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EDAbstract

This study discusses the use of potential distribution analysis during the deposition of metal ions, at limiting current conditions and determines
the optimum electrode thickness at which no hydrogen evolution occurs. The potential distribution studies were carried out on stainless-steel fibres
of three different surface areas. The fibres were used as cathodic porous electrodes during the deposition of Ag(I) ions contained in 0.1 mol dm−3

KNO3 and 0.6 mol dm−3 NH4OH electrolyte. The comparison between the experimental and the theoretical potential distributions show good
agreement at mean linear flow rates in the range of 0.24 and 0.94 cm s−1.
© 2007 Elsevier B.V. All rights reserved.
REKeywords: Electrode thickness; Flow-through; Fixed bed electrode reactor; Packed bed electrode; Potential distribution; Potential drop; silver ion
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R1. Introduction

Packed bed electrodes can be used for electrochemical
recovery of heavy metals from a variety of industrial and
laboratory model solutions (Bennion and Newman, 1972;
Doherty et al., 1996; El-Deab et al., 1999; Gaunand et al.,
1977; Lanza and Bertazzoli, 2000; Matloz and Newman, 1986;
Podlaha and Fenton, 1995; Ponce de León and Pletcher, 1996;
Saleh, 2004; Soltan et al., 2003; Trainham and Newman, 1977).
The packed bed electrode forms a porous flow-through con-
figuration providing large surface area usually depleting the
concentration of metal ions below 0.1 ppm.

Some studies have reported that flow-through configura-
tions suffer from non-uniform potential and current distribution
(Bennion and Newman, 1972; Doherty et al., 1996; El-Deab
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et al., 1999; Gaunand et al., 1977; Matloz and Newman, 1986;
Saleh, 2004; Sioda, 1971; Trainham and Newman, 1977).
Newman et al. in 1962 demonstrated this problem when Tafel
kinetic was coupled with significant solid phase (electrode
material) and electrolyte resistivity. In another paper related to
the potential and current distribution, Bennion and Newman
(1972) used the deposition of copper ions on carbon flakes to
study the design principles of flow-through porous electrodes.
The authors concluded that flow rate and bed thickness deter-
mine the ohmic potential drop within the porous electrode.
Another conclusion was that the potential difference between
the carbon matrix and the solution at all points within the porous
electrode should be sufficient, but not too large to ensure de-
position without hydrogen evolution. Sabacky and Evans
(1979) used a fluidised copper particles cathode for copper
recovery and reported that the efficiency and power consump-
tion depended on copper and acid concentration, particle size,
resistivity of the electrolyte and superficial current density.
Their model predicted inefficient utilization of the bed surface
s of a porous electrode in a flow-through reactor; effect of the specific surface
g(I) ions, Hydrometallurgy (2007), doi:10.1016/j.hydromet.2007.12.001
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Fig. 1. Experimental flow circuit and packed bed electrochemical reactor.
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area at high values of electrode and electrolyte resistivity and
introduced the effectiveness factor to compare maximum and
actual limiting currents. The influence of electrolyte and
electrode resistivity turned to be small when compared with
the bed resistivity originated by the bed expansion caused by
hydrogen bubbles at high cathode voltages. In a more recent
paper, Saleh in 2004 re-introduced the concept of effectiveness
factor as the ratio between the total obtainable limiting current
and the maximum limiting current in absence of ohmic drop.
The study was based on the deposition of zinc in alkaline
solution where the hydrogen evolution reaction and the de-
position of zinc take place at similar potential. Saleh concluded
that hydrogen evolution accentuates the ohmic effect. Similarly,
Like and Langer in 1991 discussed the internal ohmic limits in a
flow-through porous electrode using Tafel kinetics. They
showed that during the electrolyses, thinner electrodes help to
maximize the current density.

