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Abstract. This paper discusses the recognition of textual entailment
in a text-hypothesis pair by applying a wide variety of lexical measures.
We consider that the entailment phenomenon can be tackled from three
general levels: lexical, syntactic and semantic. The main goals of this
research are to deal with this phenomenon from a lexical point of view,
and achieve high results considering only such kind of knowledge. To
accomplish this, the information provided by the lexical measures is used
as a set of features for a Support Vector Machine which will decide if the
entailment relation is produced. A study of the most relevant features and
a comparison with the best state-of-the-art textual entailment systems
is exposed throughout the paper. Finally, the system has been evaluated
using the Second PASCAL Recognising Textual Entailment Challenge
data and evaluation methodology, obtaining an accuracy rate of 61.88%.

1 Introduction

Textual Entailment has been proposed recently as a generic framework for mod-
eling semantic variability in many Natural Language Processing (NLP) applica-
tions. An entailment relation between two text snippets (text-hypothesis pair)
is produced when the hypothesis’ meaning can be inferred from the text’s.

Some examples of NLP applications that need to detect when the meaning
of a text can be inferred from another one could be the followings. In a Ques-
tion Answering (QA) system, the same answer could be expressed in different
syntactic and semantic ways, and a textual entailment module could help such
system to identify the forecast answers that entail the expected one. In other
applications such as Information Extraction (IE), the textual entailment tool is
applied to different variants that express the same relation. In multi-document
summarization (SUM), for instance, we could use such tool to extract the most
informative sentences, omitting the redundant information. In general, a textual
entailment tool would be useful in order to obtain a better performance in a
wide range of NLP applications.

Recognising entailment relations is a very complex task that integrates many
levels of linguistic knowledge [2] (i.e. lexical, syntactic and semantic levels). Such
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complexity has been proven in the two editions of the PASCAL Recognising Tex-
tual Entailment (RTE) Challenge1 [6, 3]. These editions of the PASCAL RTE
have introduced a common task and evaluation framework for textual entailment,
covering a broad range of semantic-oriented inferences needed for practical tasks
such as the aforementioned applications (concretely QA, IE, Information Re-
trieval (IR) and SUM). The systems that participated in the challenges used
different strategies that combined a wide variety of NLP techniques in order to
detect textual entailment. For instance, it is clearly stated that the use of n-
grams and subsequence overlap [12, 5], syntactic matching [8], logical inference
[4, 13] and Machine Learning (ML) classification [4, 1] is quite appropriate for
identifying entailment inferences.

In this paper we propose a system, which we have called DLSITE-1, to deter-
mine entailment relations based on a wide variety of lexical similarity measures.
The aim of using only lexical measures is to achieve a reliable system without
need of syntactic and semantic knowledge. Once we have a robust system consid-
ering lexical similarities, we will be able to add syntactic and semantic knowledge
to it.

The remainder of this paper is structured as follows. The second section
details our system and the lexical similarity measures used. The third one illus-
trates the performed experiments and includes a discussion about the results.
Finally, the fourth and last section presents the conclusions of our research and
proposes future work.

2 System Description

Our system computes the extraction of several lexical measures from the text-
hypothesis pairs, which allow us to determine if the entailment relation is pro-
duced. Such measures are basically based on word co-occurrences in both the
hypothesis and the text, as well as the context where they appear.

Prior to the calculation of the measures, all texts and hypothesis are tokenized
and lemmatized. Later on, a morphological analysis is performed as well as a
stemmization2, in order to obtain both the grammatical category and the stem
for each word belonging to the two snippets. Once these steps are completed, we
are able to create several data structures containing the tokens, stems, lemmas,
functional3 words and the most relevant4 ones corresponding to the text and the
hypothesis. Furthermore, having these structures will allow us to know which of
them are more suitable to recognize entailment.

