

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
Göteborg, Sweden, May 2012

Negotiating Complexity in Test Automation Tool
Support
A Design Research Approach

Bachelor of Science Thesis in Software Engineering and Management

JOAKIM GROSS
KRISTOFER HANSSON ASPMAN

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Negotiating Design Complexity in Test Automation Tool Support

A Design Research Approach

JOAKIM GROSS
KRISTOFER HANSSON ASPMAN

© JOAKIM GROSS, May 2012.
© KRISTOFER HANSSON ASPMAN, May 2012.

Examiner: HELENA HOLMSTRÖM OLSSON

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden May 2012

1

Negotiating Design Complexity in Test Automation Tool Support

A Design Research Approach

Joakim Gross
Department of Computer Science and Engineering

University of Gothenburg
Göteborg, Sweden

gusgrossjo@student.gu.se

Kristofer Hansson Aspman
Department of Computer Science and Engineering

University of Gothenburg
Göteborg, Sweden

k.hansson.aspman@gmail.com

Abstract—Fully realizing the vision of agile processes might

require practical tool support to enable activities like test

driven design, refactoring, and regression testing. In this paper

we will examine in detail, the design process of developing a

test automation framework for a company in need of reducing

time consuming manual testing. By employing an iterative

research process, we will investigate and present what

considerations, in both practice and academia, must be taken

in order to reach a suitable tool design. The depth of the

problem is acknowledged and, as we will see, calls for a

complex design process. This process, along with the

framework design, is comprehensibly described within this

paper. In addition, we will also assess the framework’s

potential impact on the company’s work process.

Keywords-agile testing; test automation; design science

research

1. INTRODUCTION

Within this paper we will report on design science
research (Hevner et al., 2004) conducted in close
collaboration with a company developing in-vehicle
infotainment systems. These systems are designed for user-
interaction, and as such, related testing activities often
involve much manual interaction. At the company, in order
to support the testing activities in agile processes (Fowler
and Highsmith, 2001), a need for a test automation
framework that facilitates automation of user-interaction
dependent tests has been identified. In this study we will
focus on the design of such a framework as well as assess
how such a framework could potentially impact the current
work and development processes.

An increased need for shorter development cycles,
shorter time-to-market, and higher quality assurance, has
resulted in a growing interest in agile development
processes (e.g. Lindvall et al., 2002). Agile allows
companies to be efficient, stay flexible, and stay up-to-date
with the latest technology, while still producing high quality
products (Highsmith and Cockburn, 2001). There are many
reports on the adaption to agile software development
processes in software organizations (e.g. Puleio, 2006;
Shaye, 2008; Moe et al., 2009; Conboy et al., 2011). It is,
however, noteworthy that these studies rarely describe the

activity as smooth and free of challenges. In fact, many case
studies report on challenges and lessons learned when
adapting to agile (e.g. Puleio, 2006; Shaye, 2008; Conboy et
al., 2011). Testing has been identified as one such challenge
and, according to Puleio (2006) and Shaye (2008), it is quite
difficult to address.

As agile development processes gains ground, and with
the number of systems that require user interaction and the
ability to interact with external devices increasing, we argue
that the problems addressed in this paper are highly
relevant. Other organizations that find themselves in similar
situations will benefit from the lessons learned in this paper,
both in respect to the implementation itself, and in what it
enables. An important aspect for the company in this study
is how their product development has been affected by the
previous situation where some tests has been time
consuming. By considering the studied company’s situation
and needs, along with related literature, we will investigate
how a test automation tool is best designed, and how the
complex issues involved can be addressed. Furthermore, we
will evaluate the potential impact on the work process, by
introducing a prototype test automation framework.

The structure of this paper is an adaptation of the
structure suggested by Peffers et al. (2006), made to better
suit the nature of our research setting. Section 2 underlines
the characteristics of the problem and describes the related
literature. In section 3, the essential objectives of a solution
are described along with related work. Section 4 begins with
a presentation of the process used and then proceeds with a
comprehensive report on how our artifact evolved through
iterative design and evaluation phases, within the context of
the studied company. Design considerations are discussed
continuously throughout the section which, eventually,
culminates in a more general discussion on the perceived
usefulness and impact of the artifact. Finally, in section 5,
we present our conclusions and suggest entry points for
future work.

