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Abstract 8 

Existing conceptual growth models for faults in layered sequences suggest that faults 9 

first localise in strong, and brittle, layers and are later linked in weak, and ductile, 10 

layers. We use the Discrete Element Method (DEM) for modelling the growth of a 11 

normal fault in a brittle/ductile multilayer sequence. The modelling reveals that faults 12 

in brittle/ductile sequences at low confining pressure and high strength contrast 13 

localise first as Mode I fractures in the brittle layers. Low amplitude monoclinal 14 

folding prior to failure is accommodated by ductile flow in the weak layers. The 15 

initially vertically segmented fault arrays are later linked via shallow dipping faults in 16 

the weak layers. Faults localise, therefore, as geometrically and kinematically 17 

coherent arrays of fault segments in which abandoned fault tips or splays are a 18 

product of the strain localisation process and do not necessarily indicate linkage of 19 

initially isolated faults. The modelling suggests that fault tip lines in layered 20 

sequences are more advanced in the strong layers compared to weak layers, where the 21 

difference in propagation distance is most likely related to strength and/or ductility 22 
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contrast. Layer dependent variations in fault propagation rates generate fringed rather 23 

than smooth fault tip lines in multilayers. 24 

 25 
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1 Introduction 29 

There are a variety of conceptual models for the growth of faults in mechanically 30 

layered (brittle/ductile) sequences, all of which acknowledge that faults commonly 31 

show lithologically controlled dip changes on cross-sections, with steeper fault dips in 32 

strong layers and shallower dips in weaker layers (Fig. 1). These dip changes are 33 

attributed to a variety of mechanisms (Ferrill and Morris, 2003 and references 34 

therein): (i) post-faulting differential compaction, (ii) active faulting, with slip along 35 

layers or intersecting faults, (iii) linkage of an originally vertically-segmented fault 36 

and (iv) fault initiation with dip controlled by rock properties and effective stresses. 37 

Two of these mechanisms (iii and iv), which are not mutually exclusive, underpin the 38 

most popular models for the growth of faults within layered sequences. For 39 

mechanism (iii) faults first localise in the strong layers and are later linked via faults 40 

in the weak layers (Peacock and Sanderson, 1992; Eisenstadt and De Paor, 1987; 41 

Childs et al., 1996; Crider and Peacock, 2004). In this case, fault localisation and dips 42 

within the strong layers are controlled by rock properties and deformation conditions, 43 

and therefore by the failure mode and/or failure angles, while dips within the weak 44 

layers are a consequence of segment linkage. An alternative model (iv) suggests that 45 

localisation and associated dip changes do not develop in association with fault 46 

segmentation and are entirely controlled by the failure mode and failure angles of the 47 

faulted weak and strong layers. Distinguishing between these models on observational 48 

or theoretical grounds is not, however, always straightforward. 49 

Ferrill and Morris (2003) describe small-scale faults exhibiting lithologically 50 

controlled dip variations. These authors consider two mechanisms of formation for the 51 

fault geometries they observe, these are, fault localisation first occurs within the 52 

strong layers (Fig. 2b) and fault localisation first occurs within the weak layers (Fig. 53 



2c). In both cases fault dips are determined by the rheological properties of the layers 54 

with steep dips in the strong layers and relatively shallow dips in the weak layers. The 55 

faults studied by Ferrill and Morris (2003) do not have geometrical features which 56 

might indicate whether they initiated in the strong or weak layers, e.g. abandoned tips 57 

or splays. Other workers have described faults with lithologically controlled dip 58 

variations which, from field relations, can be demonstrated to have formed by linkage 59 

of segments which formed within the strong layers (e.g. Peacock and Zhang, 1993, 60 

Childs et al., 1996). The absence of discriminating traits of segmentation, may support 61 

the application of a model in which the faults were not, in fact, segmented in their 62 

early stages of growth, but formed by refraction across bedding planes during 63 

progressive forward tip-line propagation (Fig. 2d). 64 

Although both linkage and forward propagation models (Fig. 2) provide a 65 

plausible rationale for field observations that can be related to failure criteria, they 66 

otherwise lack a mechanical basis. Mechanical analyses using failure criteria (e.g. 67 

Coulomb-Mohr, Griffith) can provide useful insights into the orientation of principal 68 

stresses and consequently faults, but do not allow definition of the relative timing of 69 

failure and localisation in a mechanical multilayer (Mandl, 2000).  70 

Since observational data and theoretical grounds do not provide a definitive 71 

answer to questions relating to the localisation of faults within multilayers, we use a 72 

numerical modelling approach which is capable of localising faults within multilayer 73 

sequences. The aim of this paper is to provide a mechanical basis for the localisation 74 

and linkage of normal faults in a layered sequence using the Discrete Element Method 75 

(DEM). DEM has recently been used for modelling the formation of accretionary 76 

wedges (Burbidge and Braun, 2002), fault-propagation folds (Finch et al., 2003 and 77 

2004), out-of-plane fault propagation (Strayer and Suppe, 2003) and the interaction of 78 



two overlapping faults (Imber et al., 2004). The method is capable of modelling 79 

failure and localisation without the necessity to define constitutive equations, as is the 80 

case for the more commonly used continuum methods. It is therefore the ideal tool for 81 

addressing questions relating to fault localisation in multilayered brittle/ductile 82 

sequences. As is described later, our models comprise brittle materials that deform by 83 

elastic deformation followed by fracturing and ultimately failure at peak strength, 84 

whilst our ductile material is frictional-plastic throughout deformation, displaying an 85 

inelastic deformation response without fracturing; these materials lead to macroscopic 86 

deformations that are discontinuous and continuous respectively. The results of the 87 

modelling support the notion that vertically segmented fault arrays initially develop in 88 

the strong, and brittle, layers and are later linked by shallower dipping faults in the 89 

weak, and ductile, layers. 90 

 91 

2 Methods 92 

2.1 Principles of DEM 93 

The Discrete Element Method is a broad class of methods for modelling the finite 94 

displacements and rotations of discrete bodies (Cundall and Hart, 1992). DEM can be 95 

implemented in two and three dimensions. We use a 2D approach with circular 96 

particles as introduced by Cundall and Strack (1979) and implemented in 97 

commercially available software (PFC-2D, Itasca Consulting Group, 1999). Particles 98 

are treated as rigid discs and are allowed to overlap at particle-particle and particle-99 

wall contacts. Walls are rigid boundaries of arbitrary shape, to which constant 100 

velocity or constant stress conditions can be applied. The amount of overlap at each 101 

contact is small compared to particle size and the contact normal force is linearly 102 

related to the amount of overlap. If the contact shear force exceeds a critical value, 103 



which is determined by a contact friction coefficient, slip occurs at the contact. 104 

Particles can be bonded together with linear elastic cement (parallel bond model, 105 

Itasca Consulting Group, 1999; Potyondy and Cundall, 2004) and if the critical tensile 106 

or shear stress (which is typically normally distributed in a bonded model) at a bonded 107 

contact is exceeded the bond breaks. 108 

For a more detailed description of this numerical method the reader is 109 

referred to Cundall and Hart (1992), Hazzard et al. (2000), Potyondy and Cundall 110 

(2004) and references therein. 111 

 112 

2.2 Model material calibration 113 

In contrast with continuum methods, where the rheology of the model material is 114 

defined using constitutive laws, the macroscopic response of the (bonded) particle 115 

assemblage in DEM models has to be calibrated using a numerical laboratory. The 116 

microproperties (particle size and size distribution, particle and bond stiffness, contact 117 

friction, bond strength) are adjusted, mainly by trial and error, to obtain the desired 118 

model macroscopic response calibrated to laboratory rock deformation data. The 119 

resulting microproperties do not replicate true grain-scale physics because the model 120 

particles are orders of magnitude larger than the grains of the equivalent rock and 121 

each particle therefore represents a small volume of rock. Although our approach did 122 

not attempt to exactly reproduce the rheology of a particular rock based on 123 

experimental data, the macroscopic properties of our model materials reproduce the 124 

general rheological behaviour of a strong, brittle material and a weak, ductile one. 125 

