
Attribute Refinement in a Multigranular
Temporal Object Data Model ⋆

E. Bertino1 E. Camossi2 G. Guerrini3

1 CERIAS - Purdue University, 250 N. University Street West Lafayette, Indiana,
USA 47907-2066. Phone: +1 765 496-2399. Fax: +1 765 494-0739. e-mail:

bertino@cs.purdue.edu
2 School of Computer Science and Informatics - University College Dublin, Belfield,

Dublin 4, Ireland. Phone: +353 (0)1 7162-944. Fax: +353 (0)1 2697-262. e-mail:
{elena.camossi}@ucd.ie

3 DISI - Università degli Studi di Genova, Via Dodecaneso 35, 16146 Genova, Italy.
Phone: +39 010 353-6701. Fax:+39 010 353-6699. e-mail: guerrini@disi.unige.it

Abstract. Temporal granularities are the unit of measure for tempo-
ral data, thus a multigranular temporal object model allows to store
temporal data at different levels of detail, according to the needs of the
application domain. In this paper we investigate how the integration
of multiple temporal granularities in an object-oriented data model im-
pacts on the inheritance hierarchy. In the paper we specifically address
issues related to attribute refinement, and the consequences on object
substitutability. This entails the development of suitable instruments for
converting temporal values from a granularity to another.

1 Introduction

Temporal object data models allow to maintain the values taken by object at-
tributes over time. Conventional object database systems do not offer a support
for dealing with time-varying objects. The content of a database represents a
snapshot of the reality in that only the current values of object attributes are
recorded, without the possibility of maintaining the complete history of objects
over time. If such a need arises, object attribute histories must be managed at
application program level. A direct support for temporal objects at database
level, by contrast, would greatly simplify their management and handling. Thus,
in the past years, there has been a growing interest in temporal extensions to
the current database technology. Several extensions to the relational and the
object-oriented data models and query languages have been proposed [15, 24].

An important requirement, when dealing with temporal aspects, concerns
the support for multiple temporal granularities [7]. Temporal granularities are the

⋆ Research presented in this paper was funded by a Strategic Research Cluster grant
(07/SRC/I1168) by Science Foundation Ireland under the National Development
Plan. The authors gratefully acknowledge this support. The work of Elena Camossi
is supported by the Irish Research Council for Science, Engineering and Technology.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository UCD

https://core.ac.uk/display/16338993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

unit of measure for temporal data. For instance, birth dates are typically referred
to the granularity of days and train schedules to that of minutes. The choice of
the correct temporal granularity allows the system to store the minimal amount
of data, according to the needed level of detail. Since many different granularities
exist and no granularity is inherently “better” than another, a temporal database
system should support a wide range of temporal granularities and should allow
the user to define his/her own application-specific granularities.

Temporal relational databases, and in particular the TSQL2 [21] extension
of the SQL-92 standard, support multiple temporal granularities. Some propos-
als of temporal object models supporting multiple temporal granularities also
exist, but they suffer for lack of standardization, lack of formalization, and they
mostly leave the user the burden of managing granularities. The introduction
of temporal granularities in object-oriented data models, moreover, raises many
relevant issues, that are not addressed by existing proposals. For instance, none
of the existing approaches considers the impact of inheritance when multiple
granularities are supported, nor they address issues concerning type refinement
and substitutability. We strongly believe that systems must provide a support
for handling multiple granularities, and that all the notions of a temporal object
model should be revised for adequately supporting multiple granularities. The
modelling power of an object data model combined with a multigranular repre-
sentation for temporal data will result in a highly flexible data model, suitable
for all applications needing the management of temporal information.

In [5] we proposed T ODMG, a temporal object model supporting multi-
ple temporal granularities. To overcome the lack of standardization of current
proposals, the model is defined as an extension of the ODMG object database
standard data model [11]. Though most commercial OODMSs still do not ex-
hibit a full level of compliance to the ODMG standard, we think that casting our
temporal extension within the ODMG standard makes it more understandable
and easily adoptable by commercial systems. Moreover, since the ODMG Java
binding is the basis on which Java Data Objects [23] has been developed, our
proposal can also be easily applied to persistent Java applications.

T ODMG objects are characterized by temporal properties, each one refer-
ring to a specific granularity. A temporal property referring to granularity G
can assume a different value v on each granule g of granularity G. For instance,
a course object may have a temporal property recording the teacher teaching
the course each year; a city object may have a temporal property recording the
city temperature every month; finally, an employee object may have a temporal
property recording the salary earned by the employee each year.

An important assumption made in [5] is that properties are downward inher-
itable [20]. This means that if a temporal property assumes value v on a granule
g, value v also refers to any granule g′ of a finer granularity included in g. Thus,
for instance, if we choose to record course teachers at the year granularity, this
implies that the teacher is associated with each month (and each day, ...) of
the year. This assumption, however, is not reasonable for all kinds of properties.
Consider the temporal value representing the temperature of a city, at the month

granularity. It is not always the case that the temperature in the city was the
same for every day of the month, though the monthly temperature is probably a
reasonable approximation of the (non available) daily values. Even more evident,
consider now the temporal value representing the salary of an employee, at the
year granularity. It is not always the case that the salary of the employee was
the same for every month of the year, and the yearly salary is probably not a
reasonable approximation of the (non available) monthly values.

In this paper, we remove this assumption and we revisit the notion of at-
tribute refinement along the inheritance hierarchy taking multiple granularities
into account, and investigate the impact of such refinements on substitutability.
Substitutability ensures that each instance of a given class can be used when-
ever an instance of one of its superclasses is expected. The idea behind attribute
refinement is that the granularity at which an attribute value is stored can be
changed in a subclass, to better reflect the application needs. In the subclass the
attribute values may should be kept at a greater level of detail. For instance, if
in the superclass only the monthly values are recorded, in the subclass the daily
changes can be of interest. Depending on the application domain and on the
attribute semantics, an attribute value may should be recorded at a decreased
level of detail in the subclass. For instance, if in the superclass the monthly
values are recorded, in the subclass only the yearly values can be stored.

Attribute refinement thus means changing the level of detail at which at-
tribute values are stored. Attribute refinement impacts substitutability, since
whenever an object instance of a subclass is found in a context where a super-
class object was expected, the problem arises of converting its temporal attribute
values to the expected granularity. Such a conversion is needed both for attribute
accesses and for attribute updates. To address this issue, we introduce the no-
tions of coercion and refinement functions. These functions are used, in case of
object access, to compute the value to be considered in the superclass, given the
value of the attribute in the subclass, and, in case of object update, to convert
the value to assign to the granularity required in the subclass.

The need of converting temporal values from one granularity to another arises
in several contexts and it is not only related to enforcing substitutability in case
of attribute refinement. Besides for generic casts, such a conversion is needed for
supporting full-fledged query languages, in which temporal values expressed at
different granularities can be used together, as well as the basis of any schema
evolution mechanism, allowing the granularity of a temporal property to dynam-
ically change, with an automatic adaptation of previous property values. Thus,
coercion and refinement functions are important notions for multigranular tem-
poral value handling, interesting also independently from attribute refinement.

Thus, the contributions of this paper can be summarized as follows. A tem-
poral multigranular object data model is defined, in which temporal types are
modeled as parametric types [9]. The notions of coercion and refinement func-
tions, allowing to convert temporal values from a granularity to another, are in-
troduced, and some relevant properties of such functions are devised. Attribute
refinement, for attributes whose domain is a temporal type, is then investigated,

discussing its impact on substitutability, and relying on coercion and refinement
functions to convert attribute values to the expected granularity.

The paper is organized as follows. Section 2 introduces the notion of temporal
granularities we refer to. Section 3 introduces the temporal object data model,
while Section 4 is specifically devoted to attribute refinement in the model.
Section 5 presents how the proposed mechanism has been implemented, Section 6
surveys related work, while Section 7 concludes the paper.

2 Temporal Granularities

The notion of time we refer to is valid time, that is, we record the time at which
a given value is taken in reality, in contrast to transaction time, corresponding to
when a given value is recorded in the database [14]. Our approach can however
be easily generalized to bitemporal models, supporting both transaction and
valid times. The time domain is the pair (IN,≤), where ≤ is the usual less than
or equal to relation on IN. Thus, we consider a discrete time domain and we
assume the existence of a relative beginning, denoted by symbol “0”, but no last
element. Moreover, we consider a special symbol ∞ denoting the distinguished
time instant forever [14]. Temporal granularities are formally defined as follows.

