v

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

Natural Language I nterface Framework for
Spatial Object Composition Systems

Hiram Calvo Castro ! and Alexander Gelbukh *?

! Center for Computing Research (CIC), National Polytechric Institute (IPN),
Av. Juan de Dios Bétiz 9/n, esq. Av. Mendizabal, México, D.F., 07738 México
hcdvo@sagitario.cic.ipn.mx, gelbukh@cic.ipn.mx; www.gelbukh.com
2 Chung-Ang University, Seoul, Korea

Resumen: Los Sistemas de Composicion Espacial de Objetos (Sistemas SOC, por sus sglas en
ingés) invducran tareas de combinacion virtual de objetos fisicos (como partes de muebles)
con € propdsito de crear objetos complgos nuevos o dsponer [os objetos en @ espacio. En este
articulo presentamos un marco para implementar Interfaces en Lenguaje Natural enfocadas a
sistemas SOC. Proponemos @ uso de una gramatica de reglas de reescritura, a la cual Ilamamos
Gramética de Traducdon Directa, para traducir solicitudes en lenguaje natural a comandcs
computaciorales interpretables por € motor del Sistema SOC. En este articulo damos gemplos
para comandas imperativos en espafid.

Palabras clave: Lenguaje Espacial, Solicitudes de Accon, Interaccddn con Didlogas.

Abstract: Spatial Object Composition (SOC) systems invadve tasks of virtual combination o
physical objects (such as furniture parts) with the purpose of creating rew, complex objects or
arranging the abjects in space. In this paper we present a framework for implementing Natural
Language Interfaces focused on SOC systems. We propose the use of a rewriting rules grammear
(which we call Direct Trandation Grammar) to trandate action queries in natural language to
computational procedures interpretable by the SOC engne. Examples are given for imperative

commands in Spanish.

Keywords: Spatial Language, Action Queries, Dialogue Interaction

1 Introduction

Spatial Object Composition (SOC) refers to
manipulating physical or virtual prefabricated
pieces (such as furniture parts) to assmble
them creating rew objects or scenes, for exam-
ple, is office design task. There are many com-
puter applications dealing with SOC, for exam-
ple, the systems for computer-aided design d a
room or a house. The objects that are to be
placed in the room are predefined (furniture,
doas, windows, etc.) and can be sdected from
a catalog to be placed in the virtual scene where
the user wants to place them.

Obvioudly, SOC is nat limited to hause de-
sign. Since we live in a spatial world of decom-

" Work done under partial support of Mexican
Government (CONACyT, SNI), IPN (PIFI, CGEPI),
and RITOS-2. The semnd author is currently on
Sabhetical leave at Chung-Ang University.

posable abjects, there are many applications of
this kind. For example, suppose a user wants to
construct a bookcase. To dothis, he or she first
sdects ome planks from a catalog o prefabri-
cated planks and then fits these parts together
until the desired bookcase is constructed. This
is an example of creating a new object.

By their nature, such systems are intended to
be used by persons without any computer-
related knonledge and skills. Thus their inter-
faces must be intuitive and must nat require any
training a instruction. A perfect means of such
interaction is natural language in the same form
as it would be used for interaction with a human
worker. Indeed, human-computer interaction in
such systems is mostly imperative: the user
gives a command and the computer executes
the requested task. These commands can be
given in natural language using imperative
tense. Hence our motivation to devdop a


https://core.ac.uk/display/16355596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

framework for integration d Natural Language
Interfaces with SOC systems.

Within the proposed framework it is poss-
ble to trandate the input sentence “Could you
put the chair nex to the table, please?” into a
sequence of commands directly interpretable by
the system’s engine:

move (obj chairl, getpos(cbj tablel)++)

Here, obj_ x stands for an dbject X, getpos
for a function that gets the position d the ob-
ject, and ++ for the operation that changes a
position to the nearest available one. The whde
instruction means that the system must place
obj chairl (the chair the user referred to) at
the nearest position available next to that of
obj tablel (the table already existing in the
scene). We do this by transforming the original
sentence step by step as foll ows:

Could yau pu the chair next to the table,
please?

