

Provided by the author(s) and University College Dublin Library in accordance with publisher policies. Please

cite the published version when available.

Downloaded 2013-09-16T10:59:08Z

Some rights reserved. For more information, please see the item record link above.

Title Dynamic choice of robust strategies in dialogue management

Author(s) McEleney, Bryan; O'Hare, G. M. P. (Greg M. P.)

Publication
Date 2004-08-30

Publication
information

COST278 and ISCA Tutorial and Research Workshop on
Robustness Issues in Conversational Interaction University of
East Anglia, Norwich, UK August 30-31, 2004 [proceedings] :
paper 29

Publisher ISCA

Link to
publisher's

version
Unavailable

This item's
record/more
information

http://hdl.handle.net/10197/4478

http://researchrepository.ucd.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

Dynamic Choice of Robust Strategies in Dialogue Management

Bryan McEleney and Gregory O’Hare

Department of Computer Science,
University College Dublin, Ireland

bryan.j.mceleney@ucd.ie, gregory.o’hare@ucd.ie

Abstract

An important tradeoff in error-prone dialogue is between
the cost of using more robust dialogue strategies and the
cost of recovering from failed understanding without using
them. A strategy has to be quantitatively planned for each
dialogue state, since too robust a strategy might not have a
worthwhile effect on the failure rate. A dialogue manager is
described which chooses between strategies that have
differing levels of robustness with a view to maximising the
efficiency of the dialogue.

1. Introduction

A common measure for the performance of a dialogue
system is the time-to-completion of a given task [1]. The
time taken is influenced by whether a robust dialogue
strategy is chosen. For example, where the system is trying
to recognise the hearer’s intention and cannot produce a
single definite hypothesis, the agent can use a confirmation
subdialogue. Doing so might increase the time-to-completion
since it requires effort from both the system and the user. On
the other hand, using a confirmation reduces the likelihood
of an error in recognising the user, entailing less chance of a
costly correction subdialogue later on. Similarly, in
generating system utterances, there is some choice available
about whether to use ambiguous forms such as using
anaphora and ellipsis, or words or phrases which while
brief, are not robust since they risk not being informative
enough about the system’s intention. Other strategy choices
can be made, such as whether the speech synthesis system
should speak quickly or slowly, or whether a prosodic cue
would be useful to resolve a potential ambiguity.

Within the SAID project, an agent-based approach
is taken to development of dialogue systems, including a
distributed, robust speech recognition system [2], and a
robust agent-based dialogue management system. The
dialogue management system is based on Rao and
Georgeff’s BDI [3] (belief-desire-intention) theory of agent
decision-making. The system, whose design is presented in
this paper, has been implemented in PROLOG and tested on
various example problems such as planning confirmations,
and deciding between robust and less robust utterance
generation strategies. It is a domain independent system,
only requiring instantiation of a plan-rules file for the
dialogue task. Examples of the system’s operation are given

in this paper, and it is shown that probabilistic plan
recognition and adaptation of a user model are both
important in deciding dialogue strategies in these examples.

2. Dialogue Planning Model

Rao and Georgeff’s [3] theory of agent choice is based on a
time-tree representation of possible dialogue outcomes.
Similar to a decision tree, there are choice nodes that
represent the strategies the agent may use at his turn in the
dialogue. There are also chance nodes that represent the
uncertainty of the agent’s environment, which in the context
of a dialogue system, can be used to represent uncertainty in
the beliefs or intentions of the agent acting at the following
choice node. The time-tree represents the alternating actions
of the agents, with each agent’s turn represented by a choice
node in the shared multi-agent plan.

