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Abstract: This thesis evaluates an investment strategy that involves investing in ten out 

of the 30 most traded stocks listed on the Stockholm Stock Exchange, exploiting the 

market’s reaction to unpredicted events, so called Black Swans. By investing in ten of the 

stocks with the largest price change after days with extreme negative returns and ten of 

the stocks with the least change in price after extreme positive returns, the strategy 

outperforms the market. The authors also evaluate standard deviation (SD) as a risk 

measurement, finding that it captures the relationship between risk and return during 

volatile market periods. 
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1. Introduction 

Unpredicted events, or “Black Swans”, have caused stock markets all over the world to 

decrease, or increase, by several percent in a single day over the years. Based on Estrada 

and Vargas’ article (2012), we will investigate whether we can make use of unpredicted 

events in the Swedish Stock Exchange (SSE) (OMXS30) in order to achieve a higher 

return than the market index by relying on the mean reversion assumption. The 

methodology of Estrada and Vargas will be modified and instead of using beta, in this 

thesis we will be looking at price changes in order to select our stocks. We define a Black 

Swan as a monthly change in return for the OMXS30 of ±5% or more. Our investment 

strategy involves investing in stocks after a negative Black Swan and selling them after a 

positive Black Swan, at which time we purchase the stocks that had the minimum 

change in return. During the time frame of 21 years, from the 1st of January 1992 until 

the 31st of December 2012, the portfolio will be reallocated after each new Black Swan 

in opposite direction of the last one occurs. In this work we find that our strategy 

outperforms the market; the result is economically significant. 

 

The second objective of this thesis is to examine the standard deviation as a risk 

measure. Estrada and Vargas test the merit of beta as a measure of risk during large 

market fluctuations, as do Chan and Lakonishok (1993) and Grundy and Malkiel (1996), 

due to previous scholars’ rejection of its usefulness (Chan and Lakonishok, 1993). Since 

standard deviation, like beta, does not adjust for downside risk we find it relevant to 

evaluate standard deviation as a measure of risk to appraise if it is an accurate tool for 

describing the relationship between risk and return during extreme market movements, 

we find that it does. 

 

1.1 Background 

Wall Street trader and subsequently philosopher, professor and author Nassim Nicholas 

Taleb coined the phrase “Black Swans” in his book Fooled by randomness (2001) as a 

metaphor for rare events. In his second book, The black swan: the impact of the highly 

improbable (2007a), he defines a Black Swan in greater detail. There are, according to 

Taleb (2007a), three criteria that need to be met for an event to be regarded as a Black 

Swan; unpredictability, extreme impact, and ex post explanation. 



 

According to Taleb (2007a), we cannot predict Black Swans and should instead adjust 

for and profit from them. When looking at the OMXS30 index from January 1992 until 

December 2012, using the definition mentioned above, we find 99 Black Swan events.  

An investment in a passive index fund tracking the OMXS30 from 1992 until the end of 

2012 would return 662%. Excluding the worst 5% of all months would return 3733%. If 

we instead were to exclude the best 5% of all months with the highest return, our 

investment would have increased only a mere 128%. These are striking evidences of the 

significance of Black Swans. 

 

1.2 Purpose 

Estrada and Vargas (2012) find that by investing in world scattered index funds and 

exchange-traded funds based on their beta, the market can be outperformed over time 

by exploiting large market movements. The main purpose of this thesis is to examine if 

said strategy will generate similar results when implemented on stocks listed on the 

Stockholm Stock Exchange, and if selecting stocks based on price changes rather than 

beta will be as successful. 

 

Furthermore, using the same methods as Estrada and Vargas (2012) to evaluate beta as 

a measurement of risk, we will evaluate the standard deviation. The purpose of this is to 

analyze if standard deviation is a satisfying measurement of risk, and in particular its 

performance during extreme market movements. Knowing how much risk an investor 

faces before making an investment decision is crucial. Standard deviation answers the 

question “how much will the return of this investment fluctuate?”, but how well does it 

perform as a risk measurement? 

 

 

 

 

 

 

 

 



 

1.3 Research Questions 

We set out to explore two hypotheses in this bachelor thesis.  

 

1.3.1 Hypothesis I 

  : It is not possible to construct a strategy based on past price changes that 

outperforms the market over time 

 

  :    is not true 

 

1.3.2 Hypothesis II 

  : Standard deviation is not a satisfying measure of risk for average stock returns in 

extreme market periods 

 

  :    is not true 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2. Theory 

2.1 The Definition of a Black Swan 

A Black Swan is an event which could not be predicted in advance by (all but a very few 

of) the observers. In econometrics and statistics an event such as a Black Swan would be 

considered to be an outlier, a value or number which deviates from the rest of the data 

(Newbold, 2013). Throughout his book, Taleb (2007a) considers all life changing 

moments in our lives as outcomes of randomness and uncertainty, our inability to 

predict these events, even by so-called “experts”, and our invariable reaction to these 

events (surprise). “The central idea of the Black Swan concerns the all-too-common 

logical confusion of absence of evidence with evidence of absence [...]”, (Taleb, 2007b). 

According to Taleb, a Black Swan is not only the occurrence of an unexpected event; it is 

also the absence of an expected event. Unpredictability is one of three criteria, the 

second being that the event carries with it a major impact. The event itself and its 

consequences can be either positive or negative. Technical innovations, natural disasters 

and wars are all rare events which change many people’s lives remarkably. The theory of 

Black Swans is not limited to major events happening to a large number of people, it also 

applies to an individual. The third and last criterion for an event to be considered a Black 

Swan is the ex post explanation, i.e. we are trying to find explanations for its occurrence 

after the event itself has taken place.      

