
Building Corpora for the Development of a Dependency Parser
for Spanish Using Maltparser∗

Jesús Herrera
Departamento de Lenguajes y Sistemas Informáticos

Universidad Nacional de Educación a Distancia
C/ Juan del Rosal, 16, E-28040 Madrid

jesus.herrera@lsi.uned.es

Pablo Gervás, Pedro J. Moriano, Alfonso Muñoz, Luis Romero
Departamento de Ingenieŕıa del Software e Inteligencia Artificial

Universidad Complutense de Madrid
C/ Profesor José Garćıa Santesmases, s/n, E-28040 Madrid

pgervas@sip.ucm.es, {pedrojmoriano, alfonsomm, luis.romero.tejera}@gmail.com

Resumen: En el presente art́ıculo se detalla el proceso de creación de corpora
para el entrenamiento y pruebas de un generador de analizadores de dependencias
(Maltparser). Se parte del corpus Cast3LB, que contiene análisis de constituyentes de
textos en español. Estos análisis de constituyentes se transforman automáticamente
en análisis de dependencias. Además se describe cómo se obtiene, experimentalmente
y de manera semiautomática, un conjunto de etiquetas de funcionalidad sintáctica
para etiquetar adecuadamente el corpus de entrenamiento. El proceso seguido ha
permitido obtener un analizador de dependencias para el español con una precisión
del 91% en la determinación de dependencias.
Palabras clave: Análisis de dependencias, corpus de entrenamiento, etiqueta de
funcionalidad sintáctica, Maltparser, JBeaver

Abstract: The present paper details the process followed for creating training and
test corpora for a dependency parser generator (Maltparser). The starting point is
the Cast3LB corpus, which contains constituency analyses of Spanish texts. These
constituency analyses are automatically transformed into dependency analyses. In
addition, the empirically and semiautomatically obtention of a set of syntactic func-
tion labels for the training corpus is described. As a result of the process followed, it
has been obtained a dependency parser for Spanish showing a 91% precision when
determining dependencies.
Keywords: Dependency parsing, training corpus, syntactic function label, Malt-
parser, JBeaver

1. Introduction

The development of JBeaver, a dependen-
cy parser for Spanish (Herrera et al., 2007), is
based on the use of Maltparser (Nivre et al.,
2006), which is a machine learning tool for
generating dependency parsers for, virtually,
every language. Such development carries in-
herently associated the labour of generating
corpora for its training and its subsequent
evaluation.
The amount of work needed for develop-

∗ Partially supported by the Spanish Ministry
of Education and Science (TIN2006-14433-C02-01
project).

ing from scratch a corpus annotated with de-
pendency analyses, and with a suitable size
for training Maltparser, exceeded the pos-
sibilities of the JBeaver project. Therefore,
it was necessary to find an alternative way
for the generation of such corpus. A possible
approach was to reuse available resources in
order to build from them a corpus annotat-
ed with dependency analyses in a semiauto-
matic way. For this, the Cast3LB (Navarro
et al., 2003) treebank was used. It is con-
formed by 72 Mb of Spanish annotated texts,
approximately and itcontains the constituen-
cy analysis for every sentence in it. Leaving

Procesamiento del Lenguaje Natural, nº39 (2007), pp. 181-186 recibido 18-05-2007; aceptado 22-06-2007

ISSN: 1135-5948 © 2007 Sociedad Española para el Procesamiento del Lenguaje Natural

