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Ubiquitous sensing fuses the concepts of intelligent systems with ubiquitous com-
puting in the development of novel sensor web applications, whereby the interaction of
multiple disparate autonomous artefacts is a key requirement. In this paper, we present
SIXTH, which is a middleware infrastructure for Ubiquitous Sensing that facilitates,
and supports, the development and deployment of Sensor Web applications. SIXTH has
been designed to be extensible, with provisions for user definable data retention policies,
custom sensor data representations, and custom sensor node representations, whilst still
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providing a rich set of default behaviours. Within SIXTH, support is provided for the
development and interaction of applications that incorporate both physical and cyber
(virtual server side) sensors. With a view to supporting intelligent, in network, inter-
action policies, whereby sensor nodes must negotiate and coordinate their behaviour,
the system has been designed to operate in conjunction with Agent Factory Micro Edi-
tion (AFME). AFME is a minimised footprint intelligent agent platform designed for
resource constrained devices. It is based on the standard Agent Factory platform, which
was developed for desktop machines, and is representative of a class of agent systems,
which are referred to as Agent Oriented Programming frameworks. The paper discusses
a ubiquitous mapping application that was developed using the middleware.

Keywords: Sensor Web, Wireless Sensor Networks, Multi-Agent Systems

1. Introduction

Sensor Web technologies represent a key enabler of pervasive computing. Though
the original pervasive computing vision was originally proposed over 20 years ago,
realising a sensor fabric that would conform to the exacting requirements of minia-
turisation, power-e�ciency, and robustness amongst others, has proved a formidable
technical challenge, and one that remains tantalisingly beyond the horizon in a num-
ber of aspects. The Sensor Web o↵ers a construct by which this sensor fabric can
be conceptualised, realised, and accessed. A conventional view of the Sensor Web
focuses on its potential as an integrated extension of geospatial sensor networks
30,3. Though a significant development in its own right, and one that is increasingly
being manifested in practice at present, this view is narrowly focused and circum-
scribes what the sensor web could become. For the purposes of this discussion, it is
envisaged that the sensor web will provide a shared uniform construct for accessing
sensor data of all hues, in much the same way as the standard WWW provides
a ubiquitous interface for multimedia documents and other dynamic data sources
from all over the world.

Supporting interaction with the sensor web is essential; however, how best to
enable interaction remains to be seen. Ambient Intelligence (AmI) represents a more
human-centric interpretation of pervasive computing 21,1. Specifically, it acknowl-
edges the need for supporting interaction, and proposes the adoption of Intelligent
User Interfaces (IUIs) 11 as the means by which this is achieved. The manner wherein
the sensor layer and application layer interact, however, is not defined. Indeed, the
lack of an agreed approach, in terms of standardised protocols and ontologies, for
enabling such interaction, is a key inhibitor of pervasive access to the sensor web.
Likewise, the potential of IUIs and ultimately, AmI, is seriously compromised. In
this paper, a framework for bridging this gap between applications and the sensor
web is proposed.

The remainder of this paper is organised as follows. This is followed, in Section
3, with a discussion on various interaction modalities of the sensor web. Section 4
provides an overview of the SIXTH middleware architecture. Embedded Intelligence
is delivered in SIXTH through its interaction with AFME. An overview of AFME
is provided in Section 5. A discussion of a SIXTH application, namely Ubiquitous
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Mapping, is provided in Section 6. In Section 7, we discuss potential directions for
future research and give some concluding remarks.

2. Challenges in Delivering the Sensor Web

A number of key challenges exist that need to be addressed before the vision of the
Sensor Web can be realised. These include:

• Deliver Cyber-Physical Systems: It is necessary that the sensor web em-
braces the richness of the term sensor providing a seamless topology of sen-
sors be they physical or web-based 12. Sensor networks will be comprised of
a di↵use range of sensors including physically deployed sensors, web based
sensors like those of RSS feeds or twitter streams, historical data akin to
linked data together with opportunistic crowd-sourced data. The challenge
is to weave this into a unified collage of sensor data performing data fusion
and data enrichment. Such heterogeneity poses considerable di�culties.