 

Determining if an event qualifies as a Black Swan is theoretically up to the individual to 

subjectively consider. However, previous academics mostly use a technical requirement, 

such as ≥5% monthly decrease/increase (Estrada and Vargas, 2012), ≥1.5% daily 

decrease/increase (Burnie and De Ridder, 2010), and > three standard deviations from 

the mean (Estrada, 2009), to define extreme returns. In this thesis, we will use the same 

definition of a Black Swan as Estrada and Vargas (2012), i.e. a ≥5% monthly increase or 

decrease in return. 

 

 

 

 



 

2.2 Mean Reversion 

One of the key assumptions in our thesis will be that of mean reversion of stock prices. 

This assumption briefly states that there is a long run average level, or a fundamental 

value, in stocks to which prices regress after extreme past returns (Bali et al. 2008). 

However, academics such as Fama and French (1988), Narayan (2007), Lo and 

MacKinlay (1988) have disagreed on the existence of mean reversion in stock markets. If 

the stocks are not mean reverting they are presumed to follow a random walk, meaning 

that the stock prices move freely within the realms of possibilities and do not regress 

back to any fundamental value (Narayan, 2007). 

 

The mean reversion debate continues partly because of the many ways to test for the 

existence of mean reversion. Some of the trialed tests include the Augmented Dickey and 

Fuller, Phillips and Perron, unit root tests, panel data test, and non-linear tests (Cunado 

et al. 2010). The results differ somewhat depending on testing method and also on the 

use of structural breaks, e.g. bull and bear markets, the January effect due to tax-loss 

selling (DeBondt and Thaler, 1985), and testing for linear- or nonlinear mean reversion. 

For studies that find evidence of reversion in stocks, different methodologies produce 

different estimates of the speed of the reversion. The estimates of reversion range from 

an average 18.5 years to absorb half a shock (Spierdijk et al. 2012), three to five years 

(Mukherji, 2010), three to three and one-half years to absorb half a shock (Balvers et al. 

2000), two to three years (DeBondt and Thaler, 1985), four and one-half to eight years 

(Gropp, 2004), and one to eight months (Bali et al. 2008). 

 

If the stocks in the OMXS30 are mean reverting, we expect our strategy as defined in the 

methodology section to be successful. 

 

2.3 Literature Review 

This thesis is based on the article by Estrada and Vargas (2012), in which the authors 

investigate whether beta is a useful tool for selecting portfolio assets. Estrada and 

Vargas conclude that by investing in high-beta funds after the market has decreased, and 

in low-beta funds after the market has increased, excess return is generated. However, 

as shown by Fama and French (1992) beta is not a flawless measurement of risk as they 

find little to no positive relation between market beta and average stock returns. 



 

Estrada and Vargas find support in both Chan and Lakonishok (1993) and Grundy and 

Malkiel (1996) who examine the usefulness of beta and find that one cannot yet reject 

the CAPM, they also investigate the accuracy of beta themselves and find that it is useful. 

Estrada (2009a) examines the impact Black Swans had on the return generated from the 

Dow Jones Industrial Average between 1900 and 2006, as well as from 1990 to 2006. 

The author finds that extreme trading days are more frequent than what is expected 

under the normality assumption, thereby concluding that daily return data deviates 

from the normality assumption, and that Black Swans do have an extreme impact on 

return. Estrada (2009b) does the same examination in emerging markets and 

international markets (Estrada, 2008) and arrives at the same conclusion. Estrada 

(2009a) also stresses the virtually non-existent possibility of predicting the outcome of 

these days, confirming Taleb’s (2007a) theory of adjustment and profit from the ensuing 

reversion.   

 

Bali et al. (2008), who use daily data, find strong negative relation between market 

returns and past extreme lowest daily returns predicting the speed of reversion to be 

one to eight months, this being the shortest reversion time we find. 

This is thought to be explained by a positive correlation between aggregate risk 

aversion, and minimum daily returns using the following regression model; 

 

              (      )         

 

Where        is the excess return on day d+1 in month m for the aggregate market 

portfolio,   (      ) is the expected volatility on day d for day d+1 in month m,    is the 

aggregate relative risk aversion parameter in month m, and        is a disturbance term. 

Testing the equation using three different measures of daily volatility they find when 

aggregate risk aversion increases, the market prices increase as well. 

 

Bali et al. (2008), along with Spierdijk et al. (2012) and DeBondt and Thaler (1985), find 

the speed of reversion to be significantly higher for larger falls in the market. DeBondt 

and Thaler (1985) constructs a regression model that estimates portfolio returns given 

the assumption of semi-strong market efficiency. Using past data on excess returns they 



 

construct a winner (W) and a loser (L) portfolio consisting of the top and bottom 35 

stocks (or 50 stocks, or decile) respectively. If the efficient market hypothesis is true, the 

residuals from the regression are estimated to equal or not deviate significantly from 

zero. 

 

 ( ̃     ( ̃       
 )     )   ( ̃       )    

 

Where  ̃   is the residuals at time t for security j,  ̃   is the return at time t for security j, 

     represents the information set for semi-strong market efficiency at time t-1, and 

  ( ̃       
 )  is the expected  ̃   assessed by the market m on the basis of     . 

