
A note on the complexity of the recognition problem for the
Minimalist Grammars with unbounded scrambling and barriers∗

Alexander Perekrestenko

Universidad Rovira i Virgili
Grupo de Investigación en Lingǘıstica Matemática
(Research Group on Mathematical Linguistics)

International PhD School in Formal Languages and Applications

Pl. Imperial Tarraco 1, 43005 - Tarragona

alexander.perekrestenko@estudiants.urv.cat

Resumen: Las Gramáticas Minimalistas fueron introducidas recientemente como
un modelo para la descripción formal de la sintaxis de los lenguajes naturales. En
este art́ıculo, se investiga una extensión no local de este formalismo que permitiŕıa
la descripción del desplazamiento optativo ilimitado de constituyentes sintácticos
(scrambling), un fenómeno que existe en muchos idiomas y presenta dificultades para
la descripción formal. Se establece que la extensión de las Gramáticas Minimalistas
con scrambling sin la llamada condición del movimiento más corto (shortest-move
constraint, SMC) y con barreras hace que el problema de reconocimiento para el for-
malismo resultante pertenezca a la clase NP-hard de la complejidad computacional.
Palabras clave: Sintaxis, análisis sintáctico, Gramáticas Minimalistas, orden de
palabras, scrambling, complejidad computacional, lenguajes formales

Abstract: Minimalist Grammars were proposed recently as a model for the formal
description of the natural-language syntax. This paper explores a nonlocal exten-
sion to this formalism that would make it possible to describe unbounded scrambling
which is a discriptionally problematic syntactic phenomenon attested in many lan-
guages. It is shown that extending Minimalist Grammars with scrambling without
shortest-move constraint (SMC) and with barriers makes the recognition problem
for the resulting formalism NP-hard.
Keywords: Syntax, parsing, Minimalist Grammars, word order, scrambling, com-
putational complexity, formal languages

1 Introduction

The formalization of the natural language
syntax is important both from the theoret-
ical and practical point view. It allows us to
check the feasibility of the existing syntactic
theories as models of how we process the lan-
guage and provides a framework for creating
practical applications—grammars and pars-
ing systems. In the formalization of natural-
language syntax, following classes of gram-
mars usually come into consideration.

Right-liner (regular) grammars. These

∗ This research work has been partially supported
by the Russian Foundation for Humanities as a part
of the project “The typology of free word order lan-
guages” (grant RGNF 06-04-00203a). The author
would also like to express his utmost gratitude to the
head of the Research Group on Mathematical Lin-
guistics of the Rovira i Virgili University prof. Carlos
Mart́ın Vide for his encouragement and advice.

grammars can only be used for so-called shal-
low parsing since their capacity to assign
structural descriptions to sentences is too
limited.

Context-free grammars. While these
grammars can describe a big part of the nat-
ural language syntax in the weak sense, they
fail to assign appropriate structural descrip-
tions to sentences containing discontinuous
constituents.

Mildly context-sensitive formalisms.
Mildly context-sensitive grammars (MCSG)
were proposed as a mathematical model
of the natural-language syntax that would
be only as powerful as necessary for the
correct description of the existing syntactic
phenomena. The mildly context-sensitive
formalisms best explored today are Tree-
adjoining Grammars (TAGs) and Minimalist
Grammars (MGs).

Procesamiento del Lenguaje Natural, nº39 (2007), pp. 27-34 recibido 24-05-2007; aceptado 22-06-2007

ISSN: 1135-5948 © 2007 Sociedad Española para el Procesamiento del Lenguaje Natural

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/16356796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computationally unrestricted formalisms.
Unification-based syntactic theories with un-
restricted structure sharing, such as Head-
driven Phrase Structure Grammar (HPSG),
strictly speaking do not belong to the class
of restricted grammars since they are based
on unification formalisms which are Turing-
equivalent. The problem of the computa-
tional universality of the formalism itself is
here solved with the design of grammars that
do not exploit the full power of the formal-
ism.
Whatever the grammar or the class of for-

malisms, it is crucially important for it to al-
low parsing in deterministic polynomial time
basing on the length of the input, for other-
wise its hight computational complexity (or
incomputability) would disqualify it both as
a feasible mathematical model of the human
language competence and as a technically ap-
plicable framework.

