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ABSTRACT 

Early Diagnosis of Epithelial Ovarian Cancer - Analysis of Novel Biomarkers 

Björg Kristjánsdóttir 

Department of Obstetrics & Gynecology, Institute of Clinical Sciences                                                            

at Sahlgrenska Academy, University of Gothenburg, Sweden 

Background: Majority of epithelial ovarian cancer (EOC) is detected in 

advanced stage with bad prognosis and high mortality. Reliable diagnostic 

markers are lacking, pre-cancerous lesions in the more aggressive tumors are not 

clearly defined, vague or unspecific early symptoms, and the localization of the 

ovaries, deep in the pelvis contributes to late diagnose. Heterogeneity, not only 

different type of histology, but also different intrinsic biology and behavior 

characterizes ovarian cancer. Invasive surgery with histological examination is 

needed to confirm the diagnosis. Less than 25% EOC are diagnosed early, when 

there is great possibility to cure and 5-year survival >90%, in contrast to 20-30% 

5-year survival in late stage EOC. Thus, early detection is of utmost importance. 

Proximal fluids, like ovarian cyst fluid, are promising in the search for early 

markers. Cancer antigen 125 (CA125), the most used biomarker since 30 years, 

and a promising marker human epididymis 4 (HE4) have recently been 

approved by FDA to be used in the prediction of malignancy in women with a 

pelvic mass.  

Aims: To explore ovarian cyst fluid as a source mining for new diagnostic 

biomarkers for EOC, and to validate the markers found together with CA125 

(Paper I-III); and to evaluate the diagnostic performance of HE4 and CA125, to 

distinguish between benign cysts and EOC, and EOC divided into slow growing 

type I and the aggressive type II EOC (Paper IV-V).  

Method: Cross sectional, observational, explorative, and diagnostic clinical 

studies, with prospective and consecutive collection of cystic fluid, blood and 

tumor tissue at the time of operation and retrospective analysis. Women with 

suspicious malignant pelvic cysts, already scheduled for operation at our clinic 

for tumor surgery were included. High throughput proteomic analyses were used 

for searching for novel markers, and selected proteins were validated with 

ELISA or immunoblot. Paper I: The cyst fluid proteome was mined with 

surface-enhanced laser desorption/ionization time of flight (SELDI-TOF) mass 

spectrometry (MS) (n=192).  Paper II: Enrichment of a selection of known 

cancer antigens to overcome high abundant proteins, and with focus on 

inflammation, was followed by Immunoprecipitation MS (n=38). Significantly 
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differently expressed chemokines were validated (n=256). Paper III: Serous 

cystadenoma (n=5) and serous adenocarcinoma (n=10) of different stages were 

analyzed with isobaric tag for relative and absolute quantification (iTRAQ), 

followed by immunoblot validation (n=68). Paper IV-V: HE4 and CA125 levels 

in plasma were analyzed with ELISA and Risk of Ovarian Malignancy 

Algorithm (ROMA) was calculated (n=393). Significant differences, receiver 

operator characteristics (ROC) area under the curve (AUC), cut-off levels, 

sensitivity and specificity were estimated with regard to malignancy, grade, 

stage histologic subtype and type I and Type II.                                                                                                                                       

Results: Paper I: Combination of Apolipoprotein CIII and Protein C inhibitor 

had the best AUC (0.91) in cyst fluid, and improved by CA125 (0.94). Abundant 

proteins were a problem in the cyst fluid analyses. Paper II: Interleukin-8 and 

Chemoattractant Protein-I were highly significantly increased expressed in cyst 

fluid. Increased inflammatory response was present in early tumor development 

and earlier than in blood. Paper III: Two of 87 differentially expressed proteins 

in cyst fluid, with high significance and fold change, Serum Amyloid A-4 

(SAA4) and astacin-like metalloendopeptidase (ASTL) were validated, and 

SAA4 was significantly increased in cyst fluid, but not in blood. Paper IV: HE4 

complemented CA125 in the diagnosis of ovarian cysts, especially in the 

premenopausal women. Sensitivity for ROMA at set specificity of 75% was 

highest in the postmenopausal cohort (87%). Paper V: HE4 and CA125 

diagnosed the aggressive type II EOC most correctly (AUC 0.93), but the results 

were not acceptable in early stage type II (AUC 0.85) or in type I EOC (AUC 

0.79) respective early type I AUC 0.73). 

Conclusion: Ovarian cyst fluid is an excellent source for the search of novel 

biomarkers for early diagnosis of EOC. Early events are found near the tumor in 

the early phase, like the inflammatory response and later on in the peripheral 

circulation. HE4 complements CA125 in predicting malignancy in cystic 

ovarian tumors. The result from this thesis support, that EOC should be looked 

upon as several different diseases. Finding early markers that are specific for 

each histology subgroup will be the future challenge. Combination of such 

markers in a panel could improve the early diagnosis of EOC.  

Keywords: EOC; ovarian adenocarcinoma; ovarian cyst fluid; pelvic mass; 

tumor biomarker; mass spectrometry; SELDI-TOF MS; iTRAQ;   
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INTRODUCTION 

 

HISTORICAL PERSPECTIVES 

About 400 BC the Greek physician Hippocrates, introduced the term carcinoma 

from the Greek word karcinos, he described cancer as crablike in its spread 

through the body and in its persistence. About AD 200 the Greco-Roman 

physician Galen of Pergamum attributed the development of cancer to 

inflammation, but it was not until the end of the 18
th

 century systematic studies 

of cancer started. A report in the year 1745, suggested that hereditary factors are 

involved in the causation of cancer, and 1761, the English physician John Hill, 

was the first to point out that substances found in the environment are related to 

cancer development, in the relationship between tobacco snuff and nasal cancer 

[1].  

In the early 19
th

 century the German physiologist Johannes Peter Müller (1801–

58) and the pathologist Rudolf Virchow (1821–1902) could with the help form 

the microscope show that cancerous tissue was made up of cells [1], and 1863 

Rudolf Virchow realized that inflammation is an important factor in initiation of 

cancer, he noted leucocytes in neoplastic tissues and made a connection between 

inflammation and cancer [2]. 

The knowledge about cancer genesis has culminated since 1960. Cancer is a 

disease in which normal cells change to dysplastic cells, that grow 

uncontrollably, and form a mass of cells called a tumor. Cells become cancer 

cells because of damage to DNA. In 1988, Professor Vogelstein at John Hopkins 

University in USA, a pioneer within genetics, proposed that “cancer is caused by 

sequential mutations of specific oncogenes and suppressor genes” [3]. People 

can inherit damaged DNA, but most DNA damage is caused by mistakes that 

happen while the normal cell is reproducing or by some factors in the 
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environment [4]. Complicated networks are interacting in cancer, including the 

genome, transcriptome, proteome, metabolome and inflammation.  

The discovery of one of the oldest biomarkers carbohydrate antigen 125, or 

cancer antigen (CA125) was made 1981by Robert C Bast, JR and his colleagues 

at MD Anderson Cancer Center in Texas USA, by using an antibody that 

recognizes CA125 in ovarian cancer [5]. A huge number of novel biomarkers 

have been presented as promising in the diagnosis of ovarian cancer, but CA125 

is still in the top and the currently most used in clinical practice.   

 

EPITHELIAL OVARIAN ADENOCARCINOMA 

Epithelial ovarian adenocarcinoma (EOC) is the most deadly of the gynecologic 

tumors. Although there have been advances in surgery and chemotherapy, the 

survival rate for this disease remains low [6]. The majority of cases diagnosed 

with EOC have already spread to the upper abdomen with omental cake and 

peritoneal metastasis. Noninvasive diagnostic procedures are lacking, therefore 

invasive surgery is needed followed by pathologic anatomic diagnosis (PAD) to 

confirm the definite diagnosis. The principle cause of the poor survival rate for 

the patients is diagnosis at a late stage, when a radical surgery is not possible or 

unsuccessful [7]. If diagnosed in stage I, when the cancer is confined to the 

ovaries, the 5-year survival is over 90% after optimal surgery, this in contrast to 

less than 30% when the cancer had spread to the abdomen or outside the 

abdomen (stage III or IV). Unfortunately less than 25% of cases are diagnosed 

early, and as a consequence the overall 5-year survival in EOC is less than 50%. 

Early diagnosis means possibility to cure with surgery and continuous life 

without sequel from expensive cytotoxic drugs and extensive operations [8, 9]. 

Correctly diagnosed EOC followed by treatment at the right level of care will 

improve the survival of women and decrease the number of unnecessary 
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extensive operations in the benign cases, which leads to improved quality of life 

for all women with ovarian tumors [10]. 

 

BIOLOGY 

During embryonic development, the mesoderm build up normal ovary and the 

urinary tract, and the Müllerian duct forms the fallopian tubes, uterus, cervix and 

two thirds of the proximal vagina. Three major cell types build up the ovary, 

germ cells, sexcord-stroma cells and epithelial cells. About three % of malignant 

tumors develops from germ cells derived from the endoderm and differentiate 

into oocytes; seven % arise from sexcord-stroma cells with endocrine and 

interstitial cells that produce estrogen and progesterone; and approximately 90% 

of primary ovarian cancer is classified as epithelial. Germ cells tumors include 

dysgerminoma, yolk sac tumor, embryonal carcinoma, choriocarcinoma and 

teratoma. Sex cord-stomal tumors consist of granulose and theca cells-, stromal 

fibroblasts- and steroid cells tumors. Germ cells tumors are diagnosed more 

often in the first two decades of life, whereas sex cord/stromal tumors are more 

common in adult women [11]. Until recently, EOC has been considered to arise 

from the monolayer of epithelial cells covering the ovarian surface (OSE), 

invaginations and subserosal ovarian cysts [12-15]. Now there is growing 

evidence that EOC may also arise from Müllerian derivatives including the 

distal fallopian tube and the uterus, and the peritoneal tumors of ovarian type are 

classified as ovarian primaries [16-18]. 

 

EPIDEMIOLOGY 

The incidence of EOC varies around the world, is highest in Northern, Central 

and Eastern Europe, followed by Western Europe and Northern America, and 
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lowest in Africa and parts of Asia [19]. About 10-15 % of cases have hereditary 

susceptibility and the vast majority due to BRCA1 and BRCA2 germline 

mutations, and the rest are supposed to be sporadic [20, 21]. Ovarian cancer 

accounts for about three percent of all cancer cases in women and is the fifth 

leading cause of cancer death in women, with nearly 225 000 new cases and 140 

200 deaths worldwide in 2008 [6].  

 

 

Figure 1. Incidence for ovarian cancer. Number of cases per 100 000 women each year, 

1970- 2007, National Board of Health and Welfare Sweden.  

 

The incidence of EOC increases with age and peaks at a rate of 61.5 per 100 000 

women aged 75 to 79 years. The overall risk of a primary ovarian neoplasm 

being malignant increases from 13% in premenopausal women to 45 % 

following menopause [22]. The median age of diagnosis is 63 years of age. 

Lifetime risk of getting ovarian cancer is 1 in 72 and the risk to die in the 

disease is 1 in 95. Women with BRCA1 mutation have estimated live-time risk 

of 40-50% of getting EOC at a mean age of 50-55 years, and if BRCA2 positive 
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the risk is 10-20% at a mean age of 55-65 [20]. The age-standardized incidence 

rate has decreased about two percent each year under the last 20 years [23] 

(Figure 1).  

In Sweden 835 new cases were diagnosed in the year 2001, when we started 

collecting our samples, compared to 758 and 676 new cases 2010 respective 

2011. In the Vest region of Sweden there were 147 compared to 108 new cases 

respective years. The mortality is still high and 645 respective 563 women died 

from the disease 2010 and 2011 in our country. The estimated world age-

standardized incidence rate (ASR) for the more developed countries was nine 

per 100,000 and five per 100,000 women for the less developed countries in 

2008 [6].The widespread use of oral contraceptives [24], and the high number 

operations done on benign ovarian tumors diagnosed with vaginal ultrasound, 

and hysterectomies for benign indication as well, may contribute to the decrease 

of new cases in the more educated countries. However, early childbearing, 

multiparty and long-lasting breastfeeding periods, common in developing 

countries may prevent women from EOC [25-27].  

 

HISTOLOGY - GRADE  

Ovarian tumors of epithelial origin are heterogeneous group of neoplasm [28]. 

According to the World Health Organization (WHO), EOC is classified due to 

cell type into the four major histotypes, serous, endometrioid, mucinous and 

clear cell, and the more uncommon transitional cell, squamous cancer and 

undifferentiated tumors. The malignant tumors are further divided into three 

grades (G1-3) well (G1), moderately (G2) and poorly differentiated (G3) 

according to the architectural features, set up by the International Federation of 

Gynecology and Obstetrics (FIGO) [29]. However, based on histopathology, 

immunohistochemistry and molecular genetic alterations, EOC is at least five 
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diseases, the most common high-grade serous (70%), the more uncommon low-

grade serous (<5%), endometrioid (10%), clear cells (10%) and mucinous 

carcinomas (3%) [28]. In Sweden about 10-20% of all epithelial malignant 

tumors are classified as borderline, with serous (55%) and mucinous (40%) as 

the most common histology. Borderline tumors are more often seen in women of 

younger age, with 55 years as a median comparing to 63 years in invasive EOC 

[30]. Borderline tumors have higher epithelial proliferation and nuclear atypia 

than the benign tumors. However, in contrast to carcinomas, borderline tumors 

does not have any stromal invasion and are more like a pre-stage of EOC [31]. 

The macroscopic as well as ultrasound features of borderline tumors overlap 

with both the benign and invasive tumors and these tumors can evolve to cancer 

[32, 33]. Regular follow-up is essential for early detection of recurrence or 

development of invasive disease if ovarian sparing operation has been 

performed [34]. 

 

STAGING 

 Cancer staging is a description of the extent of the cancer. Cancer stages are 

defined by the growth of the primary tumor and its spread to other parts of the 

body. Clinical staging is based on tests done before surgery and pathologic 

staging on tests of tissue removed during the staging operation. An appropriate 

systematic surgical staging performed at the initial surgery is of great 

importance to find out how widespread the cancer is for planning further 

therapy. Microscopic examination, with assessment of specific histology type, 

grade and extent of disease is critical for predicting tumor behavior and for 

deciding the best therapeutic approach [35]. EOC is staged I-IV according to 

FIGO (Figure 2, Box 1). EOC confined to one or both ovaries is classified as 

stage I, spread to the uterus or other nearby organs in pelvis stage II, spread to 

the lymph nodes or abdominal lining is stage III, and spread to distant organs 
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such as the lung or liver is classified as stage IV EOC. Liver capsule metastasis 

is stage III, metastasis of liver parenchyma stage IV, and pleural effusion must 

have positive cytology to be classified as stage IV [29].  

 

 

 

Figure 2. Staging of ovarian cancer according to FIGO (with permission from Terese Winslow)  

 

Ovarian cancer spreads by direct contact with other tissues in the pelvis, by 

exfoliated tumor cells transported through the fluid in the abdominal cavity and 

© date, Terese Winslow, U.S. Govt. has certain rights

Stage IIIA Ovarian Cancer Stage IIIB Ovarian Cancer Stage IIIC Ovarian Cancer
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pleura, by invading lymph channels to spread through lymph nodes, and more 

seldom through the blood vessels to give metastases in other organs [36].     

 

 Box 1. Staging of EOC according to FIGO. 

 

 

 

The biological behavior of EOC is unique in its early dissemination of detached 

cancer cells that are transported physically by peritoneal fluid. The tumor 

implants invade the mesothelial cell layers lining the abdominal cavity, and at 

the surface of bowel, liver and other organs in the abdomen, but interestingly 

rarely invade deep into the peritoneum [37].   

 

 

 

STAGING OFOVARIAN CANCER

Stage I — limited to one or both ovaries

IA involves one ovary; capsule intact; no tumor on ovarian surface;

no malignant cells in ascites or peritoneal washings

IB involves both ovaries; capsule intact; no tumor on ovarian surface; 

negative washings

IC tumor limited to ovaries with any of the following: 

capsule ruptured, tumor on ovarian surface, positive washings

Stage II — pelvic extension or implants

IIA extension or implants onto uterus or fallopian tube; negative washings

IIB extension or implants onto other pelvic structures; negative washings

IIC pelvic extension or implants with positive peritoneal washings

Stage III — peritoneal implants outside of the pelvis; 

or limited to the pelvis with extension to the small bowel or omentum

IIIA microscopic peritoneal metastases beyond pelvis

IIIB macroscopic peritoneal metastases beyond pelvis less than 2 cm in size

IIIC peritoneal metastases beyond pelvis > 2 cm or lymph node metastases

Stage IV — distant metastases to the liver or outside the peritoneal cavity
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ETIOLOGY 

  

The etiology of EOC is complex and not clearly defined. The genome encodes 

proteins that control the function, growth, and division of cells. DNA damage 

and mechanisms to repair exist in order to decrease the likelihood of genetic 

mutation and cell transformation. In addition, the immune system is designed to 

recognize early changes in carcinogenesis and destroy cancerous cells to keep 

the balance in cell proliferation and cell death. Accumulation of disruptions in 

these homeostatic control mechanisms can lead to uncontrolled proliferation and 

cancer [4]. The six hallmarks of cancer introduced by Hanahan et al. include 

sustaining proliferative signaling, evading growth suppressors, resisting cell 

death, unlimited replication capability, inducing angiogenesis, and activating 

invasion and metastasis [38]. Cancer related inflammation is postulated to be the 

seventh hallmark, with smoldering inflammation in the tumor environment, that 

promotes genetic instability and accumulation of genetically altered cancer cells 

[39]. The interplay between milieu and genes is a fundamental mechanism in 

cancer, with epigenetic events like DNA methylation and histone modification 

as a link [40]. Ovarian carcinogenesis, as in most cancers, involves multiple 

genetic alterations and molecular changes, with important key pathways related 

to chronic inflammation. The crosstalk and signaling interactions between 

cancer cells and their supporting stroma evolves during the tumor development 

[26, 41, 42].  

 

INFLAMMATION AND EPITHELIAL OVARIAN CANCER 

Chronic inflammation underlies the progression of ovarian cancer [25, 39]. 

Pathways that link inflammation and cancer have been identified, an intrinsic 

pathway driven by genetic events (RAS, MYS, and TP53 mutations) and an 
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extrinsic inflammatory driven pathway. The mitochondria, the organelle that 

supply energy to the cells,  have an important role in coordinating life and death 

signaling in the convergence of these pathways, promoting inflammation by 

producing free radicals and activating transcriptions factors, such as nuclear 

factor kappa B (NFκB), signal transducer and activator of transcription 3 

(STAT3) and hypoxia-inducible factor (HIF) to orchestrate the production of 

inflammatory mediators and generate cancer related inflammation [43]. 

Inflammatory responses, with communication between stromal 

microenvironment and the epithelial compartment, play a role at all stages of 

cancer development, including initiation by generating genotoxic stress, 

promotion by inducing cellular proliferation, malignant conversion, and 

metastasis by enhancing angiogenesis and invasion [44-46]. The immune system 

has a dual function which is called cancer immunoediting; both protecting the 

host against tumor development and as well as promoting the tumor to grow 

[47]. The response from the body to cancer is not an unique mechanism, actually 

there are many parallels with inflammation and wound healing, “a wound that 

does not heal “ [2]. Use of anti-inflammatory drugs like aspirin has been related 

to reduction in the long-term risk of several cancers and the risk of distant 

metastasis, which further supports the relation between inflammation and cancer 

[48]. Key features of cancer-related inflammation include leukocyte infiltration, 

prominent tumor associated macrophages (TAMs), vascular endothelial growth 

factor (VEGF), cyclooxygenase-2 (COX2), cytokines (small cell signalling 

molecules) such as tumour necrosis factor alpha (TNFα), transforming growth 

factor beta (TGFβ), interleukin-1 (IL-1), IL-6 (CXCL6) and chemokines 

(chemotactic cytokines) like IL-8 (CXCL8), growth regulated alpha protein 

(GROα; CXCL1) and Monocyte chemoattractant protein-1 (MCP-1; CCL2). 

