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Abstract

In this paper we consider the parameter space of continuous linear optimization
problems with a given decision space and a given index set. We consider different
partitions of this space, on the basis of the primal, the dual, and the primal-dual
status of each parameter. We define ill-posedness and relative ill-posedness w.r.t. a
given set and absolute ill-posedness w.r.t. a given family of sets. These concepts are
characterized for the elements of the partitions considered in this paper.

1. Introduction. Let n ∈ N, n ≥ 2, and a non-empty compact Hausdorff topo-
logical space T be given. We associate with each triple

π := (a, b, c) ∈ Π := C(T )n × C(T )× Rn

a primal optimization problem called primal,

P : Min c′x

s.t. a′tx ≥ bt, t ∈ T,

with space of variables Rn, and its (Haar’s) dual problem

D : Max
∑
t∈T

λtbt

s.t.
∑
tεT

λtat = c,

λt ≥ 0, t ∈ T,

whose space of variables is the linear space of all functions λ : T 7→ R such that λt = 0
for all t ∈ T except maybe for a finite number of indices. If |T | < ∞ and we consider T
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equipped with the discrete topology, P and D are ordinary linear programming (LP)
problems. Otherwise, P and D are continuous linear semi-infinite programming (LSIP)
problems as far as either the number of variables or the number of constraints (but
not both) is infinite. Interesting applications of continuous LSIP can be found in ([7],
Chapters 1–2), [6], and the references therein. Π is called the parameters space, and it
can be the result of all possible perturbations performed on a given continuous problem
provided the structure of the problem is preserved. In particular, Π := Rn|T |+|T |+n when
T is finite.

We denote by ΠP
C (ΠP

I ) the set of parameters providing a consistent (inconsistent,
respectively) primal problem. {ΠP

C , ΠP
I } is the binary primal partition of Π. Replacing

“primal” by “dual” we get the binary dual partition of Π, {ΠD
C , ΠD

I }. The binary primal-
dual partition of Π is formed by the four crossed intersections ΠCC := ΠP

C ∩ ΠD
C ,

ΠCI := ΠP
C ∩ΠD

I , ΠIC := ΠP
I ∩ΠD

C , and ΠII := ΠP
I ∩ΠD

I .
We denote by vP (π) (vD(π)) the optimal value of P (D), defining as usual vP (π) =

+∞ (vD(π) = −∞, respectively) when the corresponding problem is inconsistent. A
problem is bounded when its optimal value is a real number. Given π := (a, b, c) ∈ Π,
since P can be either inconsistent (IC) or bounded (B) or unbounded (UB), we can
classify π in one of the elements of the ternary primal partition {ΠP

I , ΠP
B,ΠP

U}. Similarly,
π can be classified in one of the elements of the ternary dual partition {ΠD

I , ΠD
B ,ΠD

U }.
The ternary primal-dual partition is formed by the non-empty pairwise intersections
of the elements of the primal and the dual partitions. The elements of the ternary
primal-dual partition are codified as shown in Table 1, where the set in each cell is the
intersection of the entries of its column and its row.

T a b l e 1

Π ΠP
I ΠP

B ΠP
U

ΠD
I ΠII ΠBI ΠUI

ΠD
B ΠIB ΠBB

ΠD
U ΠIU

The null element of Π belongs to ΠBB := ΠP
B ∩ ΠD

B , the set of parameters with
bounded associated problems. Each element of the primal-dual partition corresponds
to a duality state ([1] and [10] have analysed the role played by the duality states in LP
and LSIP).

We consider Π as a metric space equipped with the following distance: given two
parameters π1 =

(
a1, b1, c1

)
and π2 =

(
a2, b2, c2

)
,

(1) d(π1, π2) := max

{
∥∥c1 − c2

∥∥
∞ , max

t∈T

∥∥∥∥
(

a1
t

b1
t

)
−

(
a2

t

b2
t

)∥∥∥∥
∞

}
.

