
 
Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please

cite the published version when available.

Downloaded 2013-09-16T10:59:08Z

 

Some rights reserved. For more information, please see the item record link above.
 

Title Dynamic choice of robust strategies in dialogue management

Author(s) McEleney, Bryan; O'Hare, G. M. P. (Greg M. P.)

Publication
Date 2004-08-30

Publication
information

COST278 and ISCA Tutorial and Research Workshop on
Robustness Issues in Conversational Interaction University of
East Anglia, Norwich, UK August 30-31, 2004 [proceedings] :
paper 29

Publisher ISCA

Link to
publisher's

version
Unavailable

This item's
record/more
information

http://hdl.handle.net/10197/4478

http://researchrepository.ucd.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/


Dynamic Choice of Robust Strategies in Dialogue Management 

Bryan McEleney and Gregory O’Hare 

Department of Computer Science,  
University College Dublin, Ireland 

 
bryan.j.mceleney@ucd.ie, gregory.o’hare@ucd.ie 

 

Abstract 

An important tradeoff in error-prone dialogue is between 
the cost of using more robust dialogue strategies and the 
cost of recovering from failed understanding without using 
them. A strategy has to be quantitatively planned for each 
dialogue state, since too robust a strategy might not have a 
worthwhile effect on the failure rate. A dialogue manager is 
described which chooses between strategies that have 
differing levels of robustness with a view to maximising the 
efficiency of the dialogue. 

 

 

1. Introduction 

A common measure for the performance of a dialogue 
system is the time-to-completion of a given task [1]. The 
time taken is influenced by whether a robust dialogue 
strategy is chosen. For example, where the system is trying 
to recognise the hearer’s intention and cannot produce a 
single definite hypothesis, the agent can use a confirmation 
subdialogue. Doing so might increase the time-to-completion 
since it requires effort from both the system and the user. On 
the other hand, using a confirmation reduces the likelihood 
of an error in recognising the user, entailing less chance of a 
costly correction subdialogue later on. Similarly, in 
generating system utterances, there is some choice available 
about whether to use ambiguous forms such as using 
anaphora and ellipsis, or words or phrases which while 
brief, are not robust since they risk not being informative 
enough about the system’s intention. Other strategy choices 
can be made, such as whether the speech synthesis system 
should speak quickly or slowly, or whether a prosodic cue 
would be useful to resolve a potential ambiguity. 

Within the SAID project, an agent-based approach 
is taken to development of dialogue systems, including a 
distributed, robust speech recognition system [2], and a 
robust agent-based dialogue management system. The 
dialogue management system is based on Rao and 
Georgeff’s BDI [3] (belief-desire-intention) theory of agent 
decision-making. The system, whose design is presented in 
this paper, has been implemented in PROLOG and tested on 
various example problems such as planning confirmations, 
and deciding between robust and less robust utterance 
generation strategies. It is a domain independent system, 
only requiring instantiation of a plan-rules file for the 
dialogue task. Examples of the system’s operation are given 

in this paper, and it is shown that probabilistic plan 
recognition and adaptation of a user model are both 
important in deciding dialogue strategies in these examples. 

2. Dialogue Planning Model 

Rao and Georgeff’s [3] theory of agent choice is based on a 
time-tree representation of possible dialogue outcomes. 
Similar to a decision tree, there are choice nodes that 
represent the strategies the agent may use at his turn in the 
dialogue. There are also chance nodes that represent the 
uncertainty of the agent’s environment, which in the context 
of a dialogue system, can be used to represent uncertainty in 
the beliefs or intentions of the agent acting at the following 
choice node. The time-tree represents the alternating actions 
of the agents, with each agent’s turn represented by a choice 
node in the shared multi-agent plan. 

A nested belief model (user-model) is employed by the 
system to represent the system’s beliefs about the user’s 
mental state ( ie. beliefs and intentions), the system’s 
beliefs about the user’s beliefs about the system’ mental 
state and so on. A deeply nested model is necessary, since 
in system generation of utterances, the system expects the 
user to interpret the utterance according to the user’s model 
of the system intentions. As a simple example of using a 
nested user model, consider a system which always says 
“How may I help you?” at the start of a dialogue. It need 
worry little about accurate generation of the utterance after 
a few runs with the same user since the system will 
eventually believe that the user believes that the system 
always intends to start with “How may I help you” 

Since dialogue happens in alternating turns, the system 
constructs a time-tree by adding a choice node for its own 
turn, then adding a chance node for the uncertain mental 
state of the user, if that state has a determining effect on the 
user’s choice. Then a further choice node is added for the 
user’s expected choice. This continues recursively, using a 
further level of the nested belief model at each turn, until 
all of the outcomes of the dialogue have been generated. 
Choice nodes are produced by expanding the dialogue plan, 
which is hierarchically structured, similar to NOAH plans 
[4]. To represent different utterance generation strategies, 
alternative decompositions can be given for each dialogue 
act strategy. For instance, an ellipsis might be used in 
eliciting a flight date by asking “on which date?”, or a fuller 
utterance “on which date would you like to depart”. Two 
rules are used: 

 
decomp(date-ask,[date-ask-elliptical]). 
decomp(date-ask,[date-ask-full]). 
 