Could you put thechair next to the table

put thechair next to the table

put obj chairl nextto thetable

put obj chairl next to obj_tablel

put obj chairl nextto obj tablel

put obj_chairl (getpos(obj_tablel)++)

move(obj_chairl,(getpos(obj_tablel)++))

In this paper, we describe the formalism we
developed for such transformation, which in-
cludes the features that, in aur experience, are
necessary for succesgul translation of such type
of sentences. Unfortunately space limitations
will nat allow us to gve a meaningful example
of their application.

The paper is organized as follows. Section 2
discusss the rdated work on Natural Language
Interfaces (NLIs). Section 3 examines the char-
acteristics of SOC systems rdevant for ther
integration with a NLI. Section 4 introduces the
grammar used in aur framework, called Direct
Trandlation Grammar. Section5 explains the
technicalities of object reference and context
management in aur grammar. In Section 6, a
simple example is given. Finally, in Section 7
conclusions are drawn.

2 Related Work

Historicdly first systems with a Natural Lan-
guage Interface(NLI) were developed onthe ad
hoc basis for a spedfic gplicaion. Some e-
amples of such systems are:

« DEACON (Direct Engish Access Cortral)
(Craig et al., 1966, a question answering
System,

e SHRDLU (Winogad, 1972, dlowing to
move virtual geometric blocks by verbal
commands,

* LUNAR (Woods, Kaplan and Nash-Webber,
1972, which alowed to query a lunar rock
database,

 LADDER (Hendrix et al., 1978, which an-
swers questions about naval logistics data.

As the world modd was interwoven in these
programs operation, changng the application
domain for these systems would be an expen-
sive and compli cated process

Later, other systems with a NLI designed
with a broader scope of application arose. They
were mainly oriented to database information
retrieval, eg.. INTELLECT (Harris, 1984,
TEAM (Grosz et al., 1987, JANUS (Weische-
del, 1989, and SQUIRREL (Barros, 1995.

There are recently developed works that
hande imperative language for multiple pur-
poses. For example, KAIRAI (which means
‘puppet’) has sveral virtual robots (avatars)
that can move forward, turn, or push an doject
(Shinyama, Tokunaga and Tanaka, 200Q Asoh
et al., 1999. By manipuating them using com-
mands, the user can move and place the objects
in the virtual world. This g/stem is developed
for Japanese. A similar system AnimAL uses a
NLI to control the movements of an avatar in a
virtual environrment (Di Eugenio, 1993 1996
Webber, 1995. Di Eugenio considered the
problem of understandng phrases of the form
do x to doy, asin cut a square in hdf to make
two trianges.

We are nat aware, however, of any recent
works ecifically devoted to provide a NLI
framework for SOC systemsin general.

3 Characteristics of SOC Systems

The SOC systems in general restrict the use of
natural language in a number of ways. In aur
framework, we rely on these restrictions to
simplify the correspondng mechanisms. Spe-
cifically, SOC systems have the foll owing char-
acteristics rdlevant for NLI design:

1. They have predefined basic objects that
can be used to construct new ones. This
permits us to begin with a reduced set of
object names to be recognized.



2. Objects have properties by which they
can be referred to, eg., red pank as op-
posed to green plank. Properties let us
keep small our set of object names.

3. There is a visual spatial representation
common to the user and the computer.
With this, the user is aware that the only
existing dojects are those that can be ob-
served in the catalogues and in the current
scene. Only the observable objects are
relevant for the composition task.

4. Objects have a limited number of ac-
tions that can be applied to them. They
can be mapped to the correspondng com-
puter commands.

The user and the computer manipulate a fi-
nite set of objects with properties and actions
attached to these abjects. To design a suitable
NLI, we must find a mechanism that relates
natural language sentences with the correspond
ing computer commands. This reation is im-
plemented through Direct Translation Grammar
presented in the next section.

4  Direct Trandation Grammar

Since the transformational model by Chomsky
appeaed in 1957 (Chomsky, 1957, a number
of models within the generative paradigm have
been suggested, such as Case Grammar (Fill -
more, 1968, Functiond Grammars (Kay,
1979, andrecently, Phrase Structure Grammars
(Gazdar, 1987 Sag and Wasow, 1999. Tradi-
tiondly, generative grammars are designed to
model the whole set of sentences that a native
speer of a natural language nsiders accept-
able (Pullum, 1999. Generative lingustics
views languege & a mathematicd objed and
buil ds theories smilar to the sets of axioms and
inference rules in mathematics. A sentence is
grammaticd if there is me derivation that
demonstrates that its gructure rrespond to
the given set of rules, much as a proof demon-
strates the arrednessof a mathematicd propo
sition (Winogad, 1983.