The particles in this study have a uniform size distribution with rmax and rmin 126 

of 62.50mm and 31.25mm, respectively. The rheology of a strong material, consisting 127 

of bonded particles, and a weak material, consisting of non-bonded particles, was 128 



investigated. The bonded particles have normal and shear contact/bond stiffnesses of 129 

50GPa and 16.7GPa, respectively, a contact friction coefficient of 1.0 and normally 130 

distributed tensile and shear bond strengths with a mean of 250MPa and 125MPa and 131 

coefficients of variation of 1/12 and 1/6, respectively. The bond strength distributions 132 

have cut-offs of plus/minus two standard deviations and the width of each bond is half 133 

the radius of the smaller of the two bonded particles. The non-bonded particles have 134 

the same particle size and size distribution as the bonded material, a normal and shear 135 

contact stiffness of 50GPa and 16.7GPa, respectively, and a contact friction 136 

coefficient of 0.5. 137 

The strength of bonded materials is sample size dependent (strength 138 

decreases with increasing sample size; Potyondy and Cundall, 2004), thus proper 139 

calibration requires tests on samples at a scale appropriate to the model. In our 140 

multilayer modelling, the basic mechanical unit is one bed. Therefore the rheology of 141 

both the bonded and non-bonded material was investigated using calibration sample 142 

widths equal to the thickness of the strong layers in the multilayer, i.e. 1m (see 143 

below).  144 

The rheology of the non-bonded material was investigated using confined 145 

(25MPa) biaxial compression tests on samples that are 1m wide and 2m high. Since 146 

the material is cohesionless and exhibits no (bulk) elasticity the only bulk property 147 

that was calculated for each test (N = 30) is the friction coefficient, which can be 148 

easily obtained for straight failure envelopes. 149 

The rheology of the bonded material was investigated using unconfined 150 

biaxial compression tests on samples that are 1m wide and 2m high. These tests (N = 151 

30) were used for calculating the bulk elastic properties (Young’s modulus, Poisson’s 152 

ratio) and provided the unconfined compressive strength. Additionally direct tension 153 



tests on dog-bone shaped samples (N = 196) with a central thickness of 1m were 154 

performed at various confining pressures in order to define the failure envelope in the 155 

tensile stress field. 156 

Although calibration tests on 1m wide samples provide the bulk rheological 157 

properties and their variability at the scale of the multilayer model, they do not give 158 

insights into strain distribution (e.g. localisation) within the sample due to their poor 159 

resolution (ca 10 particles wide). To examine localisation behaviour in our model 160 

materials nine biaxial tests were performed on samples that are 5m wide and 10m 161 

high and contain over 6000 particles. 162 

 163 

2.3 Multilayer faulting model boundary conditions 164 

The multilayer model used is 15m wide, 13m high and is comprised of >23,400 165 

particles (Fig. 3a). The model is composed of four 1m thick strong (bonded particles) 166 

and four 1.5m thick weak (non-bonded particles) layers. The top 3m of the model 167 

comprises a layer of non-bonded particles. The primary function of this top layer is 168 

model confinement, which is achieved by applying a force equivalent to a lithostatic 169 

stress of approximately 23MPa (ca 1km burial depth) to particles at the surface of the 170 

model. The sides and base of the model are defined by two rigid L-shaped walls 171 

which meet at a predefined 60º dipping fault at the base of the model. The L-shaped 172 

hanging wall is moved with constant velocity parallel to the predefined fault; this pre-173 

conditioning ensures the formation of one fault, rather than several faults. The model 174 

is saved in 1cm throw increments and the final throw is 10cm; models with throws 175 

beyond the point of localisation (ca 10cm) will be published elsewhere. With respect 176 

to the ideal elliptical fault surface shown in Fig. 3b, the model is located in the plane 177 

of no lateral propagation along a chord through the point of maximum displacement. 178 



 179 

2.4 Stress and strain in discontinua 180 

Stress and strain are continuum concepts, whereas our model material is comprised of 181 

discrete particles and is therefore a discontinuum (compressive stress positive and σI 182 

> σII > σIII). Various methods for homogenising DEM models to allow comparison 183 

with continuum mechanics solutions have been proposed and successfully 184 

implemented (e.g. O’Sullivan et al., 2003). The stress tensor can be obtained for each 185 

particle in our models, but the state of stress at this point is meaningless on a 186 

macroscale, i.e. on the scale of the layers. To homogenise particle stresses the average 187 

stress tensor is calculated for circular regions (Potyondy and Cundall, 2004). 188 

The deformation tensor D, which is sometimes called the positions gradient 189 

tensor (see Appendix A), can be obtained for small and large strains using the least-190 

squares method described in Oda and Iwashita (2000). For each circular region 191 

(diameter depends on the scale of interest) the particle closest to the centre is found 192 

and the relative displacements of particles surrounding this particle are calculated in 193 

order to remove the translational component of deformation. Once this translation has 194 

been removed the best-fit displacement gradient tensor can be calculated, enabling the 195 

deformation tensor D and the Lagrangian strain tensor E to be obtained. 196 

For the maximum shear strain contour diagrams shown (e.g. Fig. 4e and f, 197 

Fig. 6) the diameter of the circular homogenisation area is 0.3m, contains, on average, 198 

eight particles and the best-fit displacement gradient tensor is obtained for each 199 

particle. Since the averaging region is a small proportion of the model dimensions, 200 

contours of (maximum shear) strain are typically quite irregular. We present both 201 

finite and incremental strain contours to illustrate fault evolution. Incremental strains 202 

are calculated in 1cm throw intervals, where for each particle the accumulated 203 



displacement of the previous stage is subtracted. The best-fit deformation tensor for 204 

each 1cm throw increment can then be obtained for each particle using the same 205 

method described above. 206 

For the definition of the stress and strain paths at selected locations within 207 

our model (Fig. 8) we use 1m diameter homogenisation areas, containing on average 208 

92 particles, to minimize noise. Strain paths are represented using Mohr circles for the 209 

deformation tensor, which are briefly reviewed in Appendix A. 210 

 211 

3 Results 212 

3.1 Macroproperties of model material 213 

Stress vs. axial strain (Fig. 4a and b) and volumetric strain (strictly speaking area 214 

change in a 2D model) vs. axial strain (Fig. 4c and d) curves for the strong and weak 215 

model material are shown in Fig. 4 (high resolution models, 5m wide and 10m high). 216 

Additionally maximum shear strain contour plots for selected biaxial test samples are 217 

shown (Fig. 4e and f) in order to illustrate strain localisation. The strong material 218 

exhibits elasticity and compaction prior to failure (Fig. 4a). The axial strain at failure 219 

and the differential stress at failure increase with increasing confining pressure (Fig. 220 

4a). The amount of strain softening decreases with increasing confining pressure, i.e. 221 

the material becomes more ductile. The weak material exhibits steady-state flow after 222 

a non-linear increase in differential stress (Fig. 4b). The steady-state stress increases 223 

with increasing confining pressure. The lack of strain softening in the weak material is 224 

probably due to the use of rigid platens as lateral boundaries, which do not allow the 225 

formation of a single through-going shear zone (O’Sullivan pers. comm., 2004). A 226 

comparison of the volumetric strain curves for the strong and weak material (Figs. 4c 227 

and d) reveals that at low confining pressures (e.g. 25MPa, see also max. shear strain 228 



contour plots, Figs. 4e and f) the weak material dilates and localises earlier than the 229 

strong material. However, from these figures it is clear that the strong material 230 

localises strain better because it exhibits greater strain softening. 231 

Young’s modulus and Poisson’s ratio (assuming plane strain, Potyondy and 232 

Cundall, 2004) were obtained for the unconfined biaxial tests (sample width 1m, N = 233 

30) and determined at half the axial strain to failure and are 21.8 ± 1.6GPa and 0.29 ± 234 

0.06, respectively. Principal stress diagrams with best-fit failure envelopes are shown 235 

in Fig. 5. For the strong material a Coulomb-Mohr criterion with tension cut-off (Paul, 236 

