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Abstract. We study stability properties of a proximal point algorithm for solving the
inclusion 0 ∈ T (x) when T is a set-valued mapping that is not necessarily monotone. More
precisely we show that the convergence of our algorithm is uniform, in the sense that it is
stable under small perturbations whenever the set-valued mapping T is metrically regular
at a given solution. We present also an inexact proximal point method for strongly metri-
cally subregular mappings and show that it is super-linearly convergent to a solution to the
inclusion 0 ∈ T (x).
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1 Introduction

In [1] we studied the convergence of a general version of the proximal point algorithm for
solving the inclusion

(1.1) 0 ∈ T (x),

where T is a set-valued mapping acting from a Banach space X to the subsets of a Banach
space Y. Such an inclusion is an abstract model for a wide variety of variational problems
including complementarity problems, systems of non linear equations and variational in-
equalities. In particular it may characterize optimality or equilibrium. Choosing a sequence
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of Lipschitz continuous functions gn : X → Y with gn(0) = 0 we considered the algorithm
given by the recursion:

(1.2) 0 ∈ gn(xn+1 − xn) + T (xn+1) for n = 0, 1, 2, . . .

If gn(u) = λnu and then we assume Y = X a Hilbert space, we obtain the classical proximal
point algorithm

(1.3) 0 ∈ λn(xn+1 − xn) + T (xn+1) for n = 0, 1, 2, . . .

Algorithm (1.3) seems to have been applied for the first time to convex optimization by
Martinet [14] and has been thoroughly explored in a subsequent paper by Rockafellar [20] in
the general framework of maximal monotone inclusions. In particular, Rockafellar (see [20,
Theorem 1]) showed that when xn+1 is an approximate solution of (1.3) and T is maximal
monotone, then for a sequence of positive scalars λn the iteration (1.3) generates a sequence
xn which is weakly convergent to a solution to (1.1) for any starting point x0 ∈ X.

We proved in [1] that if x̄ is a solution of (1.1) and the mapping T is metrically regular at
x̄ for 0 and such that its graph is locally closed at (x̄, 0), then, for any sequence of functions
gn that are Lipschitz continuous in a neighborhood O of the origin, the same for all n, and
whose Lipschitz constants λn have supremum that is bounded by half the reciprocal of the
modulus of regularity of T , there exists a neighborhood U of x̄ such that for each initial
point x0 ∈ U one can find a sequence xn satisfying (1.2) which is linearly convergent to x̄ in
the norm of X. Moreover, if the functions gn have their Lipschitz constants λn convergent
to zero, then, among the sequences obtained by (1.2) with x0 ∈ U there exists at least one
which is superlinearly convergent to x̄. We also studied the convergence of the proximal
point algorithm (1.2) under different regularity assumptions for the mapping T , indeed, we
considered the cases when T is strongly metrically subregular and strongly metrically regu-

lar. The purpose of this paper was to propose a proximal point method for non-monotone
mappings. Other contributions on this topic ([11, 17], etc.) have already been cited in [1].

In many situations the mapping T happens to be monotone (as for instance for the sub-
differential of a lower semicontinuous convex function). Nevertheless, there is an interest in
considering and studying such a method without monotonicity. First, because monotonicity
forces us to work with mappings acting between a space and its dual, which usually yields
to restrict the algorithm for mappings on a Hilbert space. Metric regularity does not require
this, and consequently, allows us to work with mappings acting between two different Ba-
nach spaces. Second, because in some cases monotonicity turns out to be rather a strong
assumption, excluding several mappings that are metrically regular. As a simple example,
consider a continuously differentiable function f : R

n → R
n. From [21, Proposition 12.3],

f is monotone if and only if the Jacobian ∇f(x) is positive-semidefinite at each x. On the
other hand, a consequence of the Lyusternik-Graves theorem (see Theorem 2.2, Section 2)
is that f is metrically regular at some point x̄ if and only if ∇f(x̄) is surjective. Therefore
it covers several cases that do not verify the monotonicity condition.
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An interesting class of examples is given by the so-called feasibility problems: let X and Y
be Banach spaces and let K ⊂ Y be a closed convex cone. Considering a function f : X → Y ,
a closed convex set C ⊂ X and a point y ∈ Y , the feasibility problem consists in finding
x ∈ C such that

y ∈ f(x) + K.

The latter can be rewritten in the form y ∈ F (x) where

F (x) =

{

f(x) + K if x ∈ C,
∅ otherwise.

According to [3], when f is strictly differentiable, the mapping F is metrically regular at x̄
for ȳ (where (x̄, ȳ) is in the graph of F ) if and only if the mapping L, given by

L(x) =

{

f(x̄) + ∇f(x̄)(x − x̄) + K if x ∈ C,
∅ otherwise,

is metrically regular at x̄ for ȳ. Since L has closed and convex graph, from the works of
Ursescu [24] and Robinson [18] we know that the mapping L is metrically regular at x̄ for ȳ
if and only if ȳ lies in the interior of the range of L. An easy computation shows that this
holds true whenever ȳ− f(x̄) is in the interior of K while the monotonicity of F requires (at
least) f to be a monotone mapping.

In this paper, following the work of Dontchev [5], for given y ∈ Y we study the uniformity
of the method

(1.4) y ∈ gn(xn+1 − xn) + T (xn+1) for n = 0, 1, 2, . . .

