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NEWTON ADDITIVE AND MULTIPLICATIVE SCHWARZ
ITERATIVE METHODS*

JOSEP ARNAL', VIOLETA MIGALLONT', JOSE PENADES!, AND DANIEL B. SZYLD?

Abstract. Convergence properties are presented for Newton additive and multiplicative Schwarz
iterative methods for the solution of nonlinear systems in several variables. These methods consist
of approximate solutions of the linear Newton step using either additive or multiplicative Schwarz
iterations, where overlap between subdomains can be used. Restricted versions of these methods
are also considered. Numerical experiments on parallel computers are presented, indicating the
effectiveness of these methods.

Key words. Nonlinear systems. Newton’s method. Additive Schwarz. Multiplicative Schwarz.
Iterative methods. Subspace correction. Parallel computing.
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1. Introduction and Preliminaries. We are interested in the parallel solution
of the system of nonlinear equations

(1.1) F(z) =0,

where I is a map F: R” — R", and it is assumed that a solution x* of (1.1) exists.
A well-known method for solving the nonlinear system (1.1) is the classical Newton
method; see, e.g., [15]. Given an initial vector 2(°), this method produces the following
sequence of vectors

(1.2) gD = 2O 5O p=0,1,...,
where 59 is the solution of the linear system
(1.3) F'(29)z = F(a®),

with F’(z) denoting the Jacobian of F' at z.

If an iterative method is used to approximate the solution of (1.3), then one ob-
tains a Newton-iterative method; see, e.g., [15], [16]. In this paper we analyze parallel
Newton-iterative algorithms for the solution of the general nonlinear system (1.1) in
which additive and multiplicative Schwarz iterations are used as secondary iterations
to approximate the solution of the associated linear system (1.3) at each Newton step.
These Schwarz methods are attractive because they are easily parallelizable, and be-
cause they allow for overlap, i.e., the same variable is updated by more than one
processor; see, e.g., section 2, or the references [8], [17], [19]. In this paper, we prove
the convergence of the Newton additive and multiplicative Schwarz iterative methods
in two cases: when the Jacobian is symmetric positive definite, or a monotone matrix.
In the monotone case, we also study restricted additive and multiplicative Schwarz
iterative methods; see section 2, or the references [7], [11], [14], [18]. In all cases, we
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consider both exact and inexact local solvers. We also illustrate the effectiveness of
the proposed methods using parallel computers with some numerical experiments.

Schwarz methods have been used essentially in two different forms for the solution
of nonlinear systems. As we just mentioned, the approach considered in this paper,
consists of the use of Newton’s method, with the associated linear system solved by a
Schwarz iterative method as a secondary (inner) iteration; see [4] for some comments
on this approach for some special cases. Another approach consists in the use of
Schwarz methods, directly on the nonlinear problem (1.1); see, e.g., [6], [9].

We briefly describe now the Newton-iterative methods. Consider for each = a
splitting F'(z) = M(z) — N(x), with M (z) nonsingular. This splitting determines
the iteration matrix H(z) = M(2z)"'N(z) = I — M(x)"'F'(z), and an iterative
method for the solution of (1.3). At the ¢th Newton step, one computes m, iterations
with such a splitting, and for simplicity we assume that the initial (inner) iterate
is taken as the zero vector; cf. [16]. The Newton-iterative method starting with an
initial vector 2(*) is thus given by

(1.4) 2D — (O _ (H(x(f))mz—l + H@M))mz—? 4 [)M(x(é))—lp(x(é))7
=0,1,....

From F'(x) = M(x) — N(z), we have that F'(z)~! = (I — H(z))"'M(x)~*, and
thus, we can express (1.4) as

(1.5) D =20 _ A (NF@Y) =G, (29), £=0,1,...,
where for each positive integer m
(1.6) Ap(z) = (I — H(z)™)F'(z)™' and G (z) = 2 — Ay (2)F(x).

Schwarz iterations can be characterized by certain splittings [2], [10], [11], [14],
and we review this in sections 2 and 4. Therefore, in this paper we analyze the
convergence of the method (1.5) for the particular splittings which define Schwarz
iterations; see sections 3 and 5. Numerical experiments are reported in section 6.

In the rest of this section, we present some auxiliary notation, review some con-
vergence results of Newton-iterative methods, and some other preliminary results. We
denote by L(R™) the set of linear operators from R™ to R™. Let {x(f)} be a sequence
in R™ convergent to z*. We define its convergence rate as

Ry(z) = Zlim sup |29 — 2*|| V4.

Let us consider the following usual conditions on F' and on the splitting F'(z) =
M (x) — N(x). We suppose that there exists an rg > 0 such that
(i) F is differentiable on Sy = {z € R™ : ||z — z*|| < ro},
(ii) the Jacobian matrix at a*, F’(z*), is nonsingular,
(ili) there exists an L > 0 such that for « € S, ||[F'(z) — F'(z*)|| < L||jz — 2*||,
(iv) M(z) is continuous at z*,
(v) M(x*) is nonsingular,
(vi) there exists A, 0 < A < 1, such that ||H(z*)|| < A,
(vii) there exists L1 < 400 such that for € Sy, ||M(z) — M (z*)|| < L1||lxz — z*||.
Under hypotheses (i)-(iii) it is well-known (see, e.g., [15]) that the iterative method
(1.2) converges Q—quadratically to z* for 2(°) in a neighborhood of z*. Also, under
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hypotheses (i)-(vi) the iterative method (1.5) converges for 2(°) in a neighborhood of
the solution z* and moreover the following result holds.
THEOREM 1.1. [15] Let us consider F : D C R™ — R™ and let * € D be such
that F(z*) = 0. Assume that F satisfies:
1. F(z) is G-differentiable on an open neighborhood Sy C D of x*,
2. F'(x) is continuous at x*.
Assume further that F'(x) = M (xz) — N(z), where M, N : So — L(R"™) satisfy:
1. M(z) is continuous at Sy,
2. M(x*) is nonsingular,
3. p(H(z*)) < 1 where H(z) = M(z)"'N(x).
Then there exists an open neighborhood S of x* such that, for each z°) € S and for
each sequence of positive integers my, the iteration given by (1.5) is well-defined and
converges to x*. Moreover,
Ri(z9) < p(H(* )™, m = élirn inf my.
On the other hand, under hypotheses (i)-(vii), Sherman [16] proves the following
result.
THEOREM 1.2. [16] Assume that F satisfies (i)-(iii) and let F'(xz) = M (x) — N (z)
be a splitting satisfying (iv)-(vil). Let {m¢}3°, be a sequence of positive integers and
let