1961) was fitted using the results of direct tension tests on dog-bone shaped samples. 237 

The best-fit parameters with curves representing probabilities that data points lie on 238 

the left hand side of the failure envelope are plotted in Fig. 5 and reveal that the 239 

unconfined compressive strength, cohesion and friction coefficient are typical of those 240 

for strong sedimentary rocks (e.g. Hoek and Brown, 1997; Tsiambaos and 241 

Sabatakakis, 2004). However, the ratio of unconfined compressive strength to tensile 242 

strength is low (3.5) compared to natural rocks (e.g. 9 –17, table 6.15.1 in Jaeger and 243 

Cook, 1976). These low ratios are typical for DEM models using smooth, circular 244 

particles (Fakhimi, 2004) and can be improved using either irregular shaped particles 245 

(clumps), by introducing a bending resistance between chains of bonded particles 246 

(Cundall pers. comm., 2004) or by increasing sample resolution (table 3 in Potyondy 247 

and Cundall, 2004). For the purpose of this article in which we examine fault 248 

localisation within a brittle/ductile sequence, absolute strength values are subordinate 249 

with strength contrast and rheology the main controlling factors. For the non-bonded 250 

material the average friction coefficient was calculated from the confined biaxial tests 251 

as 0.47 ± 0.05 (standard deviation). The Coulomb-Mohr criterion is plotted using the 252 

average friction coefficient and no cohesion (Fig. 5). 253 



In summary, material properties and rheology of the strong layers are 254 

comparable with those of strong sedimentary rocks (e.g. Hoek and Brown, 1997; 255 

Tsiambaos and Sabatakakis, 2004), whilst the weak layers have no tensile strength 256 

and are comparable to some shales (e.g. Petley, 1999). 257 

 258 

3.2 Fault growth and geometry in a multilayer sequence 259 

Figure 6 shows the propagation of a fault through a multilayer model at throw (t) 260 

increments of 1cm. The stages of fault evolution are illustrated with contours of 261 

incremental maximum shear strain for each stage. Although the total 10cm offset is 262 

not visible from the layer interfaces, fault development can be examined from the 263 

changing pattern of low incremental strains. Figure 6 is complemented by the profiles 264 

of strain and rotation for layer E at 2cm throw increments (Fig.7), which were 265 

obtained using 1m wide circular homogenisation regions with a spacing of 10cm. 266 

At low displacements (< 3cm) diffuse zones of deformation develop on either 267 

side of the lowest strong layer (G). Up to throws of 3cm, formation of a low-268 

amplitude precursory fold within this strong layer is accommodated by flow in the 269 

underlying and overlying weak layers. At a throw of 4cm, the lowest strong layer (G) 270 

fails in tension (Mode I fracture) and subsequent strain is concentrated on this fault. 271 

At throws of 5cm to 7cm, flow in the weak layers accommodates folding of the 272 

second strong layer (E) until it fails in tension arising from outer-arc extension 273 

associated with monoclinal folding; folding is highlight by the rotational plateaux 274 

shown in Fig.7. Flow in the weak layers is principally accommodated within diffuse 275 

zones that are located in the hanging wall of the incipient fault and have an overall 276 

antithetic shear sense (see below). These antithetic shear zones intersect the tops of 277 

the strong layers at the point of greatest outer arc extension associated with 278 



monoclinal folding. At a throw of 8cm two additional Mode I fractures have formed, 279 

one in the topmost layer (A), collinear with the array of underlying Mode I fractures, 280 

and another one in the hanging wall of the lowest layer (G). The latter is located on 281 

the hanging wall hinge of the monoclinal flexure of the lowermost strong layer and 282 

propagates from bottom to top, a direction that is again consistent with outer arc 283 

extension. At this stage one of the strong layers (C) is still intact, even though it is 284 

overlain and underlain by strong layers containing an approximately collinear array of 285 

Mode I fractures, demonstrating that the failure of layers within a multilayer does not 286 

necessarily occur in forward sequence. At a throw of 9cm the fault has cut through all 287 

of the strong layers within the sequence and although it begins to localise within the 288 

weak layers, it has yet to do so in the central weak layer. This anomaly arises due to 289 

the localisation of a second Mode I fracture in the second lowest strong layer (E). This 290 

new fracture formed in the hanging wall side of the earlier fracture, which became 291 

inactive over the 8 - 9cm interval but became active again between 9 - 10cm throw. At 292 

10cm throw a continuous, through-going fault is established. This fault has a 293 

‘staircase’ geometry, in which vertical faults within the strong layers are linked by 294 

approximately 50° dipping faults in the weak layers, producing an average dip of ca 295 

60°. Although individual fault segments first develop within strong layers and do not 296 

progress simply from bottom to top of the model, the final geometry is relatively 297 

simple and coherent. This coherence suggests that the deformation of both strong and 298 

weak layers throughout the model is strongly coupled, details of which are 299 

investigated below. 300 

 301 



3.3 Stress and strain paths 302 

The centre diagram in Fig. 8 shows the model in Fig. 6 at the final throw of 10cm 303 

contoured for maximum finite shear strain (contour interval is 0.01). Strain and stress 304 

paths were determined at 12 selected locations (Fig. 8). In each circular region of 1m 305 

diameter the average stress tensor and displacement gradient tensor were obtained at 306 

1cm throw intervals. For the strong layers, six locations of Mode I fracturing were 307 

analysed, four along the eventual through-going fault and two hanging wall splays. In 308 

the weak layers, four regions were examined between the main Mode I fractures in the 309 

strong layers and along the eventual through-going fault, and two regions were 310 

selected within the low-angle antithetic shear zones in the hanging wall of the 311 

eventual through-going fault. The strain paths are shown in Fig. 8 using Mohr circles 312 

for the deformation tensor (see Appendix A for a brief review). Rotations and 313 

stretches are easily read off these diagrams (see Fig. A-2 for ideal deformation paths) 314 

and large volumetric strains can be simply calculated by the product of the principal 315 

stretches. However, the volumetric strains and rotational components of strain in this 316 

model were initially small and are therefore shown separately in Fig. 9 for each 317 

locality. Stress paths are shown in principal stress diagrams in Fig. 10, in which the 318 

experimental derived failure envelopes for the strong and weak material (Fig. 5) are 319 

plotted. 320 

The strain and stress paths of the 12 locations identified in Fig. 8 are 321 

described in four groups sharing similar evolutionary paths. Each of these groups 322 

represents a key kinematic element of the localisation of the fault within the modelled 323 

multilayer. For simplicity the groups are referred to in geometric terms relative to the 324 

eventual through-going fault and depending on whether they occur within strong or 325 

weak layers. They are each described in the general order in which they develop: (i) 326 



antithetic shear zones - weak layers, (ii) synthetic faults, strong layers, (iii) synthetic 327 

faults – weak layers, (iv) hanging wall splays – strong layers; whilst the structures i 328 

and iv represent accommodation features associated with fault displacement, the 329 

synthetic faults (ii and iii) eventually become the through-going fault. Though the 330 

emphasis is on describing the basic deformation paths for each element, we also 331 

highlight the coupling and inter-relationships between them. The location of each 332 

locality is shown in Fig. 8 (with locality names ranging from A through to H 333 

according to the layer), and individual strain and stress paths for each of these 334 

locations are shown in Figs. 8, 9 and 10. 335 

(i) Antithetic shear zones – weak layers: 336 

The two locations (D2 and F2) straddling antithetic shear zones in weak layers show 337 

similar strain/stress paths, though the zone closer to the base of the model and the 338 

future main fault (F2) shows, as expected, the larger volumetric strain and finite 339 

strain. These zones are dilational (Fig. 9b) with generally counter-clockwise (CCW) 340 

shearing (positive rotation in Fig. 8 and 9d), a dominant pure shear component (Fig. 341 