We consider the perturbed inclusion y ∈ T (x) and we show that the attraction region ( i.e.,
the ball in which the initial guess x0 can be taken arbitrarily) does not depend on small
variations of the perturbation parameter y near 0. More precisely, we prove that whenever
T is metrically regular at x̄ for 0, where x̄ is a solution to the inclusion (1.1), there exist
neighborhoods U of x̄ and V of 0 such that for every elements x0 ∈ U and y ∈ V there is
a sequence xn generated by (1.4) starting from x0 and converging to a solution x such that
y ∈ T (x). When T happens to be strongly metrically regular, we obtain the uniqueness of
the sequence xn in U . Such statements enhance the results obtained in [1].

Finally, when T is strongly metrically subregular at x̄ for 0 where x̄ is a solution to (1.1),
we present an inexact proximal point method for solving (1.1) given by the iteration

(1.5) en ∈ gn(xn+1 − xn) + T (xn+1) for n = 0, 1, 2, . . .

where en is a so-called error sequence. We show that any sequence generated by (1.5) and
whose elements are sufficiently close to x̄ converges linearly to x̄. We prove that the conver-
gence is actually superlinear whenever the functions gn are chosen such that the sequence
of their Lipschitz constants λn converges to 0. Moreover, as in [20, Theorem 2], we show
that any bounded sequence generated by (1.5) converges to a solution to (1.1) whenever the
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mapping T−1 is Lipschitz continuous at 0.

The content of this paper is as follows. In Section 2, we present some background
material on metric regularity. Results on the uniformity of the proximal point method for
both metrically regular and strongly metrically regular mappings are developed in Section 3.
The last section is devoted to the study of an inexact proximal point algorithm, for strongly
metrically subregular mappings, which is proved to converge to a solution to (1.1).

2 Background material

Throughout, X and Y are Banach spaces, let F be a set-valued mapping from X into the
subsets of Y , indicated by F : X →→ Y . Here gphF = {(x, y) ∈ X × Y | y ∈ F (x)} is
the graph of F . We denote by d(x, C) the distance from a point x to a set C, that is,
d(x, C) = infy∈C ‖x − y‖ while IBr(a) denotes the closed ball of radius r centered at a and
F−1 is the inverse of F defined as x ∈ F−1 (y) ⇔ y ∈ F (x).

Our study is organized around three key notions: metric regularity, strong metric regu-
larity and strong metric subregularity.

Definition 2.1. A mapping F : X →→ Y is said to be metrically regular at x̄ for ȳ if F (x̄) ∋ ȳ
and there exist some positive constants κ, a and b such that

(2.1) d(x, F−1(y)) ≤ κd(y, F (x)) for all x ∈ IBa(x̄), y ∈ IBb(ȳ).

The infimum of κ for which (2.1) holds is the regularity modulus denoted reg F (x̄| ȳ);
the case when F is not metrically regular at x̄ for ȳ corresponds to reg F (x̄| ȳ) = ∞. The
inequality (2.1) has direct use in providing an estimate for how far a point x is from being
a solution to the variational inclusion F (x) ∋ y; the expression d(y, F (x)) measures the
residual when F (x) 6∋ y. Smaller values of κ correspond to more favorable behavior. The
metric regularity of a mapping F at x̄ for ȳ is known to be equivalent to the Aubin continuity
of the inverse F−1 at ȳ for x̄ (see, e.g., [21]). Recall that a set-valued map Γ : Y →→ X is
Aubin continuous at (ȳ, x̄) ∈ gphΓ (see [2]) if there exist positive constants κ, a and b such
that

(2.2) e(Γ(y′) ∩ IBa(x̄), Γ(y)) ≤ κ‖y′ − y‖ for all y, y′ ∈ IBb(ȳ),

where e(A, B) denotes the excess from a set A to a set B and is defined as e(A, B) =
supx∈A d(x, B). For more details on metric regularity and applications to variational prob-
lems one can refer to [8, 10, 15] and the monographs [16, 21].

An important result in the theory of metric regularity is the Lyusternik-Graves theorem
which roughly says that the metric regularity is stable under perturbations of order higher
than one. The following statement, which is from [7], is the general form of this theorem.
We use the following convention: we say that a set C ⊂ X is locally closed at z ∈ C if there
exists a > 0 such that the set C ∩ IBa(z) is closed.
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Theorem 2.2. Let F : X →→ Y be a mapping with locally closed graph at (x̄, ȳ) ∈ gphF .

Let F be metrically regular at x̄ for ȳ with constant κ > 0. Consider a function g : X → Y
which is Lipschitz continuous at x̄ with Lipschitz constant λ such that λ < κ−1. Then the

mapping F + g is metrically regular at x̄ for ȳ + g(x̄) with constant κ/(1 − κλ).

In order to introduce the next regularity property, we need the notion of graphical local-
ization. A graphical localization of a mapping F : X →→ Y at (x̄, ȳ) ∈ gph F is a mapping
F̃ : X →→ Y such that gph F̃ = (U × V ) ∩ gph F for some neighborhood U × V of (x̄, ȳ).

Definition 2.3. A mapping F : X →→ Y is strongly metrically regular at x̄ for ȳ if the metric

regularity condition in Definition 2.1 is satisfied by some κ and some neighborhoods U of x̄
and V of ȳ such that, in addition, the graphical localization of F−1 with respect to U and V
is single-valued.