Phrase Structure Grammars (PSG), from
which HPSG (Sag, 1999 is the most widdy
known, follow this generative paradigm. To
analyze a sentence, it is hierarchically struc-
tured to form phrase-structure trees. PSGs are
used to characterize these phrase-structure trees.
These grammars consist of a set of nonterminal
symbols (phrase-structure categaries guch as
Noun, Verb, Determiner, Preposition, Noun

Phrase, Verbal Phrase, Sentence, €tc.), a set of
terminal symbols (lexical items such as buy,
John eaten, in, the, etc.), and a set of rules that
relate a nonterminal with a string d terminal or
nonterminal symbols (Joshi, 1992. To analyze
a sentence, suitable rules can be applied to the
terminal symbol string until the nonterminal
symbol s is reached. The phrase-structure tree
obtained during this process can be analyzed
later to generate computer commands equiva-
lent to the input sentence.

However, this process can be dore directly
if we change the purpose of our grammear to that
of using the grammar rules to reach computer
commands directly instead o breaking retural
language sentences into parts of speech (phrase
structures) and then converting this gructure to
computer commands. Thus our purpose is dif-
ferent from that of generative grammars in that
we are nad interested in determining whether or
not a sentence is wel-formed. In addtion, we
are na interested in modding the whade lan-
guage but only its gnall subset rdevant for the
user’stask in question.

The grammar we suggest to translate natural
language sentence into computer commands is a
rewriting rules grammar with addtional charac-
teristics to hande context and dyject reference.
We call this grammar Direct Trandation Gram-
mar (DTG).

Within DTG, lexical and morphdogcal
treatment is included, and the categories used
refer to syntactic and semantic concepts of the
sentences. Because of this we can consider
DTG a semantic grammar (Burton, 1992. In
semantic grammars, the chaice of categories is
based on the semantics of the world and the
intended application damain, as wel as on the
regularities of the language. Although they are
not widdy used nowadays, semantic grammars
have several advantages such as dficiency,
habitabili ty—in the sense of (Watt, 1968, han-
ding d discourse phenamena, and the fact that
they are sdf-explanatory. They allow using
semantic restrictions to reduce the number of
alternative interpretations that can be consid-
ered at a certain moment, in contrast to highly
modular systems, which fragment the interpre-
tation process

4.1 Definition

We define a Direct Trandlation Grammar as an
ordered list of rewriting rules that have the form
o - B, where a and 3 are strings corsisting o



Notation Property Possble values

C category N (noun), V (verb), ADJ (adjedive), ADV (adverb), PRO (pronoun), DEFART
(definite article), INDART (indefinite article), OBJ (ohjed), POS (positi on)

G gender M (masculine), F (feminine), N (neutral)

N number S(singuar), P (plural)

T verbal tense PRES (present), INF (infinitive), IMP (imperative), SUBJ (subjunctive)

S subjed form for verbs, the number and gender of the subject (this ismorphologically rele-
vant for Spanish): SM, SF, PM, PF(singular / plural, masculine / feminine)

@] objed form for verbs: the number and gerder of the ofjea (morphologicdly relevant for
Spanish)

A dative objed form  for verbs: the number and gender of the indired (dative) object (norphologi-
caly relevant for Spanish)

Q guantity V, L, R, U, M (very littl ¢, littl e, regular, much/many, very much/many)

Table 1. Some properties and their values used in the examples

one or more of the following dements (which
we &plain below) in any arder:

natural language words,

tags with properties,

wildcards,

names of external procedures,

symbolic references to abjects, and
embedded functions for context cortrol
and dject reference handing, see Sec-
tion5.

oukwdpE

Two rules with the same a are nat all owed.

4.2 RuleOrder

Since several rules can be gplicable to astring
at the same time, processng d the rules is or-
dered. First, the rules with a consisting only of
natural language words are nsidered, begin-
ning with those with agreaer number of words.
If nore of them can be gplied, the rest of the
rules are wnsidered acording to the number of
elements that form o, longest ones being conr
sidered first. This is becaise the dements like
the red table must be cnsidered before the
elements containing just the table. Indedl, a
longer string d words means a more spedfic
referenceto an objed.

