
Specification of a general linguistic annotation framework and
its use in a real context

Xabier Artola, Arantza Dı́az de Ilarraza, Aitor Sologaistoa, Aitor Soroa
IXA Taldea

Euskal Herriko Unibertsitatea (UPV/EHU)
xabier.artola@ehu.es

Resumen: AWA es una arquitectura general para representar información
lingǘıstica producida por procesadores lingǘısticos. Nuestro objetivo es definir un
esquema de representación coherente y flexible que sea la base del intercambio de in-
formación entre herramientas lingǘısticas de cualquier tipo. Los análisis lingúısticos
se representan por medio de estructuras de rasgos según las directrices de TEI-P4.
Estas estructuras y su relación con los demás elementos que componen el análisis
forman parte de un modelo de datos diseñado bajo el paradigma de orientación a
objetos. AWA se encarga de la representación de la información dentro de una arqui-
tectura más amplia para gestionar todo el proceso de análisis de un corpus. Como
ejemplo de la utilidad del modelo presentado explicaremos cómo se ha aplicado dicho
modelo en el procesamiento de dos corpus.
Palabras clave: Modelo de anotación, arquitectura para la integración, TEI-P4

Abstract: In this paper we present AWA, a general architecture for representing
the linguistic information produced by diverse linguistic processors. Our aim is
to establish a coherent and flexible representation scheme that will be the basis
for the exchange of information. We use TEI-P4 conformant feature structures
as a representation schema for linguistic analyses. A consistent underlying data
model, which captures the structure and relations contained in the information to
be manipulated, has been identified and implemented by a set of classes following
the object-oriented paradigm. As an example of the usefulness of the model, we will
show the usage of the framework in a real context: two corpora have been annotated
by means of an application which aim is to exploit and manipulate the data created
by the linguistic processors developed so far.
Keywords: Annotation model, integration architecture, TEI-P4

1 Introduction

In this paper we present AWA (Annota-
tion Web Architecture), which forms part
of LPAF, a multi-layered Language Process-
ing and Annotation Framework. LPAF is a
general framework for the management and
the integration of NLP components and re-
sources. AWA defines a data representation
schema which aim is to facilitate the com-
munication among linguistic processors in a
variety of NLP applications. The key design
criteria we have taken into account when de-
signing AWA are oriented to make possible
the description of different phenomena in an
homogeneous way.

The objective of AWA is to establish a
coherent and flexible representation scheme
that will be the basis for the exchange of in-
formation. We use TEI-P4 conformant fea-

ture structures1 to represent linguistic anal-
yses. We also have identified a consistent
underlying data model which captures the
structure and relations contained in the in-
formation to be manipulated.

This data model has been represented
by classes that are encapsulated in sev-
eral library modules (LibiXaML), following
the object-oriented paradigm(Artola et al.,
2005). The modules offer the necessary types
and operations to manipulate the linguistic
information according to the model. The
class library has been implemented in C++
and contains about 100 classes. For the
implementation of the different classes and
methods we make use of the Libxml22 library.

1http://www.tei-c.org/P4X/DTD/
2http://xmlsoft.org/

Procesamiento del Lenguaje Natural, nº39 (2007), pp. 157-164 recibido 17-05-2007; aceptado 22-06-2007

ISSN: 1135-5948 © 2007 Sociedad Española para el Procesamiento del Lenguaje Natural

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16356849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The current release of LibiXaML works on
Unix flavours as well as on Windows archi-
tectures.

As an example of the usefulness of the
model we will show the usage of the frame-
work in a real context. Two corpora have
been tagged by means of an on-line applica-
tion, called EULIA, which aim is to exploit
and manipulate the data created by the lin-
guistic processors developed so far and in-
tegrated in a pipeline architecture. EULIA
(Artola et al., 2004) offers help in data brows-
ing, manual disambiguation, and annotation
tasks by means of an intuitive and easy-to-
use graphic user interface.