Strong regularity implies metric regularity by definition. Nevertheless, in some cases,
metric regularity and strong regularity are equivalent. Indeed, this equivalence holds for
mappings of the form of the sum of a smooth function and the normal cone mapping over
a polyhedral convex set (see, e.g., [6]). Moreover, for any set-valued mapping that is locally

monotone near the reference point metric regularity at that point implies, and hence is
equivalent to, strong regularity. This is a consequence of a deeper result by Kenderov [12,
Proposition 2.6] regarding single-valuedness of lower semicontinuous monotone mappings.
Furthermore, see [21, Proposition 12.54], any maximal monotone mapping T : R

n →→ R
n

which is strongly monotone is strongly regular at the unique solution of T (x) ∋ 0.
Now, we present briefly the last notion of regularity we will consider in this work.

Definition 2.4. A mapping F : X →→ Y is strongly subregular at x̄ for ȳ if F (x̄) ∋ ȳ and

there exist positive constants κ, a and b such that

(2.3) ‖x − x̄‖ ≤ κd(ȳ, F (x) ∩ IBb(ȳ)) for all x ∈ IBa(x̄).

This property is equivalent to the “local Lipschitz property at a point” of the inverse
mapping, a property first formally introduced in [4] where a stability result parallel to the
Lyusternik-Graves theorem was proved. According to Robinson [19, Proposition 1], a map-
ping F acting in finite dimensions whose graph is the union of polyhedral sets is upper-
Lipschitz at any point. Therefore F is strongly subregular at x̄ for ȳ if and only if x̄ is an
isolated point of F−1(ȳ).

3 Uniform convergence of the proximal point method

To prove our main result we need the following Lemma.

Lemma 3.1. Consider a mapping T : X →→ Y with locally closed graph at (x̄, ȳ) ∈ gphT
such that T is metrically regular at x̄ for ȳ with constant κ > 0. Let g : X → Y be a function,

such that g(0) = 0, which is Lipschitz continuous in a neighborhood O of 0 with a Lipschitz

constant λ satisfying λ < 1/(3κ). Let Px = [g(· − x) + T (·)]−1 for x ∈ X. Then there exist
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positive constants α and β such that for every x ∈ IBα(x̄), y′, y′′ ∈ IBβ(ȳ), x′ ∈ Px(y
′)∩IBα(x̄)

and ε > 0 there exists x′′ ∈ Px(y
′′) such that

‖x′ − x′′‖ ≤ (κ/(1 − 3λκ) + ε)‖y′ − y′′‖.

Proof. The mapping g(· − x̄) is Lipschitz continuous on O + x̄. Applying the Lyusternik-
Graves theorem (see Theorem 2.2), we obtain that [Px̄]

−1 is metrically regular at x̄ for ȳ,
with constant κ/(1 − κλ). Therefore there exist positive constants a and b such that Px̄ is
Aubin continuous at (ȳ, x̄) with respect to a, b and M := κ/(1 − κλ).

Make a and b smaller if necessary so that gphT is closed relative to IBa(x̄) × IBb+λa(ȳ).
Choose α > 0 such that IB2α(0) ⊂ O. Make α smaller if necessary and take some positive
scalars β and γ such that

2λ(M + γ) < 1, 2α ≤ a, β + αλ ≤ b, and 2(M + γ)β/(1 − 2λ(M + γ)) ≤ α.

Let x ∈ IBα(x̄), let y′, y′′ ∈ IBβ(ȳ) with y′ 6= y′′ (otherwise, there is nothing to prove) and
let x1 ∈ Px(y

′) ∩ IBα(x̄). Then y′ ∈ g(x1 − x) + T (x1) and therefore

x1 ∈ Px̄(y
′ − g(x1 − x) + g(x1 − x̄)) ∩ IBa(x̄).

Since ‖x − x1‖ ≤ ‖x − x̄‖ + ‖x̄ − x1‖ ≤ 2α, x1 − x ∈ O and we have

‖y′ − g(x1 − x) + g(x1 − x̄) − ȳ‖ ≤ ‖y′ − ȳ‖ + ‖g(x1 − x) − g(x1 − x̄)‖

≤ β + λ‖x − x̄‖ ≤ β + λα ≤ b.

Obviously, the same result holds for y′′. From the Aubin continuity of Px̄,

d(x1, Px̄(y
′′ − g(x1 − x) + g(x1 − x̄)) ≤ M‖y′ − y′′‖ < (M + γ)‖y′ − y′′‖,

and then there exists
x2 ∈ Px̄(y

′′ − g(x1 − x) + g(x1 − x̄))

such that
‖x2 − x1‖ ≤ (M + γ)‖y′ − y′′‖.

Thus, ‖x2 − x̄‖ ≤ ‖x2 − x1‖ + ‖x1 − x̄‖ ≤ 2β(M + γ) + α ≤ 2α and we get x2 ∈ IBa(x̄).
Proceeding by induction, suppose that we have found x2, . . . , xn for n ≥ 2 with

xi ∈ Px̄(y
′′ − g(xi−1 − x) + g(xi−1 − x̄)) ∩ IBa(x̄)

and
‖xi − xi−1‖ ≤ (2λ)i−2(M + γ)i−1‖y′ − y′′‖,

for i = 2, . . . , n. Since

‖y′′ − g(xn−1 − x) + g(xn−1 − x̄) − ȳ‖ ≤ β + λ‖x − x̄‖ ≤ β + αλ ≤ b

and
‖y′′ − g(xn − x) + g(xn − x̄) − ȳ‖ ≤ β + λ‖x − x̄‖ ≤ b,
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from the Aubin continuity of Px̄, there exists

xn+1 ∈ Px̄(y
′′ − g(xn − x) + g(xn − x̄)),

with

‖xn+1 − xn‖ ≤ (M + γ)‖ − g(xn − x) + g(xn − x̄) + g(xn−1 − x) − g(xn−1 − x̄)‖

≤ (M + γ)(‖g(xn − x) − g(xn−1 − x)‖ + ‖g(xn − x̄) − g(xn−1 − x̄)‖)

≤ 2λ(M + γ)‖xn − xn−1‖ ≤ (2λ)n−1(M + γ)n‖y′ − y′′‖.