MCP-1 attract TAMs, which are the major players in the cancer related 

inflammation, and enhances angiogenesis and tissue remodelling [49]. The 

interaction of the cytokines is strongly regulated with positive and negative 
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feedback aiming to maintain balance in the immune control. Ability of 

malignant cells to interact with and influence their environment is critical for the 

development of cancer, and chronic inflammation coordinate a cancer 

supporting microenvironment [50, 51].  

Incessant ovulation and the gonadotropin theory, with exposure to follicle 

stimulating hormone (FSH) and luteinizing hormone (LH), have been 

considered to play a major role in ovarian cancer development [25, 52]. 

Ovulation is an inflammatory process which involves repeated minor trauma of 

the ovarian surface and exposure to estrogen rich follicular fluid, cytokine 

release, influx of inflammatory cells to the ovarian stroma [53]. Every month the 

epithelial cells are affected by increased oxidative stress, production of reactive 

oxygen and nitrogen species (ROS and RNS), cell damage, elevations of 

cytokines, proteases and prostaglandins, and the subsequent repair mechanisms 

with epithelial to mesencymal transition (EMT) that place the cells at increased 

risk of developing mutations, and this repeated activity may initiate oncogenesis 

by causing DNA damage in adjacent cells [50, 54]. Even the fimbria of the  

fallopian tube is exposed to iron induced oxidative stress, by floating in the 

bloody peritoneal fluid, derived from retrograde menstruation [42]. Many of the 

inflammatory cytokines and chemokines activated during ovulation have been 

found to exhibit overlap with that described in EOC [55-57]. The TGFβ- family 

of multifunctional cytokines acts as tumor suppressors by inhibition of cell 

proliferation in normal tissue and in early tumorigenesis, but during oncogenesis 

switches its role to promote progression by interfering with EMT [54, 58]. IL-8 

and anti-IL-8 antibody are present in serum from EOC patients [59], and 

increased secretion of VEGF, IL-6, GROα and IL-8 promoting cancer growth 

have been noted in the oncogenic RAS-signaling, present in one third of human 

cancers [60]. IL-6 is a growth promoting and anti-apoptotic factor, found with 

high plasma levels in advanced stage EOCs and is known to correlate with poor 

prognosis [61]. The epidermal growth factor receptor (EGFR; HER1), a member 
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of erythroblastic leukemia viral oncogene family (ERBB-family), (HER 1-4) of 

receptor tyrosine kinase, have a key role in the development of a normal follicle 

[62], and is also involved in activation of multiple signaling cascades, that cause 

growth and invasion of tumor cells, and has been related to poor outcome, 

among other factors via increased co-expression of IL-6 and plasminogen 

activator inhibitor-1(PAI-1) [63]. 

Age is in general a risk factor for cancer, with changes in redox status and 

oxidative stress induced inflammatory reactions that lead to overall deregulation 

or acquired dysfunctional immunity, called immunosenescence [64, 65]. A 

typical feature of aging is a chronic, low-grade inflammatory status, an 

inflammatory aging with changes in the cytokine profile towards a pro-

inflammatory condition, with increase of some chemokines; RANTES (CCL5), 

macrophage inflammatory protein 1 (MIP-1; CCL-3), IL-8, and MCP-1. GROα 

has been evaluated in this process and is supposed to be a cellular signal 

activated by extracellular oncogenic signals in aged epithelial cells, and may be 

a novel diagnostic marker for age-related pathology, including cancer [66]. 

Endometriosis and pelvic inflammatory disease are related to both acute and 

chronic inflammation [26, 67]. Obesity is as well associated with a chronic state 

of low-grade inflammation [68]. Increased concentrations of fatty acids, 

inflammatory cytokines and an influx of immune cells together with adipokines 

(cytokines secreted by adipocytes, which are regulators of metabolism and 

immunity, produced by the white adipose tissue contributes to the local 

inflammatory milieu in adipose tissue [69, 70]. The coagulation pathway is 

involved in cancer related inflammation, with IL-8 as the linking point. 

Coagulations factors promote not only formation of blood clots but also tumor 

cell proliferation, angiogenesis, invasion and metastasis [71]. Fibrin formation 

can be inhibited by membrane associated endothelial protein C receptor (EPCR) 

via activated protein C (APC) in ascites and promote fluid expansion. In blood 
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soluble EPCR can cause a hyper-coagulation state associated with malignancy 

[72]. 

 

ORIGIN AND PATHOGENESIS  

There is uncertainty surrounding the site of origin of EOC. Surface epithelium 

of the ovary (OSE), epithelial invaginations, inclusion cysts inside the ovaries, 

and dysplastic lesions from the fallopian tube and the uterus has been suggested 

to be the origin of EOC [13, 15, 31]. Auersperg state that both ovarian 

epithelium and the oviduct originate in the embryonic pleuripotential 

mesothelial coelomic epithelium and are therefore able to produce similar 

tumors [14]. Dysplasia of OSE differentiates into epithelia resembling Müllerian 

duct derivates, serous tumors will be like the fallopian tube epithelium, 

endometrioid tumors similar to endometrium in the uterus, and mucinous tumors 

like epithelium of endocervix [12, 13]. Homebox (HOX) genes are strongly 

expressed in ovarian cancer, and not in normal epithelium. These genes contain 

transcription factors that determine cellular identity, and play a key role in the 

embryonic development, were the HOXA9 becomes expressed in the fallopian 

tubes, HOXA10 in the developing uterus, HOXA11 in the lower uterine segment 

and cervix and HOXA13 in the upper vagina. It is thought that appropriate 

expression of these genes is an early step in neoplasia of the ovarian epithelium, 

as they induce aberrant epithelial differentiation [73]. 

During the past 10 years more evidence has led to a paradigm shift in the 

process of etiology and pathogenesis in the framework of different origins that 

may develop after distinct pathways, from the ovary, tube, peritoneum and 

endometrium [31]. Immunohistochemical, morphologic and molecular genetic 

analysis proposes that EOC is more like metastases [16, 17, 74-80]. Serous 

fallopian tube carcinoma was found more often in women harboring BRCA1 
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and BRCA2 mutation than in sporadic cases [81]. A suggested candidate 

precursor lesion for EOC, called serous tubal intra epithelial carcinoma (STIC), 

is present in the non-ciliated epithelium of the distal fimbria of the fallopian 

tube. STIC is then supposed to implant onto the ovarian and /or peritoneal 

surfaces [79, 82], and after an occult period will develop into fast growing high-

grade serous cancer. P53 signature, an early alteration in p53 function, is 

proposed to occur before STIC [16, 83-85]. Different gene alterations have been 

discovered in the oviduct, as secretory cell outgrowths (SCOUT), increased in 

frequency as a function of older age and serous cancer [86]. The p53 signature 

and its malignant counterpart STIC have proposed the link between the fallopian 

tube, peritoneal and ovarian serous carcinomas. Supporting this theory is that the 

pared box gene 8 (PAX8), a marker of Müllerian-type epithelium was found 

expressed in high-grade serous cancer, but not in OSE, whereas calretinin, a 

marker of mesothelioma and OSE was not detected in EOC or in the tube [18]. 

Complexity of regulation on a genomic level with DNA repair mechanisms, as 

well as NOTCH pathways (an evolutionarily conserved pathway  that regulates 

cell-fate determination during development and maintains adult tissue 

homeostasis) and the regulatory network of the transcription factor FOXM1 

(forkhead box protein M1) - signaling are involved in the high-grade serous 

cancers [87]. 

The low-grade serous cancers are distinct tumors that might develop from more 

clearly defined lesions, such as cystadenom, adenofibroma and borderline 

tumors, in more indolent stepwise manner [4, 13, 18]. These tumors evolve from 

OSE, invaginations and inclusion cyst inside the ovaries via alteration in the 

RAS-RAF signaling pathway, which is responsible for normal cell growth, 

differentiation and survival, due to mutation in KRAS (GTPases, molecular 

switches for a variety of cellular signaling events) and BRAF (a kinase cascade, 

that send a signal from the surface of the cell to the DNA in the nucleus) [13]. 
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The recent literature suggests that ovarian low-grade serous tumors and their 

non-invasive implants, ovarian epithelial inclusion glands and endosalpingiosis 

(fallopian tube-like epithelium is found outside of the fallopian tube) might arise 

from the fallopian tube rather than through Müllerian metaplasia of the OSE 

[88]. Low-grade endometrioid and clear cell cancer may arise from 

endometriosis via retrograde menstruation, with multi-factorial etiology 

including genetic, hormonal and immunological factors [18, 89, 90]. AT-rich 

interactive domain-containing protein 1 A (ARID1A), tumor- suppressor gene 

mutation frequently found in these lesions can be an early event in the 

transformation into cancer [91]. Mutation of the catenin-interacting protein 1 

(CTNNB1) the gene that encodes β-catenin (regulating cell-cell adhesion and 

gene transcription), and phosphatase and tensin homolog (PTEN) a tumor 

suppressor gene (involved in the regulation of the cell cycle, preventing cells 

from growing and dividing too rapidly) are found primarily in low-grade 

endometrioid, whereas phosphatidylinositol 3-kinase (PIKC3CA) oncogene 

mutations characterize clear cell cancer [92]. Approximately 80% of all 

mucinous tumors are benign, and most of the remainder borderline. Mucinous 

tumors harbor high frequency of KRAS mutations; these tumors often show 

gastrointestinal differentiation and have also been related to the endocervix. 

Mucinous- and transitional cells tumors (Brenner) were recently reported to 

develop from transitional epithelial cells located near the tubo-peritoneal 

junction [93]. However, the majority of invasive mucinous tumors are 

metastases to the ovary, often from the gastrointestinal tract including colon, 

appendix or stomach, if appropriate examined only 3-4% are left as ovarian 

carcinomas [28].   
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DUALISTIC MODEL - TYPE I AND TYPE II  

Kurman et al. proposed  a novel tumor origination and progression model, based 

on morphological and molecular genetics, dividing EOC into type I and type II 

tumors [18, 31, 75, 94, 95]. This simplistic approach indicates that the two 

tumor types develop via two different pathways, slow-growing type I and rapid-

growing highly aggressive type II tumors (Table 1). Low-grade serous, low-

grade endometrioid, all clear cell, mucinous, and transitional (Brenner) 

carcinomas are classified as type I, were each histological type has a distinct 

molecular profile. Type II tumors are the most common, and include high-grade 

serous, high-grade endometrioid, undifferentiated carcinoma and malignant 

mixed mesodermal tumors or carcinosarcomas [18].  

 

Table 1. Pathogenesis of slow-growing Type I and aggressive Type II EOC. 

 LGSC, low-grade serous carcinoma; HGSC, high-grade serous carcinoma; G-I,   
gastro-intestinal; STIC, serous tubal intraepithelial carcinoma 

 

 

Low-grade type I carcinomas exhibit low-grade nuclei with infrequent mitotic 

figures. They evolve in a slow stepwise process from defined benign or 

borderline lesions to invasive cancer. These tumors harbor frequent somatic 

EOC % Precursor lesion Gene mutation Genom Tempo 

Type I 25 Ovary; Cystadenoma →  →
→ → Borderline  →  LGSC

Tube;      Endosalpingiosis →  LGSC
Uterus;   Endometriosis →→ Clear Cell       
and  LG-Endometrioid
Cervix, G-I, Ovary, Tube;     →   

→  Borderline →  Mucinous

KRAS, BRAF,
ERBB2,  

PIKC3CA, PTEN, ARIDA1A 
β-catenin, PTEN, ARID1A

KRAS

Stable
Slow 
Step-
wise

Type II 75 Tubal fimbria/ovarium; 
STIC →HGSC 
? →  HG-Endometrioid

TP53, 
BRCA1-2
TP53

Chaotic Fast
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mutations, encoding mismatch repair proteins and signaling proteins governing 

cell proliferation, such as BRAF, KRAS, β-catenin, PTEN or ERBB2 (HER2) 

genes, but lack  TP53 mutations [96].  

Type I tumors are in general larger, in earlier stages and in younger women 

when diagnosed compared to type II EOC, and consequently type I EOC have a 

better prognosis [97, 98]. Type II tumors are more aggressive and genetically 

highly instable with frequent mitotic high grade nucleus, with increased 

expression of Ki-67 (a cellular marker of proliferation), and estrogen receptor 

(ER) is expressed in circa 75%. Majority of the tumors have TP53 mutation, and 

almost half of the cases have mutation or dysfunction of BRCA1/2 (10-20% have 

mutation of BRCA1/2 and 10-40% hypermetylation or dysfunction of BRCA1) 

[87]. These aggressive tumors account for 75% of all EOC, and are responsible 

for 90% of death in the disease [99]. 

 

RISK FACTORS 

Multiple endogenous and exogenous risk factors have been shown to influence 

ovarian cancer development [26]. Advancing age is one of the major risk factors 

and accumulated genetic damage is likely involved [100]. Cellular senescence 

(CS) could have a role in aging and age-related diseases [64]. Hereditary factors 

are involved in about 10-15% of cases, with history of earlier breast cancer, 

hereditary breast and ovarian cancer (HBOC), resulting from a BRCA1 or 

BRCA2 gene mutation and hereditary nonpolyposis colorectal cancer (HNPCC) 

gene, or TP53 mutation. Carriers of BCRA1or BRCA2 mutation have increased 

lifetime risk of ovarian cancer up to 50-60% respective 25%, and are estimated 

to cause 65-85% of all heredity cases [101, 102]. HNPCC or germline mismatch 

repair (MMR) gene mutations (MLH1, MLH2, MSH6) linked to Lynch 

syndrome accounts for 10-15% of heredity cases and have an increased lifetime 
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risk of  8% for EOC, and highest for those with MLH2, MSH6 mutation. These 

women tend to be at younger age and with non-serous tumor presenting in an 

early stage [102]. “Incessant ovulation theory”, introduced by Fathalla 1971, 

more ovulations over a lifetime increases the risk of getting EOC by creating an 

unfavorable micro-environment. Poor reproductive history with long duration, 

low parity, early menarche, late menopause, and infertility, has been associated 

to increased risk of EOC [25-27, 103]. Endometriosis defined as endometrial 

implants outside the uterus, transported via retrograde menstruation, usually 

present on ovaries and peritoneum in the pelvis. Acute and chronic inflammation 

in combination with immune dysfunction is acting in endometriosis. Several 

characteristics are shared with invasive endometrioid and clear cell cancer; both 

harbor similar cytokines and genetic defects, and have a capacity to spread 

distantly [18, 26, 89, 90].  

The observation that the incidence of ovarian cancer increases after menopause, 

and the increase in gonadotropin levels at the same time generated the 

“Gonadotropin theory” 1975 by Stadel [104]. Hormonal effect with increased 

estrogenic stimulation of the OSE as a result of excessive gonadotropin (FSH, 

LH) secretion, related to menopause, ovulation, or infertility therapy and 

hormone replacement therapy (HRT) has been implicated as possible risk factor 

for EOC [52]. Higher levels of androgens, which are increased in menopausal or 

obese women and seen among women with polycystic ovarian syndrome 

(PCOS), were associated with an increased risk of ovarian cancer, whereas 

progesterone had protective effect [52, 105]. In a populations study (n=29 000) 

in Sweden, obesity was related to significant excess risk for endometrial- 

(standard incidence ratio (SIR) 2.9), cervix- (1.4) and ovarian cancer (1.2) [106]. 

Pelvic inflammatory disease (PID) was coupled to increased risk in a study of 

200 000 women in Taiwan [67]. Local inflammation like asbestosis and talc 

exposure has also been related to EOC [26].  
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Risk factors are found to have different effects in the different histological types 

of EOC. With longer use of oral contraceptives the risk decreased with 20% for 

each 5 years, and after 15 years the risk was halved, and the protective effect 

was on all types of EOC except for mucinous cancer [24]. In a recent study 

(n=849 EOC/n=169 391 healthy women under mean 5.1 years), HRT was 

associated to increased risk of serous and endometrioid EOC (RR=1.3), but to 

decrease in risk for the mucinous type (RR=0.37). In the same study, obesity 

(BMI >30) was found to be related to increased risk in endometrioid EOC 

(RR=1.67), similar to endometrial cancer of the uterus, but decreased risk was 

found for serous, mucinous and clear cell cancer [107]. Infertility itself  is a risk 

factor for EOC, and it is still debated if fertility drugs will increase the risk for 

EOC or not [108]. Physical activity [109], smoking [110] dietary fat [111], and 

other life style factors may also affect the risk. Prevention of ovulation have 

been considered as protective against ovarian cancer; oral contraceptives, 

multiparty and long lactation periods, as well as obliteration of the tubes by 

tubal ligation, prophylactic oophorectomy and hysterectomy [26, 27].  

 

 

DIAGNOSIS 

Adnexal masses represent a spectrum of conditions from gynecologic and non-

gynecologic sources, and may be benign, borderline or even highly malignant. 

The success of treatment for EOC depends on early diagnosis and the extent and 

quality of the primary surgery [7]. Therefore, initial detection and evaluation of 

an adnexal mass requires a high index of suspicion. Approximately 20% of 

women will be detected with an adnexal mass, 5 - 10% of women will have 

surgery for an ovarian neoplasm and only 13 - 21% of these masses will be 

malignant [112]. The localization of the ovaries deep in the pelvis, gives the 

tumor a possibility to grow without specific symptoms until spread to the upper 
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abdomen, with metastases to the omentum, peritoneal carcinomatosis, and 

ascites [113]. Common early symptoms are not specific for ovarian cancer and 

therefore often ignored. However, symptoms that are new and occur frequently 

may distinguish cancer cases from healthy women. Goff et al. introduced the 

“symptom index” (SI), including pelvic/abdominal pain, urinary 

urgency/frequency, increased abdominal size/bloating, and difficulty 

eating/feeling full. The SI was considered positive if one or more of the 

symptoms were currently present for less than one year and occurred more than 

twelve days per month, and the index could be of help in finding women at risk 

of EOC. Majority (80%) of the women diagnosed with advanced disease, and 

more than half (57%) of the woman diagnosed with early stage tumor had 

symptoms before diagnosis [114]. Combining CA125 to the SI has been 

reported to improve the detection of early stage EOC, and adding HE4 to the 

combination further improved the diagnosis with a sensitivity of 84% and a 

specificity of 98.5%,  if any two of the variables were positive [115, 116]. 

Patient and doctors delay is a problem. Acute abdominal pain, abrupt distension 

of the abdomen and difficulties of breathing is too often a cause of first visit to 

the hospital, then already in late stage EOC [117, 118].  

Not only early diagnosis of pelvic cysts, but also an accurate diagnosis prior to 

surgery and the type of surgery preformed is of importance to optimize the 

prognosis for the women with EOC [7]. Usually, a combination of a patient´s 

medical history, clinical examination, imaging data such as ultrasound, thorax-

abdominal computed tomography (CT) and magnetic resonance imaging MRI 

results, and to some extent tumor marker profile are used to differentiate 

between benign and malignant ovarian tumor. Gastro-intestinal (GI) evaluation 

is done if clinically indicated. Appropriate anamnesis with special focus on 

symptoms, and risk factors like age, menopause status, reproductive history 

(parity, contraceptives), ovarian or breast cancer heredity and earlier history of 

breast cancer is of value [26]. For the younger patients (< 30 year), tumor 
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markers such as human gonadotropin (hCG), and alpha-fetoprotein (AFP) 

should be controlled regarding germ cell tumors, even though the markers are 

not specific in the pediatric population [119].  