2. PROBLEM IDENTIFICATION

With the intention of outlining the characteristics of the
problems at the studied company we will begin this section
by examining the literature on challenges related to testing

2

procedures within agile methodologies. By the same
reasoning, we will then proceed to investigate the literature
on test automation and along with this present a brief
description of the risks related to the lack of such
automation.

Literature on agile methodologies quite often describes
challenges faced by companies trying to adapt to agile ways
of working (e.g. Moe et al., 2009; Conboy et al., 2011).
Both Puleio (2006) and Shaye (2008) identify testing as the
most daunting task faced by teams involved in such
adaptions. Puleio (2006) recognized that the importance of
automating tests was underestimated by the team described
in his report. The organization reported on by Shaye (2008),
on the other hand, expected testing to be difficult and they
invested much time in approaching it in a proper way. Still,
those involved in the transition faced many challenges, e.g.
when management demanded prioritization of upcoming
releases of the product in development over the construction
of automated regression tests, and having to spend much
time on trying to write test for modules that were not
originally written with product testability in mind.

Within the literature, it has been acknowledged that
testing in general, and automated tests in particular,
becomes a necessity when changes to the code base are
frequent (Coram and Bohner, 2005), for instance when
engaging in the activity of refactoring code (Fowler et al.,
1999), which is a cornerstone in agile methodology (e.g.
Lindvall et al., 2002; Coram and Bohner, 2005). Fowler et
al. (1999) state that with frequent refactoring, equally
frequent testing is necessary as each refactoring made may
introduce defects to the system in question. Thus, an
infrastructure for comprehensive regression testing should
be considered essential for any company claiming to be
agile. The importance of such automated regression testing
is discussed by Sommerville (2007), Coram and Bohner
(2005), and George and Williams (2004), and benefits of
automation are brought up by Shaye (2008) and Sumrell
(2007). Also relevant to that discussion, Fowler et al. (1999)
describes the risks related to the lack of automated tests e.g.
that manually executed tests risk becoming entirely
neglected.

The particular area of regression test automation has
within the research domain of software testing proven
highly relevant to studies of the agile software development
processes (e.g. Coram and Bohner, 2005; Shaye, 2008).
This is mainly because regression testing helps ensure
functionality after a change to the code base has been made
(Coram and Bohner, 2005), thus aids the developers engage
in e.g. refactoring tasks often necessary in order to respond
to changing requirements (Moser et al., 2008). Additionally,
the activity of continuous integration becomes less
challenging as proper automation of tests and frequently
executed regression tests reduce the time spent on both
debugging (Fowler et al., 1999; Coram and Bohner, 2005)
and testing (Berner et al., 2005; Puleio, 2006; Cervantes,
2009). Such automation could, according to Cervantes

(2009), be facilitated by the use of a test automation
framework that is easily extended to support future
functionality.

Furthermore, because manual testing is an expensive
activity, the need for automation increases as testing
becomes more frequent (Berner et al., 2005). Even if there is
a solid regression test suite in place, if the tests involve time
consuming manual interaction (Shaye, 2008; Sumrell,
2007), the tests are at great risk of becoming neglected.
User-interaction dependent systems, e.g. systems that
interface to a multitude of hardware and wireless services,
are thus prone to inadequate quality control.

The practical implications of the literature described in
this section have been identified at the studied company,
within both testing activities and the work process:

Time consuming testing and insufficient quality

assurance: The relatively large amount of tests depending
on manual interaction from a tester has resulted in
infrequent test execution and low test coverage for some
components of the product. In a response to this, the
company has identified a need for simulation of hardware
and user interaction in a way that would enable automation
of such manual tests so that time spent executing manual
tests is reduced.

Insufficient support for agile work processes: To support
the latest in popular services and hardware requires an
ability to respond to rapidly changing requirements. At the
company this, in turn, implies frequent changes to, and
integrations with, the product under development. These
frequent updates to the code base of course have to be
accompanied by as frequent testing to ensure that no new
defects have been introduced to the product. The lack of
sufficient support for automated testing has made such
testing both time consuming and, in some cases, even non-
existent, ultimately impacting responses to change
negatively. Additionally, other agile activities such as that
of refactoring have been obstructed as a result of difficult
and insufficient regression testing, and the company’s test-
driven approach is hindered by the overall difficulties in
designing tests. So, in short, the lack of a support for
automated testing makes it difficult for the employees to
fully engage in agile activities.

