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Abstract

Characterizations of the containment of a convex set either in an arbitrary
convex set or in the complement of a �nite union of convex sets (i.e. the set,
described by reverse-convex inequalities) are given. These characterizations
provide ways of verifying the containments either by comparing their cor-
responding dual cones or by checking the consistency of suitable associated
systems. The convex sets considered in this paper are the solution sets of an
arbitrary number of convex inequalities, which can be either weak or strict
inequalities. Particular cases of dual characterizations of set containments
have played key roles in solving large scale knowledge-based data classi�ca-
tion problems where they are used to describe the containments as inequality
constraints in optimization problems. The idea of evenly convex set (inter-
section of open half spaces), which was introduced by W. Fenchel in 1952, is
used to derive the dual conditions, characterizing the set containments.
Key words: Set containment, convex functions, semi-in�nite systems, exis-
tence theorems, dual cones, conjugacy.

1 Introduction

Consider the sets

F := fx 2 Rn j ft(x) < 0; 8t 2 S; ft(x) � 0; 8t 2 Wg (1.1)
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and
G = fx 2 Rn j gi(x) � 0; 8i 2 I; hj(x) � 0; 8j 2 Jg;

where S \ W = ?, S [ W 6= ?, I \ J = ?, I [ J 6= ?, and all the functions,
fft; t 2 S [Wg, fgi; i 2 Ig, and fhj; j 2 Jg, are convex functions from Rn to R.
The set containment problem that is studied in this paper, consists of deciding
whether F � G or not. Dual characterizations of such set containments have played
a key role in solving large scale knowledge-based data classi�cation problems where
they are used to describe the containments as inequality constraints in optimization
problems (see e.g., [2, 10, 11] and [8]). For instance, the incorporation of prior
knowledge in the form of a polyhedral knowledge set in the construction of a linear
classi�er is modelled as the set containment F � G [2], where F is a given polyhedral
convex set and G is a given closed halfspace. The dual characterizations of the set
containment were obtained using the classical nonhomogeneous Farkas Lemma [9].
More recently, various extensions of the containment problem to more general sit-

uations have been obtained in [8] and [11], by means of mathematical programming
theory and conjugacy theory, respectively, where S = ? (i.e. without strict inequal-
ities). In this paper we establish dual characterizations by allowing the systems
de�ning F and G to contain strict inequalities, as depicted in Figure 1 below. Such
kind of systems also arise naturally in the characterization of the stable containment;
i.e., establishing conditions which guarantee that the inclusion is preserved under
su¢ ciently small perturbations of the systems representing F and G.
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Figure 1: Containment of the evenly convex set F = fx j ft(x) < 0; 8t 2
S; ft(x) � 0; 8t 2 Wg in the polyhedral set G = fx j ui(x) � �i; 8i 2
I; ui(x) < �i; 8i 2 Jg; where ft : IRn ! IR is a convex function and ui 2 IRn
and �i 2 IR:

The main basic tool in our approach in deriving the dual characterizations is the
association of two dual cones in Rn+1, say K and M , such that F � G if and only
if M � K. Since M � K can be interpreted as a dual condition, the veri�cation of
the containment reduces to the e¤ective calculus of the corresponding dual cones.
In the case where F is the intersection of a family of open convex sets, fx 2 Rn j
ft(x) < 0g; t 2 S, with a family of closed convex sets, fx 2 Rn j ft(x) � 0g; t 2 W ,
F turns out to be an evenly convex set (i.e., the intersection of open halfspaces, see
[1]), represented by means of a convex inequality system. The dual cones of closed
convex sets were introduced in [3] in order to characterize large classes of closed
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convex sets from a geometric point of view. The dual cones of evenly convex sets
that are introduced for the �rst time in the present paper, play a central role in
describing the dual conditions.
The paper is organized as follows. Section 2 contains the necessary notation

and some basic results on convex as well as evenly convex sets to be used later.
Section 3 develops calculus rules for the dual cone of a closed convex set. Section 4
considers stable containment of closed convex sets. Section 5 de�nes dual cones for
evenly convex sets and develops calculus rules which are similar to those obtained
in Section 3. These cones provide dual characterizations of containment for convex
sets which are represented by means of strict constraints. Finally, Section 6 presents
general existence theorems for several classes of convex systems which contain strict
inequalities.

2 Preliminaries: Evenly Convex Sets

All the vectors in Rn will be interpreted as column vectors. The inner product of two
vectors u and x will be denoted by either u0x or u(x), and the Euclidean distance
between u and x will be denoted by d(u; x) = ku � xk. Given a set X � Rn, we
shall denote by int X; bdX; clX; coX; and conecoX the interior, the boundary, the
closure, the convex hull and the convex cone generated by X respectively. By R+
and R++ we denote the sets of nonnegative and positive real numbers, respectively,
so that R+X := f�x j � � 0; x 2 Xg and R++X := f�x j � > 0; x 2 Xg are cones in
Rn, with the null vector 0n 2 R+X: The smallest convex cone containing X [ f0ng
is conecoX = R+ coX:
Fenchel [1] de�ned the class of evenly convex sets as the intersections of open

halfspaces. The set C is evenly convex if and only if for all x =2 C there exists a
hyperplane H such that x 2 H and H \C = ?: The evenly convex hull of X [1],
denoted by ecoX, is the smallest evenly convex set which contains X (i.e., it is the
intersection of all the open halfspaces which contain X). It is known that ecoX is
obtained by eliminating from clcoX those exposed faces which do not contain points
of X (Proposition 2.1 in [4]). From the de�nition, given �x 2 Rn; �x 62 ecoX if and
only if there exists z 2 Rn such that z0(x� �x) < 0 for all x 2 X.
The following existence theorem for linear inequality systems containing strict

inequalities will be used later.

