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Abstract

An important tradeoff in error-prone dialogue istvibeen
the cost of using more robust dialogue strategiesd the
cost of recovering from failed understanding withasing
them. A strategy has to be quantitatively plannadefach
dialogue state, since too robust a strategy mighthave a
worthwhile effect on the failure rate. A dialoguamager is
described which chooses between strategies thaé hav
differing levels of robustness with a view to maising the
efficiency of the dialogue.

1. Introduction

A common measure for the performance of a dialogue
system is the time-to-completion of a given task [he
time taken is influenced by whether a robust diaéog
strategy is chosen. For example, where the syssetmying

to recognise the hearer’s intention and cannot ymeda
single definite hypothesis, the agent can use &romtion
subdialogue. Doing so might increase the time-togletion
since it requires effort from both the system dreluser. On
the other hand, using a confirmation reduces tkelifiood

of an error in recognising the user, entailing lelsance of a
costly correction subdialogue later on. Similarlin
generating system utterances, there is some chuaitable
about whether to use ambiguous forms such as using
anaphora and ellipsis, or words or phrases whicliewh
brief, are not robust since they risk not beingoinfative
enough about the system’s intention. Other stratbgjces
can be made, such as whether the speech syntlystsns
should speak quickly or slowly, or whether a prisazlie
would be useful to resolve a potential ambiguity.

Within the SAID project, an agent-based approach
is taken to development of dialogue systems, inod
distributed, robust speech recognition system fjd a
robust agent-based dialogue management system. The
dialogue management system is based on Rao and
Georgeff's BDI [3] (belief-desire-intention) theoof agent
decision-making. The system, whose design is ptedein
this paper, has been implemented in PROLOG anddest
various example problems such as planning confionst
and deciding between robust and less robust utteran
generation strategies. It is a domain independgstes,
only requiring instantiation of a plan-rules filerfthe
dialogue task. Examples of the system’s operatiengaven

in this paper, and it is shown that probabilistitarp
recognition and adaptation of a user model are both
important in deciding dialogue strategies in thesamples.

2. Dialogue Planning M odéel

Rao and Georgeff's [3] theory of agent choice isdshon a
time-tree representation of possible dialogue on&o
Similar to a decision tree, there are choice nothes
represent the strategies the agent may use atirfmisrt the
dialogue. There are also chance nodes that reprélsen
uncertainty of the agent’s environment, which ia tdontext
of a dialogue system, can be used to representtainty in
the beliefs or intentions of the agent acting at fisilowing
choice node. The time-tree represents the altempatitions
of the agents, with each agent’s turn represenyedddhoice
node in the shared multi-agent plan.

A nested belief model (user-model) is employed h®y t
system to represent the system’s beliefs aboututies’s
mental state ( ie. beliefs and intentions), thetesys
beliefs about the user’s beliefs about the systemahtal
state and so on. A deeply nested model is necessiace
in system generation of utterances, the systemotxpbke
user to interpret the utterance according to thes’sisnodel
of the system intentions. As a simple example ofigis
nested user model, consider a system which always s
“How may | help you?” at the start of a dialoguenéed
worry little about accurate generation of the w@wtee after
a few runs with the same user since the system
eventually believe that the user believes that dimtem
always intends to start with “How may | help you”

Since dialogue happens in alternating turns, tistesy
constructs a time-tree by adding a choice nodetfoown
turn, then adding a chance node for the uncertantah
state of the user, if that state has a determieffegt on the
user’s choice. Then a further choice node is addedhe
user’'s expected choice. This continues recursivging a
further level of the nested belief model at eaatm,twntil
all of the outcomes of the dialogue have been geeer
Choice nodes are produced by expanding the dialptgure
which is hierarchically structured, similar to NOAdans
[4]. To represent different utterance generatioatsgies,
alternative decompositions can be given for eaetodue
act strategy. For instance, an ellipsis might bedum
eliciting a flight date by asking “on which date®t, a fuller
utterance “on which date would you like to depaifiwvo
rules are used:

will

decomp(date-ask,[date-ask-elliptical]).
decomp(date-ask,[date-ask-full]).



To represent the different strategies in confirorati

dialogues, alternative decompositions are used for

information eliciting subdialogues. For asking igtt date,
the two following decompositions are used:

decomp(date-dialogue,[date-ask,date-inform,datéroof.
decomp(date-dialogue,[date-ask,date-inform]

decomp(date-confirm,[declare-date,confirm]).
decomp(date-confirm,[declare-date,deny]).

