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ABSTRACT 

 

In this communication, we report a new method to determine the wavefront aberration 

function of personalized eyes. We obtain corneal surface data and axial lengths for 

different eyes. With these data, we construct a diffractive model of a human eye, which 

permits calculation of propagated light distributions at any distance inside the eye. We 

obtain the field at the exit of crystalline lens and extract the phase information. To 

unwrap this phase we use a path-following method and with the reconstructed phase we 

obtain the wavefront aberration function that we analyze using Zernike polynomials. 

The method allows linking between field patterns and wavefront surfaces that are softer 

and easier to analyze. To demonstrate the possibilities of the technique we have chosen 

five eyes which present different level of corneal irregularities, from quasi-spherical 

cornea to a very deformated one. 
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1. Introduction 

 

During the last years, we have seen an important increase of refractive surgery, which 

has created a clinical need to better understand the optics of the eye. Scientists have 

recently developed new techniques to measure the aberrations in the human eye. Most 

of them consist of analysing the wavefront aberration function ( , )W x y  that is obtained 

through laser-ray-tracing techniques or Hartmann-Shark interferometers [1-4]. Optical 

performance of the eye is governed by the combination of two principal refractive 

elements, the anterior surface of the cornea and the crystalline lens. How the aberrations 

of the cornea and the lens contribute to the final quality of the image on the retina, is a 

central problem in physiological optics [5]. 

Additionally to experimental measures, realistic mathematical models are of great 

importance for studying the optical performance of the eye. Much surgery on the eye is 

not reversible. Thus, a priori knowledge of the problem is necessary. 

Therefore, the aim of this study is to develop an algorithm, based on personalized model 

of ocular system and by means of the transversal propagation of the light through the 

visual system. This model may permit evaluation of the quality of the retinal image and 

especially to determination of the wavefront aberration function, ( , )W x y . Calculation 

of the ( , )W x y  function requires obtaining the wavefront of the field, what implies to 

extract the phase of a complex field, and thus work whit inverse trigonometric 

functions. This produces an ambiguous phase whit values between andπ π− . The 

process of reconstruction the true phase is called “phase unwrapping” and is widely 

used in synthetic aperture radar (SAR) interferomery [6]. We have adapted and 

implemented some of the SAR techniques to our problem. Finally, estimation and 
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quantification of optical aberrations has been done through Zernike polynomial 

expansion of ( , )W x y  [7]. 

The first task of the method is to estimate the personalized data of each eye, hence we 

make a corneal topography and a biometry. The crystalline lens cannot be accessed 

from outside and it can only be specified through indirect measures. For this reason we 

implement a realistic model of a crystalline lens based on the geometry of Dubbelman 

crystalline [8], with age dependence. 

Light pattern in any plane inside the second chamber of the eye is calculated through 

angular spectrum propagation [9, 10]. We obtain the ( , )W x y  function by extracting the 

wavefront of the field at the exit plane of the crystalline lens. Before that, we need to 

unwrap the wavefront using a path-following method [11]. We applied the algorithm for 

different eyes, and analyze its respective Zernike coefficients. 

 

2. Method  

 

The objective is to calculate the light pattern at the exit crystalline’s plane, and foron 

this pattern, construct the wavefront aberration function. Assuming that the incoming 

beam is known, we determinate the actuation of the cornea on the beam, next, we 

propagate the result to the crystalline lens, and then we consider the actuation of the 

crystalline lens. 

To know the influence of the cornea and the crystalline lens, we consider them as phase 

elements and therefore we need to calculate the phase delay introduced by its on the 

total field. Transmittance of those elements is calculated through their morphologies. 

Anterior chamber length ( ACz ) and axial length ( ALz ) of each eye are determined with a 

non-contact biometer. 
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Propagation implies working with convergent light patterns, so we have used an 

algorithm previously developed by us [10]. 

We show a scheme of this process in Fig.1, where you can see also the Gaussian 

reference sphere that we have chosen.  