Definition 1. (Granularity)[6]. Let IS be an index set isomorphic to the set of
natural numbers IN1, and 2IN be the power set of the time domain. A granularity
G is a mapping from IS to 2IN such that both the following conditions hold:

(1) if i < j and G(i) and G(j) are non-empty, then each element of G(i) is less
than all elements of G(j);

(2) if i < k < j and G(i) and G(j) are non-empty, then G(k) is non-empty. 2

Intuitively a granularity defines a countable set of granules, such that each gran-
ule G(i) is associated with an index i ∈ IS and denotes a subset of the time
domain. The first condition in Definition 1 states that granules in a granularity
do not overlap and that their index order is the same as their time domain or-
der. The second condition states that the subset of the index set that maps to
non-empty subsets of the time domain is contiguous. The set of granularities we
refer to throughout the paper is denoted by G.

The usual collections days, months, weeks and years are granularities. For
each non-empty granule, we use a “textual representation”, termed as label. For
example, days are in the form mm/dd/yyyy, months are in the form mm/yyyy
and so on. When we refer to a generic granularity G and a granule index i ∈ IS,
lGi denotes the label of the granule corresponding to the ith granule of granularity
G. A label is more descriptive than a granule index. Indeed, given a granule label
1 Though IS is isomorphic to IN, the two concepts of time domain and index set

are clearly different. Thus, they will be denoted by different symbols: IN and IS,
respectively. Moreover, generic indexes will be denoted by i, j, k whereas generic time
instants will be denoted by t, t′, t1.

lGi , we know which is the granularity (G) and which is the index (i) of the denoted
granule.

A particular case of granularities is represented by gap granularities [6], that
is, granularities whose domain does not correspond to the whole time domain.
A typical example of gap granularity is granularity bweeks, corresponding to
business weeks, that is, to sequences of the five working days from Monday to
Friday. There are portions of the time domains, e.g., those corresponding to
Sundays, that do not belong to any granule of that granularity.

A finer than relationship is defined among granularities, as follows.

Definition 2. (Finer than Relationship)[6]. A granularity G ∈ G is said to be
finer than a granularity H, denoted G ≼ H, if, for each index i ∈ IS, an index
j ∈ IS exists such that G(i) ⊆ H(j). 2

Note that G ≼ G is always true according to the above definition. In what follows
the symbol “≺” denotes the anti-reflexive finer than relationship. As an example,
days is a granularity finer than months (days ≼ months). As another example,
consider the gap granularity bweeks introduced above. Since each bweeks granule
is included in a weeks granule, bweeks ≼ weeks holds. By contrast, since not
every days granule is included in a bweeks granule (e.g., granules corresponding
to Sundays), days is not finer than bweeks.

A set of granularities having the same time domain forms a granularity lattice
with respect to the ≼ relationship if, for each pair of granularities in the set, a
least upper bound (lub) and a greatest lower bound (glb) with respect to ≼ exist.
It is easy to see that this does not hold for very common sets of granularities.
For instance, the granularity set {weeks,months} does not have either a lub or
a glb with respect to ≼. The set of granularities G is not required to be a lattice.

In our model a chronon, that is, the non-decomposable time unit, corresponds
to a time instant t belonging to the time domain IN. The granularity which
establishes a biunivocal correspondence with the time domain is called chronon
granularity, denoted as GI . GI is such that GI(i) = {i}, for each i ∈ IS. We
assume that the chronon granularity GI belongs to G.

Example 1. Let hours, 3hours, days, 15days, weeks, months, 3months, years,
5years, and decades be granularities such that hours ≼ 3hours ≼ days ≼
months ≼ 3months ≼ years ≼ 5years ≼ decades, days ≼ weeks, and days ≼
15days with the usual meaning. The set of granularities G we assume in all
the examples in the paper is {hours, 3hours, days, months, 3months, years,
5years, decades, GI}. Note that this set is not a lattice. 3

We now define the notion of temporal interval.

Definition 3. (Temporal Interval). Let G ∈ G be a granularity and i, j ∈ IS be
two indexes such that i ≤ j. Then [i, j]G = {G(k) | i ≤ k ≤ j, k ∈ IS} is called
temporal interval, with respect to granularity G. 2

The temporal interval [i,∞]G denotes an infinite countable set of granules, that
is, [i,∞]G = {G(k) | k ≥ i, k ∈ IS}. The usual operations on sets (e.g., inter-
section, union, ...) are defined on temporal intervals.

3 Temporal Data Model

In this section we formalize the notion of temporal type, specifying its legal
values, and introduce the subtype relation among temporal types. Then, we
discuss temporal value conversions, introducing the notions of refinement and
coercion functions. Finally, we introduce T ODMG classes and objects, in which
an attribute can be specified to be a temporal attribute.

3.1 Temporal Types and Values

In [5] we extended the ODMG type set with temporal types, handling temporal
types and ODMG types in a uniform way. In this paper we propose a different
definition of temporal types as parametric types. The notion of parametric or
generic type is quite common in object-oriented languages, where it is used to
define data and algorithms which structure does not depends on the types of
data involved.

Let ST be the set of ODMG types, including class and literal types denoted
by OT and LT , respectively. We refer to these types as static types, to empha-
size that they are non temporal types. A static type characterizes traditional
properties, for which only the current value is stored in the database. For each
temporal granularity G ∈ G and for each static (inner) type τ ∈ ST , a tempo-
ral type temporal⟨G, τ⟩ can be defined. Parameter G is bounded by the whole
set G of granularities given in a database schema, whereas parameter τ ranges
over object and literal ODMG types. Representing temporal types as parametric
types, we stress the idea that each temporal type has the same structure and
depends only and completely on its parameters, that is, its granularity and its
inner (static) type. The set of temporal types, defined as follows, is denoted by
T T , and the set of T ODMG types is denoted by T = ST

∪
T T .

Definition 4. (Temporal Types). Let τ ∈ ST be a static type and G ∈ G a
granularity, temporal⟨G, τ⟩ is the temporal type corresponding to type τ and
granularity G. 2

A temporal value of a temporal type temporal⟨G, τ⟩ is defined as a partial
function that maps G-granules (referred to through their indexes) to τ values.
We refer to the set of time instants for which this partial function is defined
as the domain of the temporal value. In what follows, given a type τ ∈ T , the
notation [[τ]] denotes the set of legal values for type τ [5].

Example 2. Given a temporal attribute representing the population of a city,
with type temporal⟨days, int⟩, a legal value for such attribute is v = {⟨06/11/2003,
15004⟩, ⟨07/11/2003, 15032⟩, ⟨08/11/2003, 15024⟩}days. v has been represented
as a set of pairs of integer values, representing the daily value of the population,
and granules of granularity days, that give the reference days. 3

Let v be a value of type temporal⟨G, τ⟩, and i ∈ IS be an index, v(i) de-
notes the value of v in the ith granule of G. Since temporal values are partial

functions, given a temporal value v, an index i may exist such that v(i) =⊥.
Since we will usually denote granules through their labels, if v is a value of type
temporal⟨G, τ⟩, and liG is the label of the ith granule of G, v(liG) equivalently
denotes v(i), i.e, the value of v in the granule labeled by liG.

Example 3. Given the temporal value of Example 2, suppose the index of granu-
larity days associated with the label 06/11/2003 be 17, that is l17days = 06/11/2003,
then the (non temporal) value corresponding to the label can be referenced as
v(06/11/2003) = 15004. 3

We now consider the subtype relation on temporal types. Since temporal types
are parametric types, we first discuss the existing relations on parameters, i.e.
granularities and static types. Among static types the usual notion of subtype
can be devised. Specifically, for object types, the subtype relation relies on the
inheritance relationships between interfaces and classes defined in a T ODMG
database schema. For the formal definition of the subtype relation on static types
we refer to [5]. By contrast, the only relationship holding among granularities in
the T ODMG model is the finer than relationship, that is not suitable to model
a subtype relation. Granularities in G have a common behaviour that can be
easily modeled as an abstract data type, but no subtype relation can be devised
among them. Then, the subtype relation between temporal types only relies on
the existing subtype relation between inner static types.