A nested belief model (user-model) is employed by the
system to represent the system’s beliefs about the user’s
mental state (ie. beliefs and intentions), the system’s
beliefs about the user’s beliefs about the system’ mental
state and so on. A deeply nested model is necessary, since
in system generation of utterances, the system expects the
user to interpret the utterance according to the user’s model
of the system intentions. As a simple example of using a
nested user model, consider a system which always says
“How may I help you?” at the start of a dialogue. It need
worry little about accurate generation of the utterance after
a few runs with the same user since the system will
eventually believe that the user believes that the system
always intends to start with “How may I help you”

Since dialogue happens in alternating turns, the system
constructs a time-tree by adding a choice node for its own
turn, then adding a chance node for the uncertain mental
state of the user, if that state has a determining effect on the
user’s choice. Then a further choice node is added for the
user’s expected choice. This continues recursively, using a
further level of the nested belief model at each turn, until
all of the outcomes of the dialogue have been generated.
Choice nodes are produced by expanding the dialogue plan,
which is hierarchically structured, similar to NOAH plans
[4]. To represent different utterance generation strategies,
alternative decompositions can be given for each dialogue
act strategy. For instance, an ellipsis might be used in
eliciting a flight date by asking “on which date?”, or a fuller
utterance “on which date would you like to depart”. Two
rules are used:

decomp(date-ask,[date-ask-elliptical]).
decomp(date-ask,[date-ask-full]).

To represent the different strategies in confirmation
dialogues, alternative decompositions are used for
information eliciting subdialogues. For asking a flight date,
the two following decompositions are used:

decomp(date-dialogue,[date-ask,date-inform,date-confirm]).
decomp(date-dialogue,[date-ask,date-inform]

decomp(date-confirm,[declare-date,confirm]).
decomp(date-confirm,[declare-date,deny]).

Once the time-tree has been constructed, a utility

calculation is used to decide between strategies at the
current choice node. The utility is calculated from the value
of the completed task, and from the cost of each of the
strategy choices used in the tree path, in terms of the
amount of time taken for each strategy. These costs are
specified as part of the domain rules. Using the rule of
“maximize expected utility”, the expected utility for a time-
tree is calculated by recursively processing the choice and
chance nodes. For the choice nodes, the utility is the utility
of the branch chosen at that node, which each agent
attempts to maximise. For the chance nodes, the utility is
the expected utility over the probability distribution, which
is the sum of the utility of the branches, each weighted by
their probability. Finally, to decide a strategy for the current
turn, the system chooses the branch at the first choice node
that has the maximum expected utility according to this
calculation.

3. Probabilistic Plan Recognition

 An important step in constructing the time-tree is the
plan recognition step, whose purpose is to fit the system or
user utterance into a plan structure based on the dialogue
context. Previously, plan recognition algorithms for
dialogue have not been treated probabilistically [5], but the
relative likelihood of the plan hypotheses is critical in
making dialogue strategy choices. In the general plan
recognition problem, probabilistic reasoning uses a
Bayesian network [6]. However, in dialogue, for ease of
recognition, speakers usually maintain the focus of a task,
meaning that nodes are added to the plan in a bottom-up

left-to-right order. As a result, plan recognition is much
simpler as nodes are added to the first available position if
the plan tree is not full. This requires no plan recognition. If
however, the plan structure is full, it is expanded upwards
from the root to produce one of several recognition
hypotheses, according to the choice of parent for the root
node. Implementation of this approach is very simple, since
all that is required is a list of alternative parents and their
probabilities for any particular dialogue act or internal task
node. For lower level recognition, from the speech signal to
the dialogue act level, a similar, “n-best” style list can be
used to build plan hypotheses.

Plan recognition rules are part of the agent’s mental
state, and so are encoded within the nested belief model.
For example, the system’s strategy choice must use the plan
recognition rules at the second level of nesting to predict the
likely interpretations of the hearer.

4. The Law of the Most Probable and Robust
Generation

The use of robust strategies relies on a phenomenon that
is called here the “law of the most probable”. This law
states that when the cooperative hearer of an utterance has
several hypotheses for the speaker’s intention and can act
on only one of them, he must choose the most probable of
the intentions, since this will maximise his expected utility.
This law is very useful in robustly choosing an utterance,
since the speaker need only communicate just enough that
his intention is placed as the most probable one in the
hearer’s mind. As an example in utterance generation,
consider a problem of definite description generation. A
robot agent and a human are cooperating to repair the
adjustment nut on a machine. There is a big spanner and a
small spanner in the workshop, of which the robot usually
uses the small spanner. The robot would like to use a short,
but robust enough definite description in asking the human
to pass the small spanner. His choices are:

1. “Pass me the small spanner please”
2. “Pass me the spanner please”

choice

robust (penalty 0.2)robust (penalty 0.2)

not robustnot robust
[pass big spanner][pass big spanner]

[pass small spanner][pass small spanner]

chance
p

[pass small spanner][pass small spanner] chance intend(small) 100%intend(small) 100%

intend(small) 60%intend(small) 60%

intend(small) 60%intend(small) 60%

intend(big) 40%intend(big) 40%

intend(big) 40%intend(big) 40%

1

0

0

0.6

0.4

11

1

1

1

choice

choice

chance
p

Figure 1: A time-tree for robust generation

Utterance 1 is robust enough to always succeed. Utterance 2
is shorter, but less robust. The planner generates the time
tree shown in figure 1 for deciding whether to use the
robust form or not. The user model estimates that the user
holds a plan recognition rule that estimates the system
intention of having a small spanner with a probability of
p=0.6. The expected utility value for the robust option is
then 0.8 since a reward of 1 is attained at the end of the
plan, and since using a robust utterance has a small penalty
in time-to-completion. The non-robust option has a utility of
1 since the reward is also attained but at no penalty, and so
the agent chooses the non-robust option in this case.

Figure 2: Variation in utility of robust and non-robust
 strategies with probability values in the user model

The interesting property of this problem is the

sensitivity of the agent’s decision to the value of p in the
user model. If p is anywhere greater than 0.5 the agent
should choose the non-robust form. If p is anywhere less
than 0.5 the agent should choose the robust form. Having an
accurate user model is then necessary to make an accurate
strategy decision, and the plan recognition rules and
recognition mechanism must be probabilistic.

Figure 2 shows the utility estimated by the system for
the two strategies by including estimation error. With no
assumed error in the user model, the non-robust utility
curve is a sharp step function. However, since the user
model is often based on sampling a finite set of runs of the
system with the same user, which determines the estimate
of p, an error is introduced by treating each run as a
Bernoulli trial. For an example of ten runs, a smoother “s”
curve is obtained for the non-robust strategy, with the result

that the system decides to use the strategy only when p is
safely above 0.6, rather than at 0.5. As the user model
develops, the curve sharpens, and the system can more
safely choose less robust strategies. Therefore, the plan
recognition system records error values as well as
probability estimates in the plan recognition rules.

5. Further Examples

Converse to the generation problem, in which the system
must clarify its own intention, another application of the
planner is in clearly eliciting the user’s intention. This can
be achieved by asking for repetition, rephrasing, or by
confirmation. In this example, a train passenger, at Heuston
Station in Dublin, asks:

A: Could I have a ticket to Cork please?

The intention is underspecified since it doesn’t mention

the starting station (there are two possible stations in
Dublin), but since the passenger is at the Heuston ticket
desk, it is most likely that he wants to travel from Heuston.
There is a large penalty for recognition error, since the
passenger will be given the wrong ticket, but there is also
quite a small probability of this error since the passenger
most probably means Heuston. Therefore, the problem is
particularly sensitive to the accuracy of the user model. A
time tree can be constructed for this problem, and once
again there is a user model variable that determines the
strategy choice, namely the plan recognition rule that infers
the two alternatives from his utterance.

The planner has also been applied to the problem of
mixed initiative dialogue, where the system must decide
whether or not to act upon a possible user intention. For
example, it might be wasteful to always ask train
passengers if they want a window seat, if that is rarely their
intention. On the other hand, if a passenger does not ask
because he thinks they are unlikely to be available, an
opportunity is missed. A time-tree (figure 3) can be
constructed to solve this problem for the system’s decision,
using user model values for the probability that a passenger
wants a window seat, and the nested value in the user
model that represents the passenger’s expectation of
whether a window seat is available.

choice

offer_window_seatoffer_window_seat

pass_turnpass_turn

chance
p1

chance
p1

intend(window_seat)intend(window_seat)

¬intend(window_seat)¬intend(window_seat)

intend(window_seat)intend(window_seat)

¬intend(window_seat)¬intend(window_seat)

choice

choice

accept_offeraccept_offer

reject_offerreject_offer

choice ask_window_seatask_window_seat

1

0

chance
p2

0

bel(has_window_seat)bel(has_window_seat)

bel(¬has_window_seat)bel(¬has_window_seat)