-1
(1.7) m = max l{mo}u{mZ—Zmi : 6—1,2,...}].

=0

Assume that m < —+o0o, then there exist a meighborhood S of x*, and ¢ > 0 with
A\ < ¢ < 1 such that for (%) € S the sequence of iterates defined by (1.5) satisfies

(1.8) 2D — 2| < el — .

We end this section by recalling a result that we use in the later sections. Given
an iteration matrix, there is a unique splitting which defines it; see, e.g., [3].

LEMMA 1.3. Let A and T be square matrices such that A and I —T are non-
singular. Then, there exists a unique pair of matrices M, N, such that M is non-

singular, T = M~'N and A = M — N. The matrices are M = A(I —T)~! and
N=M-A=A(I-T)"'-1).

2. Additive Schwarz Methods. We now describe the additive Schwarz meth-
ods and give some auxiliary results. Consider a nonsingular linear system in V' = R"

(2.1) Az =b.

We consider p nonoverlapping subspaces Vi, k = 1,...,p, which are spanned by
columns of the identity I over R™ and which are then augmented to produce overlap.
For a precise definition, let S,, = {1,...,n} and let

P
Sn=J Sko
k=1
be a partition of S, into p disjoint, non-empty subsets. For each of these sets Sy o we

consider a nested sequence of larger sets Sy s with

(2.2) Sk0 CSk1 CSk2C---CS,={1,...,n},
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so that we again have

p
Sp = U Sk.s
k=1

for all values of the integers 6 > 0, but for § > 0 the sets S s are not pairwise disjoint,
i.e., there is overlap. A common way to obtain the sets S s is to add those indices to
Sk,0 which correspond to nodes lying at distance d or less from those nodes correspond-
ing to S, in the (undirected) graph of A. This approach is particularly adequate
in discretizations of partial differential equations where the indices correspond to the
nodes of the discretization mesh; see, e.g., [7], [17].

Let ng,s = |Sk,s| denote the cardinality of the set Sy 5. For each nested sequence
of the form (2.2) we can find a permutation 7 on {1,...,n} with the property that
for all 6 > 0 we have 7, (Sk,5) = {1,...,nkes}. We now build matrices Ry, 5 € R™k:s*"
whose rows are precisely those rows j of the identity for which j € Sj ;. Formally,
such a matrix Ry s can be expressed as

(2.3) Ris = [Ik,50] my

with I 5 the identity on R™%¢. For each J, we define the subspaces Vi, s C V as the
range of Rg,[s- Thus, we have dim V5 =ng s, k=1,...,p, and

p P
ZVM = {356 Viﬂ?:zvk, Vg Ekag} =V
k=1

k=1

In the sequel, for simplicity, and when no confusion may arise, we do not include
0 in the subscripts whenever 6 > 0. We identify Vj with R™*, an we have that
Ry 'V — V), acts as a restriction operator and Rg is a prolongation operator from
R™ to V.

In addition to the p subspaces just described (for a given overlap J), some times
a “coarse grid correction” is used; see, e.g., [19]. Formally, there is a set of nodes
So C Sy, with ng = |Sp|, a subspace Vy C V, and a corresponding restriction operator
Ry, which in this paper is assumed to be of the form (2.3).

Denote by Ay, = R ARFE, the restriction of the operator A to the subspace Vj.
In the cases considered here Ay is nonsingular. Then Ay is a symmetric permutation
of an ny X ny principal submatrix of A. We also denote by

Py = RTA; 'Ry A = RE (R ARL) TR, A.
Given an initial approximation z(°) to the linear system Az = b, the damped additive
Schwarz (AS) iteration (see, e.g., [10], [12]), can be written as the iteration
P
(2.4) A =2 L 0N RIAT R (b — A2)), s=0,1,..,
k=1
where 6 > 0 is the damping factor. The iteration matrix for the method (2.4) is given
by
P
(2.5) Ty=1-0) RiA;'RiA,
k=1
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and the error et = (51 _ 2% gatisfies (51 = Tyel®), where 2* is the exact
solution of (2.1). When we add a coarse grid correction, the sum in (2.5) goes from 0
to p.

Beginning with 2(?), the restricted additive Schwarz (RAS) iteration consists of

P

(2.6) 20T =2 L N R A Re(b— A1), s=0,1,...,
k=1

and the corresponding iteration matrix is

p
(2.7) Tras =1 — Z RE A RA.
k=1

It can be appreciated that the difference between AS and RAS is that in the latter
case, § = 1, and that in one occurrence one uses the restriction Rpg to Vio C
Vi = V5. The advantage of RAS is that while the local problems are solved taking
into account the overlap, the information collected (and usually send to the other
processors) corresponds to the subspaces without the overlap Vi . Interprocessor
communication is reduced resulting in less overall convergence time; see further [7]
and our own numerical experiments reported in Table 6.1 (section 6). If a coarse grid
correction is present, an additional term of the form RE Ay 1RoA is added to the sum
in (2.7).