Proposition 2.1 (Theorem 3.1 [4]) Let S be non-empty. The system fa0tx < bt; t 2
S; a0tx � bt; t 2 Wg is consistent if and only if

0n+1 62 eco
���

at
bt

�
; t 2 S

�
+ R+

��
at
bt

�
; t 2 W

�
;

�
0n
1

��
:

The support function of X is �X(u) = sup
x2X

u(x) and the indicator function
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of X is de�ned by

�X(x) =

(
0; x 2 X;
+1; x 62 X:

Given a proper convex function f : Rn ! R [ f+1g; the conjugate function of
f is f � : Rn ! R [ f+1g de�ned by

f �(u) = sup
x2dom f

fu(x)� f(x)g;

where dom f := fx 2 Rn j f(x) < +1g is the domain of f . The epigraph of f is
de�ned by

epi f =

��
x



�
2 Rn+1 j f(x) � 
; x 2 dom f

�
:

Many dual conditions are formulated in terms of epi f �t , where ft de�nes a constraint.
So, it is important to note that epif �t can be expressed in terms of ft by exploiting
the information at an arbitrary point �x 2 dom ft: In fact, according to Proposition
2.1 in [8],

epi f �t =
[
"2R+

��
v

"+ v0�x� ft(�x)

�
j v 2 @"ft(�x)

�
; (2.1)

where @"ft(�x) is the "-subdi¤erential of ft at �x, i.e.,

@"ft(�x) = fv 2 Rn j ft(x) � ft(�x) + v0(x� �x)� "; 8x 2 dom ftg :

Recall that the subdi¤erential of ft at �x is @ft(�x) =
T
"�0 @"ft(�x):

The following result is fundamental for the characterization of containments of
closed convex sets.

Proposition 2.2 (Lemma 3.1 [8]) Let f : Rn ! R [ f+1g be a proper convex
lower semicontinuous (lsc) function, and let F = fx 2 Rn j f(x) � 0g: Then the
following statements hold:

(i) F 6= ? if and only if
�
0n
�1

�
62 cl(R+ epi f �):

(ii) If F 6= ?, then epi�F = cl(R+ epi f �):

3 Containments of Closed Convex Sets

Consider the sets
F = fx 2 Rn j ft(x) � 0; 8t 2 Wg; (3.1)

and
G = fx 2 Rn j gi(x) � 0; 8i 2 I; hj(x) � 0; 8j 2 Jg;
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where W 6= ?, I \ J = ?, I [ J 6= ?, and all the functions, fft; t 2 Wg, fgi; i 2 Ig,
and fhj; j 2 Jg, are convex functions from Rn to R.
Mangasarian [11] presented dual characterizations of the set containment F � G

in the following cases:

Case 1: jW j <1; jIj <1; J = ?, and all the involved functions are a¢ ne (i.e., F
and G are given polyhedral convex sets).

Case 2: jW j <1; I = ?; jJ j <1; fft; t 2 Wg are a¢ ne functions and fhj; j 2 Jg
are quadratic convex functions (i.e., F is a polyhedral convex set and G is a reverse-
convex quadratic set).

Case 3: jW j < 1; I = ?; jJ j < 1, and fft; t 2 Wg and fhj; j 2 Jg are
di¤erentiable convex functions (so that F is a closed convex set and G is a closed
reverse-convex set, both sets de�ned by means of ordinary systems).
The recent paper [8] established dual characterizations of the containment prob-

lem in the following cases:

Case 4: W is arbitrary, jIj <1; J = ?; fft; t 2 Wg are convex (a¢ ne) functions,
and fgi; i 2 Ig are a¢ ne functions (i.e., F is the solution set of a convex (linear)
semi-in�nite system and G is a polyhedral convex set).

Case 5: W is arbitrary, I = ?; jJ j < 1; and fft; t 2 Wg and fhj; j 2 Jg are
convex functions (i.e., F is as in Case 4 and G is a reverse-convex set described by
means of reverse convex inequalities).
We assume that G is represented in a similar way when J = ?. In relation to

the reverse-convex set G in the Case 5, let us observe that we can express

G = fx 2 Rn j hj(x) � 0; 8j 2 Jg = Rnn
[
j2J
Gj;

where Gj := fx 2 Rn j hj(x) < 0g for all j 2 J . Obviously, F � G if and only if
F \Gj = ? for all j 2 J , so that the basic problem is to determine the existence of
solution of a system similar to (1.1):

fft(x) � 0; t 2 W ; ft(x) < 0; t 2 S; hj(x) < 0g:

Consequently, existence theorems for convex systems possibly containing strict
inequalities play a double role in our approach. In fact, they provide tests for (1.1)
to be consistent (otherwise the containment problem is trivial) and they provide
dual characterizations of F � G when G is a reverse- convex set.
We begin by developing calculus rules for the dual cone of a closed convex set,

revisiting Case 4 as an immediate application. We de�ne the weak dual cone of
the nonempty closed convex set F � Rn as

K� :=

��
a
b

�
2 Rn+1 j a0x � b; 8x 2 F

�
= epi�F : (3.2)
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Obviously, coneco
��
0n
1