The rest of the paper is organized as fol-
lows. In section 2 we present some related
work. Section 3 will be dedicated to ex-
plain the proposed annotation architecture.
In section 4 we describe the use of feature
structures for representing linguistic informa-
tion. Section 5 shows the use of the frame-
work in two real contexts: the annotation of
EPEC (Reference Corpus for the Processing
of Basque) and ztC (Science and Technology
Corpus) (Areta et al., 2006), and EULIA, an
application implemented for facilitating the
work with the so-called annotation web. Fi-
nally, section 6 is dedicated to present some
conclusions and future work.

2 Related work

There is a general trend for establishing stan-
dards for effective language resource man-
agement (ISO/TC 37/TC 4 (Ide and Ro-
mary, 2004)), the main objective of which
is to provide a framework for language re-
source development and use. Besides, there
is much work dealing with the use of XML-
based technologies for annotating linguistic
information. ATLAS (Bird et al., 2000), LT-
TTT (Thompson et al., 1997) and WHAT
are some of the projects where stand-off an-
notation is used in order to deal efficiently
with the combination of multiple overlapping
hierarchies that appear as a consequence of
the multidimensional nature of linguistic in-
formation. LT-TTT (Thompson et al., 1997)
is a general library developed within an XML
processing paradigm whereby tools are com-
bined together in a pipeline allowing to add,
modify and remove pieces of annotation. It
provides linguistic components that operate
over XML documents and permit the devel-
opment of a broad range of NLP applica-

tions which share the annotated information.
In ATLAS (Bird et al., 2000) the authors
use XML technology as a format for the in-
terchange of annotated information between
linguistic applications (AIF). In a first ver-
sion, ATLAS was fully based in a particular
formalism for annotation, called Annotation
Graphs (AGs). However, they extended the
architecture in order to adopt an upper level
of abstraction and provide an ontology, where
the conceptual model can be defined. For this
reason MAIA (Meta Annotation Information
for Atlas) is defined (Laprun et al., 2002)).
Although the ontology model is described in
XML documents, no XML technology is used
to semantically validate the information. Fi-
nally, in the WHAT project (Schäfer, 2003),
the authors present an XSLT-based White-
board Annotation Transformer, an integra-
tion facility for integrating deep and shallow
NLP components. They rely on XSLT tech-
nology for transforming shallow and deep an-
notations in an integrated architecture built
on top of a standard XSL transformation
engine. Linguistic applications communi-
cate with the components through program-
ming interfaces. These APIs are not isomor-
phic to the XML mark-up they are based
on, but they define classes in a hierarchi-
cal way. Among other types of formalisms
they use typed feature structures for encod-
ing deep annotations, although the correct-
ness of these feature structures is not vali-
dated with XML tools.

Apart from the annotation infrastructure,
several systems go further and define frame-
works for rapid prototyping of linguistic ap-
plications that share the same data model
(annotations) at different levels. GATE
(Cunningham, Wilks, and Gaizauskas, 1996;
Bontcheva et al., 2004), TALENT (Neff,
Byrd, and Bougaraev, 2004), ATLAS and
MAIA (Bird et al., 2000; Laprun et al., 2002),
and UIMA (Ferrucci and Lally, 2004)) are
some of these systems.

The annotation architecture presented in
this paper follows the stand-off markup ap-
proach and it has been inspired on the
TEI-P4 guidelines (Sperberg-McQueen and
Burnard, 2002) to represent linguistic infor-
mation obtained by a wide range of linguistic
tools.

One reason for taking this approach is
that our representation requirements, to-
gether with the characteristics of the lan-

Xabier Artola, Arantza Díaz de Ilarraza, Aitor Sologaistoa y Aitor Soroa

158



guage (Basque) we are dealing with, are
not completely fulfilled by the annotation
schemes proposed in the systems mentioned
before. Basque being an agglutinative and
free-order language, the complexity of the
morphological information attached to lin-
guistic elements (word-forms, morphemes,
multiword expressions, etc.) as well as the
need to represent discontinuous linguistic
units, obliges us to use a rich representation
model.

3 The annotation architecture in

a language processing

framework

In this section, the general annotation web
architecture (AWA) is described from an ab-
stract point of view, and situated within
LPAF.