Very often in practice, instead of solving the local problems Ay, = Ry (b— Az(*))
exactly, such linear systems are approximated. Let Ay, denote the approximation of
Ay used, i.e., the inexact local solver is /I,:l. By replacing A; with A in (2.4) and
(2.5) (or in (2.6) and (2.7)) one obtains the damped (restricted) additive Schwarz
iteration with inexact local solvers, and their iteration matrices are given by

p p
Ty=1-0> RIA'ReA and Tras=1-Y Ri A RiA.
k=1 k=1

We present now the splitting that defines the additive Schwarz method (2.4).
LEMMA 2.1. [12] Let Ty be the matriz given by (2.5), there exist two matrices My
and Ny such that A = My — Ny, My is nonsingular and Ty = Me_lNg. Moreover

p
My'=0B=0Y RiA;'R:.
k=1

A similar result was shown in [11] for RAS: there exists a nonsingular matrix
Mpas such that Mpiq = S0_, REOAgle, for which one can write A = Mprag —
Ngras and Tpras = M zgjx ¢INRras. Similar splittings exist when a coarse grid correction
is added [2], [11].

Note that by Lemma 1.3, these splittings are unique. In the next two subsections
we recall some convergence results of the additive Schwarz method (2.4) and of the
restricted additive Schwarz method (2.6). We also remark that when AS is used as
a preconditioner, the preconditioner is M, i.e., with no damping, and the precondi-
tioned matrix is M; 'A =T —Ty. Similarly, the preconditioned matrix with RAS is
MpigA=1—-Tras.



2.1. Convergence for Symmetric Positive Definite Matrices. A matrix A
is symmetric positive definite, denoted A > O, if it is symmetric and if for all vectors
x#0, 2T Az > 0; A > O implies A~' = O. If A = O, an associated vector norm is
defined as ||v]|a = (v Av)Y/2. An operator norm is associated to the vector norm in
the usual manner. A splitting A = M — N is called P-regular if M” + N is positive
definite.

LEMMA 2.2. [10] Suppose that A is symmetric positive definite. Then A= M —N
is a P-regqular splitting if and only if HM‘lNHA <1.

It has been shown in [10] and [12] that if A > O and 6 < 1/p, the iteration (2.4)
converges, i.e., p(Ty) < 1. Furthermore, the following bound holds for some v > 0,

(2.8) 1T, < <1.

In the same references, the allowable range for the damping parameter 6 is increased
by considering coloring. The sets V), can be colored using ¢ << p colors as follows,
V; and V; have different color if V; N'V; # {0}. It is proved that the expression (2.8)
holds using the weaker condition § < 1/q. In summary, we have the following lemma.

LEMMA 2.3. Assume that A = O, and let A = My — Ny be the splitting given by
Lemma 2.1. If < 1/q, then this splitting is P-regular and thus ||Ty|| , < 1.

Next we study the case of inexact local solvers. When each inexact solver is
symmetric positive definite, then it can be proved similarly to the exact case, as in
[10] and [12], that B = >-_ RT A' Ry, is nonsingular.

LEMMA 2.4. Suppose that A = O. If for a given u > 0, Ay = pAg, for k =
1,...,p, then A < ugM, where M~ =30 _ RT A, 'Ry.

From this lemma it follows that the unique splitting induced by Ty, A= My— Ny
(with M, ' = 0B) is P-regular, assuming that 6 < 1/(ug), and thus || Ty 4 < 1.

2.2. Convergence for Monotone Matrices. A nonsingular matrix A is called
monotone if A~! > O. A monotone matrix A is called a nonsingular M-matrix if it
has nonpositive off-diagonal elements.

LEMMA 2.5. [10] Let A be a nonsingular M -matriz. Let Ry be matrices of the
form (2.3). Then B = Y%_, RF A, 'Ry, is nonsingular. Moreover, A" < R,A~'R¥
fork=1,... p.

For a positive vector w € R™ we define an associated vector norm as follows:

vl = max fos]/w;.
i=1,...,n
An operator norm is associated to the vector norm in the usual manner.

THEOREM 2.6. [10] Let A be a nonsingular M-matriz. If 6 < 1/q, then the
damped additive Schwarz iteration (2.4) converges to the solution of (2.1), and there
exists a positive vector w and 0 <y < 1 such that ||Ty|, <.

THEOREM 2.7. [10] Let A be a nonsingular M-matriz. Assume that Ay, k =
1,...,p, are monotone matrices such that

Alzl(z‘ik—Ak) >0, k=1,...,p.

Then, if 8 < 1/q, the damped additive Schwarz iteration with inexact local solvers
converges to the solution of (2.1), and there exists a positive vector w and 0 < vy < 1
such that || Tyl < 7.

Similar results were shown in [11] in the case of RAS: If A is a nonsingular M-
matrix, RAS converges to the solution of (2.1), and there exists a positive vector
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wand 0 < v < 1 such that ||Tras|le < 7. If the inexact local solvers satisfy the
hypotheses of Theorem 2.7, we similarly have a positive vector w and 0 < v < 1
such that | Tras|lw < «y. Similar results hold when a coarse grid correction is added;
see [2], [11].