Adnexal masses with complex or solid morphology seen on ultrasound are more 

significantly related to malignancy, and unilocular ovarian cysts or cysts with 

thin septa but without solid component are most often benign [120]. Pattern 

recognition on ultrasound by an experienced examiner is reported superior to 

serum CA125 for discrimination between benign and malignant adnexal masses 

[32, 33]. Ultrasound and CT are good instruments to use in the evaluation and 

planning of therapy, before surgery or chemotherapy, when a pelvic mass is 

already a factum [33, 120]. We need other tools to detect preclinical early 

lesions in the high-grade EOC. Specific tumor markers, that could indicate the 

presence of early disease preferably before symptoms are urgently needed [121]. 

 

 

TREATMENT AND PROGNOSTIC FACTORS  

 

The golden standard in treatment of EOC today is surgical resection or 

debulking surgery, followed by platinum-based chemotherapy [35]. To treat the 

patients at a right level of care can be crucial for their future live [7]. The benign 

tumors can be treated with surgery or observation at the local hospital, and the 

patients with EOC should be referred to tertiary center for evaluation and 

expertise treatment to enhance prognosis. [7, 10, 35, 122]. Optimal staging and 

primary surgery aiming for complete resection of all visible tumors is the goal.  

The basis of cytoreductive surgery is considered to be hysterectomy, bilateral 

salpingo-oophorectomy and infracolic omentectomy and can be supplemented 

with extirpation of other organs that are affected by tumor, such as peritoneum, 

bowel, lymphatic nodes, gallbladder, liver and spleen if necessary to remove all 

visible tumors [123]. However careful evaluation of patients with stage III C or 
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IV EOC should be done before deciding if primary surgery is feasible, 

neoadjuvant chemotherapy is maybe a better option in some cases [124]. The 

age of the patients, performance status and other co-morbidities are of 

importance as well as the disease burden, location of metastatic sites, and stage 

in the assessment if surgery will improve the patients prognosis or the quality of 

live [124]. Resistance to platinum is a major treatment challenge and high 

proportion of the patients have relapse [7]. Tumor stem cells or tumor initiating 

cells (TIC) are regarded as a major cause of relapse. High levels of circulating 

TICs have been reported in malignant ascites. Two distinct populations of TICs 

were present, a less invasive sphere (S), and monolayer (M) forming cells with 

more invasive marker profile with high levels of stem cells markers and cancer 

associated fibroblasts (CAFs). However, the S cells are thought to represent a 

chemoresistant population [125]. The area of targeted treatment is evolving with 

focus on new molecular targets to deal with these problems. Alternative 

molecular pathways are investigated to find the critical steps in the 

tumorigenesis of EOC that can be targeted. Heat chock protein 60 (HSP60) is 

implicated in mitochondrial protein import and macromolecular assembly, and 

play an essential role in survival of malignant cells. High expression of HSP60 

may identify groups of advanced EOC with poor prognosis that may need 

alternative therapy [126]. Ongoing studies are testing multiple novel drugs, and 

hopefully some effective drugs and without harmful side effects will soon be 

implemented in the clinical praxis [92].  

The most important prognostic factors for EOC are stage and grade of the tumor 

at diagnosis and the patient’s age in combination with health status [35]. In stage 

I EOC five-year survival is more than 90% and only 20-30 % in stage III-IV 

[29]. Unfortunately only 25% of the patients are diagnosed in an early stage [8]. 

Outcomes are improved when primary operations are performed by gynecologic 

oncologist surgeons, and the size of the residual tumor after radical surgery, with 

no residual tumor left in the end of surgery seems to be of most importance for 
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survival in late stage disease [35]. Histological type is of importance with worse 

prognosis in the mucinous and clear cells types if diagnosed in late stage 

disease, because of their resistance to chemotherapy. Tumor grade has also been 

related to prognosis, with worse outcome in the higher grade, although tumor 

histo-type seems to be of more relevance [127].  

 

BIOMARKERS - TUMOR MARKERS 

Biomarkers are biological substances that are used to predict different biological 

conditions. Tumor markers are produced by the tumor, direct by the tumor cells 

or the tumor stroma, and they indicate the likely presence of cancer or 

information about its behavior, like a fingerprint of the specific tumor. Tumor 

markers are of great help in diagnostics, evaluating prognosis, planning of 

therapy and follow up of the malignant tumors. Diagnostic, screening and 

prognostic marker discovery has been suggested to follow the proposed 

“Prospective-specimen-collection, Retrospective-Blinded-Evaluation” (PRBE) 

design, with nested case-control analysis, were clinical data and samples are 

collected without knowledge of the results, and the analyze of cases and controls 

are blinded [128]. Biomarker discovery is only the first step in the process of 

biomarkers development. The validity of the newly detected biomarker, to 

correctly classify between i.e. cancer or not, has to be thoroughly evaluated 

before usage in medical decisions. Intern and extern validation of each 

individual study is necessary, and multiple studies from different groups have to 

be involved. The population that is supposed to be the target has to be tested 

rigorously in prospective manner before implementation in the clinic can be 

accepted. A biomarker has to be reliable, measurable, specific and predictive. 

Biomarkers now play a key role in the routine management of patients with 

cancer, and guide drug development in the age of targeted therapy. An 
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unreliable biomarker can do more harm than advantage, and validation is a 

crucial step in the biomarker development. The clinical situation is always in 

focus, and a reliable biomarker is an instrument that can add information in the 

assessment [129]. 

 

DIAGNOSTIC BIOMARKERS  

CA125 is the most used tumor marker since 30 years and is still in the top; both 

in diagnosis and for follow up of EOC patients. The discovery of OC125, an 

antibody that recognizes CA125 (MUC16), was made by Robert Bast and his 

colleagues in 1981[5]. CA125 is a heterogeneous glycoprotein complex, found 

present in several isoforms, with a robust N-glycosylation, and of high 

molecular mass (110kD >2 millionD), and the major activity has  been detected 

with 200kD when measured in serum with electrophoresis and imunoblot [130], 

however, CA125 mass measured with MS/MS in ascites was 2,359,682D [131]. 

CA125 is expressed as a membrane-bound protein in epithelial cancer cells 

lining the surface of the ovaries, peritoneum, the Müllerian-type epithelium, or 

is released in soluble form in bodily fluids. CA125 in blood is used in follow up, 

monitoring therapy, relapse and disease progression. A high level of CA125 in 

ovarian cyst fluid has been found in EOC and it was related to poor survival, but 

was not an independent factor [132]. However, CA125 have limitations when 

used in diagnosis, it is negative in 20% of EOC, and more than half of early 

cases, and it is often elevated (CA125 >35 U/ml), in different benign 

gynecological conditions such as endometriosis, pregnancy and pelvic 

inflammatory disease. CA125 is also elevated in some common medical 

conditions, like congestive heart failure, cirrhosis, peritonitis, and in several 

other types of carcinomas. CA-125 levels are higher in premenopausal women 

than after menopause, increasing the likelihood of false-positives in the younger 
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population, which is frustrating [133-135]. In the past decade, Human 

epididymis protein 4 (HE4) has emerged as a promising biomarker in EOC. HE4 

has 4 stable disulfide core domains and is also known as Whey Acidic Protein 4-

disulfide core domain 2 (WFDC2). HE4 was discovered by Kirchhoff et al in 

1991 as a proteinase inhibitor with a possible function in sperm maturation 

[136]. In RNA expression arrays, HE4 was found overexpressed in ovarian 

cancer in 1999 [137]. Hellström and coworkers first reported HE4 as a 

biomarker for EOC 2003, with equally detection performance as CA125 but 

with a better capacity to differentiate healthy women and women with benign 

disease from cancer [138]. HE4 is a secreted glycoprotein (N-glycosylation) 

with low molecular weight, 25 kD, found with high expression (93%) in high-

grade serous and (100%) in endometrioid EOC but only 50% in clear cell and 

0% in mucinous EOC [139]. HE4 is like CA125 not specific for EOC. Other 

cancer types such as lung cancer and endometrial cancer of the uterus have 

increased levels of HE4 [140], and breast and pancreatic cancer [141]. Normal 

glandular epithelium of the breast, female genital tract, epididymis, vas deferens, 

distal renal tubules, respiratory epithelium, colonic mucosa, and salivary glands 

have also shown increased levels of HE4, with the highest expression in the 

trachea and salivary glands [141]. Both CA125 and HE4 have elevated levels in 

EOC; the levels are related to stage with highest expression in advanced tumor. 

HE4 complements CA125, has been found expressed by 32% of ovarian cancers 

without CA125 expression (22% of EOC), and is therefore interesting to use in 

diagnostic biomarker panels together with CA125 [142]. HE4 opposite to 

CA125, significantly increases with age, and are less frequently elevated in 

benign gynecologic conditions, has lower levels in pregnancy (49.7 picomole 

(pM) a 95th percentile upper limit compared to 118.9 pM in non-pregnant 

premenopausal woman) and normal levels in endometriosis [134, 135]. Renal 

failure was the most common course of increased levels of HE4 in patients with 
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benign disease and increased levels of HE4 has been found in both men and 

women with renal failure and without any cancer [143, 144]. 

CA125 and HE4 are both glycoprotein that promote EOC although the 

mechanism of their action is not clearly defined [145]. Novel evidence suggests 

a role for CA125 in immunological tolerance, by inhibiting cytotolytic responses 

of human natural killer cells and as a consequence suppress anticancer activity 

[146]. It is also speculated that CA125 promotes invasion and metastasis, and 

that mesothelin, a glycoprotein normally expressed by the mesothelial cells 

lining the peritoneum, may help ovarian tumor implants to bind to the 

mesothelial cells lining the peritoneal cavity [147]. HE4 suppresses the activity 

of multiple proteases, including serine proteases and matrix metalloproteinase’s 

(MMPs), and specifically inhibits their capacity to degrade type I collagen. HE4 

has been associated with cancer cell adhesion, migration and tumor growth, 

through its effects on the EGFR - MAPK (HER 1 -mitogen-activated protein 

kinases) signaling pathway [145].  

The application and improvement of genomic and proteomic technologies has 

resulted in explosion of biomarker discovery. The genes encode proteins, signal 

transduction molecules, transcription factors, and other proteins that regulate 

processes in the cell cycle, cytoskeletal organization and epigenetic 

modifications [87]. Since Petricoin et al. 2002 demonstrated that serum 

proteomic pattern from low-resolution MS data could completely distinguish 

ovarian cancer from nonmalignant lesions on the ovaries [148], multiple studies 

using proteomics have been performed in the search for early cancer markers but 

not with the same success. The first results from 2002 were not reproducible 

either. Enormous number of serum biomarkers or panels of markers mostly on 

blood, urine [149] and ascites [150] have been reported as tumor markers for 

EOC, and some of them with better detection performance than CA125 [98, 151, 

152]. Of these potential markers only few have been approved to be used in 

clinical practice. The OVA1 test, including apolipoprotein A1 (APOA1), 
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transtyretin (TTR), hepcidin (HEPC), β2-microglobulin (β2M), transferring 

(TRFR), biomarkers detected by SELDI-TOF MS, and CA125, [153] was 

approved by the US Food Drug and Administration (FDA) in September 2009 

[153], and CA125 in combination to HE4 in September 2011. These tests should 

add help in the clinical assessment of women with a pelvic mass [154].   

 

  Box 2. Algorithms for calculation of RMI and ROMA risk scores  

 

 

In the last decades different algorithms and triage protocols have been 

developed, aiming improve the diagnosis of EOC. Various important variables 

are incorporated into these probability tests;  ultrasound pattern [32, 120], 

biomarkers, menopause status [154, 155] symptom-index [115] and high-risk, 

ROMA Algorithms and thresholds of HE4 and CA125 and menopause 

status according to the manufacturer’s insert

ROMA Predictive index (PI) 

Pre-menopausal: PI= –12.0 + 2.38 x LN(HE4) + 0.0626 x   LN(CA125)

Post-menopausal: PI = –8.09 + 1.04 x LN(HE4) + 0.732 x LN(CA125)

Predicted probability: ROMA value % = exp(PI) / (1+exp(PI) x 100

(Moore et al. Gynecological Oncology 2009)

RMI = U x M x serum CA125 level

U (ultrasound) 0 = imaging score 0

1 = imaging score 1

2 = imaging score 2-5

M (menopause) 1 = premenopausal

3 = postmenopausal

RMI > 200  increased risk of EOC

( Jacobs I et al. B J Obstetetrics and Gynecology 1990)



40 
 

heredity [156]. The Risk of Malignancy Index (RMI) developed 1990 by Jacobs 

et al. has improved the diagnostic ability of EOC. This risk stratification 

algorithm includes CA125 together with ultrasound and menopause status, and  

RMI >200 means high risk of malignancy [155]. The Risk of Ovarian 

Malignancy Algorithm (ROMA), introduced 2009 by Moore et al., includes the 

dual marker combination, CA125 and HE4 in an algorithm with menopause 

status, but without ultrasound, was reported as superior to RMI in predicting the 

probability of  EOC (Box 2) [154].  

 

 

SCREENING TEST 

Screening is used in an asymptomatic population with the intention to identify 

individuals having specific cancer or pre-cancer with the intention to refer them 

promptly for further diagnosis and treatment. An ideal test should be 

reproducible, non-invasive, inexpensive and able to distinguish perfectively 

between a healthy woman and a patient with early stage disease. Screening test 

for EOC needs very high specificity 99.6% (negative test and negative case) to 

avoid false positives, and a sensitivity (positive test, positive case) of 75% (25% 

false negative), because of the relative low prevalence (1 per 2500 women of 

age over 50 year) in the population. The high false positive rate in ovarian 

cancer screening is problematic, and is doing harm due to the frequent use of 

invasive surgery including oophorectomy and in many cases more radical 

surgery. General screening for ovarian cancer is currently not recommended, 

because it does not help in finding early lesions or reduce mortality. The tests 

available are not successful [157] . Women with heredity for ovarian cancer are 

recommended  to undergo surgery with prophylactic laparoscopic excision of 

the ovaries and fallopian tubes after age 35-40 if childbearing is completed, 

aiming to decrease the risk of cancer. These women are also told to do a regular 
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check-up, even though evidence show limited or no benefit of early detection 

[158, 159]. Continuous efforts to find adequately sensitive and specific tumor 

markers for EOC screening are ongoing [8, 160].   

Longitudinal randomized controlled screening trial, the Risk of Ovarian Cancer 

Algorithm (ROCA) in UK, uses rising levels of CA125 in serial annual 

measurements to select women for imaging [161] reported better detection 

performance in the multimodal analysis (sensitivity of 89.5%, specificity of 

99.8% and positive predictive value (PPV) of 35%) compared to TVU screening 

alone (85%, 98% and 2.8% respectively) but not any reduction in mortality 

[162]. New results from the same study the Prostate Lung Colon and Ovary 

(PLCO) longitudinal screening trial in USA, TVU and CA125 annual screening, 

have not either demonstrated a mortality reduction, but 2.6% higher surgical 

rates in the TVU positive group compared to CA125 only [163]. Recent report 

showed a better result with earlier diagnosis when parametric empirical Bayes 

(PEB) algorithm was used, taking into account the screening history and 

diversity of patients characteristics that can affect the biomarkers [164]. Adding 

PEB to serial measurements of HE4 could be of value as well [165]. Diversity in 

tumor biology, the relative low prevalence of EOC in the population, the various 

intrinsic behaviors of the different types of EOC, and invisible early lesions, 

makes the early cancer diagnosis very challenging [31, 121].   

 

DIAGNOSTIC TEST  

Diagnostic tests are used in symptomatic women, as in our studies women with 

suspicious malignant pelvic cyst, with the intention to classify the women at risk 

of having malignant or benign cyst. Good quality diagnostic tests that are fit for 

purpose and provide accurate results are therefore of great importance in 

reducing the burden of the disease [166]. Tumor markers are present in tumor 
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tissue as well as body fluids and comprise a variety of different molecules 

including secreted proteins, cell surface receptors and transcription factors. 

Specific tumor markers may have the potential to reduce cancer mortality by 

facilitating early cancer diagnosis and by helping to individualize treatments. 

The power of a diagnostic test to correctly predict status is commonly measured 

as the sensitivity, specificity or a receiver operated characteristic (ROC) and the 

area under the curve (AUC). Sensitivity is the probability of a positive test given 

that the person have the disease (P (T+/D+)), and specificity is the probability of 

a negative test given that the person is without the disease (P (T-/D-)). It has 

been suggested that specificity of 75% is acceptable for a diagnostic test, 25% 

with positive test do not have cancer – (false positive), if the sensitivity of the 

test is 80% or more, a risk of missing up to 20% of the cases – (false negative) 

in the diagnosis of a pelvic mass [167]. ROC curve provides the sensitivity of a 

test as a function of 1-specificity. Greater ROC AUC means more powerful test. 

The clinical utility of a diagnostic test is often expressed by positive predictive 

value (PPV), the percentage of people who test positives that are true positives, 

and negative predictive value (NPV), the percentage of test negative that are 

actually negative. A diagnostic test must achieve a PPV that balances the 

benefits of early diagnosis against the risk and cost of unnecessary operations 

and anxiety of the patients associated with false positives. However, these 

values are dependent on the prevalence of the disease in the population studied 

[8]. A number of studies have been performed on multiple panels of biomarkers 

for EOC, and some of them will be mentioned later in the discussion of our 

results. 
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WHY OVARIAN CYST FLUID? 

Ovarian cyst fluid contains huge amount of potential biomarkers, and is a source 

of special interest searching for early ovarian cancer markers. Different body 

fluids i.e. blood, urine [149], ascites [150], and pancreas cyst fluid [168] have 

been useful in biomarker research. We know, from earlier studies in our 

department, that ovarian cyst fluid contains a large amount of proteins even 

more than in the blood [169-171]. The ovarian cyst fluid is in closeness to the 

tumor, actually in the center of tumor activity. Proximal fluids are promising in 

searching for more tumor specific markers [172]. New produced tumor cells and 

products secreted direct form the ovarian tumor cells or stroma cells are most 

likely present in the ovarian cyst fluid before it will show up in the blood and 

also in a higher concentration. Tumor specific markers could be more easily 

detected in ovarian cyst fluid and then looked upon in blood or urine.  The 

specific marker of interest labeled with antibody or nucleotide and detected by 

some imaging technique. Positron emission tomography (PET) could eventually 

be used to find chosen biologically active molecules[173].  

Our hypothesis is that ovarian cyst fluid harbor early ovarian cancer biomarkers 

because of its closeness to the tumor, and in this thesis we investigated ovarian 

cyst fluid as a source for biomarker detection. 
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AIMS OF THE STUDY 

The general goal of this thesis was to investigate benign and malignant ovarian 

cyst fluid and blood form women assigned for operation with suspicious 

malignant cystic pelvic tumor; searching for novel tumor biomarkers in the 

ovarian cyst fluid that could improve the early detection of EOC, and evaluate 

the diagnostic ability of a new promising tumor marker HE4 individually and 

together with the currently used tumor marker CA125 in blood for predicting 

risk of EOC in women with suspicious malignant cystic pelvic tumor. 

The specific aims were: 

1. Study the ovarian cyst fluid as a source for discovering early biomarkers 

for use in the diagnosis of EOC (Paper I-III). 

 Explore the whole ovarian cyst proteome (Paper I)  

 Explore the ovarian cyst inflammatory proteome (Paper II) 

 Explore the serous ovarian cyst  proteome (Paper III)  

2. Validate potential markers, found in the primary analysis, with 

conventional methods to investigate their capacity differing between 

benign, borderline tumors, EOC and  early and late stages EOC         

(Paper I-III) 

3. Evaluate the performance of HE4, CA125 biomarkers and ROMA risk 

score from women already qualified for operation because of suspicious 

cystic pelvic mass, predicting the risk of having EOC, and the different 

performance in early and late stage and in pre- and post-menopause 

(Paper IV) 

4.  Study the performance of HE4 and CA125 in predicting the risk of 

having EOC in the proposed slow growing type I and aggressive type II 

EOC, and in early and late stage and in pre- and post-menopause       

(Paper V) 
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MATERIAL AND METHODS 

STUDY DESIGN AND ETHICS 

The study is prospective, observational, cross-sectional, explorative and 

diagnostic clinical study, the samples taken prospectively before diagnosis, at 

the time of surgery, and the analysis were performed retrospectively. The local 

ethics committee at Gothenburg University approved the study protocol and 

samples were collected from all patients who signed a written informed consent. 

