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Abstract. Developing coodination among groups of agents is a big chal-
lenge in multi-agent systems. An appropriate enviroment to test new so-
lutions is the prey-predator pursuit problem. As it is stated many times
in literature, algorithms and conclusions obtained in this environment
can be extended and applied to many particular problems. The first so-
lutions for this problem proposed greedy algorithms that seemed to do
the job. However, when concurrency is added to the environment it is
clear that inter-agent communication and coordination is essential to
achieve good results.
This paper proposes two new ways to achieve agent coodination. It starts
extending a well-known greedy strategy to get the best of a greedy ap-
proach. Next, a simple coodination protocol for prey-sight notice is de-
veloped. Finally, under the need of better coordination, a Neuroevolution
approach is used to improve the solution. With these solutions developed,
experiments are carried out and performance measures are compared. Re-
sults show that each new step represents an improvement with respect to
the previous one. In conclusion, we consider this approach to be a very
promising one, with still room for discussion and more improvements.

Keywords: Multi-agent systems, Communication, Coordination, Neu-
roevolution

1 Introduction

The Predator-prey problem (or pursuit domain) is an appropriate testbed for
multi-agents systems [1]. It consists of world where a group of agents (called
predators) aims to chase and surround another agent (called prey) that tries
to evade them [2]. The goal of predator agents is to surround (capture) prey
without touching it (i.e. occupying the adjacent cells), while the goal of the
prey, as expected, is not to be captured.

This problem has been adressed many times in literature. Initially, Korf [3]
proposed a greedy algorithm without inter-agent communication. His approach
was to use a fitness function that combined 2 forces: each predator was “at-
tracted” by the prey and “repelled” from the closest other predator. This solu-
tion kept predators away from other predators while they got closer to the prey.
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The idea was to chase the prey arranging predators in an stretching circle. Korf
concluded that the pursuit domain was easily solved with local greedy heuristics.

A great number of alternatives have emerged since Korf’s. Haynes [4] used
genetic programming to evolve coordinated predators. Haynes compared differ-
ences between communicating and non-communicating predators with respect
to their success in capturing the prey. He also co-evolved predators and the prey
and found that a prey following a straight, diagonal line in an infinite world
was never captured unless it was slower than its pursuers. This demonstrated
that for certain instantiations of the domain, Korf’s heuristic was not enough.
Tan [5] used Reinforcement Learning to improve cooperation in three ways:
(1) sharing instantaneous information (sensation, action, rewards obtained), (2)
sharing episodes of instantaneous information, and (3) sharing learnt policies.
Tan showed that agents learn faster when they learn cooperatively than when
they learn individually. Later, Jim and Giles [6] proposed a genetic algorithm
and multi-agent communication through a blackboard. A really interesting alter-
native was proposed by Katayama et al. [7]. They integrated Analytic Hierarchy
Process (AHP) into a Profit-Sharing algorithm. They gave primary knowledge
to agents when they started their learning processes and proposed a way to
progressively stop providing “hints” to agents as they grow.

Despite the great number of proposed solutions, there is still room for im-
provements in different instantiations of the pursuit domain. As Tan stated in
his work [5], coordination algorithms or protocols tested under the pursuit do-
main may easily be ported to other autonomous agents domains in general. This
paper presents a new proposal for improving cooperation between predators in
the pursuit domain. The idea presented here is to mix the efficiency of greedy
approaches with two coordination proposals: a simple sight notice protocol and
an evolutionary coordination system based on Neuroevolution [8]. Results show
that this is a promising approach that develops a very efficient coordination
mechanism, with still room for more improvements.

This paper is organized as follows. Section 2 explains the characteristics of
the pursuit domain. Section 3 presents the extension to Korf’s greedy approach
and the two new inter-agent coodination approaches. In section 4, results of the
experiments carried out are analyzed. Finally, conclusions and future lines to
follow are given in section 5.

2 The Pursuit Domain

Stone and Veloso [1] considered the pursuit domain as an interesting start point
because it is easy to understand and difficult to master. Moreover, it is still
popular because it is possible to create many different instances with different
sorts of handicaps. The most classical environment consisted of a finite, discrete,
grid world where 4 predators tried to capture 1 prey. In this environment, agents
moved sequentially and two agents were not allowed to be on the same cell.