In fact, it can be easily seen that Π is also a Banach space with the usual sup norm.
Throughout the paper the elements of Π will be distinguished by means of upperscripts,
and the same (either as subscripts or as superscripts) applies for their corresponding
objects: πr = (ar, br, cr), Dr, Pr, and so on.

In general LSIP, the functions a : T 7→ Rn and b : T 7→ R are not necessarily
continuous, so that the space of parameters is (Rn)T ×RT ×Rn. Replacing “max” with
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“sup” in (1), we get a pseudometric, which generates the topology of uniform conver-
gence in this space and for which our parameters space Π is a topological subspace.

Let us observe that the recent paper [4] provides characterizations of the interior,
the boundary and the exterior of the sets ΠD

C and ΠBB in general LSIP. Obviously,
these characterizations become sufficient conditions in the context of continuous LSIP.

In this paper we consider three different types of ill-posed parameters, two of them
relative to a given subset of Π and the third one relative to a family of subsets of Π. The
individual sets will be the elements of the binary and the ternary partitions defined
above whereas the families will be the stable elements in each partition (in the sense
that they have non-empty interior). The way to do this consists of characterizing the
elements of these partitions together with their respective interiors.

2. Analysing the partitions. Given a non-empty set X ⊂ Rp, cone X denotes
the conical convex hull of X ∪ {0p} (0p denotes here the zero vector of Rp). From
the topological side, if X is a subset of any topological space, intX, cl X and bdX
represent the interior, the closure and the boundary of X, respectively.

We associate with π = (a, b, c) the first moment cone of π, M := cone{at, t ∈ T},
and the characteristic cone, K := cone{(at, bt), t ∈ T ; (0n,−1)}. If π satisfies the Slater
condition (SC in brief), i.e., there exists x ∈ Rn such that a′tx > bt for all t ∈ T , then
K is closed.

The next result summarizes well-known results on the primal and dual binary
partitions ({ΠP

C , ΠP
I } and {ΠD

C , ΠD
I }). The proof can be found in ([8], Theorem 3.1), [7]

and ([9], Theorem 5).

Lemma 1. The elements of the binary primal and dual partitions are neither
open nor closed. Moreover, the following statements are true:

(i) π ∈ ΠP
C if and only if (0n, 1) /∈ clK. In particular, π ∈ intΠP

C if and only if
P satisfies SC.

(ii) π ∈ ΠP
I if and only if (0n, 1) ∈ cl K. In particular, π ∈ intΠP

I if and only if
(0n, 1) ∈ intK.

(iii) π ∈ ΠD
C if and only if c ∈ M . In particular, π ∈ intΠD

C if and only if c ∈ intM .

(iv) π ∈ ΠD
I if and only if c /∈ M . In particular, π ∈ intΠD

I if and only if there
exists y ∈ Rn such that c′y < 0 and a′ty > 0 for all t ∈ T .

From Lemma 1 it is possible to characterize the elements of the binary primal-dual
partition and their corresponding topological interiors.

Theorem 2. The elements of the binary primal-dual partition are neither open
nor closed and satisfy the following statements:

(i) π ∈ ΠCC if and only if (0n, 1) /∈ cl K and c ∈ M . In particular, π ∈ intΠCC
if and only if SC holds and c ∈ intM . Moreover, intΠCC is dense in ΠCC if
and only if |T | ≥ n.

(ii) π ∈ ΠCI if and only if (0n, 1) /∈ cl K and c /∈ M . In particular, π ∈ intΠCI if
and only if SC holds and there exists y ∈ Rn such that c′y < 0 and a′ty > 0
for all t ∈ T . Moreover, intΠCI is dense in ΠCI .