Since 2λ(M + γ) < 1 we have,

‖xn+1 − x̄‖ ≤
n+1
∑

j=2

‖xj − xj−1‖ + ‖x1 − x̄‖

≤ (M + γ)‖y′ − y′′‖
n+1
∑

j=2

(2λ(M + γ))j−2 + α

≤ 2(M + γ)β/(1 − 2λ(M + γ)) + α ≤ 2α ≤ a.

Therefore, the induction step is complete and since xn is a Cauchy sequence there exists
x′′ ∈ IBa(x̄) such that xn converges to x′′. From

xn ∈ Px̄(y
′′ − g(xn−1 − x) + g(xn−1 − x̄)),

we get
y′′ ∈ g(xn−1 − x) − g(xn−1 − x̄) + g(xn − x̄) + T (xn).

Passing to the limit when n goes to ∞ and using the local closedness of T , we obtain

y′′ ∈ g(x′′ − x) + T (x′′),

that is, x′′ ∈ Px(y
′′). Moreover,

‖x1 − x′′‖ ≤ lim sup
n→∞

n
∑

i=2

‖xi − xi−1‖

≤ lim sup
n→∞

n
∑

i=2

(2λ)i−2(M + γ)i−1‖y′ − y′′‖

≤ (M + γ)/(1 − 2λ(M + γ))‖y′ − y′′‖

= (κ + γ(1 − λκ))/(1 − 3λκ − 2λγ(1 − λκ))‖y′ − y′′‖.

An easy computation shows that, whenever γ is sufficiently small, one has

(κ + γ(1 − λκ))/(1 − 3λκ − 2λγ(1 − λκ)) ≤ κ/(1 − 3λκ) + ε,

which completes the proof.
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We will need the following remark to prove our main result.

Remark 1. According to the proof of the Lyusternik-Graves theorem given by Dontchev
et al. [7, Theorem 3.3], the constants a and b obtained at the very beginning of the proof
of Lemma 3.1 only depend on the growth constant κ, the scalar λ and the neighborhoods
with respect to which gph T is locally closed and g is Lipschitz continuous. More precisely,
Dontchev et al. proved that a can be chosen such that 0 < a < 1

16
ρ(1 − κλ) min{1, κ} and

0 < b < 1
16κ

ρ(1−κλ) min{1, κ} where ρ is such that gphT is closed relative to IBρ(x̄)×IBρ(x̄)
and g is Lipschitz continuous with constant λ on IBρ(0).

It is also interesting to point out the following:

Remark 2. Lemma 3.1 reveals in particular that the mapping Px is Aubin continuous
at ȳ + g(x̄ − x) for x̄ with constant κ/(1 − 3λκ), for all x in a neighborhood of x̄. Indeed,
let a and b be positive numbers such that b + λa ≤ β and a ≤ α. Let x ∈ IBa(x̄) and
y ∈ IBb(ȳ+g(x̄−x)). Then ‖y− ȳ‖ ≤ ‖y− ȳ−g(x̄−x)‖+‖g(x̄−x)‖ ≤ b+λ‖x̄−x‖ ≤ b+λa,
and therefore Px is Aubin continuous at (ȳ + g(x̄ − x), x̄) with neighborhoods IBa(x̄) and
IBb(ȳ + g(x̄ − x)) and constant κ/(1 − 3λκ), for all x ∈ IBa(x̄).

We are now able to prove that the metric regularity of T implies uniform convergence of
the proximal point method.

Theorem 3.2. Consider a mapping T : X →→ Y with locally closed graph at (x̄, 0) ∈ gphT .

Let T be metrically regular at x̄ for 0 with constant κ > 0. Choose a sequence of functions

gn : X → Y with gn(0) = 0 which are Lipschitz continuous in a neighborhood O of 0, the

same for all n, with Lipschitz constants λn satisfying

(3.1) λ := sup
n

λn < 1/(4κ).

Then there exist positive constants a, b and α such that for every x0 ∈ IBa(x̄) and y ∈ IBb(0)
there exists a sequence xn in IBα(x̄) generated by the iteration (1.4) and starting from x0

which is linearly convergent to a solution x such that y ∈ T (x); moreover, if gn is chosen so

that λn → 0, then the sequence is superlinearly convergent to x.

Proof. We apply Lemma 3.1 with g := gn. Let α, β and θ := κ/(1−3λκ)+ε be the constants
in Lemma 3.1, where ε > 0 is chosen such that θλ < 1. Thanks to the Remark 1, we can
assume without loss of generality that the constants α and β are the same for all n since
they only depend on κ, λ and the neighborhood O. Since T−1 is Aubin continuous at (0, x̄)
with modulus k there is some δ > 0 and some neighborhood U of x̄ such that

e(T−1(y′) ∩ U, T−1(y)) ≤ κ‖y′ − y‖ for any y, y′ ∈ IBδ(0).