3.1 Language Processing and

Annotation Framework

Figure 1 depicts the main components of
LPAF. The framework has been organized in
different layers.

The bottom layer defines the basic infras-
tructure shared by any LPAF component. In
this layer we can find:

• The Annotation Web Architecture
(AWA), including a set of class libraries
which offer the necessary types and
operations to manipulate the objects of
the linguistic information model (Artola
et al., 2005).

• The Linguistic Processing Infrastructure
(LPI), which includes the set of classes
needed to combine linguistic processes.
It is the result of the characterization of
the way the linguistic processes interact
with each other.

The former will be thoroughly explained
in this paper.

The middle layer is formed by the LPAF
public services, which constitute the basic re-
sources for defining new linguistic applica-
tions. LPAF services perform concrete and
well-defined tasks necessary for defining com-
plex linguistic applications such as Q/A sys-
tems, environments for manual annotation of
corpora at different levels, etc.

On the top layer we can find final user ap-
plications. EULIA and the ztC Query Sys-

Figure 1: The Language Processing and An-
notation Framework

tem 3 are two examples of this type of ap-
plications, and will be explained throughout
this paper.

3.2 Annotation Web Architecture

The Annotation Web Architecture has been
designed in a way general enough to be used
in the annotation tasks of a very broad range
of linguistic processing tools. Issues such as
the representation of ambiguity or the at-
tachment of linguistic information to units
formed by discontinuous constituents have
been taken into account in the annotation
model.

An abstract view of this annotation ar-
chitecture is represented in Figure 2. When
a text unit undergoes a series of lan-
guage processing steps, a corpus unit is cre-
ated. Together with the raw text, this
corpus unit includes the linguistic annota-
tions resulting from each of these process-
ing steps. So, each one of these annota-
tions (LinguisticAnnotation class) repre-
sents, for instance, the set of annotations pro-
duced by a lemmatization process or the an-
notations produced by a dependency-based
syntactic parser. Dependencies among dif-
ferent linguistic annotations belonging to the
same processing chain are presented by the
dependsOn association link in the diagram.

The model follows a stand-off annota-
tion strategy: anchors set on the corpus
(Anchor class) are attached to the corre-
sponding linguistic information (LingInfo
class) by means of “links” (AnnotationItem
class). An annotation item always refers to
one anchor and has associated a single fea-

3http://www.ztcorpusa.net

Specification of a General Linguistic Annotation Framework and its Use in a Real Context

159



Figure 2: The annotation architecture

ture structure containing linguistic informa-
tion. Any annotation item can become an
anchor in a subsequent annotation operation.
As a result of each processing step (tokeniza-
tion, morphological segmentation or analysis,
lemmatization, syntactic parsing, etc.), what
we call a “linguistic annotation” consisting of
a web of interlinked XML documents is gen-
erated.

The model is physically represented by
three different types of XML documents: an-
chor documents, link documents (annotation
items) and documents containing linguistic
information. Let us show now each one of
these in more detail:

• Anchors: these elements can go from
physical elements found in the input cor-
pus (textual references, represented by
the TextRef class), such as typical char-
acter offset expressions or XPointer ex-
pressions pointing to specific points or
ranges within an XML document, up
to annotation items resulting from pre-
vious annotation processes; in partic-
ular, morphemes and single- or multi-
word tokens, word spans, etc., or even
“linguistic interpretations” of this kind
of elements can be taken as anchors of
linguistic annotations. We have found

that, in many cases, physical text el-
ements are not adequate as annota-
tion anchors, and linguistic interpre-
tations issued from previous analysis
steps (lemmatization and syntactic func-
tion combinations, or phrasal chunks to
which only some of the interpretations a
word can have belong) have to be used as
anchors in subsequent processing steps.

Textual anchors are set mainly as a re-
sult of tokenization and of the identi-
fication of multiword expressions. On
the other hand, interpretational anchors
are annotation items or else special an-
chors (anchors specifically created as “el-
ements” to which attach linguistic infor-
mation); in this case, they are expressed
by XML elements which act as a join of
several identifiers representing interpre-
tations issued from previous processes.
As examples of special anchors we can
mention word sequences, chunks, etc.