In the following paragraphs we describe in detail the measures applied to the
data structures obtained from the previous analysis.
1 http://www.pascal-network.org/Challenges/RTE/ and http://www.pascal-

network.org/Challenges/RTE-2/
2 We use a Porter stemmer implementation.
3 As functional words we consider nouns, verbs, adjectives, adverbs and figures (num-

ber, dates, etc.).
4 Considering only nouns and verbs.



· Simple matching: word overlap between text and hypothesis is initialized
to zero. If a word (token, stem, lemma or functional word) in the hypothe-
sis appears also in the text, an increment of one unit is added to the final
weight. Otherwise, no increment is produced. Finally, this weight is normal-
ized dividing it by the length of the hypothesis, calculated as the number of
words, as shown in Equation 1.

spMatch =

∑

i∈H

match(i)

|H| (1)

where H is the set of tokens, stems, lemmas or functional words of the
hypothesis, and match(i) is computed as follows:

match(i) =





1 if ∃ j ∈ T i=j,

0 otherwise.
(2)

being T the set of tokens, stems, lemmas or functional words of the text.
· Levenshtein distance: it is similar to simple matching. However, in this

case we calculate the function match(i) for each element of H as:

match(i) =





1 if ∃j ∈ TLv(i, j) = 0,

0.9 if @j ∈ TLv(i, j) = 0∧
∃k ∈ TLv(i, k) = 1,

max
(

1
Lv(i, j)

∀j ∈ T

)
otherwise.

(3)

where Lv(i, j) represents the Levenshtein distance between i and j. In our
implementation, the cost of an insertion, deletion or substitution is equal to
one and the weight assigned to match(i) when Lv(i, j) = 1 has been obtained
empirically.

· Consecutive subsequence matching: this measure assigns the highest
relevance to the appearance of consecutive subsequences. In order to per-
form this, we have generated all possible sets of consecutive subsequences,
from length two until the length in words (tokens, stems, lemmas or func-
tional words depending on the data structure used), from the text and the
hypothesis. If we proceed as mentioned, the sets of length two extracted from
the hypothesis will be compared to the sets of the same length from the text.
If the same element is present in both the text and the hypothesis set, then
a unit is added to the accumulated weight. This procedure is applied for
all sets of different length extracted from the hypothesis. Finally, the sum
of the weight obtained from each set of a specific length is normalized by
the number of sets corresponding to this length, and the final accumulated
weight is also normalized by the length of the hypothesis in words minus
one. This measure is defined as follows:



LCSmatch =

|H|∑

i=2

f(SHi)

|H| − 1
(4)

where SHi contains the hypothesis’ subsequences of length i. Also, f(SHi)
is defined as follows:

f(SHi) =

∑

j∈SHi

match(j)

|H| − i + 1
(5)

being

match(j) =





1 if ∃ k ∈ STi k=j,

0 otherwise.
(6)

where STi is the set that contains the text’s subsequences of length i.
One should note that this measure does not consider non-consecutive sub-
sequences. In addition, it assigns the same relevance to all consecutive sub-
sequences with the same length. Also, the more length the subsequence has,
the more relevant it will be considered.

· Tri-grams: two sets containing tri-grams of characters belonging to the text
and the hypothesis were created. All the occurrences in the hypothesis’ tri-
grams set that also appear in the text’s will increase the accumulated weight
in a factor of one unit. Finally, the calculated weight is normalized dividing
it by the total number of tri-grams within the hypothesis.

· ROUGE measures: ROUGE measures have already been tested for au-
tomatic evaluation of summaries and machine translation [10, 9]. For this
reason, and considerifng the impact of n-gram overlap metrics in textual
entailment, we believe that the idea of integrating these measures in our
system is very appeal. We have implemented these measures as defined in
[9]. Next, we will proceed to explain them.
· ROUGE-N: determines an n-gram recall between a candidate hypoth-

esis and the reference text. It is computed as follows:

ROUGE −N =

∑

gramn∈H

Countmatch(gramn)

∑

gramn∈H

Count(gramn)
(7)

where n indicates the length of the n-gram (gramn), Countmatch(gramn)
is the maximum number of n-grams that appear in both the hypothesis
and the text, and Count(gramn) is the number of n-grams within the
hypothesis. In our approach, the n-grams are created from the tokens,
stems, lemmas and functional words extracted from the text and the



hypothesis, and a set of previous experiments determined that the most
suitable values for n are two and three.