Each time a ruleis applied, the procesang o
the rules restarts from the top of the list in the
order just explained.

The process finishes when no rule can be
applied; the resulting string is the output of the
program. The trandation process is considered
succesgul if the resulting string corsists only of
symbolic references to dbjects and rames of
external procedures. To avoid infinite cycling,
the process is aborted if some rule is applied

more than orce and its application results in a
previously obtained string; in this case transla-
tion is considered unsuccesgul, and the user is
asked to rephrase his or her utterance.

4.3 Rule Components

In this dion we explain eat lement used in
therules, in the order in which they arelisted in
Sedion 4.1.

4.3.1 Natural language words

Initially, an input sentence consists only of
words. The example put the dhair next to the
table is a sentence composed by 7 words that
will be trandated into a sequence of computer
commands. Words are letter strings and donat
have any properties.

4.3.2 Tagswith properties
Tags with properties have the form

5{p11 p21 ---,pn},

where & is the name of the tag and py, p2, ..., Pa
its properties in the form name:value, eg:
put{C:v, T:IMP}. Table 1 presents the most
common properties and their possble values.

This construction resembles the traditional
feature structures. However, feature structures,
as defined by Kay (1979, undergo inheritance
mechanisms and unification. Our tags are nat
related to such mechanisms.

For example, the following rule converts the
Spanish word pon ‘put please’ into a tag poner
‘toput’:

pon ——> poner{C:V, T:IMP, S:25, A:1S}
‘pUtimperaive --> 1o pUt’



This rule substitutes every occurrence of pon
in the input string by the tag poner{c:v, T:IMp,
s:2s, 0:15}, whose properties are interpreted
as follows: category is verb, tense is imperative,
subject is of second person singular, (implicit)
dative object is of first personsingular.

4.3.3 Wildcards

Wildcards are defined by a labd optionally
followed by a set of properties (as defined in
Section 4.3.2) contained in square brackets:

o[p1, P2, ..., Pl

They provide a mechanism for generalizing a
rule to avoid redundant rule repetitions. A wild-
card makes it posshle to apply arule over a set
of tags that share one or more properties. The
scope of awildcard islimited to itsrule.

A wildcard ¢ matches with a tag o if the &
has all properties listed for ¢ and with the same
values. For example, both wildcards a[c:v)
and B[T:1MP, s2s] match with the tag
poneri{C:V, T:IMP, $:25, 0:18}, but crc:v,
T:PRES] does nat, since this tag daes nat have
the property Tense with value Present.

When used in the right-hand side of the rule,
a wildcard can be used to modfy properties by
specifying anather value for the property that it
originally matched. For example, consider the
frequently used pair of words podias juntarlo
‘could yau please put it together’, which is a
polite aiphemism for the imperative jantalo
‘PUtimperative It tOgether’. To transform it into
imperative, wefirst apply the followingrules:

podrias ——> poder{C:V, T:SUBJ, s:25} (1)
‘could you -—> can’

juntarlo --> juntar{C:V, T:INF, 0:3sM} (2)
‘put it together -—> to put together’

and then use a wildcard to transform any such
construction into an imperative; nate the use of
a wildcard to change the property T from INF
to IMP:

poder{C:V,T:5UBJ,S:25} A[C:V, T:INF]

‘can’ -— a[T:1P] (3)
which resultsin the following autput string;

juntar{C:V,T:IMP,0:35M} (4

‘to put together’

Due to the wildcards, the rule (3) works for any
polite e&presdon in the form podias‘could
you' + infinitive verb.

Usually, properties found within brackets
are acces=d for the object whose name appears
immediately to the left of these brackets. How-
ever, acoess to the properties for other objects
outside brackets is possble through the use of
the dat natation dfined as follows. Consider
the following string;

juntar{C:V,T:IMP,0:3SM} un poco mas
‘put it together’ ‘a bit more

the collocation un pao mas ‘a bit more is
transformed into a quantity adverb by the rule

un poco mas —-> z{C:ADV, Q:L}, (5)

which then is transformed into the verb's prop-
erty by therule

A[C:V] B[C:RDV,Q] --> A[Q:B.Q]. (6)

This rule sequence means the following if a
verb A is followed by an adverb B with some
quantity, then add to this verb the property
Quantity with the same value that it has in B.
The latter construction is expressd in (6) as
B.Q standingfor thevalue of Qin B.

