistic, especially near
resonance. This is expected since no attenuation was
introduced in the simulations. We therefore repeated



Fig. 4. Pressure field p(r,z,t) and wall deformation for
f =19500 Hz at times wt = 0, wt = /2, wt = w. The wall
displacement is magnified 20000 times.

the computations for different values of the attenu-
ation coefficient: o = 0.05,05,1 and 5 m~!. Figure
5 displays the response curves obtained. Far from
resonances, the effect is weak, except for the largest
value = 5 m~? (thick solid line). Near resonances,
the mean acoustic pressure decreases strongly with
attenuation, and some resonance peaks even disap-
pear when increasing attenuation, especially peaks
IIT and V.

Attenuation not only influences the amplitude of
the acoustic field, but also the structure of the pres-
sure field. This is evidenced in Figure 6, which rep-
resents the spatial distribution of the peak pressure
amplitude |P| in the reactor, near resonance peak
IV, and for increasing « (from left to right). A first
structural change occurs between the first two fields,
as attested by the contour lines and the shape of
the glass walls. However, in the first three cases, the
pressure antinode remains in the middle of the re-
actor. The shapes of the field and boundaries de-
formation are identical for « = 0.5 and 1. For the
highest attenuation coefficient, the pressure antin-
ode comes back near the transducer, as it would far
from resonances. This feature therefore chastens the
above remark about the utilization of resonances to
keep the pressure antinode away from the tip of the
sonotrode.

Py, (kPa)

Fig. 5. Mean acoustic pressure peak amplitude P,y vs. fre-
quency, for various attenuation coefficients. Thin solid line:
a = 0. Dashed line: a = 0.05. Dash-dotted line: a = 0.5.
Dotted line: o = 1. Thick solid line: a = 5.

5.3. Active and dissipated power

As seen from Eq. (28), the active power is also
the power dissipated in the liquid, and should there-
fore vary with the attenuation coefficient «.. This is
illustrated in figure 7. Near resonances, the active
power drastically decreases as the attenuation coef-
ficient is increased. Conversely, far from resonances,
the opposite occurs: the higher the attenuation, the
higher the active power. The latter behavior may
sound non-intuitive, but it can be seen from equa-
tion (29) that the dissipated power indeed increases
both with the attenuation coefficient and the square
of the acoustic pressure amplitude. Far from reso-
nance the amplitude of the sound field varies slightly
with attenuation coefficient, so that the variation of
Pjiss is mainly governed by the variation of a. Con-
versely, near resonance, the pressure amplitude at
the antinode increases drastically, and a slight in-
crease in the attenuation coefficient yields a huge in-
crease of energy dissipated near the antinode, thus
increasing the active power. In mode physical words,
near resonance, the liquid stores more acoustic en-
ergy, so that it can dissipate more.

Besides, the thick solid line in Fig. 7 represents
the active power that would be calculated in the
case of a plane traveling wave by Eq. (30). It can
be seen that the value obtained is far from being
realistic for the whole range of frequencies and at-
tenuation coefficients considered, and mainly over-
estimates the active power. This could be expected,



Fig. 6. Repartition of the peak acoustic pressure |P| in the
reactor for f = 20610 Hz and increasing attenuation coeffi-
cients. The color scales are different for each image.

since on one hand, the geometry clearly cannot fa-
vor plane waves, and on the other hand, the pres-
ence of reflecting boundaries anyway prohibits the
existence of traveling waves.

Finally, figure 8 displays the ratio of the dissi-
pated power in the cooling liquid to the total active
power sent by the sonotrode for @« = 0.05, 1 and 5. It
is seen that in the whole range of frequencies, a no-
ticeable part of the energy enters the cooling jacket
and is dissipated inside. Besides, it can be seen that
the curves in Fig. 8 cross some resonances (I and
IV) without varying noticeably. This is an indica-
tion that such resonances are the result of a collabo-
rative coupling between the working liquid and the
liquid in the cooling jacket.

5.4. Vibration of the solid

It is instructive to compare the acoustic energy
stored in the glass walls to the one stored in the lig-
uid. Figure 9 displays the ratio of both quantities,
calculated respectively from Egs. (31) and (32). It

-sztive (\/V)

19 19.5 20 20.5 21

Fig. 7. Active power sent through the emitter, for various
attenuation coefficients. Solid line: a = 0.05. Dashed line:
a = 0.5. Dotted line: o = 1. Dash-dotted line: a = 5. The
thick line represents the active power calculated under the
hypothesis of a plane traveling wave Eq (30).

0.5
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Fig. 8. Ratio of the power dissipated in the cooling jacket to
the active power sent by the sonotrode. Solid line: a = 0.05.
Dashed line: a = 1. Dash-dotted line: a = 5.

can be seen they are of the same order of magni-
tude for any frequency and attenuation coefficient,
which demonstrates again that the role of the walls
deformation.

An interesting feature appears on Fig. 9: some
resonance peaks are still visible on the curves: peak
IV completely disappears, which means that this
resonance is mainly governed by the liquid. Con-
versely peak V is considerably magnified, which at-
tests that it is rather governed by the solid. Indeed,
a calculation of the normal modes of vibration of
the solid walls alone, exhibits a resonance frequency



near 20800 Hz. Peaks I and IT are smoothed but still
visible, and are found to result from a coupling be-
tween the working fluid, the cooling fluid and the
solid vibrations.

5 : : P
IARY

Fig. 9. Ratio of the acoustic energy stored in the glass walls
to the acoustic energy stored in the liquid (both the working
liquid and the cooling jacket liquid).