3. Newton Additive Schwarz Methods. In this section we consider the so-
lution of the linear systems (1.3) by additive Schwarz methods of the form (2.4) and
(2.6), and its variants, thus obtaining the Newton additive Schwarz methods. We
define the corresponding iteration matrix as

(3.1) Ty(z) =1—-0Y RiF(z)"'ReF'(x),
k=1

where FJ(z) = RpF'(z)RL, k = 1,...,p. Then, by Lemma 2.1 there exist two
matrices My(x) and Nyg(x) such that F'(z) = Mg(x) — Ng(z), My(zx) is nonsingular,
and Tp(z) = Mg(x)~*Ny(z). Moreover

(3.2) Mp(z)™ = 0B(x) = 0> Ry Fj.(r)"'Rx.

Similarly, using the restricted additive Schwarz method for the solution of (1.3), we
get the iteration matrix

(3.3) Tras(z) =1 — Z R} \F/(z) ' RiF'(2),
and the matrix defining the induced splitting is
Mpas(x ZR oFi(x) 'Ry,

With this notation, as in (1.4), the Newton additive Schwarz iteration as well as the
restricted case can be expressed as

(3.4) 2D =20 — (7 (@O)ymet L 7Oy 4y DM (2 O) R (W),
£=0,1,...,

where the iteration matrices are T'(z) = Tp(z) or T(x) = Tras(x), with M(z) =
My(x) or M(x) = Mpas(z), respectively. As in (1.5) and (1.6), we rewrite (3.4) as
(3.5) D =20 — A (NF@Y) =G, (29), £=0,1,...

)

where for each positive integer m
(3.6) Ap(x) =T = T(2)™)F'(2)"" and G, (z) =z — A, (2)F(2).

A coarse grid correction can be considered as well by adding a term of the form
RIF}(z)"*RoF’(z) in the corresponding sum in (3.1) or (3.3).

If the local linear problems (1.3) are solved approximately using the additive
Schwarz (or restricted additive Schwarz) iteration with inexact local solvers, the struc-
ture of the iterations and the operators (3.1)—(3.6) is maintained, with the only dif-
ference that the local solver F (z) is replaced by an inexact local solver F(z). Thus,
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the iteration matrices in this case are

p P
Ty(z) =T-0Y REF(x)'RyF'(z) and Tras(z)=1-Y RiFi(z) ' ReF'(x).
k=1 k=1

We proceed now to discuss the convergence of the Newton additive Schwarz meth-
ods. We begin with a well-known result.

LEMMA 3.1. [15] Let G : D C R™ — L(R™) be continuous at x* € D,
and G(x*) be nonsingular. Then, there exist § > 0, f > 0, such that for x €
Dn{x : ||z —a*|| < 6}, G(z) is nonsingular, G(z)~! is continuous at x*, and
1G() ] < .

LEMMA 3.2. Let G : D C R™ — L(R™) be Lipschitz continuous at x* € D, and
G(z*) be nonsingular. Then G(z)~! is Lipschitz continuous at z*.

Proof. Since G is Lipschitz continuous at x* € D there exists ¢ such that
|G(z) — G(x*)]] < e||lx — z*|| in a neighborhood of z*. Then, using Lemma 3.1 we
obtain

[G(z)™! = Ga™) M| = ||G(2) ' G(a")G (™) ! = Gla) " G(a)G(x") 7|
< |G@) | I1G@™) = G@)| |G|
< eB||GE) | o — 2. 0

Our convergence results are valid in two distinct cases, when the Jacobian F’(x)
is symmetric positive definite, or when it is a monotone matrix. These two cases
correspond to the theory described in sections 2.1 and 2.2.

THEOREM 3.3. Suppose that F satisfies (1)—(iii) and F(z*) = 0. Let F'(x)
be symmetric positive definite (or a nonsingular M-matriz) in a neighborhood of x*
and suppose that 0 < 1/q. Let {m¢}3°, be a sequence of positive integers. Suppose
that m < 400, where m is as in (1.7), then there exist a neighborhood S of x* and
0 < ¢ < 1, such that for (9 € S, the sequence of iterates defined by the Newton
additive Schwarz method (3.5) using T = Ty converges to x* and satisfies (1.8).

Proof. By Lemma 2.1 there exist two matrices My (z) and Ng(x) such that F'(z) =
My(x) — No(z), Mg(z) is given in (3.2), it is nonsingular, and Ty(x) = My(z) ! Ng(x).
If we prove that this splitting satisfies conditions (iv)—(vii), the result will follow from
Theorem 1.2. Since F’(x) is continuous and nonsingular at z*, from (3.2) it follows
that My(x)~! and Mp(z) are continuous at x*. Then condition (iv) is satisfied.
Condition (v) is satisfied by Lemma 2.1 and condition (vi) by Lemma 2.3 (or by
Lemma 2.6 in the M-matrix case). In order to prove condition (vii), we have to
demonstrate that there exists L; < 4oco such that for « in a neighborhood of z*,
[Mg(x) — My(«*)|| < Li||lx — 2*||]. By Lemma 3.2, it is sufficient to prove that
My(x)~! is Lipschitz continuous at z*. Then, from (3.2), it is sufficient to prove that
F/(z)~! is Lipschitz continuous. Since F{(x) = Ry F'(z)R}, the Lipschitz continuity
of F}(z) at z* is obtained easily from the Lipschitz continuity of F’(z) given by (iii).
O

The following result establishes the convergence of Newton additive Schwarz with
inexact solvers.