• Introduce Intelligence: The Autonomic Sensor Network : Sensor Web nodes
operate as part of a collective and as such the activities of one sensor nec-
essarily has an impact on those around it. Sensor Networks must operate
not as a collection of individual sensors but rather as a collective which
works collaboratively and in concert in the delivery of defined Quality of
Service constraints. Autonomic Sensor networks 15 make provision for op-
portunistic collaboration between sensors. One approach to realising such
functionality has been through the use of embedded agents 20.

• Preserving System Longevity : Invariably, the lifetime of a physical sensor is
dictated by the battery power source. While this is not a constraint for web
based sensors or higher end physical sensors with a dedicated power supply
it nevertheless compromises those computational tasks that are undertaken
on the sensors themselves. As such an energy aware deductive regime needs
to be put in place.

• Support Sensor (Re)tasking : While capture and harvesting of sensed data
is crucial, so to is the possibility to task or retask the sensor network. The
Sensor Web must support bi-directional communication. This communica-
tion must o↵er more than the mere passive collection of data. In the context
of a network that needs to conserve energy consumption and in so doing
may utilise intelligent algorithms to dynamically adapt sensor(s) operation
by for example degrading sampling frequency or by increasing the rigour of
reporting thresholds.

• Accommodate Co-existing Applications: The Sensor Web infrastructure is
such that it must represent and deliver a single infrastructure, which sup-
ports a potentially infinite set of users and associated applications. This
Sensor Web would need to o↵er core functionality for sensor interaction
exhibiting resonances with the manner in which the internet o↵ers a core
enabling infrastructure for data access and information sharing.
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• Facilitate Ambient Interaction: The ubiquitous nature of the Sensor Web
will demand that interaction with it is ambient, intuitive, and non intru-

sive in the conduct of our everyday lives. Interaction will demand support
for: sensor discovery, interoperability, personalisation of information filters,
management of protocol diversity through standardisation adoption. It is
this latter challenge that forms the focus of this paper.

3. Sensor Web Interaction Modalities

The concept of the Sensor Web envisages a complex, spatially-distributed, hetero-
geneous, networked infrastructure, yet one that is inherently singular in how it is
perceived, accessed, and controlled. In this paper, the sensor web is viewed of as
comprising of a collection of subnets, each designed for a specialised domain; for
example, surveillance or environmental monitoring. Interaction within the Sensor
Web is primarily governed by the architecture of its constituent subnets. Many
WSN applications are being realised through a suite of technologies that lack in-
teroperability and support diverse interaction modalities. As noted by Broering, et
al.4, a key contributor to this situation is that both the Sensor Web and sensor net-
works remain distinct layers, each comprising distinct islands of technologies. Whilst
there have been e↵orts towards realising the Sensor Web through standard WWW
technologies and protocols, sensor network applications, typically, adopt di↵erent
protocols and have di↵erent semantics, many standardised but some propriety. As
an example of this standardisation e↵ort, the Open Geospatial Consortium (OGC)
Sensor Web Enablement (SWE) initiative 5 has developed a suite of specifications
for sensor models and interfaces, as well as for web services. In practice, most sensor
platforms adhere to popular communication protocols, including Zigbee and Blue-
tooth, that are not interoperable. This demands that software or hardware bridges 2

be constructed for new sensor network deployments or new services being deployed
on existing sensor network installations. This incompatibility between layers repre-
sents a significant constraint on sensor network interoperability and also restricts
how interaction with the network can occur.