2 Linguistic data

One of the most problematic phenomena
for the formalization of the natural-language
syntax is so-called scrambling, which is a
non-obligatory reordering of syntactic con-
stituents. Originally, the term scrambling
was used to denote the argument permu-
tation observed in the so-called middlefield
(Mittelfelt) in German. This phenomenon
occurs in many other languages as well, for
example, in Japanese, Russian, Turkish, etc.
The descriptionally most problematic class of
this phenomenon is the so-called unbounded
scrambling where the permutating arguments
belong to different verbal heads. In this kind
of scrambling, a linear reordering of the ar-
guments leads to their displacement from the
embedded infinitival clauses into the matrix
clause. Since in theory there is no limit on the
depth of the infinitival clause embedding, we
can have any number of verbal heads with the
arguments “jumping up” to the embedding
clauses from an arbitrarily deeply embedded
infinitival clause, as shown in the example be-
low (all the sentences of this example mean
‘. . . that no-one has tried to promise the cus-
tomer to repair the refrigerator’):1

. . . dass niemand [[dem Kunden] [[den
Kühlschrank] zu reparieren] zu versprechen]
versucht hat;

1The sentences are based on the examples from
German in (Rambow, 1994).

. . . dass niemand [den Kühlschrank]i [[dem
Kunden] [ti zu reparieren] zu versprechen]
versucht hat;

. . . dass [den Kühlschrank]i niemand [[dem
Kunden] [ti zu reparieren] zu versprechen]
versucht hat;

. . . dass [dem Kunden]j niemand [tj [[den
Kühlschrank] zu reparieren] zu versprechen]
versucht hat;

. . . dass [den Kühlschrank]i [dem Kunden]j
niemand [tj [ti zu reparieren] zu versprechen]
versucht hat;

. . . dass [dem Kunden]j [den Kühlschrank]i
niemand [tj [ti zu reparieren] zu versprechen]
versucht hat.

The string language of scrambled sentences
can be seen as {nivi | n, v ∈ Σ, i > 0}, it is
context-free. But what matters from the lin-
guistic point of view is not somuch the gener-
ated language as such, but rather the gram-
mar’s capacity to assign linguistically correct
structural descriptions to the sentences with
scrambling. In (Becker, Rambow, and Niv,
1992) it was proved that unbounded scram-
bling cannot be derived by linear context-
free rewriting systems (LCFRS) and—as a
consequence—it cannot be derived by set-
local multi-component tree-adjoining gram-
mars (slMCTAG) either.
An important aspect of the unbounded

scrambling is that there are some syntactic
categories, called barriers, beyond which no
constituents can scramble. For German it is
a tensed clause, for example.
Nonlocal vector TAGs with dominance

links and integrity constrains (VTAG-∆) in-
troduced in (Rambow, 1994) are the only
known TAG-based formalism which allows a
generalized description of scrambling and is
polynomially parsable if some restrictions ex-
ternal to the formalism itself are imposed on
the derivation. In its lexicalized version these
restrictions are satisfied as a consequence of
the lexicalization. Other nonlocal versions of
TAGs do not have acceptable computational
properties. For example, the word recog-
nition problem for nonlocal MCTAGs with
such linguistically meaningful restrictions as
lexicalization, limiting the numbers of trees
in each tree set to two and imposing domi-
nance links on the trees belonging to one set
is NP-complete (Champollion, 2007). This
shows that nonlocality, which seems to be
necessary for the adequate description of un-