��
� K� and the equality holds if and only if F = Rn. It

is known that F is bounded if and only if
�
0n
1

�
2 intK� (see, e.g. Theorem 9.3 in

[5]). The standard hyperplane separation arguments yield

F =

�
x 2 Rn j a0x � b; 8

�
a
b

�
2 K�

�
: (3.3)

Observe the symmetry of (3.2) and (3.3): the index set of the linear system in one
of the formulae is the solution set in the other one, and vice versa. Consequently, if
G 6= ? is another closed convex set with associated weak dual cone M�; we have

F � G,M� � K�; (3.4)

i.e., the containment of closed convex sets is actually reduced to checking the consis-
tency of the given representation of F and, if F 6= ?; the calculus of the respective
weak dual cones. Then the dual characterization of the containment is the right
hand side inclusion in (3.4).
For Case 4, the following existence theorem allows to check the nonemptyness

of F . Such result can be seen as a convex counterpart of the existence theorem of
Zhu [13] for linear systems in in�nite dimensional spaces (see Lemma 4.1 in [5] for
a semi-in�nite version).

Proposition 3.1 Let F = fx 2 Rn j ft(x) � 0; 8t 2 Wg, where ft : Rn !
R [ f+1g is proper, convex and lsc for all t 2 T . Then F 6= ? if and only if�

0n
�1

�
62 cl coneco

"[
t2W

epi f �t

#
: (3.5)

Proof. For each t 2 W , we consider the function ht := 
tft, where


t :=

(
1; ft(0n) � 0;
ft(0n)

�1; ft(0n) > 0:

Since the function h := sup
t2W

ht is proper, convex and lsc, according to Theorem 2.4.4

in [7], we have

cl(R+ epih�) = cl coneco

"[
t2W

epih�t

#
= cl coneco

"[
t2W

epi f �t

#
;

with F = fx 2 Rn j h(x) � 0g. The conclusion follows from Proposition 2.2(i). 2

The nonhomogeneous Farkas Lemma for linear semi-in�nite systems (Corollary
3.1.2 in [5], Corollary 3.3 in [8]) establishes that, if F = fx 2 Rn j a0tx � bt; 8t 2 Wg;
then

K� = cl coneco

��
at
bt

�
; t 2 W ;

�
0n
1

��
: (3.6)
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Proposition 3.2 Let F =
T
i2I Fi 6= ?, where Fi is a closed convex set with weak

duality cone K�
i ; i 2 I. Then

K� = cl co

"[
i2I
K�
i

#
:

Proof. Since Fi =
�
x 2 Rn j a0x � b; 8

�
a
b

�
2 K�

i

�
for all i 2 I;

F =

(
x 2 Rn j a0x � b; 8

�
a
b

�
2
[
i2I
K�
i

)
:

Then, by the nonhomogeneous Farkas Lemma and since
�
0n
1

�
2 K�

i for all i 2 I,
we have

K� = cl coneco

��S
i2I K

�
i

�
[
��
0n
1

���
= cl co

�S
i2I K

�
i

�
: 2

Proposition 3.3 If F = fx 2 Rn j ft(x) � 0; 8t 2 Wg 6= ? and ft : Rn !
R [ f+1g is proper, convex and lsc for each t 2 W , then the weak duality cone of
F is

K� = cl coneco

"[
t2T
epif �t

#
:

Proof. F =
T
t2W Ft 6= ?; with Ft := fx 2 Rn j ft(x) � 0g for all t 2 W .

Then, by Propositions 3.2 and 2.2(ii),

K� = cl co

"[
t2W

K�
t

#
= cl co

"[
t2W

cl(R+ epi f �t )

#

= cl co

"[
t2W
(R+ epi f �t )

#
= cl coneco

"[
t2W

epi f �t

#
: 2

Observe that K� is the same cone which yields the consistency test (3.5). Theorem
2.4.4 in [7] provides an alternative proof of Proposition 3.3 (see Theorem 3.2 in [8]).

4 Stable Set Containments

In this section we see how the inclusion F � G, where F and G are represented by
means of linear inequality systems, is preserved under su¢ ciently small perturba-
tions of the data. To formulate the problem, let F and G be the solution sets of the
systems

� = fa0tx � bt; t 2 Wg (4.1)
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and
� = fc0ix � di; i 2 Ig: (4.2)

We say that the containment F � G is stable if it holds under arbitrary perturbations
of the coe¢ cients of � and �, provided that these perturbations are su¢ ciently small.
In order to de�ne the size of a perturbation, consider the set, ��, of all linear systems
with the same number of unknowns and constraints as �. So the elements of �� are
of the form

�1 = f(a1t )0x � b1t ; t 2 Wg;
with a1 : W ! Rn and b1 : W ! R. The size of the perturbation which yields �1
from the nominal system � is de�ned as

�(�1; �) := sup
t2W





�a1tb1t
�
�
�
at
bt

�




1
:

It is easy to see that � de�nes a pseudometric on �� (observe that it is possible that
�(�1; �) = +1). Similarly, the nominal system de�ning G; �, provides perturbed
systems in a space of parameters, ��, and the size of the perturbation is also mea-
sured by means of the pseudometric of the uniform convergence. We denote by F1
and G1 the solution sets of �1 and �1.
Precisely, the containment F � G is stable, if there exists a scalar � > 0 such

that F1 � G1 if �(�1; �) < � and �(�1; �) < �:
We shall prove that the stable containment is basically the containment of a

closed convex set in an open convex set, a particular case of containment of evenly
convex sets.
Recall that � satis�es the strongly Slater (SS) condition if there exists �x 2 Rn

and " > 0 such that c0i�x � di�" for all i 2 I; i.e., if the system fc0ix+xn+1 � di; i 2
I;�xn+1 < 0g, is consistent, i.e. (by Proposition 2.1)

0n+2 62 eco

240@ 0n�1
0

1A+ R+
8<:
0@ci1
di

1A ; i 2 I
9=; ;

�
0n+1
1

�35 :
Proposition 4.1 Let F 6= ? and G be the solution sets of the linear system (4.1)
and (4.2), respectively. Then the following statements hold:

(i) If F � intG, G is compact and � satis�es the SS condition, then F � G is
stable.