 

‘[Insert figure 1 about here]’ 

 

2.1 Transmittance of the cornea and the crystalline lens 

 

With regard to corneal morphology, we assume that the cornea is a convex-concave 

lens. The anterior surface is reconstructed from topographic data taken with a Zeiss 

Humphrey ATLAS© topographer [12]. The posterior corneal surface is described by the 

equation 

 2 2 2 2
2(1 ) 2 0x y x z R z+ + + − =  (1) 

where 2R and 2x  are the axial radius of curvature and the asphericity parameters, 

respectively and both depend on the age and x, y and z are special coordinates, the z-axis 

being the optical axis. The parameters which describe the posterior corneal surface are 

those estimated by Dubbelman et al. [13] 

 2

2

6.6 0.005
0.1 0.007

= − ⋅
= − − ⋅

R age
x age

 (2) 

where age is the age of the subject in years. 

With this corneal morphology data, we are ready to know the transmittance of the 

cornea [14]. 
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The crystalline lens is a complex graded index structure that changes with age state. 

There are many models of crystalline lens. We developed a model based on Dubbelman 

crystalline lens [8] 

 

1

1

2

2

12.9 0.03
6.4 0.03
6.2 0.012
6 0.07

3.46 0.013

= − ⋅
= − + ⋅
= − + ⋅
= − + ⋅

= + ⋅

R age
x age
R age
x age
thick age

 (3)  

where 1R , 2R  and 1x , 2x  are the axial radii of curvature and the asphericity parameters of 

the first and second surface of the crystalline, respectively. 

Furthermore, we have completed the model with incorporation of an index gradient, the 

characteristic of this crystalline are described in [15]. 

 

2.2 Propagation through ocular media 

 

We need to propagate the light beam that exits the cornea through the anterior chamber. 

The distance of propagation is very short (about 4 mm) and furthermore it is of the same 

order that pupil aperture. In these conditions calculation of the light pattern through the 

Fresnel integral does not guarantee enough accuracy. For this reason we have decided to 

use Rayleigh-Sommerfeld approximation. It may be summarize as follow. 

Let us consider an isotropic, homogeneous and non-dispersive medium covering the 

half-space 0≥z . Let us consider an entrance pupil of circular shape at the plane 0=z  

illuminated by a normally incident plane wave of wavelength λ. The generated optical 

field at a distance z, evaluated at the spatial coordinates ( ),z zx y  can be described by a 

complex function zu  given by [16] 
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( ) ( ) ( ) ( )

( )

1 22 2
0

2, , , exp 1

exp 2 ,

+∞

−∞

⎛ ⎞⎡ ⎤= − −⎜ ⎟⎣ ⎦⎝ ⎠
× +⎡ ⎤⎣ ⎦

∫ %z z z

z z

u x y z u i z

i x y d d

πξ η λξ λη
λ

π ξ η ξ η
 (4) 

where ( )0 ,%u ξ η  is the Fourier transform of the field at 0=z evaluated at the spatial 

frequencies ( ),ξ η . Note that equation (4) is an exact solution of the Helmholtz wave 

equation, and not an approximation as the Fresnel integral. Note also that this equation 

is symmetric with respect to both zx  and zy  and their respective conjugated variables ξ  

and η . Therefore, from now on we shall use one-dimensional notation in order to 

facilitate the equations. 

Let us consider an input signal of size 0∆x that has been discretized in N  samples. 

Discretization of equation (4) provides 

 ( )
1 22

1 2 0
02

0

2DFT exp 1 DFT .−
⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ∆ ⎤⎪ ⎪⎛ ⎞⎢ ⎥⎜ ⎟= −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟∆⎢ ⎥ ⎝ ⎠⎣ ⎦⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

%

%
z m

m xmu i z u
x N

π λ
λ

 (5) 

where m and %m are discrete indices in space and Fourier domains respectively, DFT is 

discrete Fourier transform and 0∆x is the size of the object support window. 

Finally we have to take into account that the beam that exits the cornea is convergent. If 

we assume that it converge to a positive distance cz , the above equation can be 

reformulated as 

 ( )
1 2 2 22

1 2 0 0
02 2

0

2 1DFT exp 1 DFT exp .−
⎧ ⎫⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎡ ∆ ⎤ ∆⎪ ⎪⎛ ⎞⎢ ⎥⎜ ⎟= − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟∆⎢ ⎥ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

%

%
z m

c

m x m xmu i z u i
x N N z

π λ π
λ λ

(6) 

In reference [17] we have analyzed this algorithm for propagation of convergent beams 

in free-space, and we have determined the conditions (relations between N , cz , z , λ  

and 0∆x  ) that guarantee that the field (phase and amplitude) is calculated without 
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aliasing. In [6] we apply the algorithm for evaluating the image quality produced by an 

aphakic eye. 