8) and link downwards into eventual Mode I fractures which form the main fault 342 

within the strong layers (Fig. 6). Their formation is evidently related to monoclinal 343 

folding of the intervening strong layers because they link the eventual Mode I 344 

fractures arising from outer arc folding of underlying strong layers with the 345 

complementary monoclinal hinge on the base of overlying strong layers (Fig. 7). After 346 

the first throw increment (1cm) the weak material at both locations is in its critical 347 

stress state (Fig. 10b) and thereafter shows an almost linear increase in volumetric 348 

strain with throw (Fig. 9b). The continued growth of these antithetic shears suggests 349 

that flexuring within the hanging wall of the eventual main fault continues beyond the 350 

formation of Mode I fractures within the strong layers (Fig. 7), a feature which is 351 



ascribed to the irregularity of the trace of the eventual through-going main fault (see 352 

below). A temporary levelling off of volumetric strain at one location (D2, Fig. 9b) is 353 

attributed to the short-term cessation of extension across the Mode I fracture in the 354 

second lowest strong layer (location E1). 355 

(ii) Synthetic faults – strong layers: 356 

Four locations (A, C, E1 and G1; Fig. 8) straddle the trace of the main fault within the 357 

strong layers and show similar stress/strain paths, though timing differs from one 358 

location to another. Initially the deformation at each location is characterised by 359 

clockwise (CW) rotation (negative values in Fig. 9c) accompanied by approximately 360 

linear increase in volumetric strain (Fig. 9a) and progressive increase in σI and 361 

decrease in σIII (Fig. 10a). These deformations are consistent with monoclinal folding 362 

prior to fault localisation (Fig. 7). Tensile failure, i.e. Mode I fracture, of each strong 363 

layer is marked by a rapid increase in the local volumetric strain (Fig. 9a), a slight 364 

increase in rate of rotation (Fig. 9c) and, generally, by a corresponding stress release 365 

(increase in σIII, Fig. 10a). The rapid volumetric strain changes and associated Mode I 366 

fracture formation do not, however, migrate progressively up the model with time. 367 

From the base of the model Mode I fracturing starts in the strong layers at 3cm throw 368 

(G1), ca 4.5cm (E1), 8cm (C) and 7cm (A), respectively. After Mode I fracturing, 369 

most locations are characterised by simple extension (Fig. 8) with increasing 370 

dilational CW shear (Fig. 9a and c), arising from pull-apart formation. A temporary 371 

cessation of displacement on the second lowest layer (at E1) is marked by a gradual 372 

increase in CW rotation (Fig. 9c) and a decrease in both σI and σIII (Fig. 10a), with 373 

approximately constant volumetric strain (Fig. 9a). This is due to the formation of a 374 

Mode I fracture in the hanging wall of the main fault, which is active in the last two 375 

throw increments shown (see hanging wall splay – strong layer, location E2).  376 



(iii) Synthetic faults – weak layers: 377 

Four locations (B, D1, F1 and H) straddle what is to become the main fault within the 378 

weak layers. One of these (location H) reaches an advanced stage very early because 379 

it is adjacent to the pre-defined fault and therefore attains high strains at low throws, 380 

immediately reaching the critical stress state of the weak material (Fig. 10b) and 381 

thereafter showing approximately linear increases in volumetric strain with throw 382 

(Fig. 9b). The rotational component at this location shows a dramatic increase after a 383 

throw of 4cm (Fig. 9d), which coincides with the formation of the first Mode I 384 

fracture (location G1). In contrast the other locations (B, D1 and F1) are characterised 385 

by early stage CW rotations (Fig. 9d) with variable degrees of compaction (Fig. 9b), 386 

which are usually accompanied by increases in σI and little change in σIII (Fig. 10b). 387 

Later stage decreases in both σI and σIII (Fig. 10b) together with increases in 388 

volumetric strain (Fig. 9b) are associated with dilational CW shearing with a 389 

dominant simple shear component (Fig. 8). Rotation associated with monoclinal 390 

flexure occurs in each weak layer from the onset but increases abruptly at a throw of 391 

8cm (Fig. 9d) when the final strong layer (C) is broken and elevated shear strains 392 

occur along the entire fault trace (Fig. 6). This late stage deformation reflects fault 393 

linkage and the relative shallow dip of the linking faults within the weak layers. At 394 

this stage the weak material is in a critical stress state (Fig. 10b) and thereafter shows 395 

an approximately linear increase in volumetric strain with throw (Fig. 9b). Again the 396 

overstep generation is not progressive with linkages occurring at ca 4cm throw in the 397 

lower part of the model (at F1), at ca 8cm towards the top of the model (at B) and at 398 

ca 10cm towards the middle of the model (at D1). Though the deformation paths of 399 

each of the locations are similar, slight differences may offer some clues to the 400 

localisation process. The retarded localisation of a through-going fault at D1 is 401 



associated with the relatively high compaction (-0.14%) accommodated during the 402 

early stages of localisation at this location. It may also be that this retardation is, in 403 

turn, responsible for the relatively late localisation in the overlying strong layer (C) as 404 

well as the temporary cessation of movement on the underlying strong layer (E1). 405 

Whether these links are causal is unclear, but they suggest that the behaviour at 406 

different locations along the localising fault is strongly coupled. 407 

(iv) Hanging wall splays – strong layers: 408 

These two locations (E2 and G2) straddle what are to become hanging wall splays 409 

within the strong layers. Although the faults dip towards the main fault, their sense of 410 

shear is in sympathy with the main fault (Fig. 8 and 9c). The two locations show 411 

similar strain paths, though again the precise timing of events at each is different. 412 

Prior to Mode I failure at these locations (up to 7 - 8cm throw) small linear increases 413 

in volumetric strain (up to 0.25%, Fig. 9a) are accompanied by substantial CW 414 

rotations (ca 1º, Fig. 8 and 9c), rapid decreases in σIII, and slight increases in σI (Fig. 415 

10a). The significant rotations again record the development of precursory monoclines 416 

within the strong layers, a feature which in outcrop studies would generally be 417 

referred to as normal drag (e.g. Barnett, et al., 1987; Grasemann et al., 2005). When 418 

throws of ca 3cm (at G2) and 6cm (at E2) are reached, Mode I fractures develop 419 

within the same layers (at G1 and E1 respectively; Fig. 6), along the trend of the 420 

incipient main fault, causing stress release and an increase in σIII (Fig. 10a). Even 421 

after Mode I failure varying degrees of rotation continue to occur at these locations 422 

(Figs. 7 and 9c), a feature, which is attributed to the irregularity of the trace of the 423 

newly formed through-going fault. In both cases stress paths are looped or bouncing 424 

(Fig. 10a) indicating repeated failure of layers, before rapid increases in volumetric 425 



strain (Fig. 9a) and stress release (increase in σIII) correspond to the formation of 426 

Mode I fractures (after ca 7cm throw at G2, and 8cm throw at E2). 427 

In the above discussion we consider only the local stress/strain response 428 

within the model. A proxy for the global stress/strain response of the strong layers can 429 

be obtained by tracing the strain energy stored in the bonds (i.e. elastic cement) and 430 

the bond breakage events. The average strain energy stored in each bond and the total 431 

number of broken bonds vs. throw are plotted in Fig. 11a. An initial non-linear 432 

increase in strain energy is followed by a slight drop in energy due to failure (and thus 433 

removal of bonds) of the lowest layer (G). This drop in energy is accompanied by a 434 

large increase in the number of broken bonds (Fig. 11a). After the first failure, both, 435 

the strain energy and number of broken bonds increase gradually until the next layer 436 

(E) fails. The failure of layer A and C show similar patterns. The drop in strain energy 437 

increases with increasing throw and no increase in strain energy is observed after the 438 

last strong layer failed (C) and a continuous fault has been established. Following 439 

localisation, the strain energy progressively decreases, stabilizing at a value equal to 440 

about half the peak value at a throw of 0.5m (not shown). 441 

The stress/strain paths and the strain energy/number of broken bonds 442 

described above are consistent with conceptual models of fault growth in layered 443 

sequences. Fault growth can be summarised as a three-stage process (Fig. 11b): 444 