Then, since x̄ ∈ T−1(0) ∩ U , we have

d(x̄, T−1(y)) ≤ κ‖y‖ < (κ + ε)‖y‖ for any y ∈ IBδ(0) \ {0},

and thus, for every y ∈ IBδ(0) \ {0} there exists x ∈ T−1(y) ∩ IB(κ+ε)‖y‖(x̄). Let P n
z =

[gn(· − z) + T (·)]−1 for z ∈ X. Choose a and b positive such that IB(κ+ε)b+a(0) ⊂ O and

(κ + ε)b ≤ α, b ≤ δ, b + λ0((κ + ε)b + a) ≤ β and θλ0((κ + ε)b + a) + (κ + ε)b ≤ α.
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Let x0 ∈ IBa(x̄), y ∈ IBb(0), and let x ∈ T−1(y) ∩ IB(κ+ε)‖y‖(x̄) (if y = 0, take x = x̄). Then

‖x − x̄‖ ≤ (κ + ε)b ≤ α.

Note that
x ∈ P 0

x0
(y + g0(x − x0)) ∩ IBα(x̄),

and
‖y + g0(x − x0)‖ ≤ b + λ0‖x − x0‖ ≤ b + λ0((κ + ε)b + a) ≤ β.

Hence, from Lemma 3.1, there exists an x1 ∈ P 0
x0

(y), that is,

y ∈ g0(x1 − x0) + T (x1),

such that
‖x − x1‖ ≤ θ‖g0(x − x0)‖ ≤ θλ0‖x − x0‖.

Then

‖x1 − x̄‖ ≤ ‖x1 − x‖ + ‖x − x̄‖ ≤ θλ0‖x − x0‖ + (κ + ε)b

≤ θλ0((κ + ε)b + a) + (κ + ε)b ≤ α.

Suppose that for some integer n ≥ 1, the points x1, . . . , xn have been obtained by the
method (1.4), and satisfy

xi ∈ P i−1
xi−1

(y) ∩ IBα(x̄) and ‖x − xi‖ ≤ θλi−1‖x − xi−1‖ for i = 1, . . . , n.

Observe that
x ∈ P n

xn
(y + gn(x − xn)) ∩ IBα(x̄),

and since θλ < 1,

‖y + gn(x − xn)‖ ≤ b + λn‖x − xn‖ ≤ b + λnθnλn−1 . . . λ0‖x − x0‖

≤ b + λ0((κ + ε)b + a) ≤ β.

Thus, applying Lemma 3.1, there exists an xn+1 ∈ P n
xn

(y), that is,

y ∈ gn(xn+1 − xn) + T (xn+1),

such that
‖x − xn+1‖ ≤ θ‖gn(x − xn)‖ ≤ θλn‖x − xn‖.

Further,

‖xn+1 − x̄‖ ≤ ‖xn+1 − x‖ + ‖x − x̄‖ ≤ θλn‖x − xn‖ + (κ + ε)b

≤ (θλn)(θλn−1) . . . (θλ0)‖x − x0‖ + (κ + ε)b

≤ θλ0((κ + ε)b + a) + (κ + ε)b ≤ α,

and then, the induction step is complete. Therefore, we have obtained a sequence xn gener-
ated by (1.4) with

‖x − xn‖ ≤ θλn−1‖x − xn−1‖ for all n ≥ 1,

that is, xn converges linearly to x (the convergence is superlinear whenever λn → 0).
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We show now that if T is strongly metrically regular then the sequence which existence
is proved in Theorem 3.2 is unique.

Theorem 3.3. Consider a mapping T : X →→ Y with locally closed graph at (x̄, 0) ∈ gphT .

Let T be strongly metrically regular at x̄ for 0 with constant κ > 0. Choose a sequence of

functions gn : X → Y with gn(0) = 0 which are Lipschitz continuous in a neighborhood O of

0, the same for all n, with Lipschitz constants λn satisfying the inequality (3.1). Then the

conclusion of Theorem 3.2 holds and, in addition, the sequence xn is unique in IBα(x̄).

Proof. Take α as in the proof of Theorem 3.2. Make α smaller if necessary and let ρ > 0
such that T is strongly regular at x̄ for 0 with neighborhoods IBα(x̄) and IBρ(0). Now take
α̂ := min{α/3, κρ} and repeat the proof using α̂ instead of α. Then we obtain some positive
constants a and b such that for every x0 ∈ IBa(x̄) and y ∈ IBb(0) there exists a sequence xn in
IBα̂(x̄) generated by the iteration (1.4) and satisfying the same properties as in Theorem 3.2.
Make b smaller if necessary so that b ≤ ρ/2. In order to complete the proof, we just have
to show that the sequence is unique. Assume that, from a given xn, there exist two points
xn+1 and zn+1 in IBα̂(x̄) which are obtained by (1.4). Since

‖y − gn(zn+1 − xn)‖ ≤ b + λn‖zn+1 − xn‖ ≤ b + 2λnα̂ ≤
ρ

2
+

1

2κ
α̂ ≤ ρ,

then, from the single-valuedness of the graphical localization of T−1 with respect to IBα(x̄)
and IBρ(0), we obtain

zn+1 = T−1(y − gn(zn+1 − xn)) ∩ IBα(x̄).

Moreover, we have zn+1 ∈ IB2α̂(xn+1) ⊂ IBα(x̄), and hence

zn+1 = T−1(y − gn(zn+1 − xn)) ∩ IB2α̂(xn+1).

