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Motion detection, the Wigner distribution function,
and the optical fractional Fourier transform
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It is shown that both surface tilting and translational motion can be independently estimated by use of the
speckle photographic technique by capturing consecutive images in two different fractional Fourier domains.
A geometric interpretation, based on use of the Wigner distribution function, is presented to describe this
application of the optical fractional Fourier transform when little prior information is known about the motion.
© 2003 Optical Society of America

OCIS codes: 070.0070, 120.6150.

Speckle photography is a practical means of extracting
in-plane translation and tilting motion information by
use of captured intensity information.1,2 Tilt mea-
surement, for example, involves the capture of the
optical Fourier transform of the ref lected surface
field. Adding or subtracting two sequential images
and numerically calculating the Fourier transform
(FT) of the result produces a set of interference fringes
whose period is inversely proportional to any constant
shift in f ield spatial frequency and so in surface tilt.
In this case no information is known about surface
translation. Angular velocity and acceleration can
be found based on a series of sequentially captured
images. The resolution and the dynamical range
of detectable movements are f ixed and depend on
the wavelength used, the ref lected f ield speckle size
(including decorrelation effects), and the measurement
system used, e.g., the system’s point-spread function
and the CCD’s pixel size and sensitivity. The time
resolution depends on the speed of the camera used.

The fractional Fourier transform (FRT), which is
a generalization of the FT, has received a great deal
of attention in the optics literature.3 – 7 The combina-
tion of the holographic interferometric principle and
an optical implementation of the FRT was shown pre-
viously to permit simultaneous tilt and in-plane trans-
lation detection.8 It was also shown that using an
optical FRT system permits speckle photography to
be extended to allow for simultaneous measurement of
mixed translation and tilt movement.9 Furthermore,
it has been experimentally demonstrated10 that the ex-
tra degree of freedom made available by the use of an
optical implementation of the FRT permits controlled
variation of the minimum resolution and dynamical
range of measurement of tilting (rotational) motion.
The experimental results were achieved with an opti-
cal FRT system called a fake-zoom lens.11 Varying the
distances between the lenses permits the generation of
several fractional order planes with constant magnifi-
cation (scale factor).

The Wigner distribution function12,13 (WDF) has
been shown to be of practical value for the understand-

ing of optical signal-processing systems. Wigner’s
representation uses both spatial frequency and posi-
tion simultaneously to describe the optical f ield. The
Wigner representation of a field u�x� can be defined as

W �x,k� �
1
2p

Z `

2`

dy exp�2jky�u��x 2 y�2�u�x 1 y�2� .

(1)

It is a pseudo distribution function, and W �x, k� can
have negative values. To find the intensity, I �x� �
ju�x�j2, we integrate W �x,k� over k. Similarly, to find
the spatial frequency distribution, Ĩ �k� � jFT �u�x��j2 �
jŨ �k�j2, we integrate W �x, k� over x.

Previous publications8 – 10 have reported that both
tilt and translation could be simultaneously deter-
mined because it was assumed either (i) that a f ixed
linear relationship existed between the tilting motion
and the translation motion such that measurement
in a single fractional domain could be specif ied in
the speckle photography setup or (ii) that a reference
field was available (from, for example, a hologram)
that permitted the retrieval of phase information. In
these ways the translation and tilting motions could
both be completely determined.

In this Letter we show that, even if no f ixed rela-
tionship between tilt and translation is known and no
reference f ield is available, the motion of a surface can
still be found by use of a variable FRT-based speckle
photographic system. For simplicity in our analysis
we assume one-dimensional fields and we use the WDF
to provide a geometrical interpretation of the results.

In Fig. 1 a WDF, W �x,k�, which we use to designate
a field ref lected from a surface, is designated by a con-
tour centered at the origin �0, 0�. If the surface moves
slightly, the corresponding WDF may be presented as
simply a shifted version of the initial WDF to coordi-
nates �j,k� in phase space, becoming W �x 2 j,k 2 k�,
to correspond to a translation of magnitude j com-
bined with a shift in spatial frequency of size k. This
motion can be described in many exactly equivalent
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Fig. 1. Shift of a WDF in phase space and the Fu plane.

ways: For example, in the spatial domain,

u�x� ! u�x 2 j�exp�1jkx� . (2a)

In the spatial frequency domain,

U �k� � F �u�x�� ! U �k 2 k�exp�1jjk� , (2b)

whereas, as already indicated, in phase space we can
write that

W �x, k� ! W �x 2 j,k 2 k� . (2c)

In the FRT domain we can describe the motion by us-
ing the normalized parameter definition of the FRT of
angle u.14,15 Initially the field in this FRT domain is
given by

Fu�u�x�� �q� � Uu�q� �
1

�2pjsin uj�1�2

3 exp
Ω
2j

p

2

∑
1
2

1 J
µ

u

p
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1
j
2

q2 cot u

æ Z 1`
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µ
1

j
2

x2 cot u 2 jqx csc u

∂
dx .