1. Monoclinal flexure: Folding is accommodated in the strong layers by elastic 445 

bending prior to failure but by flow in the weak layers, which cannot sustain 446 

bending moments. Extension and folding leads to horizontal tensile stresses 447 

within the strong layers. 448 

2. Failure of strong layers: Fault segments in the strong layers develop within 449 

the precursor monocline. The layers fail in tension and Mode I fractures 450 



form. Failure of the strong layers leads to release of tensile stress (increase in 451 

σIII) and a rapid increase in volumetric strain. After the first increment of 452 

failure, which is pure Mode I, the fractures develop a shear component due to 453 

the formation of pull-aparts within the strong layers. Despite the formation of 454 

fractures in the strong layers much of the offset is still accommodated by 455 

monoclinal folding to provide a zone of fault-related normal drag. 456 

3. Formation of through-going fault: After failure of all strong layers a through-457 

going fault develops with localisation of strain in the weak layers, at a throw 458 

of ca 0.1 m. Segment linkage leads to a staircase-geometry, with steeply 459 

dipping fault segments in the strong layers and relatively shallow dipping 460 

faults in the weak layers. With the formation of a through-going fault, normal 461 

drag becomes progressively less significant with increasing throw so that 462 

discontinuous shear displacement accounts for up to 60% and 85% of the 463 

total offset at throws of 0.5 and 1m, respectively. 464 

It is important to emphasize that only one model is analysed in detail in this study. 465 

Different model realisations, with different particle and bond spatial distributions (but 466 

identical microproperty statistical distributions) exhibit variable fault geometries due 467 

to differences in the locations of stress concentrations causing fracture nucleation. 468 

Although the exact locations of fractures and the magnitude and sense of stepping 469 

across weak layers will vary between realisations, the overall fault dip and the relative 470 

timing and mode of failure (strong layers first as Mode I fractures) is not affected by 471 

varying particle and bond spatial distributions. 472 

 473 



4 Implications for the 3D geometry of faults in multilayer sequences 474 

The ideal conceptual image of a normal fault is that of a continuous surface entirely 475 

contained within a volume of rock and bounded by an elliptical tip-line (Watterson, 476 

1986; Fig. 3b); more irregular tip-lines are attributed to the interaction with a free 477 

surface or other faults (Nicol et al., 1996). For the ideal fault, displacement varies 478 

continuously over the fault surface, with contours of displacement concentric about a 479 

central maximum. Relative to this simple model, our numerical model is best suited to 480 

modelling the displacement accumulation along a vertical chord from the maximum 481 

displacement to the upper tip line. For normal faults this chord is characterised only 482 

by displacement parallel propagation, with no out-of-plane or lateral propagation (Fig. 483 

3b). Although our modelling demonstrates that, at least in its early stages, the 484 

localisation of individual faults is, perhaps not surprisingly, more complex than 485 

simple models suggest, the general upward progression of deformation away from the 486 

maximum displacement does adhere to that of the simple model. This suggestion is 487 

developed further by combining interpretations, using both finite (not shown) and 488 

incremental maximum shear strain contour diagrams (Fig. 6), of the cross-sections for 489 

different throw values of our DEM model, to produce a fence diagram of the fault 490 

traces. The fault tip-points on this fence diagram are joined to form continuous fault 491 

tip-lines outlining a series of fault segments (Fig. 12) which together represent a fault 492 

with a maximum displacement of 10cm at one end and zero displacement on the 493 

other. Because the 3D fault plane shown in Fig. 12 is based on 2D modelling, it does 494 

not take account of out-of-plane, or lateral, propagation effects, which are likely to 495 

increase the complexities associated with fault zone localisation. Nevertheless, the 496 

diagram illustrates several interesting features. Firstly, the degree of segmentation 497 

decreases with increasing displacement until the segmented array is eventually 498 



replaced by a continuous fault. Secondly, despite the segmented nature of the fault, its 499 

overall shape approximates to one quadrant of an elliptical fault surface; the retarded 500 

localisation within layer C is responsible for the most significant departure from an 501 

approximately elliptical form. Thirdly, displacement transfer across contractional 502 

steps is possible even when segmented arrays are underlapping, i.e. the structure 503 

between beds E and G at a throw of 4 - 8cm. Finally, despite the complex nature of 504 

the fault on this scale of observation, the fault segments form a coherent array which, 505 

when considered together, resemble a simple single fault. In detail, of course, the 506 

segmented fault array shows a tip line that is more advanced in the strong layers 507 

(labelled A, C, E and G) than in the weak ones, a feature which suggests that within 508 

multilayer sequences tip-lines will, in detail, be fringed. It also shows that linkage of 509 

faults in layers C and E via a shallow dipping fault in the intervening weak layer 510 

produces a branch point where the segmented array gives way laterally to a 511 

continuous fault. Most of all, this geometry emphasizes the fact that the linkage of 512 

initially vertically segmented faults does not imply that the faults grew independently, 513 

a feature which is consistent with earlier models for segmented fault arrays (Childs et 514 

al. 1995, 1996; see also the coherent growth model of Walsh et al. 2003). 515 

Our numerical models therefore provide a basis for extending the simple 516 

conceptual diagrams of Fig. 2 into 3D. Figure 13 shows that a continuous fault with 517 

nearly constant displacements in cross-sectional view can give way laterally to a 518 

fringed tip-line in which fault segments within strong layers are more advanced than 519 

those within weak layers. For simplicity the block diagram in Fig. 13 considers only 520 

segmentation arising from lateral propagation. In reality segmentation will be 521 

preserved over an entire fault surface if displacements are not high enough to link 522 

between strong layers. An increase in displacement, whether or not it is accompanied 523 



by fault propagation, will lead to the progressive replacement of the segmented array 524 

by a continuous fault. Even where the fault is segmented we should expect 525 

displacements to vary systematically over the fault surface. However, when account is 526 

taken of both the discontinuous displacements on the fault and the continuous 527 

displacements accommodated by fault-related ductile deformations adjacent to the 528 

fault, displacement variations are reduced. In proportional terms, ductile deformation 529 

is likely to be more significant early in the localisation process, when fault segments 530 

remain unlinked. Continuity of displacement and related strains reflects the 531 

underlying fact that segments within an initially segmented array form a geometrically 532 

and kinematically coherent system, in which neither the displacements nor the 533 

locations of segments are incidental (coherent growth model, Walsh et al., 2003; see 534 

also Childs et al. 1995). 535 

 536 

5 Discussion 537 

The Discrete Element Method (DEM), as implemented in PFC-2D, has been used to 538 

model the growth of a normal fault in a brittle/ductile multilayer. The principal 539 

advantage of the DEM compared to continuum methods (Finite Element, Finite 540 

Difference and Boundary Element Methods) is that discrete fractures and faults with a 541 

large finite displacement can be more effectively modelled; advances in combined 542 

approaches (DEM-FEM) may, however, provide better means for future fault and 543 

fracture modelling. The main limitations in the modelling approach in this study are 544 

that the model materials are strain-rate independent and that fluids and their effects 545 

(e.g. over-pressuring, precipitation of minerals) are neglected. Despite these 546 

limitations, the modelling is capable of reproducing many of the characteristic 547 

features of natural faults, providing a mechanical rationale for their geometry and 548 



growth. In particular, it provides a basis for investigating whether normal faults in 549 

layered sequences localise first in the strong layers or the weak layers (Ferrill and 550 

Morris, 2003), a question that cannot be addressed using conventional mechanical 551 

analyses such as Mohr diagrams (Mandl, 2000). 552 

The DEM models presented in this article incorporate properly calibrated 553 

model materials that reproduce the behaviour of natural rocks. The brittle/ductile 554 

multilayer sequence comprises strong layers, which are brittle at low to intermediate 555 

confining pressures and have elastic properties and strengths similar to those of strong 556 

sedimentary rocks, interbedded with weak layers, which are cohesionless, frictional-557 

plastic, and cannot sustain bending moments. Faulting in such a layered sequence 558 

leads to an increase in layer parallel tensile stress (decrease in σIII) and an increase in 559 

volumetric strain in the strong layers until the material fails in tension (Mode I). 560 