3. OBJECTIVES OF A SOLUTION

Based on the problem identification in section 2, it
became apparent that the introduction of a test automation
framework would help addressing some core issues at the
company. The framework would have to provide the means
necessary to increase the amount of test cases possible to
execute automatically, increase the frequency by which
those test cases could be executed, make it easier to write
automated tests, and facilitate refactoring practices. In other
words, we were to provide the developers with the tool
support necessary for increased developer flexibility.

For the design and development of this framework, we
chose an agile process. This allowed iterative work and

suited the study well as iterations were also part of our
research process, and because the development work at the
company already followed an agile process. During our
iterations, a set of quality attributes and requirements was
defined and formulated as objectives of a solution. Based on
both literature and data collected at the company, these
objectives became: To design a test automation framework
that fulfills the requirements that it should [1]
the current systems architecture, [2] facilitate automation of
previously manual tests, and to have the design fulfill the
quality attributes of [3] usability and [4] extend

How these objectives were approached is discussed
thoroughly throughout the Design Iteration Focus Process
(see section 4.2). There we describe in detail how they were
defined from the literature and the data collected during the
design iterations. And, through the detailed description of
our process, a way to meet these objectives, by considering
both the company’s practical needs, and relevant literature,
is presented. It is worth noting that, during implementation,
general literature on development best practices (e.g. Fowler
et al., 1999; Sommerville, 2007; Martin, 2009; McConnell,
2009) acted as our primary source of knowledge as the
specific nature of our implementation made it difficult to
turn to literature in pursuit of specific details of test
framework implementation. The resulting design of section
4 can subsequently be viewed as responding to the problem
identification of section 2, and the design decisions taken to
approach it will be thoroughly described

4. DESIGN ITERATION FOCUS

Hevner et al. (2004) draws on prior work of e.g.
Nunamaker et al. (1991), March and Smith (1995), and
Markus et al. (2002) and use this to propose a research
approach tailored to suit the iterative nature of design
research. In their article they present the
research (DSR) approach and provide the reader with
recommendations on how to conduct research where focus
lies on the design and development of an artifact.

The approach has received much attention (e.g.
2006; Winter, 2008), however, according to Peffers et al.
(2006), without resulting in much actual DSR being
published. Peffers et al. (2006) argue that the lack of a
proper conceptual process and a mental model prevented

Figure 1: The design science research process (DSRP) model as proposed by Peffers et al., (2006).

3

suited the study well as iterations were also part of our
research process, and because the development work at the
company already followed an agile process. During our

attributes and requirements was
defined and formulated as objectives of a solution. Based on
both literature and data collected at the company, these
objectives became: To design a test automation framework
that fulfills the requirements that it should [1] integrate with
the current systems architecture, [2] facilitate automation of
previously manual tests, and to have the design fulfill the
quality attributes of [3] usability and [4] extendibility.

How these objectives were approached is discussed
ly throughout the Design Iteration Focus Process

(see section 4.2). There we describe in detail how they were
defined from the literature and the data collected during the
design iterations. And, through the detailed description of

et these objectives, by considering
both the company’s practical needs, and relevant literature,
is presented. It is worth noting that, during implementation,
general literature on development best practices (e.g. Fowler

rtin, 2009; McConnell,
2009) acted as our primary source of knowledge as the
specific nature of our implementation made it difficult to
turn to literature in pursuit of specific details of test
framework implementation. The resulting design of section

n subsequently be viewed as responding to the problem
and the design decisions taken to

ach it will be thoroughly described.

FOCUS

Hevner et al. (2004) draws on prior work of e.g.
March and Smith (1995), and

Markus et al. (2002) and use this to propose a research
approach tailored to suit the iterative nature of design
research. In their article they present the design science

(DSR) approach and provide the reader with
mmendations on how to conduct research where focus

lies on the design and development of an artifact.
The approach has received much attention (e.g. Gregor,

2006; Winter, 2008), however, according to Peffers et al.
(2006), without resulting in much actual DSR being
published. Peffers et al. (2006) argue that the lack of a
proper conceptual process and a mental model prevented

DSR from gaining the neces
intention of making design science more tangible they
propose the design science research process

The structure, as well as the underlying research process,
of this paper is influenced by the DSRP model. Peffers et al.
(2006) consider their approach to be well
carried out in an iterative manner and where focus lies on
the design of an artifact. However, due to the nature of our
research setting, an adaptation of the DSRP was made. The
original process by Peffers et al., our adapted process, and
the motivation for the adaption are described in the sections
below. From this point on, we refer to the adaption made to
the process as the Design Iteration Focus, and the adapted
process itself as the Design
Towards the end of section 4 there is a discussion and
reflection on the Design Iteration Focus Process.