Presently, the predominant approach to accessing WSN data has been one of
centralised access and visualisation. Data is sensed, processed, and tagged with
appropriate metadata prior to be being stored in a repository for subsequent access.
The classic web portal construct has been adopted as the primary interface for
such repositories in many instances. SensorMap 22 and Sensorpedia 9 represent two
exemplar cases of this category of approach. The public can upload, query, and
access data as desired; in some cases, they can even register their own sensors -
Weather Undergrounda, for example, allows registered public members to provide
data streams from their own Personal Weather Stations (PWSs). In essence, sensor
portals support conventional interaction modalities.

ahttp://www.wunderground.com
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In mobile computing scenarios, interaction with data, provided it is a accessible
via an wireless internet connection , is relatively straightforward. As the geographic
position of the user is often available, the possibility for accessing data from sensors
in the user’s immediate vicinity provides a useful filter for minimising the search
space. Foerster, et al.7 demonstrate a methodology for enabling remote access to
sensor data, using air quality as a case study. A more challenging scenario arises
if interaction with sensor subnets, and individual sensor platforms, is required. A
standardised approach for such interaction is not yet available, though there have
been prototypes demonstrated in the literature, for example, Tricorder 13 and the
Sensor Browser 31.

The lack of interoperability between the physical sensor and sensor web layers
represents a key deficiency in many sensor web application scenarios, where interna-
tionally accepted standards exist for both layers, but where there are no standards
that define how the di↵erent layers should interoperate. One proposed solution to
this problem is the construction of an intermediate layer, an approach adopted by
SensorBus 4. In essence, this represents a middleware solution that harnesses Twit-
ter as the enabling technology. This represents a viable approach for ubiquitous
data collection, but assumes that the sensor network is an instantiation of the Web
of Things (WoT), a similar approach is adopted by SemSense 16. The WoT assump-
tion, however, is not valid for the majority of sensor network applications. In the
following section, a middleware framework for ubiquitous sensing that is capable of
operating in conjunction with an intelligent agent platform is proposed as a means
of addressing the physical network - sensor web divide.

4. Enabling Sensor Web Interaction

In this section, we describe the SIXTH sensor web middleware. SIXTH combines
physical and cyber sensing technologies within a single unified framework, which
promotes a consistent view of Sensor Web resources. The primary goal of SIXTH
is to support the development and deployment of ubiquitous sensing applications.
SIXTH enables dynamic re-tasking of sensors to suit dynamic application demands.
The middleware has been designed as a distributed system, whereby various com-
ponents of the system are distributed over a network, but are accessed as though
operating locally. Figure 1 provides an overview of the SIXTH architecture.

Within SIXTH, a common core uniform representation is provided for both sen-
sor nodes and sensor data, which enables applications that use the sensor data
and nodes to operate consistently and transparently across di↵erent node or data
sources, without the need to modify the code of the user applications. The uniform
representation can be viewed as the lowest common denominator of the function-
ality and attributes of all sensor network applications that are supported by the
middleware.

SIXTH is extensible and application developers build upon, and extend, the
common core in the development of the requisite application specific functionality.
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To this end, SIXTH supports the provision of user definable data retention policies,
custom sensor data representations, and custom sensor node representations.

Fig. 1. SIXTH architecture

SIXTH is built on top of the Open Service Gateway initiative28 component
framework. OSGi facilitates the creation of dynamic, modular service platforms.
A high level of fault tolerance is ensured as the failure or removal of one unit of
functionality does not e↵ect the rest of the system. Bundles can be installed, started,
stopped, updated and uninstalled without requiring a restart of the whole system.
SIXTH facilitates the collection of sensor data from heterogeneous sources using
adapters. An adaptor provides a means to collect sensor data from a producer or
intermediaries. Adaptors can be injected into a SIXTH instance through the use of
OSGi.

Adaptors transform heterogeneous data formats into the SIXTH message inter-
face format, facilitating data independence from sensor platform implementation.
To limit the workload necessary to create an adaptor, a default implementation has
been developed. This implementation handles discovery service registration and
maintenance, the creation and management of virtual sensor objects, data access,
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and sensor data forwarding. The discovery service is a key component of the SIXTH
software architecture. It is responsible for providing notifications regarding sensor
status to event subscribers. Such status changes include sensor arrivals and time-
outs.