The aim of this paper is to use a potential distribution analysis
to estimate the optimum length of a packed bed electrode reactor
during a metal recovery process avoiding secondary reactions
such as the hydrogen evolution. This is shown by taking the
deposition of Ag(I) ions on three stainless steel fibres porous
cathodes of different specific surface areas. The potential region
for the reduction of Ag(I) ions at mass transport controlled
conditions was determined by rotating disc electrode experi-
ments (RDE). A potential value in this region was then selected
for the electrolysis experiments in a flow cell. Mass transport
characterization of the three stainless steel fibres porous
electrodes was used to obtain the parameters included into the
one-dimension potential distribution model. The theoretical
potential distribution calculations were compared with the ex-
perimental data.
Please cite this article as: Nava, J.L., et al., Determination of the effective thicknes
area of stainless steel fibres, used as a porous cathode, during the deposition of A
TE 82. Mass balance in a recirculating flow-through reactor
8with 3D electrode

9The concentration profile of the electroactive species in a
9flow-through reactor in batch recycle mode of operation (see
9Fig. 1), neglecting phase changes and dispersion effects in the
9porous electrode, can be described by the following equation
9(Fahidy, 1985):

C tð Þ
C t ¼ 0ð Þ ¼ exp� t

sT
1� exp� aL½ �

� �� �
ð1Þ 9

9where C(t) and C(t=0) are the concentration of the electroactive
9species during the electrolysis at time t and 0 respectively, τT is
9the mean residence time of the electrolyte in the reservoir
9defined as τT=VT/Q, where VT and Q are the volume of the
1reservoir and the volumetric flow rate. L is the length of the
1porous electrode and α is the following group parameter:

a ¼ kma 1� eð Þ
u

ð2Þ 1

1where km is the average mass transport coefficient assuming that
1it is independent of the axial position (z), a, is the specific
1surface electrode area, is the electrode porosity and u is the
1mean linear flow velocity of the electrolyte.

13. Potential distribution in a single pass flow-through reactor
1with 3D electrode

1The unidirectional potential distribution in electrically con-
1ductive porous electrodes under limiting current conditions can
s of a porous electrode in a flow-through reactor; effect of the specific surface
g(I) ions, Hydrometallurgy (2007), doi:10.1016/j.hydromet.2007.12.001
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Table 1t1:1

Physical properties of the three stainless-steel fibres porous electrode of 2.9 g cm−3

density contained in reactor of 71 cm−2 cross sectional area and 9.5 cm longt1:2

t1:3 Specific surface area⁎ Porosity Electrode area per gram

t1:4 a/cm−1 /ɛ /cm2 g−1

t1:5 193 0.969 66
t1:6 107 0.910 37
t1:7 81 0.907 286

⁎The specific surface area of the porous electrode, a, (geometric area of the
electrode/volume occupied by the electrode) was calculated by multiplication of
the electrode area per gram by the electrode density.t1:8

Fig. 2. Current density vs. potential curves for Ag(I) ions deposition process.
Electrolyte: 4.6×10−3 mol dm−3 AgNO3 in 0.1mol dm−3 KNO3 and 0.6mol dm−3

NH4OH.
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be modelled by assuming plug-flow conditions and neglecting
conductivity changes of the electrolyte during electrolysis due to
an excess of supporting electrolyte. Themodel assumes that only
the concentration decay of the electroactive species within the
electrode is responsible for the potential distribution (Fahidy,
1985):

ue zð Þ � ue z ¼ 0ð Þ ¼ � nFuC z ¼ 0ð Þ
are

azþ exp�az � 1½ � ð3Þ

where φe(z) is the potential of the electrolyte at any position
within the interstitial spaces of the electrode, φe(z=0) is the
potential at the inlet of the electrode, n is the number of
electrons transferred, F the Faraday constant, C(z=0) is the
concentration of the electroactive species at the inlet of the
porous electrode, and σe is the conductivity of the electrolyte in
the interstitial space of the porous electrode given by (Fahidy,
1985):

re ¼ r
2e

3� eð Þ ð4Þ

where σ is the conductivity of the electrolyte.