Alexander Perekrestenko

28

bounded scrambling, is generally very dan-
gerous for the computational properties of
the formalism.
Another mildly context-sensitive formal-

ism widely studied in the last ten years are
Minimalist Grammars (MG) introduced in
(Stabler, 1997) as a formalization of some
central aspects of the structure-building com-
ponent of the Minimalist Program, an ap-
proach to the description of syntax proposed
in (Chomsky, 1995). In this formalism, dis-
continuous constituents are described as a
result of the displacement of a part of a
constituent into some other position in the
tree. MGs are weakly equivalent to set-
local MCTAGs. In MGs the locality is
represented as the shortest-move constraint
(SMC) forbidding competitive displacement
of constituents. Lifting this constraint affects
badly the computational properties of the
formalism: for example, canceling the SMC,
but preserving the specifier island constraint
(SPIC) prohibiting movement from within
specifiers, produces a Turing-equivalent for-
malism (Kobele and Michaelis, 2005). In
(Frey and Gärtner, 2002), a scrambling op-
erator was introduced for MG, but it was re-
stricted by the SMC which made the gener-
alized scrambling description impossible.
In the present paper we show that ex-

tending an MG with an unbounded scram-
bling (i.e., scrambling without SMC) and
with barriers—an analogue to the integrity
constraints in VTAG-∆—makes the recogni-
tion problem for the resulting formalism NP-
hard.

3 MGs with unbounded

scrambling and barriers

Below we will give a definition of un-
restricted Minimalist Grammars with un-
bounded scrambling and barriers which is
based on the original definition of MG in
(Stabler, 1997) and (Michaelis, 2001).

Definition 1 (MGscr
B) An unrestricted Mi-

nimalist Grammar with unbounded scram-
bling and barriers, MGscr

B , is a tuple
G = 〈NonSyn, Syn, c, |, Lex,Ω〉, such that

• NonSyn is a finite set of non-syntactic
features partitioned into a set of phonetic
(Phon) and semantic (Sem) features.

• Syn is a finite set of syntactic featured
disjount from NonSynt and partitioned
into

– a set B = { n, v, d, c, t, . . .} of base
(syntactic) categories,

– a set of abstract features,
A = { case, num, pers, . . .},

– a set of merge selectors,
M = { =x | x ∈ B },

– a set of move licensees,
E = { −f | f ∈ A },

– a set of move licensors,
R = { +f | f ∈ A },

– a set of scramble licensees,
S = { ∼x | x ∈ B },

– a set of barrier markers,
I = { x | x ∈ B }.

• c is a distinguished element of B, the
completeness category.

• ‘|’ is a special symbol (a bar).

• Lex is a lexicon—a finite set of sim-
ple expressions (see Definition 2) over
NonSynt ∪ Syn, each of which is of the
form
τ=〈Nτ , ⊳

∗,≺, <, labelτ 〉, with Nτ ={ǫ}.

• Ω is the set of the structure-building op-
erations ‘merge’, ‘move’ and ‘scramble’.

In what follows, by [< a, b] we will denote a
binary tree consisting of the nodes a and b
in this very linear order where the node a
is the head of (“projects over”) the structure
represented by this tree so that the expression
associated with the tree is the same as the one
associated with its head node. In the same
way, by [> c, b] we will denote a binary tree
consisting of the nodes c and b in this very
linear order where the node b is the head of
the structure represented by the tree:

<

a b

>

c b

A node represented by a single letter will be
called a simple node. All nodes in the above
examples are simple ones. If a node repre-
sents a subtree, it will be called a complex
node, as in the following example, where b
in the tree [< a, b] is a complex node since it
represents its subtree [> c, b]:

<

a >

c b

The argument position to the right of a head
node is called the complement position. Po-
sitions to the left of a head node, over which

A Note on the Complexity of the Recognition Problem for the Minimalist Grammars with Unbounded Scrambling and Barriers

29

this node projects, are referred to as speci-
fier positions. The maximal projection of a
node a in a given tree is the maximal subtree
headed by this node.

Definition 2 (Expression) An expression
is a finite, binary, labeled ordered tree
τ = (Nτ , ⊳

∗,≺, <, labelτ), where
Nτ is the set of nodes;
⊳ is the dominance relation between nodes;
≺ is the precedence relation between nodes;
< is the projection relation between nodes;
labelτ is the leaf-labeling function mapping
the leafs of the tree onto an element from
{M∗ R? B E? S? Phon∗ Sem∗ | } ∪
{M∗ R? B−I E? S? Phon∗ Sem∗ | } ∪
{E? S? Phon∗ Sem∗ | B} ∪
{E? S? Phon∗ Sem∗ | B−I}
as introduced in the definition of MGscr

B .
An expression is called complex if it has more
than one node; otherwise it is called simple.