(iii) π ∈ ΠIC if and only if (0n, 1) ∈ cl K and c ∈ M . In particular, π ∈ intΠIC if
and only if (0n, 1) ∈ intK and c ∈ intM . Moreover, intΠIC is dense in ΠIC

if and only if |T | ≥ n + 1.
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(iv) π ∈ ΠII if and only if (0n, 1) ∈ cl K and c /∈ M . Moreover, intΠII = ∅.

The next theorem constitutes the counterpart of Theorem 2 for the ternary primal-
dual partition (statements (i), because ΠBB = ΠCC , and (iv) are obviously redundant).
Its proof is based on the following lemma.

Lemma 3. The following statements are true:

(i) π ∈ ΠP
B if and only if (0n, 1) /∈ cl K and ({c} × R) ∩ clK 6= ∅. Moreover,

intΠP
B = intΠBB.

(ii) π ∈ ΠP
U if and only if (0n, 1) /∈ clK and ({c} × R) ∩ clK = ∅. Moreover,

intΠP
U = intΠUI .

(iii) π ∈ ΠD
B if and only if c ∈ M and {c} ×R * K. Moreover, intΠD

B = intΠBB.

(iv) π ∈ ΠD
U if and only if c ∈ M and {c} × R ⊂ K. Moreover, intΠD

U = intΠIU .

Theorem 4. The elements of the ternary primal-dual partition are neither open
nor closed and satisfy the following statements:

(i) π ∈ ΠBB if and only if (0n, 1) /∈ cl K and c ∈ M . In particular, π ∈ intΠBB
if and only if SC holds and c ∈ intM . Moreover, intΠBB is dense in ΠBB if
and only if |T | ≥ n.

(ii) π ∈ ΠUI if and only if (0n, 1) /∈ clK, c /∈ M and ({c} × R) ∩ clK = ∅. In
particular, π ∈ intΠUI if and only if there exists y ∈ Rn such that c′y < 0
and a′ty > 0 for all t ∈ T . Moreover, intΠUI is dense in ΠUI .

(iii) π ∈ ΠIU if and only if (0n, 1) ∈ cl K, c ∈ M and {c} ×R ⊂ K. In particular,
π ∈ intΠIU if and only if (0n, 1) ∈ intK. Moreover, intΠIU is dense in ΠIU

if and only if |T | ≥ n + 1.

(iv) π ∈ ΠII if and only if (0n, 1) ∈ cl K and c /∈ M . Moreover, intΠII = ∅.

(v) π ∈ ΠBI if and only if (0n, 1) /∈ clK, c /∈ M and ({c} × R) ∩ cl K 6= ∅. In
particular, ΠBI = ∅ if |T | < ∞. Moreover, intΠBI = ∅.

(vi) π ∈ ΠIB if and only if (0n, 1) ∈ cl K, c ∈ M and {c} ×R * K. In particular,
ΠIB = ∅ if |T | < ∞. Moreover, intΠIB = ∅.

(vii)
⋃

i∈{BB,UI,IU}
intΠi is a dense subset of Π.

From Theorem 4 it can be shown that

(2)
⋃

i∈{I,B,U}
intΠP

i =
⋃

i∈{I,B,U}
intΠD

i =
⋃

i∈{BB,UI,IU}
intΠi.
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Example 5. Let n = 2, T = {1, 2, 3} and π := (a, b, c) such that (a1, b1) =
(0, 0,−1), (a2, b2) = (1, 1,−1), (a3, b3) = (−1, 1,−1), and c = (0,−1). By Theo-
rem 4(ii), π ∈ ΠUI . Now consider the sequence {πr}∞r=1 ⊂ Π, where πr is obtained
from π by replacing a1 = (0, 0) with ar

1 = (0,−1
r ). It is easy to see, applying The-

orem 4(i), that πr ∈ ΠBB ∀r ∈ N and limr→∞ πr = π. Thus, π ∈ ΠUI ∩ bd ΠBB.
Hence,

(intΠBB) ∪ (intΠUI) & int(ΠBB ∪ΠUI).