With all these ingredients we construct a personalized eye model and we are able of 

calculate the propagated light distribution in any plane inside the eye. This method has 

been validated as statistically [18] as with individual predictions [10]. 

Furthermore, recently, in [19] we have established a technique that reduce considerably 

the number of samples needed in our calculations without introducing aliasing. This 

implies important savings in computer memory requirements and in computing time, 

thus allowing implementation of the algorithm in real-time processes. 

 

2.3 Wavefront aberration of the eye 

 

From expression (6) it is theoretically possible to access to all amplitude and phase 

information of the optical field. Unfortunately, phase information presents very fast 

oscillations because of phase ambiguities in toπ π−  jumps that may not be of easy 

mathematical analysis. One of the applications that may need a soft phase distribution 

are the reconstruction of the phase aberration function.  

The first step in obtaining the aberration function consists of defining a Gaussian 

reference sphere, centered on the intersection of the retinal plan and the optical axis 

being the radii of such surface the distance between the second surface of the crystalline 

lens and the retinal plane. 

Propagation of the light distribution up to the crystalline exit plane produces a field 

described as follows: 

 
( , )( , ) ( , ) jk x yU x y A x y e φ=

 (7) 

where ( , )A x y is the amplitude of the field and ( , )x yφ  the phase. 
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The aberration function is determinated as the difference optical path between the 

Gaussian sphere and the phase's field ( , )x yφ . Therefore, the only problem left is the 

phase extraction. Unfortunately we can only obtain the wrapped phase ( , )x yψ  from the 

phase-extraction operation, 

 [ ]( , ) arctan ( ( , )), ( ( , ))x y U x y U x yψ = ℑ ℜ  (8) 

where ℜ andℑ  refer to the real and imaginary parts, and arctan is the four-quadrant arc 

tangent operator where ( , )x yπ ψ π− < ≤ .  

 

‘[Insert figure 2 about here]’ 

Reconstruction and disambiguation of the phase is calling phase unwrapping. Thus, 

two-dimensional (2-D) phase unwrapping is the process of attempting to recover 

unambiguous phase values from a 2-D array of wrapped phase values known. In figure 

2a we show the central region of the wrapped phase of the field that corresponds to one 

of the studied eyes, concretely the eye 1, and in the 2b the recovered phase distribution.  

Phase unwrapping is a recurrent topic in the bibliography. There are four major 

categories of methods: least-squares method is based on minimizing the squared error 

between the observed and the estimated image [20, 21], model-based method assumes 

that the image to be unwrapped can be described by some model, usually a polynomial 

surface [22, 23], Bayesian-based method considers the problem in the context of 

Bayesian restoration, and the knowledge about the surface to be unwrapped is then 

given by a prior distribution [24], and path-following based method[11, 25]. 

In this study, we implemented an algorithm of the last category. These algorithms 

consist of resolving the equation 

 0 0( , ) . ( , )
C

x y dr x yφ φ φ= ∇ +∫  (9) 
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where C is any path in our domain D connecting the points 0 0( , )x y and ( , )x y , and φ∇  

is the gradient of φ .  

Obviously, we have to deal with sampled data, and furthermore, instead of the values of 

the true phase ,i jφ we only have the discrete values of the wrapped phase function ,i jψ : 

 , , 2 , k an integeri j i j kψ φ π= +  (10= 

If the true phase differences between adjacent samples in our image are less than π, this 

is equivalent to the requirement that the sample phase is not aliased; we can obtain an 

estimate of the true gradient by wrapping the discrete gradient of wrapped phase [26]. 

Then, the problem is just to found the unwrapped phase by a discrete integration of the 

equation (9). 

But, because of noise and discontinuities in the phase, there are singular points called 

phase residues. A closed contour integral of the estimated phase gradient around each 

residue does not vanish, thus the wrapped phase gradient becomes path dependent and 

an ambiguity arises when you try to sum up the integral (9). 

 

Signs and the magnitudes of this contour integral define a charge for every residue. By 

analogy with the residues encountered in complex variable contour integration, we 

balanced these “charges” by imposing integration barriers called branch cut that must 

not be crossed during the unwrapping process. 