1

0
do_nothingdo_nothing

0

Figure 3: A time tree for robust mixed-initiative planning

6. Discussion

For planning with small numbers of states such as for a
typical train reservation dialogue system controlled by a
state-based dialogue manager, online planning is not
neccessary, since functions can be derived from hand-drawn
time trees at design time for each expected state, with
variables to taken from the user model. As such the time
trees can be used as an analytical tool by the system
designer. For example, in the generation dialogue example
the functions is:

use_robust(UserModel um) {

if (um.p > 0.5)
 return true;
else
 return false;
}

For a more complex time-tree, such as figure 3, a nested

if statement is used to deal with two user model variables.
For finite state problems, reinforcement learning (eg [7]) is
a similar approach to deciding strategies at design time, but
since it uses a static policy, it is inapplicable to problems
that use a dynamic user model.

For more complex planning problems, there may be
deeper plans, more complex sets of intention hypotheses,
and more complex sets of choices for the system at each
turn, the combinations of which are better represented with
plan rules rather than fixed sets of states. For example, in
repairing a machine, an agent may ask for some superglue
because he has developed a novel plan to hold the
adjustment screw in place. Recognising that intention has to
do with the complex configuration of the machine at hand,
mixed with the dialogue acts that help to choose between
the hypotheses, and cannot be recorded as a stored state at
design time.

The following usage scenarios are envisioned for the
planner:

Fully static system The time-trees can be used at

design time to hardcode strategy choices for fixed-state
systems, with a static user model gathered from user
surveys or wizard-of-oz experiments. For example a study
of how often passengers desire a window seat determines
the initiative policy for asking whether they require a seat.
Such analysis would be particularly valuable for time-
pressured environments such as in emergency diagnosis and
response, and can be applied equally to well to determine
the dialogue policy of a human operator.

Finite state with dynamic user model Using functions

derived from the time-tree at design time, a dynamic user
model, tailored for repeated use by the same user can be
instantiated in the field and used with the stored functions.

Fully dynamic system Dynamic problem solving agents

produce novel plans with mixed physical and dialogue acts,
for which efficient dialogue plans need to be generated on

the fly using the planner. The user model adapts
dynamically. A user-adaptive tutorial dialogue system, an
interactive tour guide, or a computer application
troubleshooting assistant must produce efficient yet robust
responses. As an example, an interactive tour guide could
efficiently adapt to a user who likes both Italian restaurants
and record shopping by generating tour plans that could not
be effectively retrieved from memory.

7. Conclusions

A dialogue planner was described that can decide whether a
robust but costly strategy should be used. It has been
implemented, and three example problems have been
explored – generation of robust utterances, use of robust
strategies in identifying the user intention, and deciding
when to take the initiative in opening subdialogues.

8. References

[1] Walker, M., Litman, D., Kamm, C., Abella, A.,
Evaluating Spoken Dialogue Agents with PARADISE:
Two Case Studies .in Computer Speech and Language,
12(3), 1998.

[2] Walsh, M., Kelly, R., O’Hare, G.M.P., Carson-

Berndsen J., Abu-Amer,T., A Multi-agent
Computational Linguistic Approach to Speech
Recognition. in proceedings 18th International Joint
Conference on Artificial Intelligence. 1477-, 2003.

[3] Rao, A., Georgeff, M. Modelling Rational Agents

Within a BDI Aarchitecture. in proceedings Second
Conference on Knowledge Representation and
Reasoning 473-484, 1991.

[4] Sacerdoti, E., A Structure for Plans and Behaviour.

Elsevier, New York, 1977.

[5] Carberry, S., Plan Recognition in Natural Language

Dialogue, MIT Press, 1990.

[6] Charniak, E., Goldman, R., A Bayesian Model of Plan

Recognition. Artificial Intelligence 64 (1) 53-79, 1993.

[7] Roy, N., Pineau, J., Thrun, S., Spoken Dialogue

Management using Probabilistic Reasoning. in
proceedings 38th Annual Meeting of the Association for
Computational Linguistics. 2000.

