
A Machine Learning Approach for Factoid Question Answering∗

David Dominguez-Sal
Universitat Politècnica de
Catalunya, DAMA-UPC

C/Jordi Girona 1-3, Barcelona
ddomings@ac.upc.edu

Mihai Surdeanu
Universitat Politècnica de

Catalunya, TALP
C/Jordi Girona 1-3, Barcelona

surdeanu@lsi.upc.edu

Resumen: Este art́ıculo presenta un sistema de Question Answering para respues-
tas de tipo entidad que está completamente basado en técnicas de aprendizaje au-
tomático. Nuestro sistema consigue resultados similares al estado del arte para sis-
temas de QA con reglas para la extracción de respuestas construidas por un experto
humano. Nuestro enfoque evita la intervención humana y simplifica la adaptación
del sistema a nuevos entornos o conjuntos de atributos más extensos. Además,
su tiempo de respuesta es adecuado para lugares donde se necesita un servicio de
Question Answering orientado a tiempo real.
Palabras clave: Question answering, aprendizaje automático

Abstract: This paper presents a factoid Question Answering system that is fully
based on machine learning. Our system achieves similar results to a state-of-the-
art QA system with answer extraction rules developed by a human expert. Our
approach avoids human intervention and simplifies adaptation of the system to new
environments or extended feature sets. Moreover, its response time is suitable for
places where real-time Question Answering is needed.
Keywords: Question answering, machine learning

1 Introduction

Question Answering (QA) is the task of ex-
tracting short, relevant textual answers in re-
sponse to natural language questions. As a
subset of QA, factoid QA focuses on ques-
tions whose answers are syntactic and/or se-
mantic entities, e.g. organization or person
names. QA systems in general have many
important real-world applications, such as
search engine enhancements or automated
customer service.

As of today, the state of the art in QA
technology combines machine learning (ML)
with linguistic information encoded by hu-
man experts in the form of rules or heuris-
tics in most of the QA systems’ components
(Paşca, 2003). The main drawback of these
approaches is that such systems have a ex-
∗ David Domı́nguez is granted by the Generalitat
de Catalunya (2005FI00437). Mihai Surdeanu is a
research fellow within the Ramón y Cajal program
of the Spanish Ministry of Education and Science.
DAMA-UPC want to thank Generalitat de Catalunya
for its support through grant GRE-00352

tremely high cost of development or cus-
tomization, especially when high coverage is
desired. For example, the system described
in (Paşca, 2003) analyzes natural language
questions using a manually-built ontology
that maps a large number of WordNet synsets
to known question types.

In this paper we show that a state-of-the-
art QA system can be designed using only
ML, known information retrieval (IR) tech-
niques, and a limited amount of world knowl-
edge. The system introduced in this paper
performs comparably with the state of the
art (we consider only systems without logic
prover, as it is ours), even though the amount
of training data made available to the sys-
tem was small. The proposed approach has
several other important advantages: (a) it is
robust – it relies only on a small number of
syntax-analysis tools (part of speech taggers
and syntactic chunk detectors); (b) it is easy
to customize or extend with new features or
knowledge; and (c) it provides answers in real

131

time due to its simple architecture based on
a small number of multi-class classifiers.

This paper is organized as follows. In Sec-
tion 2 we describe the Question Answering
system. Section 3 describes the empirical
evaluation. We conclude with a discussion
comparing our ML approach with a state-of-
the-art Answer Extraction system based on
human developed extraction rules.

2 Architecture

The QA system introduced in this paper uses
a typical architecture consisting of three com-
ponents linked sequentially: Question Pro-
cessing (QP), which identifies the type of the
put question, followed by Passage Retrieval
(PR), which extracts a small number of rel-
evant passages from the underlying speech
transcriptions, and finally Answer Extraction
(AE), which extracts and ranks exact an-
swers from the previously retrieved passages.
This section describes all these components.

2.1 Question Processing

The QP component detects the type of the
input questions by mapping them into a two-
level taxonomy consisting of 6 question types
and 53 subtypes:

type subtype
ABBREVIATION abbreviation, expression abbreviated

ENTITY animal, body organ, color, creative

work, currency, disease, event, food,

instrument, language, letter, other,

plant, product, project, religion,

sport, symbol, system, technique,

equivalent term, vehicle, special word

DESCRIPTION definition, description, manner,

reason

HUMAN group, individual, title, description

LOCATION city, country, mountain, other, state

NUMERIC angle, code, count, date, distance,

money, order, other, period, percent,

speed, temperature, size, weight

In our system there is a one-to-one map-
ping from question type to the category of
the expected answer. For example, the tuple
LOCATION:country entails that the answer is
a named entity of type LOCATION.