Structural ambiguity is represented by
overlapping anchors, i.e., when annota-
tions refer to anchors which overlap.

• Annotation items (links): these con-
stitute the actual annotations resulting
from a linguistic analysis process. Each
link ties a single linguistic interpretation

Xabier Artola, Arantza Díaz de Ilarraza, Aitor Sologaistoa y Aitor Soroa

160



to an anchor. Interpretation ambiguity
is represented by several links attached
to the same anchor, and so disambigua-
tion consists in simply marking one of
these links as correct while discarding
the rest.

• Linguistic information: typed fea-
ture structures are used to represent the
different types of linguistic information
resulting from the analysis processes.
In some cases, such as in morphologi-
cal segmentation or lemmatization, the
linguistic content corresponds to word
forms (more specifically, token annota-
tion items), and therefore huge common
libraries containing these contents (fea-
ture structures) are used, allowing us to
save processing time (and storage room)
as previously analyzed word forms need
not be analyzed again and again when
occurring in new texts.

This data model captures the structure
and relations contained in the information
to be manipulated, and is represented by
classes which are encapsulated in several li-
brary modules. These classes offer the neces-
sary operations or methods the different tools
need to perform their tasks when recognizing
the input and producing their output.

4 Representing linguistic

information: feature structures

and Relax NG schemas

This section is devoted to explain in more
detail the use of feature structures in our
model, their advantages, features, the repre-
sentation of meta-information, and the ex-
ploitation of schemas in different tasks, such
as information retrieval or automatic genera-
tion of GUIs.

The different types of linguistic informa-
tion resulting from the analysis processes
are represented as typed feature structures.
In a multi-dimensional markup environment,
typed feature structures are adequate for rep-
resenting linguistic information because they
serve as a general-purpose metalanguage and
ensure the extensibility of the model to rep-
resent very complex information. Typed fea-
ture structures provide us with a formal se-
mantics and a well-known logical operation
set over the represented linguistic informa-
tion.

The feature structures we use fulfill the
TEI guidelines for typed FSs, and they
are compatible with ISO/TC 37 TC 4 (Ide
and Romary, 2004). Furthermore, we have
adopted Relax NG as a definition metalan-
guage for typed feature structures. Relax NG
schemas define the legal building blocks of a
feature structure type and semantically de-
scribe the represented information.

<TEI.2>

...

<p>

<fs id="fs1" type="morphosyntactic">

<f name="Form"><str>esnea</str></f>

<f name="Lemma"><str>esne</str></f>

<f name="Morphological-Features">

<fs type="Top-Feature-List>

<f name="POS"><sym value="NOUN"/></f>

<f name="SUBCAT"><sym value="COMMON"/></f>

</fs>

</f>

<f name="Components"> ...</f>

</fs>

</p>

<p>

<fs id="fs2" type="lemmatization">

<f name="Form"><str>esnea</str></f>

<f name="Lemma"><str>esne</str></f>

<f name="POS"><sym value="NOUN"/></f>

<f name="SUBCAT"><sym value="COMMON"/></f>

</fs>

</p>

...

</TEI.2>

Figure 3: Typed feature structures

The type of the feature structure is en-
coded in XML by means of the type attribute
(see Figure 3). This attribute allows us to
understand the meaning of the information
described in the feature structure by means
of its link with the corresponding Relax NG
schema which specifies the content of the fea-
ture structure.

Relax NG schemas provide us with a for-
malism to express the syntax and seman-
tics of XML documents but, unfortunately,
they are not capable of interpreting the con-
tent of the feature structures represented in
the document. Therefore, we have imple-
mented some tools which, based on the Re-
lax NG schema, arrange data and create au-
tomatically the appropriate FS that encodes
the associated linguistic information to be
represented. These tools can be used to
build GUIs for editing linguistic annotations
adapting the interface to the user’s needs in
such a way that they only have to specify the
type of the information to be treated. Be-
sides, and thanks to these tools, we are able
to build general front- and back-end modules
for the integration of different linguistic en-
gines in more complex linguistic applications.
Specifying the input/output information by

Specification of a General Linguistic Annotation Framework and its Use in a Real Context

161



means of these Relax NG schema for linguis-
tic engines, the front-end module will pro-
vide the adequate data to each engine and
the back-end module will produce the suit-
able output.