An expression τ over Syn ∪ NonSyn is called
well-labeled if each leaf of τ is a string from
Syn∗Phon∗Sem∗(|(B +B−I))?. The label of
a complex expression is that of its head leaf.
The phonetic yield of an expression is the

concatenation of the phonetic yields of its
subexpressions.
We will be saying that the expression

e = f1 f2 . . . fn−1 | fn, where f1, f2, . . . , fn
are features, has or contains these features
and displays feature f1. We will say that a
syntactic feature f is canceled from the ex-
pression e if it is removed from it. We will
also say that a syntactic feature f is hidden
in the expression e if it is moved to the right
of the bar symbol in this expression. Tomake
notation shorter, we will omit the bar symbol
if there are no features behind it.
Now we will define the structure-building

operations with their domains.

Definition 3 (merge domain)
Dom(merge) = { 〈τ0, τ〉 | τ0 and τ are
well-labeled expressions, τ0 displays category
x, and τ displays feature =x }.

Definition 4 (merge operator)
merge(τ) = [<τ ′, τ ′0], such that

τ is a simple node displaying feature =x,
τ0 displays category x,
τ ′ is like τ except that =x is canceled,
τ ′0 is like τ0 except that x is hidden;

and merge(τ) = [>τ ′0, τ
′], such that

τ is a complex node that displays feature =x,
τ0 displays category x,
τ ′ is like τ except that =x is canceled,
τ ′0 is like τ0 except that x is hidden.

As an example of merge we will consider the
derivation of the sentence John likes beer.
Lexicon: =d.=d.v .likes; d.John; d.beer
Derivation:
Step 1: =d.=d.v.likes + d.beer ⇒ <

=d.v.likes beer|d

Step 2: <

=d.v.likes beer|d

+ d.John ⇒ >

John|d <

v.likes beer|d

Definition 5 (move domain)
Dom(move) = { τ | τ is a well-labeled
expression that displays feature +x and
contains exactly one maximal projection τ0
displaying feature −x }.2

Definition 6 (move operator)
move(τ) = [>τ ′0, τ

′], such that
τ displays feature +x,
τ0 is a proper subtree of τ displaying feature
−x,
τ ′0 is like τ0 except that −x is canceled, and
τ ′ is like τ except that +x is canceled and
the subtree τ0 is replaced by an empty leaf.

The operator move is illustrated below in
the derivation of the subordinate clause what
John likes from John likes what within the
sentence she wonders what John likes.
Lexicon: =d.=d.v.likes; d.John;
d.−wh.what; =v.+wh.c
Derivation:

<

+wh.c >

John|d <

v.likes −wh.what|d

⇒ >

what|d <

c >

John|d <

v.likes λ

We say that a maximal projection τ ′ is a bar-
rier between the maximal projections τ and
τ0, if τ0 is a proper subtree of τ

′, τ ′ is a proper
subtree of τ , τ0 has the basic category b, and
τ ′ contains the barrier marker −b.

2The restriction that τ cannot contain more than
one movement candidate is the shortest-move condi-
tion, as it is used in MG.

Alexander Perekrestenko

30

Definition 7 (scrambling domain)
Dom(scramble) = { τ | τ is a well-labeled
expression that displays category x and
contains at least one maximal projection τ0
displaying feature ∼x and there is no barrier
between τ and τ0 }.

Definition 8 (scrambling operator)
scramble(τ) = [>τ ′0, τ

′], such that
τ displays category x,
τ0 is a proper subtree of τ displaying feature
∼x and there is no barrier between τ and τ0,
τ ′0 is like τ0 except that ∼x is canceled,
τ ′ is like τ except that subtree τ0 is replaced
with an empty leaf.