4. Experimental

4.1. Equipment and solutions

The electrolyte consisted of 4.6×10− 3 mol dm− 3 AgNO3, 0.1 mol
dm− 3 KNO3 and 0.6 mol dm− 3 NH4OH (Oropeza et al., 1995) and was
prepared using analytical grade reactants dissolved in deionised water
(Milli-Q™). This solution was used for both the RDE and the flow cell
experiments. In the flow cell, 5 L of this solution were circulated
through the electrolyte circuit (Fig. 1). A potentiostat–galvanostat
PAR™ Model 273A was used to apply and control the potential of
both the RDE and the stainless steel porous electrodes. All potentials
are referred to the standard hydrogen electrode, SHE. The solutions
were deoxygenated during approximately 10 min and the experiments
were carried out under a nitrogen atmosphere at 25±3 °C.

4.2. Electrochemical cells

4.2.1. Experiments at the rotating disc electrode (RDE) cell
A three glass electrode electrochemical cell of 100mL capacity with nitrogen

inlet was used. A Tacussel™ rotating disk electrode assembly model F69100
was used with this cell. The working electrode was stainless steel disk of
0.0314 cm−2 and the reference and counter electrodes were saturated sulphate
Please cite this article as: Nava, J.L., et al., Determination of the effective thicknes
area of stainless steel fibres, used as a porous cathode, during the deposition of A
TE
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(SSE) (Tacussel™ model XR200) and a graphite bar, respectively. The working
electrode was polished with 0.3 μm alumina powder followed by 5 min of
ultrasonic bath and a final rinse with distilled water before each experiment.
The ultrasonic bath helps to remove the traces of alumina left on the electrode
surface.

4.2.2. Experiments in the packed bed flow cell
Fig. 1 shows a schematic diagram of the packed bed flow cell; the body of

the reactor consists of a propylene tube of 28.5 cm length and 9.5 cm internal
diameter. The tube was fitted with flanges at both ends. Two Nylon cones with a
flange were attached at the top and bottom of the tube using the flanges in order
to form the inlet and outlet of the reactor. The conical shape improves the
distribution of the fluid at the inlet and avoids back mixing of the electrolyte at
the exit. The polypropylene tube contained stainless steel 304 fibres as a cathode
electrode. Three different specific surface area fibres supported by a stainless
steel mesh current collector of 9.4 cm diameter were used separately as porous
electrodes. The fibres were obtained by changing the distance between the
cutting tool and a stainless steel rod mounted on a lathe. The specific area of the
packed bed electrode was calculated by multiplying the electrode area per gram
(cm2 g−1) by its density; Table 1 shows the parameters of this material. Small
plastic tubes inserted on 3 mm holes drilled along the propylene tube length
were used as Luggin capillaries to monitor the local potential of the solution
throughout the packed bed electrode (see Fig. 1). A titanium mesh covered with
a layer of RuO2 was used as counter electrode at the top of the reactor.

AMarchMFG pump of 1/25 hpwas used to recirculate the electrolyte through
the reactor and the flow rates were measured using a variable area polycarbonate
flowmeter (Cole Palmer model F44376LH-8). The electrolyte flow circuit was
constructed with Master Flex tubing, (C-Flex 6424-16, 0.5 in. diameter). All the
valves and three way connectors were assembled with PVC materials. The
electrolyte was contained in a 5 litre reservoir fitted with a stainless-steel stirrer
powered by a 115 V Caframo™ electric motor of variable velocity used to achieve
well mixed conditions. The electrolyte circuit was designed to allow single pass or
recirculation modes of operation.