 

PATIENTS 

Patients were consecutively and prospectively included when admitted to 

operation for a clinically suspicious malignant ovarian cystic mass at the section 

of gynecologic oncology surgery, Sahlgrenska University Hospital, Gothenburg, 

Sweden, from March 2001 to February 2010. Generally, the criteria used for this 

selection was clinical examination and assessment with tumor complexity at 

ultrasound and computed tomography (size, multiple cysts, thick walls, and 

solid parts), fixed or bilateral nature of the tumors, pre- or post-menopausal 

status, prior family or personal history of ovarian or breast cancer. Patients with 

a solid tumor but without any cyst were not invited to participate, and patients 

who did not want to were not included. The surgery included peritoneal washing 

for cytology, hysterectomy, bilateral salphingo-oophorectomy, omentum 

resection, appendectomy in most cases of mucinous cysts, and with intention to 

radical operation, if fertility was not to be saved. Patient was post-operatively 

excluded if the final histology of malignancy was other than EOC. PAD was 

checked for all patients, confirming the postoperative diagnosis and stage of the 

tumor, as well as age and menopause status.  
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SAMPLE COLLECTION AND PROCESSING 

According to our protocol, blood samples were taken after anesthesia but before 

surgery, and ovarian cyst fluids were collected after removal of the cyst from the 

abdomen. All samples were immediately put in 4°C for 15-30 minutes, 

centrifuged, and aliquoted into Eppendorf tubes. The fluids were transferred to 

−80°C, within 30–60 minutes after collection. The samples that were used in 

this study had one freeze-thaw cycle. Handling and processing of the samples 

were standardized for all patients included. All tumors were examined by an 

experienced pathologist for diagnosis, histology, and grade. The tumors were 

staged (I-IV) according to FIGO standards [29], and in Paper V with regard to 

the gene and histology-unifying model into type I and type II EOC [18] 

(Table 2). 

Paper I 

Of the 218 women that were originally included, from March 2001 to September 

2006, 192 were eligible for the analysis (26 excluded; 14 metastases, 3 

granulosa cell cancer, 9 not able to analyze). Validation was done in 40 cyst 

fluid samples from the original cohort and in 40 new cyst fluid samples; 20 

benign and 20 EOC in respective cohort.           

Paper II                                                                                                                                      

38 cyst fluid samples, 22 benign and 16 EOC were selected from the 192 

eligible in Paper I. Validation of potential markers was done in cyst fluid and 

serum from 256 patients that were eligible for analysis from March 2001 to 

September 2007; 156 benign, 22 borderline tumors and 74 EOC, 3 granulosa 

cell cancer and 1 malignant teratoma.                                                                                                                         

Paper III                                                                                                                                     

A total of 15 cyst fluid samples were selected from samples collected from 

March 2001 to April 2008, all with serous histology; 5 benign, 5 stage I and 5 in 

stage III EOC. Cyst fluid and plasma from 68 patients included from March 
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2001 to February 2010; 32 benign and 36 EOC; totally 136 samples with mixed 

histology, were used in verification and validation of selected significant 

proteins from the primary analysis.                                                                

Paper IV & V                                                                                                                       

Under the period March 2001 to February 2010 we included totally 393 patients. 

374 and 373 women were eligible for analysis in Paper IV and V; 215 benign, 

45 borderline tumors and 113 EOC (19 respective 20 were excluded; 3 

granulosa cell cancer, and 16 metastases in Paper IV, additionally 1 malignant 

teratoma was excluded in Paper V) Table 2.  

 

Table 2.  Illustrating the patient distribution between the different studies performed.  

 

 

PROTEOMICS 

In our study we used three different high throughput proteomic analytic tools to 

mine the ovarian cyst fluid with the intention to detect novel tumor markers for 

early EOC. Verification and validation of potential markers were done with 

ELISA and immunoblot. 

Paper Method Included Benign Borderline EOC Granulosa Dermoid Metastases Excluded Eligible

I SELDI 218 129 16 47 14 26 192

ELISA 80 40 40 80

II IM-MS 38 22 16 38

ELISA 291 156 22 74 3 1 15 36 256

III iTRAQ 15 5 10 15

Immunoblot 68 32 36 68

IV ELISA 393 215 45 113 3 1 16 19 374

V ELISA 393 215 45 113 3 1 16 20 373
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Surface Enhanced Laser Desorption / Ionization Time of Flight Mass 

Spectrometry SELDI-TOF MS 

 

In Paper I the whole ovarian cyst fluid proteome was explored in the search for 

novel biomarkers. We analyzed 192 ovarian cyst fluid samples, from benign 

(n=129), borderline (n=16) and malignant ovarian cysts (n=47). 

 

 SELDI-TOF MS facilitate protein profiling and detection of proteins in 

complex biologic mixtures and combines two powerful processes in one, 

chromatography with modified target and MS. Depending on the type of 

chromatographic matrix used, CM10 (weak-positive ion exchange), H50 

(hydrophobic surface), IMAC30 (metal-binding surface), or Q10 (strong anion 

exchanger), a subset of proteins in the sample bind to the surface of the chip.  

A portion of the cyst fluid samples were unfractionated and another portion 

fractionated by anion exchange chromatography. Standard profiling was done, 

and Tandem Equalizer beads (EB) and Mercapto ethyl pyridine (MEP) beads 

were used, meant to reduce the concentration of high-abundant proteins with 

wide dynamic range and to purify of recombinant proteins from host cell 

impurities. A small amount of fluid was robotically applied on the surface 

modified with chemical functionality biochips. Some proteins bind to the 

different targets, while others were washed off. The proteins bound to the 

SELDI surface were analyzed with TOF MS. A laser-ionized peptides from 

crystals of the sample and matrix mixture were then accelerated through an 

electric field and down into a flight tube. When the ions reached the end of the 

tube a detector measured the mass-to-charge (m/z) of the ions. Ratio of each ion 

can then be determined from the length of the tube, time it takes to travel 

through the tube and the kinetic energy given to ions by the electric field. 

Spectra of polypeptides in the samples were generated on a Ciphergen PBSII 

mass spectrometer with mass accuracy of +/- 0.15%. Data software from 

Ciphergen, Biomarker Wissard was used and analyzed the MS spectra for 
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protein identification (Figure 3). This MS profiling is effective and fast 

processing and could be able to pick up complete spectrum of very low 

abundance proteins in a short period of time. 

 

 

 

Figure 3. Proteins are extracted from the ProteinChip Array by Laser Desorption/ionization. 

Different target modifiers are applied on the chromatographic surface with a property to 

target specific proteins from complex solution. Ionized proteins and their mass accuracy are 

determined by TOF-MS, and the spectra is generated by a spectrometer. Protein peaks are 

identified as mass/charge (m/z), and protein identification is done by software-database. 

SELDI-TOF MS, Ciphergen 2007.  

 

Proteins are often in clusters and in different modifications, pre- (allelic variants, 

slice variants and RNA editing forms) and post-translational (glycosylation, 

phosphorylation, lipidation, oxidation, methylation, cystinylation, sulphonation 

and acetylation) conditions. Protein identification need to be done with other 

methods if the specific spectra generated are not earlier defined, and 

reproducibility issues need to be addressed. The practices with MS require 

technical training, and the handlings of samples are of importance, therefore 
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strict protocols need to be followed [174]. SELDI technology employing Protein 

Chip arrays from Ciphergen Biosystems Inc. (Fremont, California, USA), and 

experts in the field (Eric T Fung and Christine Yip at the American company 

Vermillion inc., before Ciphergen Biosystems inc.) performed the analysis.  

More detailed description of the procedure used is found in Paper I. 

 

 Immunoprecipitation Method - Mass Spectrometry 

To focus on the inflammatory profile of ovarian cysts we enriched our material 

by using selected inflammatory proteins known to be involved in the immune 

response in cancer, and in the same time overcome the problem with abundant 

proteins.  The immunoproteome was explored in 38 ovarian cyst fluid samples, 

benign (n=22) and EOC (n=16) in Paper II.  

 

Table 3. Inflammatory markers selected for the Immunoprecipitation. 

 

Accession no  Protein symbol Protein name  Expected m/z  kDa 

Ab Mix I 

P01584 IL-1β  Interleucin-1β  17,375

P10145 CXCL8 = IL-8  Interleucin-8     8,376/8,920  

P13500 CCL2 =MCP-1  Monocyte chemoattractant protein 1 8,664

P10147 CCL3 =MIP-1α Macrophage inflammatory protein 1-α  7,441/7,712  

P13501 CCL5 =RANTES C-C motif chemokine 5 7,550/7,847  

P09341 CXCL1 = GROα Growth-regulated α protein  7,862

P48061 CXCL12=SDF-1α Stromal cell-derived factor 1 7606/8297/8520

Ab Mix II 

P05231 IL-6 Interleucin-6  27

P48061 IL-12  Interleucin-12 75

P01137 TGF-β Transforming growth factor β  13

P01375 TNF-α Tumor necrosis factor  17,34

P15692 VEGF Vascular endothelial growth factor    27/39  

P09919 CSF3 =  GCSF Granulocyte colony-stimulating factor  19

P04141 CSF2 = GMCSF Granulocyte macrophage colony-

stimulating factor  

16

P09038 FGF2 = HBGF-2 Heparin-binding growth factor 2      18/24  
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Immunoprecipitation is a direct targeting technique, using specific antibodies; in 

our case selected monoclonal antibodies. The antibody mixture I and II used are 

presented in Table 3. The inflammatory markers in the ovarian cyst fluid were 

specially targeted by the antibodies or captured onto the beads and become 

immunoprecipitated. SELDI-based enriching immunoassay by tandem antibody 

libraries bead was used and experts (Eric T Fung and Christine Yip) in the lab of 

the company, Vermillion inc. in USA performed the analyses. 

 

 Isobaric Tags for Relative and Absolute Quantification Mass Spectrometry 

-   iTRAQ MS 

In Paper III we explored the serous ovarian cyst fluid proteome. For more 

homogeneity and to increase our chances of finding a true novel biomarker we 

choose only patients with serous histology; benign (n=5), stage I (n=5) and 

stage III EOC (n=5).  

To further come near the deep proteome of ovarian cyst fluid we used selected 

depletion of albumin and immunoglobulin G (IgG) before the specific proteomic 

analysis.  iTRAQ is a specific MS-based quantitative proteomics, a non-gel 

based technique that enables both identifying proteins and studying changes in 

protein abundance in biological samples. The proteins are separated according to 

size and detected with MS. The protein differences between groups are more 

easily noted because the proteins in the solution are labeled with isobaric tags. 

The samples were not pooled in order to see individual differences, and protein 

selection was based on significance and high fold change between the benign 

and malignant cysts.  Protein identification from the five sets was done with help 

of database search by Mascot search engine. The ratios of iTRAQ reporter ion 

intensities in MS/MS spectra from the raw data sets, derived by Proteome 

Discoverer version 1.1, were used to calculate fold changes between samples. 

The method has a low variance between runs and can take up to seven samples 



54 
 

together with a reference sample under identical conditions. Analyses were 

performed at the Proteomic Core Facility at the University of Gothenburg of the 

experts in the field, and the experimental design is described in detail in Paper 

III.  

iTRAQ – technique is high qualitative method, that enables direct peptide-

protein identification, and direct quantification of the proteins and with high 

reproducibility [175]. This in contrast to SELDI-TOF MS, which generates peak 

spectra (mass/z) were direct protein identification for unknown proteins is not 

possible, and variance between runs is more common as well [174]. Both 

methods have potential to measure thousands of proteins in a small sample that 

reflect the different expression of proteins in cells, tissue and body fluids.  

 

Immunoblot 

Verification and validation of significant selected proteins, SAA4 and ASTL, 

were done with immunblot in 132 samples from 68 patients in ovarian cyst fluid 

and plasma with mixed histology. The samples were chosen from our “cyst fluid 

bank”; benign (n=32), EOC (n=36) in stage I (n=18), stage III-IV (n=18) 

(Paper III). 

 

 Immunoblot is a method used to identify specific proteins with help of specific 

antibodies directed to the protein of interest, and one of the most powerful 

methods to use in a complex protein mixture. Total amount of protein from a 

cell can be extracted, or fractionated in cytoplasm, cell membrane and nuclear 

extracts, depending on the detergent used. The proteins are separated by gel-

electrophoresis (SDS-PAGE) and then transferred to a micromembrane which is 

immunoblotted with a specific antibody and incubated over night. Then the 

immunoblotted membranes are exposed and optical density of individual bands 

quantified from the membrane images by densitometry, relative quantification. 

More detailed description of the procedure is presented in Paper III. 
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Enzyme-Linked Immunosorbent Assays – ELISA 

 

ELISA was used to verify expression of and to validate specific selected 

proteins; ApoC-III and PCI in ovarian cyst fluid (Paper I); GROα, IL-8 and 

MCP-1 in ovarian cyst fluid and serum (Paper II); HE4 in plasma (Paper IV-V); 

CA125 in serum and plasma (Paper –I-II and IV-V); (Table 4). 

 

ELISA is a technique that uses antibodies and color change to identify a 

substance or a protein.  Solid-phase enzyme immunoassay (EIA) is used to 

detect the presence of a substance, usually an antigen, in a liquid sample or wet 

sample. A specific monoclonal antibody for the protein of interest has been pre-

coated onto a microplate. Standards that are used in the quantification step and 

samples are pipetted into the wells and any antigen present binds to capture 

antibody, proteins bound to the immobilized antibody and any unbound 

substances are washed away. An enzyme-linked polyclonal antibody specific for 

the protein measured is then added to the well and binds to the antigen. 

Following a wash to remove the unbound antibody-enzyme reagent, a substrate 

solution is added and a color develops in proportion to the amount of the protein 

bound in the initial step, and the color intensity is then measured. 

 

Figure 4. Summary of the ELISA kits that were used to perform the validation experiments in 

the different papers presented. 

 

 

  

ELISA-CA125 Cisbio Bioassays, France CA125 Paper I-II 

ApoC-III (human) ELISA kit (KA0465, Abnova Taiwan) ApoC-III Paper I 

PCI Actibind ELISA Reagent kit (TC16100, Technoclone, Austria) PCI Paper I 

Quantikine®, a solid phase ELISA; Human CXCL1/GROα immunoassay GROα Paper II 

Quantikine®, a solid phase ELISA; Human CXCL8/IL-8 immunoassay IL-8 Paper II 

Quantikine®, a solid phase ELISA; Human CCL2/MCP-1 immunoassay MCP-1 Paper II 

Architect CA-125 II (Abbott Diagnostics), Illinois, USA CA125 Paper IV-V 

HE4 EIA assay (Fujirebio Diagnostics, Gothenburg, Sweden) HE4 Paper IV-V 
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If samples generated higher values then the highest standard, we diluted the 

samples and repeated the assay. The cyst fluids were more often needed to be 

diluted, because of higher protein concentration in the ovarian cyst fluid than the 

serum. 

 

STATISTICS 

 

Statistical differences in protein levels between groups were evaluated using the 

Mann-Whitney U test or the corresponding Kruskal-Wallis one-way analysis of 

variance for 3 or more groups. Correlation between peak levels and protein 

levels in ovarian cyst fluid and serum samples was evaluated using bivariate 

Spearman correlation. Correlation of age between groups was evaluated with 

bivariate Pearson correlation coefficient. The natural log of protein levels was 

included as independent variables in logistic regression analysis. The predicted 

probabilities for each model were used to construct ROC curves, and AUC was 

calculated. Sensitivity, specificity were calculated for individual markers and 

their combinations (Paper I-V) and PPV and NPV (Paper IV-V). Threshold 

values for HE4 and ROMA were calculated at a specificity of 75% in Paper IV. 

For all statistical comparisons a value of p < 0.05 was considered significant. In 

Paper III significant results presenting proteins with p<0.05 and at least a 1.8 

fold change were generated, and immunoblotting was evaluated with bivariate 

correlation using Spearman correlation coefficient.  

Statistical analyses were performed in; SPSS for Windows (version 17, Inc., 

Chicago, IL, USA) in all papers, CiphergenExpress (Ciphergen Biosystem, 

Fremont, CA, USA) and Prism 5.0 (GraphPad Software, San Diego, CA, USA) 

in Paper I-II, and Stata 12.1 (Stata Corp., Texas, USA) in Paper V. 
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RESULTS AND COMMENTS 

 

This thesis is based on five papers. For the first three different proteomic 

techniques were used to evaluate the ovarian cyst fluid as a potential source to 

find novel biomarkers for early diagnosis of EOC. After exploring the whole 

ovarian cyst fluid proteome we continued to search for more specific markers in 

the deep proteome. The focus was on the early response in inflammation, and 

the deep proteome of serous tumor histology. Paper IV and V have a more 

clinical approach. We evaluated the diagnostic performance of the newly 

approved dual marker HE4 and CA125 to predict the risk of EOC in women 

presenting with a suspicious malignant ovarian cyst. In Paper V the evaluation 

were done according to the dualistic model in pathogenesis of EOC, slow 

growing type I and fast growing, aggressive type II EOC. Ovarian cyst fluid and 

blood used in our analyses was collected prospectively at the time of operation 

in women with a suspicious malignant ovarian cyst, and analyzed 

retrospectively.  

 

 

Proteomic profiling of the ovarian cyst fluid proteome – SELDI-TOF MS 

 – Paper I 

 

In order to explore the whole cyst fluid proteome in a total of 192 ovarian cyst 

fluid samples were analyzed; 129 benign, 16 borderline tumors and 47 

malignant (46 EOC, 1 malignant dermoid). 
  

Half of the malignant tumors were in early stage EOC (FIGO I-II). The age of 

the study population was between 16-86 years old, representing a relative high 

median age in the borderline (56 years), and the benign cohort (60 years), which 

was almost the same as for the malignant (61 years). A total of 1180 protein 

peaks were resolved by SELDI-TOF MS. Seventeen of the 221 peaks differently 

expressed (p<0.0001) between benign and malignant ovarian cyst fluid samples 
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revealed ROC AUC values >0.70. Five proteins in different isoforms were 

detected among these 17 peaks (Table 5). Apolipoprotein C-III (ApoC-III) was 

identified in five peaks, ApoC-I in three peaks, transthyretin (TTR) in two 

peaks, serum amyloid A4 (SAA4) in two peaks and protein C inhibitor (PCI; 

SerpinA5, PAI III) in one peak.  

 

Table 5. Proteins with significantly (p<0.001)different mass peaks m/z between benign and 

malignant cyst fluid samples, AUC >70 and specificity at fix sensitivity of 81.8%  

 

 

These protein peaks have all been identified earlier in serum and have prominent 

mass peaks in SELDI and matrix assisted laser desorption ionization (MALDI) 

profiles that characterize each protein [174]. These proteins are mainly 

representing highly abundant proteins and fragments hereof (Table 5).  