(3)
Following motion, the projection on the fractional
Fourier axis is given by

Fu�u�x 2 j�exp� jkx�� �q� �
1

�2pjsin uj�1�2

3 exp
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∏
dy ,

(4)
where we have used the substitution y � x 2 j.

Comparing Eqs. (3) and (4), we can see that the
FRT of the original f ield, Uu�q�, has been multiplied
by a phase factor and been shifted by an amount Q �
j cos u 1 k sin u. From Fig. 1 we identify this shift
distance in q as the projection onto q of the actual shift
distance

p
j2 1 k2. We can now write in addition to

Eqs. (2) that

Uu�q� ! U �q 2 Q�exp�1jF�q�� , (5a)

where

F�q� � q cot u

µ
Q 2

j

cos u

∂
1

cot u

2

µ
j2 2 Q2

∂
1 kj

� qQ 0 2
QQ 0

2
1

kj

2
. (5b)

We note that Q 0 � k cos u 2 j sin u; see Fig. 1. We
further note that Q 0 � dQ�du and that

p
Q2 1 Q 02 �p

j2 1 k2. In the special case when the shift in the
WDF is parallel to q, tan u � j�k, Q �

p
j2 1 k2, and

Q 0 � 0. In this case F�q� � kj�2, which was pre-
viously identified as significant in fractional-Fourier-
based holographic interferometry.8

Following the usual speckle photographic procedure,
we subtract the resultant intensities, i.e., the absolute
values of Eqs. (2) and (4) captured in the FRT plane,
and take the FT of the result, which yields

jFT �jUu�q�j2 1 jUu�q 2 Q�exp� jF�q��j2�j

� 2 FT �Iu�q�� �q0�cos�Qq0�2� , (6)

where Iu�q� � jUu�q�j2 and is equal to the integration
of W �x,k� over q0, the axis that is perpendicular to q;
see Fig. 1.

Examining Eq. (6), we see that the value of shift Q
along q can be found from the resultant speckle fringe
pattern. Inasmuch as u is also known, the magnitude
of the total shift in phase space can be estimated
as

p
j2 1 k2 � Q�cos u. However, the values of j

and k are still not independently known. In general,
we require two projections to be able to completely
determine the two components of the shift vector.
Clearly these projections do not have to be on ortho-
normal axes.

To acquire two projections we assume that we can
vary our FRT angle by an amount Du between mea-
surements. In this case u ! u 1 Du; i.e., we are now
projecting the same WDFs onto a different FRT do-
main. In this case there will be a change in value
of Q as the FRT order changes, i.e., Q ! Q 1 DQ �
j cos�u 1 Du� 1 k sin�u 1 Du�. By use of the speckle
photographic technique, both Q and Q 1 DQ can be
determined as described above, yielding two simulta-
neous equations in two unknowns. Solving these, we
get that

j �
Q sin�u 1 Du� 2 �Q 1 DQ�sin�u�

sin�Du�
, (7a)

k �
2Q cos�u 1 Du� 1 �Q 1 DQ�cos�u�

sin�Du�
. (7b)
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If we assume that Du is small, carrying out Taylor
series expansions will yield

j � 2
DQ
Du

sin�u� 1 Q cos�u�

2
Du

6
�3Q 1 DQ�sin�u� 1 O�Du�3

� 2
dQ
du

sin�u� 1 Q cos�u� , (8a)

k �
DQ
Du

cos�u� 1 Q sin�u�

1
Du

6
�3Q 1 DQ�cos�u� 1 O�Du�3

�
dQ
du

cos�u� 1 Q sin�u� . (8b)

Clearly we are free to choose a value of u that simplif ies
the implementation of our system. If we choose u �
p�2, which corresponds to an optical FT, then k � Q
and j � 2�dQ�du�.

In conclusion, it has been shown that, by optically
generating FRT planes of suitable order within a
speckle photographic system, one can estimate both
the tilting and the translation of the surface. The
method requires the capture of four speckle images,
two in one fractional domain and two in a second,
i.e., Iu�q1; t1�, Iu1Du �q2; t2�, Iu �q1; t3�, and Iu1Du�q2; t4�,
where for example the time sequence may be of the
form t1 , t2 ø t3 , t4. No discussion of possible tech-
niques to implement a variable-order FRT has been
presented here. However, clearly a practical system
would require access to an accurate, fast electronically
controlled method of FRT order variation. Further-
more, no discussion of speckle size or decorrelation
or of the effect of the optics used on the operation of
the system, e.g., noise introduction by the optical FRT
itself,16 has been presented. These parameters will

be critically important in determining the capabilities
of any such system.

We believe that the geometrical method presented
here provides a new way to describe and analyze
optical metrology systems. Furthermore, it provides
physical insights that have allowed us to propose
new metrology systems. Initial experimental results
have already been presented in the literature,9 and
the practicality of these systems is currently being
examined.

The authors acknowledge the support of Enterprise
Ireland through the Research Innovation Fund. J. T.
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