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Abstract. In the convergence theory of multisplittings for symmetric positive definite (s.p.d.)
matrices it is usually assumed that the weighting matrices are scalar matrices, i.e., multiples of the
identity. In this paper, this restrictive condition is eliminated. In its place it is assumed that more
than one (inner) iteration is performed in each processor (or block). The theory developed here is
applied to nonstationary multisplittings for s.p.d. matrices, as well as to two-stage multisplittings
for symmetric positive semidefinite matrices.
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1. Introduction. Multisplitting methods, first introduced by O’Leary and
White [18], developed into an important theoretical tool in the study of parallel block
iterative methods for the solution of linear (and nonlinear) systems of equations; see,
e.g., [4], [12], [16], and the extensive references therein. In these methods, for the
solution of a nonsingular system Ax = b, several splittings A = M�−N�, � = 1, . . . , p,
(M� nonsingular) are used, together with a set of diagonal nonnegative (weighting)
matrices E�, such that they add up to the identity; see Algorithm 1.1 below.

Most of the convergence results obtained with the philosophy of multisplittings
throughout the literature relate to nonsymmetric matrices. The reason for this is that
in these cases, general convergence results were obtained for quite general weighting
matrices thus allowing the study of truly parallel methods (with or without overlap),
i.e., methods in which each processor computes an approximation to the solution of
a problem which is much smaller than the original problem.

In contrast, most results for general symmetric positive definite (s.p.d.), or more
generally, Hermitian positive definite, linear systems require the assumption that
weighting matrices are multiples of the identity

E� = α�I, � = 1, . . . , p(1.1)

(see, e.g., [7], [8], [15], [18]), thus these results have little applicability for analysis of
parallel processing. We note here that in [21], condition (1.1) is not present, but the
splittings of A have a very special structure. We also mention [6] where a nonstandard
multisplitting is used for s.p.d. matrices.

The main reason for the requirement (1.1) becomes apparent with examples found
in the literature, e.g., in [7], [18], showing that relaxing (1.1) may lead to a divergent
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multisplitting method. In this note we prove new convergence theorems which, for
the first time, show that one can use the multisplitting idea on s.p.d. matrices without
the restriction (1.1), i.e., with quite general weighting matrices. As we show later, the
price we pay for this generality is a few extra inner iterations.

In the following version of the multisplitting method, which is a special case of
the nonstationary two-stage multisplitting method [20] (see also section 3 for another
special case), the sequence s(�, k) indicates, e.g., the number of local iterations used
to approximate the solution of the �th system, at the kth iteration; see also [3]. We
call them local iterations, since they correspond to work performed in each processor.
In the standard multisplitting method of [18], one has s(�, k) = 1 for all � and k.

Algorithm 1.1 (Nonstationary Multisplitting). Given an initial vector
x0 and a sequence of numbers of local iterations s(�, k), � = 1, . . . , p, k = 1, 2, . . .

For k = 1, 2, . . . , until convergence.

For � = 1 to p

y�,0 = xk−1

For j = 1 to s(�, k)

M�y�,j = N�y�,j−1 + b(1.2)

xk =

p∑
�=1

E�y�,s(�,k) .

The iteration matrix at the kth step of this multisplitting method is

Tk =

p∑
�=1

E�(M
−1
� N�)

s(�,k),(1.3)

i.e., ek = Tkek−1, where the error at each step is ek = xk−x� and x� is the solution of
Ax = b. Convergence of the method is obtained for any initial vector x0 by showing
that Hk → O as k → ∞, where Hk = TkTk−1 · · ·T2T1; see, e.g., [4].

The strength of these methods stems from having many zeros in the weighting
matrices, indicating that only a small number of variables of y�,j in (1.2) need to be
computed. This is why multisplittings developed into such a valuable tool for the
analysis of block methods, with or without overlap. By overlap we mean that a vari-
able received contributions from more than one processor, i.e., that the corresponding
diagonal entry is nonzero in more than one weighting matrix; see, e.g., [5], [9], [10],
[13].

In this note we present a convergence theorem for (nonstationary) multisplittings
(section 2), where the condition (1.1) is not needed. We apply this general theorem to
the case of s.p.d. matrices. Then, in section 3, we use this result to prove convergence
of two-stage multisplittings for symmetric positive semidefinite linear systems.