THEOREM 3.4. Suppose that F satisfies (1)—(iil) and F(x*) = 0. Let F'(z) be
symmetric positive definite (or a nonsingular M-matriz) in a neighborhood of x*.
Consider, for each x in this neighborhood, p inexact local solvers 1:",2(:10), k=1,...,p,
symmetric positive definite (or monotone matrices), approximations of Fj(x), k =
1,...,p, such that there exists p > 0, with F| () = [J,F];(,T), k=1,...,p, and suppose
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that 0 < 1/pq (or such that F}(x) = (F}(x)—F}(z)) > O fork =1,...,p, and suppose
that @ < 1/q). Let {m¢}32, be a sequence of positive integers. Assume that the inexact
local solvers ﬁ',é (x), k=1,...,p, are continuous and nonsingular at x*.

(1) Then there exists an open neighborhood S of x* such that for each z(©) € S
and for each sequence of positive integers my, the sequence of iterates defined
by the Newton additive Schwarz method with inezxact local solvers converges
to x*. Moreover,

Ri(zD) < p(Ty(z*)™, m' = elim inf my.

(2) Suppose that F}(x), k =1,...,p, are Lipschitz continuous at x*. If m < 4o,
where m is as in (1.7), then there exist a neighborhood S of x*, and 0 < ¢ < 1
such that for £(0) € S the sequence of iterates defined by the Newton additive
Schwarz method with inexact local solvers converges to x* and satisfies (1.8).

Proof. Using Lemma 2.4, the unique splitting induced by Tp(z*), F'(z*) =

My(z*) — Np(x*), with

p
Mp(2*)™! = 0B(a*) =0 RiFi(«*) 'Ry,
k=1

is P-regular, since 6 < 1/(ugq), and then ||T9(:C*)||F/(m*) < 1. In the monotone case,
by Theorem 2.7, there exists a vector w > 0 such that || Tp(z*)|l, < 1. From the
hypotheses on the inexact local solvers, we deduce that conditions (iv) and (v) are
satisfied for the matrix My(x). In the case (1), using Theorem 1.1, the result is
proved. In the case (2) we only need to prove that Mpy(z) is Lipschitz continuous at
z* and then the result follows from Theorem 1.2. The proof of the Lipschitz continuity
follows from the Lipschitz continuity of F, w(x), k=1,...,p, in a way similar to that
described in Theorem 3.3. O

For nonsingular M-matrices, we obtain similar convergence results for RAS for
exact and inexact local solvers, using essentially the same proofs as for Theorems 3.3
and 3.4. We summarize them in the following two theorems.

THEOREM 3.5. Suppose that F satisfies (1)—(ili) and F(z*) = 0. Let F'(z)
be a nonsingular M-matriz in a neighborhood of x*. Let {m¢}32, be a sequence of
positive integers. Suppose that m < 400, where m is as in (1.7). Then there exist
a neighborhood S of z* and 0 < ¢ < 1, such that for z°) € S, the sequence of
iterates defined by the Newton restricted additive Schwarz method (3.5) using T =
Tras converges to x* and satisfies (1.8).

THEOREM 3.6. Suppose that F satisfies (1)—(iii) and F(z*) = 0. Let F'(x)
be a nonsingular M-matrix in a neighborhood of x*. Consider, for each x in this
neighborhood of x*, p inexact local solvers ﬁ',g(x), k =1,...,p, monotone matrices
which are approzimations of Fi(x), k=1,...,p, such that F}(z)~ (Fl(z) — F(z)) >
O fork=1,...,p. Let {mg}32, be a sequence of positive integers. Suppose that the
inexact local solvers l:",é (), k=1,...,p, are continuous and nonsingular at x*.

(1) Then there exists an open neighborhood S of x* such that for each (9 € §
and for each sequence of positive integers my, the sequence of iterates defined
by the Newton restricted additive Schwarz method with inexact local solvers
converges to x*. Moreover,

’

Ri(29) < p(Tras(z*))™, m' = lim infm,.

{—00
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(2) Suppose that F',g(x), k =1,...,p, are Lipschitz continuous at z*. If m <
+o00, where m is as in (1.7), then there exist a neighborhood S of x*, and
0 < ¢ < 1 such that for £(0) € S the sequence of iterates defined by the Newton
restricted additive Schwarz method with inexact local solvers converges to x*
and satisfies (1.8).
As a review of the proofs of the results in this section indicates, the addition of a
coarse grid correction can be included in each case, and the results continue to hold.
We omit the details.

4. Multiplicative Schwarz Methods. The multiplicative Schwarz method to
solve the linear system Az = b can be expressed as

(4.1) A =7 e s=0,1,...,

with the iteration matrix

1
T=Tyus=(I—PB)I—Pya)---(I-P) =[] T - P,
k=p

and a certain vector c. The matrices P are given by
P = RL A Ry A = RE (R, ART) 'Ry A.

This iteration corresponds to successive subspace corrections on the subspaces V1, ...,
Vp. When multiplicative Schwarz is used as a preconditioner, the preconditioned
matrix is I — Thrs. We mention that on sequential configurations, multiplicative
Schwarz is faster than additive Schwarz; see, e.g., [13]. For parallel implementations
additive Schwarz is usually faster, since it is easily parallelizable.

There is also a restricted multiplicative Schwarz method, which can be expressed
as (4.1) with iteration matrix

1

T =Tryvs =T - Q)I-Qp1)(I-Qu)=]]U-Qw),

k=p

and Qp, = RY (A, ' RiA.
In the case of inexact local solvers, the iteration matrices are given by

1 1
(4.2) T =Tys = [[ I — REAL RiA) and T = Tras = [[ (I = REgA, ' RiA).

k=p k=p

We review here convergence results for the multiplicative Schwarz method (4.1)
when the coefficient matrix is either symmetric positive definite, or a nonsingular
M-matrix. In the latter case, we also consider the restricted version.