(ii) If F � G is stable and either fat; t 2 Tg or fci; i 2 Ig is bounded (e.g., one of
the two systems is ordinary), then F � intG:

Proof. (i) Assume that F � intG; G is compact and � satis�es the SS condition.
Let " := d(F; bdG) > 0 (F is compact), U := fx 2 Rn j d(x; F ) < "

2
g, and

V := Rnn clU . Obviously, U and V are disjoint open sets such that F � U and
bdG � V , respectively.
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Since F is bounded, the feasible set mapping associating to each �1 2 �� its
corresponding solution set mapping F1 is Berge upper semicontinuous (Corollary
6.2.1 in [5]). Hence, there exists �0 > 0 such that F1 � U if �(�1; �) < �0.
The assumptions on G and � entail two consequences:

(a) There exists �1 > 0 such that G1 \U 6= ? if �(�1; �) < �1 (the SS condition of
� is equivalent to the Berge lower semicontinuity of the feasible set mapping
associating to each �1 2 �� its solution set G1, see e.g. Theorem 6.1 in [5]).

(b) There exists �2 > 0 such that bdG1 � V if �(�1; �) < �2 (since G is a convex
body and � satis�es the SS condition, the set valued mapping associating to
each �1 2 �� the boundary of its solution set, bdG1, is Berge upper semicon-
tinuous, according to Corollary 5.3 in [6]).

Let � = minf�0; �1; �2g > 0 and let �1 2 �� and �1 2 �� such that �(�1; �) < �
and �(�1; �) < �.
If U 6� G1, we take x1 2 UnG1 and x2 2 U \ G1 (from (a)), and [x1; x2] must

contain a point x3 2 [x1; x2] � U such that x3 2 bdG1. Then x3 2 U \ (bdG1) �
U \ V , by (b), contradicting U \ V = ?.
Therefore we have F1 � U � G1.
(ii) Now we assume that F � G but F 6� intG. Let �x 2 Fn(intG).
We shall prove that the inclusion F � G is unstable provided that one of the

two sets of left-hand-side vectors is bounded.
First we assume that fat; t 2 Tg is bounded.
Since intG is evenly convex and �x =2 intG, there exists z 2 Rn such that

z0 (x� �x) < 0 for all x 2 intG. Thus,

z0 (x� �x) � 0 for all x 2 G: (4.3)

Given 
 > 0, we consider the system �
 = fat0x � bt + 
at
0z; t 2 Wg 2 ��.

Since the feasible set of �
 is F
 = F +
z, we have �x+
z 2 F
. On the other hand,

z0 [(�x+ 
z)� �x] = 
 kzk2 > 0;
so that �x+ 
z =2 G according to (4.3). Hence F
 6� G, with

lim

&0

�(�
; �) = lim

&0


 kzk sup
t2W

katk = 0:

Now we assume that fci; i 2 Ig is bounded.
By the separation theorem (if �x =2 G) and the supporting hyperplane theorem

(if �x 2 bdG), there exists z 2 Rn, z 6= 0n, such that

z0 (x� �x) � 0 for all x 2 G: (4.4)
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Given 
 > 0, we consider the system �
 = fc0ix � di � 
c0iz; i 2 Ig. Now we
have G
 = G � 
z. If �x 2 G
, then �x + 
z 2 G and (4.4) entails the following
contradiction:

0 � z0 [(�x+ 
z)� �x] = 
 kzk2 > 0:
Since �x 2 FnG
, we have F 6� G
, with

lim

&0

�(�
; �) = lim

&0


 kzk sup
i2I
kcik = 0:

This completes the proof. 2

In particular, if � is a minimal representation of a full dimensional polytope G,
then

F � G is stable, F � intG;
and the characterization of stable containment between closed convex sets is equiv-
alent to the characterization of the containment of a closed convex set in an open
convex set (the kind of problem we shall consider in the next section). This statement
is not necessarily true for polyhedral sets (consider n = 2, G = fx 2 R2 j x2 � 0g
and F = fx 2 R2 j x2 � �1g):

5 The Containments of Evenly Convex Sets

We de�ne the strict dual cone of a nonempty evenly convex set F � Rn as

K< :=

��
a
b

�
2 Rn+1 j a0x < b; 8x 2 F

�
: (5.1)

Obviously, f0ng � R++ � K< and the equality holds if and only if F = Rn. Since
0n+1 =2 K<, K< cannot be closed. In particular, if F is closed, we have K< strictly
contained in K� as far as 0n+1 2 K�nK< (the supporting halfspaces for F also
de�ne elements of K�nK<, if F 6= Rn).
The symmetric expression of (5.1) is now a straightforward consequence of the

characterization of the evenly convex sets by means of the strong separation property
from external points:

F =

�
x 2 Rn j a0x < b; 8

�
a
b

�
2 K<

�
: (5.2)

As for closed convex sets, if M< denotes the strict dual cone of a second evenly
convex set G,

F � G,M< � K<: (5.3)

(5.3) reduces again the containment problem with evenly convex sets to checking
the consistency of the given representations of F and G (by means of Proposition
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2.1 if the given representation is linear and by means of the existence theorems in
Section 6 otherwise) and, if F 6= ? 6= G, the comparison of the respective strict
dual cones. Their calculus is the main objective of this section. In particular cases
K< can be calculated through the weak dual cone of clF; �K�. Obviously, �K� is a
closed convex cone and �K� = K� if F is closed.
From now on in this section we assume that F is a nonempty evenly convex set

with associated strict dual coneK<. It follows from the de�nitions that clK< = �K�:
Thus the relative interiors of �K� and K< coincide and K< = int �K� if K< is

open.
Observe also that K< provides useful information on F , for instance, the reces-

sion cone of F is

0+F =

�
y 2 Rn j a0y � 0; 8

�
a
b

�
2 K<

�

(from (5.2)), and F is bounded if and only if
�
0n
1

�
2 intK<:

Example 5.1 If F = R2+, then �K� = K� = R2� � R+, where R� := �R+, and
K< = R2� � R++: Observe that K< is neither closed nor open, with clK< = �K�.

The next three results show the existence of a topological duality between the
evenly convex sets and their respective strict dual cones. These relationships will
allow us to calculate K< from �K� when F is either open or compact.

Proposition 5.1 The cone K< [ f0n+1g is closed if and only if the set F is open.
In such a case, K< = �K�nf0n+1g.

Proof. Assume that F is not open. Let �x 2 (bdF )\F and let a 6= 0n and b 2 R
such that a0x � b for all x 2 F and a0�x = b (a0x = b is a supporting hyperplane for

F at �x). Then, clearly,
�
a
b

�
2 cl(K< [ f0n+1g). On the other hand, a0�x = b; with

�x 2 F , entails
�
a
b

�
=2 K<. Since a 6= 0n,

�
a
b

�
=2 K< [ f0n+1g and we conclude that

this set is not closed.
Now we assume that K< [ f0n+1g is not closed. Let��

ar
br

��
� K< [ f0n+1g

such that

lim
r

�
ar
br

�
=

�
a
b

�
=2 K< [ f0n+1g:

Let �x 2 F such that a0�x � b. Since a0r�x < br for all r 2 N, we have, for r !
1; a0�x � b; i.e., a0�x = b. We shall prove that �x 2 (bdF ) \ F , so that F cannot be
open.

11



We have a 6= 0n (otherwise
�
a
b

�
= 0n+1 2 K< [ f0n+1g), and a0x = b de�nes a

hyperplane containing �x. Since
�
ar
br

�
2 K< [ f0n+1g for all r 2 N, either we have

a0rx = br for all x 2 F (if
�
ar
br

�
= 0n+1) or a0rx < br for all x 2 F , otherwise. Taking

limits, a0x � b for all x 2 F and so a0x = b is a supporting hyperplane for F at �x.
Hence �x 2 (bdF ) \ F .
If K< [ f0n+1g is closed, then K< [ f0n+1g = �K� and, since 0n+1 =2 K<,

K< = �K�nf0n+1g: 2

From Proposition 5.1 we get a particular version of Farkas Lemma for linear
strict inequalities.

Corollary 5.1 If jSj <1, a0x < b is a consequence of the consistent system fa0tx <
bt; t 2 Sg if and only if�

a
b

�
2
�
coneco

��
at
bt

�
; t 2 S;

�
0
1

���
nf0n+1g:

Proof. The assumptions guarantee that F := fx 2 Rn j a0tx < bt; t 2 Sg is an
open subset of Rn. The weak dual cone of clF is, by the nonhomegeneous Farkas
Lemma, the polyhedral convex cone

�K� = coneco

��
at
bt

�
; t 2 S;

�
0n
1

��
;

and the conclusion follows from Proposition 5.1. 2

Proposition 5.2 If the cone K< is relatively open, then the set F is closed.

Proof. Assume that F is not closed. Let fxrg � F such that limr xr = �x 62 F .
Since F is an evenly convex set, there exists a 6= 0n and b 2 R such that a0x < b for
all x 2 F and a0�x = b: Obviously,

�
a
b

�
2 K<.

Take an arbitrary small " > 0. Since limr a
0xr = a

0�x = b > b�", there existsm 2
N such that a0xm > b�", with xm 2 F . Then

�
a

b� "

�
=2 K<;with





� a
b� "

�
�
�
a
b

�



 =
" and

�
a

b� "

�
=

�
a
b

�
� "

�
0n
1

�
2 a�K<. Hence

�
a
b

�
does not belong to the rel-

ative interior of K<. 2

Example 5.1 shows that the converse of Proposition 5.2 is not true. Next we show
that the compactness of F guarantees the openness (not only relative) of K<.