During electrolysis, the concentration of silver ions was potentiometrically
determined using an ion selective electrode (ISE) model 9616N from Orion
Research Inc.™. The electrode was calibrated each time a new sets of samples
from a different experiment were taken and was allowed to equilibrate with
solutions of similar concentration of Ag(I) ions expected from the samples. The
potential of the electrolyte along the packed bed working electrode was
monitored with a saturated sulphate reference electrode SSE (E=615 mV vs.
SHE), connected to the Luggin capillaries.
s of a porous electrode in a flow-through reactor; effect of the specific surface
g(I) ions, Hydrometallurgy (2007), doi:10.1016/j.hydromet.2007.12.001
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Table 2 t2:1

Properties and parameters used to model the potential distribution throughout
the packed bed electrode t2:2

t2:3Concentration of Ag(I) at the
entrance of porous electrode

Electrolyte
conductivity

Electrons
transferred

t2:4C(z=0)/mol cm−3 σ/Ω−1 cm−1 n
t2:5X 106

t2:64.6 0.100 1
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5. Analysis of results and discussion

5.1. Determination of electrolysis potential for Ag(I)/Ag(0) reduction
process

Current vs. time curves were recorded with different potential steps
applied to the stainless steel rotating disc electrode. The potential steps
were from the open circuit potential (OCP) at 0.2 V vs. SHE to 0.1, 0.0,
−0.1, −0.2 and −0.3 V vs. SHE each at different angular velocities. The
deposited silver was stripped off from the electrode by applying a positive
potential of 0.35 vs. SHE after each chronoamperometric experiment,
followed by the polishing procedure outlined in the experimental section.
These chronoamperometric plots were used to construct the current
density vs. potential curves for Ag(I) ion deposition taking the current at
time t, of 6 s after the potential step was applied. Fig. 2 shows the current
density vs. potential curves obtained from the chronoamperometric
experiments at different angular velocities and shows that metallic silver
deposition starts at less than 0.2 V vs. SHE for all rotation rates with the
limiting current plateau between 0.0 Vand −0.3V vs. SHE. Although not
shown in the Figure it was observed that hydrogen evolution started
at b−0.3 V vs. SHE.

The RDE experiments established that silver ion deposition was
mass transport controlled between 0.0 V and −0.3 V vs. SHE. It is
important to point out that even when the limiting current plateau started
slightly positive to 0 V vs. SHE in the RDE for all angular velocities
(see Fig. 2) the potential value used for the electrolysis in the flow-
through electrode was +0.1 V vs. SHE applied at z=0 (see Fig. 1). The
assumption is that at such potential the process is still mass transport
controlled in the packed bed electrode system.

5.2. Mass transport characterization in the packed bed electrode.

The mass transport coefficients were determined by electrolysis of
Ag(I) ion solutions in the packed bed flow-through reactor in recycle
mode of operation (Fig. 1). The electrolysis were carried out by ap-
plying +0.1 V vs. SHE on the current collector, at z=0, situated at the
inlet of the packed bed electrode reactor. Since it is unlikely that
the RDE and the packed bed cell developed the same mass transport,
UN
CO

R

Fig. 3. Mass transport coefficients vs. mean linear flow electrolyte velocity for
the reduction of Ag(I) ions. Specific areas of stainless-steel fibres: 81, 107 and
193 cm−1. Potential of the electrolysis at z=0: 0.1 V vs. SHE.

Please cite this article as: Nava, J.L., et al., Determination of the effective thicknes
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2average mass transport in the packed bed electrode is lower than in the
2rotating disc electrode. The calculation of the mass transport coefficient
2in the RDE and in the packed bed systems was 9×10−3 cm s−1 and
27×10−4 cm s−1 respectively, showing that km is approximately one
2order of magnitude larger in the RDE cell. This justifies the selection
2of +0.1 V vs. AgCl for mass transport controlled electrolysis in the
2packed bed electrode. The mean linear flow velocities, u, during the
2electrolysis, were between 0.23 and 0.94 cm s−1.
2Fig. 3 shows the mean mass transport coefficients multiplied by the
2electrode area kma, vs. the mean linear flow velocity u, for the three
2packed bed electrodes. These values were obtained from the slopes of
2the curves of concentration decay vs. time during the electrolysis of Ag
2(I) ions and applying the Eq. (1). The mass transport coefficients
2increased with the specific surface area of each electrode and with the
2mean linear flow velocity of the electrolyte. From the correlations
2kma=bu