Definition 5. (Temporal Subtypes). Let τ1, τ2 ∈ T T be temporal types, such
that τ1 = temporal⟨G, τ ′

1⟩ <: τ2 = temporal⟨G, τ ′
2⟩. Then τ2 is a subtype of τ1

(denoted as τ2 <: τ1) if and only if τ ′
2 <: τ ′

1. 2

Subtyping has some important implications in object-oriented models. As ex-
pected, a temporal type that is subtype of another temporal type can subsume
it. Information about the actual parameters of a temporal type, that is, the
granularity and the inner type used to instantiate it in the database schema,
are available at run time. Thus, the correctness of an assignment to a temporal
attribute can be checked at run time. The same rule does not hold, in general, in
object-oriented languages that treat parametric types performing what is known
as homogeneous translation [9], that is, a translation to the original non param-
eterized language, that does not preserve type information about parameters at
run time.

Proposition 1 (Subsumption). Let τ1, τ2 ∈ T T be temporal types, such that
τ1 = temporal⟨G, τ ′

1⟩ <: τ2 = temporal⟨G, τ ′
2⟩. A value v of type τ2 can be used

everywhere a value of type τ1 is expected, that is, v has type τ1. ⃝

The second consequence of the subtype relationship is extent inclusion, that is,
the property ensuring that the extent of a subtype is included in the extent of
its supertype.

Proposition 2 (Extent Inclusion). Let τ1, τ2 ∈ T T be two temporal types such
that τ2 <: τ1, then [[τ2]] ⊆ [[τ1]] . ⃝

3.2 Conversion of Temporal Values

In our model, coercion and refinement functions allow the conversion of temporal
values from one granularity to another. Coercion functions have been defined in
[5] to convert temporal values to a coarser granularity in a meaningful way. Let
temporal⟨G, τ⟩ and temporal⟨H, τ⟩ be two temporal types such that G ≺ H. A
coercion function C : [[temporal⟨G, τ⟩]] → [[temporal⟨H, τ⟩]] is a total function
that maps values of type temporal⟨G, τ⟩ into values of type temporal⟨H, τ⟩. Co-
ercion functions can be classified into three categories: selective, aggregate, and
user-defined coercion functions. Selective coercion functions are first, last,
main, all, and proj(index). Coercion function proj(index), for each granule
in the coarser granularity, returns the value corresponding to the granule of po-
sition index of the finer one. Coercion function first and last are the obvious
specialization of the previous one. Coercion function main, for each granule in
the coarser granularity, returns the value which appears most frequently in the
included granules of the finer one. Coercion function all, for each granule in
the coarser granularity, returns the value which always appears in the included
granules of the finer one if this value exists, the null value otherwise. Aggregate
coercion functions are min, max, avg, and sum corresponding to the well-known
SQL aggregate functions2. User-defined coercion functions correspond to meth-
ods declared in a class of the database schema.

Each coercion function introduced above actually corresponds to a family
of coercion functions. That is, sum actually is a way to denote the set of func-
tions {sumG→H | G,H ∈ G, G ≺ H}, where sumG→H : [[temporal⟨G, τ⟩]] →
[[temporal⟨H, τ⟩]] . Since, however, the behavior of each function in this set is
the same, we will refer in what follows to a generic function sum, without explic-
itly specifying the granularities, if ambiguities do not arise. Some functions are
meaningful only for some inner types. Specifically, sum and avg are meaningful
only for numeric values, whereas min and max are meaningful only for values of
ordered domains.

An important assumption made in [5] was that all attributes are downward
inheritable [20]. This means that, for each pair of granularities G and H, such
that G ≺ H, and for each pair of indexes i, j, such that G(i) ⊆ H(j), the value
of v in granule i of G is the one in the jth granule of H. As we discussed in
the introduction, the downward hereditary property is not always appropriate.
If for instance the value of an attribute is stored with respect to months, then,
depending on the attribute semantics, this may not imply that such value is
the same for every day in the month. Thus, in this paper, we introduce refine-
ment functions, that allow one to specify how to convert temporal values from
a given granularity into values of a finer granularity in a meaningful way. Let
temporal⟨G, τ⟩ and temporal⟨H, τ⟩ be two temporal types such that G ≺ H. A
refinement function R : [[temporal⟨H, τ⟩]] → [[temporal⟨G, τ⟩]] is a total func-
tion that maps values of type temporal⟨H, τ⟩ into values of type temporal⟨G, τ⟩.
Specifically, we consider both predefined and user-defined refinement functions.
2 In computing aggregate coercion functions we consider undefined values (i.e., values

at granules i such that v(i) =⊥) as null values in OQL.

User-defined refinement functions correspond to methods declared in a class of
the database schema. Predefined refinement functions include restr and split.
Refinement function restr models those attributes for which downward inher-
itance is reasonable. This means that if a temporal property assumes value v
on a granule g, value v also refers to any granule g′ of the finer granularity
included in g. Thus, given a value v ∈ [[temporal ⟨H, τ⟩]] , for each j ∈ IS
restr(v)(j) = v(i), where i ∈ IS is such that G(j) ⊆ H(i). That is, the value
of restr(v) in granule j of G is the one in the ith granule of H. Refinement
function split, by contrast, models those attributes for which downward inher-
itance is not adequate. The idea is to split the value assumed by the temporal
value on each granule g of the coarser granularity among the granules g′ of the
finer granularity included in g. Thus, given a value v ∈ [[temporal⟨H, τ⟩]] , for
each j ∈ IS split(v)(j) = v(i)/n, where i ∈ IS is such that G(j) ⊆ H(i) and
n = |{h | h ∈ IS, G(h) ⊆ H(i)}|. That is, the value of split(v) is obtained by
splitting the value of the ith granule of H, among the G granules included in
H(i). Each refinement function introduced above actually correspond to a fam-
ily of functions, as discussed above for coercion functions. Moreover, refinement
function split is meaningful only for numeric values.

Example 4. Given the temporal value v of type temporal⟨months, int⟩ {⟨01/2002,
372⟩, ⟨02/2002, 420⟩}months, refinement function splitmonths→days applied to v
results in the temporal value {⟨01/01/2002, 12⟩, . . . , ⟨31/01/2002, 12⟩, ⟨01/02/2002,
15⟩,. . . ,⟨28/02/2002, 15⟩}days. By contrast, refinement function restrmonths→days

applied to v results in the temporal value {⟨01/01/2002, 372⟩, . . . , ⟨31/01/2002,
372⟩, ⟨01/02/2002, 420⟩,. . . , ⟨28/02/2002, 420⟩}days. 3

Since coercion and refinement functions are employed to convert temporal values
from one granularity to another, two relevant properties can be devised for such
functions. The first property refers to the compositionality of such functions,
corresponding to the intuition that if we have three granularities G,H, I such
that G ≺ H ≺ I and a function f, the result of converting through f from G to
H, and then from H to I, is the same of converting through f from G to I (and
similarly for refinement functions).

Definition 6. (Compositionality). Let f be a coercion/refinement function, G,H,
I ∈ G be granularities such that G ≺ H ≺ I (resp., I ≺ H ≺ G), f is composi-
tional if ∀τ ∈ T , ∀v ∈ [[temporal⟨G, τ⟩]] , fH→I(fG→H(v)) = fG→I(v). 2

Specifically, coercion functions first, last, all, min, max, and sum are compo-
sitional, whereas proj, main, avg are not. Rrefinement function restr is compo-
sitional, whereas split is not. Note that some functions (e.g., split, avg) would
have been compositional if a stronger relationship, such as the periodically groups
into [6], hold among granularities.

Example 5. Consider value v of type temporal⟨days, int⟩ {⟨08/02/2002, 15⟩,
⟨01/11/2002, 6⟩, ⟨4/11/2002, 6⟩, ⟨25/11/2002, 6⟩, ⟨28/12/2002, 15⟩}days. If we
first apply function sumdays→months, and then function summonths→years, the

temporal value {⟨2002, 48⟩}years is obtained, as if we directly apply function
sumdays→years to v. By contrast, since main is not compositional, if we first
apply function maindays→months, and then function mainmonths→years, we ob-
tain the temporal value {⟨2002, 15⟩}years, while if we directly apply function
maindays→years we obtain the temporal value {⟨2002, 6⟩}years. 3

The second property refers to the invertibility of such functions, corresponding
to the intuition that if we have two granularities and a pair of functions f and g,
the effect of converting a temporal value v through f, and then converting back
the result through g, returns the original value v. When converting from a finer
to a coarser granularity, we loose details on the temporal value, and we cannot
expect to be able to re-obtain them if we convert back to the finer granularity.
By contrast, when converting from a coarser to a finer granularity, we introduce
some details that we should be able to forget, if we are no more interested in
them, re-obtaining the original value. The first aspect is captured by the notion
of quasi-inverse functions, that takes into account that some details are lost
and thus some imprecision is introduced. The second aspect is captured by the
notion of inverse functions. There is an analogy with what happens in the object-
oriented context where if we cast up an object to a superclass, and then recast it
down to its original class, we are not able to re-obtain the details we have forgot
with the cast up, whereas if we cast down an object to a subclass, we are then
able to re-obtain the original object if it is recast up to its original class.