Diffuse zones of pure shear dominated deformation (squeeze flow) in the weak layers 561 

accommodate small amplitude precursor folding of the strong layers prior to failure. 562 

Deformation in these zones has a small rotational component which is antithetic with 563 

respect to the main fault, and is in that respect similar to the antithetic ‘damage zones’ 564 

at the tip of faults in homogeneous, non-layered rocks described by Kim et al. (2003). 565 

Although both types of antithetic faults form within a zone of distributed shear, the 566 

geometries of antithetic faults in our DEM models are strongly affected by layering, 567 

in that they link the hinges of a fault related monocline. In our model Mode I fractures 568 

within the strong layers form an initial vertically segmented fault array which is later 569 

linked via shallow dipping faults in the weak layers. The model results provide a 570 

mechanical basis for fault refraction arising from different modes of faulting within 571 

different layers, with tensile failure in the strong layers and shear failure in the weak 572 

layers. At overburden pressures greater than that applied here (> ca 100MPa) the 573 



strong layers in this model fail in shear rather than in tension, but even in these 574 

circumstances faults tend to initiate first within the strong layers and the fault zone is 575 

an initially vertically segmented array. As in the low effective stress model the fault 576 

dips within the strong layers are controlled by the failure mode, whereas the fault dips 577 

within the weak layers are mainly controlled by segment linkage. 578 

The model suggests also that abandoned fault tips or splays are not essential 579 

features of an initially vertically segmented array. Fault segments which underlap and 580 

do not generate abandoned tips and splays when they link, can form coherent arrays 581 

and show complementary displacement transfer, provided the intervening volume can 582 

accommodate ductile strains. The model highlights the fact that the initially vertically 583 

segmented fault array is geometrically and kinematically coherent (Walsh and 584 

Watterson, 1991; Walsh et al., 2003) and that the fault segments do not grow 585 

independently in individual layers (Benedicto et al., 2003) but could link laterally into 586 

a continuous fault (fig. 9 in Childs et al., 1996). 587 

The model also demonstrates that initial Mode I fracturing is not necessarily 588 

an indicator of high pore pressure (as suggested for example by McGrath and 589 

Davison, 1995). Fluid pressure only increases the depth of possible tensile failure 590 

since it decreases the effective stress. Fault refraction at low effective stress is not 591 

‘due to high pore pressure’ but due to different types of failure (extension vs. shear) in 592 

the different lithologies (Peacock and Sanderson, 1992). The suggestion that fault 593 

segmentation is a product of fault propagation (e.g. Jackson, 1987; Mandl, 1987; Cox 594 

and Scholz, 1988; Peacock and Zhang, 1993, Childs et al., 1996, Walsh et al., 2003, 595 

Marchal et al., 2003) is supported by DEM modelling, though the importance of 596 

mechanical layering in controlling segmentation cannot be overstated. 597 

 598 



6 Conclusions 599 

The Discrete Element Method (DEM), as implemented in PFC-2D, has been used for 600 

modelling the growth of a normal fault within a brittle/ductile multilayer sequence. 601 

Our research suggests that the DEM is capable of modelling the failure and 602 

localisation processes of faulting, aspects that cannot be modelled adequately using 603 

conventional continuum based methods. Our modelling provides new insights into 604 

both the mechanics and kinematics of faulting at low effective stresses and suggests 605 

the following principal conclusions: 606 

• Large dip variations, and related fault refraction, are due to different types of 607 

failure (extension vs. shear) of layers. 608 

• Normal faults in brittle/ductile sequences localise first in strong layers as 609 

steeply dipping Mode I fractures and are later linked via shallow dipping 610 

faults in weak layers. 611 

• Faults contained in multilayer sequences have fringed tip lines, where the 612 

fault is laterally more advanced in the strong layers than in the weak layers. 613 

The extent of fringing is a function of strength contrast between the layers 614 

and fault displacement. 615 

• Models for the 3D segmentation of faults in sedimentary sequences must 616 

include the effects of rock properties and mechanical layering. 617 
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 634 

Appendix A 635 

Mohr Circles for D 636 

An extremely useful graphical representation of the position gradient tensor is the 637 

Mohr circle for D (e.g. Means, 1983 and 1990). 638 

Any two-dimensional, homogeneous deformation can be written as 639 
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or more compactly as 643 

 644 
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where X and x are position vectors for a particle in the undeformed and 647 

deformed state, respectively, and D11, D12, D21 and D22 are the components of the 648 

position gradient tensor D, which contains information about the stretch and rotation 649 

and is referred to as the deformation tensor in this Appendix. 650 

The components of D can be obtained by deforming a unit square into a 651 

parallelogram (Fig. A-1a). Components D11 and D21 are determined using the x1 and 652 

x2 coordinates of the corner point that was located at (1,0) whereas components D12 653 

and D22 are obtained using the x1 and x2 coordinates of the corner point that was 654 

located at (0,1) in the undeformed state. 655 

A Mohr circle (of the first kind; De Paor and Means, 1984) representing D is 656 

drawn using equally calibrated axes for the normal (D11, D22) and shear components 657 

(D12, D21). Two points are plotted at (D11, -D21) and (D22, D12), connected by a line 658 

and a circle is drawn about this line (Fig. A-1b). The polar co-ordinates of any point 659 

on the D circle gives the stretch and rotation of a material line. 660 

The principal stretches, sI and sIII (sI > sIII) can be graphically obtained by 661 

intercepting the circle with a line drawn from the origin through the centre of the 662 

circle (Fig. A-1b). The diameter of the Mohr circle is therefore related to the intensity 663 

of stretching, since the ellipticity of the strain ellipse is sI/sIII. The volumetric strain 664 

(strictly speaking area change), which cannot be directly read off the Mohr diagram, is 665 

the product of the principal stretches minus one. 666 

Symmetric deformation tensors (D12 = D21) represent irrotational 667 

deformation and Mohr circles have their centre on the horizontal axis (Fig. A-2b and 668 

d). Mohr circles of this kind are often referred to as Mohr circles for stretch. 669 

Asymmetrical deformation tensors (D12 ≠ D21) represent rotational deformation (Figs. 670 

A-1, A-2a and c). The rotational component of any strain is given by 671 
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 674 

and can be obtained graphically by measuring the angle between a line drawn 675 

from the origin to the centre of the circle and the horizontal axis, where by definition 676 

clockwise rotation is negative (Fig. A-1b). Off-axis circles centred above the 677 

horizontal axis represent deformation with a clockwise (by convention negative) 678 

rotational component (Fig. A-2a and c). 679 

Rigid body rotation leads to circles with zero radius and centres on a unit 680 

circle in the Mohr diagram (Fig. A-2e). In this study it has proven useful to plot a unit 681 

circle with its centre in the origin and lines with slopes in 1º intervals (Fig. 8). These 682 

guidelines assist in estimating the amount of rigid body rotation prior to stretching. 683 

The maximum angular shear strain is given by 684 
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 687 

and can be obtained graphically by drawing a chord through the centre of the 688 

circle perpendicular to the line that passes through the principal stretches (Fig. A-1b). 689 

The intersection of the chord with the circles gives the points that represent material 690 

lines that were perpendicular to each in other in the undeformed state (as usual double 691 

angles are measured in Mohr circles). This pair of lines experienced the maximum 692 

shear strain, since they are symmetrically arranged with angles of ±45º to the principal 693 

stretches in the undeformed state (Fig. A-1b). 694 

 695 



References 696 

Barnett, J. A. M., Mortimer, J., Rippon, J. H., Walsh, J. J., Watterson, J. 1987. 697 