In order to realize our experiments we used Kok and Vlassis’ Pursuit Domain
Package (PDP)[9]. PDP is a software package that simulates a pursuit domain



environment and allows to modify its parameters to instantiate different experi-
mental scenarios. Concretelly, PDP was tuned for the purposes of our research to
show off these characteristics: (1) toroidal world with a discrete, orthogonal grid
of squared cells, (2) availability for the agents to move to every adjacent cell (9
possible options), (3) concurrency in the execution and movement of predators,
(4) limited field of vision (FOV) for agents, (5) agent’s capability to communi-
cate with others inside FOV, (6) capture method: 4 predators occupying the 4
orthogonally adjacent cells (i.e. north, south, east and west).

Defined this way, PDP has some challenges to face. The three most remark-
ables ones are: (1) Concurrency lets predators move to the same cell in the same
timestep (i.e. they collide). If this occurs, colliding predators are penalized by
replacing them randomly. (2) FOV makes exploration necessary, and (3) the
toroidal world removes the possibility of cornering the prey.

3 Methodology

Initially, Korf [3] considered a solution quite simple yet effective. The approach
was to consider an “attractive” force that pushed predators towards the prey.
The method was to calculate this force as fitness function for each of the possible
cells to go next, and finally select the more attractive one. This solution had
the problem that predators piled up and disturbed themselves; then, it turned
difficult to achieve the final surrounding capture position. Korf overcomed this
problem considering a “repulsive” force which pushed each predator away from
the nearest other predator. With this new force, predators attacked the prey
more jointly, not piling themselves up.

The reduced number of cycles that predators took to capture the prey with
Korf’s method seemed good enough not to consider the necessity of improving
it. However, the differences between the environment used by Korf and new
environments like PDP [9] lead to reconsider it. For instance, Korf reported
that his algorithm captured the prey in 119 cycles in average. The experiments
we have run in the most similar conditions possible to Korf’s inside PDP took
366 cycles in average. In this case, which is the best one for Korf, the toroidal
world and the collisions between agents multiply time to capture the prey by 3.
When conditions get worse, namely when the FOV of predators is reduced, the
performance of Korf’s approach deteriorates exponentially.

This means that it is necessary to extend Korf’s algorithm to deal with the
new issues of the environment. One possible way to extend it is to reconsider the
way Korf treated attractive and repulsive forces between agents. In his proposal,
predators where attracted by the prey and repelled by the nearest other predator.
This leads to situations where one predator may be repelled directly against
other predator, resulting in a collision. Then, the first approach to take is to
make predators repel from all other predators. Equation (1) shows the fitness
function used to do this. This function depends on the (x, y) coordinates of
the cell and calculates distances from that cell to prey location (Xp, Yp) and to
other n predators locations (Xi, Yi) using Manhattan Distance d(x, y, x′, y′). To



balance the relative amount of repulsive forces against the attractive one, a scale
constant k ∈ [0, 1] is added. We will call Extended Korf (ExtKorf, for short) to
the algorithm which works like Korf’s but using the fitness function from Eq.(1).

f(x, y) = d(x, y, Xp, Yp) − k

n∑

i=1

d(x, y, Xi, Yi) (1)

The Extended Korf algorithm dramatically outperforms results of the Korf
algorithm. The main reason for this is that it reduces collisions between predators
by an order of magnitude, thus avoiding penalties. Results supporting this are
explained in Sect. 4.

3.1 Cascading Sight Notice (CSN)

In the environment where Korf did his experiments, communication between
agents were not necessary, as he demonstrated. The main reason was that his
agents were able to see the whole world at once. But, the more we limit the FOV
of the predators the more they need to get more information to efficiently locate
the prey. When predators have a reduced FOV, most of the time it happens that
when some predators have already found the prey, others are still wandering
around. This delay in founding the prey could be avoided if the predators were
able to effectively tell where was the prey to others when they had found it.

Consider that an agent is located at (x, y) and having a FOV of f cells
means that the agent is only able to perceive what happens in the set of cells
C = {(x′, y′) | x − f ≤ x′ ≤ x + f, y − f ≤ y′ ≤ y + f}. Take into account that
this refers to sensing in general, and not seeing in particular. Therefore, an agent
is only able to communicate with other agents being inside its FOV. Moreover,
agents never know their global location, nor global coordinates of other agents.
They are only aware of the relative location of other agents with respect to them.