For the overreaction theory they present to be true, the residuals for the winner 

portfolio are estimated to be  ( ̃       ) <0 and the residuals for the loser portfolio are 

estimated to be  ( ̃       ) >0, meaning past winners returns will decline and past losers 

returns will increase. DeBondt and Thaler (1985) conclude that the residuals for both 

portfolios are significantly different from zero over a 36 month period with the loser 

portfolio outperforming the market, on average, by 19.6% and the winner portfolio 

earning an average of 5.0% less than the market, resulting in a cumulative average of 

24.6% with a t-statistic of 2.20. In a subsequent article DeBondt and Thaler (1987) re-

evaluate their findings and strengthen them in an effort to cope with critique from 

Vermaelen and Verstringe (1986) who claim the proposed overreaction effect of the W 

and L portfolios to be attributed to market responses in risk changes. 

 

Balvers et al. (2000) takes the regression model one step further. Instead of only 

estimating if the residuals statistically deviate from zero, they construct a regression 

model that measures mean reversion as a discrete parameter, 0 <   <1. Using data from 

18 countries market indices they construct a regression model with cross-country 

comparisons. Assuming it is difficult to estimate each individual country’s fundamental 

process, they estimate the relation between two countries fundamental stock index 

values to be stationary in order to address this issue and get more observations.  

Combining the stationary relationship between two countries fundamental value with 

each individual country’s estimated mean reversion regression model and assuming the 



 

speed of reversion,  , to be similar for every country, they construct what they call the 

rolling regression model: 

    
      

      (  
    

 )  ∑  
 

 

   

(      
        

 )      
  

 

Where     
      

  is the difference between the instantaneously compounded returns 

for country i and reference index r,    is a constant, (  
    

 ) is the accumulated return 

differentials up to time t and serves as a correction parameter for subsequent periods, 

    
  is a disturbance term with an unconditional mean of zero, and ∑   

  
   (      

  

      
 ) is added lagged return differential to cope with possible serial correlation in the 

disturbance term. In short, the equation specifies the change of a price index relative to a 

reference index over time. 

If  = 0 then there is no correction to prices and hence no mean reversion, and for 

significant   > 0 the prices are corrected according to (  
    

 ) and mean reversion is 

present in the data. The equation also has the property of signaling to the investor if 

he/she should reallocate his/her portfolio from a market that has performed well to a 

market that has underperformed over time, in other words reallocate from a market 

that is priced relatively high to one that is priced relatively low, and thus making a profit 

on the price reversion. Balvers et al. (2000) reject the no mean reversion hypothesis on 

the 5 or 1 percent significance level and find investing in a similar way as DeBondt and 

Thaler (1985) but using the estimates of the rolling regression yields a mean return of 

20.7% for the single best market investment and a 19.8% mean return for the top three 

markets, compared to the buy-and-hold strategy that yields 13.7% for the World index 

and 14.2% for an equal weighted portfolio. They also find that their rolling regression 

investment beats that of DeBondt and Thaler and attributes this achievement to the fact 

that their regression model contains more information about the reversion to be 

exploited, than does DeBondt and Thalers. Gropp (2004) further cements the findings of 

both DeBondt and Thaler (1985) and Balvers et al. (2000) using the same rolling 

regression model as Balvers et al. but sorting stocks by industrial classifications instead 

of market capitalization in an attempt to minimize the likelihood of a bias against the 

detection of mean reversion. 

 



 

3. Data & Methodology 

3.1 Data 

OMXS30 is a market value-weighted stock index consisting of the thirty most traded 

stocks on the Stockholm Stock Exchange. The financial and industrial sectors constitute 

almost two-thirds of the index, with 28.24% and 30.42% respectively. Other large 

sectors are consumer goods (6.51%), technology (8.43%) and telecommunication 

(8.36%), (NASDAQ OMX, 2013). 

For this thesis, monthly return data from the 1st of January 1992 up until the 31st of 

December 2012 for the OMXS30, as well as the underlying stocks, will be examined. The 

OMXS30 did not consist of thirty stocks during the whole time period. Following 

corporations were listed later than the 1st of January 1992: Getinge (1993); ASSA ABLOY 

(1994); Nordea Bank, Swedbank (1995); Scania, Swedish Match, TELE2 (1996); MTG 

(1997); ABB, AstraZeneca, and Boliden (1999); TeliaSonera (2000); Lundin Petroleum 

(2001); Alfa Laval (2002) and Nokia (2007). The data was collected from Datastream 

and is in Swedish krona (SEK). 

 

3.2 Methodology 

Estrada and Vargas (2012) find that excess returns can be achieved by an investment 

strategy that exploits Black Swans. By constructing a portfolio of exchange-traded funds 

and index funds, that includes both country indices and industry indices, the strategy 

shifts between high- and low-beta portfolios. When a negative Black Swan occurs the 

strategy involves investing in the high-beta portfolio with the expectation of stock prices 

returning to their fundamental value, according to the mean reversion assumption, and 

thus making a profit. After a positive Black Swan the strategy is instead to invest in the 

low-beta portfolio, focusing on minimizing the losses. Although the work of Estrada and 

Vargas (2012) is based on whether beta is a good measure of risk and useful in the 

events of portfolio selection, they “tend to buy the countries whose prices have fallen the 

most or risen the least”. By adapting their strategy to the Stockholm Stock Exchange, we 

will invest in stocks, rather than indices, with the largest decreases in price (negative 

Black Swans), as well those with the least change in price (positive Black Swans). This 

modification of selecting stocks based on their change in returns on the month of a Black 



 

Swan instead of their beta is the main change in methodology from Estrada and Vargas. 