4.1. The Peffers et al. Design Science Research Process

(DSRP)

The DSRP model proposed by Peffers et al. (2006),
illustrated in figure 1, not only facilitates the reporting of
inherently iterative DSR but also provides a structured way
of executing preparation, design, and evaluation phases. The
model allows for different entry points depending on the
nature of the studied problem and
over certain phases makes it suitable for research focused on
the design and implementation of an artifact.
description of the individual activities follows.

The first two phases of the DSRP, i.e. the
identification & motivation and the
components of figure 1, follows traditional research
processes as they are focused on defining the problem, the
relevance, and a potential solution. Within the succeeding
phases, Design & development, Demon

Evaluation, the artifact is developed, demonstrated so that
feedback can be collected, and then evaluated. Depending
on the outcome of the evaluation phase, the researcher may
go back to redefine the initial objectives of a solution, back
to improve the design of the artifact, or proceed to
communicating the results, for instance by summarizing the
findings in an article to be submitted for publishing in a
scientific journal.

Figure 1: The design science research process (DSRP) model as proposed by Peffers et al., (2006).

DSR from gaining the necessary foothold. With the
intention of making design science more tangible they

design science research process (DSRP) model.
The structure, as well as the underlying research process,

of this paper is influenced by the DSRP model. Peffers et al.
(2006) consider their approach to be well-suited for research
carried out in an iterative manner and where focus lies on
the design of an artifact. However, due to the nature of our
research setting, an adaptation of the DSRP was made. The

s by Peffers et al., our adapted process, and
the motivation for the adaption are described in the sections
below. From this point on, we refer to the adaption made to
the process as the Design Iteration Focus, and the adapted
process itself as the Design Iteration Focus Process.
Towards the end of section 4 there is a discussion and
reflection on the Design Iteration Focus Process.

The Peffers et al. Design Science Research Process

The DSRP model proposed by Peffers et al. (2006),
ure 1, not only facilitates the reporting of

inherently iterative DSR but also provides a structured way
of executing preparation, design, and evaluation phases. The
model allows for different entry points depending on the
nature of the studied problem and the possibility to iterate
over certain phases makes it suitable for research focused on
the design and implementation of an artifact. A brief
description of the individual activities follows.

The first two phases of the DSRP, i.e. the Problem

and the Objectives of a solution
components of figure 1, follows traditional research
processes as they are focused on defining the problem, the
relevance, and a potential solution. Within the succeeding

Design & development, Demonstration, and
the artifact is developed, demonstrated so that

feedback can be collected, and then evaluated. Depending
on the outcome of the evaluation phase, the researcher may
go back to redefine the initial objectives of a solution, back

improve the design of the artifact, or proceed to
communicating the results, for instance by summarizing the
findings in an article to be submitted for publishing in a

Figure 1: The design science research process (DSRP) model as proposed by Peffers et al., (2006).

4.2. Design Iteration Focus Process

The demonstration context (Peffers et al., 2006) of this
study is given by the nature of the study itself. The study
has been carried out on site at the company, with us having
continuous access to the employees and
part in everyday activities. The design and development,
and evaluation activities therefore became an integral part of
everyday work, and demonstrations of partly implemented
design, ideas, strategies, and concepts, could be done on a
daily basis. In addition, a meeting structure with the specific
purpose of demonstrating and evaluating the design was
used. Given these conditions, and our interpretation of the
DSRP model, we considered it more practical for this study
to incorporate the Design & development

phases with the Demonstration phase. For this reason, we
chose to adapt the process from Peffers et al. (2006),
resulting in a process better suited to the nature of this study
(see figure 2).

Our Design Iteration Focus Process places the
development and the Evaluation phase, along with an
emphasis on the frequent iterations between these, within
the demonstration context. This differs from the original
model of the DSRP, where Demonstration

phase positioned between the other two, and where the
phases are carried out sequentially, cf
4.2.1 describes the demonstration context in this study, and
section 4.2.2 describes the design and evaluation process
with related discussions.

4.2.1. Demonstration Context

 The demonstration context of this study consisted of, and
was defined by: [1] The physical setting along with the daily
workflow of our research and workflow of the company
employees, and [2] the meeting structure and other
demonstration activities used to continuously evaluate the
design.