Since y − gn(xn+1 − xn) ∈ T (xn+1), we get

‖xn+1 − zn+1‖ = d(xn+1, T
−1(y − gn(zn+1 − xn)) ∩ IB2α̂(xn+1))

= d(xn+1, T
−1(y − gn(zn+1 − xn)))

≤ κd(T (xn+1), y − gn(zn+1 − xn))

≤ κ‖gn(xn+1 − xn) − gn(zn+1 − xn)‖

≤ κλn‖xn+1 − zn+1‖ < ‖xn+1 − zn+1‖,

which is absurd.

Let x0 be a solution to the perturbed inclusion

(3.2) y0 ∈ T (x),

where y0 ∈ Y is a perturbation vector close to 0. Then, we prove in the next theorem that
one can find neighborhoods U of x̄ and V of 0 such that for every x0 ∈ U and y0, δ0 ∈ V
such that x0 is a solution to (3.2), there is a sequence xn generated by the proximal point
iteration (1.4) and starting from x0 which is convergent to a solution to y := y0 + δ0 ∈ T (x)
and such that all the elements of xn stay at distance from x0 proportional to the variation
δ0 of y0.
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Theorem 3.4. Consider a mapping T : X →→ Y with locally closed graph at (x̄, 0) ∈ gphT .

Let T be metrically regular at x̄ for 0 with constant κ > 0. Choose a sequence of functions

gn : X → Y with gn(0) = 0 which are Lipschitz continuous in a neighborhood O of 0, the

same for all n, with Lipschitz constant λ < 1/4κ. Then there exist positive constants a, b
and α such that for every x0 ∈ IBa(x̄), y ∈ IBb(0), y0 ∈ T (x0) ∩ IBb(0) and ε > 0, there

exists a sequence xn in IBα(x̄) generated by the iteration (1.4) and starting from x0 which is

convergent to a solution x to the inclusion y ∈ T (x) and satisfying for all n

‖xn − x0‖ ≤ (κ/(1 − 4λκ) + ε)‖y − y0‖.

Proof. Let α, β and θ := κ/(1 − 3λκ) + γ be the constants in Lemma 3.1, where γ is a
positive number such that θλ < 1. Define P n

x = [gn(· − x) + T (·)]−1 for x ∈ X. Make α and
β smaller if necessary so that IB2α(0) ⊂ O and gph T is closed relative to IBα(x̄) × IBβ(0).
Choose a and b positive such that

2θb/(1 − θλ) + a ≤ α and 3b ≤ β.

Let y ∈ IBb(0), x0 ∈ IBa(x̄) and y0 ∈ T (x0) ∩ IBb(0). Then x0 ∈ P 0
x0

(y0) ∩ IBα(x̄). From
Lemma 3.1, there exists an x1 ∈ P 0

x0
(y) such that ‖x1 − x0‖ ≤ θ‖y − y0‖, and therefore

‖x1 − x̄‖ ≤ ‖x1 − x0‖ + ‖x0 − x̄‖ ≤ 2θb + a ≤ α.

Note that
x1 ∈ P 1

x1
(y − g0(x1 − x0)) ∩ IBα(x̄)

and
‖y − g0(x1 − x0)‖ ≤ b + λ‖x1 − x0‖ ≤ b + 2λθb ≤ 3b ≤ β.

Thus, from Lemma 3.1, there exists an x2 ∈ P 1
x1

(y) such that

‖x2 − x1‖ ≤ θ‖g0(x1 − x0)‖ ≤ θλ‖x1 − x0‖.

Besides,

‖x2 − x̄‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖ + ‖x0 − x̄‖

≤ (1 + θλ)‖x1 − x0‖ + ‖x0 − x̄‖

≤ 2θb/(1 − θλ) + a ≤ α.

Suppose that for some integer n ≥ 2, the points x2, . . . , xn are obtained by the iteration (1.4),
that is, xi ∈ P i−1

xi−1
(y) ∩ IBα(x̄) and

‖xi − xi−1‖ ≤ (θλ)i−1‖x1 − x0‖, for i = 2, . . . , n.

Then, since θλ < 1,

‖y − gn−1(xn − xn−1)‖ ≤ b + λ‖xn − xn−1‖

≤ b + λ(θλ)n−1‖x1 − x0‖

≤ b + 2b(θλ)n ≤ 3b ≤ β.
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Further,
xn ∈ P n

xn
(y − gn−1(xn − xn−1)) ∩ IBα(x̄).

Hence, applying Lemma 3.1, there exists xn+1 ∈ P n
xn

(y) such that

‖xn+1 − xn‖ ≤ θ‖gn−1(xn − xn−1)‖ ≤ θλ‖xn − xn−1‖

≤ (θλ)n‖x1 − x0‖.

In addition,

‖xn+1 − x̄‖ ≤
n+1
∑

j=2

‖xj − xj−1‖ + ‖x1 − x0‖ + ‖x0 − x̄‖

≤
n+1
∑

j=1

(θλ)j−1‖x1 − x0‖ + ‖x0 − x̄‖

≤ 2θb/(1 − θλ) + a ≤ α,

and the induction step is complete. Thus, there exists a sequence xn generated by (1.4) which
is a Cauchy sequence, and therefore it converges to some x ∈ IBα(x̄). Since xn+1 ∈ P n

xn
(y)

one has

(3.3) y ∈ gn(xn+1 − xn) + T (xn+1).