With this strategy we aim to achieve a higher return than the OMXS30. 

 

In order to construct our portfolio, we first need to look for Black Swan events in the 

market’s value changes. Even though Black Swan events indicate that the returns are 

exhibiting fat-tail distribution, we will nevertheless use standard deviation as our 

measure of risk. As defined in the theory section, we will consider any monthly change 

equal to ±5% or more a Black Swan. As many as 99 months between 1992 and 2012 

meet our requirements of Black Swans, out of these 99 we are investing in 36, of which 

18 are negative and 18 are positive. Table 1 shows these dates. 

 

Table 1: Black Swans from 1992-01-01 to 2012-12-31 

Date   Return   Date   Return   Date   Return 

1992-07-01   -9.50%   1997-11-01   -10,05%   2006-06-01   -7.19% 

1992-12-01   27.70%   1997-12-01   5,33%   2006-09-01   7.03% 

1993-12-01   -5.73%   1998-10-01   -11,87%   2007-12-01   -5.66% 

1994-01-01   6.74%   1998-11-01   15,29%   2009-01-01   9.10% 

1994-04-01   -7.76%   2000-04-01   -6,47%   2009-02-01   -9.10% 

1994-05-01   7.05%   2001-05-01   15,11%   2009-04-01   9.73% 

1994-07-01   -8.83%   2001-09-01   -9,20%   2010-06-01   -7.38% 

1994-08-01   10.96%   2001-11-01   7,27%   2010-08-01   9.48% 

1995-11-01   -7.64%   2002-10-01   -13,41%   2011-08-01   -7.07% 

1996-03-01   7.29%   2002-11-01   10,87%   2012-02-01   6.59% 

1996-08-01   -5.26%   2003-01-01   -13,59%   2012-06-01   -9.71% 

1996-09-01   5.81%   2003-05-01   13,04%   2012-07-01   7.12% 

 

Furthermore, we will examine if standard deviation is a satisfying measure of risk, using 

the same methods as Estrada and Vargas use to evaluate beta.   

 

3.2.1 Investment Strategy 

Based on the mean reversion assumption, our investment strategy involves investing in 

stocks which have had the largest (least) percentage decrease (change) after an extreme 

event. The month after a negative Black Swan has occurred, ten of the 30 stocks which 

have decreased the most in price are added to the portfolio (Strategy) with the 

expectation of high mean reversion. These are held until a positive Black Swan takes 

place, when they are sold off and equal weights of stocks that rose the least in that 



 

month (bottom ten returns for the positive Black Swan) are purchased, since we expect 

those stocks to exhibit the least mean reversion. In the case of two or more consecutive 

negative or positive Black Swans, no new stocks are added to the original portfolio. This 

approach is repeated during the time period of investigation. Each stock added to the 

portfolio will be of equal weight, i.e. 10%. 

 

3.2.2 Standard Deviation as a Measure of Risk 

The second part of this thesis is to evaluate the standard deviation’s performance as a 

measure of risk. To do this we will calculate the SD for each stock of up to 60 months 

prior to, but not including, each Black Swan month, depending on data availability. The 

SDs will then be grouped into three groups. The first group, G1, will contain a third of all 

SDs with the highest values. The third group, G3, will contain a third of all SDs with the 

lowest values, leaving the remaining SDs to the second group, G2. We also include the SD 

and return of the OMXS30. In each group we will then calculate the average portfolio 

returns on the month of the Black Swan.  

 

We then compare the group SD with the average return for each group to see if they 

rank the same, i.e., if a higher SD yields higher change in returns and a lower SD yields 

lower change in returns. We do this for both positive and negative Black Swans. 

 

3.3 Limitations  

Even though suggested as a criterion for Black Swans, we will not try to look back at 

historical ex ante announcements to evaluate if the events were unimaginable. This task 

would pose too great of a historic analysis for the scope of this thesis and we would also 

run the risk of excluding determining factors and/or including irrelevant factors. Instead 

we use a simplified, technical, definition of Black Swans as explained in the theory 

section. 

 

Neither the return of the OMXS30 nor the individual stocks includes dividends as the 

inclusion of dividends from thirty corporations would be a laborious task. It may be 

worthwhile to note that between the 30th of December 1999 (at which time SIX30 

Return Index was introduced) and the 7th of April 2006 the OMXS30 decreased by 



 

11.95%, while at the same time SIX30RX, which includes reinvested dividends, 

increased by 2.02% (SIX, 2013). 

 

Moreover, we will not be taking transaction costs into consideration in this thesis. The 

reason for this being that during the time frame of 21 years, the transactions we are 

involved in are too few to have a significant impact on the result. 

3.4 Normal distribution 

The observations in a population are normally distributed when both sides of the mean 

are symmetric. Extreme values have less frequency than do average values (Newbold, 

2013). Both skewness and kurtosis will cause the distribution to adopt a shape other 

than that of the bell-shaped curve. To test if our sample suffers from non-normality we 

use the Jarque-Bera test. It tests for both kurtosis and skewness.    