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16356852?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aside certain subtleties (Gelbukh and Torres,
2006), constituency analysis and dependency
analyses can be converted one into the oth-
er in a systematic way. After studying the
format and labels used for Cast3LB (Navar-
ro et al., 2003) (Civit, 2002), a system ca-
pable of transforming the constituency anal-
yses contained in Cast3LB into dependency
analyses was developed bymodifying an algo-
rithm proposed by Gelbukh et al. (Gelbukh
and Torres, 2006) (Gelbukh et al., 2005). The
existence of Cast3LB and the possibility of
transforming the analyses contained in it into
dependency analyses were important reasons
to use Maltparser in the JBeaver project.
On the other hand, having decided that

the JBeaver parser would be made general-
ly available to the public, lead us to consider
additional requirements. For instance, we de-
cided to make as easy as possible the use of
JBeaver by tools already adapted to the use
of Minipar (Lin, 1998). This is due to the fact
that Minipar has become a de facto standard
in the last years after being used by a large
number of applications. Thus, the notation
used for JBeaver is, as far as possible, the
same as the one used for Minipar.

2. The source corpus

A dependency analysis corpus is need-
ed for training Maltparser. The construc-
tion of such a corpus by hand implied a
work load well beyond the constraints of
the JBeaver project. Thus, it was decided
to take advantage of existing resources. Tak-
ing into account that, except for some spe-
cific cases (such as non-projective construc-
tions), the dependency analysis of a text can
be automatically derived from its constituen-
cy analysis (Gelbukh and Torres, 2006), and
that Cast3LB –which contains constituen-
cy analyses of Spanish texts– was available,
it became the best option as source corpus
for the project. Then, the training corpus
was obtained in a semiautomatic way from
Cast3LB.
Cast3LB contains 100,000 words in, ap-

proximately, 3,700 sentences of texts in Span-
ish. 75,000 words of Cast3LB come from the
ClicTALP corpus, which is a set of text from
several domains: literary, journalistic, scien-
tific, etcetera, and the other 25,000 words
come from the EFE news agency’s corpus
from year 2000 (Navarro et al., 2003). In fig-
ure 1 an excerpt from Cast3LB is shown as

an example.

3. Building a training corpus

Malparser requires for its training a cor-
pus in which, for every word of the analyzed
text, the following data must be incorporat-
ed: a unique identifier, its part of speech la-
bel, the identifier of the head of that word
and a label indicating the syntactic function
given in the dependency relationship. Malt-
parser admits both a XML format and a tab
format at its input. In figure 2 two mutually
equivalent examples are shown (the first one
in XML format and the second one in tab
format).
The numeric identifier 0 and the syntactic

function label ROOT are used by convention
to designate the dependency tree’s root1.
All the information needed for the cre-

ation of the training corpus was contained
in the Cast3LB corpus, but it was necessary
to extract it and to modify it to suit the con-
ventions followed by Maltparser. For this, the
two following actions were accomplished: the
obtention of dependency relationships, and
the obtention of syntactic function labels.

3.1. Obtaining dependency

relationships

In order to extract the dependency re-
lationships between words contained in the
Cast3LB corpus, an automatic process was
developed. It was designed from an algorithm
proposed by Gelbukh et al. (Gelbukh and
Torres, 2006) (Gelbukh et al., 2005), modi-
fied as needed.

3.2. Obtaining syntactic functions

labels

The great popularity reached in the last
years by Minipar lead to the decision of us-
ing, in the JBeaver project, a set of syntactic
function labels that followed, as far as possi-
ble, the nomenclature given by Minipar. In
this way, it would be easier to adapt sys-
tems currently using Minipar to the use of
JBeaver. Since the Cast3LB corpus contains
specific syntactic function labels, they must
be translated into the ones used by Minipar
in order to train Maltparser with the appro-
priate set of labels. For this, the first action
to be accomplished was to obtain the set of
syntactic function labels from Minipar. Since

1http://w3.msi.vxu.se/∼nivre/research/
MaltXML.html

Jesús Herrera de la Cruz, Pablo Gervás, Pedro J. Moriano, Alfonso Muñoz y Luis Romero