Displacement geometry in the volume containing a single normal fault. 698 

Bulletin of the American Association of Petroleum Geologists 71, 925-937. 699 

Benedicto, A., Schultz, R. A., Soliva, R. 2003. Layer thickness and the shape of 700 

faults. Geophysical Research Letters 30, 2076, doi:10.1029/2003GL018237. 701 

Burbidge, D. R., Braun, J. 2002. Numerical models of the evolution of accretionary 702 

wedges and fold-and-thrust belts using the distinct-element method. 703 

Geophysical Journal International 148, 542-561. 704 

Childs, C., Watterson, J. & Walsh, J. J. 1995. Fault overlap zones within developing 705 

normal fault systems. Journal of the Geological Society London 152, 535-706 

549. 707 

Childs, C., Nicol, A., Walsh, J. J., Watterson, J. 1996. Growth of vertically segmented 708 

normal faults. Journal of Structural Geology 18, 1389-1397. 709 

Cox, S. J. D., Scholz, C. H. 1988. On the formation and growth of faults: an 710 

experimental study. Journal of Structural Geology 10, 413-430. 711 

Crider, J. G., Peacock, D. C. P. 2004. Initiation of brittle faults in the upper crust: a 712 

review of field observations. Journal of Structural Geology 26, 691-707. 713 

Cundall, P. A., Hart, R. 1992. Numerical modeling of discontinua. Engineering 714 

Computations 9, 101-113. 715 

Cundall, P. A., Strack, O. D. L. 1979. A discrete numerical model for granular 716 

assemblies. Géotechnique 29, 47-65. 717 

De Paor, D. G., Means, W. D. 1984. Mohr circles of the First and Second Kind and 718 

their use to represent tensor operations. Journal of Structural Geology 6, 693-719 

701. 720 



Eisenstadt, G., De Paor, D. G. 1987. Alternative model of thrust-fault propagation. 721 

Geology 15, 630-633. 722 

Fakhimi, A. 2004. Application of slightly overlapped circular particles assembly in 723 

numerical simulation of rocks with high friction angles. Engineering 724 

Geology 74, 129-138. 725 

Ferrill, D. A., Morris, A. P. 2003. Dilational normal faults. Journal of Structural 726 

Geology 25, 183-196. 727 

Finch, E., Hardy, S., Gawthrope, R. 2003. Discrete element modelling of 728 

contractional fault propagation folding above rigid basement fault blocks. 729 

Journal of Structural Geology 25, 515-528. 730 

Finch, E., Hardy, S., Gawthrope, R. 2004. Discrete-element modelling of extensional 731 

fault-propagation folding above rigid basement fault blocks. Basin Research 732 

16, 489-506. 733 

Grasemann, B., Martel, S., Passchier, C. 2005. Reverse and normal drag along a fault. 734 

Journal of Structural Geology 27, 999-1010. 735 

Hazzard, J. F., Young, R. P., Maxwell, S. C. 2000. Micromechanical modeling of 736 

cracking and failure in brittle rocks. Journal of Geophysical Research 105, 737 

16,683-16,697. 738 

Hoek, E., Brown, E. T. 1997. Practical estimates of rock mass strength. International 739 

Journal of Rock Mechanics & Mining Science 34, 1165-1186. 740 

Imber, J., Tuckwell, G. W., Childs, C., Walsh, J. J., Manzocchi, T., Heath, A. E., 741 

Bonson, C.G., Strand, J. 2004. Three-dimensional distinct element modelling 742 

of relay growth and breaching along normal faults. Journal of Structural 743 

Geology 26, 1897-1911. 744 



Itasca Consulting Group, 1999. Particle Flow Code in Two Dimensions, Minneapolis, 745 

MN, USA. 746 

Jackson, P. 1987. The corrugation and bifurcation of fault surfaces by cross-slip. 747 

Journal of Structural Geology 9, 247-250. 748 

Jaeger, J. C., Cook, N. G. W. 1976. Fundamentals of rock mechanics, 2nd edition. 749 

Chapman & Hall, London. 750 

Kim, Y.-S., Peacock, D. C. P. & Sanderson, D. J. 2003. Mesoscale strike-slip faults 751 

and damage zones at Marsalforn, Gozo Island, Malta. Journal of Structural 752 

Geology 25, 793-812. 753 

Mandl, G. 1987. Discontinuous fault zones. Journal of Structural Geology 9, 105-110. 754 

Mandl, G. 2000. Faulting in brittle rocks. Springer, Berlin Heidelberg New-York. 755 

Marchal, D., Guiraud, M., Rives, T. 2003. Geometric and morphological evolution of 756 

normal fault planes and traces from 2D to 4D data. Journal of Structural 757 

Geology 25, 135-158. 758 

McGrath, A. G., Davison, I. 1995. Damage zone geometry around fault tips. Journal 759 

of Structural Geology 17, 1011-1024. 760 

Means, W. D. 1983. Application of the Mohr-circle construction to problems of 761 

inhomogeneous deformation. Journal of Structural Geology 5, 279-286. 762 

Means, W. D. 1990. Kinematics, stress, deformation and material behavior. Journal of 763 

Structural Geology 12, 953-971. 764 

Nicol, A., Watterson, J., Walsh, J. J., Childs, C. 1996. The shapes, major axis 765 

orientations and displacement patterns of fault surfaces. Journal of Structural 766 

Geology 18, 235-248. 767 



Oda, M., Iwashita, K. 2000. Study of couple stress and shear band development in 768 

granular media based on numerical simulation analyses. International Journal 769 

of Engineering Sciences 38, 1713-1740. 770 

O'Sullivan, C., Bray, J. D., Li, S. 2003. A new approach for calculating strain for 771 

particulate media. International Journal for Numerical and Analytical 772 

Methods in Geomechanics 27, 859-877. 773 

Paul, B. 1961. A modification of the Coulomb-Mohr theory of fracture. Journal of 774 

Applied Mechanics 28, 259-268. 775 

Peacock, D. C. P., Sanderson, D. J. 1992. Effects of layering and anisotropy on fault 776 

geometry. Journal of the Geological Society London 149, 793-802. 777 

Peacock, D. C. P., Zhang, X. 1993. Field examples and numerical modelling of 778 

oversteps and bends along normal faults in cross-section. Tectonophysics 779 

234, 147-167. 780 

Petley, D. N. 1999. Failure envelopes of mudrocks at high confining pressures. In: 781 

Aplin, A. C., Fleet, A. J., Macquaker, J. H. S. (Eds.), Muds and Mudstones. 782 

Geological Society of London Special Publication 158, pp. 61-71. 783 

Potyondy, D. O., Cundall, P. A. 2004. A bonded-particle model for rock. International 784 

Journal of Rock Mechanics and Mining Sciences 41, 1329-1364. 785 

Strayer, L. M., Suppe, J. 2002. Out-of-plane motion of a thrust sheet during along-786 

strike propagation of a thrust ramp: a distinct-element approach. Journal of 787 

Structural Geology 24, 637-650. 788 

Tsiambaos, G., Sabatakakis, N. 2004. Considerations on strength of intact 789 

sedimentary rocks. Engineering Geology 72, 261-273. 790 

Walsh, J. J., Watterson, J. 1991. Geometric and kinematic coherence and scale effects 791 

in normal fault systems. In: Roberts, A. M., Yielding, G., Freeman, B., 792 



(Eds.), The geometry of normal faults. Geological Society of London Special 793 

Publication 56, pp. 193-203. 794 

Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., Bonson, C. G. 2003. Formation of 795 

segmented normal faults: a 3-D perspective. Journal of Structural Geology 796 

25, 1251-1262. 797 

Watterson, J. 1986. Fault dimensions, displacements and growth. Pure and Applied 798 

Geophysics 124, 365-373. 799 

800 



Figure captions 801 

 802 

Figure 1: A small-scale normal fault (displacement = 30cm; downthrows to the right) 803 

exposed in a cliff-section east of Kimmeridge Bay, Dorset, UK, which illustrates the 804 

importance of lithological control on fault dip and fault refraction. This normal fault 805 

cuts a shale-dominated sequence (Kimmeridge Clay Formation, Upper Jurassic) that 806 

contains calcareous shale layers. Within these calcareous shales fault segments are 807 

nearly vertical and are linked via shallow dipping faults within the weaker shale 808 

layers. Fault displacement on this ‘staircase’ geometry leads to the development of 809 

pull-aparts. 810 

 811 

Figure 2: (a) Schematic geometry of normal faults cutting limestone layers of the 812 