 

3.4.1 Kurtosis 

Assuming normal distribution when the data contains a greater number of extreme 

values causes us to underestimate the occurrences of these values. The distribution 

curve will be narrower around the mean and have fat tails. Kurtosis is the measure of 

weight in the fat-tails of a distribution curve. It is calculated as follows: 

 

          
∑ (    ̅)

  
   

   
 

 

 

where the sum of the deviation from the mean is raised to the power of four, divided by 

the product of the sample size (n) and the standard deviation raised to the power of four 

(s4). A sample with a normal distribution has a kurtosis of 3. 

 

3.4.2 Skewness 

A distribution of observations which is not symmetric is skewed to either side of the 

mean. A skewed-right distribution has a longer tail to the right, while a skewed-left 

distribution has a longer tail to the left. Skewed distributions are caused by outliers, 

such as the distribution of income (skewed-right), where a small amount of the 



 

observations account for the highest values, (Newbold, 2013). In a situation where the 

distribution is skewed either to the right or to the left, the standard deviation will 

respectively overestimate and underestimate risk (Bodie et al. 2013). Skewness is 

calculated with the following formula: 

 

          
∑ (    ̅)

  
   

   
 

 

3.4.3 Jarque-Bera Test for Normality 

The Jarque-Bera test for normality is an adaption of the chi-square test (Newbold, 2013) 

and is used to test if a sample of observations is normally distributed. It is calculated as 

follows: 

    [
(        ) 

 
 
(          ) 

  
] 

 

 

 

The Jarque-Bera test uses both skewness and kurtosis to test for normality. Skewness is 

raised to the power of 2 and divided by 6. A normally distributed population has a 

kurtosis of 3, and the JB statistic should be zero for a normal distribution, hence 3 is first 

subtracted from the kurtosis. The kurtosis is then raised to the power of 2 and divided 

by 24. The sum of the squared skewness and the squared kurtosis is then multiplied by 

the number of observations. 

The null hypothesis, that the sample is normally distributed, is rejected if the JB statistic 

is larger than the significance points (see Appendix 8.2). 

 

3.5 Performance evaluation 

3.5.1 Arithmetic Mean 

The arithmetic mean will give us the average monthly returns for the portfolio strategy 

as well as for the passive index for comparison.  

 

    
∑   
 
   

 
 



 

3.5.2 Geometric Mean 

The geometric mean is used to calculate monthly average returns. It is a better 

measurement of returns than the arithmetic mean since it considers the compounding 

effect (Newbold, 2013).   

 

   [∏(   ) 

 

   

]

   

   

 

where the product of the data values is raised to the power of one divided by the 

number of observations, the sum is then subtracted by one. 

 

3.5.3 Standard Deviation 

As mentioned at the beginning of the thesis, our main measure of risk will be the 

standard deviation. 

    √
∑ (    ̅)

  
   

 
 

 

Instead of using a risk measuring instrument like the arbitrage pricing theory that bases 

the volatility of an asset on a benchmark portfolio (Bodie et al. 2013), such as the market 

portfolio, we use standard deviation and base the risk of the security on its historical 

returns.  

3.5.4 Downside Deviation 

Since we explore the possibility of profiting on abnormal returns, or statistical outliers, 

we expect the return distribution to have fat tails and, perhaps, to be skewed. To 

properly estimate downside risk we calculate Downside Deviation (DD). 
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where MAR (minimum acceptable return) <0  

 



 

3.5.5 Risk-Adjusted Returns 

We will be calculating risk-adjusted returns using both SD and DD. We do this in order to 

get a better estimate and compare the risk-return tradeoff in case of a non-normal 

distribution of returns. 

 

      
  

  
 

 

      
  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

4. Results & analysis 

4.1 Hypothesis I 

Our data consists of monthly returns for the OMXS30 as well as for the stocks which 

constitute the OMXS30. The first Black Swan occurs in July 1992; from the ensuing 

month we are holding a portfolio until the end of December 2012. This holding period is 

246 months, while the whole period for which the passive investment in the OMXS30 is 

held is 252 months. A normal distribution curve should have zero kurtosis, which is not 

the case in our study. Table 2 (see next page) shows that the kurtosis is 6.50 for our 

portfolio and 3.95 for the market (after subtracting 3 to get 0 equal to normal 

distribution). This implies that the distribution of returns of the portfolio as well as the 

returns of the market have fat tails. We also find that the distribution is skewed to the 

right in our sample, being the result of few extreme values. The STATA results show that 

the skewness is significant for the strategy (p-value of 0.0006) but not for the OMXS30 

(p-value of 0.9533). The STATA results also show that kurtosis are significant in both 

samples, with p-values of <0.05. Graph 1 shows the distribution curves of both 

investments. 

Graph 1: Distribution of Returns 

 

 



 

4.1.1 Results 

The first objective of this thesis was to look at the same strategy that Estrada and Vargas 

(2012) use, but implementing their strategy on the OMXS30 and modifying it. Our 

approach has been to choose stocks by their change in price, rather than their beta. In 

table 2 below, the results for the investment strategy and the passive market index, the 

OMXS30, are shown. 