Definition 7. (Inverse). Let f be a coercion function, g be a refinement func-
tion, G,H ∈ G be granularities such that G ≺ H, f and g are inverse if ∀τ ∈ T ,
∀v ∈ [[temporal⟨H, τ⟩]] , fG→H(gH→G(v)) = v. 2

Specifically, coercion function sum is the inverse of refinement function split,
whereas refinement function restr is the inverse of coercion functions first,
last, min, max, proj, main, all, avg.

Definition 8. (Quasi-Inverse). Let f be a coercion function, g be a refinement
function, G,H ∈ G be granularities such that G ≺ H, ∆ be a quantification
of the maximum allowable error, f and g are quasi-inverse if ∀τ ∈ T , ∀v ∈
[[temporal⟨G, τ⟩]] , ∀i ∈ IS, gH→G(fG→H(v))(i) ∈ v(i) ± ∆. 2

While the notion of inverse is meaningful for all the attribute domains, the
notion of quasi-inverse is only meaningful for numeric attributes. Whether two
functions are quasi-inverse depends on how ∆ is set. A typical setting of ∆
could be, for each H-granule j, (maxj − minj)/nj where maxj = max{v(h) |
h ∈ IS, G(h) ⊆ H(j)}, minj = max{v(h) | h ∈ IS, G(h) ⊆ H(j)}, nj = |{h |
h ∈ IS, G(h) ⊆ H(j)}|. The global ∆ could then be determined as the maximum
over the ∆j ’s determined in this way. With such a setting of ∆, for instance,
coercion function sum is the quasi-inverse of refinement function split, whereas
refinement function restr is the quasi-inverse of coercion function avg.

Example 6. Consider the temporal value v0 = {⟨2001, 36⟩}years, the refinement
function splityears→months and the coercion function summonths→years. Since

split and sum are inverse, splityears→months(v0) is the temporal value {⟨01/2001,
3⟩, ⟨02/2001, 3⟩, . . . , ⟨12/2001, 3⟩}months = v′

0, and summonths→years(v′
0) = v0.

Consider now ∆ = 5 and the temporal value v = {⟨01/2002, 3⟩, ⟨02/2002, 2⟩,
⟨03/2002, 4⟩, ⟨04/2002, 5⟩, ⟨05/2002, 1⟩, ⟨06/2002, 2⟩, ⟨07/2002, 4⟩, ⟨08/2002, 3⟩,
⟨09/2002, 3⟩, ⟨10/2002, 6⟩, ⟨11/2002, 0⟩, ⟨12/2002, 3⟩}months. Since avg and
restr are quasi-inverse, avgmonths→years(v) is the temporal value {⟨2002, 3⟩}years

= v′, and restryears→months(v′) is the temporal value associating 3 with each
month of 2002, and, for each month of 2002, the difference between the value in
v and 3 is less than ∆. 3

3.3 Classes and Objects

A class declaration consists of a class identifier, that represents the object type
of the class, and a set of attributes3. Each attribute has a name and a type. An
attribute of a T ODMG class can be temporal, if we are interested in storing
values it has taken over time, or static, if only the current value of the attribute
is kept. Temporal attributes have a temporal type at a certain granularity as
domain, whereas static attributes have a static type as domain. A T ODMG
class specification is a pair (i, attr), where i ∈ OT is the type identifier, and attr
is an attribute specification, defined as follows.

Definition 9. (Attribute Specification without Attribute Refinement). An at-
tribute specification in a T ODMG class is a set containing an element for each
attribute of the class. Each element is a pair (atype, aname), where atype ∈ T is
the attribute domain, and aname is the attribute name. 2

Example 7. An example of T ODMG class specification is reported in Fig. 1,
in which a class city has been specified with a static attribute name and a
set of temporal attributes. The temporal attribute mayor stores the city mayor,
that can be reelected every 5 years, as instance of class politician. Temporal
attribute population records the number of inhabitants of the city, at the days
granularity, and temporal attributes temperature, rainfall and snowfall give
some climatic characteristics of the city, at granularity months. 3

A T ODMG object is a 5-tuple (id,N,v,c,[i, j]GI) where id is the object identifier,
N is the set of object names, v is the object state, formally defined in the
following definition, c is the most specific class to which the object belongs, and
[i, j]GI is a temporal interval representing the object lifespan, that is, the interval
during which the object exists, expressed at the chronon granularity.

Definition 10. (Object State). Given an object o, its state v is a tuple (a1 : v1,
. . . , an : vn), where each vi, 1 ≤ i ≤ n, is a static or temporal value. 2

3 We do not include methods and relationships in class specification because the focus
of the paper is attribute refinement. For the same reason, we disregard interfaces,
since they only allow to specify methods.

class city{
attribute string name;

attribute temporal⟨5years,politician⟩ mayor;

attribute temporal⟨days,int⟩ population;

attribute temporal⟨months,float⟩ temperature;

attribute temporal⟨months,int⟩ rainfall;

attribute temporal⟨months,int⟩ snowfall; };

Fig. 1. Example of T ODMG class specification * sistemare layout table and
attribute * use of code environment

name={‘‘Milan"};
major={⟨2000-2005, o2⟩,⟨2005-2009, o3⟩}5years;

population={⟨1/3/2003, 800⟩,⟨2/3/2003, 830⟩,. . .}days;

temperature={⟨1/2003, 10, 5⟩,⟨2/20038, 9⟩,. . .}months;

rainfall={⟨1/2003, 25⟩,⟨2/2003, 21⟩,. . .}months;

snowfall={⟨1/2003, 5⟩,⟨2/2003, 7⟩,. . .}months;

Fig. 2. Example of T ODMG object state

Example 8. Consider class city of Example 7. Let o1 be an object identifier, o2

and o3 be object identifiers of type politician, and milan be an object name.
An object of class city is (o1, {milan}, v, city, [1,∞]GI), where v is the object
state depicted in Fig. 2. 3

4 Attribute Refinement

In this section we discuss how to ensure substitutability for temporal attribute
refinement, establishing the consistency conditions for a T ODMG database
schema. We focus on those attribute refinements that can be devised as safe
at schema definition time. Then, we give the specification of T ODMG classes
that include refinements of temporal attributes. Finally, we analyze in detail the
different cases of safe refinement of temporal attributes.

4.1 Safe Refinement of Temporal Attribute

In T ODMG [5] inherited features can be redefined performing covariant re-
definitions [1]. The adopted approach considers property domains as integrity
constraints to be checked at run time, rather than dealing with them as type
constraints. Additional run time checks are needed, as widely demonstrated in
the object-oriented literature, because attribute redefinition is an unsafe opera-
tion. Unsafety also arises for covariant refinement of temporal attributes: if we

override a temporal attribute defined with type τ1 = temporal⟨G, τ ′
1⟩ with a

type τ2 = temporal⟨H, τ ′
2⟩ such that τ2 <: τ1, such redefinition requires the in-

troduction of additional run time checks to prevent run time errors. By contrast,
for temporal attributes we are able to devise a set of significant refinements that
are safe, i.e., for which we are able, at schema definition time, to state that no
run time errors can arise.

When specializing a temporal attribute domain a change of granularity can
be a more realistic need than a change (even than a specialization) of the in-
ner type, involving a different domain for the attribute. The refinement of the
granularity of a temporal attribute, indeed, actually represents a change of the
level of detail for the attribute. Depending on the application domain and on
the attribute semantics, in the subclass, for instance, one could be interested in
keeping the attribute values at a greater level of detail, or in decreasing the level
of detail at which an attribute value is recorded. Since such temporal attribute
refinements involve only the granularities, their consistency can be checked at
schema definition time. Specifically, refinements that refine the domain of a tem-
poral attribute with a finer granulary, or with a coarser one, are safe. The only
exception is represented by refinements that involve gap granularities [6], that
have non contiguous granules, and require additional run time checks to distin-
guish accesses to value related to non existing portions of granules (throwing
run time exceptions), from accesses to undefined temporal values (that results
in null values). For instance, an additional check is needed to distinguish if an
attribute value, stored at granularity bweeks, is accessed on a Sunday (which
does not make sense) from the case in which the attribute value is accessed on
a working day for which no value has been stored.