To find the marker with best predicative probability in cyst fluid or panel of 

markers for diagnosis of EOC a multiple logistic regressions analysis was 

Protein - ID Peak m/z value
Mean intensity
Benign/ Malignant

ROC AUC Specificity % (CI)

PCI 3902 30.23 / 7.00 0.79 67.7     (58.9-75.6)

ApoC-III 9743 3.60 / 15.09 0.82 68.5     (59.7-76.3)

ApoC-III 9448 5.29 / 22.00 0.80 60.8     (51.8-69.2)

ApoC-III 9751 4.65 / 24.2 0.80 60.8     (51.8-69.2)

ApoC-III 9777.5 3.20 / 14.7 0.79 63.1     (54.2-71.4)

ApoC-III 9453 7.30 / 33.20 0.78 50        (41.1-58.9)

ApoC-I 6647 37.53 / 121.14 0.78 57.7     (48.7-66.3)

ApoC-I - truncated 6448 68.91 / 184.53 0.76 53.1     (44.1-61.9)

ApoC-I - truncated 6489 24.49 / 52.75 0.76 53.1     (44.1-61.9)

SAA4 12886 1.35 / 2.42 0.76 58.5     (49.5-67.0)

SAA4 12863 1.53 / 2.72 0.74 59.2     (50.3-67.8)

TTR 13900 7.80 / 23.16 0.77 59.2     (50.3-67.8)

TTR 13925 5.36 / 14.27 0.75 57.7     (48.7-66.3)

Hb beta 8037 2.61 / 4.64 0.75 65.4     (56.5-73.5)

Albumin 54622 0.73 / 0.30 0.76 61.5     (52.6-69.9)

Albumin 54426 1.72 / 0.25 0.75 60.8     (51.8-69.2)

Albumin ion 44754 1.06 / 0.50 0.76 57.7     (48.7-66.3)
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performed for the differentially expressed proteins, individually and together in 

different combinations with and without CA125 in corresponding serum. ApoC-

III (AUC 0.82) and PCI (AUC 0.79) were independent factors in predicting 

malignancy (p<0.0001 and p= 0.001 respectively), and these two in combination 

reached the same ROC AUC (0.91) as the five cyst fluid proteins together in a 

panel. Adding CA125 to the dual combination ApoC-III and PCI generated the 

highest AUC 0.94 (CI 0.89-0.98). However, no marker alone had higher AUC 

than serum CA125 0.87 (CI 0.80-0.94). The specificity of the three-marker 

panel (ApoC-III, PCI and CA125) was 88.4% compared to 68.2% for CA125. 

CA125 with cut-off value of 35U/ml had a sensitivity of 81.8%, accordingly 

specificity for the novel markers were calculated at the same sensitivity as 

CA125.  ApoC-III and PCI had specificity similar to CA125 of 68.5% and 

67.7% respectively.  

In order to verify the proteins, ApoC-III and PCI, and their expression levels in 

ovarian cyst fluid, 40 cyst fluid samples were selected from samples used in the 

SELDI analysis. In addition to these previous analyzed samples we added a set 

of 40 consecutively collected new cyst fluid samples for validation. The two 

different methods SELDI-TOF MS and ELISA correlated for ApoC-III 

(Spearman´s rho=0.328; p=0.04). We verified a significant increase in 

expression for ApoC-III (p< 0.05) in the malignant samples from SELDI, using 

ELISA, and the validation of ApoC-III showed also significant increase in 

expression levels (p=0.001) in the new malignant samples. For PCI a 

contradictory result was found, instead of lower expression in the malignant 

samples (SELDI profiling) we identified an increased expression in the 

malignant samples (ELISA), even though it was not significant. Further 

validation in another set of samples showed increase of PCI levels in the 

malignant samples but not significant (p=0.26). PCI with m/z 3902 Da detected 

in the SELDI profiling is a part of the entire PCI protein, (C-terminal fragment 

(SwissProt#05154), and the antibody used in the verification/validation step 
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picked up the active part of the PCI. Interestingly, high-abundant proteins were 

present in high amounts in the cyst fluid similar to blood, which was causing a 

problem in detecting the interesting low abundant proteins, which are thought to 

be more usable in the clinical work as tumor specific markers.  

Despite the drawbacks of the method used in this study we strengthen our 

hypothesis that ovarian cyst fluid is a promising source for detection of early 

biomarkers.  

 

 

Proteomic profiling of the ovarian cyst fluid immunoproteome with 

Immunoprecipitation -MS – Paper II 

 

We explored the immunoproteome, enriched our material with known cancer 

inflammatory proteins; in addition, we used a direct targeting method and 

scrutinized the deep proteome. For the immunoprecipitation method 38 ovarian 

cyst fluid samples 22 benign and 16 EOC were selected from the original 

material in Paper I. Validation was done in cyst fluid and serum from 256 

patients; 156 benign, 22 borderline tumors and 74 EOC. 

 

 We detected 150 high quality peaks (signal/noise ratio of 3:1 and present in 

20% of the spectra) with significant expression (p<001) between benign and 

malignant cysts. Of the proteins that were identified, MCP-1 and IL-8 showed 

highest significance, with AUC at 0.82 and 0.80 respectively, and a seven fold 

difference in expression (Figure. 4).  

MCP-1 and IL-8 were further validated with ELISA together with GROα, 

another promising chemokine, in a bigger set (n=256); both in ovarian cyst fluid 

and corresponding serum. Evaluation of these markers was done together with 

CA125 in serum to investigate if the selected biomarkers improved the 

diagnostic ability of CA125. The age in our benign patient population was 

relative old, with almost equal mean age in the benign and malignant cohorts, 60 

compared to 61 years, and women with borderline tumor were 10 years younger,  



61 
 

 

 

Figure 4. Representative mass spectra of MCP-1 and IL-8 in Immunoprecipitation MS.  

 

51 years.  High proportion of EOC (50%; n=39/74) were in early stage EOC 

(stage I-II FIGO). 

Higher expression (p>0.001) of inflammatory proteins was found in the ovarian 

cyst fluid than in blood, and the difference was even noticed in the benign 

samples. The most interesting finding was the increase in cytokines response in 

early tumorigenesis. Significant (p<0.001) increase in cytokine expression 

(GROα, IL-8 and MCP-1) was found in borderline tumors (n=22) in the cyst 

fluid when compared to the benign samples (n=156). Combination of the cyst 

fluid markers and CA125 resulted in the highest AUC 0.86, with MCP-1 as an 

independent marker (p=0.004). In serum, CA125 was the only marker with 

significance (p<001), and revealed the same AUC (0.78) as all markers analyzed 

in serum together. In the comparison between benign tumors and stage I 
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malignant (n=32) IL-8, GROα and MCp-1 in cyst fluid showed significantly 

higher expression in early stage I; IL-8 (p < 0.001), GROα (p = 0.003) and 

MCP-1 (p = 0.003).  Beyond CA125 (p < 0.001) IL-8 was the only cytokine, 

which was significant (p = 0.006) in serum stage I tumors. The same result was 

achieved including stage II tumors (n=7) as an “early stage” group (n=39).   

When comparing cyst fluid samples from patients with a benign cyst to all 

malignant cysts significant difference were found for all markers (GROα, IL-8 

(p<0.001 both) and MCP-1 (p=0.006). In serum CA125, GROα and IL-8 were 

significant (p<0.001 all), but MCP-1 was not (p=0.99). In multiple regression 

analyze, CA125 (p<0.001) and GROα (p=0.005) were significant. ROC AUC 

for the marker combination in cyst fluid together with CA125, was almost equal 

(AUC 0.87) to the marker combination in serum (AUC 0.88), the same as for 

CA125 alone.  CA125, IL-8 and GROα were independent markers in serum 

(p < 0.001, p = 0.009, p = 0.009, respectively). IL-8 had best AUC of the 

cytokines tested individually both in serum and cyst fluid with AUC 0.76 and 

0.73 respectively. 

Cytokines that are involved in the early inflammatory response are still confined 

to the ovarian cyst fluid in borderline and early stage EOC, but in a later stage 

the inflammatory proteins have secreted to the blood. Inflammatory proteins, 

although not tumor specific, may serve as tumor biomarkers. 

 

Proteomic profiling of the serous ovarian cyst fluid proteome – Paper III 

 

We further concentrated on the deep proteome, now in a selection of serous 

ovarian cystic tumors. Only patients with serous histology, five benign, five 

stage I EOC and five stage III EOC were included, and depletion of abundant 

proteins (albumin/Immunoglobulin G) were done before analysis with a high 

qualitative and quantitative method to scrutinize the deep proteome of the most 

common type of EOC. Validation using immunoblot was done in samples of 

mixed histology from 68 patients; 32 benign and 36 EOC. 
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Figure 5. Protein, n=32, detected with iTRAQ analysis in cyst fluid from serous ovarian 

tumors. Indicating the tumor type; HG, High grade, LG, low grade. The green color indicates 

lower and the red higher expression levels in the samples.  

 

The protein concentration was significantly higher (p=0.02) in the malignant 

cysts compared to the benign, 837 proteins were identified, and 87 as differently 

expressed (p<0.05) between the groups. Proteins with only single or two-peptide 

identified and fold change <1.8 and a number of immunoglobulins were also 

excluded. Thirty two proteins left were significantly (p < 0.05) differently 

expressed between benign serous adenoma and serous EOC, and 59% (n=19) 

were expressed in all 5 sets (Figure 5). Serum amyloid A-4 (SAA4) and astacin-

like metalloendopeptidase (ASTL) were selected for further validation by 

immunoblot in ovarian cyst fluid and plasma, 136 samples with mixed histology 

Benign Stage IA Stage IIIC
Symbol HG LG HG HG LG HG HG HG HG HG

ASTL NA 1,16 2,30 2,05 NA NA -1,69 -1,56 -1,09 NA NA -0,86 -1,64 -0,64 NA

ALB -0,74 0,86 1,79 0,69 0,78 -0,54 -1,51 -0,79 -0,43 -0,76 -1,09 -1,29 -0,49 -0,15 -0,14

C7 0,58 0,12 0,28 0,64 0,68 -0,64 -1,22 -0,47 -0,84 0,08 -0,25 -0,81 -0,40 0,01 0,24

AMY1A NA NA -0,29 1,72 3,66 NA NA -1,03 -1,32 -1,25 NA NA -0,14 -1,84 -1,00

SPARCL-1 1,55 -0,81 -0,18 NA 1,86 -1,79 -1,15 -1,09 NA -0,97 -0,89 -0,23 -0,71 NA -0,30

PLTP NA -0,01 0,18 1,32 -0,14 0,11 -1,18 -0,56 -0,60 -0,62 -1,09 0,58 -0,38 -1,06 -1,00

TARSH NA 0,19 0,41 NA 1,26 NA -0,15 0,20 NA -0,17 NA -0,14 -0,42 NA -0,69

CTSD NA 0,93 -0,40 2,33 -0,36 NA 0,48 -0,97 -0,04 -1,12 NA -1,36 -1,79 -1,25 -1,40

CHAF1A -0,36 0,94 NA 0,75 -0,27 0,11 -1,03 NA -1,18 -0,42 -1,15 -0,49 NA 0,03 -1,32

COL6A3 1,56 -0,10 1,40 NA 0,33 -0,97 -1,64 -0,54 NA 0,04 -0,22 0,67 -0,10 NA -0,10

CRISP3 -0,84 -0,69 -0,71 0,59 2,83 -0,47 -2,32 -1,12 0,48 -0,92 -1,51 -1,94 -1,47 -1,22 -0,84

KIAA0196 -0,92 0,78 1,04 NA -0,22 -0,56 -1,36 -0,84 NA -0,12 -1,09 -0,69 -0,14 NA -1,36

MSLN -2,64 0,79 0,18 1,50 1,40 0,25 -2,94 -2,32 -0,84 -0,14 -1,06 -1,94 -0,79 -2,74 -0,97

OVGP1 -4,06 -0,22 -4,32 2,64 2,84 -2,94 -5,64 -4,06 -2,64 -1,60 -2,84 -4,32 -5,64 -2,40 -1,22

APOA1 0,44 -1,51 -1,51 -2,06 -1,74 -0,06 -0,71 -0,09 -0,09 0,16 0,15 0,32 0,43 0,74 0,26

APOB -1,29 -1,43 -0,86 -1,74 -1,64 0,18 -0,69 1,16 1,10 -0,84 -0,97 -0,07 0,08 -0,92 -0,15

GRP78 NA -1,56 -1,29 NA -1,69 NA 1,61 -0,76 NA 0,08 NA -0,32 -0,47 NA -1,18

APOA4 1,28 -2,25 -2,94 -2,47 -1,56 0,36 -1,74 -0,17 -0,43 0,64 -0,14 0,64 0,61 0,58 1,01

IDHC -3,47 -1,60 -2,64 NA -3,64 -1,09 1,59 -2,12 NA 0,83 -1,69 -0,32 -1,89 NA -1,29

ALDOA -1,29 -1,69 -2,64 -0,62 -2,47 -0,25 0,54 -0,51 -1,06 1,89 -0,62 0,55 -0,69 -1,74 -1,18

TPI1 -2,64 -0,71 -1,32 0,03 -1,25 -0,23 1,21 -0,43 -0,56 0,67 -0,67 0,40 -1,00 -0,30 0,33

GAPDH -3,18 -0,32 -2,64 -0,40 -2,18 -0,14 1,01 -0,69 -0,97 0,58 -1,22 0,21 -0,06 -1,94 0,38

C4BPA -1,12 -0,67 -0,89 -1,03 -1,06 0,39 -1,06 0,99 0,96 -0,56 -1,06 0,04 0,19 -0,74 -0,27

CLTC NA -1,32 -0,79 -2,64 -2,18 NA -0,92 0,95 1,18 -1,69 NA -0,23 NA -1,15 -0,60

APOC1 0,37 -1,22 -1,47 -0,56 -1,94 0,38 -1,69 0,21 0,14 -0,18 0,10 -0,07 0,29 0,30 -0,06

S100A8 -5,06 -2,56 -1,89 -2,06 -3,32 0,14 1,88 -0,40 -0,12 1,68 -2,40 -1,94 -1,25 -3,32 -2,84

SYT13 NA -0,94 -1,22 NA -0,60 NA -0,69 0,89 NA 0,32 NA -0,49 -0,17 NA 0,49

YWHAZ -5,64 -0,86 -2,74 0,43 -3,32 -0,79 1,62 -1,22 -0,64 0,61 -0,84 -0,25 -1,36 -0,69 -1,47

APCS -0,09 -2,40 -0,42 -2,64 0,01 0,32 -1,06 0,59 -0,43 -0,81 0,58 -0,03 0,07 0,24 0,32

SAA4 0,26 -1,60 -1,32 -1,32 -1,47 -0,89 -1,60 -0,74 -0,07 -0,38 1,06 0,23 0,36 0,44 0,34

PRDX NA -2,25 -4,06 -0,76 -3,18 NA 0,28 0,14 1,77 -0,56 NA -0,25 -2,40 -1,00 -2,40

S100A9 -2,74 -1,74 -3,84 -1,79 -2,32 0,43 1,75 -0,23 -0,12 1,62 -2,56 -1,74 -0,79 -2,94 -2,47
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from 68 patients. The protein selection was based on either, high significance 

and high fold change or abundant appearance and several peptide recognitions in 

the sample sets (p = 0.04, FC = 1.95) and (p < 0.001, FC = 8.48) for SAA4 and 

ASTL respectively. In the comparison between benign and stage I EOC ASTL 

expression was still significant (p=0.001). In the validation step done with 

immunoblot SAA4 was significantly (p = 0.001) expressed in the cyst fluid, and 

with higher expression in the malignant cysts. However results for ASTL were 

contradictory, had lower expression in EOC in the iTRAQ analysis, and 

significantly higher (p=0.003) expression in the malignant samples analyzed 

with immunoblot. However, there were no significant differences in expression 

levels between benign and EOC in plasma for either SAA4 or ASTL. Seven 

serous tumors included in iTRAQ were within the validation cohort (two benign 

and five EOC), and correlated for SAA4 (p=0.008), but ASTL (p=0.58) did not 

correlate within the two methods. The peptide recognition in SAA4 was based 

on five to eleven peptides in each set of five. ASTL had only one to three 

peptides detected in three of five sets, and that can indicate a more uncertain 

identity.  

Interestingly some proteins had their highest expression in stage I EOC in the 

iTRAQ analysis (Figure 5). S100A8 and S100A9 had higher expression in all 

the five early EOC compared to late stage, and peroxiredoxin 2 (PRDX 2) were 

higher expressed in four samples. Moreover, two of the five stage I EOC serous 

tumors analyzed were low-grade serous and the other malignant tumors were all 

high-grade EOC. Several proteins (GRP78, IDHC, TPI1) had higher expression 

in the low-grade tumors in stage I than in stage III, and generally low expression 

in the high-grade tumors. The high-grade tumors had also some proteins 

(APOB, C4BPA, CLTC) with higher expression in stage I than in stage III EOC. 

 

Fluid from ovarian cysts connected directly to the primary tumor harbor many 

possible new tumor specific biomarkers. To enhance the discovery of tumor 
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specific proteins that could represent novel biomarkers a depletion of highly 

abundant proteins that can mask the detection of proteins present in low 

concentrations can be performed.  

Further studies will be continued on selected potential biomarkers, and their 

ability to differ between benign and early stage EOC will be tested.  

 

HE4, CA125 and ROMA separate benign and malignant ovarian cysts 

 –Paper IV 

 

HE4, one of the most promising diagnostic markers in EOC was evaluated 

individually and together with the currently used marker CA125. Their 

diagnostic performance was assessed in differing benign ovarian cyst from 

malignant cyst, in patients presenting with a suspicious malignant cystic pelvic 

tumor. Additionally the newly introduced ROMA score was validated, and cut 

off values for HE4 was estimated for best performance in our study population;     

373 were included in the analysis, 215 benign, 45 borderline tumors and 113 

EOC. 

 

Levels of HE4 significantly (p<0.001) differed between benign and stage I EOC 

as well as for all EOC, with increased levels in EOC. Borderline tumors were 

not significant, except in the postmenopausal women (p<0.05). The dual marker 

combination and ROMA were highly significant (p<0.001) in all comparisons, 

but with lower stringency (p<0.05) for benign vs. premenopausal stage I EOC. 

The best diagnostic prediction, differing between benign and malign cyst was 

presented by ROMA and CA125 (ROC AUC 0.87 respectively), followed by the 

combination of CA125 and HE4 (AUC 0.85), and HE4 alone (AUC 0.84). The 

estimated cut-off value for HE4 was 85pM calculated at a specificity of 75% 

according to Moore et al. [154], and the cut-off for positive diagnosis by CA125 

was set at 35U/mL (specificity 80%), which resulted in a sensitivity of 78% and 

82 % for HE4 and CA125 respectively. However, when using the cut-off value 

of 70pM for HE4, introduced by Moore, we achieved a sensitivity of 88% and 
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specificity of only 57%. Threshold value may vary depending upon the study 

population. Characteristics of the study population were different from the study 

performed by Moore, which as well included borderline tumors in the analysis. 

Our population included high proportion of postmenopausal women in the 

benign cohort (74% compared to 43%), high percent of women with EOC (42% 

vs. 27%) and high percent of early stage tumors (50% vs. 27%). Therefore, we 

calculated cut-off values for our study population and at 75% specificity, 

accepted as relevant [154]. In our study population, the threshold values for HE4 

in the premenopausal cohort was 71.8 pM and in post menopause 85 pM, and 

for ROMA 17.3%, and ROMA 26.0% respectively. 

 

Table 6. ROC AUC, specificity, sensitivity when using the calculated cut-off values of HE4 and 

ROMA, and commonly used 35U/mL for CA125, comparing benign and malignant EOC, pre-, 

postmenopausal (pre-MP, post-MP), stageI EOC and borderline tumors.  

 

 

ROC AUC (%)
(CI 95%)

Specificity (%) Sensitivity (%)

Malignant (n = 114)

HE4 (85 pM) 84.4 (79.5-89.2) 75 78.1

CA125 (35 U/mL) 86.8 (82.3-91.4) 80 81.6

HE4 and CA125 84.8 (80.1-89.6) 66 88.6

Malignant pre-MP (n = 21)

HE4 (71.8 pM) 82.3 (70.4-94.2) 75 80.9

CA125 (35 U/mL) 84.6 (75.1-94.2) 75 76.2

ROMA (17.3%) 83.1 (71.6-94.7) 75 81.0

Malignant post-MP (n = 

93)

HE4 (85 pM) 84.8 (79.5-90.1) 75 80.6

CA125 (35 U/mL) 87.0 (81.8-92.1) 83 82.8

ROMA (26%) 88.7 (84.2-93.2) 75 87.1

Stage I (n = 47)

HE4 (85 pM) 72.2 (63.4-81.1) 75 59.6

CA125 (35 U/mL) 76.3 (68.1-84.4) 80 61.7

Borderline (n = 45)

HE4 (85 pM) 58.2 (49.6-66.8) 75 35.6

CA125 (35 U/mL) 78.8 (71.8-85.7) 80 62.2
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ROMA revealed best performance to diagnose (AUC 0.89) malignant cysts in 

postmenopausal women, followed by CA125 (AUC 0.87) and HE4 (AUC 0.85).  