 

Table 2: Performance Evaluation 

  AM GM SD DD Min Max Skw Krt 

Strategy 1.199% 0.906% 7.62% 4.69% -19.7% 42.6% 0.551 6.50 

OMXS30 0.976% 0.761% 6.44% 4.11% -16.6% 27.7% -0.009 3.95 

                  

         
  ASD AGM TV TV5 TV10 TV15 RAR1 RAR2 

Strategy 26.4% 11.3% 9 440 kr 1 707 kr 2 913 kr 4 971 kr 0.158 0.193 

OMXS30 22.3% 9.3% 6 502 kr 1 561 kr 2 439 kr 3 809 kr 0.152 0.185 

                  

 

 

During the time frame of investigation our portfolio yields an average monthly return of 

1.1990%, outperforming the market with an average monthly return of 0.9758%. An 

initial investment of 1000 SEK in our portfolio would at the end of the period be 

worth 9440 SEK, while placing 1000 SEK in a fund tracking the OMXS30 would return 

6502 SEK. TV5, TV10 and TV15 show the return for both investments for a period of 

five, ten, and fifteen years, respectively. The strategy yields a higher return than the 

market in all periods. Furthermore, our portfolio has an annualized return of 11.3% and 

a total return of 944%. For the market, the annualized return and the total return 

amounts to 9.3% and 650%, respectively. The investment yields are shown in graph 2 

(see next page). 

 

 

 

 

 

 

 



 

Graph 2: Time Distribution of Compounded Returns on Base Investment 

 
 

Our results show that by choosing the investment strategy we achieve a higher 

maximum monthly return (42.6%) than that of the market (27.7%), at the expense of a 

lower minimum monthly return (-19.7%) than the market (-16.6%). The portfolio has a 

slightly higher volatility than the market, with a monthly SD of 7.61%, versus the market 

SD of 6.43%. The null hypothesis of Hypothesis 1.3.1 is rejected, it is possible to 

construct a strategy based on past price changes to outperform the market over time. 

We find that the strategy is economically significant because our investment constantly 

yields a higher return, but never less, than the market, as well as averaging higher AM, 

GM, and RAR. However, it is not statistically significant with a p-value of 0.167.  

 

4.1.2 Analysis 

Vargas and Estrada (2012) state that for the investment strategy to outperform the 

market, mean reversion must be present. Thus their results imply that the indices do not 

follow a random walk but are mean reverting. We followed this assumption in our thesis 

when formulating our investment strategy. However, reading through articles on the 

subject of mean reversion, we cannot definitely conclude the presence of mean 



 

reversion simply on our findings. First there is the debate over the speed of the 

reversion. Mukherji (2010) finds weak-to-moderate evidence of mean reversion for 

large company stocks over five year periods and moderate-to-strong evidence of mean 

reversion for small company stocks over three to four years. Spierdijk et al. (2012) find 

evidence of mean reversion of stock prices absorbing half of a shock for a minimum time 

period of two years and an average of 18.5 years. DeBondt and Thaler (1985) find mean 

reversion to occur in the second and third year of the test period, with only little mean 

reversion within the first 12 months. Gropp (2004) finds evidence of mean reversion 

absorbing half of a shock after four and one-half to eight years. There is also evidence of 

the level of impact of past returns. The greater the drop the market suffers, the faster the 

speed of reversion (Bali et al. 2008, Spierdijk et al. 2012, DeBondt and Thaler 1985). 

Spierdijk et al.’s results suggest that the speed of reversion back to the fundamental 

value of the stock increases in times of high economic uncertainty, especially after the 

Oil crises of 1973 and 1979, and after Black Monday in October of 1987.  Looking at the 

frequency of Black Swans during our observed time period of January 1992 to December 

2012, the longest absence of abnormal returns is between May 2003 and June 2006 and 

the average and median for the entire period is 2.5 months and 2 months, respectively, 

between two abnormal events. Many Black Swans are only one month apart, at which 

mean reversion would have little to no effect on the outcome, given the estimated speed 

of the reversion. 

Since most research assume mean reversion to be a slow process over multiple years, 

and sometimes even use yearly observations instead of monthly in their data, the 

findings of Mukherji (2010), Spierdijk et al. (2012), DeBondt and Thaler (1985), and 

Balvers et al. (2000) do not seem to help in explaining why our strategy is successful, we 

find little support in these articles. 

 

One of the cornerstones of the efficient market hypothesis is the statement that current 

information based on past and expected future events is reflected in present stock prices 

(Fama, 1995). In combination with the random walk theory, which states that stock 

prices exhibits no pattern from which investors can profit, the conclusion is that a 

strategy which consistently over time outperforms the market is not achievable. This 

leads us to consider behavioral finance. The main statements of behavioral finance 

theory are 1) that traders are not rational, theorists find that “irrationality can have 



 

substantial and long-lived impact on prices”, and 2) that the possibility of arbitrage is 

limited, (Barberis and Thaler, 2002). Hence, contrary to what the efficient market theory 

states, rational investors will not cause the price of a stock to return to its fundamental 

value after being mispriced. These mispricings may be caused by overreactions to 

negative information or by risk aversion. 

 

Bali et al. (2008) find that lowest daily returns increase aggregate risk aversion, which in 

turn causes the market prices to increase as well. 

The aggregate risk aversion is in turn explained by liquidity constraints, short-sale 

constraints, and other types of constraints that kick in for downside returns. These 

constraints have the effect of increasing returns in the next period.  

DeBondt and Thaler (1985) also investigates the behavioral causes for mispricing. They 

claim that investors tend to overreact on large price fluctuations, that they put too much 

weight on recent information and underweight base data or prior information. This 

makes investors overly pessimistic after a period of bad events which results in 

company stocks being undervalued. When the company starts doing well again, the 

overly pessimistic estimates are proven to be wrong and prices adjust. This is also the 

case in the opposite direction after a series of positive events. 