<define name="fs.lemma">

<element name="fs">

<attribute name="id"><data type="id"/></attribute>

<attribute name="type">

<value>lemmatization</value>

</attribute>

<ref name="f.Form"/>

<ref name="f.Lemma"/>

<ref name="f.Pos-SubCat"/>

</element>

</define>

<define name="f.Form">

<element name="f">

<attribute name="name"><value>Form</value></attribute>

<element name="str"><value type="string"/></element>

</element>

</define>

<define name="f.Pos-Subcat">

<choice>

<ref name="pos.Noun"/>

<ref name="pos.Adj"/>

...

<choice>

<define>

<define name="pos.Noun">

<ref name="f.POS"/>

<element name="f">

<attribute name="name">

<value>SUBCAT</value>

</attribute>

<choice>

<value>COMMON</value>

<value>PERSON NAME</value>

<value>PLACE NAME</value>

<choice>

</element>

</define>

Figure 4: RELAX NG schema mixing mor-
phosyntax and lemmatization

Figure 3. shows a fragment of an XML
document which mixes up feature structures
of two different linguistic levels (morphosyn-
tactic and lemmatization) for the same word-
form. These FSs are defined by the partial
Relax NG schema shown in Figure 4. The
relation between FSs and the schema is es-
tablished through the type attribute (in both
figures in bold). Using these relations, our
tools can access the corresponding schemas
and exploit them.

5 The use of the annotation

architecture in a real context

In order to check the validity of the anno-
tation architecture presented here, we have
implemented a pipeline workflow which inte-
grates natural language engines going from
a tokenizer to a syntactic parser. Two text
corpora have been processed through this
pipeline with the aid of a tool named EU-
LIA.

5.1 EULIA: an environment for

managing annotated corpora

EULIA is a graphical environment which ex-
ploits and manipulates the data created by
the linguistic processors. Designed to be used
by general users and linguists, its implemen-
tation is based on a client-server architecture
where the client is a Java Applet running on
any Java-enabled web browser and the server
is a combination of different modules imple-
mented in Java, C++ and Perl.

The linguistic processors integrated so far
in the mentioned architecture are:

• A tokenizer that identifies tokens and
sentences from the input text.

• A segmentizer, which splits up a word
into its constituent morphemes.

• A morphosyntactic analyzer whose goal
is to process the morphological informa-
tion associated with each morpheme ob-
taining the morphosyntactic information
of the word form considered as a unit.

• A recognizer of multiword lexical units,
which performs the morphosyntactic
analysis of the multiword expressions
present in the text.

• A general-purpose tagger/lemmatizer.

• A chunker or shallow syntactic analyzer
based on Constraint Grammar.

• A deep syntax analyzer.

EULIA provides different facilities which
can be grouped into three main tasks:

• Query facility. It visualizes the an-
swers of the user’s requests according
to a suitable stylesheet (XSLT). These
stylesheets can be changed dynamically
depending on both the users’ choice and
the type of answer.

• Manual disambiguation. Its goal
is to help annotators when identifying
the correct analysis and discarding the
wrong ones. The incorrect analyses are
properly tagged but not removed.

• Manual annotation. It consists of as-
signing to each anchor its correspond-
ing linguistic information. Depending
on the annotation type different kinds
of information are needed. In order to
get these data, EULIA’s GUI generates

Xabier Artola, Arantza Díaz de Ilarraza, Aitor Sologaistoa y Aitor Soroa

162



a suitable form, based on the Relax NG
schema, which defines the document’s
format for that annotation type. Con-
sidering that linguistic information is en-
coded following the annotation architec-
ture, the treatment at different levels of
analysis is similar.

