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 Abstract. Different L-prolinamides 14, prepared from L-proline and chiral β-

amino alcohols are active bifunctional catalysts for the direct nitro-Michael addition 

of ketones to β-nitrostyrenes. In particular, catalyst 14e prepared from L-proline and 

(1S,2R)-cis-1-amino-2-indanol exhibits the highest catalytic performance working in 

polar aprotic solvents such as NMP. High syn-diastereoselectivities (up to 94% de) 

and good enantioselectivities (up to 80% ee) are obtained at rt. 

 
1. Introduction 

 The Michael addition is one of the most frequently used C-C bond forming 

reactions in organic synthesis.1 Particularly, the conjugate addition of a carbon 

nucleophile to a nitroalkene is a very useful synthetic method for the preparation of 

nitroalkanes, which are valuable building blocks in organic synthesis. Nitro 

compounds can be transformed into amines, ketones, carboxylic acids, nitrile oxides, 
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etc. 2 Asymmetric reactions catalyzed by organocatalysts3 have become very attractive 

in recent years since environmentally friendly and metal-free transformations are 

desired. Barbas,4 List,5 and Enders6 independently reported the first organocatalytic 

addition of ketones to trans-β-nitrostyrene using L-proline (1) as catalyst with good 

yields but very low enantioselectivities. Since then, very effective catalytic systems 

have been developed for the asymmetric Michael reaction of aldehydes7 and 

ketones7b-f, 7h-i, 7k-l, 8 with nitroalkenes.9 Best improvements to this reaction have been 

mostly achieved using pyrrolidine-based catalytic derivatives (2-10),7d-j, 7j, 8b, 8d-e but 

also chiral acyclic primary amines such as the alanine 11,8g thiourea-amine 

bifunctional catalysts8f, 8h such as 12, and small dipeptides7k,8a such as (S)-ala-(R)-ala 

(13) (Scheme 1). L-Prolinamide and derivatives have been shown as highly efficient 

catalysts for the direct aldol reaction of aldehydes with simple ketones in organic,10 

ionic,11 and aqueous solvents.12 These type of organocatalysts have been also 

demonstrated to promote the enantioselective α-hydroxyamination reaction of α-

branched aldehydes with good yields and moderate enantioselectivities.13 To the best 

of our knowledge, no examples have been reported so far on the organocatalytic direct 

Michael reaction of ketones with β-nitrostyrenes catalyzed by these type of 

prolinamides. As part of our program aimed at developing new organocatalysts for 

asymmetric organic transformations,14 herein we report the asymmetric Michael 

addition of ketones to nitrostyrenes catalyzed by chiral prolinamide derivatives 14 

acting as bifunctional organocatalysts. A transient activation of ketone donors through 

formation of an enamine on the secondary amino group was anticipated.15 

Furthermore, the amide and hydroxyl groups were expected to interact via double 

                                                                                                                                            
∗ Corresponding authors. tel: +34-965903728; fax: +34-965903549; e-mail: cnajera@ua.es; 
diego.alonso@ua.es 



hydrogen bonding with the nitro group of the electrophile in order to enhance their 

reactivity as depicted in Scheme 2. 
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Scheme 1. Organocatalysts for 1,4-addition of aldehydes and ketones to nitro olefins 

 

N
O

N

O
R3 N

O

O

_

+

H

H

N
H

O

HN

HO

+
O

+ R3 NO2
- H2O

R1

R2

R1

R2

14  

Scheme 2. Prolinamide-derived bifunctional organocatalysts 

 

 

 

 



2. Results and Discussion 

 L-Pro-derived catalysts 14 were prepared in moderate to excellent yields from 

Cbz-L-proline and the corresponding commercially available chiral amines and β-

amino alcohols (Scheme 3).16  
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Scheme 3. Synthesis of organocatalysts 14 

 

 We initially screened the library of prolinamide-derived catalysts 14 (20 

mol%) for the 1,4-addition between 3-pentanone and β-nitrostyrene in a typical polar 

protic solvent such as MeOH at rt17 (Scheme 4, Table 1). Most of L-prolinamides 

exhibited high catalytic activities to give the syn adduct 16a as a favored product with 

the configuration (4S,5R) according to transition state A (Scheme 4). Prolinamides 

14a and 14b, derived from 1,2-diphenyl-2-aminoethanol, which have been 

successfully used in the direct aldol reaction of ketones with aldehydes,10 showed 

good activity with high reaction conversions and good diastereoselectivity, syn/anti: 



92/8 and 85/15, respectively, and enantioselectivity 39 and 52% ee for the major 

diastereomer, respectively (Table 1, entries 1 and 2). That meant that 14a was the 

matched diastereomer. Catalyst 14c, derived from 2-phenyl-2-aminoethanol, with a 

primary alcohol unit group, showed very high catalytic activity to afford after 1 d the 