 

Other possible explanations state that after firms in a country suffer large losses, they 

tend to be more highly leveraged. This results in higher betas and higher expected 

returns. A third explanation is that when the firms in a country suffer substantial losses, 

the country index tends to end up with smaller firms. Since smaller firms tend to have a 

higher risk factor, the resulting lower-priced country index is expected to yield higher 

returns. Yet another explanation indicates that low-priced stocks are subject to serious 

microstructure biases which could generate abnormal returns (Balvers et al. 2000).  

 

We do not know if any of these theories give legitimate explanatory power to our results 

and further tests are needed both to conclude if the OMXS30 as well as the stocks it 

contain are mean reverting and if we find any of the above explanations relevant to this 

study. 

We are also reserved over the implications of our findings due to a number of reasons. 

The RAR1 and RAR2 results for the OMXS30 and our strategy, 0.152 (OMXS30) to 0.158 



 

(Strategy) and 0.185 (OMXS30) to 0.193 (Strategy), indicates that there is little 

advantage in return-to-volatility for our strategy over the OMXS30 benchmark, meaning 

the higher returns our strategy yield come at a proportionately higher risk.  As Estrada 

(2008) states, broad diversification reduces the downfall caused by Black Swans. Graph 

2 shows this relation as the investment is more volatile than the market index with 

larger fluctuations but they still follow similar trends. We also observe that our 

investment strategy yields returns similar to a high-beta asset compared to the OMXS30 

passive investment, Graph 3 in the appendix shows this relation in greater detail. 

Although our investment moves within the span of a 1.2-1.4 beta asset, the calculated 

beta for the investment strategy is 1.04. The estimated risk of our investment is thus 

close to that of the market portfolio but the returns on the investment are well above the 

returns of the market. The low-beta value together with the p-value of 0.167 for the 

investment is an indication that although we manage to consistently beat the market 

portfolio during the time of observation, in the long run we expect to perform only 

marginally better than the passive investment. 

 

The method by which we choose which stocks to invest in is also of questionable 

reliability. Estrada and Vargas (2012) use betas estimated on 60 months prior to Black 

Swan events, DeBondt and Thaler (1985) use a mean reversion regression model and 

choose stocks based on residuals statistically different from zero, and Balvers et al. 

(2000) as well as Gropp (2004) use a regression model with a discrete parameter to 

measure the strength of mean reversion in order to select which stocks to invest in. We 

simply rely on the assumption that the stocks that has had the largest change in returns 

in one specific month will have the strongest reversion in the future and that the stocks 

that has had the lowest change in returns will have the weakest reversion in the future. 

This is not a technical or sophisticated method for selecting stocks and we cannot 

exclude luck as a factor in our results, seeing that our compounded investment ends at a 

peak instead of at a period where it almost tangents the OMXS30 passive portfolio.  

 

4.2. Hypothesis II 

The second objective was to evaluate the performance of the standard deviation as a 

measure of risk. This is performed by using the very same approach as Estrada and 

Vargas (2012).  



 

4.2.1 Results 

By constructing three groups based on their underlying stocks SD, calculated from the 

previous 60 months (G1 being the portfolio with the highest SD), and measuring their 

average portfolio returns on the month of the Black Swan, we find that standard 

deviation describes the downside risk well during extreme decreasing markets (p-value 

<0.001), as well as in extreme increasing markets (p-value of 0.008). Portfolio G1 has the 

highest SD when the market experiences extreme market movements and also the 

highest average return. G2 has lower SD than does G1 as well as lower average returns, 

while G3 has the lowest SD during Black Swans, and the lowest average returns. Seeing 

that the amount of volatility (SD) is consistent with the amount of return leads us to 

reject the null hypothesis; standard deviation is a satisfying measure of risk for average 

stock returns in volatile market periods. Table 3 below shows the return and SD of each 

group as well as for the OMXS30. 

 

Table 3: Negative Black Swans 

    OMXS30 G1 G2 G3   

Standard deviation 6,21% 13,18% 9,31% 6,97%   

Return   -9,92% -11,78% -8,61% -4,56%   

              

              

              

Positive Black Swans 

    OMXS30 G1 G2 G3   

Standard deviation 6,41% 13,68% 9,38% 7,04%   

Return   8,69% 13,72% 9,36% 6,45%   

              

 

4.2.2 Analysis 

Standard deviation describes the volatility of the market or a stock by measuring the 

returns. One of the drawbacks of the SD is that it includes both negative and positive 

returns in the calculations. For an investor with a long position, only negative returns 



 

should be of concern when measuring risk. Likewise, an investor with a short position 

faces infinite risk in positive returns. Our results show that standard deviation matches 

risk with return during both negative Black Swans as well as positive Black Swans. 

Consequently, standard deviation captures the relationship between return and risk in 

extreme market movements.  

  

Furthermore, by analyzing the data with the Jarque-Bera test for normality we arrive at 

the conclusion that our data is not normally distributed. For our strategy, a JB statistic of 

446.05 is sufficient to reject the null hypothesis at the 5% significance point, 5.99. The 

returns of the OMXS30 have a JB statistic of 160.14, also a sign of non-normality. Sortino 

et al. (2002) suggest that returns are not normally distributed, because one cannot lose 

more than everything, the distribution of returns does not go to negative infinity and is 

therefore positively skewed. Due to the skewness, the standard deviation may under- or 

overestimate risk (Bodie et al. 2013). Since the skewness is 0.551 for the portfolio (p-

value <0.0006), the standard deviation has overestimated downside risk on our 

investment. The skewness for the OMXS30 is -0.009, but insignificant (p-value <0.9533). 