Once the time-tree has been constructed, a utility

calculation is used to decide between strategieshat
current choice node. The utility is calculated frtme value
of the completed task, and from the cost of eachhef
strategy choices used in the tree path, in termshef
amount of time taken for each strategy. These casts
specified as part of the domain rules. Using thie mf
“maximize expected utility”, the expected utilitgrfa time-
tree is calculated by recursively processing theicehand
chance nodes. For the choice nodes, the utilithesutility

of the branch chosen at that node, which each agent

attempts to maximise. For the chance nodes, thigyus

the expected utility over the probability distritmurt, which
is the sum of the utility of the branches, eachghtEd by
their probability. Finally, to decide a strategy the current
turn, the system chooses the branch at the fiitemode
that has the maximum expected utility accordingttis

calculation.

3. Probabilistic Plan Recognition

An important step in constructing the time-treethie
plan recognition step, whose purpose is to fit sitem or
user utterance into a plan structure based on itdegde
context. Previously, plan recognition algorithmsr fo
dialogue have not been treated probabilistically If5it the
relative likelihood of the plan hypotheses is catiin
making dialogue strategy choices. In the generan pl

recognition problem, probabilistic reasoning uses a

Bayesian network [6]. However, in dialogue, for eax
recognition, speakers usually maintain the focus oésk,
meaning that nodes are added to the plan in arbhatfo

<&

robust ( penalty 0.2)

choice

not robust

choice

[pass small spanner]

left-to-right order. As a result, plan recognitic®@ much
simpler as nodes are added to the first availabsgtipn if
the plan tree is not full. This requires no placognition. If
however, the plan structure is full, it is expandguvards
from the root to produce one of several recognition
hypotheses, according to the choice of parentHerrbot
node. Implementation of this approach is very sengince
all that is required is a list of alternative paseand their
probabilities for any particular dialogue act oteimal task
node. For lower level recognition, from the spesignal to
the dialogue act level, a similar, “n-best” styist Ican be
used to build plan hypotheses.

Plan recognition rules are part of the agent's alent
state, and so are encoded within the nested beibefel.
For example, the system’s strategy choice mustheelan
recognition rules at the second level of nestingraalict the
likely interpretations of the hearer.

4. TheLaw of the Most Probable and Robust
Generation

The use of robust strategies relies on a phenomigradn
is called here the “law of the most probable”. Thasv
states that when the cooperative hearer of anantterhas
several hypotheses for the speaker’s intention camdact
on only one of them, he must choose the most ptehafb
the intentions, since this will maximise his exgecutility.
This law is very useful in robustly choosing aneunce,
since the speaker need only communicate just enthagh
his intention is placed as the most probable one¢hen
hearer's mind. As an example in utterance generatio
consider a problem of definite description generatiA
robot agent and a human are cooperating to repair t
adjustment nut on a machine. There is a big spaamneéra
small spanner in the workshop, of which the robstally
uses the small spanner. The robot would like toaushort,
but robust enough definite description in asking tluman
to pass the small spanner. His choices are:

1. “Pass me the small spanner please”
2. “Pass me the spanner please”

/ choice —{pass small spanner] —intend(small) 100%—> <>

Figure 1 A time-tree for robust generation



Utterance 1 is robust enough to always succeeerdvtte 2
is shorter, but less robust. The planner genetéiegime
tree shown in figure 1 for deciding whether to ube
robust form or not. The user model estimates thatuser
holds a plan recognition rule that estimates thstesy
intention of having a small spanner with a prokigbibf

p=0.6. The expected utility value for the robustiap is
then 0.8 since a reward of 1 is attained at the afrithe
plan, and since using a robust utterance has d perzdlty
in time-to-completion. The non-robust option hagtisity of

1 since the reward is also attained but at no pereahd so
the agent chooses the non-robust option in this.cas

;
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Figure 2 Variation in utility of robust and non-robust

strategies with probability values in the user glod

robust

The interesting property of this problem is the
sensitivity of the agent’s decision to the valuepoin the
user model. If p is anywhere greater than 0.5 thent
should choose the non-robust form. If p is anywHess
than 0.5 the agent should choose the robust foaxing an
accurate user model is then necessary to make camate
strategy decision, and the plan recognition rulesl a
recognition mechanism must be probabilistic.

Figure 2 shows the utility estimated by the sysfem
the two strategies by including estimation errorithAho
assumed error in the user model, the non-robusityuti
curve is a sharp step function. However, since uber
model is often based on sampling a finite set ofraf the
system with the same user, which determines thenatst
of p, an error is introduced by treating each rs aa
Bernoulli trial. For an example of ten runs, a stheo “s”
curve is obtained for the non-robust strategy, Wi result

that the system decides to use the strategy ongnwghis
safely above 0.6, rather than at 0.5. As the usedein
develops, the curve sharpens, and the system cama mo
safely choose less robust strategies. Therefore, ptan
recognition system records error values as well as
probability estimates in the plan recognition rules

5. Further Examples

Converse to the generation problem, in which tretesy
must clarify its own intention, another applicatioh the
planner is in clearly eliciting the user’s intemtidr his can
be achieved by asking for repetition, rephrasing,bp
confirmation. In this example, a train passengeHeuston
Station in Dublin, asks:

A: Could | have a ticket to Cork please?