3. Ill-posedness in continuous linear optimization. A mathematical pro-
gramming problem is called ill-posed in the feasibility sense if arbitrarily small pertur-
bations provide both consistent and inconsistent problems ([12], [5] and [2] give formulae
for the distance to ill-posedness in ordinary LP, in conic LP, and in general LSIP, re-
spectively). In continuous linear optimization, the set of well-posed problems in primal
(dual) feasibility sense is then the union of topological interiors (intΠP

C) ∪ (intΠP
I )

((intΠD
C ) ∪ (intΠD

I ), respectively), whereas the the set of ill-posed problems in primal
(dual) feasibility sense is bd ΠP

C (bd ΠD
C , respectively). The open sets intΠP

C , intΠP
I ,

intΠD
C , and intΠD

I are characterized in Lemma 1. In [3] a general LSIP problem is
called ill-posed in the solvability sense if arbitrarily small perturbations provide both
solvable and non-solvable problems. In fact, it is shown that this set is the boundary of
the set of parameters which have a finite primal optimal value. In our context of con-
tinuous linear optimization this set is bd ΠBB. In the same vein, the set of well-posed
problems w.r.t. the primal (dual) ternary partition is

⋃
i∈{I,B,U}

intΠP
i (

⋃
i∈{I,B,U}

intΠD
i ,

respectively).
On the other hand, [11] defines a conic programming problem to be ill-posed (in

primal-dual feasibility sense) when it lays on the boundary of the set of consistent
problems whose corresponding dual is also consistent. This class of primal-dual ill-
posed parameters is, in our setting, bdΠBB. The interior of ΠBB was characterized
in [13]. Now the set of well-posed problems w.r.t. the primal-dual ternary partition is⋃
i∈{BB,UI,IU}

intΠi.

First we recall the usual definition of ill-posedness in an arbitrary topological space.

Definition 6. Let X be a topological space and ∅ 6= A ⊆ X. We say that the
point y ∈ X is ill-posed w.r.t. to set A if each neighbourhood of y contains points of A
and its complement.

We denote the set of ill-posed points w.r.t. the set A with AIP . Obviously, AIP =
bd A = (clA) \ (intA). Moreover, (X \A)IP = AIP .

Definition 7. Let X be a topological space and ∅ 6= A ⊆ X. We say that the
point y ∈ A is relatively ill-posed w.r.t. to set A if each neighbourhood of y contains
points of the complement of A.

We denote the set of relatively ill-posed points w.r.t. the set A with ARIP . Obvi-
ously, ARIP = A\ intA = A∩AIP . This definition makes sense, because f.i. sometimes
we need only the ill-posed points which belong to the set A. Observe that A is open
(closed) if and only if ARIP = ∅ (ARIP = AIP , respectively).
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Definition 8. Let X be a topological space and let A = {Ai, i ∈ I} be a family of
pairwise disjoint subsets of X such that intAi 6= ∅ ∀i ∈ I and

⋃
i∈I

Ai is a dense subset of

X. We say that the point y ∈ X is absolutely ill-posed w.r.t. toA if y ∈ X\
( ⋃

i∈I

intAi

)
.

We denote the set of absolutely ill-posed points w.r.t. A as AAIP . In particular, if
A is a dense subset of X, {A,X \A}AIP = AIP .

Let us go back to the linear continuous optimization. The proofs of the next char-
acterizations of the relatively ill-posed problems w.r.t. the elements of the partitions
of Π considered in this paper follow from Lemma 3 and Theorems 2 and 4:

π ∈ (ΠP
C)RIP if and only if (0n, 1) /∈ cl K and SC fails.

π ∈ (ΠP
I )RIP if and only if (0n, 1) ∈ bd K.

π ∈ (ΠD
C )RIP if and only if c ∈ M \ intM .