ROMA had also the highest sensitivity 87%, compared to 83% and 81% for 

CA125 and HE4 respectively. CA125 had best diagnostic accuracy (AUC 0.85) 

in the premenopausal cohort, followed by HE4 (AUC 0.83) and ROMA (AUC 

0.82). However, HE4 and ROMA had better sensitivity (81% both) than CA125 

(76%) among the premenopausal cohort. CA125 had better capacity (AUC 0.76) 

than HE4 (AUC 0.72) in the diagnosis of stage I EOC (Table 6).  

Cases with marker levels above cut-off levels were considered to have a positive 

test result.  When used in combination the test was positive if one of the markers 

were positive, and negative if both of the markers were negative. The 

combination of HE4 and CA125 resulted in 13 false negative (FN) cases. The 

false positive (FP) benign cases were evenly distributed between the histology 

groups, except in endometriosis where CA125 had higher FP- rate than HE4 

with five of eleven (45%) compared to three of eleven (27%) tested. Negative 

predictive value (NPV) was high (92%), and FN were all in early stage EOC. 

 

CA125 showed generally better performance than HE4 in the differential 

diagnosis between benign or malignant cyst. However, HE4 complemented the 

total diagnostic picture, with higher sensitivity than CA125 (81% respectively 

76% at a set specificity) in the premenopausal cohort. The high age in our study 

population especially within the benign cohort is in favor of CA125, which 

increases with increasing age in contrast to HE4.  
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HE4 and CA125 together showed good capacity to diagnose the aggressive 

type II EOC – Paper V 

 

With regard to the gene and histology-unifying model of type I and type II EOC 

we evaluated the diagnostic performance of HE4 and CA125 in diagnosing 

these tumors in blood from 373 patients presenting with suspicious malignant 

pelvic cysts; 215 benign, 45 borderline tumors and 113 EOC; n=42 type I EOC, 

and  n=71 type II EOC  

 

Type I EOC included 42 tumors (37%); low-grade serous (n=18), low-grade 

endometrioid (n=6) mucinous (n=11) and clear cells cancer (n=7). Type II 

included 71 tumor (63%); high-grade serous (n=54), high-grade endometrioid 

(n=11), and undifferentiated carcinoma (n=6). Type I tumors were more often in 

early stage (69%; n=29) compared to type II (38%; n=27).  

Most of the women with EOC were postmenopausal (81.4%); in type I and type 

II EOC 79% and 83% respectively. The benign cohort included as well high 

proportion (78%) of postmenopausal women.  

Both biomarkers significantly (p<0.001) differed between benign and type I, and 

type II EOC respectively, type I vs. type II EOC, and borderline tumors vs. type 

II EOC. HE4 was significant (p=0.026) but CA125 (p=1.000) was not in 

comparison between borderline tumors and type I EOC. HE4 and CA125 

generated high ROC AUC for type II EOC (0.92 HE4; 0.93 CA125; 0.93 

HE4+CA125), and considerably lower AUC for type I EOC (0.72 HE4; 0.76 

CA125; 0.79 HE4+CA125). The sensitivity for the markers in type II EOC was 

high individually (91.5% HE4, 93% CA125) at a 75% specificity, and improved 

further by using the marker combination (94.4%). Much lower sensitivity was 

found in type I EOC for the markers (54.8%, 71.4%, and 61.9% respectively). 

The highest ROC AUC for the combination HE4 and CA125 was in late stage 

type II EOC (AUC 0.99), and considerable lower in early stage (AUC 0.85). 
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Table 7. HE4 and CA125 levels according to histology, type, stage and menopause status; 

significant differences, ROC AUC and sensitivity at 75% specificity in benign vs. Type I and II. 

 

   
Benign  
n=215  

Type I EOC n=42  Type II EOC n=71 

   
Median 
(range)  

Median 
(range)  

p-value  ROC AUC 
(95%CI)  

Sensitivity    
(%)  

Median 
(range)  

p-value  ROC AUC 
(95%CI)  

Sensitivity  
(%)  

CA125 
35U/mL  

16 53 <0.001  0.76           71.4  395 <0.001  0.93  93 

 
    (8-

3250)  
 (0.68-

0.85)  
 (6-

14880)  
 (0.89-

0.97)  
 

Pre-M  23 40 0.076  0.78  55.6  731 <0.001  0.90  83.3  

         

Post-M  14 64 <0.001  0.76  66.7  327 <0.001  0.93  96.6  

         

Early 
stage*  

 36 <0.001  0.70  62.0  104 <0.001  0.85  81.5  

Late 
stage*  

 194 <0.001  0,9 92.3  564 <0.001  0.98  100 

HE4  66 93 <0.001  0.72          54.8  354 <0.001  0.92        91.5  

 (31-
469)  

(40-
784)  

 (0.63-
0.81)  

 (39-
7933)  

 (0.87-
0.96)  

 

Pre-M 
71.8pM  

57 73 1.0  0.71  55.6  239 <0.001  0.91  91.7  

         

Post-M 
85pM  

69 109 <0.001  0.73  60.6  412 <0.001  0.91  91.5  

         

Early 
stage*  

 74 <0.001  0.66  45.0  132 <0.001  0.81  81.5  

Late 
stage*  

 129 <0.001  0.86  76.9  474 <0.001  0.98  97.7  

HE4 + 
CA125  

  No of 
samples  

% of 0.79  61.9  No of % of 0.93  94.4  

 Type I   samples   Type II  

 
     (0.72-

0.86)  
      (0.89-

0.98)  
  

Pre-M     n=9  -21% 0.80  44.4  n=12  -17% 0.92  83.3  

Post-M   n=33  -79% 0.79  66.7  n=59  -83% 0.94  93.2  

Early 
stage*  

 n=29    0.73  48.3  n=27    0.85  85.2  

Late 
stage*  

 n= 13    0.93  92.3  N=44    0.99  1000 

*According to FIGO Early stage=I+II, Late stage=III+IV; Pre-M/Post-M=pre/postmenopausal  
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In type I  ROC AUC was also higher in late stage (0.93) compared to early stage 

disease (0.73). Type I EOC premenopausal was not significantly different from 

the benign tumors but other combinations were (p< 0.001). 

There were thirteen FN all in early stage. Nine of them were type I EOC (n=5) 

low-grade serous, (n= 2) mucinous, (n=1) endometrioid and (n=1) clear cell 

cancer, and four were type II EOC, and all (n=4) high-grade serous stage I. 

Serous and endometrioid EOC were more easily diagnosed than clear cell and 

mucinous cancer. HE4 and CA125 showed significant difference (p=0.0045, 

p=0.0002) between benign serous and serous type I and serous type II EOC (p= 

0.0001). CA125 but not HE4 were significantly different (p=0.0001 and 0.569) 

in the comparison of serous benign and serous borderline tumors. However, 

HE4 but not CA125 differed (p=0.003 and p=1.0) when comparing serous 

borderline tumors to serous type I, and HE4 but not CA125 were as expected 

significantly different (p=0.0019 and p=0.1380) comparing endometriosis and 

endometrioid EOC. No significant difference was found between benign, 

borderline and EOC according to mucinous histology. 

 

HE4 and CA125 biomarker combination was much better diagnosing type II 

EOC than type I EOC and especially late stage type II EOC (AUC 0.99). 

Menopause status did not affect the diagnostic performance with regard to EOC 

type grouping. 
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DISCUSSION 

 

Early diagnosis- Triage  

Survival of women with EOC is high if diagnosed at an early stage, before its 

metastases to the pelvis and peritoneum, and methods that can improve the early 

detection seem to be a priority option [8]. Proficient radical primary surgery 

performed by experts in the field is another priority option to improve the 

survival of women with EOC [7, 10]. Early diagnostic tumor markers and a 

reliable risk score for triaging patients with EOC to a right level of care is of the 

utmost interest. Women with benign disease can be spared unnecessary radical 

operations and women with EOC will have the opportunity to get the most 

optimal available therapy. In this thesis the focus was on detection of early 

diagnostic markers, by exploring the ovarian cyst fluid, and to find women with 

risk of having EOC by evaluating the newly approved biomarkers HE4, CA125. 

Only women with malignant suspicious ovarian cysts were included in the study 

and evaluated. We state that ovarian cyst fluid is a rich proteome resource with 

huge number of potential early tumor markers that remain to be detected and 

validated [176, 177]. In the differential diagnosis of pelvic cysts HE4 is 

promising to add to the clinical assessment, especially in the premenopausal 

women [178]. HE4 and CA125 had excellent performance in diagnosing 

aggressive late stage type II EOC, but with insufficient ability to diagnose early 

stage type II and generally inferior in type I EOC. Markers specific for the 

different tumor types, according to behavior and histology may improve the 

diagnosis [179].  

 

A clinical dilemma is that a lot of women will be evaluated because of cystic 

pelvic mass under their lifetime and just a few of these women actually have 
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malignant ovarian cyst, and preoperative discrimination between benign, 

borderline and malignant ovarian cyst is really very challenging [112, 120, 180]. 

The smaller cysts in combination with the solid tumors are more often poorly 

differentiated in contrast to the larger cysts [181]. The female anatomy poses a 

challenge as well, with the ovaries and tubes localized deep in the pelvis with 

difficulties in the clinical evaluation [113], and not easily assessable for tissue 

biopsy or cyst fluid sampling without risk of spill or spread of cancer cells 

[182]. However, fine needle biopsy diagnosis is found to be reliable, and is 

accepted to be used in the differential diagnosis of uncertain advanced pelvis 

tumor [183, 184].  Invasive surgical intervention is needed and confirmation of 

the definite diagnosis has to be done by microscopic and complex 

immunohistopathological examination[28]. General screening of the population, 

with low prevalence of the disease, using unreliable testing methods are not 

recommended. Screening with current tools does not help in identifying early 

cases [8]. Anxiety and unnecessary interventions, causing serious harm in 

women who do not have EOC will be highly expensive consequences. However, 

women with known heredity should be informed more thoroughly about the 

risks they have and the prophylactic surgery that could be performed to reduce 

the risk [185]. High suspicion and recognition of potential early symptoms for 

EOC in the primary care providers, with quick and appropriate referral for 

further assessment may improve the diagnostic process [186], and the presence 

of  reliable tumor markers at this instance would facilitate early diagnosis. 

Differential diagnosis and the accurate prediction of EOC in women presenting 

with a suspicious pelvic cyst is of great importance for the chance to get the best 

choice of therapy [10].  

To avoid unnecessary radical operations sensitive tumor specific biomarkers and 

imaging tools are critical in the risk stratification between benign or malignant 

cases [154]. The ultrasound is continuously developing, together with simpler 

models to differ between benign, borderline and malignant tumors, which will 
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surely improve the diagnosis of EOC. Two logistic regressions models (LR1 and 

LR2) for ultrasound scanning included twelve respective six demographic and 

ultrasound variables are highly effective in the hands of experienced ultrasound 

examiner to distinguish between benign and malignant mass. LR1 includes 12 

variables: 1) personal history of ovarian cancer, 2) current hormonal therapy, 3) 

the patients age, 4) maximum diameter of the lesion, 5) pain during 

examination, 6) ascites, 7) blood flow within a solid papillary projection, 8) a 

purely solid tumor, 9) the maximum diameter of the solid component, 10) 

irregular internal cyst walls, 11) acoustic shadows, and 12) color score. LR2 

includes 6 variables: 1) age, 2) ascites, 3) blood flow within a solid papillary 

projection, 4) maximal diameter of the solid component, 5) irregular internal 

cyst walls, and 6) acoustic shadows [187]. Ultrasound examination by an expert 

in the field outperformed CA125, HE4, RMI and ROMA as a secondary test in a 

tertiary centre, in the prediction of cancer when dealing with a known pelvic 

mass [188]. However, ultrasound techniques will always be influenced by the 

skills of its operators and is often, subjective. Additionally experts in 

gynecology or in gynecologic ultrasound are not available in all hospitals or in 

large geographic areas on the countryside in many countries.  

 

In a study performed in the same lab as our study (Paper I),  and using the same 

technique as well, (SELDI-TOF MS) three biomarkers were discovered in 

serum, APOA1 (down-regulated in cancer), a truncated transthyretin (TTR) 

(down-regulated) consistent with our results in cyst fluid [176], and a cleavage 

fragment of inter-alpha-trypsin inhibitor heavy chain H4 (IATIH) (up-regulated) 

were reported to improve the detection of EOC (AUC 74) compared to CA125 

alone (AUC 65 at 97% specificity) [151]. Few years later, five marker panel 

from the same research group, APOA1, TTR, hepcidin (HEPC), β2-

microglobulin (β2M), transferring (TRFR) together with CA125 were included 

into the OVA1 risk score approved by the FDA in September 2009 to be used in 
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the differential diagnosis of pelvic mass in females [153]. However, when 

validated as an early detection marker in pre-diagnostically collected sera the 

OVA1 failed to improve the sensitivity for preclinical diagnosis of CA125 

alone. CA125 was increased in (40 of 65) 61% of samples within 12 months 

prior to diagnosis and  in (8 of 51) 16% more than one year prior to diagnosis 

[189]. This indicates that promising biomarkers should be tested thoroughly in 

an appropriate population before implementation into the clinic; biomarkers that 

aid in the differential diagnosis of a pelvic mass are not necessarily usable for 

screening or early detection. 

 

The immune system is reacting early in the tumor development with increase in 

proinflammatory factors that could be of help in the early diagnostic of EOC 

(Paper II). In a study by Gorelik et al. the inflammatory proteins Interleukin 

(IL)-6, IL-8, epidermal growth factor (EGF), vascular endothelial growth factor 

(VEGF) and monocyte chemoattractant protein-1 (MCP-1) in serum  improved  

the performance of CA125 in diagnosis of early stage EOC (n=45) and resulted 

in 84% sensitivity at 95% specificity when a panel of 24 cytokines and 

chemokines was tested using a novel multiplexed immunobead-based cytokine 

profiling (LabMAP profiling technology) [152]. Palmer et al evaluated fourteen 

candidate blood markers from symptomatic women, both in pre-clinical and 

clinical samples, and reported CA125, HE4, mesothelin (MSLN) and 

metalloproteinase7 (MMP7) as promising diagnostic markers especially for the 

serous EOC, were CA125 and HE4 showed the best performance [98]. An 

increase in concentration of CA125, HE4 and MSLN was even detected one to 

three years before the clinical diagnosis of EOC [190]. These results are 

promising for future research. Intervention is needed prior to progression and 

early detection marker must have the ability to detect the cancer before 

symptomatic and pre-clinical samples can be used to search for novel early 

markers.  Thorough validation of potential biomarkers on appropriate samples is 
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mandatory before clinical application [98, 190]. More sensitive and specific 

biomarkers are needed to find preclinical disease, the small volume tumors not 

detected by ultrasound. These tumor specific markers could be used with more 

accuracy in triage and referral of patient at risk, and in the choice of customized 

treatment to the individual patient [191].  

 

During the last decade, mass spectrometry has obtained a key role in most of the 

proteomic analyses that are focused on identifying cancer biomarkers in human 

serum, making it possible to identify and characterize differently expressed 

proteins or peptides at a molecular level. A major problem confronting the early 

diagnostic has been defining the cell of origin and the early events in the 

etiology of the disease. The knowledge about the different genomic pathways 

that are acting in different types of cancer has culminated and evidently p53 

mutation is present in nearly all the aggressive high-grade serous tumors. The 

genome is highly instable, with focal DNA copy aberrations and promoting 

epigenic changes are common [87]. Since the proteins are products of the 

genetic code, and they drive the processes of the cells, the combination of 

proteomic and genetic knowledge can be used to improve the biomarker 

detection [192].  

 

Ovarian cyst fluid – A biomarker source of the tumor 

microenvironment 

 
The majority of EOC (>85%) cases have combination of cystic and solid 

formations [181]. The cystic compartments are lined with cells derived from the 

ovarian surface, fallopian tube, mesothelial tubal junction and the endometrium 

[14, 18]. The local microenvironment of the tumor might be reflected in the 

ovarian cyst fluid inside the tumor which makes the ovarian cyst fluid an ideal 

medium to use in the early tumor marker research. In this thesis we used three 
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different high power proteomic methods searching for novel biomarkers in 

ovarian cyst fluid for early diagnosis in EOC. Our hypothesis is that early tumor 

markers that are shed and secreted by the tumor cells, ovarian stroma cells, 

inflammatory cells or other proteins involved in early carcinogenesis are more 

likely to be found in proximity to the tumor, in the ovarian cyst fluid in this case, 

rather than in the peripheral blood circulation [172]. We found a huge number of 

proteins, potential tumor markers, differently expressed in benign and malignant 

ovarian cyst fluid. Higher amount of protein were present in the cyst fluid 

compared to blood [176], which is in line with previous studies [169-171, 193]. 

Colleges from Bergen, Norway,  state that access to fluid that reliably reflects 

the local microenvironment enables us to identify substances that can be used in 

early detection and monitoring of disease [194], and colleges from Kentucky 

conclude that ovarian cyst fluid is an “physiologic germane cache of 

differentially expressed ovarian tumor biomarkers” [195]. 

 

Ovarian cyst fluid proteome 

Many proteins are bound to other carrier proteins, and exist in different 

posttranslational modifications, such as glycosylations or phosphorylations. 

High throughput proteomics, including SELDI, have an outstanding advantage 

to examine a huge number of proteins, and reflect their different post-

translational modifications [172]. The two proposed markers APOC-III and PCI 

from our protein profiling resulted in high AUC (0.94) when combined to 

CA125. However, the identity of PCI, with just one peak identification was 

more uncertain after the validation step [176]. PCI harbor extreme 

heterogeneity, is presented in complex bindings together with various proteins, 

and PCI exhibit different glycosylations that will change the proteins appearance 

as well as functionality [196]. The diversity in modifications of proteins detected 

makes difficulties in the identification and quantification in the validation phase. 
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Thus an extremely well characterized, high-affinity antibody, that can detect the 

protein form of interest is needed in the validation [172]. Probably we used an 

antibody in the ELISA analysis which did not detect the specific 

posttranslational modification of the protein desired. The protein peaks 

suggested being PCI perhaps were another potential biomarker. This study was 

done in the early days of SELDI, when peak detection was in the developing 

phase, and without a sequence based identification [197]. Moreover, ovarian 

cyst fluid had not been studied with this technique before. However, our 

significant high abundant protein peaks detected in the ovarian cyst fluid were 

well known in blood and SELDI is capable of differing between diverse 

posttranslational forms [174]. PCI also called plasminogen activator inhibitor 3 

(PAI-3), with recommended name plasma serine protease inhibitor (SerpinA5), 

is beyond coagulation, fertilization and some other regulation processes, 

involved in tumor defense. PCI inhibit tumor invasion by inhibiting urinary 

plasminogen activator (uPA), a mediator of tumor cell invasion, and has been 

found to be decreased in renal cancer [198]. It is the protease activity of PCI that 

inhibits uPA, and additionally suppresses tumor progression independently 

[199]. In a recent study, PCI (SerpinA5) expression in tumor tissue was 

significantly reduced in advanced stage serous EOC when compared with the 

early stage tumors, and lower expression of PCI in borderline tumors was 

associated to more aggressive borderline tumor [200]. Components of the uPA 

system are increased in many cancer types, including EOC, and increased uPA 

has been related to shorter survival of EOC [201]. Activated protein C (APC) 

promotes tumor invasion by endothelial protein C receptor (EPCR) - and 

plasminogen activator receptor-1 (PAR-1) mediated protease activity [199]. 