Because the NERC used in the ex-
periments reported in this paper extracts
only 3 types of entities (Person, Loca-
tion and Organization), we selected ques-
tions whose answers correspond to those
types. We map question types to an-
swer types using the following mapping:

Answer Type type:subtype
PERSON HUMAN:individual

LOCATION LOCATION:{city, country,

mountain, other,stated}
ORGANIZATION HUMAN:group

Note that the three selected types make
Answer Extraction more difficult. There are
two main reasons: (a) our answer types are
difficult to be identified. For example, (Sur-
deanu, Turmo, and Comelles, 2005) report
F-measure differences of more than 16 points
higher for Money entities than Organization
ones. Moreover, (Surdeanu, Turmo, and
Comelles, 2005) show that Person and Or-
ganization types figure among hardest types
to be recognized. (b) The considered an-
swer types yield more answers (in most cor-
pora). For instance, (Surdeanu, Turmo, and
Comelles, 2005) show that the number of lo-
cation names in the Switchboard corpus are
six times more frequent than the money en-
tities. If the number of entities is high then
it gives the system more options to choose
and consequently increases the probability of
error.

The question taxonomy is largely inspired
by (Li and Roth, 2002). Nevertheless our
classification mechanism is different: instead
of using a hierarchy of 6 + 53 binary clas-
sifiers (one for each type and subtype), we
opted for a single Maximum Entropy multi-
class classifier that extracts the best tuple
<type:subtype> for every question. We
chose the single-classifier design because it
significantly improves the classification re-
sponse time, which is a paramount require-
ment for any interactive system. We com-
pensate for the possible loss of accuracy with
a richer feature set. Formally, our question
classifier assigns a question class – i.e. tuple
<type:subtype> – to each question, using
the function:

qc(q) = arg max
c ∈ C

score(φ(q), c) (1)

where q is the sequence of all the ques-
tion words, e.g. {“What”, “is”, “the”,
“Translanguage”, “English”, “Database”,
“also”, “called”}, C is the set of all possible
question classes, score is the classifier confi-
dence, and φ is a feature extraction function,
defined as a composition of several base fea-
ture extraction functions:

φ(q) = φsequence(q) + φsequence(h) + φqfw(q)
(2)

where h is the sequence of heads of the ba-
sic syntactic phrases in the question, e.g.
{“What”, “is”, “Database”, “called”} for the
above example, φsequence extracts n-gram fea-
tures from a sequence of words, and φqfw

132

David Dominguez-Sal and Mihai Surdeanu

φsequence(x)

foreach(xi ∈ x) add features:

w(xi), l(xi), sem(xi), prox(xi),

w(xi) · w(xi+1), l(xi) · l(xi+1)

foreach(c ∈ sem(xi), c′ ∈ sem(xi+1)): c · c′
foreach(c ∈ prox(xi), c

′ ∈ prox(xi+1)): c · c′

φqfw(x)

add features:

w(qfw(x)), l(qfw(x)), sem(qfw(x)), prox(qfw(x)),

w(x0) · w(qfw(x)), w(x0) · p(qfw(x))

foreach(c ∈ sem(qfw(x))): w(x0) · c
foreach(c ∈ prox(qfw(x))): w(x0) · c

Table 1: The feature extraction functions for
the question classifier. w - token word, l
- token lemma, p - token POS tag, sem -
set of semantic classes (from (Li and Roth,
2002)) that contain this word, prox - set of
proximity-based word sets (from (Lin, 2006))
that contain this word, qfw - the QFW de-
tection function. · stands for string concate-
nation.

extracts features related to the question fo-
cus word (QFW). The QFW, which indicates
the question emphasis, is usually the head
of the first noun or verb in the question,
skipping stop words, auxiliary and copula-
tive verbs. For example, for the above ques-
tion, the QFW is “database”. We have im-
plemented the detection of the QFW with 7
surface-text patterns. We detail the feature
extraction functions in Table 2.1.

2.2 Passage Processing

Our passage retrieval algorithm is inspired
by the query relaxation algorithm of (Paşca,
2003), which adds or drops query keywords
depending on the quality of the information
retrieved. A novelty of our algorithm is that
our implementation is capable to adjust not
only the set of keywords used, but also the
proximity between the keywords.