The scrambling so defined operates nonde-
terministically in the sense that it can dis-
place any appropriate constituent. The dif-
ference between scrambling and movement
consists in the fact that scrambling is op-
tional, it allows a competitive displacement
of constituents since it is not restricted by
SMC, and it can be blocked by a barrier.

Definition 9 (Language of an MGscr
B)

The language L generated by an MGscr
B

G is the set of the phonetic yields of the
expressions produced from the lexical entries
by applying (some of) the structure-building
operations, such that these expressions dis-
play the completeness category c and neither
they themselves nor their subexpressions
contain move licensees and move licensors
(i.e., all movements have been performed).

4 MGscr
B is NP-hard

4.1 Some preliminaries

A problem X is NP-hard if and only if an
NP-complete problem N can be transformed
(“reduced”) to X in polynomial time in such
a way that a (hypothetical) polynomial-time
algorithm solving X could also be used to
solve N in polynomial time.
For a language L, we will denote by

L() the word recognition problem for L.
Let L, L1 and L2 be languages such that
L = L1 ∪ L2 and L1 ∩ L2 = ∅. Let p(w) be
a polynomial-time computable function such
that for any w ∈ L it returns true if w ∈ L1

and false otherwise. (For a w /∈ L, it can
return either true or false.) We will need
following proposition:

Proposition 1 If L1() is NP-hard, then L()
is also NP-hard.

4.2 The idea of the proof

The NP-hardness of the word recognition
problem for MGscr

B will be proved by con-
structing a grammar G ∈MGscr

B that gen-
erates a language L = L1 ∪ L2, L1 ∩ L2 = ∅,
where L1() represents a known NP-complete
problem, i.e., it is NP-hard, and the question
whether a word w ∈ L belongs to L1 or to L2

can be resolved in deterministic polynomial
time. In the proof we will use the 3-Partition
Problem which in known to be (strongly) NP-
complete:

Given a set of 3k natural numbers
{n1, n2, . . . , n3k} and a constant m,
decide whether this set can be par-
titioned into k subsets of cardinality
3 each of which sums up to m.

This problem can be described as a language

L3P = {bmaxn1axn2 . . . axn3k | a, b, x ∈ Σ}

such that it consists of all the words for which
〈m,n1, n2, . . . , n3k〉 represents an instance of
the problem. The word recognition problem
for this language is NP-hard.3

In MGscr
B , scrambling allows syntactic

constituents to move to the left in competi-
tive manner while barriers set boundaries be-
yond which these constituents cannot move.
This fact can be used to derive a language
Lscr
B containing L3P such that for any word

w ∈ Lscr
B it can be decided in deterministic

polynomial time whether w ∈ L3P or not.

4.3 Proving NP-hardness

Let G = 〈NonSyn, Syn, p, |, Lex,Ω〉 be an
MGscr

B where

• Phon = {a, b, c, d}, Sem = ∅,

• A = { f }, and

• B = { a1, a2, a3, a′1, a′2, a′3, a′′1, a′′2, a′′3,
b, b′, b0, c1, c2, c3, c′1, c′2, c′3, c′′1, c′′2 , c′′3 ,
d1, d2, d3, d

′

1, d′2, d′3, d
′′

1 , d
′′

2 , d′′3, e, g, s,
p }.

The lexicon of the grammar, Lex, consists of
the following entries (organized into groups

3A language representation of the 3-Partition
Problem was also used in (Champollion, 2007) to
prove NP-hardness for a restricted version of nonlocal
MCTAGs. It should be mentioned, though, that the
relationship between nonlocal MCTAGs and MGscr

B is
not known, so we cannot apply the complexity result
for nonlocal MCTAGs to MGscr

B .