These studies are in line with our results from the SELDI profiling [176].  

The body fluid proteome is complex and there are significant obstacles in 

proteomics biomarker research. Humans are genetically and environmentally 

diverse. The plasma  proteome is known to harbor extreme dynamic range of 
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protein concentration, and high proportion of abundant proteins that take up 

99% of the proteome, with only 1% left for the more interesting low abundant 

proteins [197, 202].  Higher protein concentration was present in the cyst fluid 

than in the blood; however we had similar problems as in plasma with presence 

of large high abundant proteins that may hide the small tissue specific proteins 

in cyst fluid [176]. The abundant proteins play an important role in the normal 

physiological processes in the body. Albumin, immunoglobulin and transferrin 

comprise more than 70% of the proteome. The other high abundant proteins are 

transport proteins like haptoglobin, transthyretin, lipoproteins; protease and 

protease inhibitors such as clotting factors and alpha-1-antitrypsin; and immune 

response proteins such as complement factors and C- reactive protein (CRP) 

[197]. Most of these abundant proteins are components of the host response 

generated against various pathophysiological conditions, and are often increased 

or decreased in different types of cancer, and are therefore not cancer specific. 

However, different cancer diseases trigger different acute phase response and 

the markers can be in different posttranslational forms even in their earliest 

stages, and can therefore be used as biomarkers in cancer [203]. Significantly 

(p=0.001) decreased expression of albumin were present in serous EOC 

compared to benign samples in the iTRAQ analysis in Paper III [177]. A low 

level of albumin is an ominous sign in ovarian cancer, associated with ascites, 

cachexia and malnutrition. Low levels are associated to short survival (<25 g/l 

median survival of 4.8 months (95% CI 0-13.1 months), whilst levels >35 g/l of 

43.2 months (CI 11.6-20.9), and albumin can be used as a prognostic marker 

[204]. The capacity to heal after surgery is diminished, risk for anastomosis leak 

after colon resection is increased in patients with low levels of albumin, and 

protective colostomy or ileostomy is a better alternative for these patients [205]. 

A challenge to observe is that the proteins are not in a steady state. Individual 

differences are found between patients and their individual proteome profile is 

constantly changing depending on varying conditions. Genetics, environmental 
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and lifestyle factors, coherent diseases, sample collection, processing and 

storage are some examples, that could alter the protein expression [172]. 

Handling the samples should be done according to strict protocol to minimize 

changes of this factor. However, the optimal biomarker have to be robust to be 

able to use in the clinical work [174]. 

Despite of some drawbacks in the validation process and problems with high 

abundant proteins in the ovarian cyst fluid we are convinced that the ovarian 

cyst fluid is an excellent source searching for early tumor biomarkers because of 

the direct connection to the tumor pathology [176, 177].  

 

Ovarian cyst immunoproteome 

There is growing evidence that inflammation and the cross talk between the 

ovarian epithelium and ovarian stroma is involved in the initiation of cancer [44-

46]. More ovulations over a lifetime increases the risk of getting EOC by 

creating an inflammatory microenvironment that favors malignification of cells 

[26]. EOC is related to inflammation with complex network of cytokines and 

chemokines that promote and modulate the tumor progress [71]. For mining the 

inflammatory proteome of the ovarian cyst fluid and aiming to overcome the 

abundant proteins we enriched our selected proteins by using known tumor 

inflammatory antibodies and a direct targeting method in Paper II. We found 

significantly higher presence of pro-inflammatory cytokines, which are low 

abundant proteins, in borderline tumors and early stage EOC in the ovarian cyst 

fluid, than in serum. These findings confirm that inflammation is an early event 

in EOC, and support that ovarian cyst fluid is an excellent source in the search 

for early biomarkers. An interesting finding was the upregulation of MCP-1 in 

early tumorigenesis. Significantly increased levels of MCP-1 were found already 

in the borderline tumors. MCP-1 is one of the key elements of the 

immunological response to malignant growth, mainly via attraction and 
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activation of tumor-associated macrophages (TAMs). TAMs are the major 

players and modulators in cancer related inflammation [49]. Significantly higher 

levels of MCP-1 in serum from ovarian cancer patients have been reported 

[206], but our validation did not confirm any difference in MCP-1 in serum. In 

serum, IL-8 was the only significantly increased chemokine in early stage EOC. 

Other studies have shown increased levels of IL-8 in ovarian cyst fluid, ascites, 

serum and tumor tissue [59, 169, 193, 207, 208]. IL-8 is a multifunctional 

chemokine that interact in all steps in carcinogenesis, inflammation that triggers 

the evolution, growth, proliferation, angiogenesis, invasion, metastasis, and 

chemo- resistance, via inducing intracellular molecular signaling pathways. 

These pathways may be interesting for targeting therapy for controlling the 

progress of the tumor [208, 209]. GROα is like IL-8 pro-inflammatory 

chemokine, with different functionality in different stages of the cancer process 

[210]. To our knowledge GROα has not been analyzed in ovarian cyst fluid 

before. Malignant tumors are able to escape from immune elimination and 

instead cytokines turn on to create environment that favors the tumor. A study 

on fourteen cytokines and growth factors in cyst fluid (GROα not included) 

reported that immunosuppressive state created by ovarian cancer could be 

reflected in the cyst fluid, [61]. The suppressive immune cells directly enhance 

the pathogenesis through the release of various cytokines and chemokines. The 

antibody profile triggered in the course of tumor development may be detected 

in the cyst fluid and used as an immunologic fingerprint of the malignant tumor 

providing information on disease associated proteins that can be used both in 

diagnosis and therapy. Targeting therapy has to focus on preventing the immune 

suppressive state of the microenvironment and to normalize the inflammatory 

state by disrupting critical links in the cytokine networks [46, 211] 
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Ovarian serous cyst fluid proteome  

Serous histology is the most common histology in EOC and responsible for most 

of the deaths in EOC [18]. By investigating only tumors with serous histology 

and the differences in protein levels between benign and malignant tumors we 

might find potential tumor markers that could be used in the diagnosis of EOC. 

In Paper III we used a modern technique, applying isotope-based quantitative 

proteomic to explore the cyst fluid from serous tumors to concentrate only on 

the most deadly tumors. To overcome the problems with high abundant proteins, 

albumin and immunoglobulin were selectively excluded from the samples 

before the proteomic analysis. To better detect individual differences the 

samples were not pooled. In addition to identification of proteins and their 

changes of abundance, a mix of samples can be analyzed under identical 

conditions and with minimal variations between the runs [212]. We identified 

837 proteins in the ovarian cyst fluid, and 32 proteins were differently expressed 

between the serous benign and EOC cysts after further exclusion of some 

immunoglobulins. Astacin-like metalloendopeptidase (ASTL) and serum 

amyloid A4 (SAA4) were selected for validation. Only a few studies using 

iTRAQ in EOC have been done previously. Boylan et al. were the first to do 

immunodepletion prior to the iTRAQ analysis, in the search for biomarkers in 

serum [213], and Gagné et al. studied protein expression in tissue biopsies [214]. 

In a study from Lund, phosphatidylinositide 3-kinases/ protein kinase B 

(PI3K/Akt) signaling pathway, known to induce proliferation and prolong cell 

survival, was described to be the most significant canonical pathway in EOC 

tumorigenesis. Moreover, several targets and effectors of this pathway were 

identified with a help of different proteomic workflows, (iTRAQ/ matrix-

assisted laser desorption (MALDI)-TOF MS/ electrospray ionization - 

quadrupole TOF MS/ MS), and multiple reaction monitoring (MRM) [215]. 

ASTL, an enzyme active in proteolysis found expressed in the ovary [216], was 
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one of the most interesting proteins identified in our screening profiling, with 

the highest fold change and it was highly significantly (p<0.001, FC=8.48) 

decreased in the malignant samples. However, we were not able to verify the 

primary results in the validation experiments. Eventually the specific high-

affinity antibody needed to detect the modification of ASTL in cyst fluid was 

lacking [172, 215]. SAA4, the other protein validated, an acute phase protein, 

had lower significance and fold change (p=004, FC= 1.95) than ASTL, but high 

peptide detection. SAA4 was also one of the significant proteins that showed up 

in the SELDI profiling doing it little more interesting to study further. Increased 

levels of SAA4 were related to tumor progression, in both our SELDI and 

iTRAQ analysis. These results are in line with previous studies on colon cancer 

and EOC, were SAA4 has been suggested to be involved in carcinogenesis, with 

successive increase in expression of SAA4 from early tumorigenesis to more 

advanced stage, but negative in mucinous histology [217-219]. Early detection 

with imaging diagnostics in ovarian cyst fluid is speculative but interesting. 

Perhaps it is possible to label an antibody for SAA4 with nucleotide and then 

screen with PET-like tool, or as decorated SAA4 magnetite nanoparticles [220].  

Statistical relevance and accuracy of proteomic data is supposed to be increased 

by using multiplexing potential as iTRAQ, through the simultaneous analysis of 

labeled different biological samples. These powerful tools are able to assess 

qualitative-quantitative differences in protein profiles between benign and 

cancer cases [175]. A new study done with iTRAQ showed that molecular 

signaling cascades working in EOC pathogenesis can be studied with this 

technique, and tissue-based markers related to specific pathways identified 

[221]. Multiple studies have been done in the search for more potent biomarker 

than the 30 year old marker CA125, and significant potential biomarkers have 

been presented as promising to use in early diagnosis of EOC. Detection 

performance of multiple markers in a panel has resulted in better detection than 

a single marker. By assessing protein expression profiles and post-translational 
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modifications found in health and disease needs to be translated into the clinic, 

and making  it possible to do an appropriate validation [222]. Until recently, the 

majority of biomarker studies are done on patients with clinical disease, and the 

tests are taken before operation. Preclinical testing have shown that CA125 

levels are increased more than a year before diagnosis of EOC [189]. Validation 

in samples taken before clinical disease of promising markers may help in the 

search for early EOC markers.  

Appropriate validation of identified potential biomarkers detected in high 

throughput proteomics is lacking or unsuccessful, and is not only a problem for 

our group [153, 189]. The specific markers desired could be found in the deep 

proteome of the EOC cyst fluid, and need to be identified and translated into 

useable tools in the clinic.  

 

HE4, CA125 and ROMA 

Successful surgery is the mainstay of treatment, with no residual tumor left in 

the end of operation [7, 35]. Appropriate surgery beyond early detection of EOC 

seems to be one of the most important goals to improve patient’s survival and 

quality of life. Referral of patients with suspicious cancer to expert center for 

assessment and therapy will increase their chance to a better prognosis, and for 

the patients with advanced disease it can be crucial to get a better and longer 

lifetime [7]. It is not only the advanced surgery performed that is of importance 

but also the multidisciplinary teamwork in the preoperative planning of therapy, 

during operative activities including qualified surgery and anesthesia, and 

postoperative intensive care [10, 122]. Very few of the markers presented to be 

early biomarkers have come into use in the clinic [172]. CA125 is still in top, 

and now together with the promising biomarker HE4 [138, 178, 179]. The 

algorithm of the dual marker HE4 and CA125 with menopause status in the 
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ROMA score could correctly classify patients with pelvic mass into low or high 

risk of having EOC with 94% sensitivity at 75% specificity [154]. This was the 

background for our study, evaluation of HE4 and CA125, individually, together, 

and in the algorithm with menopause, (ROMA), to differ between benign and 

malignant ovarian cysts [178]. Less than 30% of the women that undergone 

surgery because of suspicious malignant ovarian cyst had EOC (n=113/373) and 

35% if borderline tumors (n=45) were included, and 4% were metastases 

(n=16). ROMA had best diagnostic power in the postmenopausal cohort (AUC 

0.89 vs. 0.83 in premenopausal), whilst lower than in studies, by Van Gorp 

(AUC 0.90 vs. 0.85), and Kalapothara et al. (AUC 94% vs. 0.73) [223, 224]. 

CA125 showed generally better performance than HE4, which is in line with 

Van Gorp et al., but the capacity for HE4 was better than our in differing 

between benign and stage I EOC (AUC CA125 0.75 respective 0.76, and AUC 

HE4 0.77 respective 0.72) [223]. Results from Moore et al. were highly in 

favour of HE4 overall and significantly better than CA125 in the detection of 

stage I (AUC HE4 0.77 and AUC CA125 0.70) [225]. However, in our study 

HE4 was complementary to CA125 in the early diagnosis, and more reliable in 

the younger women with benign disease such as endometriosis, which is in line 

with other studies [135, 154, 223, 224, 226].  

ROMA were reported to be even better than RMI, an algorithm with CA125, 

menopause status and ultrasound [155], to successfully classify these patients ( 

94% vs. 85%  sensitivity for ROMA and  RMI respectively, at a set specificity 

of 75%) [167]. Moore et al. reported higher sensitivity for ROMA in patients 

with early disease (stage I-II EOC) compared to RMI (85% and 65% 

respectively) [167]. Several reportes comparing RMI and ROMA have been 

done, and with conflicting results [167, 223]. In one of the largest ongoing 

prospective studies, the Danish study, RMI and ROMA were reported as equally 

in differing between benign and malignant pelvic masses [191]. HE4 and CA125 

used together was approved by FDA in September 2011 to aid in referring 
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patients likely to have ovarian cancer to specially trained gynecologic 

oncologists for surgery. Younger women (premenopausal) with endometriosis 

are often evaluated because of cystic tumor and HE4 seems promising to use in 

the differential diagnosis of EOC for these patients. In a study by Moore et al., 

1042 women with benign gynecologic disease were evaluated, and HE4 was less 

often elevated than CA125 (8% vs. 29%, P < 0.001), and only 3% of the patients 

with endometriosis had elevated HE4 levels comparing to CA125 in 67% (P < 

0.0001) [135]. CA125 is often increased in normal pregnancy and is not a 

reliable marker in that situation, but HE4 is decreased in pregnancy and could be 

a complement in the diagnostic assessment when dealing with a suspect ovarian 

cyst in pregnancy [134].  

 

Women presenting with a pelvic mass may be classified more correctly using 

the combination of HE4 and CA125 [224].Algorithm including HE4 and CA125 

together with different imaging technique could further improve the early 

diagnosis of EOC. Prospective multicenter study is suggested, and further 

evaluation of the role of the biomarkers, in referral of patients to appropriate 

level of care, is needed [178]. 

 

HE4 and CA125 in type I and type II EOC 

It has been suggested that EOC should be divided with regard to molecular 

genetic changes into slow growing type I, with genetically stable genome 

(somatic mutations), and aggressive type II tumors, with highly unstable genome 

(TP53 and BRCA1/2) [18, 31]. High-grade serous tumors are the most 

threatening and very challenging to diagnose in their early stage, because of 

unclear preclinical lesion, and consequently more often diagnosed in the late 

stages than  type I EOC, which are not seldom detected incidentally at 

gynecologic examination by ultrasound [32, 121]. We tested HE4 and CA125 
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individually and together in the whole study population, and compared benign 

cysts with type I and type II EOC  [179].  

Our results showed as expected that the dual marker combination HE4 and 

CA125 is highly representative for the aggressive type II (AUC 0.93), and 

surprisingly good tool in the diagnosis of aggressive late type II EOC (AUC 

0.99 respective AUC 0.93 type I) [139, 227]. Menopausal status did not affect 

the diagnostic ability of HE4 and CA125 within type I and type II tumors. 

However, higher performance of the markers has been achieved in the 

postmenopausal group in studies comparing benign with all EOC [154, 191, 

223, 224]. The diagnostic capacity in the early stage EOC were not sufficient 

(AUC 0.85 type II vs. AUC 0.73 type I), confirming earlier data, that we lack 

appropriate markers for early stage disease [8], both for the aggressive and the 

slow growing type EOC. We missed to identify thirteen cases (11.5%) out of 

113 EOC (when both markers were false negative) all in early stage; nine 

samples were from the type I group and four were type II EOC, and among the 

six type II EOC included in the study. HE4 could differ benign from borderline 

cysts, but CA125 did, and CA125 could differ between borderline and type I 

EOC, but HE4 did not. Borderline is as earlier mentioned a pre-stage to type I 

EOC [31].  

Our findings support the hypothesis that EOC should be looked upon as several 

different diseases and each histo-type need specific attention in searching and 

validating biomarkers [28, 179]. The great heterogeneity of EOC, explains a part 

of the difficulties in finding early markers [87]. Markers found to be expressed 

in serous and endometrioid EOC are not found in the mucinous and clear cells 

cancer and vise versa [139]. Mucinous and clear cell cancer is often detected by 

ultrasound and these histotypes need specific markers to differ from the benign 

tumors [19, 32]. It is important to diagnose and treat these tumors in an early 

stage, when complete resection is possible, because of their resistance to 
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chemotherapy, and bad prognosis if diagnosed in advanced disease [97, 127]. 

Most of the type II tumors are sensitive to chemotherapy and will get complete 

response after initial treatment. Unfortunately the majority will relapse after a 

median time of 10-18 months [7]. The identification of new biomarkers and 

tools for early diagnosis may also provide new therapeutic targets and strategies 

to overcome the problem with chemo resistance, and improve the patient’s 

outcome. Ovarian cyst fluid seems to be a valuable source also for these 

purposes [177]. 

There is growing body of evidence that some early lesions, implants on the 

ovaries and peritoneum, are metastases coming from the distal fallopian tube or 

endometrial fragments from the uterus via retrograde menstruation, and it has 

recently been suggested that transitional epithelial nests located at the 

tuboperitoneal junction are the origin of mucinous and transitional cell (Brenner) 

tumors. Difference in morphology and diversity in biologic behavior and 

intrinsic gene expression in EOC needs to be respected in future diagnostic 

studies [28, 75].  

 

Considerations - Limitations  

Neither CA125 nor HE4 are specific markers for EOC, both are increased in 

ovarian cancer and in various other malignancies and in benign diseases as well. 

Age is a variable that must be taken into account in the interpretation of their 

results. CA125 levels decrease with increasing age and therefore relative high 

levels are found in healthy young women, whilst HE4 levels does the opposite, 

increase significantly with age [134, 228]. Traditionally the cut-off value of < 35 

U/mL is used when CA125 is studied, but currently no cut-off value has been 

recommended for HE4. According to the manufacturer (Fujirebio Diagnostics 

Inc.), 23 of 347 women (6.6%) have HE4 >150pM. Among healthy women a 
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cut-off value of 70 pM was suggested [154]. In a later study the same author 

used 115 pmol/L for healthy woman as a group, and 89 pmol/L respectively 128 

pmol/L in pre- and post menopause [134]. Different threshold values for HE4, 

pre- respective post- menopausal, and these values may vary depending upon the 

study population [134]. In our thesis the study population is highly selected, 

patients already diagnosed and scheduled to operation for an ovarian cyst at a 

tertiary center. We calculated cut-off for HE4 (premenopausal 71.8 pM and 

postmenopausal 85 pM) and for ROMA (premenopausal 17.3% and 

postmenopausal 26%) for this group, and specificity of 75% was used in line 

with Moore et al. [154]. Recently, in a study of asymptomatic women with high 

risk of EOC, Urban et al. recommend age-specific thresholds for every decade 

based on HE4 levels to achieve 95% specificity, because of significantly rapid 

rise in HE4 after the age of 55, (HE4 ranged from < 41.4 pmol/L for 30 years to 

82.1 pmol/L for 80 years) [165].  

 HE4 is highly dependent on alteration in renal function. In patients with chronic 

kidney disease the levels of HE4 may be elevated without any cancer disease 

present, but CA125 was affected only in patients with severe renal failure [229]. 