For a simple WSN adaptor, the software converts the received sensed data to
the SIXTH data format and forwards it to the receivers. Adaptors also provide
the functionality to reconfigure the network, for example, to change the sampling
frequency. Within SIXTH, receivers are the simplest form of sensor data consumers.
The receiver mechanism fulfils the subscriber role of the pub/sub model, wherein
the sensors are the publishers.

SIXTH supports the development of both physical and cyber adaptors. Physical
WSN adaptors provide a connection to a WSN through a gateway node. Messages
received by the gateway node are translated to the correct format for SIXTH. For
each sensing platform, custom code is written to allow for re-tasking in line with
SIXTH formats. To date adaptors have been developed for WSN networks running
on the Sun SPOT, TelosB, Mica2, and Tyndall physical sensing platforms. Cyber
adaptors can be developed for software sensors that operate on server side machines.
For example, a cyber sensor has been developed to monitor Twitter feeds.

The data retention policy, within SIXTH, enables autonomous control over the
retention/removal of stored data. Primarily, this concerns the sensor data objects
stored in virtual sensors. Some user applications implement their own data retention
policy to manage the holding of data in line with their own needs. For instance,
some applications retain GPS data for much longer than temperature data. The
default policy employed works via a query on the time stamp of the data, removing
data older than one minute.

Programming sensor networks in imperative languages is a time consuming and
complex task. Furthermore, many potential users of sensor networks will not be
from a Computer Science background and will not have knowledge of procedural
programming. To remedy the situation, SIXTH enables networks to be programmed
using a declarative language with a SQL-like syntax. Users or applications issue
queries to the network and in order to realise these queries, the system determines
e�cient implementation plans on a per query basis. The system draws from prior
work on acquisitional query processing in sensor networks 14.

5. Agent Factory Micro Edition for Ubiquitous Sensing

The SIXTH middleware infrastructure has been designed to operate in conjunction
with Agent Factory Micro Edition (AFME) 20,18. AFME provides SIXTH with a
suite of pre-existing algorithms for the management and control of WSN appli-
cations, such as coordinated intelligent power management 29. In this section, we
provide an overview of AFME and discuss some agent platform services that enable
it to operate in sensor network applications.

Ubiquitous Sensing fuses the concepts of intelligent systems with ubiquitous



February 8, 2012 23:14 WSPC/INSTRUCTION FILE ijait

8 Gregory M.P. O’Hare, et al.

computing in the development of intelligent electronic infrastructures that sense
the environment and act in a proactive manner in delivering novel applications that
go well beyond the mandate of the desktop computing era. Such environments are
dynamic and, as such, the system must be capable of dealing with uncertain and
inaccurate information, whereby the environment, along with user’s requirements,
change over time. Intelligent agents o↵er an attractive metaphor for dealing with
uncertainty and change in that agents do not commit to a particular course of
action forever, but revise their commitments over time as circumstances change
8. AFME is an intelligent agent framework, which has been specifically designed
for use with resource constrained ubiquitous devices. It is based on a declarative
agent programming language, which, in a similar vein to other intelligent agent
platforms, is used in conjunction with imperative components. These imperative
components imbue agents with mechanisms that enable them to interact with their
environment; agents perceive and act upon the environment through perceptors and
actuators respectivelyb.

Perceptors and actuators represent the interface between the agent and the envi-
ronment and are implemented in Java. This interface acts as an enabling mechanism
through which the agents are situated. AFME incorporates a variant of the Agent
Factory Agent Programming Language (AFAPL) 6 specifically designed for resource
constrained devices. AFAPL is a declarative language; it is based on a logical formal-
ism of belief and commitment and forms part of the Agent Factory Framework 6,23,
which is an open source collection of tools, platforms, and languages that support
the development and deployment of multi-agent systems. Agent Factory and AFME
are representative of a class of intelligent agent platforms, which are referred to
as Agent Oriented Programming frameworks. Agent Oriented Programming stems
from Shoham’s seminal work in this area 26, whereby agents communicate using
speech acts, such as inform and request. In its latest incarnation, the Agent Fac-
tory Framework has been restructured to facilitate the deployment of applications
that employ a diverse range of agent architectures. As such, the framework has be-
come an enabling middleware layer that can be extended and adapted for di↵erent
application domains. The framework is broadly split into two parts:

• support for deploying agents on laptops, desktops, and servers;
• support for deploying agents on constrained devices such as mobile phones

and WSN nodes.