182

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE FILE SYSTEM "3lb.dtd">
<FILE id="agset" language="es" wn="1.5" ewn="dic2002"
parsing_state="process" semantic_state="process"
last_modified="13-01-2006" project="3LB" about="3LB project annotation file">
<LOG auto_file="a1-0-auto3.log" anno_file="a1-0-anno4.log"
nosense_file="a1-0-nosense4.log" />
<SENTENCE id="agset_1">
<Anchor id="agset_1_ac1" offset="0"/>
<Anchor id="agset_1_ac2" offset="15"/>
<Anchor id="agset_1_ac3" offset="21"/>
<Anchor id="agset_1_ac4" offset="23"/>
<Anchor id="agset_1_ac5" offset="26"/>
<Anchor id="agset_1_ac6" offset="34"/>
<Anchor id="agset_1_ac7" offset="40"/>
<Anchor id="agset_1_ac8" offset="42"/>
<Anchor id="agset_1_ac9" offset="52"/>
<Anchor id="agset_1_ac10" offset="54"/>
<Annotation id="agset_1_an3" start="agset_1_ac1" end="agset_1_ac2"
type="syn">
<Feature name="roles">SUJ</Feature>
<Feature name="label">sn</Feature>
<Feature name="parent">agset_1_an2</Feature>
</Annotation>
<Annotation id="agset_1_an4" start="agset_1_ac1" end="agset_1_ac2"
type="syn">
<Feature name="label">grup.nom.ms</Feature>
<Feature name="parent">agset_1_an3</Feature>
</Annotation>
<Annotation id="agset_1_an5" start="agset_1_ac1" end="agset_1_ac2"
type="wrd">
<Feature name="label">Medardo_Fraile</Feature>
<Feature name="sense">C2S</Feature>
<Feature name="parent">agset_1_an6</Feature>
</Annotation>
<Annotation id="agset_1_an6" start="agset_1_ac1" end="agset_1_ac2"
type="pos">
<Feature name="lema">Medardo_Fraile</Feature>
<Feature name="label">np00000</Feature>
<Feature name="parent">agset_1_an4</Feature>
</Annotation>
<Annotation id="agset_1_an1" start="agset_1_ac1" end="agset_1_ac10"
type="dummy_root">
<Feature name="label"/>
<Feature name="parent"/>
</Annotation>

Figura 1: Excerpt from Cast3LB

an exhaustive list of these labels is not pub-
licly available, it was necessary to try to ob-
tain the best possible approach, from a large
number of analyses made with Minipar. Fol-
lowing this goal, an empirical work was ac-

complished, based on the idea that with a
great amount of analyses made with Minipar
the set of different labels found would be very
close to the real set of labels. The process em-
ployed was the following:

Building Corpora for the Development of a Dependency Parser for Spanish Using Maltparser

183

<sentence id="2" user="malt" date="">
<word id="1" form="Genom" postag="pp" head="3" deprel="ADV"/>
<word id="2" form="skattereformen" postag="nn.utr.sin.def.nom" head="1"
deprel="PR"/>
<word id="3" form="infors" postag="vb.prs.sfo" head="0" deprel="ROOT"/>
<word id="4" form="individuell" postag="jj.pos.utr.sin.ind.nom" head="5"
deprel="ATT"/>
<word id="5" form="beskattning" postag="nn.utr.sin.ind.nom" head="3"
deprel="SUB"/>
<word id="6" form="(" postag="pad" head="5" deprel="IP"/>
<word id="7" form="sarbeskattning" postag="nn.utr.sin.ind.nom" head="5"
deprel="APP"/>
<word id="8" form=")" postag="pad" head="5" deprel="IP"/>
<word id="9" form="av" postag="pp" head="5" deprel="ATT"/>
<word id="10" form="arbetsinkomster" postag="nn.utr.plu.ind.nom" head="9"
deprel="PR"/>
<word id="11" form="." postag="mad" head="3" deprel="IP"/>