If a property is gecified for a wildcard
without any value, this indcates that matching
the wildcard requires the property to be present
regardiessof its value.

Note that due to this replacing capability
wildcards are nat reduced to unification o
properties (Knight, 1992.

4.3.4 External procedures

External procedures with arguments are formed
by a procedure name foll owed by arguments:
procedure name (argi, ardy, «.. , argdn),

where n is a natural number. This number can
be 0; in this case the procedure has no argu-
ments. Unlike functions, procedures do nd
return any value. They are recutel by the SOC
system’s engine dter successul applicaion d
rules over an utterance For example, move (2, B)
is an externa procedure that places objed A in

pasition B.

4.3.5 Symbolic referencesto objects

A sceneis an dbject composed by other objects.
In their turn, these objects can be composed o
other objects. For example, catalogs are objects
composed o dements that are objects as well.
Such compositionality permits us to estab-
lish nested contexts to resolve the reference to
an dbject dependng onthe scene in the focus of



Function Description

s.push (x)
s.pop ()

pushesthe ohjed x onto the stack sand returns an empty string
pops the top oljed from the stack s and returns an empty string. If the

stack was empty, returns NIL

object s.top ()

returns the ohjed name from the top of the stack s without popping it. If

the stack was empty, returns NIL

object s.search (s, p = V)

searches for the first ojea with the value v of the property p, starting

from the top of the stack s. If no dojed isfourd, returns NIL .

Table 2. Embedded functions and procedures.

the user’s attention in a given moment. Each
one of the objects inside the scene has proper-
ties that can be accessed by our conwersion
rules by means of the tags.

In contrast to ggammatical properties, which
are described exclusively within our conversion
rules, object properties are defined by the SOC
system and can vary. These properties can be,
for example, position, size, components, color,
material, alterability, shape, and a set of actions
that can be applied to the given dbject.

Labels beginning with obj  dencte symbolic
references to dojects, 9., obj box123 refers to
a particular box appearingin a particular scene.

5 Object Reference and Context
Management

For eath noun pronoun or noun phase we
neead to find a unique symbdlic reference to a
particular objed meant by the user. However,
the same expresson (as dring d letters) can be
used to refer to dfferent particular objeds, de-
pending onthe mntext. To transform an ex-
presson into a symbdlic reference we shoud
first determine the context for it (Pineds, 2000.

To provide context handing, we consider
context as an abject (called scene object) that
contains other objects. A context change occurs
when the user shifts his or her attention from
the object itsdf to its components, or vice
versa. E.g., the user can consider a catalog, or
objects from this catalog, or parts of specific
objects from the catalog. Here we can see that
catalog djects belongto ore context (the cata-
log), while objects in it beong to ancther con
text. Each o these contextsis called a scene.

Similarly to SQUIRREL (Barros, 1999, in
our modd context and diject reference are
managed by stacks. However, in cortrast to
SQUIRREL, we alow the grammar to create
and manipulate several stacks.

Embedded functions for context and object
reference management Embedded func-
tions for objeds and context management oper-
ate on stadks; see Table 2. These functions are
exeauted in-line, that is, they are evaluated im-
mediately after application d the rule that gen-
erated them in the string and hbefore aplying
the next rule.

Syntactically, embedded functions are de-
noted by the stack name, followed by the func-
tion rame, followed by an argument list (which
may be anpty):

stack.function_name(argu ..y argp),

where n is a natural number (posdbly zero). A
function returns an dbject, an empty string, or a
special object NIL.

Conditionals A condtional expresson is
used for making cdecisions during the rule proc-
essng. Itsformat is:

if <condition;> then <string;>
elseif <condition,> then <string,>

else <string,>
endif

where the parts e1seif and else are optional.
This in-line function returns gring, if condtion
is met, string if condtion, is met, etc.

An example of the use of both embedded
functions and condtional markers is given in
the next section.

6 Example

Due to space limitations, we can only pre-
sent a simple example with a few DTG rules,
see Figure 1. This example shows how an im-
perative sentence is trandated into computer
commands. In the lower part of the figure, the
stages of transformation are shown along with
therules applied at each stage.