AFME represents the latter, whereas the former is delivered through Agent Fac-
tory Standard Edition (AFSE). In the remainder of this paper, we shall only con-
sider AFME. In AFME, commitment rules that define the conditions under which
commitments are adopted are used to encode an agent’s behaviour. A commitment
represents an intended course of action. Commitments are useful because they have

bThe word perceptor is used rather than sensor to distinguish the software component from hard-
ware sensors.
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a stabilising e↵ect on system behaviour. Consider the situation in which an agent
is situated in a highly dynamic environment and an event occurs. What should an
agent do? replan or continue operating? If the agent always replans, the system
will become unstable; but if it never replans, the system will not be adaptive 25.
In AFME, agents commit to actions, but they revise their commitments at various
points throughout execution. If a commitment is no longer relevant, it is dropped.
When a commitment is adopted, it represents either a primitive action or a plan.
Plans are ultimately executed as a series of primitive actions. When a primitive
action is executed, an actuator is fired. The following is an example of an AFME
commitment rule:

message(request, ?sender, data), informTime(?t), data(?d) > ?sender, ?t,

true, inform(?sender, data(?d));

In the above rule, the terms to the left of the implication (the > symbol) repre-
sent beliefs and form a belief sentence; those to the right represent arguments to a
commitment. The arguments to a commitment represent to whom the commitment
is made, the time at which the plan or primitive action of the commitment should
be executed, the maintenance condition of the commitment, and either a trigger for
a primitive action or a plan operator, which incorporates a number of primitive ac-
tion triggers. The truth of a belief sentence is evaluated using the agents belief set.
The result of this query process is either failure, in which case the belief sentence
is evaluated to false, or to a set of bindings in which belief sentence is evaluated to
true. In AFAPL, the ? symbol represents a variable. In this example, if the agent
has adopted a belief that it has received a message from another agent to send data
and the agent has beliefs in relation to the data and the transmission time, it adopts
a commitment to send data back to the requesting agent. At an imperative level,
a preceptor monitors the message transport service, which contains a server thread
that receives incoming messages. Once a message is received, it is added to a bu↵er
in the service. Subsequently, the perceptor adds a belief to the agent’s belief set. The
interpreter periodically evaluates the belief set. If the conditions for a commitment
are satisfied (that is, all of the beliefs prior to the > symbol in the rule have been
adopted), either a plan is executed to achieve the commitment or a primitive action
or actuator is firedc. When an actuator is created, it is associated with a symbolic
trigger. In this case, an inform actuator, written in Java, is associated with the trig-
ger string inform(?sender,data(?d)). Once the agent has adopted the commitment,
it will wait until time ?t and then pass the arguments ?sender and data(?d) to the
actuator. The actuator then executes the imperative code for informing the sender
of the request of the data value. Structuring agents in this manner is useful in that
it enables their behaviour to be altered at a symbolic level rather than having to
modify the imperative code.

cIn this paper, we shall only consider primitive actions.
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Fig. 2. AFME Control Process

Figure 2 illustrates the AFME control process. In AFME, agents follow a sense-
deliberate-act process. Initially, perceptors are fired and agents update their belief
set. Based on their current set of beliefs, resolution based reasoning is performed to
indentify a set of desired states. The agents desired states act as input to an intention
selection processd. Once intentions have been identified, a commitment management
process commences. Finally, depending on the nature of the commitments adopted,
various actuators are firede.