5.2 Annotating ztC and EPEC

Let us now explain briefly two real experi-
ences that demonstrate the flexibility and ro-
bustness of the model, the architecture, and
the environment built. These experiences
have been done on two corpora created with
different purposes:

• ztC Corpus (Science and Technol-
ogy Corpus) ztC is a 8,000,000 word
corpus of standard written Basque about
Science and Technology which aim is to
be a reference for the use of the language
in Science and Technology texts. Part of
this corpus (1,600,000) has been auto-
matically annotated and manually dis-
ambiguated. The manual disambigua-
tion of the corpus is performed on the
output of EUSTAGGER (Aduriz et al.,
1996), a general lemmatizer/tagger that
obtains for each word-form its lemma,
POS, number, declension case, and the
associated syntactic functions. In this
case, the manual disambiguation and an-
notation has been restricted to the infor-
mation about lemma and POS.

• EPEC Corpus (Reference Corpus
for the Processing of Basque) EPEC
is a 300,000 word corpus of standard
written Basque with the aim of being a
training corpus for the development and
improvement of several NLP tools. The
first version of this corpus (50,000 words)
has already been used for the construc-
tion of some tools such as a morpholog-
ical analyzer, a lemmatizer, or a shal-
low syntactic analyzer, but now we are in
a process of enhancement by annotating
manually 250,000 new words. Although
EPEC has been manually annotated at
different levels, the manual annotation
to which we will refer here has been per-
formed on the output of MORPHEUS
(Aduriz et al., 2000), a general ana-
lyzer that obtains for each word-form its
possible morphosyntactic analyses. EU-
LIA presents this information to the lin-

guist who has to choose the correct one
and mark it by means of a facility pro-
vided by the application. If the ana-
lyzer doesn’t offer any correct analysis,
the annotator has to produce it filling-
up a form obtained automatically in a
scheme-based way, as explained in sec-
tion 4. Once the whole corpus is manu-
ally annotated and disambiguated at the
segmentation level, the annotations are
propagated to other levels (morphosyn-
tax, lemmatization, syntax) automati-
cally and revised again by means of the
application. Currently, eight annotators
are satisfactorily working in parallel us-
ing EULIA.

The flexibility EULIA gets by using Relax
NG schemas makes possible to visualize the
information needed in each process in such a
way that the linguist will only focus on the
problem of ambiguity referred to the infor-
mation given.

6 Conclusions and future work

In this paper we have presented AWA, a gen-
eral architecture for representing the linguis-
tic information produced by linguistic proces-
sors. It is integrated into LPAF, a language
processing and annotation framework. Based
on a common annotation schema, the pro-
posed representation is coherent and flexible,
and serves as a basis for exchanging informa-
tion among a very broad range of linguistic
processing tools, going from tokenization to
syntactic parsing.

We have described our general annotation
model, where any annotation can be used
as anchors of subsequent processes. The an-
notations are stand-off, so that we can deal
efficiently with the combination of multiple
overlapping hierarchies that appear as a con-
sequence of the multidimensional nature of
linguistic information. Based on our experi-
ence, the markup annotation model we pro-
pose can represent a great variety of linguistic
information or structure.

XML is used as an underlying technology
for sharing linguistic information. We have
also defined RelaxNG schemas to describe
the different types of linguistic information
the framework is able to work with. Further-
more, we use these schemas to automatically
exploit the information encoded as typed fea-
ture structures.

Specification of a General Linguistic Annotation Framework and its Use in a Real Context

163



We have also presented EULIA, a graph-
ical environment the aim of which is to ex-
ploit and manipulate the data created by
the linguistic processors. EULIA offers facil-
ities to browse over the annotation architec-
ture, pose queries and perform manual dis-
ambiguation/annotation of corpora.

Finally, we have briefly explained two real
cases that show the flexibility and robustness
of our annotation model as well as the bene-
fits of an environment like EULIA in manual
annotation and disambiguation processes.

References

Aduriz, Itziar, Eneko Agirre, Izaskun
Aldezabal, Iñaki Alegria, Xabier Ar-
regi, Jose Mari Arriola, Xabier Ar-
tola, Koldo Gojenola, Aitor Maritx-
alar, Kepa Sarasola, and Miriam Urkia.
2000. A Word-grammar based mor-
phological analyzer for agglutinative lan-
guages. In Proc. of International Confer-
ence on Computational Linguistics. COL-
ING’2000, Saarbrücken (Germany).