A Note on the Complexity of the Recognition Problem for the Minimalist Grammars with Unbounded Scrambling and Barriers

31

according to which part of the structure they
generate):

1. (a) =c′′3 . a′′3 . ∼s . a; =d′′3 . =b0. c′′3 . c;
=c′′3 . =b . d′′3 . d; =e . =b. d′′3 . d; e;

(b) =c′′2 . a′′2 . ∼s . a; =d′′2 . =b0. c′′2 . c;
=c′′2 . =b . d′′2 . d; =a′′3 . =b . d′′2 . d;

(c) =c′′1 . a′′1 . ∼s . a; =d′′1 . =b0. c′′1 . c;
=c′′1 . =b . d′′1 . d; =a′′2 . =b . d′′1 . d;

2. (a) =c3 . a3 . ∼s . a; =d3 . c3 . c;
=c3 . =b′. d3 . d; =a′1. =b′. d3 . d;
=a′′1. =b′. d3 . d;

(b) =c2 . a2 . ∼s . a; =d2 . c2 . c;
=c2 . =b′. d2 . d; =a3 . =b′. d2 . d;

(c) =c1 . a−b
1 . ∼s . a; =d1 . c1 . c;

=c1 . =b′. d1 . d; =a2 . =b′. d1 . d;

3. (a) =c′3 . a′3 . ∼s . a; =d′3 . c′3 . c;
=c′3 . =b . d′3 . d; =a1 . =b . d′3 . d;

(b) =c′2 . a′2 . ∼s . a; =d′2 . c′2 . c;
=c′2 . =b . d′2 . d; =a′3 . =b . d′2 . d;

(c) =c′1 . a′−b′

1 . ∼s . a; =d′1 . c′1 . c;
=c′1 . =b . d′1 . d; =a′2 . =b . d′1 . d;

4. =a1 . g . −f ; =a′1. g . −f ; =a′′1. g . −f ;

5. =g . s;

6. =s .+f . p;

7. b . ∼c . b; b′. ∼c′. b; b . ∼g . b; b′. ∼g . b;
b0. b

Proposition 2 The language L generated by
the grammar G is a union of two disjoint lan-
guages, L = L3p ∪ L′, L3p ∩ L′ = ∅, such that
L3p consists of all the words

bma(bcd)n1a(bcd)n2 . . . a(bcd)n3k

with a, b, c, d ∈ Σ, where 〈m,n1, n2, . . . , n3k〉
is an instance of the 3-Partition Prob-
lem, as described above, and there exists
a polynomial-time computable function p(w)
such that for any word w ∈ L it returns true
if w ∈ L3p and false otherwise; for w /∈ L it
returns either true of false.

We will prove the proposition 2 by following
the bottom-up derivation of the language L.
In the illustrations below, the symbols used
in the tree structures are base category sym-
bols.4 The derivation starts at step 1.

4In the grammar G, the lexical entries are made
in such a way that the phonetic (i.e., terminal) sym-
bols can be obtained by stripping the base category
symbols of indices and bars (except for the zero-yield
entries headed by e, g, s and p).

Step 1. The derivation begins with the
lexical entries (1a) generating the following
(sub)tree:

<

a′′3 >

b0 <

c′′3 >

b <

d′′3 >

b0 <

c′′3 >

b <

d′′3 . . .

>

b0 <

c′′3 >

b <

d′′3 e

The yield of
this subtree is
a(bcbd)+. Each
b located imme-
diately between
a c and a d (the
corresponding
base category is
underlined) is
licensed for scram-
bling to a specifier
position of a c or
g introduced at a
later point in the
derivation, since
every such b has
the scrambling
licensee ∼c or ∼g.

The whole a′′3-headed subtree is licensed for
scrambling to the s node to be introduced at
a later point in the derivation, since the a′′3
node has the scrambling licensee ∼s.
After that, subtrees headed with a′′2 and

a′′1 are generated by the entries (1b) and (1c)
respectively. The generation proceeds in the
same way as in the case of the a′′3 subtree; the
b nodes are licensed for scrambling to c or g,
and the a′′2 and a′′1 subtrees are themselves
licensed for scrambling to s:

<

a′′1 (b
0c′′1bd

′′

1)
+ <

a′′2 (b
0c′′2bd

′′

2)
+ <

a′′3 (b
0c′′3bd

′′

3)
+

The phonetic yield generated at this point
is a(bcbd)+a(bcbd)+(bcbd)+. The derivation
continues to step 2 or 4.