· ROUGE-L: prior to calculating this measure, we obtained the longest
common subsequence (LCS) between the hypothesis and the text, de-
fined as LCS(T, H). The LCS problem consists in finding the longest
sequence which is a subsequence of all sequences in a set of sequences5.
Later on, we applied an LCS-based F-measure to estimate the similarity
rate as follows:

RLCS =
LCS(T, H)

|T |
PLCS =

LCS(T, H)
|H|

FLCS =

(
1 + β2

) ·RLCS · PLCS

RLCS + β2 · PLCS

(8)

where β = 1, and T and H are the sets that contain the tokens, stems,
lemmas or functional words corresponding to the text and the hypothesis.

· ROUGE-W: is quite similar to the ROUGE-L measure. The difference
relies on the extension of the basic LCS. ROUGE-W uses a weighted LCS
between the text and the hypothesis, WLCS(T,H). This modification
of LCS memorizes the length of consecutive matches encountered con-
sidering them as a better choice than longer non-consecutive matches.
We computed the F-measure based on WLCS as follows:

RLCS = f−1

(
WLCS(T,H)

f (|T |)
)

PLCS = f−1

(
WLCS(T,H)

f (|H|)
)

FLCS =

(
1 + β2

) ·RLCS · PLCS

RLCS + β2 · PLCS

(9)

where f−1 is the inverse function of f . One property that f must have
the is that f(x + y) > f(x) + f(y) for all positive integer values6. In our
experiments we used f(k) = k2, f−1(k) = k1/2 and β = 1.

· ROUGE-S: this measure is based on skip-ngrams. A skip-ngram is any
combination of n words in their sentence order, allowing arbitrary gaps.
ROUGE-S measures the overlap of skip-ngrams between the hypothesis
and the text, SKIPn(T,H). As the aforementioned ROUGE measures,
we compute the ROUGE-S-based F-measure as follows:

5 Definition extracted from http://www.wikipedia.org/
6 This property ensures that consecutive matches has more scores than non-

consecutive matches



RLCS =
SKIPn(T, H)

C (|T |, n)

PLCS =
SKIPn(T, H)

C (|H|, n)

FLCS =

(
1 + β2

) ·RLCS · PLCS

RLCS + β2 · PLCS

(10)

where β = 1, C is a combinational function and n is the length of the
selected skip-gram. For our experiments we developed skip-bigrams and
skip-trigram (n = 2 and n = 3), due to the fact that higher values of n
produced meaningless skip-ngrams.

The whole system’s architecture is shown in Figure 1. It illustrates how the
different modules interact between them as well as the ML algorithm used to de-
cide whether there is entailment or not. Different ML classifiers were considered,
being the Support Vector Machine (SVM) the best one for our needs. We have
used the SVM implementation of Weka [14], considering each lexical measure as
a feature for the training and test stages.

Text

Hypothesis

SVM

YES

Previous

Analysis

tokenization

stemmer

lemmatization

morphological

analysis

Measures

simple matching

Consecutive subsequence

matching

tri-grams

ROUGE measures

Levenshtein distance

NO

Fig. 1. DLSITE-1 system architecture.

3 Experiments and Discussion

The aim of the performed experiments is to check whether our research on lexical
measures as a SVM classifier features can achieve satisfactory results considering
that only lexical information is used. In this section we present the evaluation en-
vironment and the different sets of features obtained applying a selection process.
Later on, we show and analyze the results obtained.