The retrieval algorithm consists of two
main steps: (a) in the first step all non-stop
question words are sorted in descending or-
der of their priority, and (b) in the second
step, the set of keywords used for retrieval
and their proximity is dynamically adjusted
until the number of retrieved passages is suf-
ficient.

Keyword priorities are assigned solely
based on their POS tags and lexical context.
In descending order of the assigned prior-
ity, all non-stop keywords are grouped as fol-
lows: (a) words that appear within quotes,
(b) proper nouns, (c) numbers, (d) contigu-

ous sequences of nouns and adjectives, (d)
contiguous sequences of nouns, (e) other ad-
jectives, (f) other nouns, (g) verbs, (h) ad-
verbs, (i) the QFW, (j) other words. For
example, for the question “What is a mea-
sure of similarity between two images?”, the
set of sorted keywords extracted by this al-
gorithm is: {“two”, “images”, “similarity”,
“measure”}.

In the second step, the actual passage re-
trieval is implemented using the following al-
gorithm:

(1) retrieve passages using keyword

set K and proximity p.

(2) if number of passages < MinPass:
if p < MaxProx

increment p; goto step (1)

else

reset p;

drop the least-significant keyword from K;

goto step (1)

(3) else if number of passages > MaxPass:
if p > MinProx

decrement p; goto step (1)

else

reset p; add the next available keyword to K;

goto step (1)

(4) return the current set of passages.

where the set of keywords K is initialized
with all keywords with priority larger than
the priority assigned to verbs, and the cur-
rent proximity is initialized with some default
value (20 words in our experiments). The al-
gorithm is configured with four parameters:
MinPass and MaxPass – lower and upper
bounds for the acceptable number of pas-
sages (currently 5 and 1000), MinProx and
MaxProx – lower and upper bounds for key-
word proximity (currently 20 and 40 words).

The actual information retrieval (IR) step
of the algorithm (step (1)) is implemented
using a Boolean IR system that fetches only
passages that contain all keywords in K at a
proximity ≤ p. Passages do not have a fixed
size but rather they extend as long as there
are keywords whose distance is smaller than
proximity p.

2.3 Answer Extraction

The Answer Extraction (AE) component
identifies candidate answers from the relevant
passage set and extracts the answer(s) most
likely to respond to the user question.

We identify candidate answers with a
NERC that uses a battery of one-vs-all SVM
classifiers, trained on the CONLL corpus
(Sang and Meulder, 2003) . Using the fea-
ture set described in (Surdeanu, Turmo, and

133

A Machine Learning Approach for Factoid Question Answering

Comelles, 2005), this NERC obtains the re-
sults reported in Table 2.3 (on the CONLL
test corpus).

For the actual AE task we trained a sin-
gle classifier which decides if a candidate an-
swer is an appropriate answer or not. In Sec-
tion 3 we show the experimental results when
we train the AE classifier using three differ-
ent ML frameworks: Maximum Entropy, Ad-
aBoost and SVM. All of them give as out-
put a raw activation in the interval [-1..+1],
which helps us to sort the candidates not just
by a binary choice but by plausibility.

The features used by our AE classifier are
grouped in two sets, described below:

Features that measure keyword
frequency and density (F1)

(H1) Same word sequence - computes the
number of words that are recognized in
the same order in the answer context;

(H2) Punctuation flag - 1 when the candi-
date answer is followed by a punctuation
sign, 0 otherwise;

(H3) Comma words - computes the num-
ber of question keywords that follow the
candidate answer, when the later is suc-
ceeded by comma. A span of 3 words
is inspected. The last two heuristics are
a basic detection mechanism for appos-
itive constructs, a common form to an-
swer a question;

(H4) Same sentence - the number of ques-
tion words in the same sentence as the
candidate answer.

(H5) Matched keywords - the number of
question words found in the answer con-
text.

(H6) Answer span - the largest distance (in
words) between two question keywords
in the given context. The last three
heuristics quantify the proximity and
density of the question words in the an-
swer context, which are two intuitive
measures of answer quality.

The F1 feature set is inspired by the
heuristics proposed by (Paşca, 2003). How-
ever, in (Paşca, 2003) the values of these
heuristics are combined in a non linear for-
mula generated by a human expert1. This

1Further references in this paper to heuristics refer
to the approach showed by (Paşca, 2003).

hand-made formula gives state-of-the-art re-
sults for a factoid QA. But, the addition of
new features is very difficult: for every new
heuristic we want to add, the formula has to
be readjusted by an expert. Moreover, as the
number of heuristics to consider increases,
the tuning of the formula becomes more com-
plex. On the other hand, our machine learn-
ing approach avoids the intervention of an
expert. The addition of new features does
not require the intervention of a human ex-
pert but a new training of the model. It also
reduces adaptation costs of a AE module to
different collection types.