Step 2. Analogously to the previously per-
formed step, subtrees headed by a3, a2 and
a1 are generated by the entries (2a), (2b) and
(2c) respectively. All of them are licensed for
scrambling to s. The b′ nodes inside these
subtrees are licensed for scrambling to c′ or
g. Some of the b nodes introduced in the pre-
viously performed step (this restriction is pro-
vided by barriers) scramble to some of the c
nodes introduced at the present step:

Alexander Perekrestenko

32

<

a−b1 (b c1b
′d1)

+ <

a2 (b c2b
′d2)

+ <

a3 (b c3b
′d3)

+ <

a′1 or a′′1 . . .

The derivation continues to step 3 or 4.

Step 3. Analogously to the previously per-
formed step, subtrees headed by a′3, a′2 and
a′1 are generated by the entries (3a), (3b) and
(3c) respectively. All of them are licensed for
scrambling to s. The b nodes inside these
subtrees are licensed for scrambling to c or
g. Some of the b′ nodes introduced in the
previously performed step (this restriction is
provided by barriers) scramble to some of the
c′ nodes introduced at the present step:

<

a′−b
′

1 (b’ c′1bd
′

1)
+ <

a′2 (b’ c
′

2bd
′

2)
+ <

a′3 (b’ c
′

3bd
′

3)
+ <

a1 . . .

The derivation continues to step 2 or 4.

Step 4. A subtree headed by g is generated
by the entries (4). The g head takes as its
complement a′1 or a′′1 (1), or a1 (2). It is li-
censed for movement to p. Some of the b′ or b
nodes introduced in the previously performed
step (this restriction is provided by barriers)
scramble to g:

(1) >

b >

b >

. . .

>

b <

g <

a′1 or a′′1 . . .

(2) >

b’ >

b’ >

. . .

>

b’ <

g <

a1 . . .

The derivation continues to step 5.

Step 5. A subtree headed by s is generated
by the entry (5). The s head takes g as its
complement. Further, some a subtrees gen-
erated at previous steps scramble to s:

>

<

a1, a
′

1, a
′′

1 ,
a2, a

′

2, a
′′

2 ,
a3, a

′

3 or a′′3

>

<

a1, a
′

1, a
′′

1 ,
a2, a

′

2, a
′′

2 ,
a3, a

′

3 or a′′3

>

. . .

>

<

a1, a
′

1, a
′′

1 ,
a2, a

′

2, a
′′

2 ,
a3, a

′

3 or a′′3

<

s

g

The derivation continues to step 6.

Step 6. A subtree headed by p is gener-
ated by the entry (6). The p head takes s
as its complement. Further, the g subtree
generated at a previous step is moved to the
specifier position of p:

>

g

<

p

s

The language generated by this grammar, L,
is the union of two languages, L = L′1 ∪ L1,
such that L′1 consists of all the words pro-
duced with all b and b′ nodes having scram-
bled and each c and c′ head having accepted
exactly one scrambling b or b′ node, and L1

contains the rest of the words. The language
L′1 consists of all the words

bm a(bcd)n1 a(bcd)n2 . . . a(bcd)n3k

such that for all positive natural numbers k
and m, the multiset {n1, n2, . . . , n3k} can be
partitioned into k multisets of cardinality 3,
each of which sums to m. This will be ex-
plained following the generation of the words
of the language. On the yield level, each “a-

tripple” a(b cbd)+a(b cbd)+a(b cbd)+ gen-
erated at the step (2) or (3) receives the
scrambling symbols b from the neighbouring

A Note on the Complexity of the Recognition Problem for the Minimalist Grammars with Unbounded Scrambling and Barriers