π ∈ (ΠD
I )RIP if and only if c /∈ M and c′y ≥ 0 is a consequence of {a′ty > 0, t ∈ T}.

π ∈ (ΠP
B)RIP if and only if (0n, 1) /∈ clK, ({c} × R) ∩ clK 6= ∅ and SC fails if

c ∈ intM .
π ∈ (ΠP

U )RIP if and only if (0n, 1) /∈ cl K, ({c} × R) ∩ clK = ∅ and c′y ≥ 0 is a
consequence of {a′ty > 0, t ∈ T}.

π ∈ (ΠD
B )RIP if and only if c ∈ M , {c} × R * K and SC fails if c ∈ intM .

π ∈ (ΠD
U )RIP if and only if c ∈ M , {c} × R ⊂ K and (0n, 1) /∈ intK.

π ∈ ΠRIP
CC = ΠRIP

BB if and only if (0n, 1) /∈ clK, c ∈ M and SC fails if c ∈ intM .

π ∈ ΠRIP
CI if and only if (0n, 1) /∈ clK, c /∈ M , and SC holds whenever c′y ≥ 0 is a

consequence of {a′ty > 0, t ∈ T}.
π ∈ ΠRIP

IC if and only if (0n, 1) ∈ clK, c ∈ M , and (0n, 1) /∈ intK whenever
c ∈ intM .

π ∈ ΠRIP
II = ΠII if and only if (0n, 1) ∈ cl K and c /∈ M .

π ∈ ΠRIP
BB if and only if (0n, 1) /∈ clK, c ∈ M and SC fails if c ∈ intM .

π ∈ ΠRIP
UI if and only if (0n, 1) /∈ clK, c /∈ M , ({c} ×R) ∩ clK = ∅ and c′y ≥ 0 is

a consequence of {a′ty > 0, t ∈ T}.
π ∈ ΠRIP

IU if and only if (0n, 1) ∈ bd K, c ∈ M , and {c} × R ⊂ K.
Moreover, we have

{ΠP
C ,ΠP

I }AIP = (ΠP
C)IP = (ΠP

I )IP = (ΠP
C)RIP ∪ (ΠP

I )RIP

and

{ΠD
C , ΠD

I }AIP = (ΠD
C )IP = (ΠD

I )IP = (ΠD
C )RIP ∪ (ΠD

I )RIP .

Finally, taking into account (2) and Theorem 4(vii), we conclude that the set of
absolutely ill-posed problems w.r.t. the primal-dual, the primal, and the dual ternary
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partitions coincide, and it can be expressed in different ways:

{ΠBB, ΠUI , ΠIU}AIP =


 ⋃

i∈{BB,UI,IU}
intΠi




IP

(3)

=


 ⋃

i∈{II,BI,IB}
Πi


 ∪


 ⋃

i∈{BB,UI,IU}
ΠRIP

i


 ,

{ΠP
I , ΠP

B,ΠP
U}AIP =


 ⋃

i∈{I,B,U}
intΠP

i




IP

=
⋃

i∈{I,B,U}
(ΠP

i )RIP ,(4)

and

(5) {ΠD
I , ΠD

B , ΠD
U }AIP =


 ⋃

i∈{I,B,U}
intΠD

i




IP

=
⋃

i∈{I,B,U}
(ΠD

i )RIP .

Moreover, π is absolutely ill-posed w.r.t. any of the three ternary partitions (i.e.,
π ∈ {ΠBB, ΠUI ,ΠIU}AIP ) if and only if π satisfies:

1) SC fails if c ∈ intM ;

2) c′y ≥ 0 is a consequence of {a′ty > 0, t ∈ T}; and

3) (0n, 1) /∈ intK.

The parameter π in Example 5 satisfies these conditions, so that it is ill-posed in
the sense of (3), (4), and (5). This example shows that

{ΠBB,ΠUI , ΠIU}AIP ' (ΠBB ∪ΠUI ∪ΠIU )IP .
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