To represent the different strategies in confirmation 
dialogues, alternative decompositions are used for 
information eliciting subdialogues. For asking a flight date, 
the two following decompositions are used: 

 
decomp(date-dialogue,[date-ask,date-inform,date-confirm]). 
decomp(date-dialogue,[date-ask,date-inform] 
 
decomp(date-confirm,[declare-date,confirm]). 
decomp(date-confirm,[declare-date,deny]). 
 
Once the time-tree has been constructed, a utility 

calculation is used to decide between strategies at the 
current choice node. The utility is calculated from the value 
of the completed task, and from the cost of each of the 
strategy choices used in the tree path, in terms of the 
amount of time taken for each strategy. These costs are 
specified as part of the domain rules. Using the rule of 
“maximize expected utility”, the expected utility for a time-
tree is calculated by recursively processing the choice and 
chance nodes. For the choice nodes, the utility is the utility 
of the branch chosen at that node, which each agent 
attempts to maximise. For the chance nodes, the utility is 
the expected utility over the probability distribution, which 
is the sum of the utility of the branches, each weighted by 
their probability. Finally, to decide a strategy for the current 
turn, the system chooses the branch at the first choice node 
that has the maximum expected utility according to this 
calculation.  

3. Probabilistic Plan Recognition 

 An important step in constructing the time-tree is the 
plan recognition step, whose purpose is to fit the system or 
user utterance into a plan structure based on the dialogue 
context. Previously, plan recognition algorithms for 
dialogue have not been treated probabilistically [5], but the 
relative likelihood of the plan hypotheses is critical in 
making dialogue strategy choices. In the general plan 
recognition problem, probabilistic reasoning uses a 
Bayesian network [6]. However, in dialogue, for ease of 
recognition, speakers usually maintain the focus of a task, 
meaning that nodes are added to the plan in a bottom-up 

left-to-right order. As a result, plan recognition is much 
simpler as nodes are added to the first available position if 
the plan tree is not full. This requires no plan recognition. If 
however, the plan structure is full, it is expanded upwards 
from the root to produce one of several recognition 
hypotheses, according to the choice of parent for the root 
node. Implementation of this approach is very simple, since 
all that is required is a list of alternative parents and their 
probabilities for any particular dialogue act or internal task 
node. For lower level recognition, from the speech signal to 
the dialogue act level, a similar, “n-best” style list can be 
used to build plan hypotheses. 

Plan recognition rules are part of the agent’s mental 
state, and so are encoded within the nested belief model. 
For example, the system’s strategy choice must use the plan 
recognition rules at the second level of nesting to predict the 
likely interpretations of the hearer.  

4. The Law of the Most Probable and Robust 
Generation 

The use of robust strategies relies on a phenomenon that 
is called here the “law of the most probable”. This law 
states that when the cooperative hearer of an utterance has 
several hypotheses for the speaker’s intention and can act 
on only one of them, he must choose the most probable of 
the intentions, since this will maximise his expected utility. 
This law is very useful in robustly choosing an utterance, 
since the speaker need only communicate just enough that 
his intention is placed as the most probable one in the 
hearer’s mind. As an example in utterance generation, 
consider a problem of definite description generation. A 
robot agent and a human are cooperating to repair the 
adjustment nut on a machine. There is a big spanner and a 
small spanner in the workshop, of which the robot usually 
uses the small spanner. The robot would like to use a short, 
but robust enough definite description in asking the human 
to pass the small spanner. His choices are: 

 
1. “Pass me the small spanner please” 
2. “Pass me the spanner please” 
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robust ( penalty 0.2 )robust ( penalty 0.2 )
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p
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Figure 1: A time-tree for robust generation 



 
Utterance 1 is robust enough to always succeed. Utterance 2 
is shorter, but less robust. The planner generates the time 
tree shown in figure 1 for deciding whether to use the 
robust form or not. The user model estimates that the user 
holds a plan recognition rule that estimates the system 
intention of having a small spanner with a probability of 
p=0.6. The expected utility value for the robust option is 
then 0.8 since a reward of 1 is attained at the end of the 
plan, and since using a robust utterance has a small penalty 
in time-to-completion. The non-robust option has a utility of 
1 since the reward is also attained but at no penalty, and so 
the agent chooses the non-robust option in this case. 

 

 
Figure 2: Variation in utility of robust and non-robust 
 strategies with probability values in the user model 

 
The interesting property of this problem is the 

sensitivity of the agent’s decision to the value of p in the 
user model. If p is anywhere greater than 0.5 the agent 
should choose the non-robust form. If p is anywhere less 
than 0.5 the agent should choose the robust form. Having an 
accurate user model is then necessary to make an accurate 
strategy decision, and the plan recognition rules and 
recognition mechanism must be probabilistic.  