Passing to the limit and using the local closedness of T we obtain that y ∈ T (x). Moreover,

‖xn − x0‖ ≤
n

∑

i=1

‖xi − xi−1‖ ≤
n

∑

i=1

(θλ)i−1‖x1 − x0‖

≤ θ/(1 − θλ)‖y − y0‖

= (κ + γ(1 − 3λκ))/(1 − 4λκ − λγ(1 − 3λκ))‖y − y0‖.

Making γ smaller if necessary, we complete the proof.

4 An inexact proximal point method

Since solving the inclusion (1.2) may be as hard as solving the original problem of finding a
solution to the inclusion T (x) ∋ 0 it is essential, from a practical point of view, to replace (1.2)
with a looser relation. In the case when T : H → H is a maximal monotone operator acting
on a Hilbert space H , Rockafellar [20] considered two criteria for an approximate proximal
point method. One of them was of the following form:

(4.1) ‖xn+1 − (I + λ−1
n T )−1xn‖ ≤ dn‖xn+1 − xn‖,

∞
∑

k=0

dn < ∞.
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Moreover, it was established (see [20, Proposition 3]) that the following condition (more
suitable for implementations) implies relation (4.1):

(4.2) d(0, λn(xn+1 − xn) + T (xn+1)) ≤ dnλn‖xn+1 − xn‖,
∞

∑

k=0

dn < ∞.

Using criteria (4.1) and (4.2) Rockafellar obtained the linear convergence of the sequence
xn to a solution of T (x) ∋ 0 whenever the mapping T−1 is Lipschitz continuous at 0.

In the last decade, many authors have considered variants of the inexact proximal point
method proposed by Rockafellar. We mention here a hybrid approximate proximal point
method, involving an extra projection step due to Solodov and Svaiter [22], more recently, a
relaxed proximal point method by Yang and He [25] and, the same year, a hybrid algorithm
for finding a zero of a maximal monotone operator combining extragradients and proximal
methods proposed by Humes and Silva [9]. Other studies are also of interest: see, e.g., [13, 23]
and the references therein. All these contributions deal with maximal monotone operators
in a Hilbert space. We propose here an inexact proximal point method for metrically regular
mappings acting in Banach spaces.

We consider the following inexact proximal point algorithm: having a current iterate (xn, en) ∈
X × Y , find (xn+1, en+1) such that

(4.3) en+1 ∈ gn(xn+1 − xn) + T (xn+1),

where en is a so-called error sequence satisfying

(4.4) ‖en+1‖ ≤ εnλn‖xn+1 − xn‖ with εn ↓ 0.

Of course, any sequence xn generated by the exact proximal point method (1.2) satisfies
conditions (4.3) and (4.4) with en = 0 for all n. When gn(x) = λnx with λn > 0 the
inclusions (4.3) and (4.4) reduce to

(4.5) en+1 ∈ λn(xn+1 − xn) + T (xn+1) with ‖en+1‖ ≤ εnλn‖xn+1 − xn‖.

Under the stronger assumption
∑∞

n=0 εn < ∞, we obtain Rockafellar’s criterion (4.2). On
the other hand, if the sequence xn generated by (4.2) belongs to a neighborhood of (x̄, 0)
where gph T is locally closed, then it is easy to find a sequence en ∈ Y such that (xn, en)
satisfies (4.5).

Theorem 4.1. Consider a mapping T : X →→ Y , let x̄ be a solution of the inclusion 0 ∈ T (x)
and let T be strongly subregular at x̄ for 0 with a constant κ. Choose a sequence of functions

gn : X → Y with gn(0) = 0 which are Lipschitz continuous in a neighborhood O of 0, the same

for all n, with a Lipschitz constant λn and such that κλn(1+εn) < 1 for n = 0, 1, 2, . . . Then

there exists a positive scalar a such that for every sequence xn generated by the iteration (4.3)
and whose elements are in IBa(x̄) for all n we have

(4.6) ‖xn+1 − x̄‖ ≤
κλn(1 + εn)

1 − κλn(1 + εn)
‖xn − x̄‖ for n = 0, 1, 2, . . .
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If, in addition, supn κλn(1+εn) < 1/2, the sequence xn is linearly convergent to x̄. Moreover,

if gn is chosen so that λn → 0, then xn is superlinearly convergent to x̄.

The proof of Theorem 4.1 is very similar to the one of Theorem 4.2 in [1]. We state it
anyway for the convenience of the reader.

Proof. Take a and b positive scalars such that IB2a(0) ⊂ O and the mapping T is strongly
metrically subregular at x̄ for 0 with constant κ and neighborhoods IBa(x̄) and IBb(0).
Adjust a if necessary so that 2λna(1+εn) ≤ b for all n. Then, by the definition of the strong
subregularity, we have

‖x − x̄‖ ≤ κ d(0, T (x) ∩ IBb(0)) for all x ∈ IBa(x̄).

Now, suppose that (4.3) generates a sequence xn such that xn ∈ IBa(x̄) for all n. Then,
using relation (4.4), we obtain

‖en+1 − gn(xn+1 − xn)‖ = ‖en+1 + gn(0) − gn(xn+1 − xn)‖

≤ λn(1 + εn)‖xn+1 − xn‖

≤ 2λna(1 + εn) ≤ b.

Hence en+1 − gn(xn+1 − xn) ∈ T (xn+1)∩ IBb(0) and the strong subregularity of the mapping
T at x̄ for 0 yields

‖xn+1 − x̄‖ ≤ κ‖en+1 − gn(xn+1 − xn)‖ ≤ κλn(1 + εn)‖xn+1 − xn‖

≤ κλn(1 + εn)(‖xn+1 − x̄‖ + ‖xn − x̄‖)

This gives us (4.6). The remaining two statements follow directly from (4.6).