A temporal database schema with safe attribute refinements, in order to
be defined as consistent, should satisfy some properties related to object casts.
First, substitutability must be satisfied, according to which an object with dy-
namic type c, can be used as having any supertype of c. Second, a cast down
to a class c′ of an object with static type c and dynamic type c′, such that
c′ <: c, should not produce run time errors. Such a cast down would allow tem-
poral refined attributes of class c′ to be accessed as well. We want to enforce
both properties along an inheritance hierarchy involving an arbitrary number of
classes in which temporal attributes are refined in a safe way, that is, by refining
their granularities.

Substitutability requires to convert attribute values to different domains. For
the safe refinements of temporal attributes we discussed, coercion and refinement
functions defined in Section 3 and referred in what follow as conversion functions,
are employed. Specifically, when refining an attribute of type temporal⟨G, τ⟩ to
a type temporal⟨H, τ⟩, a pair of conversion functions must be included in the
specification of the attribute. The first function will be employed for accessing
the attribute value at granularity G, that is, it converts the attribute value from
type temporal⟨H, τ⟩ to type temporal⟨G, τ⟩. The second conversion function will
be used for updating the attribute value at granularity G, that is, it performs the
inverse conversion. In particular, if H ≺ G, for the attribute, a coercion function

for accessing the attribute value and a refinement function for updating it should
be provided. By contrast, if G ≺ H, the specification should include a refinement
function for accessing the value and a coercion function for updating it. The
following definition formalizes the notion of safe refinement.

Definition 11. (Safe Refinement of Temporal Attributes). Given an attribute
a defined in a class c′ with type τ1 = temporal⟨G, τ⟩ and refined in a class c,
subclass of c′, with type τ2 = temporal⟨H, τ⟩, such refinement is safe if one of
the following conditions holds:

– H ≺ G, and the pair ⟨af, uf⟩ is specified for attribute a in class c, where af
is a coercion function and uf is a refinement function;

– G ≺ H, and the pair ⟨af, uf⟩ is specified for attribute a in class c, where af
is a refinement function and uf is a coercion function. 2

Whenever a class specification includes a pair of conversion functions for each
temporal attribute refinement specified for the class, such functions are used
to access and to update the attributes. Then, cast semantics must be modified
to take into account the presence of such refinements. Before formalizing cast
semantics, we formalize access and update operations, since we consider cast as
an operation required in order to access and to update temporal attributes.4

Specifically, accesses we focus on require the value of an object attribute in a
specified granule. This form of access can be easily generalized to the access to
the value of an object attribute in a temporal interval, that denotes a temporal
value at the specified granularity, as those considered in [4]. Since this extension
does not introduce new issues, and it complicates the notation used, we prefer
to focus on single granule object accesses. The simplest forms of access and
update do not require to perform any conversion of attribute temporal values.
The only requirement is that an attribute with the specified name exists for
the object that is accessed or updated. The following definition formalizes such
simple operations.

Definition 12. (Simple Access and Update). Given a class c, and a temporal
attribute a defined, inherited, or refined in class c with type temporal⟨G, τ⟩, let
o be an object of class c and v the value of attribute a in object o. Let finally liG
be a granule label, then o.a ↓ liG denotes the access to the value of attribute a of
the object denoted by o in granule liG, that is, v(liG).

Let vG be a temporal value of type temporal⟨G, τ⟩. Then, the expression
u(o.a, vG) results in the update of the value of attribute a with temporal value
vG. If some of the values in vG refer granules for which some values were already
defined for a, the values in vG are taken. 2

Suppose attribute a, first declared in class c′, a superclass of c, with granularity
H, is refined in class c with granularity G. For substitutability we can access and

4 Since the focus of the paper is on refinement of temporal attributes, we consider
only accesses and updates to such kind of attributes, disregarding attributes whose
domain is a static type.

update attribute a as it is defined in class c′. This requires casting o to type c′

and specifying a granule of granularity H for the access, or a temporal value at
granularity H for the update. The following definition formalizes the semantics
of access and update to a temporal attribute requiring a cast to a superclass,
specifying how the cast is mapped into conversions of temporal values.

Definition 13. (Access and Update with Cast Up). Given two classes, c and
c′, with c subclass of c′, and a temporal attribute a defined in c′ with type
temporal⟨H, τ⟩ and refined in c for the first time in the inheritance hierarchy
with type temporal⟨G, τ⟩, such that G ≺ H or H ≺ G. Suppose the refinement or
coercion function specified for the attribute access be af : [[temporal⟨G, τ⟩]] →
[[temporal⟨H, τ⟩]] . Let o be an object of class c and v the temporal value of
attribute a in object o. Finally, let liH be a granule label of granularity H. Then,

(c′)o.a ↓ liH = afG→H(v)(liG).
Let the refinement or coercion function specified for the attribute update be

uf : [[temporal⟨H, τ⟩]] → [[temporal⟨G, τ⟩]] , and let vH be a temporal value of
type temporal⟨H, τ⟩. Then,

u((c′)o.a, vH) = v ∪ ufH→G(vH). 2

Example 9. Consider class c′ and its direct subclass c, such that attribute a is
refined from temporal⟨years, integer⟩ in c′ to temporal⟨months, integer⟩ in c,
with coercion function sum specified for access. Let o be an object instance of
class c whose value for attribute a is value v of Example 6. Then o.a ↓ 03/2002 =
4 and (c′)o.a ↓ 2002 = summonths→years(v)(2002) = 36. Given split as the re-
finement function for update, the update u(o.a, {⟨01/2002, 10⟩, ⟨02/2002, 12⟩})
followed by the update u(o.a, {⟨2003, 60⟩}) results in value v={⟨01/2002, 10⟩,
⟨02/2002, 12⟩,. . .,⟨12/2002, 3⟩,⟨01/2003, 5⟩, ⟨02/2003, 5⟩,⟨03/2003, 5⟩,⟨04/2003, 5⟩,
⟨05/2003, 5⟩,⟨06/2003, 5⟩, ⟨07/2003, 5⟩,⟨08/2003, 5⟩,⟨09/2003, 5⟩,⟨10/2003, 5⟩,
⟨11/2003, 5⟩,⟨12/2003, 5⟩}months. 3

If more than one refinement for temporal attribute a is specified along the inher-
itance hierarchy, the semantics just formalized is extended in a straightforward
way. We simply move up through the inheritance hierarchy that involves re-
finement for the temporal attribute a, mapping object cast with a step by step
conversion of the temporal value to access or used for the update. At each step,
the corresponding access or update conversion function is applied, obtaining the
temporal value that will be converted at the following step. If the conversion
functions applied are compositional (cf. Definition 6), the value to be returned
can be obtained by applying the conversion function only once. If they are not
compositional, by contrast, a sequence of conversions must be performed.

When along the inheritance hierarchy a chain of refinements involves, for the
same temporal attribute, more than once the same granularity, the refinement is
said circular. Such kind of refinements require the conversion functions specified
for the refinement be inverse (cf. Definition 7) or quasi-inverse (cf. Definition 8),
to ensure that the error introduced by the conversion process does not exceed
an established bound. Circular refinements are discussed in Section 4.3.

The semantics of cast down is simpler than that of cast up, because, as for
simple access, it does not involve value conversions. To perform a cast down of
an object, in order to access or to update one of its temporal attributes, we must
ensure that the object dynamic type be the object type specified for the cast.
If it is, then we simply perform the access or the update with a granule or a
temporal value of the right granularity. The following definition formalizes the
notion of access and update involving a cast down.