Setting and workflow: During the four month period in
which this study took place, we were situated on
company main office together with the employees. This
gave us the opportunity for continuous evaluation of the

Figure 2: The Design Iteration Focus Process, where the demonstration context is part of

and Evaluation is carried out in focused iterations, the Design Iteration Focus. The process is a modification of the proc

4

The demonstration context (Peffers et al., 2006) of this
study is given by the nature of the study itself. The study
has been carried out on site at the company, with us having
continuous access to the employees and the ability to take
part in everyday activities. The design and development,
and evaluation activities therefore became an integral part of
everyday work, and demonstrations of partly implemented
design, ideas, strategies, and concepts, could be done on a

y basis. In addition, a meeting structure with the specific
purpose of demonstrating and evaluating the design was
used. Given these conditions, and our interpretation of the
DSRP model, we considered it more practical for this study

ign & development, and Evaluation
phase. For this reason, we

chose to adapt the process from Peffers et al. (2006),
resulting in a process better suited to the nature of this study

places the Design &

phase, along with an
emphasis on the frequent iterations between these, within
the demonstration context. This differs from the original

Demonstration is a separate
itioned between the other two, and where the

phases are carried out sequentially, cf. figure 1. Section
4.2.1 describes the demonstration context in this study, and
section 4.2.2 describes the design and evaluation process

The demonstration context of this study consisted of, and
was defined by: [1] The physical setting along with the daily
workflow of our research and workflow of the company
employees, and [2] the meeting structure and other

tivities used to continuously evaluate the

During the four month period in
which this study took place, we were situated on-site at the
company main office together with the employees. This

us evaluation of the

design, as feedback was always accessible. Partly, feedback
was gathered during many informal meetings with the
employees, typically during normal breaks from work, or by
asking for quick feedback as the need arose.

Demonstration activities:

formal demonstration and evaluation took place was agreed
upon with the company. The meetings were our primary
source of structured evaluation and a part of the research
workflow. The intention was to have meetings once a
with one senior developer and, when needed, a project
manager as well. However, the dynamic workflow of our
own research, as well as the company’s own dynamic daily
work, required this structure to be flexible. Moreover, the
state of the design also influenced the meetings, both in
schedule and content. During the initial design and
evaluation iterations, frequent meetings were held to define
business needs and core requirements and quality attributes.
As these issues became better understood, the obje

a solution could be formulated. And as the definitions of
these objectives settled, the design iterations and meetings
became more focused on design and evaluation of specific
issues in order to meet the objectives. Towards the later
stages of the study, we held demonstration sessions with all
five employed developers and a project manager. The
sessions were semi structured and conducted with one
participant at a time. Each session started with us presenting
the framework and then continued with u
participant. During the sessions, the participants were free to
try out the framework for themselves. Interview notes,
meeting notes, and field notes from all these occasions were
kept and analyzed as part of continuous evaluation.

In the sections below, we refer to the software system
currently in place at the company, i.e. the system to be
tested, as the current system. The prototype test automation
framework that we have developed as part of this study is
referred to as the framework.

Figure 2: The Design Iteration Focus Process, where the demonstration context is part of the setting in which Design

and Evaluation is carried out in focused iterations, the Design Iteration Focus. The process is a modification of the proc

by Peffers et al. (2006).

design, as feedback was always accessible. Partly, feedback
was gathered during many informal meetings with the
employees, typically during normal breaks from work, or by
asking for quick feedback as the need arose.

vities: A meeting structure where
formal demonstration and evaluation took place was agreed
upon with the company. The meetings were our primary
source of structured evaluation and a part of the research
workflow. The intention was to have meetings once a week
with one senior developer and, when needed, a project
manager as well. However, the dynamic workflow of our
own research, as well as the company’s own dynamic daily
work, required this structure to be flexible. Moreover, the

nfluenced the meetings, both in
schedule and content. During the initial design and
evaluation iterations, frequent meetings were held to define
business needs and core requirements and quality attributes.
As these issues became better understood, the objectives of

a solution could be formulated. And as the definitions of
these objectives settled, the design iterations and meetings
became more focused on design and evaluation of specific
issues in order to meet the objectives. Towards the later

e study, we held demonstration sessions with all
five employed developers and a project manager. The
sessions were semi structured and conducted with one
participant at a time. Each session started with us presenting
the framework and then continued with us interviewing the
participant. During the sessions, the participants were free to
try out the framework for themselves. Interview notes,
meeting notes, and field notes from all these occasions were
kept and analyzed as part of continuous evaluation.