Proposition 5.3 If F is compact, then K< is open. In such a case, K< = int �K�.
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Proof. Assume that F is compact. Then its support function �F is continuous
on Rn.
Let

�
a
b

�
2 K<. Since �F (a) = maxx2F a

0x < b, there exists " > 0 such that

�F (a) < b� ". Let � > 0 such that � < "
2
and

j�F (c)� �F (a)j <
"

2
if kc� ak < �:

We shall prove thatK< contains the open ball, in Rn+1, centered at
�
a
b

�
with radius

�. In fact, if





�cd
�
�
�
a
b

�



 < �, then
�F (c) < �F (a) +

"

2
< b� "

2
< d:

Thus maxx2F c0x < d, i.e.,
�
c
d

�
2 K<: 2

Proposition 5.3 yields another version of Farkas Lemma for linear strict inequalities.

Corollary 5.2 If the solution set of fa0tx < bt; t 2 Sg is compact, then a0x < b is a
consequence of that system if and only if�

a
b

�
2 int coneco

��
at
bt

�
; t 2 S;

�
0n
1

��
:

Proof. Since F := fx 2 Rn j a0tx < bt; 8t 2 Sg is compact, by Proposition 5.3,

K< = int cl coneco

��
at
bt

�
; t 2 S;

�
0n
1

��
= int coneco

��
at
bt

�
; t 2 S;

�
0n
1

��
: 2

Example 5.2 It is easy to see that the unit closed disk F := fx 2 R2 j kxk � 1g is
the solution set of the system of strict inequalities

f(cos t)x1 + (sin t)x2 < s; (t; s) 2 [0; 2�]�]1;+1[g:

Since F = fx 2 R2 j (cos t)x1 + (sin t)x2 � 1; t 2 [0; 2�]g; we have

�K� = coneco

8<:
0@cos tsin t

1

1A ; t 2 [0; 2�]; �02
1

�9=;
= fx 2 R3 j x21 + x22 � 1; x3 � 0g:

Thus,
K< = int �K� = fx 2 R3 j x21 + x22 < 1; x3 > 0g:

13



The next result can be interpreted as the general Farkas Lemma for systems of
strict inequalities.

Proposition 5.4 If F = fx 2 Rn j a0tx < bt; 8t 2 Sg, then

K< = ecoR++
��
at
bt

�
; t 2 S;

�
0n
1

��
:

Proof. We have to prove that K< = ecoX, where X is the cone

X := R++
��
at
bt

�
; t 2 S;

�
0n
1

��
:

Assume that
�
a
b

�
=2 ecoX. Then either

�
a
b

�
=2 cl coX or

�
a
b

�
belongs to a certain

exposed face of cl coX which does not contain points of X, otherwise. In both cases,

there exists a hyperplane containing
�
a
b

�
and 0n+1 which does not contain points

of X.

Let
�
c
d

�
6= 0n+1 such that

�
c
d

�0�
a
b

�
= 0 and

�
c
d

�0�
v
w

�
< 0 for all

�
v
w

�
2 X: (5.4)

From (5.4), since
�
0n
1

�
2 X, we get d < 0. Let �x := jdj�1c. Multiplying by jdj�1

each expression of (5.4), we obtain a0�x = b and
�
�x
�1

�0�
v
w

�
< 0 for all

�
v
w

�
2 X.

In particular, since
�
at
bt

�
2 X if t 2 S, we get a0t�x < bt for all t 2 S. Therefore

�x 2 F and a0�x = b, and this entails
�
a
b

�
=2 K<.

Now we assume
�
a
b

�
2 ecoX. Since

ecoX � cl coX � cl coneco
��
at
bt

�
; t 2 S;

�
0n
1

��
= �K�;

we have a0x � b for all x 2 F . We claim that
�
a
b

�
2 K<. Indeed, if there exists

�x 2 F such that a0�x = b then�
�x
�1

�0 �
�

�
at
bt

��
= �(a0t�x� bt) < 0; 8� > 0; 8t 2 S; (5.5)
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and �
�x
�1

�0 �
�

�
0n
1

��
= �� < 0; 8� > 0: (5.6)

It follows from (5.5) and (5.6) that
�
�x
�1

�0�
v
w

�
< 0 for all

�
v
w

�
2 X and hence,

�
�x
�1

�0 ��
v
w

�
�
�
a
b

��
< 0 for all

�
v
w

�
2 X (5.7)

as
�
�x
�1

�0�
a
b

�
= 0. Recalling the last characterization of ecoX in the preliminaries,

(5.7) entails
�
a
b

�
=2 ecoX. This contradiction proves that

�
a
b

�
2 K<. 2

Observe that fa0tx < bt; t 2 Sg is consistent if and only if

f(�at)0x < �bt; (�; t) 2 R++ � S; (�0n)0x < �; � 2 R++g

is consistent if and only if (by Proposition 2.1)

0n+1 =2 eco
�
R++

��
at
bt

�
; t 2 S;

�
0n
1

��
;

�
0n
1

��
= ecoR++

��
at
bt

�
; t 2 S;

�
0n
1

��
:

Thus K< (de�ned as in Proposition 5.4) characterizes the consistency of fa0tx <

bt; t 2 Sg by 0n+1 =2 K<; in the same way as
�
0n
�1

�
=2 K� (de�ned in (3.6))

characterizes the consistency of fa0tx � bt; t 2 Wg.
The next result is the counterpart of Proposition 3.2 for strict dual cones.

Proposition 5.5 Let F =
T
i2I
Fi 6= ?, where Fi is an evenly convex set with strict

dual cone K<
i ; i 2 I. Then

K< = eco

"[
i2I
K<
i

#
:

Proof. By (5.2), Fi =
�
x 2 Rn j a0x < b; 8

�
a
b

�
2 K<

i

�
for all i 2 I. Then

F =

(
x 2 Rn j a0x < b; 8

�
a
b

�
2
[
i2I
K<
i

)
;
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and, recalling Proposition 5.4 and that
�
0n
1

�
2 K<

i for all i 2 I, we have

K< = ecoR++

"[
i2I
K<
i

#
= eco

"[
i2I
K<
i

#
: 2

Now we can calculate the strict dual cone of certain evenly convex sets.