5.5. Sensitivity to liquid properties

In order to emphasize the influence of the oper-
ating conditions on the behavior of the system, Fig-
ure 10 compares the response curves obtained when
the density of the cooling liquid is decreased to 950
kg.m 3. The five resonance peaks are still visible,
but peaks I, IV and V are slightly shifted toward
higher frequencies. Thus, even a slight change in
density in the cooling jacket, for example produced
by a temperature variation of the liquid, can pro-
duce a noticeable detuning of the system, if the lat-
ter does not lock automatically near a resonance.
Besides, it is seen that the location of peaks IT and
IIT are not influenced by the properties of the liquid,
which demonstrates that the vibrations of the cool-
ing fluid contributes little to these two resonance ef-
fects.

6. Conclusion

Simulations of a real sono-reactor have been car-
ried out, taking into account the vibrations of the
walls. The frequency was systematically scanned in
the range available for the generator used, in order
to detect the resonances of the global system.
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Fig. 10. Response curves obtained for a density of the liquid
in the cooling jacket 1000 kg.m 3 (solid line) and 950 kg.m 3
(dashed line).

It has been shown that the simple hypothesis clas-
sically used at the liquid boundaries, either soft or
hard wall, definitely yields unrealistic results, and
could not anyway predict the sound field in the cool-
ing jacket. Indeed, the vibration of the solid walls in-
duce a significant coupling between the reacting lig-
uid and the cooling liquid. Simulation predicts that
a noticeable energy fraction can be transmitted to
the liquid in the cooling jacket, which may therefore
undergo cavitation. This opens the possibility to de-
sign sono-reactors in which the working liquid is in-
sulated from the sonotrode by a solid wall, which
constitutes an interesting feature for electrochemical
reactions, where electrical currents leaking through
the metallic sonotrode should be avoided [9].

Besides, it has been shown that, exciting the sono-
reactor near a resonance frequency may present two
advantages. The first one lies simply in the large
amplitude of the acoustic pressures obtained. The
second is the possible localization of pressure antin-
ode far from the emitter, which could avoid the
well-known issue of cavitation-induced erosion of the
sonotrode. This latter feature may however disap-
pears for too strong attenuation.

The concepts of acoustic energy, intensity, active
and dissipated powers have been clarified on a rigor-
ous development, and illustrated by simulation. The
key points are that, disregarding the acoustic energy
transmitted to the surrounding air by boundaries,
the active power is nothing else than the dissipated
power in the liquid, averaged over one period. This
was checked by simulation and represents indeed a



good test to check the validity of the numerical re-
sults. Besides it was shown that the approximation
of plane traveling wave, commonly used in order to
link the amplitude of the source to the active power,
does not make sense.

Finally, a slight variation of the liquid properties
shifts noticeably the resonance peaks, which demon-
strates the interest of using a self-adjusting genera-
tor.

Linear acoustics therefore yields qualitatively in-
teresting results in studying and designing sono-
reactors, provided that the vibrations of the solid are
accounted for. The main unknown remains the at-
tenuation factor, strongly linked to the bubble repar-
tition in the liquid, which in turn depends on the
shape of the acoustic field [21]. Coupling both phe-
nomena in a FEM model including the main physics
of cavitation remains to be done, and constitutes a
challenge for further studies.

Appendix A. Equations of energy
conservation

A.1. Theorem of kinetic energy

For any mechanical system, the theorem of kinetic

energy states that

dK

E = Pext + 7)in‘m
where Poyt and Piny are the powers of external and
internal forces respectively. In the case of an arbi-
trary volume V of fluid in motion, this equation
reads

d 1
%///iplv dV = //—pvndS
v s

Power of external
pressure forces

/V//pV.vdV " /V// My dV

Power of internal
pressure forces

(A1)

Power of internal
dissipative forces

(A.2)

where Ilg;ss > 0 is the dissipation function. In the
case of acoustic waves, using the mass conservation
equation Eq. (1) to express V.v in the third integral,
we obtain
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dt ///( +2pp2l> v =
é / —pvndS + /V/ / Hy.dv

which is equation (19), in the case of non-dissipative
waves (Igiss = 0).

If mono-harmonic dissipative waves are assumed,
the above equation can be averaged over one period,
to yield:

/S/ ;%(PV*).ndS:/V//—ﬂ'IdiSS) dv. (A.4)

The dissipated mechanical energy Il4;ss can be de-
duced from the knowledge of the attenuation coef-
ficient a (see Eq. (27)). To see that, we start from
Egs. (5), (6) assuming a complex wave number:

§R(k2)
pw

C\(kQ)
———P+VV= P, (A.5)
piw

(A.6)
where & denotes the imaginary part of a complex
number. Multiplying the first by P*, the transpose

of the second by V, summing, and taking the real
part, we obtain:

iwpV = —VP,

S(k?)
2pw
Integrating on a volume V' and using the divergence
theorem:

// LR(PV*)nds = ///

Identifying this equation with equation (A.4), the
average dissipated power density is therefore seen to
read

%V.%(PV*) = |P|?. (A7)

|P|2dV (A.8)

S(k2
(M) = S0 PP,
pLw

Further using the definition of the attenuation co-
efficient (27), the latter expression can be written as

(A.9)

ky
2 pp

<Hdiss> = 5 (AIO)

pw

and is clearly positive. Replacing k. by w/¢;, the
dissipated power density finally becomes

Nl

H iss) —
< dss> Plcl

(A.11)

The quantity |P|?/(p;c;) is sometimes erroneously
termed as “intensity”. We emphasize that this is true



only for plane traveling wave, but is definitely not
in other cases. Expression (A.11) remains however
valid, and allows to estimate | P| by measuring Hgjss,
generally equating the latter to p;C,(dT’/dt)o.
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