3.1 Evaluation Environment

To evaluate our system we believe that it is appropriate to use the corpora from
the two editions of PASCAL RTE Challenge. The organizers of this challenge



provide participants with development and test corpora, both of them containing
800 sentence pairs (text and hypothesis) manually annotated for logical entail-
ment. It is composed of four subsets, each of which corresponds to typical success
and failure settings in different tasks, such as Information Extraction (IE), In-
formation Retrieval (IR), Question Answering (QA), and Multi-document Sum-
marization (SUM). For each task, the annotators selected positive entailment
examples (annotated YES), as well as negative examples (annotated NO) where
entailment is not produced (50%-50% split). The judgments returned by the
system will be compared to those manually assigned by the human annotators.
The percentage of matching judgments will provide the accuracy of the system,
i.e. the percentage of correct responses.

Regarding our system’s training stage, we used the development corpus from
the first and second edition of RTE, namely RTE-1 and RTE-2, respectively.
However, the evaluations were performed using only the test corpus provided
in RTE-2. The use of the two development corpora increased the number of
significant examples in the training data, and, therefore, also increased the final
accuracy rate.

3.2 Feature Selection

The lexical measures implemented in our system provide a set of 45 features.
They have been applied to the text-hypothesis pairs, and, concretely, to their
respective words, stems and lemmas. In addition, there are two kinds of lexical
measures: those that consider only functional words, and those that only take
into account nouns and verbs. The mentioned features were processed as a pool
of potentially useful features.

In order to select the best features for our system’s purpose, we performed a
top-down strategy starting with all available features and iteratively removing
one of them in each iteration. The removal criterium was the one that had the
lowest information gain. The best feature sets generated using the mentioned
strategy were the followings:

· all features: initial set containing all features (simple matching, Leven-
shtein distance, Consecutive subsequence matching, Tri-grams and ROUGE
measures considering tokens, stems, lemmas and functional words extracted
from the text and the hypothesis).

· R1set: removing from the all features set the ones obtained by the ROUGE−
S measure (when S = 2 and S = 3).

· R2set: R1set without considering the feature derived from the ROUGE−L
and ROUGE −W measures.

· R3set: R2set but the simple matching, Levenshtein distance, Consecutive
subsequence matching, Tri-grams and ROUGE −N measures were only ap-
plied to tokens, stems and lemmas extracted from the text and the hypoth-
esis.



3.3 Result Analysis

Table 1 summarizes the results obtained with a 10-fold cross validation over the
development data and the final system’s accuracy using the test corpus provided
by RTE-2.

Table 1. Results obtained by the PASCAL RTE-2 evaluation script.

10-fold Cross Validation Accuracy (test data)
overall overall IE IR QA SUM

SVMall feautures 0.5941 0.6062 0.5250 0.6050 0.5400 0.7550

SVMR1set 0.5897 0.6062 0.5250 0.6000 0.5450 0.7550

SVMR2set 0.5919 0.6088 0.5300 0.6150 0.5400 0.7500

SVMR3set 0.6013 0.6188 0.5300 0.6300 0.5550 0.7600

As we can observe in the previous table, the differences between feature
sets are reduced, being R3set the one that achieves better results in both the
development and test corpus sets. This fact reveals that the least significant
features are produced by the ROUGE measures (except ROUGE-N). In addition,
the application of lexical measures to tokens, stems and lemmas obtain better
performance than considering functional words or only nouns and verbs.

According to the performed feature analysis and the information gain pro-
vided by each one in the training phase, we can deduce that the most significant
lexical measures were Consecutive subsequence matching and tri-grams applied
to the tokens and lemmas extracted from the text-hypothesis pair. One should
note that these statements depend on the idiosyncrasies of the RTE corpora.
However, these corpora are, nowadays, the most reliable for evaluating textual
entailment systems.

On the other hand, the fact that the proposed system only uses lexical in-
formation reduces its capability to recognise entailment relation. One example
could be the pair number 38 from the RTE-2 test corpus, which is shown as
follows:
Text: Considering the amount of rain that soaked Riviera, Campbell didn’t
expect to complete his second round Friday in the Nissan Open.
Hypothesis: Campbell finished his second round Friday.