THEOREM 4.1. [2] Suppose that A is symmetric positive definite. Then the
multiplicative Schwarz method (4.1) converges to the solution of Az =b for any choice
of the initial guess 0. In fact, p(Tars) < ||[Tasl|a < 1. Furthermore, there exists a
unique splitting A = Mprs — Nnyg such that Tys = MIT/[ISNMS, and this splitting is
P-regular.

THEOREM 4.2. [2], [14] Let A be a nonsingular M -matriz. Then the multiplicative
Schwarz iteration (4.1) with either T = Tayrs or T = Tras converges to the solution
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of Az = b for any choice of the initial guess 2%, In fact, for any w = A™'e > 0
with e > 0, we have p(T) < ||T||lo < 1. Furthermore, there exists a unique splitting
A= M — N such that T = M~'N, and this splitting is nonnegative, i.e., T > O.

THEOREM 4.3. [2] Suppose that A is symmetric positive definite. Then the
multiplicative Schwarz iteration with iteration matriz Thrs in (4.2) and with inexact
local solvers /ik such that Ay = /ik — (/ik — Ayg) are P-regular splittings, converges
to the solution of Az = b for any choice of the initial guess z(°). In Jact, p(TMS)
HTMSHA < 1. Furthermore, there exists a unique splitting A = MMS NNS such that
Tvs = MMSNMS, and this splitting is P-reqular.

THEOREM 4.4. [2], [14] Let A be a nonsingular M -matriz. Then the multiplicative
Schwarz iteration with either iteration matriz T in (4.2) and with inezact local solvers
Ay, such that A, > Ay, converges to the solution of Az = b for any choice of the initial
guess 2. In fact, for any w = A~ e > 0 with e > 0, we have p(T [ < ||T||w < 1.
Furthermore, there exists a unique splitting A = M — N such that T = M~'N, and
this splitting is nonnegative.

5. Newton Multiplicative Schwarz Methods. In this section we analyze the
iterative Newton methods obtained solving the linear systems (1.3) using the multi-
plicative Schwarz method (4.1). We call this combined method Newton multiplicative
Schwarz. We start by giving algebraic representations of it. Under the hypotheses of
Theorems 4.1 or 4.2, there exist two matrices Myrs(x) and Npsg(z) such that F'(z) =
Mys(z) — Nars(x), Mars(z) is nonsingular and Thss(x) = Mpys(z) "t Nays(z). By
Lemma 1.3, this splitting satisfies

(5.1)  Mus(e)™ = (I = Tas(@)F' (@) = (I = [] (I = Pe@)) F'(2) 7,

where

(5.2) P.(2) = RFFl(x) 'Ry F'(z) = RY (RpF'(2)RE) ' Ry F' ().

Similarly, there exists a splitting F'(z) = Mgys(z) — Npams(z), with Trys(z) =
MRMS(x)*lNRMS(x) and we have

1

Mpas(x) ™ = (I = Trars (@) F'(2) " = (I = [] (7 = Qu@) F' (),

k=p
with
Qi(z) = R o F.(x) " RpF'(z) = R o(Ri F' (2) R ) ' R F' ().

With this notation, the Newton Multiplicative Schwarz iteration can be repre-
sented as follows

(5.3) 2D =20 _(T(Oyme=t L (e O)yme=2 4 p DM (2O) LR (29),
L=0,1,...,

with iteration matrices T'(x) = Tys(x) or T(z) = Trms(z), and with M(z) =
Mprs(z) or M(z) = Mgas(x), respectively. The iteration (5.3) can also be written
as (3.5)-(3.6) for these iteration matrices.
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If the local linear problems (1.3) are solved approximately using the multiplicative
Schwarz (or restricted multiplicative Schwarz) iteration with inexact local solvers, the
structure of the iterations and the operators just defined is maintained, with the only
difference that the local solver F}(z) is replaced by an inexact local solver F}(z).
Thus, the iteration matrices in this case are

1

(5.4) Tus(x) = [[ (I - R{ Fj(x) " RyF'(z)) and
k=p
1
(5.5) Tras(z) = [[ I = REFi(x) "' RiF' (2)).
k=p

Here we prove the convergence of Newton multiplicative Schwarz methods with exact
or inexact local solvers, when the Jacobian is either positive definite or a nonsingular
M-matrix. In the latter case, we also consider the restricted method. To that end,
we first prove an auxiliary result on Lipschitz continuous maps.

LEMMA 5.1. Let G, H : D C R™ — L(R™) be Lipschitz continuous at x* € D,
then G(x) + H(x) and G(x)H (z) are Lipschitz continuous at x*.

Proof. For G(z) + H(x) the proof is trivial. For the case G(x)H (z), since G and
H are Lipschitz continuous at x* there exist constants Ly, Lo, and K, such that in a
neighborhood of z*

1G(z) = G@™)|| < Lz — 27,
[1H(z) = H(z")|| < Loz — 27|,
[H (z)]| < K.

Using these expressions we obtain

|G (z)H (z) — G(z")H (")
= [|G(2)H (z) — G(z")H(x) + G(z")H(x) — G(«") H (z7)]|
<|G(2)H(z) = G(a™)H ()| + |G(2")H (z) — G(™) H (27|
<|G(z) - [+ NG ENNH () — H ()]

)

)
G(a")[[| H ()
< Liflz — 2" | K + [|G(«")|[ Le[lz — 27|
< (LK +GE L) — 2. 0

THEOREM 5.2. Suppose that F satisfies (1)-(iii) and F(z*) = 0. Let F'(z) be a
symmetric positive definite matriz (or a nonsingular M-matriz) in a neighborhood of
x*. Let {my}32, be a sequence of positive integers. Suppose that m < +oco, where m
is as in (1.7), then there exist a neighborhood S of x*, and 0 < ¢ < 1 such that for
(0 € S the sequence of iterates defined by the Newton multiplicative Schwarz method
converges to x* and satisfies ||zt — z*|| < ¢me||2®) — 2.