Definition 14. (ccess and Update with Cast Down). Given two classes, c and
c′, with c subclass of c′, and a temporal attribute a defined in c′ and refined in
c with type temporal⟨G, τ⟩, let o be an object with dynamic type c and static
type c′, v the temporal value of attribute a in object o, liG a granule label. Then,
the object access (c)o.a ↓ liG evaluates to v(liG). Finally, let vG a legal value for
attribute a at granularity G. Then, the object update u((c)o.a, vG) evaluates to
v′ = v ∪ vG. 2

4.2 Classes with Refined Attributes

T ODMG class specification has to be extended to handle refined attributes.
Specifically, attribute specification (cf. Definition 9) must be modified, by in-
troducing conversion functions to ensure substitutability. Then, if an attribute
specification is a refinement of an inherited attribute, it also contains a pair of
conversion functions, one for accessing the attribute value and one for updating
it using a granularity specified in a superclass definition. The following definition
formalizes attribute specification with refinement of temporal attributes.

Definition 15. (Attribute Specification). A T ODMGattribute specification attr
is a set containing an element for each attribute of the class. Each element is
a 3-tuple (atype, aname, aref), where atype ∈ T is the attribute domain; aname

is the attribute name; and aref = ⟨af, uf⟩ are the conversion functions, af for
access and uf for update. 2

Example 10. Fig. 3 extends the database schema defined in Fig. 1, by declar-
ing class mainCity, subclass of class city, and class mountainCity, subclass of
mainCity. Class mainCity models main cities in a country, for which we main-
tain also information about pollution related to CO2 concentration, stored in
attribute co2. Some of the attributes defined in class city have been refined
in class mainCity, that requires a detailed meteorological monitoring of factors
that influence pollution. Thus, attributes temperature and rainfall have been
refined with finer granularities. For the same reason, attributes windSpeed and
windDir, that model wind speed and direction, have been added to the class.
Finally, attributes snowfall and population have been refined with coarser
granularities. Attributes name and mayor are simply inherited.

Class mountainCity models ski touristic locations. Such locations require de-
tailed information about snow conditions, thus attributes snowfall and tempe-
rature have been refined with finer granularities and attribute snowheight has

class mainCity extends city{
ref attribute temporal⟨months, int⟩ population ⟨restr, last⟩;
ref attribute temporal⟨3hours, float⟩ temperature⟨max, restr⟩;
ref attribute temporal⟨days, int⟩ rainfall ⟨sum, split⟩;
ref attribute temporal⟨years, int⟩ snowfall ⟨split, sum⟩;
attribute temporal⟨3hours,string⟩ windDir;

attribute temporal⟨3hours,float⟩ windSpeed;

attribute temporal⟨3hours,float⟩ co2; };

class mountainCity extends mainCity{
ref attribute temporal⟨decades, politician⟩ mayor ⟨restr, last⟩;
ref attribute temporal⟨3months, int⟩ population ⟨restr, avg⟩;
ref attribute temporal⟨hours, float⟩ temperature ⟨min, restr⟩;
ref attribute temporal⟨years, int⟩ rainfall ⟨split, sum⟩;
ref attribute temporal⟨days, int⟩ snowfall ⟨sum, split⟩;
ref attribute temporal⟨days,string⟩ windDir ⟨restr, main⟩;
ref attribute temporal⟨days,float⟩ windSpeed ⟨restr, max⟩;
ref attribute temporal⟨3months,float⟩ co2 ⟨restr, avg⟩;
attribute temporal⟨days,int⟩ snowheight; };

Fig. 3. Example of T ODMG class specifications with refined attributes

been added to the class. Moreover, information about wind speed and direction
are now stored with granularity days, while attributes population and co2 have
been refined with coarser granularity 3months, modeling seasonal variations on
such values. Finally, attribute mayor have been refined with granularity decades.
Adequate pairs of conversion functions are specified for refined attributes in both
class declarations, then the refinements are safe according to Definition 11. 3

4.3 Analysis of Safe Refinements of Temporal Attributes

In this section we analyze different cases of safe refinement of temporal attributes
that can arise in a T ODMG database schema, referring the schema given in
Fig. 1 and in Fig. 3 and presented in Example 10.

Refinement to coarser granularities (↑) Attribute population is de-
fined in class city with granularity days, then refined in class mainCity with
granularity months and in class mountainCity with granularity 3months. Each
attribute refinement specifies a pair of conversion functions. Functions declared
for accessing the value belong to the same family restr, that is compositional,
then, an access to attribute population with temporal value v of an object
o with dynamic type mountainCity, with respect to class city, denoted by
(city)o.population ↓ lidays, results in the value restr3months→days(v)(lidays). By
contrast, the update functions belong to families last and avg, then an update
of population value with the temporal value vdays, of type temporal⟨days, int⟩,

denoted by u((city)o.population, vdays), is performed by applying the right se-
quence of coercion functions on such value. Then, the update results in v ∪
avgmonths→3months(lastdays→months(vdays)).

Refinement to finer granularities (↓) Attribute temperature is defined
in class city with granularity months, then refined in class mainCity with
granularity 3hours and in class mountainCity with granularity hours. Func-
tions declared for accessing the attribute value are max and min. Belonging to
different families, they must be applied in the right sequence when performing
an access involving a cast up. Then, (city)o.population ↓ limonths, is equiva-
lent to max3hours→months(minhours→3hours(v))(limonths), with limonths granule
of granularity months and v value of attribute temperature. Functions de-
clared for updating the value belong to the same family restr, that is com-
positional, then, an update to attribute temperature with temporal value v of
an object o with dynamic type mountainCity, with respect to class city, de-
noted by u((city)o.population, vmonths), can be performed by directly converting
restrmonths→days(vmonths) and by appending such value to the existing temporal
attribute value.

Refinement to a coarser and then to a finer granularity (∧) At-
tribute snowfall is defined in class city with granularity months, then refined
in class mainCity with granularity years and in class mountainCity with gran-
ularity days. Then, attribute specification in class maincity requires the decla-
ration of a refinement function for accessing the value and of a coercion function
for updating it, and such functions are sum and split, whereas the attribute
specification in class mountainCity requires the declaration of a coercion func-
tion for accessing the attribute value and of a refinement function for updating
it, and such functions are sum and split, respectively. The access to attribute
snowfall with temporal value v of an object o with dynamic type mountainCity
with respect to class city, denoted by (city)o.snowfall ↓ limonths, is equivalent
to splityears→months(sumdays→years(v))(limonths). In a similar way, for execut-
ing the update u((city)o.snowfall, vmonths), the value vmonths is converted by
applying the conversion splityears→days(summonths→years(vmonths)) and by ap-
pending such value to the existing temporal attribute value.

Circular refinement through a coarser granularity (△) Suppose at-
tribute snowfall is refined in class mountainCity with granularity months,
instead of granularity days. This is a particular case of the preceding one, that
models a class hierarchy in which an attribute is first refined with a coarser gran-
ularity and then re-refined to the initial granularity of the hierarchy. Since the
selected conversion function for performing both access and update belong to
families that are devised to be quasi-inverse with respect to Definition 8, we can
ensure that the conversions performed do not introduce an error greater than
the specified bound ∆.

Refinement to a finer and then to a coarser granularity (∨) Attribute
rainfall is defined in class city with granularity months, then refined in class
mainCity with granularity days and in class mountainCity with granularity
years. Then, attribute specification in class maincity requires the declaration

TODMG Database
Schema

input

Translator
output

uses

requests/answers

User interface

Java Database Schema
schema

User defined classes

ObjectStore
Database

answers
requests/

Temporal package

Application

Fig. 4. System architecture

of a refinement function for updating the value and of a coercion function for
accessing it, and such functions are split and sum; whereas the specification of
rainfall in class mountainCity requires the declaration of a coercion function
for accessing the attribute value and of a refinement function for updating it,
and such functions are sum and split, respectively. Such attribute refinement is
the logical inverse of that specified for attribute snowfall discussed above. The
access to attribute rainfall with temporal value v of an object o with dynamic
type mountainCity with respect to class city, denoted by (city)o.rainfall ↓
limonths, is equivalent to sumdays→months(splityears→days(v))(limonths). For exe-
cuting the update u((city)o.rainfall, vmonths), the value vmonths must be con-
verted to value sumdays→years(splitmonths→days(vmonths)), and then appended
to the existing temporal attribute value v.

Circular refinement through a finer granularity (∇) Suppose attribute
rainfall is refined in class mountainCity with granularity months, instead of
granularity years. This is a particular case of the preceding one, that models a
class hierarchy in which an attribute is first refined with a finer granularity and
then re-refined to the initial granularity of the hierarchy. Since the selected con-
version function for performing both access and update belong to families that
are devised to be quasi-inverse with respect to Definition 8, we can ensure that
the conversions performed do not introduce an error greater than the specified
bound ∆.