We are able to state a result similar to [20, Theorem 2] established by Rockafellar. We
prove that when T−1 is Lipschitz continuous at 0 any bounded sequence generated by (4.3)
converges to a solution to (1.1). Contrary to Theorem 4.1, the whole sequence xn does not
need to be close to a solution of the inclusion (1.1).

We shall say that a set-valued mapping F−1 : Y →→ X is Lipschitz continuous at 0 (with
modulus κ > 0) if there is a unique solution x̄ to the inclusion 0 ∈ F (x) and for some b > 0
we have

(4.7) ‖x − x̄‖ ≤ κ‖y‖ whenever x ∈ F−1(y) and y ∈ IBb(0).

Relation (4.7) can be rewritten equivalently in the following form

‖x − x̄‖ ≤ κd(0, F (x) ∩ IBb(0)) for all x ∈ X.

Then it is easy to see that the Lipschitz continuity of F−1 at 0 forces the strong subregularity
of F at x̄ for 0.
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Proposition 4.2. Consider a mapping T : X →→ Y , let x̄ be the unique solution of the

inclusion 0 ∈ T (x) and let T−1 be Lipschitz continuous at 0 with modulus κ. Choose a

sequence of functions gn : X → Y with gn(0) = 0 which are Lipschitz continuous in X, with

a Lipschitz constant λn such that λn → 0. Then for every bounded sequence xn generated by

the iteration (4.3) we have

(4.8) ‖xn+1 − x̄‖ ≤
κλn(1 + εn)

1 − κλn(1 + εn)
‖xn − x̄‖ eventually,

and the sequence xn is superlinearly convergent to x̄.

Proof. Let a be a positive scalar. Suppose that (4.3) generates a sequence xn such that
‖xn‖ ≤ a for all n. Let κ and b be the constants in (4.7). Then, as in the proof of Theorem
4.1, since here both of the sequences λn and εn converge to 0 we have

‖en+1 − gn(xn+1 − xn)‖ ≤ 2aλn(1 + εn) ≤ b, eventually.

Keeping in mind that T−1 is Lipschitz continuous at 0 and using the fact that xn+1 ∈
T−1(en+1 − gn(xn+1 − xn)) we obtain the desired conclusions in Proposition 4.2.

It is well known that any sequence generated by the original inexact proximal point
method

xn + en+1 ∈ xn+1 + λ−1
n T (xn+1), where ‖en+1‖ ≤ εn‖xn+1 − xn‖ and

∞
∑

k=0

εn < ∞,

is bounded provided T is a maximal monotone operator from a Hilbert space onto itself and
there exists at least one solution to 0 ∈ T (x). Thus, a natural question arises: does the
regularity properties of T along with the existence of a solution to (1.1) ensure the bound-
edness of the sequences generated by (4.3)? The answer is no, as it is shown in the following
counterexamples.

Consider the mapping T : R →→ R defined by T (x) = {y ∈ R | y ≥ x}, for x ∈ R. This
mapping is metrically regular at 0 for 0 (but not strongly regular nor strongly subregular)
and we can find an unbounded sequence generated by the iteration (1.3), and therefore
verifying (4.3). Indeed, for this mapping, we have

d(x, T−1(y)) = d(y, T (x)) =

{

0 for x ≤ y,
x − y for x > y,

and therefore it verifies (2.1) with κ = 1. For this mapping the iteration (1.3) becomes

−λn(xn+1 − xn) ≥ xn+1,

or equivalently,

(4.9) xn+1 ≤ λn/(1 + λn)xn.
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Take x0 = ε for some ε > 0. Then for all M < 0, x1 = 2M satisfies (4.9), and therefore the
sequence is unbounded for any starting point x0 as close as we want to 0.

Consider now the function T : R → R plotted below (see Figure 1) which is defined by

T (x) = (−1)p(2p + 1)x + (−1)p+12p(p + 1), when x ∈ [p, p + 1],

for all p ∈ Z. This function is strongly metrically regular at 0 for 0 and we can also find
a sequence generated by the algorithm (1.3), and consequently verifying (4.3), which is
unbounded. Indeed, lets take x0 = ε for some 0 < ε < 1 and choose some λ0 such that
0 < λ0 < 1. The iteration (1.3) becomes

−λ0(x1 − ε) ∈ T (x1),

that is, is the intersection of the straight line −λ0x + λ0ε with the graph of T . Hence the
points

xn
1 = (λ0ε + (−1)n2n(n + 1))/(λ0 + (−1)n(2n + 1)) ∈ [n, n + 1] for n ∈ N

satisfy the iteration (1.3). Thus the sequence is unbounded for any starting point x0 as near
as we desire to 0.

Figure 1: Plot of a strongly regular function which has an unbounded sequence.

Finally, the mapping T : R →→ R defined by

T (x) =

{

(−∞,−1] for x 6= 0,
(−∞,−1] ∪ {0} for x = 0,

is strongly subregular at 0 for 0 for any κ > 0 (but not metrically regular). Indeed, for every
positive b < 1,

d(0, T (x) ∩ IBb(0)) =

{

∞ if x 6= 0,
0 if x = 0.

As in the previous examples, we can easily find an unbounded sequence generated by the
algorithm (1.3).
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