In strict sense, the probability of a predator indefinitely not finding the prey
in these conditions is not 0, and that is definitely a problem to overcome. But
communication is not as simple as telling others directly where is the prey; there
is no way to do that. In order to communicate where the prey is, we propose a
simple protocol called Cascading Sight Notice (CSN). The idea is that a predator
P 0 seeing the prey Y has to communicate the relative location of Y that P 0 is
perceiving to each other predator P i that P 0 can see (i.e. P i is inside the FOV
of P 0). Then, each P i not seeing Y could locate it by listening to P 0. P i will
then be aware of the relative location of P 0 with respect to P i and also aware
of the relative location of Y with respect to P 0. So, P i will be able to calculate
the relative location of Y with respect to P i by adding the vectors of the two
relative locations it will know. Then, when P i will have located the prey, P i will
resend this new relative location to other predators in its FOV. The cycle will
go on until no predator will be hearing or hearing predators will have already
known where prey is (see Fig. 1).

This simple protocol lets predators with reduced FOV find the prey earlier
than predators without communication do, and this turns into an improvement in



Fig. 1. a) Two predators with FOV 3 seeing each other, predator 1 seeing the prey. b)
Predator 2 can figure out prey location from message of predator 1. c) Predators 1, 2
and 3 can figure out prey location, predator 4 cannot

the average number of cycles needed to capture the prey. The results supporting
this are shown and explained in Sect. 4 (see Fig.3).

3.2 NEAT Coordination Protocol (NECool)

Inside PDP, collisions occur when two or more predators move to the same
cell on the same timestep. As long as predators decide where to move in a
concurrent fashion, they have no opportunity of avoiding collisions unless they
establish an appropriate coordination protocol. To create a fast and nearly-
optimal coordination protocol we propose to evolve a neural network that decides
the next movement to do for each predator. The neural network of predator P i

will receive as input the location of each predator P j inside the FOV of P i

(including P i), and a prediction of the next possible movements of each P j .
With this information, the neural network will be able to figure out the next
movement that P i should do to optimize the capture of the prey not colliding
with any P j .

The most relevant information each neural network will receive will be that
regarding movement predictions of other predators. Each predator P i has an
associated 3×3 fitness matrix F i

3×3 where each element F i
jk ∈ [0, 1] represents the

fitness associated to P i moving to that cell, assuming the predator is currently
located in F i

22. The values of F i are calculated using Extended Korf’s algorithm,
having previously used CSN to locate the prey.

These movement predictions represent 9 values for each predator, 36 for the
4 predators. Trying to pass these values directly to a neural network would
require 36 input neurons, which means a great search space. Moreover, this
approach is not scalable, because increasing the number of predators requires a
linear increase in the number of input neurons. As long as a predator P i is not
interested in the exact F

j
kl of other predators P j, but in the total other relation

F
j
kl < F j

mn, an approach to reduce dimensionality can be used (see Fig. 2). A
consecutive number from 1 to 9 is assigned to each cell of F j . Then a vector with



the 9 cells ordered by F
j
kl is formed. From the numbers assigned to the ordered

cells in the vector, a 9-digit number λ ∈ [123456789, 987654321] is formed. Then
α is calculated as λ scaled into [−1, 1]. α is known as the Compressed Fitness
Value, and it is sent to other predators as movement prediction. Then, each P i

feeds its neural network with the αs received from each P j inside the FOV of
P i.

Fig. 2. Using Compressed Fitness Values to feed the neural networks

To make this algorithm even more scalable, the neural network of a predator
P i has been designed to be recurrent with a fixed number of input neurons.
Therefore, each neural network has only 3 input neurons (Xj , Y j , F j): Xj and
Y j represent the coordinates and F j the Compressed Fitness Value for predator
P j . The neural network is expected to sequentially receive a triplet of inputs
from each P j inside the FOV of P i, and to activate all its neurons once. Finally,
the neural network receives the 3 inputs related to P i, activating and flushing
the net to get a final output value α′. α′ is treated as a Compressed Fitness Value
and an λ′ ∈ [123456789, 987654321] is obtained rescaling α′. The first digit of
λ′ is identified with the cell where the predator should move next. All the steps
described up to now belong to the algorithm 1.