Figure 2 shows the utility estimated by the system for 
the two strategies by including estimation error. With no 
assumed error in the user model, the non-robust utility 
curve is a sharp step function. However, since the user 
model is often based on sampling a finite set of runs of the 
system with the same user, which determines the estimate 
of p, an error is introduced by treating each run as a 
Bernoulli trial. For an example of ten runs, a smoother “s” 
curve is obtained for the non-robust strategy, with the result 

that the system decides to use the strategy only when p is 
safely above 0.6, rather than at 0.5. As the user model 
develops, the curve sharpens, and the system can more 
safely choose less robust strategies. Therefore, the plan 
recognition system records error values as well as 
probability estimates in the plan recognition rules. 

5. Further Examples 

Converse to the generation problem, in which the system 
must clarify its own intention, another application of the 
planner is in clearly eliciting the user’s intention. This can 
be achieved by asking for repetition, rephrasing, or by 
confirmation. In this example, a train passenger, at Heuston 
Station in Dublin, asks: 

 
A: Could I have a ticket to Cork please? 
 
The intention is underspecified since it doesn’t mention 

the starting station (there are two possible stations in 
Dublin), but since the passenger is at the Heuston ticket 
desk, it is most likely that he wants to travel from Heuston. 
There is a large penalty for recognition error, since the 
passenger will be given the wrong ticket, but there is also 
quite a small probability of this error since the passenger 
most probably means Heuston. Therefore, the problem is 
particularly sensitive to the accuracy of the user model. A 
time tree can be constructed for this problem, and once 
again there is a user model variable that determines the 
strategy choice, namely the plan recognition rule that infers 
the two alternatives from his utterance. 

The planner has also been applied to the problem of 
mixed initiative dialogue, where the system must decide 
whether or not to act upon a possible user intention. For 
example, it might be wasteful to always ask train 
passengers if they want a window seat, if that is rarely their 
intention. On the other hand, if a passenger does not ask 
because he thinks they are unlikely to be available, an 
opportunity is missed. A time-tree (figure 3) can be 
constructed to solve this problem for the system’s decision, 
using user model values for the probability that a passenger 
wants a window seat, and the nested value in the user 
model that represents the passenger’s expectation of 
whether a window seat is available.

 

choice

offer_window_seatoffer_window_seat

pass_turnpass_turn

chance
p1

chance
p1

intend(window_seat)intend(window_seat)

¬intend(window_seat)¬intend(window_seat)

intend(window_seat)intend(window_seat)
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1

0
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0
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1

0
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Figure 3: A time tree for robust mixed-initiative planning 



 

6. Discussion 

For planning with small numbers of states such as for a 
typical train reservation dialogue system controlled by a 
state-based dialogue manager, online planning is not 
neccessary, since functions can be derived from hand-drawn 
time trees at design time for each expected state, with 
variables to taken from the user model. As such the time 
trees can be used as an analytical tool by the system 
designer. For example, in the generation dialogue example 
the functions is: 

 
use_robust(UserModel um) { 
 
if (um.p > 0.5) 
 return true; 
else 
 return false; 
} 
 
For a more complex time-tree, such as figure 3, a nested 

if statement is used to deal with two user model variables. 
For finite state problems, reinforcement learning (eg [7] ) is 
a similar approach to deciding strategies at design time, but 
since it uses a static policy, it is inapplicable to problems 
that use a dynamic user model. 

For more complex planning problems, there may be 
deeper plans, more complex sets of intention hypotheses, 
and more complex sets of choices for the system at each 
turn, the combinations of which are better represented with 
plan rules rather than fixed sets of states. For example, in 
repairing a machine, an agent may ask for some superglue 
because he has developed a novel plan to hold the 
adjustment screw in place. Recognising that intention has to 
do with the complex configuration of the machine at hand, 
mixed with the dialogue acts that help to choose between 
the hypotheses, and cannot be recorded as a stored state at 
design time.  

The following usage scenarios are envisioned for the 
planner: 

 
Fully static system The time-trees can be used at 

design time to hardcode strategy choices for fixed-state 
systems, with a static user model gathered from user 
surveys or wizard-of-oz experiments. For example a study 
of how often passengers desire a window seat determines 
the initiative policy for asking whether they require a seat. 
Such analysis would be particularly valuable for time-
pressured environments such as in emergency diagnosis and 
response, and can be applied equally to well to determine 
the dialogue policy of a human operator. 

 
Finite state with dynamic user model Using functions 

derived from the time-tree at design time, a dynamic user 
model, tailored for repeated use by the same user can be 
instantiated in the field and used with the stored functions. 

 
Fully dynamic system Dynamic problem solving agents 

produce novel plans with mixed physical and dialogue acts, 
for which efficient dialogue plans need to be generated on 

the fly using the planner. The user model adapts 
dynamically. A user-adaptive tutorial dialogue system, an 
interactive tour guide, or a computer application 
troubleshooting assistant must produce efficient yet robust 
responses. As an example, an interactive tour guide could 
efficiently adapt to a user who likes both Italian restaurants 
and record shopping by generating tour plans that could not 
be effectively retrieved from memory.  

7. Conclusions 

A dialogue planner was described that can decide whether a 
robust but costly strategy should be used. It has been 
implemented, and three example problems have been 
explored – generation of robust utterances, use of robust 
strategies in identifying the user intention, and deciding 
when to take the initiative in opening subdialogues.  
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