33

a-tripple on the right (these symbols are de-
picted in squares) generated during the pre-
vious step and later “gives away” through
scrambling to the neighbouring left a-tripple
the symbols b located between c and d (un-
derlined). Barriers guarantee that these sym-
bols can only scramble to the adjacent trip-
ple. The symbols b scrambling from the left-
most a-tripple are stored as a “counter” at
step (4). In case all b and b′ symbols have
scrambled and each c and c′ head have re-
ceived through scrambling exactly one b or
b′, all a-tripples will contain an equal number
of bcd subwords, while the number of these
subwords in each a(bcd)+ member of one and
the same a-tripple may vary. The “counter”
will consist of as many symbols b as there are
bcd subwords in each a-tripple. At step (5),
all the a(bcd)+ members of the a-tripples are
permuted arbitrarily, whereafter the “counter
subword” is moved to the left at step (6).
Each word in L1 contains at least one

following subword in positions to the right
starting from the leftmost occurrence of a:
bb (more than one b have scrambled to the
same c head), ac, dc (omission of scrambling
to a particular c head), cb (b has not scram-
bled), while no word in L′1 follows this pat-
tern. Thismeans that L′1 ∩ L1 = ∅, and there
exists a polynomial-time computable function
p(w) such that for any w ∈ L, p(w) = true
if w ∈ L′1 and p(w) = false otherwise. For a
w /∈ L, it will return true or false.
The language L′1 can be seen as a union

of two languages, L′1 = L2 ∪ L3, such that
{n1, n2, . . . , n3k} is a proper multiset for L2

(i.e., it contains repeated elements) and a set
for L3. This means that L2 ∩ L3 = ∅, and—
since the problem whether a given multiset
is a proper multiset or a set can be solved in
deterministic polynomial time—there exists
a polynomial-time computable function q(w)
such that for any w ∈ L′1, q(w) = true if
w ∈ L3 and q(w) = false otherwise. For a
w /∈ L′1, it will return true or false.
The language L3 constitutes the unary en-

coding of the 3-Partition Problem5 whereby
we have proved the proposition 2, which to-
gether with the proposition 1 gives us follow-
ing result:

Proposition 3 The word recognition prob-
lem for MGscr

B is NP-hard.

5Without loss of generality we consider only posi-
tive natural numbers and assume k ≥ 1.

5 Conclusions

Since the recognition problem for MGscr
B

is NP-hard, the generalized description of
scrambling is probably impossible in MG, at
least if it is implemented in a straightforward
way. On the other hand, MGs can provide a
convenient framework for the practical im-
plementation of some important results ob-
tainable within the Minimalist Program. For
this reason, a further study of the proposed
MG extensions is important, since a solution
to the scrambling problem can make out of
MGs a powerful formal language tool for the
grammar engineering. Additionally, it could
provide insights into possible ways to tackle
the nonlocality problem in this class of for-
malisms.

References

Becker, T., O. Rambow, and M. Niv. 1992.
The Derivational Generative Power of For-
mal Systems or Scrambling is Beyond
LCFRS. Technical Report IRCS-92-38,
University of Pennsylvania, USA.

Champollion, L. 2007. Lexicalized non-
local MCTAG with dominance links is
NP-complete. In Proceedings of Mathe-
matics of Language 10. To appear.

Chomsky, N. 1995. The Minimalist Program.
The MIT Press, Cambridge, USA.

Frey, W. and H.-M. Gärtner. 2002. On the
Treatment of Scrambling and Adjunction
in Minimalist Grammars. In G. Jäger,
P. Monachesi, G. Penn, and S. Wintner,
editors, Proceedings of Formal Grammar
2002, pages 41–52, Trento, Italy.

Kobele, G. M. and J. Michaelis. 2005. Two
Type 0-Variants of Minimalist Grammars.
In Proceedings of the 10th conference on
Formal Grammar and the 9th Meeting
on Mathematics of Language, Edinburgh,
Scotland.

Michaelis, J. 2001. On Formal Properties
of Minimalist Grammars. Ph.D. thesis,
Potsdam University, Germany.

Rambow, O. 1994. Formal and Computa-
tional Aspects of Natural Language Syn-
tax. Ph.D. thesis, University of Pennsyl-
vania, USA.

Stabler, E. 1997. Derivational minimal-
ism. In Christian Retore, editor, Logi-
cal Aspects of Computational Linguistics.
Springer, pages 68–95.

Alexander Perekrestenko

34