For estimating the downside risk with better precision and ignoring positive returns, the 

downside deviation, DD, can be used. Downside deviation only considers returns below 

a minimum accepted return, MAR, and substituting standard deviation in the Sharpe 

Ratio with DD will give us the Sortino Ratio, a measurement which is preferable when a 

sample is asymmetric (Chaudry and Johnson, 2008). An investment that generates small 

negative returns is compensated by the Sortino Ratio when the sample is positively 

skewed (Chaudhry and Johnson, 2008). A small DD produces a high Sortino Ratio, 

implying a high return-to-volatility ratio. Setting MAR to zero would allow for only 

negative returns to be considered.  

 

But, as Sortino et al. (2001) recognizes, SD has yet more faults. First off, risk is relative 

and two investments with the same standard deviation but with different means are 

considered equally risky. An investment with a mean closer to zero ought to be 

considered riskier than an investment with a higher mean. In addition, it uses historical 

returns to forecast risk, but historical return is not an assertion of future return. Finally, 

standard deviation, like most other measures, does not include utility preferences, 

thereby ignoring the investor’s level of willingness to risk exposure.   



 

We do, however, agree with Sortino and Forsey (1996) that each measure of risk serves 

a different purpose but none of them captures every aspect of risk; beta measures the 

risk of being in the stock market, downside risk captures the risk of not achieving the 

minimal accepting return, and standard deviation best captures the risk of not achieving 

the mean (Sortino and Forsey, 1996).  

 

The kurtosis is 6.50 for the returns generated by the investment strategy and 3.95 for 

the OMXS30, indicating that both distributions have fat tails. This is expected since a fat-

tailed distribution is the consequence of extreme values, and in this work we are 

exploiting extreme market movements. Kurtosis in the sample proves the existence of 

abnormal returns, i.e. Black Swans, and is not captured by the standard deviation. 

 

 

 

 

 

 

 

 

 

 

 



 

5. Conclusion 

The purpose of this thesis is to evaluate the performance of an investment strategy, with 

the aim of outperforming the market. In their article, Estrada and Vargas (2012) find 

that by using an investment strategy which focuses on investing in high-beta indices 

(both countries and industries) when the market has plummeted and low-beta indices 

when the market has risen, the strategy outperforms a passive benchmark index. 

Instead of using beta as a tool for selecting the stocks in our portfolio we are using 

prices. In this thesis we learn that implementing Estrada and Vargas (2012) strategy on 

the Stockholm Stock Exchange with our modification, is as successful. Our results show 

that by investing in a portfolio constituted of ten stocks from the OMXS30 which have 

decreased the most (changed the least) in price during a negative (positive) Black Swan, 

we can outperform the OMXS30, our benchmark index. 

The 944% return of the portfolio is greater than the return of the OMXS30 during the 

same period, 650%. The difference in return between both investments is economically 

significant but not statistically significant, (p-value <0.167). A result which leads us to 

conclude that the utilization of the investment strategy tested is successful to use when 

aiming to achieve a higher return than that of the market. 

We also evaluate the standard deviation’s performance as a measurement of risk, the 

same way Estrada and Vargas evaluate beta. Three groups are arranged by the 

underlying stocks SD calculated for a period of up to 60 months prior to every Black 

Swan event. We then calculate the returns for each group for all negative Black Swans 

and the returns for each group for all positive Black Swans. The results show that 

investments with a higher standard deviation has larger declines during negative Black 

Swans and yield higher returns during positive Black Swans, thus matching the ranking 

by SD with the expected ranking of returns. However, when ranking all individual stocks 

by SD and looking at the individual returns after Black Swan events, the results yield 

inconsistent rankings. We thereby conclude that the standard deviation is a satisfying 

measurement of risk in extreme market periods. In our analysis we point out that 

standard deviation, although the perhaps most widely used measure of risk, has its 

drawbacks.  



 

6. Suggestions for Further Research 

We do not draw any firm conclusion about the existence of mean reversion in the data 

or of any of the possible explanations mentioned in the analysis section. We therefore 

suggest further research in the OMXS30 using the rolling regression model of Balvers et 

al. (2000) in order to gain as much information as possible about the speed of reversion, 

if it is present, in the market, and implement this information in the investment strategy 

to see if one can beat the OMXS30 index with statistical significance. We also suggest 

further research in all of the possible explanations etc.  
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8. Appendix 

8.1 Detailed Summary about the Distributions 

 

8.2 Jarque-Bera Significance Points 

Significance Points (Bera and Jarque, 1981) 

Sample size n 10% point 5% point Sample size n 10% point 5% point 

20 2.13 3.26 200 3.48 4.43 

30 2.49 3.71 250 3.54 4.51 

40 2.7 3.99 300 3.68 4.6 

50 2.9 4.26 400 3.76 4.74 

75 3.09 4.27 500 3.91 4.82 

100 3.14 4.29 800 4.32 5.46 

125 3.31 4.34 ∞  4.61 5.99 

150 3.43 4.39       



 

8.3 Test for Skewness and Kurtosis 

 

8.4 t-test for Hypothesis I 

 

 

 

 

 

 

 

 

 

 

 

 



 

8.5 Graph 3: β-assets, Strategy, and OMXS30; Compounded  

 

 

 

 