2. Convergence with general weighting matrices. We begin with our gen-
eral convergence result. To that end, consider any matrix norm such that the norm
of the identity is equal to one. Thus, from the fact that

∑p
�=1 E�=I , we have that

p∑
�=1

‖E�‖ ≥ 1.(2.1)

Furthermore, if each splitting A = M�−N� is convergent, i.e., if ρ(M
−1
� N�) < 1, where

ρ is the spectral radius, then, since limk→∞ ‖(M−1
� N�)

k‖ = 0, given any positive
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number η < 1 there is an integer s̃ = s̃(η) (which also depends on the chosen norm),
so that

‖(M−1
� N�)

s‖ ≤ η for all s ≥ s̃, � = 1, . . . , p.(2.2)

Theorem 2.1. Let A be nonsingular, and let every splitting A = M� −N�, � =
1, . . . , p, be convergent. Given a fixed positive number θ < 1, let η = θ/ (

∑p
�=1‖E�‖).

Let s̃ be such that (2.2) holds. If the sequence of number of local iterations satisfies
s(�, k) ≥ s̃, � = 1, . . . , p, k = 1, 2, . . ., then the nonstationary multisplitting Algorithm
1.1 converges to the solution of Ax = b with convergence factor θ.

Proof. From (1.3) it follows that

‖Tk‖ ≤
p∑

�=1

‖E�‖‖(M−1
� N�)

s(�,k)‖ ≤
(
max

�
‖(M−1

� N�)
s(�,k)‖

) p∑
�=1

‖E�‖ ≤ θ < 1.

Thus ‖Hk‖ = ‖TkTk−1 · · ·T2T1‖ ≤ θk → 0 as k → ∞.
It follows from Theorem 2.1 that even if the standard multisplitting algorithm

(s(�, k) = 1) does not converge, the price to pay for convergence is more local itera-
tions. Furthermore, we can have convergence as fast as desired, i.e., we can prescribe a
smaller convergence factor θ, and obtain the desired convergence by performing more
local iterations to satisfy the corresponding condition (2.2).

Of course, we do not know a priori how many local iterations are needed for
condition (2.2) to hold, and thus, Theorem 2.1 can be seen more as a theoretical
result than a computational tool. On the other hand, Theorem 2.1 implies that one
can experiment by increasing a value of s̃, until convergence is achieved. In fact, our
discussion before Theorem 2.1 guarantees that such s̃ exists.

We remark that unlike some results in the literature, here we do not need that
the sequence s(�, k) go to infinity; see [4] and the references therein. On the contrary,
all we need is that this sequence be bounded from below by s̃ defined by (2.2). We
also mention that similar theorems exist, with the sequence either going to infinity or
bounded for two-stage iterative methods; see [11], [17].

In the remainder of this section we apply Theorem 2.1 specifically to the s.p.d.
case, using the A-norm, for which (2.1) holds.

If a matrix A is s.p.d., it induces a vector norm ‖x‖A = (xTAx)1/2. A splitting
A = M −N of A is called P -regular if MT +N is positive definite [19]. The following
characterization can be found in [2], [12], or [22].

Theorem 2.2. Let A be s.p.d. A splitting A = M −N is P -regular if and only
if ‖M−1N‖A < 1.

Thus, condition (2.2) can be easily satisfied for P -regular splittings of an s.p.d.
matrix.

Corollary 2.3. Let A = M� − N� be P -regular splittings of the symmetric
positive definite matrix A, � = 1, . . . , p. Given a fixed positive number θ < 1, let
η = θ/ (

∑p
�=1‖E�‖A). Let s̃ be such that ‖(M−1

� N�)
s‖A ≤ η, for all s ≥ s̃ , � =

1, . . . , p. If the sequence of number of local iterations satisfies s(�, k) ≥ s̃, � = 1, . . . , p,
k = 1, 2, . . ., then the nonstationary multisplitting Algorithm 1.1 converges to the
solution of Ax = b with convergence factor θ. Furthermore, we have that for each
iteration k, ‖Tk‖A ≤ θ < 1.

We emphasize that in Corollary 2.3 no condition is imposed on the weighting
matrices other than adding to the identity, so that (2.1) holds. In other words, we do
not have the restriction (1.1).
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In Example 2.3 of [7], where there is no convergence, the two splittings are P -
regular, and the smallest integer s̃ for which ‖(M−1

� N�)
s̃‖A < 1/

∑p
�=1‖E�‖A, is s̃ = 8.

Thus, for s(�, k) ≥ 8, ‖Tk‖A < 1. We mention here also that if s(1, k) = s(2, k) = 4,
k = 1, 2, . . ., then ρ(Tk) < 1, and this is the smallest integer for which this is true.