Michael adduct in high yield but with lower diastero- and enantioselectivity (syn/anti: 

83/17, 36% ee, for the syn isomer) (Table 1, entry 3). The presence of the chiral 

hydroxyl moiety seems to be important for the selectivity of the process. This was 

further supported with catalyst 14d, derived from 2-aminophenol, which gave a 42% 

ee for the syn adduct after 6 d (Table 1, entry 4). The reaction time decreased to 3 d 

and a noticeable increase in yield (95%) and enantioselectivity (64% ee) was obtained 

with (1S,2R)-cis-1-amino-2-indanol-derived prolinamide 14e (Table 1, entry 5). This 

result demonstrated that increasing the conformational rigidity of the amino alcohol 

moiety seemed to be beneficial for the selectivity of the process. This was probably 

due to the more favored double hydrogen-bonding interactions of the more rigid 

derivative 14e with the electrophile. Diastereomeric catalysts 14e, 14f, 14g, and 14h, 

showed very high catalytic activities in the 1,4-additon (Table 1, entries 5-8), the 

highest enantioselectivity (64% ee) being observed with prolinamide 14e. This 

finding indicates that the (1S,2R) configuration of the chiral 1-aminoindanol matched 

the (S)-configuration of the L-proline to enhance the stereochemical control. This was 

corroborated with catalyst 14i, prepared from D-proline and (1R,2S)-cis-1-amino-2-

indanol, which gave the enantiomeric (4R,5S)-syn-adduct 16 in a 62% ee (Table 1, 

entry 9). This experiment also showed that the enantioselectivity of the process is 

controlled by the proline moiety since diastereomeric catalysts 14g and 14i, derived 

from the same (1R,2S)-cis-1-amino-2-indanol and L- and D-proline, respectively,  



afforded the corresponding enantiomers of the syn adduct 16 (Table 1, entries 7 and 

9).  
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Scheme 4. Catalyst study for the direct asymmetric 1,4-addition 

 

 Catalysts 14j and 14k, derived from L-proline and (R)- and (S)-1-

aminoindane, respectively, mediated the formation of the Michael product 16 in lower 

yields (48%) and enantioselectivities, 48 and 32%, respectively, (Table 1, entries 10 

and 11) than the corresponding aminoalcohols-derived prolinamides 14a-14i. These 

results and the very low enantioselectivity (34% ee) observed with N-methylated 

derivative 14l of L-proline and N-methyl-(1S,2R)-cis-1-amino-2-indanol (Table 1, 

entry 12) showed that the presence of the hydroxyl group and a hydrogen in the amido 

group were important for a good conversion and selectivity in the 1,4-addition. The 

amide and hydroxyl groups are then certainly involved in the catalysis and 

stereoselection of the 1,4-addition through hydrogen bonding interactions with the 

substrate (Scheme 3). To explain the syn-diastereoselectivity and the absolute 

configuration observed, we proposed the transition state A (Scheme 4) based in 

Seebach´s model assuming intramolecular hydrogen bondings.18  

 

 

 



Table 1. Asymmetric 1,4-addition of 3-pentanone to β-nitrostyrene. Catalyst study.a 

Entry Catalyst t (d) Yield (%)b syn/antib ee (%)c 

1 14a 2 87 92/8 39 

2 14b 1.5 96 85/15 52 

3 14c 1 >99 83/17 36 

4 14d 6 80 89/11 42 

5 14e 3 95 93/7 64 

6 14f 2 >99 88/12 38 

7 14g 3 >99 92/8 53 

8 14h 2 >99 86/14 52 

9 14i 3 99 91/9 62d 

10 14j 3 48 91/9 48 

11 14k 3 48 82/18 32 

12 14l 3 >99 88/12 34 
a To a solution of catalyst 14 (20 mol%) in MeOH (0.2 mL) were added 3-pentanone (4 mmol) and β-nitrostyrene 

(0.4 mmol) and the resulting mixture was stirred at rt for the time shown in the table.  

b Determined by 1HNMR  and/or GC analysis.  
c Ee for the syn diastereoisomer. Determined by chiral-phase HPLC analysis. The relative and absolute 

configuration of 16a, were determined by comparison with literature data.7d  
d The syn-(4R,5S)-16a enantiomer was obtained. 

 

 Then, we screened a range of solvents with the best catalyst 14e (Table 2).  

The optimum results were obtained with polar non-protic solvents such as DMF and 

NMP (Table 2, entries 5-7), providing high conversions and good enantioselectivities 

being the highest 80% ee for NMP. This represents a significant improvement in the 

ee value over the initially obtained in MeOH as solvent (Table 2, compare entries 1 

and 6). With respect to the diastereoselectivity, all the tested solvents afforded similar 

levels ranging from syn/anti: 90/10, for CH3CN, to 93/7 for MeOH. Interestingly, the 

reaction time was reduced in NMP from 7 to 3 d by simply stirring the catalyst and 

the ketone at rt for 20 min prior to the addition of the electrophile (Table 2, entry 7). 