Corollary 5.3 Let F = fx 2 Rn j ft(x) < 0; 8t 2 Sg 6= ?, with ft : Rn ! R
convex for all t 2 S. Then the strict dual cone of F is

K< = eco

"([
t2S
cl(R+ epi f �t )

)
nf0n+1g

#
:

In the particular case of ft(x) = a0tx� bt for all t 2 S (i.e., F is the solution set
of a system of linear strict inequalities), it holds

K< = eco

��
coneco

��
at
bt

�
; t 2 S;

�
0n
1

���
nf0n+1g

�
:

Proof. Given t 2 S, we denote Ft := fx 2 Rn j ft(x) < 0g, which is a nonempty
open convex set. The weak dual cone of

clFt = fx 2 Rn j ft(x) � 0g

is, according to Proposition 2.2,

�K�
t = cl(R+ epi f �t ):

Then, recalling Proposition 5.1, the strict dual cone of Ft is

K<
t = [cl(R+ epi f �t )]nf0n+1g;

and, by Proposition 5.5, we have

K< = eco

"([
t2S
cl(R+ epi f �t )

)
nf0n+1g

#
:

If ft(x) = a0tx� bt, then f �t = bt + �fatg and

cl(R+ epi f �t ) = coneco
��
at
bt

�
;

�
0n
1

��
;

so that

K< = eco

" [
t2S
coneco

��
at
bt

�
;

�
0n
1

��!
nf0n+1g

#

= eco

��
coneco

��
at
bt

�
; t 2 S;

�
0n
1

���
nf0n+1g

�
: 2
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Example 5.1 (revisited) F = fx 2 R2 j �x1 < �; 8� 2 R++;�x2 < �; 8� 2
R++g: Since

coneco

8<:
0@�10
�

1A ; � > 0;
0@ 0
�1
�

1A ; � > 0;
0@00
1

1A9=; nf03g = R2� � R++;
and this set is evenly convex, K< = R2� � R++:

Corollary 5.4 Let F = fx 2 Rn j ft(x) � 0; 8t 2 Wg 6= ?, with ft : Rn !
R [ f+1g proper convex lsc for all t 2 W . Let K<

t be the strict dual cone of
Ft := fx 2 Rn j ft(x) � 0g; t 2 W . Then

K< = eco

"[
t2W

K<
t

#
;

where

K<
t =

8>>><>>>:
int(R+ epi f �t ); if Ft is bounded, 
coneco

( 
at

bt

!
;

 
0n

1

!)!
nR+

( 
at

bt

!)
; if ft(x) = a0tx� bt:

Proof. It is a straightforward consequence of Propositions 5.3 (if Ft is bounded)
and 5.5, and the evenly convex property of K<

t (if ft is an a¢ ne function). 2

Example 5.2 (revisited) F = fx 2 R2 j (cos t)x2 + (sin t)xt � 1; 8t 2 [0; 2�]g:
By Corollary 5.4, recalling that ecoX = X if X is open and convex,

K< =eco

8<: [
t2[0;2�]

240@coneco
8<:
0@cos tsin t

1

1A ;
0@00
1

1A9=;
1A nR+

8<:
0@cos tsin t

1

1A9=;
359=;

= ecofx 2 R3 j x21 + x22 < 1; x3 > 0g
= fx 2 R3 j x21 + x22 < 1; x3 > 0g:

If F = fx 2 Rn j ft(x) < 0; 8t 2 S; ft(x) � 0; 8t 2 Wg 6= ?, its strict dual cone is
eco(M< [N<), where M< and N< are the strict dual cones of

fx 2 Rn j ft(x) < 0; 8t 2 Sg

and
fx 2 Rn j ft(x) � 0; 8t 2 Wg;

respectively. M< and N< can be calculated by means of Corollaries 5.3 and 5.4.
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6 General Existence Theorems and Applications
to Set Containments

This section provides three existence theorems for convex systems of the form

� = fft(x) < 0; t 2 S; ft(x) � 0; t 2 Wg;

with S 6= ? (otherwise Proposition 3.1 applies). All the proposed consistency tests
are expressed (or can be expressed by means of (2.1)) in terms of the information
on fft; t 2 S [Wg, and the proofs will be derived from the existence theorem for
linear systems (Proposition 2.1). The �rst result replaces linearity by sublinearity
in Proposition 2.1.

Proposition 6.1 Let ft(x) = gt(x)� bt, with gt : Rn ! R sublinear and bt 2 R for
all t 2 S [W . Then � is consistent if and only if

0n+1 =2 eco
" [

t2S
@gt(0n)� fbtg

!
+ R+

 [
t2W

@gt(0n)� fbtg
!
;

�
0n
1

�#
: (6.1)

Proof. Since gt is sublinear and continuous, it can be expressed as

gt(x) = max
v2@gt(0n)

v0x for all x 2 Rn. (6.2)

Consequently, � has the same solution set as the linear system

� :=

(
a0tvx < bt; atv 2 @gt(0n); t 2 S

a0tvx � bt; atv 2 @gt(0n); t 2 W

)
:

Applying Proposition 2.1, we conclude that � is consistent if and only if condition
(6.1) holds. 2

It is easy to extend Proposition 6.1 to the case that each function ft can be
expressed as ft(x) = gt(x� xt)� bt, with gt : Rn ! R sublinear, xt 2 Rn and bt 2 R
(replace x with x� xt and 0n with xt in �): Typical examples of such functions are
ft(x) =

p
(x� xt)0At(x� xt)� bt where At is a positive de�nite symmetric matrix

xt 2 Rn and bt > 0, so that the solution set of � is the intersection of (open and
closed) ellipsoids.
Next, we relax in another way the assumption on fft; t 2 Wg in Proposition 6.1.