Aduriz, Itziar, Izaskun Aldezabal, Iñaki Ale-
gria, Xabier Artola, Nerea Ezeiza, and
Ruben Urizar. 1996. EUSLEM: A Lem-
matiser / Tagger for Basque. In EU-
RALEX’96, Part 1, 17-26., Göteborg.

Areta, Nerea, Antton Gurrutxaga, Igor Le-
turia, Ziortza Polin, Rafael Saiz, Iñaki
Alegria, Xabier Artola, Arantza Dı́az
de Ilarraza, Nerea Ezeiza, Aitor Sologais-
toa, Aitor Soroa, and Andoni Valverde.
2006. Structure, Annotation and Tools in
the Basque ZT Corpus. In LREC 2006,
Genoa (Italy).

Artola, Xabier, Arantza Dı́az de Ilarraza,
Nerea Ezeiza, Koldo Gojenola, Aitor Solo-
gaistoa, and Aitor Soroa. 2004. EU-
LIA: a graphical web interface for creat-
ing, browsing and editing linguistically an-
notated corpora. In LREC 2004. Work-
shop on XbRAC, Lisbon (Portugal).

Artola, Xabier, Arantza Dı́az de Ilarraza,
Nerea Ezeiza, Gorka Labaka, Koldo Go-
jenola, Aitor Sologaistoa, and Aitor Soroa.
2005. A framework for representing and
managing linguistic annotations based on
typed feature structures. In RANLP
2005, Borovets (Bulgaria).

Bird, Steven, David Day, John Garo-
folo, Henderson Henderson, Christophe

Laprun, and Mark Liberman. 2000. AT-
LAS: A flexible and extensible architec-
ture for linguistic annotation. In Proc.
of the Second International Conference
on Language Resources and Evaluation,
pages 1699–1706, Paris (France).

Bontcheva, Kalina, Valentin Tablan, Di-
ana Maynard, and Hamish Cunningham.
2004. Evolving GATE to meet new chal-
lenges in language engineering. Natural
Language Engineering, 10(3-4):349–373.

Cunningham, Hamish, Yorick Wilks, and
Robert J. Gaizauskas. 1996. GATE: a
General Architecture for Text Engineer-
ing. In Proceedings of the 16th conference
on Computational linguistics, pages 1057–
1060. Association for Computational Lin-
guistics.

Ferrucci, David and Adam Lally. 2004.
UIMA: an architectural approach to un-
structured information processing in the
corporate research environment. Natural
Language Engineering, 10(3-4):327–348.

Ide, Nancy and Laurent Romary. 2004. In-
ternational standard for a linguistic anno-
tation framework. Natural Language En-
gineering, 10(3-4):211–225.

Laprun, Cristophe, Jonathan. Fiscus, John.
Garofolo, and Silvai. Pajot. 2002. A prac-
tical introduction to ATLAS. In Proceed-
ings of the Third International Conference
on Language Resources and Evaluation.

Neff, Mary S., Roy J. Byrd, and Bran-
mir K. Bougaraev. 2004. The Talent sys-
tem: TEXTRACT architecture and data
model. Natural Language Engineering,
10(3-4):307–326.

Schäfer, Ulrich. 2003. WHAT: An XSLT-
based infrastructure for the integration of
natural language processing components.
In Proceedings of the Workshop on the
Software Engineering and Architecture of
Language Technology Systems (SEALTS),
HLT-NAACL03, Edmonton (Canada).

Sperberg-McQueen, C. M. and L. Burnard,
editors. 2002. TEI P4: Guidelines for
Electronic Text Encoding and Interchange.
Oxford, 4 edition.

Thompson, H.S., R. Tobin, D. Mckelvie,
and C. Brew. 1997. LT XML Soft-
ware API and toolkit for XML processing.
www.ltg.ed.ac.uk/software/xml/index.html.

Xabier Artola, Arantza Díaz de Ilarraza, Aitor Sologaistoa y Aitor Soroa

164