In the algorithm 1 the function compressAllF itnesses(F i) takes the matrix
F i with the 9 fitnesses of the adjacent cells where P 0 could move next, and trans-
forms it into α ∈ [−1, 1]. Then, α is sent to other predators which use it as input
to their neural networks. Each other predator P i uses its neural netwotk to cal-
culate α′, which is passed to the inverse function of compressAllF itnesses, that
is getNextCellT oMove. getNextCellT oMove(α′) “decompresses” α′, obtaining
λ′ and returns the first digit of λ′, which identifies the best fitted movement to
do next.

As long as the neural networks of predators need to be recurrent, an algorithm
capable of training this kind of networks is needed. For that, we propose to use
Neuroevolution of Augmenting Topologies (NEAT [8]). In our work we have set
up populations of predators and tested their performance against a random prey
and an evading prey. Predators were rewarded for early catching the prey and
punished for each collision between them. Finally, we got the best neural network
from the last population and used it within our predators to test if it reduced
the collisions and improved performance. Results of this experiment are shown
in Sect. 4.



Algorithm 1 Coordinate decisions of predator P 0 with each P i decision

Require: P 0 = predator with a 3-to-1 recurrent neural network
Require: P = a set of predators inside FOV of P 0

1: Let F 0 be a 3x3 real matrix
2: Let

−→
C be a vector of real numbers

3: Let α, α′ be real numbers
4: for all ((x, y) | 1 ≤ x ≤ 3, 1 ≤ y ≤ 3) do

5: F 0

xy ⇐ calculateExtendedKorfF itness(x, y)
6: end for

7: α ⇐ compressAllF itnesses(F 0)
8: sendCompressedF itnessToOtherPredators(α,P )
9:

−→
C ⇐ receiveCompressedF itnessesOfPredators(P )

10: for all (P i ∈ {P \ P 0}) do

11: α ⇐ getCompressedF itnessOf(P i,
−→
C )

12: (x, y) ⇐ getLocationOfPredator(P i)
13: activateNeuralNetworkWithV alues(x, y, α)
14: end for

15: α ⇐ getCompressedF itnessOf(P 0,
−→
C )

16: (x, y) ⇐ getLocationOfPredator(P 0)
17: α′ ⇐ flushNeuralNetworkWithV alues(x, y, α)
18: c ⇐ getNextCellT oMoveTo(α′)
19: movePredatorTo(P 0, c)

4 Results

To validate our approach we compared the results of the 3 methods (ExtKorf,
ExtKorf+CSN and ExtKorf+CSN+NECool) between them and against the orig-
inal of Korf in the same environment conditions, but variating the FOV. We
measured predators against two different preys: a random moving prey, and a
evading prey. The second prey moved to the adjacent cell that is more distant
from the closest predator. These tests let us show the magnitude of the improve-
ments and their relative relevance. For running the simulations we used Kok and
Vlassis’ Pursuit Domain Package (PDP) [9]. Concretely, we used a 30× 30 cells
field, allowing agents to move diagonal, with the prey starting on the center and
predators starting randomly placed. We lauched 4 predators and 1 prey, and
to capture the prey predators needed to be surrounding the prey orthogonally,
without touching it. In case of collision, predators colliding were penalized being
replaced randomly. Simulations were always ran for 500 consecutive episodes.

Our first experiment measured relative improvement of the Extended Korf
algorithm against original Korf’s. Results shown an improvement of an order of
magnitude in most cases. The improvement was much greater when the FOV
was unlimited. Namely, for the maximum FOV (15 cells), relative improvement
of ExtKorf against Korf was of 50

490
→ 90%, while for the minimum FOV (3

cells) it was 1049

3007
→ 65%. It is normal, though, that the maximum improvement

in cycles and collisions happened when agents could sense the whole world at
once. In this case, predators did not lose cycles in trying to find the prey and



always knew where other predators were. As long as this was the most obvious
improvement and for space reasons, we deliverately leave out the graph to center
on the other improvements and analyze them more deeply.