Cretaceous Buda Limestone exposed along Interstate Highway 10 (I-10), in west 813 

Texas and three possible models for their growth (b, c and d; after Ferril and Morris, 814 

2003; table 1 and fig. 5). In (b) the faults localise first in the strong layers and the 815 

steep segments are later linked via shallow faults. In (c) the faults localise first in the 816 

weak layers and the shallow segments become linked via steep faults. In (d) the fault 817 

trace is not initially segmented but the trajectory of the upward propagating fault tip 818 

changes as it crosses a lithological interface, i.e. a bedding plane. 819 

 820 

Figure 3: Model boundary conditions. (a) PFC-2D model consisting of >23,400 821 

cylindrical particles. The strong and weak layers consist of bonded and non-bonded 822 

particles, respectively (bonds are shown in enlarged figure). Confining pressure is 823 

approximately 23MPa and the hanging wall moves with constant velocity parallel to a 824 

predefined fault at the base of the model. (b) Schematic block diagram showing the 825 



propagation directions of an ideal elliptical normal fault. The tip line bounds an 826 

elliptical area of failed rock (white). Since the fault plane propagates radially (arrows 827 

show tip line propagation direction) only two sections (shaded) have no out-of-plane 828 

fault propagation. The 2D numerical model is located within the plane of no lateral 829 

fault propagation. This fault is shown schematically as a single fault surface, but in all 830 

probability will comprise an array of segments. 831 

 832 

Figure 4: (a to d) Plots illustrating the results of rheological testing of the strong (a 833 

and c) and weak (b and d) materials comprising the multilayer models at various 834 

confining pressures (labelled curves). Vertical dashed lines in are drawn at 0.3, 0.4 835 

and 0.5% axial strain. (e and f) Contour plots showing the distribution of maximum 836 

finite shear strain (contour interval is 0.005) within models comprising the strong (e) 837 

and weak (f) materials at axial strains of 0.3, 0.4 and 0.5% and a confining pressure of 838 

25MPa. 839 

 840 

Figure 5: Principal stress diagram with best-fit failure envelopes (bold lines) for the 841 

strong and weak material. The data for the strong material were obtained from direct 842 

tension tests on dog-bone shaped samples with a central width of 1m at various 843 

confining pressures and each data point represents the state of stress at failure (N = 844 

196). The data for the weak material were obtained from confined (25MPa) biaxial 845 

compression tests and each data point represents the peak stress during loading (N = 846 

30). The best-fit macroproperties are given, where σuc = unconfined compressive 847 

strength (MPa), T = tensile strength (MPa), C0 = cohesion (MPa) and µ = friction 848 

coefficient. For the strong material the different curves represent the 0.01, 0.5, 0.25, 849 

0.50, 0.75, 0.95 and 0.99 percentile of the probability distribution. For the weak 850 



material the average friction coefficient and the average ± 1 and ± 2 standard 851 

deviations are shown. 852 

 853 

Figure 6: Incremental maximum shear strain contour plots (contour interval is 0.005) 854 

of a PFC-2D model of normal fault growth in a brittle/ductile sequence (t = throw). 855 

The different layers within the model are labelled A to H. See text for further 856 

explanation. 857 

 858 

Figure 7: Strain profiles in 2cm throw increments (labelled in b) along the centre of 859 

layer E. The maximum finite shear strain (a) and the rotational component of 860 

deformation (b) were obtained for 1m wide circular homogenisation regions with 861 

10cm spacing. The two vertical dashed lines are the locations of Mode I fractures 862 

(labelled E1 and E2; see Figs. 6 and 8). The plateaux of the curves in (b) correspond 863 

to the limb of the monocline, the left hand hinge of which fails at between 5cm and 864 

6cm throw. 865 

 866 

Figure 8: Strain paths at selected locations (circled regions labelled A - H) in the 867 

multilayer model. The central diagram is of the multilayer model at a finite throw of 868 

10cm which is contoured for maximum finite shear strain (contour interval is 0.01). 869 

Individual beds within the multilayer are labelled A to H. Mohr circles for finite strain 870 

at 1cm throw increments are illustrated; arrows connect centres of successive Mohr 871 

circles. The dashed vertical arc in each Mohr diagram is part of a unit circle with its 872 

centre located at the origin. The centres of Mohr circles for rigid body rotation plot on 873 

this arc. The dash-dot lines are lines intersecting the origin with slopes in 1º intervals 874 

(labelled in B). These guidelines can give quick insights into rotations (e.g. 1º CW 875 



rigid body rotation prior to formation of pull-apart as in diagram G2). See text and 876 

Appendix A for further explanation. 877 

 878 

Figure 9: Graphs of volumetric strain (a and b) and the rotational component of 879 

deformation (c and d) vs. throw for the locations labelled in Fig. 8. 880 

 881 

Figure 10: Principal stress paths for the locations labelled in Fig. 8 with 882 

experimentally derived failure envelopes (Fig. 5). Each arrow corresponds to the 883 

change of stress in a 1cm throw increment and dots represent the state of stress prior 884 

to faulting. 885 

 886 

Figure 11: Three-stage development of fault growth in a multilayer sequence as 887 

illustrated by (a) plot of number of broken bonds and average strain energy per bond 888 

vs. throw recorded in the model shown in Fig. 6 and (b) schematic representation of 889 

stages in development of the same model. The data in (a) were obtained from the 890 

model by tracking each bond breakage event and the strain energy stored in the bonds. 891 

The onset of failure of each strong layer is labelled and marked with vertical dashed 892 

lines. In (b) monoclinal flexuring is exaggerated and only localised deformation is 893 

shown. The precursor zone of faulting (bounded by the two dashed lines) is idealised 894 

as a planar feature, whereas the modelled zone broadens upwards due to the 895 

predefined nature of the fault at the base of the model and free surface effects. 896 

 897 

Figure 12: 3D fault plane constructed from interpreted fault traces from the PFC-2D 898 

model shown in Fig. 6 assuming the temporal fault zone evolution is equivalent to 899 

spatial variation in fault zone structure with increasing displacement. Labelled layers 900 



(A, C, E and G) are strong layers. To construct this diagram, the lateral displacement 901 

gradient was taken as 1:150, i.e. 1.5m distance along strike between successive 902 

sections in Fig. 6. The fault is typically more advanced in the strong layers; the 903 

advancement within layer C is approximated, since no section is available at a throw 904 

of 8.5cm. 905 

 906 

Figure 13: Conceptual growth model for normal faults cutting limestone layers of the 907 

Buda Limestone (see Fig. 2). The block diagram is located at a lateral fault tip (Fig. 908 

3b). For simplicity the fault is shown with no vertical displacement gradient. The 909 

block diagram was constructed using cross sections shown in Fig. 2a and b. 910 

 911 

Figure A-1: Plotting and reading Mohr circles for D. (a) The components of the 912 

deformation tensor (D11 etc.) are derived from the corners of the deformed unit square 913 

as shown. The deformation tensor for this parallelogram is also given. (b) Mohr circle 914 

representation of the D tensor. The constructions for finding the principal stretches, sI 915 

and sIII, the rotational component of deformation, ω, and the maximum angular shear 916 

strain, ψmax, are illustrated. See Appendix A for further explanation. 917 

 918 

Figure A-2: Illustrations of Mohr circles for deformation, D, for a range of strain 919 

paths. For each labelled example the Mohr circles and the corresponding deformed 920 

unit square in Cartesian coordinates (dotted lines) are shown (the finite state of strain 921 

is shown as solid lines and intermediate stages are shown as dashed lines). Strain 922 

paths in (a), (b) and (c) are constant volume deformation. The strain path shown in (d) 923 

is irrotational simple extension (dilation), (e) is rigid body rotation without stretching. 924 

and (f) is rigid body rotation (e.g. normal drag in the context of faulting) followed by 925 



simple extension (e.g. the formation of a Mode I fracture). In (d) and (f) only one set 926 

of parallel lines exists that shows neither finite nor incremental stretch. 927 
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