The intention is underspecified since it doesn’ntien
the starting station (there are two possible station
Dublin), but since the passenger is at the Heusitbwet
desk, it is most likely that he wants to travelnfréieuston.
There is a large penalty for recognition error,csirthe
passenger will be given the wrong ticket, but thisralso
quite a small probability of this error since thaspenger
most probably means Heuston. Therefore, the proltem
particularly sensitive to the accuracy of the usedel. A
time tree can be constructed for this problem, ande
again there is a user model variable that detemsnthe
strategy choice, namely the plan recognition rbkg infers
the two alternatives from his utterance.

The planner has also been applied to the problem of
mixed initiative dialogue, where the system mustidke
whether or not to act upon a possible user intantior
example, it might be wasteful to always ask train
passengers if they want a window seat, if thatisly their
intention. On the other hand, if a passenger datsask
because he thinks they are unlikely to be available
opportunity is missed. A time-tree (figure 3) cae b
constructed to solve this problem for the systede@sision,
using user model values for the probability thaiaasenger
wants a window seat, and the nested value in tle us
model that represents the passenger's expectatfon o
whether a window seat is available.

choice

intend(windowseat)
offer_window_seat ~intend(window_seat)—] choice

choice

passturintend(windowseat)—> choice

—intend(window_seat)—> <0>

bel(has_window_seat)—> <>
windowseat
— i —

do_nothing bel(=has_window_seat) <(>

~

Figure 3 A time tree for robust mixed-initiative planning



6. Discussion

For planning with small numbers of states suchoasf
typical train reservation dialogue system contlley a
state-based dialogue manager, online planning is no
neccessary, since functions can be derived frond-daawn
time trees at design time for each expected staithy
variables to taken from the user model. As suchtitine
trees can be used as an analytical tool by theersyst
designer. For example, in the generation dialoguengle
the functions is:

use_robust(UserModel um) {

if (um.p > 0.5)
return true;
else
return false;
}

For a more complex time-tree, such as figure sted
if statement is used to deal with two user modeiatées.
For finite state problems, reinforcement learnieg [7] ) is
a similar approach to deciding strategies at deSiga, but
since it uses a static policy, it is inapplicabteproblems
that use a dynamic user model.

For more complex planning problems, there may be
deeper plans, more complex sets of intention hygsas,
and more complex sets of choices for the systemaah
turn, the combinations of which are better represgmvith
plan rules rather than fixed sets of states. Famgple, in
repairing a machine, an agent may ask for somergluee
because he has developed a novel plan to hold the
adjustment screw in place. Recognising that inbenlias to
do with the complex configuration of the machinehand,
mixed with the dialogue acts that help to choosevéen
the hypotheses, and cannot be recorded as a staedat
design time.

The following usage scenarios are envisioned fer th
planner:

Fully static system The time-trees can be used at
design time to hardcode strategy choices for fiside
systems, with a static user model gathered fromr use
surveys or wizard-of-oz experiments. For examplgtualy
of how often passengers desire a window seat digtesm
the initiative policy for asking whether they reuiia seat.
Such analysis would be particularly valuable fomet
pressured environments such as in emergency diagug
response, and can be applied equally to well terdehe
the dialogue policy of a human operator.

Finite state with dynamic user model Using functions
derived from the time-tree at design time, a dymanser
model, tailored for repeated use by the same umerbe
instantiated in the field and used with the stdtetttions.

Fully dynamic system Dynamic problem solving agents
produce novel plans with mixed physical and diatogats,
for which efficient dialogue plans need to be gatemt on

the fly using the planner. The user model adapts
dynamically. A user-adaptive tutorial dialogue syst an
interactive tour guide, or a computer application
troubleshooting assistant must produce efficientrgbust
responses. As an example, an interactive tour gcodéd
efficiently adapt to a user who likes both Itali@staurants
and record shopping by generating tour plans tbaldcnot

be effectively retrieved from memory.

7. Concdusions

A dialogue planner was described that can decidetiven a
robust but costly strategy should be used. It hasnb
implemented, and three example problems have been
explored — generation of robust utterances, useolmfist
strategies in identifying the user intention, aretiding
when to take the initiative in opening subdialogues
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