As we stated in previous section, there are two major ways of improvement:
(1) more efficiently finding the prey and (2) avoiding collisions. We have made
two proposals to cover each of these two ways. The CSN protocol enables preda-
tors to locate the prey earlier by using the indications from other predators. To
check the relative improvement of CSN, we have measured Extended Korf’s per-
formance with and without CSN. Figure 3 shows results of this comparison. As
expected, results suggest that there are plenty of situations in which CSN saves
cycles of exploration to the predators. On average, CSN reduces time spent by
predators in finding the prey, and it is more significant when FOV is minimal.
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Fig. 3. Comparison between Extended Korf’s model and Extended Korf’s model with
CSN with respect to average cycles per episode and total collisions in 500 episodes

However, CSN is not a definitive solution. CSN turns less effective when
dimensions of the world increase due to the necessity of predators to be inside
FOV of others to communicate with them. This limits the relative improvement
that could be achieved with CSN to a factor depending on the relation of FOV
with the size of the world. The less proportion of cells a predator is able to
perceive, the more difficult to communicate with others and the more difficult
to find the prey.

Altough these results suggest that CSN could be improved, it is not an easy
task because FOV restricts communication between agents. Therefore, other
way to globally improve performance is to reduce collissions between predators.
NECool addressed this issue. To test NECool we set up a training session of 250
generations, with a population of 100 predators. Each predator was tested by 50
episodes against each type of prey, with 6000 cycles as maximum episode time
to capture it. The fitness function used to train predator was f(n, c) = 6001

n+10c+1
,

which depends on the average number of cycles to capture the prey (n) and the
average number of collisions (c). All agents had 6 cells as FOV.



Once we had trained NECool predators, we ran for them the same 500
episodes test we had run earlier, but this time against ExtKorf+CSN preda-
tors. The result (see Fig. 4) was a dramatic reduction in the number of total
collisions, and this reflected directly in an improvement in the average number
of cycles to capture the prey, by around 25−35%. It is interesting to notice that
predators were trained with a FOV of 6 cells but tested with different FOVs. To
do this, the information passed to the neural network about (x, y) coordinates
of each predator inside FOV of P 0 was always normalized and used coordinates
of P 0 as origin. This way, predator coordinates were always independent and
scalable to the real FOV in use. If agents had a FOV of f cells, and a predator
P i was located in coodinates (x, y) relative to P 0, the information passed to
the neural network of P 0 about the coordinates of P i was (x

f
, y

f
). Therefore,

predators always used coordinates in range [−1, 1], whichever the FOV was.
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Fig. 4. Comparison between Extended Korf’s model with CSN and with CSN+NECool
with respect to average cycles per episode and total collisions in 500 episodes

5 Conclusions and Futher Work

Many authors claim that there are interesting challenges to face in the pursuit
domain environment. This paper considers coordination problems that arise in
some interesting instances of this environment. It proposes a way to mix the
efficiency of greedy approaches with the power of evolutive algorithms to get the
best of both. The proposal starts extending the approach of Korf (ExtKorf) and
continues adding two cooperative strategies: Cascading Sight Notice (CSN) and
NEAT Coordination Protocol (NECool).

In order to validate the proposal, the algorithms ExtKorf, ExtKorf + CSN
and ExtKorf+CSN+NECool have been measured under the same environment
conditions and compared pairways and against Korf’s. The Pursuit Domain
Package has been used to simulate the environment with the desired challenging
conditions. A first experiment was ran to compare measured performance in cy-
cles and collisions between Korf and Extended Korf algorithms. Results of this



experiment showed an improvement of an order of magnitude in most cases. A
second experiment demonstrated that adding CSN to ExtKorf reduces the av-
erage number of cycles to capture the prey, but the reduction is only significant
under some conditions. This was mainly due to the necessity of predators to
be inside FOV of others to communicate with them. A third experiment added
NECool and compared it with ExtKorf+CSN. Results showed a dramatic reduc-
tion of total collisions between predators, which mapped directly to a significant
improvement (25 to 35%) in average number of cycles to capture the prey.

In consequence of what experiments have shown, we conclude that mixing
greedy and evolutive approaches is a promising path to explore. Our final algo-
rithm, ExtKorf+CSN+NECool achieved great results mainly due to its ability
to make predators collaborate in an efficient way to lower down collisions with
minimum impact in the greedy way to chase the prey. However, there remains
room for improvements. For instance, it is still needed a way to early find the
prey, what could be achieved if predators coordinate to explore the world, rather
than exploring it randomly. Our future work will address this issue and it will
also focus on lowering down collisions to 0, with the minimum impact on chasing
efficiency.
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