In a recent study HE4 was reported to be a fibroblast-derived mediator of renal 

fibrosis [230]. High levels of HE4 should include control of renal status or 

eventually presence of coherent kidney disease, and HE4 results should be 

interpreted cautiously in women with renal disorders. 

Meta-analyses have been done on the diagnostic performance of HE4, CA125 

and ROMA in women with pelvic mass, and some have been in favor of HE4 

and ROMA in identification of ovarian cancer [231-233], and another in favor 

of CA125 but with higher specificity for both HE4 and ROMA [234]. There was 

major heterogeneity in the studies design, size, and number of cases and 

characteristics of the patient populations, cut-off values for HE4, analytical 

methods, and comparisons between groups. Healthy women, alternatively 
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women with benign tumors were compared to EOC, malignant including 

borderline or all malignant tumors, in the different studies. Consequently, the 

interpretation of the diagnostic performance of HE4 and CA125 is varying 

between the different published studies [231-234]. 

Patient’s characteristics in this thesis differ from the normal distribution one 

could expect. The patients were already scheduled for operation because of a 

suspicious cystic ovarian cancer at a center of excellence, and include therefore 

relative low proportion of benign tumors (58%). The factum that we only 

included cystic tumors and only analyzed tumors with ovarian origin, may give 

some explanation for the high proportion of “old women” in the study; 77% of 

the women with benign tumor were postmenopausal respective 81% in the 

malignant group. The healthy “young women” with cysts are planned for 

operation at the “benign” gynecologic team in our hospital, and were therefore 

not invited into the study, whilst the older women, because of their health status 

and coherent diseases, and their general higher risk of actually having an ovarian 

cancer, were planned for operation by surgeons of the gynecologic oncology 

team. High number of postmenopausal women in the benign group favors 

CA125, which generates low levels of CA125 but high levels of HE4, which 

may have implications on the statistical outcome. Solid ovarian tumors were not 

included in the study, and these are more often highly malignant than the large 

cystic tumors [181]. The combination of “old women” with cysts can explain the 

high proportion (50%) of early stage tumors, with 19.5% (22 of 113 EOC)  in 

stage I grade I EOC , and the low percent (63%) of aggressive type II EOC 

compared to studies by Kurman and Braicu (75% and 84% respectively) [18, 

97]. Type I tumors are more often diagnosed in stage I, like in our study 69% 

compared to 38% in type II EOC. Moreover, women with type I are reported to 

be younger than women with type II [97, 235]. However, our type I cohort were 

relative old with 79% in post menopause respective 83% in type II EOC.  
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Pelvic mass is a relevant problem to evaluate in the clinical setting. In the 

present study all benign cystic tumors were included and analyzed, but only 

cystic EOC among the malignant cysts, sixteen metastases were excluded. We 

did not either systematically assess for potential confounders or effect modifiers 

like other diseases, infection, alcohol or medication. The assessment of benign 

disease contra ovarian cancer or ovarian metastasis or other types of malignancy 

localized in the pelvis and abdomen is of more interest than just an ovarian cyst. 

However, the strength of the study includes prospectively and consecutively 

selected samples that are well documented. All samples were taken at the time 

of surgery and the process handling of samples is according to a strict protocol. 

The pathology was analyzed before test result, and PAD was blinded for the 

personal in the laboratory. Our results from proteomics were validated in real 

cases of EOC and not in all malignant or with the borderline tumors, which are 

more like benign cases, included in the malignant group. 
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CONCLUSION 

We could conclude that ovarian cyst fluid can be used in proteomic profiling 

and that ovarian cyst fluid is a promising source for detection of early 

biomarkers for EOC. Inflammation is an early event in tumorigenesis and 

inflammatory response is found in ovarian cyst fluid in early EOC development, 

in contrast the proinflammatory cytokines were not significantly increased in the 

blood circulation until later stage. Abundant proteins, similar to blood were 

present in high amounts in the cyst fluid. By using enriching methods or 

selective depletion the deep proteome may be more transparent. A specific early 

markers found in ovarian cyst fluid could possibly be used as molecular imaging 

targets not only for diagnosis but also in targeted therapy. HE4 and CA125 seem 

to be promising to use in the evaluation of a malignant suspect ovarian cyst. 

HE4 was more specific (negative in patients with endometriosis) than CA125 in 

the benign tumors in premenopausal women, compared to the postmenopausal. 

HE4 complemented CA125 in the prediction of malignancy in ovarian cysts. 

HE4 and CA125 are highly representative for the aggressive type II EOC, but 

failed to properly identify type I EOC tumors. Early diagnosis of ovarian cyst is 

the key to improve survival and quality of life for patients presenting with a 

suspicious ovarian cyst. Correct diagnosis of EOC enables accurate referral of 

patients to specialized tumor centre for evaluating, planning for and 

performance of the best available therapy in women with malignancy, and 

unnecessary extensive operations can be avoided in the benign cohort. HE4 and 

CA125 poorly identify tumors of mucinous subtype. We need specific 

biomarkers for the various heterogenic diseases that EOC presents to be able to 

predict the risk of malignancy in ovarian tumors with more accuracy, and 

ovarian cyst fluid is an excellent source to mine for these markers.  
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FUTURE PERSPECTIVES 

Validation of HE4 and CA125 in women with a pelvic mass in a prospective 

multicenter study in Västa Götaland and Halland  

One of the most urgent lessons from biomarker failures is the lack of validation 

in appropriate samples before reaching the clinic. We validated HE4 and CA125 

in a selected group of women with suspicious malignant cyst already planned for 

surgery. Adding HE4 to CA125 into the preoperative workup of women with a 

pelvic tumor could help in the choice of operative procedures. Minimal invasive 

surgery, such as laparoscopy could be performed in the low risk group, 

alternative to laparotomy with debulking surgery in the group with high risk for 

EOC. Before implementation into the clinic a prospective study in appropriate 

population must be done to further evaluate performance of the markers as a 

triage instrument in patients with a pelvic mass. A prospective multicenter 

study, in the region of Västra-Götaland and Halland has started and will evaluate 

HE4, CA125, RMI and ROMA in a triage of women with pelvic mass. 

Additionally ultrasound pattern together with HE4 and CA125 will be assessed, 

and blood tests will be taken to rule out renal- and heart diseases.  

 

Selection and validation of early serous EOC markers 

 

Several proteins from the iTRAQ-study are of interest for further studies. One of 

them are secreted protein, acidic and rich in cysteine-like 1 (SPARCL1), a 

glycoprotein down-regulated in EOC, and reported to suppress tumor invasion 

in variety of tumor types [236]. S100A8 and A9 (Calgranulin A and B) and 

peroxiredoxin 2 (PRDX2), showed higher expression in the early stage 

compared to late stage tumors. S100A8 and S100A9 are calcium binding 

proteins that inhibit casein kinases I and II essential for phosphorylation of 
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various molecules, which is necessary for normal transcription and translation, 

and have been found increased in EOC and several other tumors [237, 238]. 

PRDX2 is H2O2 antioxidant protein, is located in the cell nucleus and protects 

cancer cells from DNA damage-induced cell death, and is suggested to have 

effect on patient’s survival [239]. PRDX1, a family member to PRDX2 

increased in EOC as well, and has been correlated to poor survival in serous 

tumors [240]. Glucose regulated protein 78 (GRP78), increased in EOC and 

associated to cancer growth and drug resistance. GRP78 is located on the 

surface of cancerous cells, which make it interesting as a target for both 

diagnosis and treatment [241, 242]. Isocitrate dehydrogenase 1 (IDHC1) is 

critical for certain life processes involved in cellular redox homeostasis and 

normal metabolisms has been associated to platinum resistance [243]. 

Interestingly, GRP78 and IDHC1, showed increased expression in both of the 

stage I low-grade serous (type I) tumors included. Low- grade serous EOC is 

generally known to be chemo-resistant, and these markers could be a potential 

target to prevent drug resistance. Triosephosphate isomerase1(TPI1) involved in 

glycolysis and gluconeogenesis, glyceraldehyde-3phosphate dehydrogenase 

(GAPDH) a key enzyme in glycolysis, and triosine 3-monooxygenase 

/tryptophan 5-monooxygenase activation protein, zeta polypeptide (YWHAZ) 

suggesting a role in regulating insulin sensitivity were as well upregulated in the 

stage I low grade type I tumors.  

Studies on biomarkers, identified by iTRAQ in cyst fluid from serous ovarian 

cysts that could differ benign from early stage EOC are ongoing in our group. 

Bioinformatics software, ingenuity pathway analysis (IPA) will be used to select 

markers to go on with. Selected proteins detected in ovarian cyst fluid will be 

validated with multiple reaction monitoring (MRM), a targeted, multiplexed 

assays to screen and quantify proteins in patient plasma samples with high 

sensitivity, absolute specificity and sufficient throughput.   
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Noninvasive reliable tests would be the best of choice 

 

The widespread use of Papanicolaou test (Pap-smear) for early detection of 

cervix cancer leads to reduction in morbidity and mortality from that cancer. 

Cervical brushing often contains neoplastic cells from the ovary or uterus as 

well as cells from cervix, but not enough to be used in diagnosis. A technology 

to detect one mutant template DNA molecular among tens of thousands of 

normal template molecules has been developed by a research group, at John 

Hopkins, Baltimore, USA, (PI Professor. Vogelstein). Genes such as TP53, RAS, 

PIK3CA and ARID1A are mutated in EOC and endometrial cancer and these 

genes can be detected in different biofluids, even when present in small amount. 

The group mentioned above has studied DNA from liquid Pap- smear specimens 

to detect DNA from cells shed from endometrial and ovarian cancer that have 

accumulated in the cervix. EOC was detected in 41% of cases and endometrial 

cancer was 100% detected [244]. A multicenter prospective study is planned to 

be performed, to evaluate the ability of liquid based DNA Pap -smear to detect 

ovarian and endometrial cancer, and our research group will participate in this 

study. Dr. Vogelstein’s group is currently investigating the ovarian cyst fluid 

with the technology described above, with the purpose to develop a clinically 

applicable molecular genetic test for use in the diagnosis of EOC and to guide in 

therapy, in cooperation with our group too.  

 

New surgical technique using specific tissue glue to prevent spill of cyst fluid 

during abdominal surgery and to minimize the operation has recently been 

published [248]. Maybe in near future, it will be generally accepted to use 

minimal invasive needle biopsy or cyst fluid sampling in the preoperative 

diagnosis assessment, if the diagnostic safety and the accuracy of the diagnosis 

are improved. 
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Improvement of biomarkers already detected  

Instead of searching for novel biomarkers, improvement of the diagnostic ability 

of the biomarkers already detected is of interest. The biomarkers are often 

present in various posttranslational isoforms. Glycosylation promoting or 

inhibiting tumor cell invasion and metastasis is of crucial importance in current 

cancer research. Aberrant glycosylation has been observed in EOC and 

identification of potential glycoprotein biomarkers in proximal fluid (tissue 

fluid, ovarian cyst fluid and ascites) of EOC [245]. CA125 has multiple different 

potential glycosylation sites, and differences have been found in N-glycans in 

serum comparing EOC patients and healthy women. Glycosylated state of 

CA125 may provide a more specific detection of EOC, and this may also be true 

for HE4 [246]. We have recently started collaboration, with chemists at the 

University of Gothenburg, and using ovarian cyst fluid with these questions in 

focus. 

 

Imaging and targeting approach is of interest  

Non invasive techniques such as positron emission tomography (PET) or single 

photon emission computerized tomography (SPECT) imaging are useful for 

cancer detection. PET and SPECT imaging shows the chemical function of 

organs and could be used in targeting selected biomarkers found in the ovarian 

cyst fluid. Folate receptor α (FR-α), essential for DNA synthesis is over- 

expressed in 90-95% of EOC. FR-α has been used as a target by tumor specific 

fluorescence imaging in preoperative guidance of tumor distribution improving 

both staging and the ability to complete cytoreductive surgery [247]. 

Targeting approach in therapy is growing, and multiple trials are ongoing. 

Specific biomarkers indicating chemotherapy resistance enables synthesis of 

drugs that can be included into the therapy to overcome the challenge of drug 
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resistance. Magnetic nanoparticles coupled to FR-α to deliver the drugs of 

choice to the specific tumor site, including multiple drug molecules in one 

particle, has been performed in vitro [220]. A hundred of distinct micro-RNAs, 

regulators of genes involved in fundamental cell processes acting in health and 

disease, have been discovered and are promising to be used in targeted therapy. 

Developing therapeutic strategies to restore homeostasis by modifying micro-

RNA expression may prove to be more comprehensive and successful than 

targeting individual genes or proteins, as there are only some miRNAs 

deregulated in cancer [249].  

 

Concluding remarks 

Next generation sequencing, next generation biomarkers, and high throughput 

technologies are continuously developing. Translation of biomarkers detected by 

these technologies and implementation into clinical practice will be in the near 

future. Disease specific markers in a panel with combination of proteins and 

genes, that take into account the great heterogeneity of EOC and the growing 

evidence that atypical lesions from the fallopian tube and uterus might be the 

origin of EOC, will hopefully improve the early diagnosis of the different 

diseases that EOC harbor [28, 179, 250]. Ovarian cyst fluid offers a valuable 

source for future biomarker discovery and possible targets for therapeutic 

intervention [177].  
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SUMMARY IN SWEDISH - SVENSK SAMMANFATTNING 

 

Bakgrund: Äggstockscancer eller epitelial ovarial cancer (EOC) är en av de 

ledande orsakerna till cancerdöd hos kvinnor i västvärden, men om sjukdomen 

upptäcks i sin linda finns det goda möjligheter till bot. Tidig diagnos är en riktig 

utmaning, endast en fjärdedel av tumörerna upptäcks tidigt. Då är cancern 

begränsad till äggstockarna och den relativa 5-års överlevnad är >90%, detta i 

motsats till 20-30% då cancern har spridit sig till bukhålan. Under 2011 fick 676 

kvinnor diagnosen äggstockscancer och 563 kvinnor dog i sjukdomen det året. 

Biomarkörer för tidig diagnos saknas och för att ställa diagnosen är invasiv 

kirurgi inkluderande vävnadsundersökning nödvändig. Avsaknad av prekliniska 

lesioner, ospecifika symptom, samt äggstockarnas svåråtkomliga läge djupt i 

bäckenet bidrar till den sena upptäckten av sjukdomen. Tidig diagnos är 

avgörande för förbättrad överlevnad, då tidig och rätt diagnos möjliggör bästa 

val av behandling. Operation som utförs på de centra som är specialiserade i 

tumörkirurgi har visad sig minska morbiditet och förbättra överlevnad vid EOC. 

CA125 har sedan 30 år används vid diagnos och uppföljning av EOC, men den 

är tyvärr inte tillförlitlig nog. Trots många års försök att finna någon ersättare 

har ingen presenterats som riktigt uppnår målet. Nyligen godkände FDA CA125 

tillsammans med HE4 en lovande markör, för att användas vid differential 

diagnostik av bäcken tumör hos kvinnor. Specifika biomarkörer kan vara till 

hjälp vid tidig diagnos och vätska i tumörens närområde, som cystvätska från 

ovariet kan innehålla dessa specifika proteiner. 

 

Syfte: Fokus för studierna var att studera möjligheterna för att identifiera nya 

samt att utvärdera redan etablerade biomarkörer för potentiellt användande vid 

tidig diagnos. Studierna utfördes på cystvätska och även på blodprover, från 

kvinnor som opereras för misstänkt äggstockscancer. Ytterligare mål med 
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studierna var att studera etablerade biomarkörers förmåga att skilja benigna from 

maligna tumörer och separera långsamt växande typ I tumörer från de mer 

aggressiva och snabbväxande typ II tumörer. 

Metod – Resultat: Studiepopulationen inkluderade kvinnor med cystisk 

tumör i bäckenet med planerad operation på avdelning för tumörkirurgi SU 

Sahlgrenska. Proverna, både cystvätska och blod, samlades in prospektivt under 

operation och analyserades retrospektivt. Ett urval av högeffektiva proteomik 

metoder användes för att leta nya markörer, medan valideringen av de 

selekterade proteinerna gjordes med ELISA eller Immunoblot. Benigna, 

borderline tumörer och EOC jämfördes, för vilka signifikanta skillnader, ROC 

AUC, cut-off värden, sensitivitet och specificitet beräknades.   

Del I. SELDI-TOF MS (n=192) användes för att utforska hela cystväskans 

proteom, vi kunde då identifiera ApoC-III i kombination med PCI som visade 

god diagnostik förmåga (ROC AUC 0.91%), när CA125 inkluderades stärktes 

den diagnostiska förmågan ytterligare (0.94%).  

Del II. Med Immunoprecipitation MS (n=38) genomsöktes cystvätskans 

immunoproteom. Proteiner kända för att vara involverade i cancer inflammation 

användes för att berika materialet och samtidig komma undan problem med 

proteiner som förekommer i hög koncentration. Två högt signifikanta 

kemokiner, MCP-1 och Il-8, validerades tillsammans med GROα i serum, 

(n=256). MCP-1, Il-8, och GROα visade signifikant högre förekomst i 

cystvätskan än i blod och dessutom upptäcktes skillnader mellan benigna och 

maligna cystor tidigare i cystvätskan än i perifera cirkulationen.    

Del III. Med iTRAQ fokuserade vi på att hitta markörer för serösa EOC, 

studerades skillnader i proteinuttryck mellan benigna (n=5) och maligna serösa 

tumörer (n=10). Två av de 87 signifikanta proteiner, SAA4 och ASTL 

validerades med immunoblot (n=68) i cystvätska och serum. Valideringen 
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stärkte de tidigare fynden då även prover med blandade histologier visade 

signifikant (p=0.001) högre förekoms av SAA4 i cystvätska från EOC jämfört 

med benigna prover.   

Del IV. HE4 och CA125 nivåer i plasma mättes med ELISA och deras förmåga 

att separera benigna cystor och EOC validerades i vårt material (n=374). CA125 

visade generellt bättre diagnostisk förmåga än HE4. Dock kunde man påvisa att 

HE4 kompletterade CA125 i vissa grupper då framförallt bland fertila kvinnor. 

ROMA riskstratifiering visade högst ROC AUC (0.89) och sensitivitet (87 %) i 

post menopaus gruppen. Pre menopaus gruppen hade klart sämre resultat           

(AUC 0.83 och sensitivitet  81 %).  

Del V. HE4 och CA125 validerades (n=373), med EOC uppdelad i typ I och typ 

II.  HE4 och CA125 i kombination, visade bäst förmåga när det gällde att 

upptäcka den aggressiva sorten typ II (AUC 0.93), men var dock inte tillförlitligt 

vid tidig diagnos (AUC 0.85). Våra resultat visar ett betydligt sämre resultat för 

HE4 och CA125 i typ I tumörer (AUC 0.79 och 0.73 för tidiga).  

Konklusion: Cystvätska från äggstockscysta innehåller betydligt högre 

koncentration av proteiner jämfört med blod. Inflammatorisk reaktionen är en 

tidig förändring i cancer utveckling, och förhöjda kemokin nivåer kunde 

identifieras tidigare i cancerprogressen i cystvätskan än i blod, vilket kan vara en 

indikation på att cystvätskan är en utmärkt källa för att identifiera tidiga EOC 

markörer. HE4 uppvisade ett bättre resultat vad det gäller att identifiera 

premenopausal kvinnor med malign cysta, samt kunde bättre särskilja benigna 

tumörer än vad enbart CA125 gjorde. Typ II tumörer upptäcks i hög 

utsträckning med kombinationen HE4 och CA125, men är undermåliga i typ I 

och överlag i tidiga EOC. Våra resultat stödjer att EOC är flera olika sjukdomar 

och vid fortsatta biomarkerstudier ska betraktas som sådan. Vi förespråkar 

därför att en panel med histologispecifika markörer för varje cancertyp kan öka 

möjligheten att göra en tidig diagnos.  
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