These conditions still afforded high conversions and similar selectivities (Table 2, 

compare entries 6 and 7). 



 

Table 2. Asymmetric 1,4-addition of 3-pentanone to β-nitrostyrene. Solvent study.a 

Entry Solvent t (d) Yield (%)b syn/antib ee (%)c 

1 MeOH 3 95 93/7 64 

2 Toluene 8 91 91/9 56 

3 CHCl3 3 97 91/9 58 

4 CH3CN 7 99 90/10 65 

5 DMF 10 <99 92/8 76 

6 NMP 7 97 90/10 80 

7 NMPd 3 80 91/9 78 
a To a solution of catalyst 14e (20 mol%) in the corresponding solvent (0.2 mL) were added 3-pentanone (4 mmol) 

and β-nitrostyrene (0.4 mmol) and the resulting mixture was stirred at rt (see colum). 
b Determined by 1HNMR and/or GC analysis. 
c Ee for the syn diastereoisomer. Determined by chiral-phase HPLC analysis. 
d A mixture of catalyst 14e (20 mol%) and 3-pentanone (4 mmol) were stirred for 20 min in NMP (0.2 mL) at rt. 

Then, β-nitrostyrene (0.4 mmol) was added to the mixture and the reaction was stirred at rt for 3 d. 

 

 Under the established best reaction conditions, various nitrostyrenes were then 

evaluated as substrates (Scheme 5 and Table 3).18 The reaction appears quite general 

with respect to the nature of the aromatic Michael acceptor. Generally, excellent 

yields and good enantioselectivities were observed. The introduction of electron-

withdrawing or electron-donating groups on the aromatic ring of the nitroolefin did 

not affect the enantioselectivities. Thus, 4-tolyl, 4-chloro, 4-methoxy, and 3,5-

dichlorosubstituted aryl nitrostyrenes gave compounds 16b-e in 92-98% yields, 92/8 

to 93/7 diastereomeric ratios and 73 to 78% enantioselectivities in 4 d reaction time 

(Table 3, entries 2-5). However, in the case of the 4-(trifluoromethyl)phenyl 

derivative a 50% ee for the major diastereoisomer syn-16f was obtained (Table 3, 

entry 6). In general, the syn-diastereoselectivity was slightly higher when electron 

poor styrenes were used (Table 3, entries 3, 6 and 7). Finally it is worthy to mention 

that prolinamide catalyst 14e can be easily recovered (80% recovery) from the 



reaction mixture after extractive workup and reused after flash chromatography with 

similar results (Table 3, entry 1) since no loss of optical activity is detected [ [ ]20
Dα = -

24.4 (c 1.0, CH2Cl2)]. 
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Scheme 5. Michael addition of 3-pentanone to nitroolefins under optimized 

conditions 

 

Table 3. Asymmetric 1,4-addition of 3-pentanone to nitroolefins.a 

Entry Ar Conv. (%)b No. syn/antib ee (%)c 

1 Ph 90 16a 91/9 78d 

2 4-MeC6H4 98 16b 93/7 74 

3 4-ClC6H4 93 16c 95/5 78 

4 4-MeOC6H4 92 16d 92/8 73 

5 3,5-(Cl)2C6H3 95 16e 97/3 73 

6 4-CF3C6H4 >99 16f 97/3 50 
a A mixture of catalyst 14e (20 mol%) and 3-pentanone (4 mmol) were stirred in NMP (0.2 mL) for 

20 min at rt. Then, the nitroolefin (0.4 mmol) was added to the mixture and the reaction was stirred 

at rt for 4d. 
b Determined by 1HNMR and/or GC analysis. 
c For the syn diastereoisomer. Determined by chiral-phase HPLC analysis. Absolute configuration 

not determined except for 16a. 
d Similar results were obtained with recycled 14e (88% yield, syn/anti: 91/9, 78% ee)  

 

3. Conclusions 

 From the first direct enantioselective conjugate addition of ketones to β-

nitrostyrenes catalyzed by 1,2-amino alcohol-derived prolinamides studies, it can be 

deduced that 1,2-amino alcohol-derived prolinamides promote the syn-diastereo- and 



enantioselective Michael addition of ketones to nitrostyrenes. The best catalyst 

derived from L-proline and (1S,2R)-cis-1-amino-2-indanol gave a de up to 94% and 

80% ee of the syn adduct. It seems that both the amide hydrogen and the chiral 

hydroxyl group of the catalysts play an important role in the process. Furthermore, 

prolinamide catalysts can be recovered and reused. Further studies on the scope of 

prolinamide-derived catalysts 14 in Michael and other organocatalytic asymmetric C-

C bond-forming reactions are currently underway.19 
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