3. Two-stage multisplittings for symmetric positive semidefinite matri-
ces. In this section we extend the convergence theory of multisplittings with general
weighting matrices to two-stage multisplittings, when the coefficient matrix of the
linear system is s.p.d. (and in particular our result applies to the symmetric positive
semidefinite case). Here we assume that s(�, k) = s(�), i.e., that the number of inner
iterations may change from one (inner) splitting to another (or from block to block),
but it is the same for all (outer) iterations; it is a stationary method.

In the nonsingular case, as in Theorem 2.1, convergence of an algorithm was shown
by having the iteration matrix having norm less than one. Here, in the singular case,
we consider a consistent linear system Ax = b. The iteration matrix T has spectral
radius equal to one, and convergence to some solution is achieved when the iteration
matrix T is convergent, i.e., when the limit limk→∞ T k exists; see, e.g., [2].

Let A = M −N be the outer splitting, and let M = F� −G�, � = 1, . . . , p.
Algorithm 3.1 (Two-stage Multisplitting). Given an initial vector x0,

and a sequence of numbers of inner iterations s(�), � = 1, . . . , p.
For k = 1, 2, . . . , until convergence.

For � = 1 to p

y�,0 = xk−1

For j = 1 to s(�)

F�y�,j = G�y�,j−1 +Nxk−1 + b

xk =

p∑
�=1

E�y�,s(�) .

For this two-stage multisplitting algorithm, it follows, e.g., as in [4], that the
iteration matrix is

T =

p∑
�=1

E�(F
−1
� G�)

s(�) +

(
I −

p∑
�=1

E�(F
−1
� G�)

s(�)

)
M−1N.(3.1)

For our convergence proof we will use the following two results. The first can be
found, e.g., in [1], and the second, e.g., in [2].

Lemma 3.2. Given a nonsingular matrix A and a matrix T such that (I − T )−1

exists, there exists a unique pair of matrices P and Q, P nonsingular, such that
A = P −Q and T = P−1Q. The matrices are P = A(I − T )−1 and Q = P −A.

Theorem 3.3. Let A = M − N be a P -regular splitting of a symmetric matrix
A. Then the matrix M−1N is convergent if and only if A is positive semidefinite.

Theorem 3.4. Let A be a symmetric positive semidefinite matrix. Let the split-
ting A = M −N be such that M is a s.p.d. matrix and N is a positive semidefinite
matrix. Let M = F� −G�, � = 1, . . . , p, be P -regular splittings. Given a fixed positive
number θ < 1, let η = θ/ (

∑p
�=1‖E�‖M ). Let s̃ be such that

‖(F−1
� G�)

s‖M ≤ η for all s ≥ s̃, � = 1, . . . , p.(3.2)

If the numbers of inner iterations satisfies s(�) ≥ s̃, � = 1, . . . , p, then the two-stage
multisplitting Algorithm 3.1 converges to a solution of the consistent linear system
Ax = b for any initial vector x0.
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Proof. All we need to prove is that T defined in (3.1) is convergent. Observe
first that the matrix S =

∑p
�=1 E�(F

−1
� G�)

s(�) can be viewed as the iteration matrix
of a nonstationary multisplitting method based on the splittings M = F� − G� and
s(�, k) = s(�), k = 1, 2, . . . , � = 1, . . . , p; cf. (1.3). Furthermore, since M = F� −G�,
� = 1, . . . , p are P -regular splittings of the s.p.d. matrix M , from Corollary 2.3 it
follows that ‖S‖M < 1. Then, using Lemma 3.2, this iteration matrix induces a
unique splitting M = P − Q such that P−1Q = S. Moreover, by Theorem 2.2, this
splitting is P -regular. Thus, with these matrices, we have

T = P−1Q+ (I − P−1Q)M−1N

= P−1(Q+ (P −Q)M−1N) = P−1(Q+N).

Thus, the splitting A = P − (Q + N) is a splitting induced by T (this splitting is
not unique [1]). Since PT + Q is positive definite and N is positive semidefinite,
PT + Q + N is positive definite, and thus this splitting is P -regular. Therefore, by
Theorem 3.3, T is a convergent matrix and the proof is complete.

We mention that the second part of the proof of Theorem 3.4 resembles the proof
of Theorem 2.1 of [14], although the context is different.

As in Corollary 2.3, no special condition is imposed on the weighting matrices.
Instead we may need to increase the number of inner iterations so that (3.2) holds.
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