</sentence>

Genom pp 3 ADV
skattereformen nn.utr.sin.def.nom 1 PR
infors vb.prs.sfo 0 ROOT
individuell jj.pos.utr.sin.ind.nom 5 ATT
beskattning nn.utr.sin.ind.nom 3 SUB
(pad 5 IP
sarbeskattning nn.utr.sin.ind.nom 5 APP
) pad 5 IP
av pp 5 ATT
arbetsinkomster nn.utr.plu.ind.nom 9 PR
. mad 3 IP

Figura 2: Mutually equivalent training files for Maltparser (XML and tab)

1. A set of English texts obtained from the
web was parsed with Minipar. It consist-
ed of about 1 Mb of texts from sever-
al domains extracted from the Project
Gutemberg2 covering the following do-
mains: sport (197.1 Kb containing 1,854
phrases), economy (207.1 Kb containing
1,173 phrases), education (160.5 Kb con-
taining 869 phrases), history (162.2 Kb
containing 1,210 phrases), justice (98.2
Kb containing 453 phrases) and health
(265.2 Kb containing 2,409 phrases).

2. The output files given by Minipar were
treated in order to extract the set of all
different syntactic function labels.

3. A set of analyses, in which all the labels
found were present, was selected and the
following algorithm was applied to it:

2http://www.gutenberg.org/

for each syntactic function label identi-
fied do

if this function may occur in Spanish
then

Set one or more rules for suitably
transforming the syntactic function label
from Cast3LB into the identified label;

else

Discard the identified label;

end if

end for

The rules mentioned above were imple-
mented in the program that transforms con-
stituency analyses into dependency analyses.
A special label was used to identify not yet
discovered syntactic functions that might be
found in the future.
After the establishment of the set of syn-

tactic rules, a significant set of constituen-

Jesús Herrera de la Cruz, Pablo Gervás, Pedro J. Moriano, Alfonso Muñoz y Luis Romero

184

cy analyses was transformed into dependen-
cy analyses. Having obtained the dependen-
cy treebank, all the analyses containing one
or more special labels for not yet discovered
syntactic functions was manually analyzed.
Then, every case was studied in order to de-
termine if a new syntactic function label was
incorporated to the set or the considered syn-
tactic function could be assimilated to one of
the known labels. In figure 3 the complete
list of syntactic function labels is shown, i.e.,
those from Minipar and those that were de-
fined ad–hoc.

Identified Minipar’s syntactic function labels:

sc neg pcomp–n
pnmod nn gen
poss lex–

dep
appo

whn mod subj
aux amod guest
num vrel else
punc det neg
amount–value

New ad–hoc syntactic function labels:

ROOT adj fecha
descr c-descr compdet

Figura 3: Syntactic function labels used in
the training corpus

The set of syntactic function labels finally
obtained was not necessarily complete, but it
was reasonably valid for its purpose. Thus, it
was used by the algorithm that transformed
constituency analyses into dependency anal-
yses for labelling the syntactic functions ac-
cording to Minipar’s nomenclature.

3.3. Part of speech tagging

One of JBeaver’s features is that is ca-
pable to parse texts with no need of a pre-
vious annotation. Since the model learned
by MaltParser requires, for the parsing step,
that every word is labeled with its part of
speech, the tagging subtask is implemented
in JBeaver by the part of speech tagger Tree-
tagger (Schmid et al., 1994). The use of Tree-
tagger was motivated by the fact that its set
of part of speech labels was the one used for
MaltParser’s training.

3.4. The definitive corpus

Following the process described in this sec-
tion, 280 XML files (72.9 Mb) containing con-
stituency analyses from the Cast3LB corpus,
consisting of 97,002 words, were transformed
into dependency analyses apt for their pro-
cessing by MaltParser (a tab training file of
1.6 Mb), being labeled according to the re-
quirements of the JBeaver project.