All the features are normalized in range
[0..1] and then discretized by intervals: [1..1],
(1..0,95], (0,95..0,85], etc. For those heuris-
tics whose value depends on the number of
keywords (as same sentence), we normalized
the value dividing it by the number of key-
words. For example, if we have two key-
words: president and Spain, and a passage
...the King of Spain met french Prime Min-
ister..., where only Spain is found: same sen-
tence would be evaluated as 1

2
= 0.50.

Features that verify the occurrence of
certain patterns (F2) (the Entity
underlined corresponds to the candidate
answer we are evaluating and Description to
a part of a sentence):

(P1) Entity ,|(Description ,|)|. For exam-
ple: “Paris, the capital of France,...”.

(P2) Entity (Entity of type location) For
example: “...inaugurated a new research
center in Cluj (Romania)”.

(P3) Entity verbToBe Description For ex-
ample: “Caesar was the first living man
to appear on a Roman Republican coin”.

(P4) Entity questionVerb Description :
Where questionVerb is the same verb as
in question. For example, “Cervantes
wrote Don Quixote in 1605”, for the
question “Who wrote ’Don Quixote’?”.

Additionally, four more patterns are imple-
mented with Description and Entity po-
sitions reversed.

Each pattern-based feature measures the
matching of a Description (part of a sen-
tence) against the question. Matching is cal-
culated as the average of the number of words

134

David Dominguez-Sal and Mihai Surdeanu

Entity Type Precision Recall FB1
PER 92.27% 92.62% 92.44%
LOC 92.95% 94.01% 93.48%
ORG 85.95% 84.86% 85.48%
MISC 89.86% 83.62 % 86.63%

TOTAL 90.71% 89.90% 90.31%

Table 2: Summary of results for NERC task.
Based on CONLL evaluation set.

from a question that are contained in the de-
scription. For instance, if we have three key-
words man, gold, coin , and a description the
first living man to appear on a Roman Re-
publican coin, then matching is evaluated as
2

3
= 0.66. The discretization process is the

same as for F1.
We evaluated in the experimental sec-

tion two different combinations of features:
model 1, which includes the feature set F1,
and model 2, which includes the feature sets
F1, F2 and a feature that indicates the ques-
tion type (see section 2.1).

3 Experimental Evaluation

3.1 Data

We trained and tested our QA system using
questions and documents from the TREC QA
evaluations. We trained both the QP and the
AE models with TREC 9-13 questions and
answers and used TREC 8 for testing. Only
questions identified as locations, persons and
organizations are used for AE training. Ex-
amples are marked as correct according to
the answer patterns provided by NIST. Neg-
ative examples are extracted from the pas-
sages that the system generates in the PR
phase.

3.2 Results

We evaluated the different configurations us-
ing the Mean Reciprocal Rank (MRR) score,
which assigns to a question a score of 1

k ,
where k is the position of the correct answer,
or 0 if no correct answer is returned.

We report two sets of experiments. First
we evaluate the performance of the AE com-
ponent alone. For this experiment, we re-
moved questions misclassified by the QP
module. The results for the different algo-
rithms and feature sets are summarized in
Table 3.2. We differentiate two types of an-
swers: entity answers, which return just the
snippet containing the answer named entity,
and long answers, which return a context of

250 bytes surrounding the answer named en-
tity. We evaluated three machine learning
techniques: AdaBoost, Maximum Entropy
and SVM, the latter with the polynomial and
linear kernels available from SVM light. We
compare our approach to QA with the state-
of-the-art system of (Paşca, 2003)2.

The results of the machine learning
method are statistically similar to the results
obtained by the state-of-the-art QA system
of (Paşca, 2003). Among the several options
tested, Maximum Entropy gives the best re-
sults with the same features. We blame the
relatively bad performance of AdaBoost and
SVM on two known problems of these learn-
ing algorithms: (a) AdaBoost (at least in
our implementation based on decision trees)
is known to suffer from overfitting, and (b)
SVM needs fine parameter tuning when the
data is not linearly separable. Both these is-
sues are emphasized when the training cor-
pus is small, which is the case in our ex-
periments. On the other hand, Maximum
Entropy has better generalization properties
than AdaBoost, and, unlike SVM, has virtu-
ally no parameters to tune.