In order to facilitate communication between AFME agents in WSN applica-
tions, a Wireless Message Transport Service has been developed that can be con-
trolled and monitored through the use of actuators and perceptors. The Wireless
Message Transport Sevice has been designed forthe Java-enabled Sun SPOT mote,
which uses the Squawk Java Virtual Machine27 (JVM). The Sun SPOT motes com-
municate using the IEEE 802.15.4 standard. The Wireless Message Transport Ser-
vice facilitates peer to peer communication between agents and is based on the Sun
SPOT radiogram protocol rather than TCP/IP, which is used for agents deployed
on mobile phones or PDAs that have a 3G or GPRS connection. The radiogram
protocol uses datagrams to facilitate communication between motes. With the Sun
SPOT radiogram protocol, the connections operating over a single hop have di↵erent
semantics to those operating over multiple hops. This is due to a performance opti-
misation. When datagrams are sent over more than one hop, there are no guarantees
about delivery or ordering. In such cases, datagrams will sometimes be silently lost,
be delivered more than once, and be delivered out of sequence. When datagrams

dIn situations where resource bounded reasoning is not being used and the utilities of desired
states are not specified, an agent’s desired states will be its intentions.
eAdditional features are supported in Agent Factory and AFME17,19, such as dynamic role adop-
tion, but go beyond the scope of this paper.



February 8, 2012 23:14 WSPC/INSTRUCTION FILE ijait

Sensor Web Interaction 11

are sent over a single hop, they will not be silently lost or delivered out of sequence,
but sometimes they will be delivered more than once.

The radiogram protocol operates in a client server manner. When the message
transport service is created, a server thread is created to receive incoming messages.
When a message is received it is added to an internal bu↵er within the service. An
agent will subsequently perceive messages through the use of a perceptor. When
an agent is sending a message, it attempts to open a datagram client connection.
The datagram server connection must be open at the destination. With datagrams
a connection opened with a particular address can only be used to send to that
address. The wireless message transport service only allows agents to send messages
of a maximum size. If the content of the message is greater than the limit, it is first
split into a number of sub messages within an actuator and each sub message is
then sent using the message transport service. When all sub messages have been
received, the entire message is reconstructed within a perceptor and then added to
the belief set of the agent.

One of the core features of AFME is the support for agent migration. For the Sun
SPOT platform, this support is delivered through the AFME Wireless Migration
Service. Agent migration is often classified as either strong or weak. This classifica-
tion is related to the amount of information transferred when an agent moves. The
more information transferred the stronger the mobility. Within AFME, support is
only provided for the transfer of the agent’s mental state. Any classes required by
the agent must already be present at the destination. The reason for this is that the
Java platform AFME has been developed for, namely the Java Micro Edition (JME)
Constrained Limited Device Configuration (CLDC), does not contain an API for
dynamically loading foreign classes. Only classes contained, and preverified, in the
deployed Java ARchive (JAR) file can be dynamically loaded through the use of the
Class.forName method. This is also one of the reasons why component deployment
frameworks, such as OSGi, cannot be used for CLDC applications. In the Squawk
JVM, which operates on Sun SPOTs, it is possible to migrate an application to an-
other Squawk enabled device. Squawk implements an isolate mechanism, which can
be used can for a type of code migration. Isolate migration is not used in AFME.
The reason for this is that isolate migration is dependent on internal details of the
JVM and is therefore not really platform independent in the sense that an isolate
can only be transferred to another Squawk JVM. It could not be used to transfer
an application to a C or C++ CLDC JVM written for a mobile phone JVMs, for
instance. Additionally, with isolates, it is necessary to migrate the entire application
or platform, rather than just a single agent.

This AFME Migration Service uses both the Sun SPOT radiogram protocol and
the radiostream protocol. The radiostream protocol operates in a similar manner
to TCP/IP sockets. It provides reliable, bu↵ered, stream-based communication be-
tween motes. This, however, comes at a cost in terms of power usage. The reason
this approach is adopted for agent migration is that we wish to ensure that agent
does not become corrupt or lost due to the migration process. If a message is lost or
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corrupt, the system can recover by resending the message. If an agent is lost or cor-
rupt, it cannot be recovered without duplication or redundancy, which would also
use up resources and would become complex to manage as agent artefacts would be
scattered throughout the network.