c showed in the plots, it can be observed that in the three
2electrodes of different specific surface area, the value of the velocity
2exponent, c, falls between 0.55 and 0.95, indicating that the flow
2pattern is a complex function of the specific surface area, electrode
2porosity and shape of the fibres (Delanghe et al., 1990; Langlois and
2Coeuret, 1989). On the other hand, the values of the coefficient b,
2associated with the electrode geometry, increased with the specific
2surface area showing the interdependence of this parameter in the mass
2transport correlation. It is important to mention that the exact form of
Fig. 4. Comparison between experimental and theoretical potential distribution
in the packed bed electrode reactor during the deposition of Ag(I) ions. The lines
represent the theoretical approach (Eq. (10) Q1); a) 0.23, b) 0.47, c) 0.59, d) 0.70 and
e) 0.94 cm s−1. The symbols are the values obtained experimentally. Working
electrode: stainless steel-fibre of 81 cm−1 specific surface area. Potential of the
electrolysis at z=0: 0.1 V vs. SHE.

s of a porous electrode in a flow-through reactor; effect of the specific surface
g(I) ions, Hydrometallurgy (2007), doi:10.1016/j.hydromet.2007.12.001
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Fig. 5. Effective electrode thickness vs. mean linear flow velocity for the reduction
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steel fibres.
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the mass transport correlation is best evaluated through analysis of
experimental data because it depends on the geometry of the electrode,
type of fluid flow pattern, and the electrochemical reaction (Delanghe
et al., 1990). In the following section the potential distribution curves
are simulated using the kma values from Fig. 3.

5.3. Potential distribution in the packed bed electrode; determination
of the effective cathode thickness

The experimental measurements of the potential distribution were
carried during the electrolysis of Ag(I) ions in the flow-through
reactor in a single pass mode of operation (Fig. 1). The electrolysis
were carried out by applying 0.1 V vs. SHE on the current collector, at
z=0, situated at the inlet of the packed bed electrode reactor. The
maximum potential drop before hydrogen evolution starts, will be: φe

(z)−φe(0)=−0.3−0.1=−0.4 V. This allows a potential window of
0.4 V between the deposition of Ag(I) ions and the beginning of the
hydrogen evolution reaction. This criterion, supported by current
density vs. potential curves (Fig. 2), was previously proposed by
Kreysa et al. (1971) to estimate the thickness of a porous electrode.
The experimental potential distribution was compared to that obtained
theoretically by using Eq. (3) and the data is shown in Tables 1 and 2.

Fig. 4 shows both, the experimental (symbols) and theoretical
(lines) variation of the axial potential distribution with the position of
the electrode z, at several mean linear velocities of the electrolyte, u, for
a 81 cm−1 specific surface area electrode. This Figure shows that there
is a good agreement between the experimental and theoretical values
over the length of the electrode. The potential becomes more negative
as z increases due to the concentration decay of the electroactive
species (Bennion and Newman, 1972; Fahidy, 1985; Newman and
Tobias, 1962; Sioda, 1971).

The potential difference observed at a mean linear flow velocity of
0.23 cm s−1 (Fig. 4), shows that hydrogen evolution will occur onlywhen
zN9.0 cm length, since (φe(z)−φe(z=0))b−0.400 V at this length. At
higher mean linear flow velocities, the curves indicate that hydrogen
evolution will start at lower electrode lengths, as φe(z)−φe(z=0)b
Please cite this article as: Nava, J.L., et al., Determination of the effective thicknes
area of stainless steel fibres, used as a porous cathode, during the deposition of A
TE
D
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−0.400 V. For example at mean linear flow velocities of 0.47, 0.59, 0.70
and 0.94 cm s−1 the evolution of hydrogen begins at z equal to 7.3, 6.8,
5.8 and 5.3 cm, respectively. This is shown in Fig. 4 when the lines that
represent the potential intersect the horizontal line at −0.4 V vs. SHE that
defines the beginning of the hydrogen evolution reaction.