Grammar:

R1. AJ[C:ARTDET] B[C:SUST] -->
if vs.first (name
elseif vs.first (property
elseif cs.first (name
else
endif

B) # NIL then vs.first (name
B) # NIL then vs.first (property
B) # NIL then cs.first (name

TR
v

error

R2. B diferencia entre D y F ? ——> diferencia D, F

R3. el --> el{C:ARTDET, S:SM}
R4. 1a --> el{C:ARTDET, S:SF}
R5. los --> el{C:ARTDET, S:PM}
R6. las --> el{C:ARTDET, S:PF}
]

R7. A[C:ARTDET] B[C:ADJ] --> A B[C:SUST]

R8. diferencia A[C:0BJ], B[C:0BJ] -—> cs.push(Z) cs.push(B) diff (A, B)

Sentence 2 ver, :;cudl es la diferencia entre el tercero y el cuarto?
‘Let me ge..what's the difference latween he third and the fourth one?’

R2 gives: diferencia el tercero, el cuarto

RSgiveS: diferencia el {C:ARTDET,S:SM} tercero, el{C:ARTDET,S:SM} cuarto
R7 gives diferencia el{C:ARTDET, S:SM} tercero{C:SUST}, el{C:ARTDET,S:SM} cuarto{C:SUST}

R1 gives: diferencia objcat021 03 objcat021 04

R8 gives: diff (cbjcat021 03,cbjcat02l 04)

side dfed: cs.push (cbjcat02l 03), cs.push(objcat02l 04)

Figure 1. Example of DTG Rules and sentence processng

It is supposed that the sentence in questionis
a query presented in the context (scene) of a
catalog that shows numbered dements.

In this example, the system manipulates two
stacks: a visual context stack vs and a conversa-
tion context stack cs. The visual context stack
represents the objects in the common view of
the system and the user, namdy, the abjects
shown in the screen. This dack is maintained
directly by the SOC system’'s engine and nd by
the grammar. The conwersation context stack
contains the objects mentioned during the dia-
logue and gows as the dialogue develaps.

RuleR1 is used for handing dyject refer-
ence; see Section 5. The object mentioned in
the user’s utterance is ught first in the com-
mon Jiew; it can be referred ether by name (la
silla ‘the chair’) or by a property (la roja ‘the
red org). If it is na found in the common
view, then the most recently mentioned dbject
with the given name is ought in the past cor+
versation Hstory.

Rule R2 diminates words that are nat mean-
ingful for the request, e.g. polite expressons.

Rules R3 to R6 state that €, Ia, los, las ‘the
are forms of the definite article (correspondng
in Spanish to dfferent genders and rumbers).

Rule R7 uses wildcards to conwvert a combi-
nation d article and adjective into a noun, e.g.,

e tercero lit. ‘the third’ is converted into a sub-
stantive ‘the third ore'.

RuleR8 is finaly applied after the rule R1
has rewritten tercero{C:sUsT} ‘the third org
and cuarto{C:SUST} ‘the fourth ore as refer-
ences to specific objects, objcat021 03 and
objcat021 04. They are also added to the con
versational context stack for future reference.

7 Conclusions

Spatial Object Composition (SOC) systems
have characteristics that facilitate trandlating
directly from natural language sentences into
computer commands. Namdy, in a SOC Sys
tem, the language used is imperative; objects
are previously defined and can be combined to
create new ones; they have properties; they are
always present; a spatial common representa-
tion exists visually; and a limited number of
actions exist over these objects.

Given these characteristics, we have shown
how such trandation can be dore with the Di-
rect Translation Grammar. We have presented a
framework based on this grammar and a
mechanism for object reference and context
management. The problem of resolving dject
references is lved within this framework



through a context stacks mechanism and cond-
tionals embedded in the rules of the DTG.

The system can be etended to allow creat-
ing rew rules out of existing ores. Then its
capabilities can be dynamically extended
through the dialogue with the user. This is a
topic of our future work.

References

Asoh, Hideki, T. Matsui, J. Fry, F. Asano, and
S. Hayamizu. 1999 A spoken dalog system
for a mobile office robot, in Procealings of
Eurospeed ‘99, pp.11391142 Budapest.

Barros, Flavia de Almeida. 1995 A Treatment
of Anaphaa in Portable Natural Language
Front Ends to Data Bases, PhD Thesis. Uni-
versity of Essex, UK.