In the second experiment, we evaluate the
complete QA system, which includes our QP
module. We tested our QP on the TREC 8
corpus and measured an accuracy of 88%3.
We summarize the scores for the complete
QA system in Table 3.2. The results are sim-
ilar to the first experiment, but slightly lower
because of the introduced QP errors.

Our results are a proof of concept that
a successful AE component that combines
both keyword frequency/density and answer
patterns can be implemented using machine
learning. Such a wide combination of features
is virtually impossible in a system driven by
expert-designed rules, because the combina-
tion of rules is not straight-forward.

The training algorithms were not exhaus-
tively tested for tuning their parameters. Our
SVM results are lower than we first expected,
but SVM is known to be sensitive to param-
eter modifications. We believe slightly bet-
ter results may be obtained, just by read-
justing the learning algorithms parameters.

2We used our QP module in both systems because:
(a) the strategy of (Paşca, 2003) is hard to replicate;
(b) our QP approach has higher accuracy.

3Using the same evaluation framework as (Li and
Roth, 2002), our QA system obtains an accuracy of
85.8%.

135

A Machine Learning Approach for Factoid Question Answering

Model 1 Model 2

Algorithm Entity Long Entity Long

Answer Answer

Maximum

Entropy 0.33 0.52 0.34 0.53

AdaBoost 0.31 0.47 0.32 0.47

SVM

(best kernel) 0.21 0.36 0.25 0.42

(Paşca, 2003) 0.37 0.52 – –

Table 3: Summary of MRR results for the
different ML algorithms. The (Paşca, 2003)
row shows results for our system using the
expert-designed answer ranking formula. QP
classifies correctly all questions.

Model 1 Model 2

Algorithm Entity Long Entity Long

Answer Answer

Maximum

Entropy 0.29 0.43 0.31 0.47

AdaBoost 0.29 0.43 0.30 0.44

SVM

(best kernel) 0.20 0.32 0.22 0.39

(Paşca, 2003) 0.33 0.47 – –

Table 4: Summary of MRR results for the
different ML algorithms. The (Paşca, 2003)
row shows results for our system using the
expert-designed answer ranking formula. All
experiments are evaluated for the complete
QA system.

More precision may be obtained too, with an
extended feature set and more training ex-
amples.

4 Discussion and Conclusions

We have built a robust QA system with very
low NLP requirements and a good preci-
sion. We just need a POS tagger, a shal-
low chunker, a NERC and some world knowl-
edge (NERC and QP gazetteers). Fewer re-
sources make the system easier to be modi-
fied for different environments. Low resource
requirements also mean fewer processing cy-
cles. This is a major advantage when build-
ing real-time QA systems.

We have implemented both Question Pro-
cessing and Answer Extraction using ma-
chine learning classifiers with rich feature
sets. Even though, in our experiments per-
formance is not increased above the state
of the art, results are similar and several
benefits arise from this solution. (a) It is
now easy to include new Answer Ranking
and Question Processing features. (b) Ma-
chine learning can be retrained for new doc-

ument styles/languages/registers easier than
reweighting expert-developed heuristics. (c)
We can decide if an answer is more proba-
ble to be correct. For instance, the heuristic-
based system of (Paşca, 2003) builds a com-
plex formula that allows us to compare (and
sort) candidate answers from a single ques-
tion. But an absolute confidence in the an-
swer appropriateness is not available: for
example, a candidate answer can score 100
points but depending on the question it can
be a correct answer (and be the first of rank-
ing) or a wrong answer (and be in last posi-
tions of the ranking). Our machine learning
method is not limited to sorting the answers
but it can give us a confidence of how good an
answer is. This is very useful for an user in-
terface where incorrect results can be filtered
out and the confidence in the displayed an-
swers can be shown beside the actual answer
text.

References

Li, X. and D. Roth. 2002. Learning Question
Classifiers. Proceedings of the 19th In-
ternational Conference on Computational
Linguistics (COLING), pages 556–562.

Lin, D. 2006. Proximity-based The-
saurus. http://www.cs.ualberta.ca/ lin-
dek/downloads.htm.

Paşca, M. 2003. Open-Domain Question
Answering from Large Text Collections.
CSLI Publications.

Sang, Erik F. Tjong Kim and Fien De Meul-
der. 2003. Introduction to the CoNLL-
2003 Shared Task: Language-Independent
Named Entity Recognition. Proceedings
of CoNLL-2003, pages 142–147.

Surdeanu, M., J. Turmo, and E. Comelles.
2005. Named entity recognition from
spontaneous open-domain speech.
Interspeech-2005.

136

David Dominguez-Sal and Mihai Surdeanu