Proposition 6.2 Let ft : Rn ! R [ f+1g proper convex lsc for all t 2 W and let
ft(x) = gt(x)� bt; with gt : Rn ! R sublinear for all t 2 S. Then � is consistent if
and only if

0n+1 =2 eco
" [

t2S
@gt(0n)� fbtg

!
+ R+

([
t2W

epi f �t

)
;

�
0n
1

�#
: (6.3)
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Proof. Given t 2 S, by (6.2), the solution set of fft(x) < 0g is the same as the
solution set of

fa0tvx < bt; atv 2 @gt(0n)g:
On the other hand, given t 2 W , we can write

ft(x) = f
��
t (x) = sup

x�2dom f�t
[x�(x)� f �t (x�)] for all x 2 Rn:

Thus ft(x) � 0 if and only if x�(x)� f �t (x�) � 0 for all x� 2 dom f �t if and only if

x�(x) � f �t (x�) + 
 for all (x�; 
) 2 dom f �t � R+:

Then � is consistent if and only � is consistent, where

� :=

(
a0tvx < bt; atv 2 @gt(0n); t 2 S

x�(x) � f �t (x�) + 
; (x�; 
) 2 dom f �t � R+; t 2 W

)
:

Applying again Proposition 2.1, we conclude that � is consistent if and only if (6.3)
holds. 2

The sublinearity assumption in Proposition 6.2 can be relaxed by requiring that
each function ft, t 2 S, is the maximum of a family of a¢ ne functions (compare
with (6.2)).

Proposition 6.3 Let ft : Rn ! R [ f+1g proper convex lsc for all t 2 W . We
also assume that, for each t 2 S, there exists a compact set Ct � Rn+1 such that
ft(x) = max(a;b)2Ct(ax� b) for all x 2 Rn. Then � is consistent if and only if

0n+1 =2 eco
" [

t2S
Ct

!
+ R+

([
t2W

epi f �t

)
;

�
0n
1

�#
: (6.4)

Proof. Given t 2 S, ft(x) < 0 if and only if�
a
b

�0�
x
�1

�
< 0 for all

�
a
b

�
2 Ct:

Reasoning as in Proposition 6.2, � is consistent if and only if � is consistent, with

� :=

8<: a0x < b;

�
a
b

�
2 Ct; t 2 S

x�(x) � f �t (x�) + 
; (x�; 
) 2 dom f �t � R+; t 2 W

9=; ;
and � turns out to be consistent if and only if (6.4) holds. 2

In order to summarize the consequences of the previous existence theorems for
the containment problem, let us denote by A the set of a¢ ne functions on Rn, by
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S the family of di¤erences between sublinear (possibly composed with translations)
and constant functions, by M the family of functions which can be expressed as
max(a;b)2C(ax� b) for a certain compact set C � Rn+1, and by C the class of proper
convex lsc functions.
Given F = fx 2 Rn j ft(x) < 0; 8t 2 S; ft(x) � 0; 8t 2 Wg, F 6= ? is

characterized in the following cases:

� S = ? and fft; t 2 Wg � C:

� S 6= ? and fft; t 2 S [Wg is contained in either A or S:

� S 6= ?; fft; t 2 Wg � C; and fft; t 2 Sg is contained in either S orM:

Concerning the containment of F 6= ? in the reverse-convex set RnnGj; with
Gj = fx 2 Rn j hj(x) < 0g, it is characterized in the following cases:

� fft; t 2 S [W ;hjg is contained in either A or S:

� fft; t 2 Wg � C and fft; t 2 S;hjg is contained in either S orM.

Obviously, the containment of F 6= ? in the reverse-convex set Rnn
S
j2J Gj, with

Gj = fx 2 Rn j hj(x) < 0g; j 2 J , is characterized if F � RnnGj is characterized
for all j 2 J:
Finally, observe that the proofs of Propositions 6.1�6.3 are based upon the ex-

plicit construction of a linear representation of F , that is, �. From this representation
it is possible to obtain the strict dual cone of F 6= ? just applying Corollaries 5.3
and 5.4.

Example 6.1 Let F = fx 2 Rn j gt(x) < bt; 8t 2 S; gt(x) � bt;8t 2 Wg
6= ?, with gt, t 2 S [W as in Proposition 6.1. Then the strict dual cone of F is
K< = eco(M< [N<), where

M< = eco

"
coneco

([
t2S
@gt(0n)� fbtg;

�
0n
1

�)
nf0n+1g

#
and

N< = eco

" [
z }| {�
a
b

�
2

[
t2W

@gt(0n)� fbtg

�
coneco

��
a
b

�
;

�
0n
1

��
nR+

��
a
b

���#
:

Similar expressions can be given for the strict dual cone of the solutions set of
�, under the assumptions of Proposition 6.2 and 6.3, provided that � is consistent.
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