Burton, Richard. 1992 Phrase-Structure
Grammar. In Shapiro, Stuart ed., Encydope-
dia of Artificial Intdligence Val. 1.

Chomsky, Noam. 1957 Syntactic Sructures.
Reprint Edition (1975, Mouton ce Gruyter.

Craig, J., S. Beezner, C. Homer, and C.
Longyear. 1966 DEACON: Direct Endish
Access and Cortrol. In Proceealings of
AFIPS Fall Joint Conference, Val 29, pp.
365-380, San Francisco, CA.

Di Eugenio, Barbara. 1993 Understandng
Natural Languag Instructions: a Computa-
tiond Approach to Purpose Clauses. Ph.D.
thesis, University of Pennsylvania, Decem-
ber. Technical Report MS-CIS-93-91.

Di Eugenio, Barbara. 1996 Pragmatic over-
loading in Natural Language instructions.
Internationd Journal of Expert Systems 9.

Fill more, Charles. 1968 The case for case In
Universals in Lingustic Theory. Edited by
Bach, Emmon and Harms, Robert T., 1-90.
Chicaga: Holt, Rinehart and Winston.

Gazdar, Gerald. 1982 Phrase Structure Gram-
mar, in P. Jacobsen, and G.K. Pullum, eds.,
The Nature of Syntactic Representation,
Reidd, Boston, MA.

Grosz, Barbara, D. Appdt, P. Martin, and
F.C.N. Pereira. 1987 TEAM: An Experi-
ment in the Design d Transportable Natu-
ral-Language Interfaces. In Artificial Intelli -
gence vol 32, pp 173243

Harris, Larry. 1984 Experience with
INTELLECT: Artificial Inteligence Tech-
ndogy Transfer. In The Al Magazine, 2:2,
pp 4350.

Hendrix, Gary, E. Sacerdati, D. Sagalowowicz,
and J. Slocum. 1978 Devdoping a Natural
Language Interface to Complex Data. In
ACM transactions on Database Systems;
3:2, pp 105147.

Joshi, Aravind 1992 Phrase-Structure Gram-
mar. In Shapiro, Stuart ed., Encydopedia of
Artificial Intelligence Val. 1. JohnWiley &
Sons, Inc. Publishers, New York.

Kay, Martin. 1979 Functional grammar. In
Procealings of the 5" Annud Meding ofthe
BerkdeyLingustic Scciety. 142-158,

Knight, Kevin. 1992 Unification. In Shapiro,
Stuart ed., Encydopedia o Artificial Intelli -
gence Vol. 2. JohnWiley & Sors, Inc. Pub-
lishers, New York.

Pineda, Luis and G. Garza. 200Q A Modd for
Multimodal Reference Resolution. In Com-
putationd Linguistics, 26:2, pp. 139193

Pullum, Geoffrey. 1999 Generative Grammar,
In Frank C. Kel and Robert A. Wilson
(eds.), The MIT Encydopedia of the Cogni-
tive Sciences, pp. 340-343 Cambridge, MA,
The MIT Press

Sag, Ivan and T. Wasow, Syntactic Theory: A
Formal Introduction. CSLI Publications,
1999

Shinyama, Yusuke, T. Tokunaga and H. Ta-
naka. 200Q Kaira - Software Robots Un-
derstanding Natural Language. Third Int.
Workshop on Human-Computer Cornversa-
tion, Belagio, Italy.

Watt, W., Habitability. 1968 American Docu-
mentation 19, pp. 338351

Webber, Bonrie. 1995 Instructing animated
agents. Viewing language in behavioral
terms. Proceedings of the Internationd Con
ference on Cooperative Multi-modd Com+
munications, Eindhowen, Netherlands.

Weischedd, Ralph. 1989 A Hybrid Approach
to Representation in the JANUS Natural
Language Processor. In Proceadings of the
27" ACL, Vancouver, pp 193202

Winogad, Terry. 1972 Understandng Natural
Language. New York: Academic Press

Winogad, Terry. 1983 Languag as a Cogni-
tive Process Volume I Syntax. Stanford
University.  AddsonWesley  Publishing
Company.

Woods, William, R. Kaplan, and B.L. Nash-
Webber. 1972 The Lunar Science Natural
Language Information System: Final Report.
BBN Report No. 2378 Bolt, Beranek and
Newman Inc. Cambridge, MA.