4. The test corpus and results

obtained

For the evaluation of the trained mod-
el a fraction of dependencies correctly found
and labeled was computed. The gold stan-
dard was a fraction of the corpus described
in section 3. This corpus was divided in three
equal parts; two of them were used as the
training corpus and the other one was used
both as test corpus and as gold standard. For
using it as test corpus, the annotations con-
cerning dependency relationships and syntac-
tic function were eliminated, i.e., it was con-
formed only by the words and their part of
speech tags, which is the format required by
MaltParser for using it as parser. Thus, the
output given by the trained model was com-
pared with the gold standard, and 91% of
the dependencies found by the trained model
were according to the gold standard (Herrera
et al., 2007). This result is comparable to the
one obtained by Nivre et al. when training
MaltParser for Spanish (Nivre et al., 2006).

5. Conclusions and future work

The process of building corpora for train-
ing and testing a specific tool for generat-
ing dependency parser (Maltparser) has been
shown. This process has proper features be-
cause of the requirements of the project in
which it has been developed (JBeaver). It was
mandatory to use existing resources, and a
constituency analyses corpus has been sat-
isfactorily transformed into a equivalent de-
pendency analyses corpus. For this purpose,
an algorithm previously proposed by Gel-
bukh et al. was modified and applied. In ad-
dition and in order to fulfill the necessities of
the project, the set of syntactic function la-
bels of Minipar was empirically determined.
The future work includes the search for

more syntactic function labels, from Minipar
and new ones not considered yet. Also, some
research could be done in order to improve
the algorithm that transforms constituency

Building Corpora for the Development of a Dependency Parser for Spanish Using Maltparser

185

analyses into dependency analyses. Bymeans
of these future improvements, it should be
possible to learn better models for dependen-
cy parsing in Spanish.
In addition, similar development efforts to

the one described here could be carried out
for other languages.

Bibliograf́ıa

M. Civit. 2002. Etiquetación de los Cuan-
tificadores: Varias Propuestas. TALP Re-
search Center–Universidad Politécnica de
Cataluña. Technical Report.

A. Gelbukh and S. Torres. 2006. Tratamien-
to de Ciertos Pronombres y Conjunciones
en la Transformación de un Corpus de
Constituyentes a un Corpus de Dependen-
cias. Avances en la Ciencia de la Com-
putación. VII Encuentro Internacional de
Computación ENC’06.

A. Gelbukh, S. Torres and H. Calvo. 2005.
Transforming a Constituency Treebank in-
to a Dependency Treebank. Procesamiento
del Lenguaje Natural, No 35, September
2005. Sociedad Española para el Proce-
samiento de Lenguaje Natural (SEPLN).

J. Herrera, P. Gervás, P.J. Moriano, A.
Muñoz, L. Romero. 2007. JBeaver: Un
Analizador de Dependencias para el Es-
pañol Basado en Aprendizaje. Under eval-
uation process for CAEPIA 2007.

D. Lin. 1998. Dependency–based Evaluation
of MINIPAR. Proceedings of the Work-
shop on the Evaluation of Parsing Sys-
tems, Granada, Spain.

B. Navarro, M. Civit, M.A. Mart́ı, R. Marcos,
B. Fernández. 2003. Syntactic, Semantic
and Pragmatic Annotation in Cast3LB.
Proceedings of the Shallow Processing on
Large Corpora (SproLaC), a Workshop on
Corpus Linguistics, Lancaster, UK.

J. Nivre, J. Hall, J. Nilsson, G. Eryiğit
and S. Marinov. 2006. Labeled Pseudo–
Projective Dependency Parsing with Sup-
port Vector Machines. Proceedings of the
CoNLL-X Shared Task on Multilingual
Dependency Parsing, New York, USA.

H. Schmid. 1994. Probabilistic Part-of-
Speech Tagging Using Decission Trees.
Proceedings of the International Confer-
ence on New Methods in Language Pro-
cessing, pages 44–49, Manchester, UK.

Jesús Herrera de la Cruz, Pablo Gervás, Pedro J. Moriano, Alfonso Muñoz y Luis Romero

186