Proof. By Theorem 4.1 (or by Theorem 4.2) there exist two matrices Mss(x)
and Njss(x), the first of which is nonsingular, such that F'(z) = Mas(z) — Nas(z),
and Thrs(x) = Mprs(z) ' Nass(x). Moreover, by Lemma 1.3 this splitting satisfies
(5.1)-(5.2). Since F'(z) is continuous and nonsingular at z*, from (5.1) it follows
that Mps(z)~! and Mys(z) are continuous at x*. Then condition (iv) is satisfied.
Conditions (v) and (vi) are guaranteed by Theorem 4.1 (or by Theorem 4.2). In
order to prove condition (vii) we have to demonstrate that there exists L1 < 400
such that, for 2 in a neighborhood of z*, ||Mys(x) — Mas(x*)|| < Li||x — 2*||. By
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Lemma 3.2 it suffices to prove that Mys(x)~! is Lipschitz continuous at z*. Using
the expression (5.1) and Lemma 5.1, the result follows from the Lipschitz continuity
of FJ(x)~! proved in Theorem 3.3. O

THEOREM 5.3. Suppose that F satisfies (i)-(iil) and F(z*) = 0. Let F'(z) be

symmetric positive definite (or a nonsingular M-matriz) in o neighborhood of x*.
Consider, for each x in this neighborhood, p inexact local solvers Z*:',g(:zr), k=1,...,p,
symmetric positive definite (or monotone matrices), approximations of Fj(x), k =
1,...,p, such that Fl(z) = F(z) — (F}(x) — Fl.(z)) are P-regular splittings for k =
1,...,p (or such that F}(x) — F}(z) > O fork =1,...,p). Let {m¢}32, be a sequence
of positive integers. Assume that the inexact local solvers ﬁ',g(x), k=1,...,p, are
continuous and nonsingular at x*.

(1) Then there exists an open neighborhood S of x* such that for each (®) € S and
for each sequence of positive integers my, the sequence of iterates defined by
the Newton multiplicative Schwarz method with inezxact local solvers converges
to x*. Moreover,

Ri(2©9) < p(Tars(z*)™, m' = lim infmy.

L—o00

(2) Suppose that F',;(x), k=1,...,p, are Lipschitz continuous at x*. If m < 400,
where m is as in (1.7), then there exist a neighborhood S of x*, and ¢ with
A < ¢ < 1 such that for ) € S, the sequence of iterates defined by the
Newton multiplicative Schwarz method with inexact local solvers converges to
x* and satisfies (1.8).

Proof. From the hypotheses on the inexact local solvers, we deduce that condi-
tions (iv) and (v) are satisfied for the matrix Mg (). For the case of F'(z) symmet-
ric positive definite, using Theorem 4.3, the unique splitting induced by TMs(x*),
F'(z*) = Muys(z*) — Nys(z*) with Targ(z) as in (5.4), is P-regular and then
HTMS(x*)HF/(I*) < 1. For the case of F'(z) a nonsingular M-matrix, we use Theo-
rem 4.4, and thus we have an induced nonnegative splitting and there exists a positive
vector w such that ||Thss(2*)|l. < 1. In the case (1), using Theorem 1.1 the result is
proved. In the case (2) we only need to prove that Mjysg(z) is Lipschitz continuous
at z* and then the result follows from Theorem 1.2. The proof of the Lipschitz con-
tinuity follows from the Lipschitz continuity of F,é(:t), k=1,...,p, in a way similar
to that described in Theorem 3.3. O

When F’(z) is a nonsingular M-matrix, convergence results similar to those in
Theorems 5.2 and 5.3 can be shown for the restricted multiplicative Schwarz method
using essentially the same proofs. We omit the details.

6. Numerical Experiments. Our goal in this section is to illustrate the perfor-
mance of a parallel implementation of the Newton restricted additive Schwarz method.
As mentioned earlier, multiplicative Schwarz is not as effective in a parallel environ-
ment. Experience has shown that RAS has better parallel performance than AS;
see, e.g., [5], [7], [18], and the experiments illustrating this at the end of the section.
Therefore, we mostly confine our numerical experiments to the restricted additive
Schwarz case.

We take advantage of readily available software, namely the PETSc library of
routines [1], where RAS is the default Schwarz method. Since coarse gird correc-
tions are not available in PETSc, we do not include them in the experiments. In this
manner, the reader can both reproduce our results, and appreciate that the methods
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proposed can be implemented without extensive new programming. For these rea-
sons we also use the PETSc default convergence tests for the linear and nonlinear
solvers, and for each of them, we use the default values for the parameters. In all the
experiments reported here, the methods stopped when ||F(z()||y < 1078 F(z(9)]|,.

As our illustrative example, we consider a nonlinear radiative transport partial
differential equation in three dimensions. The model problem is

—Div(aFP(VF)) =0,

where we have chosen 3 = 2.5 and o = 1 in our experiments. The domain is the unit
cube and we consider Dirichlet boundary conditions on two opposite faces F = 1, and
Neumann boundary conditions 8F/9n = 0 on the other four faces. A finite volume
approximation with the usual seven-point stencil is used to discretize the boundary
value problem, obtaining a nonlinear system of equations of the form (1.1). The
Jacobians in this case are nonsymmetric matrices, and we use the GMRES method
for the solution of the local problems.