In this study, between the different types of path-following methods, we implemented in 

our propagation algorithm that proposed by Goldstein in [11]. We choose this solution 

because the selection of branch cuts according to the residues is one of the most optimal 

and furthermore very fast. 

 

3. Results 



"Special Issue in Physiological Optics" 

For test the implementation of the unwrapping algorithm in our method we have studied 

five eyes which present different levels of corneal irregularities, from quasi-spherical 

cornea (eyes 1 and 2) to a very deformed cornea (eye 4). We also have chosen a 

hyperopic eye (eye 3) and the same eye after a Lasik operation (eye 3 post). In figure 3 

we show the topographies of the eyes 1 and 4. Surface irregularities of the eye 4 have 

been an excellent trial for the unwrapping process.  

‘[Insert figure 3 about here]’ 

For each eye we have supposed a pupil diameter of 5 mm and 555= nmλ , wave front 

aberration function was obtained and its Zernike polynomial expansion calculated. The 

results are summarized in the table 1 and in the figure 4. 

‘[Insert table 1 about here]’ 

‘[Insert figure 4 about here]’ 

The values of the normal eyes (1, 2 and 3) show good agreement with recently 

published recompilation of aberrometry measurements [27]. We can observe that, 

although ammetropia has been corrected, the Lasik ablation has increased considerably 

the Zernike coefficients (for example the RMS increases form 0.04 mµ  to 0.10 mµ ). 

Evidently the eye 4 shows very large aberrations, with a RMS = 0.37 mµ , one order of 

magnitude superior to normal eyes. 

 

4. Conclusion 

We have described a complete algorithm to calculate the wavefront aberration function 

of personalized eyes. The personalization is accomplished through topographic and 

biometric data. 

The algorithm consists of numerical evaluation of the transmittance of cornea and 

crystalline lens and the application of a modified spectrum propagation method to 
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obtain light pattern distributions inside the eye. It incorporates an unwrapping technique 

to reconstruct the phase of the calculated complex field and thus determine the 

aberration function. 

We have studied five eyes which present different level of corneal irregularities. The 

results of the normal eyes are totally comparable with bibliography dates, we have also 

compared an eye before and after of a Lasik ablation where we observe an appreciably 

rising of the aberrations.  
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FIGURE CAPTIONS 

 

Figure 1 Schematic representation of the human eye. 

Figure 2 Central region of the phase field that correspond to the eye 1, a) wrapped 

phase, b) reconstructed phase. 

Figure 3 Topographies of a) eye 1 and b) eye 4. 

Figure 4 Absolute Zernike coefficients for the five eyes. 
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Zernike 
Term Eye 1 Eye 2 Eye 3 Eye 3 

post Eye 4 

Z(3, -3) -0.0332 -0.0531 -0.0130 -0.1063 0.7093 
Z(3, -1) -0.0265 0.0144 0.0524 0.1845 -1.1985 
Z(3, 1) 0.0364 0.046 -0.0818 -0.0454 -0.1446 
Z(3, 3) -0.0743 0.0105 -0.0936 -0.2467 0.0847 
Z(4, -4) 0.1066 0.0846 -0.0015 -0.024 0.0694 
Z(4, -2) -0.0128 -0.0012 0.0108 0.0441 0.1146 
Z(4, 0) -0.0288 -0.0362 -0.0380 0.1174 -0.0951 
Z(4, 2) -0.0004 -0.0256 0.0354 0.0745 0.1273 
Z(4, 4) 0.0432 0.0382 0.0539 0.1516 -0.1516 
Z(5, -5) -0.0044 0.0096 0.0271 0.0356 -0.0288 
Z(5, -3) 0.0008 0.0056 -0.0126 0.0048 -0.0407 
Z(5, -1) 0.0053 -0.0155 -0.0020 -0.0285 0.0894 
Z(5, 1) 0.0043 0.0043 0.0007 -0.0341 0.0139 
Z(5, 3) 0.0058 -0.0023 0.0068 0.0213 -0.0114 
Z(5, 5) 0.0009 0.0094 -0.0033 -0.0024 0.0183 

 

Table 1. Zernike coeffients (µm) for 3rd through 5th order aberrations. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 