The problem with the radiostream protocol, however, is that both the target
platform and the source platform must know each others MAC address before a
connection can be established. That is, it does not adopt a client server approach
or operate in a similar manner to the radiogram protocol. In a dynamic mobile
agent setting, it is unlikely that the addresses of the platforms of all source agents
will be known a priori at compile time. To get around this problem, when an
agent wishes to migrate to a particular platform, initial communication is facilitated
through the use of datagrams. Using datagrams, the platforms exchange address and
port information and subsequently construct a radiostream. Once the radiostream
is established, the agent is transferred through the reliable connection and then
terminiated at the source. Subsequently, the stream connection is closed. At the
destination, the platform creates and starts the agent.

Through the use of AFME, SIXTH developers gain access to technology, such as
mobile agents and distributed optimisation algorithms 29, which would not otherwise
be readily be available, or would have to be developed from scratch.

6. Case Study

This section provides a discussion of an application that incorporates the use of a
diverse set of cyber and physical sensors. Specifically, it discusses the ubiquitous
mapping application, which displays readings from sensors that were configured
by a user through a graphical user interface (see Figure 3). The interface allows a
user to (1) select the types of environment/network they want to monitor and (2)
configure sensors in the selected environment. The ubiquitous mapping application
sends requests to SIXTH, which in turn creates instances of cyber sensors, along with
adaptors for physical sensors, that perform the necessary work to stream information
to the application, providing near real time data, which is displayed on a map.

6.1. Ubiquitous mapping: An application for mapping and

configuring diverse cyber and physical sensors

Ubiquitous mapping provides a client side user interface for the production, con-
figuration, and visualisation of diverse cyber, and physical, sensors in real time.
The application uses Open Street Map 10 to provide a visualisation of the world.
The application been built as an Eclipse plugin. In order to ensure a diverse data
set, three di↵erent types of scenario were considered: event driven, user driven, and
crowdsourced physically sensed data.
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Fig. 3. Ubiquitous mapping interface

6.2. Event Driven

Event driven systems often monitor phenomena that are di�cult to predict, or
which, at times, exhibit sporadic behaviour. In this scenario, we consider weather
sources. With weather sources, information is often updated at regular intervals of
a predefined length. When an unsual weather event occurs, however, the sources
provide updates more frequently as events occur and/or are predicted in real time.
When monitoring a cyber environment that produces weather information, a sensor
can be produced for every location that the source allows to be queried. This means
that an application can have a large number of sensors running to monitor a large
spatial region and it will, thus, be necessary to filter responses from weather sources
to identify weather events that match a particular set of requirements. By combining
location based queries with keyword filtering, it is possible to produce weather cyber
sensors that monitor a web-based weather source by events and/or location. Such
cyber sensors often produce useful information for context driven applications and
services 24.

The particular weather source considered in this application is the Yahoo!
Weather API, which a SIXTH adaptor has been developed for. The API allows
RSS requests to be made for geographical locations and returns XML responses
containing metadata elements describing forecast information for the locations. In
the weather adaptor, functionality is provided that allows queries to be made based
on a predefined list of weather keywords. Functionality is provided to enable loca-
tions to be configured in terms of their lat/long positions, the location name, or the
Where On Earth IDentifier (WOEID), which is a reference assigned by Yahoo! to
identify features on Earth. The adaptor manages the conversion of the former two
to the latter when required. Functionality has also been included that allows a user
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to monitor weather for their current location by translating their IP address into
an approximate geographical location.

Since the number of locations possible to sense weather is often quite large, the
application makes uses of a database of known locations to display weather sensors
on the map, prior to the configuration by a user. When a user selects a node on the
map, a request is sent to SIXTH to produce a virtual sensor that monitors weather
information at that location at a configurable frequency. The SIXTH adaptor then
streams the relevant information to the client application making it viewable to the
user.