In order to show the maximum permissible length along the axial
axis of the electrode at which no hydrogen evolution occurs, i.e. where
φe(z)−φe(z=0)=−0.400 V, the electrode length z was plotted vs. the
mean linear flow velocity u, for the 81, 107 and 193 cm−1 specific
surface area packed bed electrodes in Fig. 5. These data show the
effective electrode thickness before hydrogen evolution starts. In the
three cases, the maximum electrode length is shorter as the mean linear
flow velocity increases however, the maximum permissible length at
which no hydrogen evolution occurs is larger for the 81 cm−1 specific
surface area electrode at all velocities. The points of effective electrode
thickness for 107 and 193 cm−1 specific surface area at different mean
linear velocities behave similarly.

The larger permissible lengths obtained for the 81 cm−1 specific
surface area electrode are due to the fact that on this electrode the
concentration decay of the electroactive species is less rapid than on
electrodes with higher specific surface area. Nevertheless for design
purposes, the evolution of hydrogen should be avoided by adjustment
of the values of the mean linear flow velocity and the specific surface
area for a fixed electrode length.

The potential distribution results show the usefulness of this type of
analysis to estimate the optimum length of a packed bed electrode
reactor which allows efficient recovery of metals by avoiding hydrogen
evolution.

6. Conclusions

This work showed the use of potential distribution studies in
the design of a bed thickness of a flow-through porous electrode
during deposition of Ag(I) ions in KNO3+NH4OH aqueous
electrolyte. The comparison of both, experimental and theore-
tical potential distributions showed that flow rate and specific
surface area of the electrode determine the potential drop within
the packed bed cathode and therefore the effective thickness of
the porous bed electrode at which hydrogen evolution can be
avoided. The method used in this paper can be applied to other
electrically conductive flow-through porous electrode shapes to
establish the optimum electrode thickness.

7. Uncited reference

Walker and Wragg, 1977
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RList of symbols

Symbol: Meaning
A: Specific surface area of the porous electrode (geometric area/volume of the
electrode) (cm2/cm− 3)
B: Constant (Dimensionless)
C: Constant (Dimensionless)
UN
C

Please cite this article as: Nava, J.L., et al., Determination of the effective thicknes
area of stainless steel fibres, used as a porous cathode, during the deposition of A
TE
D
PR

OO
F

C(z=0): Concentration of electroactive species at the point of z=0 of the
porous electrode (mol cm− 3)
C(t): Concentration of the electroactive species in the reservoir at any time, t
(mol cm− 3)
C(t=0): Concentration of the electroactive species in the reservoir at time t=0
(mol cm−3)
dp: Particle size, shown in Table 1 (cm)
E: Potential (V)
km: Average mass transport coefficient (cm s−1)
F: Faraday constant, 96,485 (C mol−1)
J: Current density (A cm−2)
L: Electrode height, 9.5 cm
n: number of electrons transferred (dimensionless)
Q: Volumetric flow rate (cm3 s−1)
t: Time of electrolysis (s)
u: Mean linear electrolyte velocity in empty channel (cm s− 1)
VT: Volume occupied by the electrolyte in the reservoir (cm3)
z: Any arbitrary point along the porous electrode (cm)

Greek symbols

Symbol: Meaning
α: Parameter group, kmað1�eÞ

u (cm−1)
ε: Electrode porosity (Dimensionless)
(1−ε): Fraction occupied by the porous electrode (Dimensionless)
φ(z): Potential difference at any position along the electrode (V)
φe(z): Electrolyte potential in an arbitrary position (V)
φe(z=0): Electrolyte potential at the packed electrode inlet (V)
φM: Potential in the matrix of bed electrode (V)
σ: Electrolyte conductivity (Ω−1 cm−1)
σe: Interstitial conductivity, re ¼ r 2e

ð3�eÞ (Ω
−1 cm−1)1

τT: Residence time of the electrolyte in the reservoir, sT ¼ VT
Q (s)

ω: Angular velocity (s−1)
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