5 Implementation Issues

The approach presented in this paper has been implemented in the T ODMG
prototype implementation realized in ObjectStore Java PSE Pro [17]. Note that
ObjectStore Java does not support parametric types; however, no other Java-
based OODBMS support them. The implementation is not based on ObjectStore
specific features, thus it can be ported with little effort to other ODMG compli-
ant Java based OODBMSs. Fig. 4 shows the overall architecture of the imple-
mentation. Main components of our prototype are: a translator, which takes as
input a text file containing the definition of a T ODMG database schema and
returns the Java translation of the database schema; a TemporalP package, which
is a Java library implementing multiple granularity temporal data; a graphical
user interface, that supports the basic query and update operations on tempo-
ral objects and works on every set of Java classes obtained by the translation
of a T ODMG schema, thanks to the use of Java reflection. The Java classes
obtained from the translator can also be directly used in user-defined classes of
a user application. In the remainder of this section we briefly present the basic
principles of temporal data handling in the protototype and then discuss the key
issues in attribute refinement.

5.1 Temporal Data Handling

The representation of time is based on the class java.util.Date, provided by
Java to represent time instants. Time instants are measured in milliseconds,
with reference to January 1st, 1970 at 00:00:00.000. Milliseconds thus represent
the finest granularity we can handle in our time domain, which is thus discrete.
Temporal intervals are represented by the start and end instants of the interval,
though the internal representation is a pair of long values. We have adopted
such an approach because intervals are used as values of attributes of persistent
objects and the class java.util.Date is not persistence capable [17]. The classes
OpenInterval and CloseInterval implement open (i.e., of the form [t,∞])
and closed (i.e., of the form [t1, t2]) temporal intervals, respectively. The classes
provide operations on temporal intervals, such as intersection, test for inclusion,
test for contiguity.

Temporal values are instances of the class Temporal of the TemporalP pack-
age. Each value of temporal type temporal⟨G, τ⟩ is handled as an object instance
of class Temporal. Class Temporal has attributes: type, a string that stores the
inner type τ ; granularity, a string that stores the granularity G; value, an
object instance of class Temporal List, that stores the actual temporal value.
In the current prototype, since we are not addressing efficiency requirements yet,
the management of temporal values is very simple. A temporal value is simply
represented as a double linked list. The list elements contain value, that is, an
Object corresponding to the value, and value interval, and CloseInterval
corresponding to the granule to which such value refers. Note that, though ac-
cording to the generic definition of granularity a granule corresponds to a generic

subset of the time domain, the various operations on temporal values can be im-
plemented more efficiently if a granule corresponds to an interval on the time
domain, that is, to a set of contiguous time instants. Since in most common
granularity models, granules are intervals on the time domain, we adopt this
more restricted notion in our implementation.5 In addition, if a value is con-
stant for some consecutive granules, then a single value is stored in the list,
whose corresponding temporal interval is the union of the consecutive granules.

The implementation of temporal values as a sorted collection of interval-
value pairs bring some similarity with the HistoryOnAssociation pattern [2].
However, since the history patterns considered by Anderson relate to transaction
time, a single time instant is related to each value, corresponding to the instant
in which the value is updated. Moreover, no multiple granularity management
is considered in [2].

All temporal values are handled as instances of class Temporal. In this class
both the attributes storing the granularity and the inner type of temporal at-
tributes are of type String. Thus, Java reflective features are used to invoke
methods of the class whose name is stored in the temporal attribute. The infor-
mation on the temporal attribute inner type and granularity, though a schema
information, is replicated for any object of the class. We have introduced such
redundancy to improve performance.6 The inner type is used by the mutator
methods to ensure that the values associated with each granule are of the appro-
priate type and the granularity G is used by the mutator methods to ensure that
each interval corresponds to a G granule or to a set of contiguous G granules.

For what concerns temporal granularities, since a granularity is a mapping,
we do not need to create a new object for each granule, rather we can “imple-
ment” the mapping through methods. The index set IS has been implemented
by the Java type long and granule labels are implemented by the Java type
String. Three different information thus identify a granule of a granularity:
its index; its textual representation, or label; the (closed) interval on the time
domain it corresponds to. Thus, for each granularity two methods are defined:
indexToInterval, which takes as input an index and returns the corresponding
time interval on the time domain and labelToIndex, which takes as input the
label of a granule and returns the corresponding index. In addition granularities
store information related to the finer than relationship. Thus, for each granular-
ity two attributes are defined: finer, storing the set of granularities finer than
the considered one; coarser, storing the set of granularities coarser than the
considered one.

5 Note that this restriction still allows us to handle granularities that do not cover all
the time instants in the time domain, such as the business week granularity.

6 We could have associated these information only once with the attribute definition in
the Java class corresponding to the translation of the class containing the attribute.
However, under such an approach, this class definition would have been accessed
through reflection each time the value of the attribute had needed to be updated for
an object.

class Redefinition { private String g;

private String gSuper;

private String af;

private String uf;}

class CRFunction { public static Object sum(Object[] v)...;

public static Object avg(Object[] v)...;

public static Object min(Object[] v)...;

public static Object max(Object[] v)...;

public static Object restr(Object v)...;

public static Object split(Object v)...;

...}

Fig. 5. Classes Redefinition and CRFunction

Temporal granularities are classes without instances, which correspond in
Java to abstract classes. Each abstract class implementing a temporal granularity
implements the granularity interface. In the current prototype, the predefined
granularities are the ones of the Gregorian calendar, plus the bweeks granularity
corresponding to business weeks. The approach we have taken to implement
temporal granularities is however very flexible and allows users to add their
own granularities, by simply defining a proper abstract class implementing the
granularity interface described above. Upon definition of a new user-defined
granularity the aciclicity of the graph corresponding to the finer than relationship
is checked.

5.2 Attribute Refinement

Attribute refinement in T ODMG has been implemented through two additional
classes: Redefinition.java which implements the data structure storing the
information related to attribute refinement; CRFunction.java which implements
the predefined coercion and refinement functions. Class Redefinition contains
four String attributes: g, which is the attribute current granularity; gSuper,
which is the granularity of the attribute in the superclass; af and uf which
are the associated function for access and for update, respectively. In addition,
class Redefinition provides some methods which are used by the methods of
the class in which the attribute has been refined to implement substitutability.
Among them, the most relevant is method convert which converts the value
of the attribute at granularity g into a value of granularity gSuper, that is,
the one in the superclass. Such conversion is performed through the associated
coercion/refinement function.

Class CRFunction implements the pre-defined coercion and refinement func-
tions which have been presented in Section 3. Each function is a static method
which takes as input an array of values (in case of coercion functions) or a

value (in case of refinement functions) and returns the converted value. For in-
stance, suppose a temporal attribute domain is refined from granularity years
to granularity months and the coercion function sum is specified. If we access
such attribute for an object o in the superclass asking its value in year 1997, to
coerce from granularity months to granularity years, method CRFunction.sum
is invoked on the array of the twelve objects corresponding to the values taken
by that attribute in the twelve months of 1997. These twelve values are ap-
propriately extracted from the value attributes of the Temporal List objects
appearing in the value attribute of the Temporal object corresponding to the
accessed temporal attribute of o.

6 Related Work

Issues related to temporal data models and query languages have been exten-
sively investigated [15, 24], though most of the research and development efforts
in the area of temporal databases have been carried out in the context of the
relational model. However, several temporal object-oriented data models have
been proposed in the literature [3, 13, 16, 18, 19, 22, 25]. In the relational context,
some approaches [8, 12] have been developed that focus on handling and compar-
ing temporal data at different granularities. Among the contributions included
in [8], let us mention the concept of semantic assumption for temporal databases.
A semantic assumption is a way for deriving implicit information from explic-
itly stored (relational) data. Coercion and refinement functions presented in our
approach can be viewed as a specialization of semantic assumptions. In [12] mul-
tiple temporal granularity handling is also discussed. The focus is, however, on
converting time instants (i.e., granules) from one granularity to another, rather
than on converting temporal values from one granularity to another.