In this case, the hypothesis’ subsequences “Campbell” and “his second round
Friday” match exactly with the text, producing a high lexical similarity value.
The lack of semantic knowledge causes that the system suggests true entailment
even although the entailment relation does not exist. This deficiency could be
solved adding modules that deal with synonyms and negations contributing to
establish different meaning to the text and the hypothesis.

Finally, a comparison between the RTE-2 participating systems is exposed.
Table 2 shows the results that DLSITE-1 such systems obtained in the RTE-2
Challenge.



Table 2. Comparative evaluation within the RTE-2 environment.

System Accuracy (test data)

overall IE IR QA SUM
(Hickl et. al, 2006) [7] 0.7538 0.7300 0.7450 0.6950 0.8450
(Tatu et. al, 2006) [13] 0.7375 0.7150 0.7400 0.7050 0.7900
(Zanzotto et. al, 2006) [15] 0.6388 – – – –
(Adams, 2006) [1] 0.6262 0.505 0.595 0.685 0.720
DLSITE-1 0.6188 0.5300 0.6300 0.5550 0.7600
(Bos et. al, 2006) [4] 0.6162 0.505 0.660 0.565 0.735
...
(Ferrández et. al, 2006) [11] 0.5563 0.4950 0.5800 0.6100 0.5400

As we can see in Table 2, DLSITE-1 would have reached the fifth place in
the RTE-2 ranking, out of twenty four participants.

The baseline we set for our system was to achieve better results than the
ones we obtained with our last participation in RTE-2 (see [11], last row in
Table 2). As stated in [11], our previous system obtains a semantic similarity
score by means of logic forms derived to the dependency trees from the pair
text-hypothesis and WordNet. However, although its results were promising we
desired to improve them tackling the recognision of textual entailment from
a concrete setting (in this case a lexical setting). This approach allows us to
achieve good result considering only lexical information and, subsequently add
others kinds of information (e.g. syntactic and semantic) in order to improve the
system.

In addition, we would like to emphasize the fact that all systems shown in
Table 2 used more knowledge than the information which could be provided
by lexical measures. For example, in [1] the author uses WordNet in order to
obtain the lexical relation between two tokens as well as a negation detector.
The approach in [7] combines lexico-semantic information obtained by a large
collection of paraphrases and NLP applications (e.g. named entity recognition,
temporar/spatial normalization, semantic role labeling, coreference, etc.). Fi-
nally, the system exposed in [13] contains a knowledge representation based on
a logic proving setting with NLP axioms.

4 Conclusions

The main contribution of this research is the development of a system for solving
textual entailment relations considering only lexical information. To achieve this,
we implemented and applied a wide variety of lexical measures. The reason
why we make use of this amount of measures and information is motivated by
the fact that the integration of more complex semantic knowledge is a delicate
task as it is demonstrated by the amount of work developed in the last years.
Therefore, our goal is to develop a robust system without complex syntactic-



semantic knowledge. Such expertise may be added to our approach in a near
future.

In a nutshell, DLSITE-1 is a textual entailment system that deals with the
entailment phenomenon from a lexical point of view, applying relevant lexical
measures to deduce entailment relations. It successfully overcomes the RTE task
achieving overall accuracy rates higher than 61%. Based on this, the authors
of this paper believe that it is easier to perform the recognition task in three
separate levels (lexical, syntactic and semantic) and, afterwards, combine them
into a complete system.

As of future work, we are interested in improving our system investigating
the addition of syntactic and semantic knowledge. Due to the fact that the sys-
tem achieves high accuracy rates considering only lexical similarities, the next
step would be to integrate different tools and strategies to add other kinds of
knowledge, such as syntactic and semantic. For instance, we could use resources
to generate syntactic dependency trees and obtain similarities between them,
including modules that process synonyms and other semantic relations. In ad-
dition, extraction of speech knowledge representations by means of techniques
based on named entity recognition, co-references and role labeling could be an
important improvement.

Moreover, we would like to emphasize that, although the proposed lexical
similarity measures need some language dependent tools (e.g. lemmatizer, stem-
mer and morphological analyzer), the system could be easily ported to other
languages. This research line would represent possible future work as well.
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