6.3. User Driven

A SIXTH adaptor has been developed for microblogging website Twitter. Twitter
provides a real time API for the querying and streaming of user generated data,
i.e., tweets. The API provides functionality allowing queries to be made based on a
number of attributes, including location and keywords. The streaming API, however,
does not allow for the combination of location and keywords in a search (rather it
responds with tweets that satisfy either constraint), but this has been accounted
for in the SIXTH twitter adaptor, which allows queries by location, keyword, or a
combination of both. This facilitates the production of virtual sensors that monitor
the tweets provided by users in a specific location relating to a specific topic or event.
Locations can be specified by users as names that SIXTH converts into bounding
box coordinates required by the Twitter Streaming API.

When a new Twitter sensor is configured in the application, the SIXTH adaptor
produces a virtual sensor that performs the required queries and filtering to retrieve
the appropriate data. The data is then streamed back to the application, where
nodes dynamically appear on the map in real time.

6.4. Crowdsourced physical sensor data

An Internet of Things cyber environment is as a web-based source for the publica-
tion and retrieval of personal sensor data. These environments provide APIs that
facilitate the streaming of physical sensor data from personal deployments. These
data streams can be made either public or private and are accessible to consumers
via API’s or HTTP requests. While the original source of data maintained in these
environments is most often physical sensors, it is also the case that cyber sensor
data is provided. An adaptor for this type of data source has been developed for
SIXTH and incorporated in to the ubiquitous mapping application.

IoT cyber environments and physical sensor networks deployments di↵er in re-
lation to the semantic enhancement of the data and access mechanisms. An IoT
data provider sends the raw sensor data in tagged semi-structured (usually XML)
feeds. Since the data can be acquired through a web-based interface, a SIXTH cyber
adaptor manages API call limits, rather than low level connectivity issues inherent
with SIXTH adaptors for direct physical sensor networks.
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7. Future Work and Conclusion

This paper discussed the SIXTH middleware architecture, which is a cohesive frame-
work that supports the development and deployment of Sensor Web applications.
Specifically, SIXTH supports the development of applications that incorporate both
cyber and physical sensors. It makes use of standard industrial technologies to ease
deployment issues and facilitate interoperability. Applications in SIXTH are pack-
aged as OSGi bundles. This enables cyber sensors and server side code to be de-
ployed in a seamless manner. The SIXTH architecture has been designed to be
capable of operating in conjunction with the AFME platform, a reduced footprint
variant of the Agent Factory platform. Agent Factory and AFME are representative
of a class of intelligent agent platforms, referred to as Agent Oriented Programming
frameworks, whereby agents adopt beliefs and commitments and communicate us-
ing speech acts, such as request and inform. One of the core features of Agent
Factory/AFME is agent migration, which enables agents to dynamically move to
both cyber and physical sensor locations at run time. The paper discussed a ubiqui-
tous mapping application that was developed using the middleware. The application
enables a user to select the type of environment they wish to monitor and configure
sensors in the selected environment in real time.

One of the problems with the current SIXTH architecture is that, since it is
based around the OSGi framework, it cannot be deployed on Java-based CLDC
WSN motes. At present AFME agents are capable of operating on the motes and
communicating with SIXTH applications deployed on the base station. Since CLDC
does not have an API for dynamically loading foreign classes, however, it is not
possible to deploy imperative code to the motes at run time, only mobile agents.
Another problem with deploying SIXTH on the motes is that it has dependencies
on standard Java classes not contained in CLDC and, thus, the code must be ported
for these types of device. Future work will investigate the potential of using over the
air programming to enable applications to be dynamically deployed to the network,
the porting SIXTH to CLDC, along with the development of an array of Sensor Web
applications. Additionally, we will investigate the use of Bayesian Machine Learning
algorithms, within SIXTH, with regard to making inferences with the uncertain and
noisy data typical of sensor network sources.
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