No comparable amount of work has been carried out to introduce temporal
granularities in the context of the object-oriented data model. The introduction
of multiple temporal granularities in an object-oriented data model poses addi-
tional issues with respect to the relational context, due to the semantic richness
of such a model. Some object-oriented temporal data models deal with multiple
temporal granularities [13, 18, 19, 22, 25]. Usually, the support of multiple tem-
poral granularities in those models is provided as extension to the set of types of
the temporal model. However, in most of these approaches the specification and
management of different granularities, e.g., how to convert from a granularity to
another, is completely left to the user. None of the cited proposals refers to the
ODMG standard object model, which implies a strong dependence of each tem-
poral model from the reference object model. Moreover, in contrast to the rela-
tional context, the introduction of temporal granularities in object-oriented data
models is, in most cases, informal. For instance, none of the proposed approaches
considers the impact of inheritance when multiple granularities are supported,
nor they address issues concerning type refinement and substitutability.

We first presented a proposal for a temporal extension of the ODMG object-
oriented data model in [3]. The current paper significantly extends [3] introduc-

ing, among other features, the support for multiple temporal granularities. A
first approach towards the introduction of temporal granularities in an object-
oriented model has been presented in [5]. This paper differs from and extends
[5] in several respects. Specifically, a different notion of temporal types (as para-
metric types) is considered. Moreover, downward inheritance of attributes is not
assumed, thus, the notion of refinement function is introduced to complement
that of coercion function, and properties of such functions have been investi-
gated. Finally, the comprehensive analysis of attribute refinement and its impact
on substitutability is a novel contribution of this paper.

7 Conclusions

In this paper we have proposed a temporal multigranular object data model, in
which temporal types are modeled as types parametric in two dimensions: the
granularity and the inner (static) type. In the context of that model, we have
then investigated attribute refinement along the inheritance hierarchy, allowing
the granularity at which attribute values are stored to be modified in subclasses.
A consequence of attribute refinement is that, to ensure substitutability, when-
ever an instance of a subclass is accessed as an instance of one of its superclasses,
the need arises of converting the temporal value corresponding to an attribute
value to the granularity of the attribute in the superclass. Conversions of tem-
poral attributes from a granularity to another are realized through coercion and
refinement functions, depending on attribute semantics, that are associated with
attribute refinements in the database schema. To demonstrate the feasibility of
the proposed approach, a Java prototype implementation of the data model has
been developed on top of the ObjectStore PSE [17] ODMG compliant DBMS.

We are currently extending the work presented in the paper along different
directions. A first extension of the data model concerns the support for dynamic
attributes. A well-known problem of temporal databases is that the amount of
stored data tends to increase very fast. Moreover, data acquired at a fine level of
detail are useful when they are acquired but they often become less relevant after
some time. In most cases, the level of detail at which data are needed depends
on how recent data are. In [10] a multigranular temporal data model supporting
the aggregation of different portions of the value of a temporal attribute at
different levels of detail has been proposed. The problem of converting data
from a granularity to another is extremely relevant also in that context.

Another relevant issue concerns data retrieval and query evaluation. Queries
on temporal multigranular objects, such as path expressions traversing attributes
stored at different granularities, require converting the traversed temporal value
at the appropriate granularity. In the area of query languages, an interesting
topic would be to associate a level of significance with the answers of queries.
Indeed, due to the presence of coercion and refinement functions, we allow one
to derive implicit information from explicitly stored one, that is, somehow, we
allow flexible queries. Thus, an interesting issue would be to evaluate the query
precision with respect to the stored information from a granularity point of

view. Finally, we are extending our prototype implementation in several respects.
The extensions under development include the development of ad-hoc index
structures well-suited both to associative and navigational access modalities to
temporal objects. Moreover, we are interested in rewriting our prototype relying
on the Java Data Objects [23] API, so that it can be used on top of any JDO
implementation.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. F. Anderson. A Collection of History Patterns. In N. Harrison et al., editors,

Pattern Languages of Program Design, Vol. 4, Addison-Wesley, 1999.
3. E. Bertino, E. Ferrari, G. Guerrini, and I. Merlo. Extending the ODMG Object

Model with Time. In Proc. 12th European Conference on Object-Oriented Pro-
gramming, LNCS 1445, pages 41–66, 1998.

4. E. Bertino, E. Ferrari, G. Guerrini, and I. Merlo. Navigating Through Multi-
ple Temporal Granuarity Objects. In IEEE Proc. 8th International Workshop on
Temporal Representation and Reasoning, pages 147–155, 2001.

5. E. Bertino, E. Ferrari, G. Guerrini, I. Merlo. T-ODMG: An ODMG Compliant
Temporal Object Model Supporting Multiple Granularity Management. Informa-
tion Systems, 28(8): 885-927, 2003.

6. C. Bettini, C.E. Dyreson, W.S. Evans, and R.T. Snodgrass. A Glossary of Time
Granularity Concepts. In Temporal Databases: Research and Practice, LNCS 1399,
pages 406–413, 1998.

7. C. Bettini, S. Jajodia, and X.S. Wang. Time Granularities in Databases, Data
Mining, and Temporal Reasoning. Springer-Verlag, 2000.

8. C. Bettini, X. S. Wang, and S. Jajodia. Temporal Semantic Assumptions and
Their Use in Databases. IEEE Transactions on Knowledge and Data Engineering,
10(2):277–296, 1998.

9. G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the Future Safe
for the Past: Adding Genericity to the Java Programming Language. In Proc. of
the ACM Conf. on Object-oriented Programming, Systems, Languages, and Appli-
cations, pages 183–200, 1998.

10. E. Camossi, E. Bertino, G. Guerrini, and M. Mesiti. Evolution Specification of
Multigranular Temporal Objects. In IEEE Proc. 9th International Workshop on
Temporal Representation and Reasoning, pages 78–85, 2002.

11. R. Cattel et al. The Object Database Standard: ODMG 3.0. Morgan-Kaufmann,
1999.

12. C. E. Dyreson, W.S. Evans, H. Lin, and R. Snodgrass. Efficiently Supporting
Temporal Granularities. IEEE Transactions on Knowledge and Data Engineering,
12(4):568–587, 2000.

13. N. Edelweiss, J.P.M. de Oliveira, and B. Pernici. An Object-Oriented Temporal
Model. In Proc. Advanced Information Systems Engineering, CAiSE’93, LNCS
685, pages 397–415, 1993.

14. C.S. Jensen and C.E. Dyreson. The Consensus Glossary of Temporal Database
Concepts. In Temporal Databases: Research and Practice, LNCS 1399, pages 366–
405, 1998.

15. C.S. Jensen and R. T. Snodgrass. Temporal Data Management. IEEE Transactions
on Knowledge and Data Engineering, 11(1):36–44, 1999.

16. W. Käfer and H. Schöning. Realizing a Temporal Complex-Object Data Model. In
Proc. of the ACM SIGMOD Int’l Conf. on Management of Data, pages 266–275,
1992.

17. Object Design. ObjectStore Java API User Guide (ObjectStore 6.0). Available at
http://www.odi.com, 1998.

18. M. T. Ozsu et al. TIGUKAT: A Uniform Behavioral Objectbase Management
System. VLDB Journal, 4(3):445–492, 1995.

19. E. Rose and A. Segev. TOODM - A Temporal Object-Oriented Data Model with
Temporal Constraints. In Proc. 10th Int’l Conf. on the Entity-Relationship Ap-
proach, pages 205–229, 1991.

20. Y. Shoham. Temporal Logics in AI: Semantical and Ontological Considerations.
Artificial Intelligence, 33(1):89–104, 1987.

21. R. T. Snodgrass. The TSQL2 Temporal Query Language. Kluwer Academic Pub-
lisher, 1995.

22. A. Steiner and M.C. Norrie. Implementing Temporal Databases in Object-Oriented
Systems. In Proc. of the 5th International Conference on Database Systems for
Advanced Applications, pages 381–390, 1997.

23. Sun Microsystems. Java Data Objects Version 1.0. Available at
http://access1.sun.com/jdo, 2001.

24. Y. Wu, S. Jajodia, and X. S. Wang. Temporal Database Bibliography Update. In
Temporal Databases: Research and Practice, LNCS 1399, pages 338–366, 1998.

25. G. Wuu and U. Dayal. A Uniform Model for Temporal and Versioned Object-
Oriented Databases. In A. Tansel et al., editors, Temporal Databases: Theory,
Design, and Implementation, pages 230–247. Benjamin/Cummings, 1993.