Our experiments are performed on a cluster of 28 nodes with two Intel Xeon
processors (2.4 GHz, 1 GB DDR RAM, 512 KB L2 cache) per node connected via
a Myrinet network (2.0 Gigabit/sec.). In our experiments we have used only one
processor per node. The initial vector used was z(® = (1,...,1)T. All times are
reported in seconds.

We have obtained results for systems of different sizes and for different levels of the
overlap (s = 0,1,2,3,4,5,...). Using an overlap of s = 0 results in an additive Schwarz
variant that is equivalent to the block Jacobi preconditioner. In order to focus our
discussion, we present here results obtained with nonlinear systems of size n = 250047,
n = 493039, n = 970299, and n = 1953125, corresponding to discretizations of the
cube with 65, 81, 101, and 127 points in each direction, respectively.

1750 2000
1500 1750 1
21500
o 1250 1 5 1250
€ 1000 | g 1e00 ]
i 1000 £1000 |
750 A E 750 1
250 1 250 4
o Il . o 0]
p=2 p=4 p=8 p=16 | p=28 p=2 p=4 p=8 p=16 | p=28
ms=0|1774.9 | 997.8 | 512.6 | 263.2 | 157.9 ms=0| 1526 1755 1768 1800 1857
ms=1|1586.8 | 797.5 | 420.8 | 217.5 | 132.7 ms=1| 1329 1342 1352 1357 1362
Os=2|1590.2 | 797.9 | 420.4 | 221.5 | 1374 Os=2| 1324 1324 1327 1329 1331
Number of processors p Number of processors p
(a) Execution Time (b) Number of Linear Iterations

FiG. 6.1. Newton Restricted Additive Schwarz, n = 1953125.

In Figure 6.1 we present the results for the nonlinear system of size n = 1953125.
This figure illustrates, for different number of processors, the influence of the overlap
(s = 0,1,2) on the execution time and on the number of linear iterations needed
for convergence. In our examples, the number of nonlinear iterations needed for
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convergence is the same, namely 7 iterations, for all choices of s. It can be observed
that the number of linear iterations decreases as the overlap level s increases. Of
course, the larger the overlap s, the larger are the local problems, and thus, their
solution is expected to take longer. As a consequence, the overall computational
time starts to decrease as the overlap level increases up to some “optimal” value of
s after which the time increases. The optimal value of the overlap s depends on the
system size and the number of processors. We also note that the number of linear
iterations remains pretty constant when doubling the number of processors, and that
the execution time is essentially halved. We have observed this phenomenon on other
numerical experiments not reported here as well.

300 2000
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200 2
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@ B
E 150 - g 1000 |
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3
100 - £
- 500
50
01 ol
s=0 s=1 s=2 s=0 s=1 s=2
B n=250047 16.1 14.9 15.7 B n=250047 660 469 456
W n=493039 40.2 36.4 34.3 W n=493039 955 651 625
[1n=970299 98.8 85.2 86.7 [1n=970299 1301 971 944
On=1953125 263.2 217.5 2215 On=1953125 1800 1357 1329
(a) Execution Time (b) Number of Linear Iterations

F1G. 6.2. Newton Restricted Additive Schwarz, p = 16.

We collect the computing times of the experiments with the four meshes in Fig-
ure 6.2 in which p = 16 processors are used. We would like to mention that the
growth of number of linear iterations with the growth of the number of variables (i.e.,
with the decrease of the discretization parameter) is relatively slow, namely by only
30% — 50% when the number of variables increases by a factor of two. It can also
be observed that doubling the number of variables may increase the total parallel
computation time by a factor of about two and a half.

In Figure 6.3 we explicitly compare the Newton restricted additive Schwarz
method with the well-known sequential Newton GMRES method; this is the sequen-
tial method for which we have obtained better results. If we calculate the speed-up
setting the mentioned sequential method as the reference algorithm, and consider the
overlap, efficiencies of about 81% — 98% are achieved depending on the number of
processors used. Note that using an overlap of s = 0, that is, with block Jacobi
preconditioner, we achieve efficiencies of only about 70% — 88%, when the number of
processors varies from 28 to 2.

We end this section with an example which illustrates the fact that RAS is faster
than AS in a parallel environment for these nonlinear problems; see Table 6.1.

7. Conclusions. We have presented theoretical results showing the convergence
of Newton Schwarz iterative methods. These are methods for the solution of nonlinear
systems, where the linear step of the Newton method is solved using Schwarz itera-
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p=2 p=4 p=8 p=16 p=28 p=2 p=4 p=8 p=16 p=28 |
ms=0| 1.76 312 6.08 1184 19.74 ms=0| 87.77 7807 7597  73.98 7049
ms=1| 19 3.91 7.40 1433 2348 ms=1| 9818 9767 9255 8953  83.86
Os=2| 1.9 3.90 7.41 14.07 2268 Os=2| 97.97 9762 9265  87.92  80.99

Number of processors Number of processors

(a) Speed-up (b) Efficiency
F1G. 6.3. Newton Restricted Additive Schwarz, n = 1953125.

Processors | AS time (secs.) | RAS time (secs.)

8 432.4 160.5
16 231.5 85.2
TABLE 6.1

Ezecution times for AS and RAS, n = 970299, overlap s = 1.

tions. Our convergence theory encompasses restricted additive Schwarz (RAS), which
is a particularly effective method in parallel implementations. We present numerical
experiments using RAS, implemented with the freely available software PETSc [1].
We observe that Newton-RAS is almost optimal in the sense that for the same differ-
ential equation, reducing the mesh size so that the number of variables increases by a
factor of two, only increases the total number of linear iterations by about 20%, and
the computational effort by a factor of about two and a half.
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