In the sections below, we refer to the software system
currently in place at the company, i.e. the system to be

. The prototype test automation
framework that we have developed as part of this study is

.

the setting in which Design & Development,

and Evaluation is carried out in focused iterations, the Design Iteration Focus. The process is a modification of the process described

4.2.2. Design and Evaluation Iteration

Due to the exploratory nature of our research process we
anticipated frequent changes to the requirements to be
implemented in the design (Sommerville, 2007). This
contributed to our decision to use an agile process
development activities because, as McConnell (2009) also
acknowledges, choosing an agile process maximizes the
ability to respond to changes. The development process
followed a structure of sprints, which was useful for
planning and prioritization purposes. However, the actual
design and evaluation iterations were not necessarily limited
or scheduled according to the sprints. Rather, the various
design issues were iterated when appropriate, some issues
more often than others depending on evaluation resu
during the iterations. In practice, there was no reason for us
to separate the design and evaluation iterations as part of the
research process, and the design and evaluation iterations
inherent in our agile development process. During this
study, these two iteration concepts served the same purpose,
and are both a part of the Design Iteration

Recognizing the importance of understanding the
business needs of the studied company, in order to reduce
the risk of not capturing all relevant quality at
requirements (Bass et al., 2003; Clements and Bass, 2010),
we used the initial design iterations to define the problem at
hand. This also reduced the risk of implementing a design
based on faulty prerequisites (McConnell, 2009) and helped
defining the quality attributes and requirements that served
as a basis for our objectives of a solution. These objectives
were refined during subsequent iterations and discussed
whenever needed. However, as the study progressed, the
objectives became increasingly stable and iterations were
instead more focused on specific design features.

The specific design features of the implementation, along
with related design and development tasks, were derived
from use cases based on the objectives of a solution. These
use cases were described from a users perspective, where
the intended primary user was a developer writing tests for
the current system. The bulk of the time spent during this
study, was spent on these key design features, their
definition, design, and evolution through the
Iteration Focus Process.

During the design iterations, we turned to literature on
various subjects to find support for our
business problem, how the identified quality attributes and
requirements could be implemented, and for general best
design practices. At times, decisions were made by us in the
role of developers, rather than researchers, in order to keep a
momentum in daily work and drive the design. This means
that all detailed design choices made, are n
found specifically in the literature, but rather sometimes
based on our own knowledge and experience of software
design.

As described above, we held demonstration sessions
during the later stages of the study. At this point, we
considered the key design features of the framework to be

5

Due to the exploratory nature of our research process we
anticipated frequent changes to the requirements to be
implemented in the design (Sommerville, 2007). This
contributed to our decision to use an agile process for
development activities because, as McConnell (2009) also
acknowledges, choosing an agile process maximizes the
ability to respond to changes. The development process
followed a structure of sprints, which was useful for

oses. However, the actual
design and evaluation iterations were not necessarily limited
or scheduled according to the sprints. Rather, the various
design issues were iterated when appropriate, some issues
more often than others depending on evaluation results
during the iterations. In practice, there was no reason for us
to separate the design and evaluation iterations as part of the
research process, and the design and evaluation iterations
inherent in our agile development process. During this

e two iteration concepts served the same purpose,
teration Focus.

Recognizing the importance of understanding the
business needs of the studied company, in order to reduce
the risk of not capturing all relevant quality attributes and
requirements (Bass et al., 2003; Clements and Bass, 2010),
we used the initial design iterations to define the problem at
hand. This also reduced the risk of implementing a design
based on faulty prerequisites (McConnell, 2009) and helped

ning the quality attributes and requirements that served
as a basis for our objectives of a solution. These objectives
were refined during subsequent iterations and discussed
whenever needed. However, as the study progressed, the

ngly stable and iterations were
instead more focused on specific design features.

The specific design features of the implementation, along
with related design and development tasks, were derived
from use cases based on the objectives of a solution. These
use cases were described from a users perspective, where
the intended primary user was a developer writing tests for
the current system. The bulk of the time spent during this
study, was spent on these key design features, their

lution through the Design

During the design iterations, we turned to literature on
 interpretation of the

business problem, how the identified quality attributes and
lemented, and for general best

design practices. At times, decisions were made by us in the
role of developers, rather than researchers, in order to keep a
momentum in daily work and drive the design. This means
that all detailed design choices made, are not necessarily
found specifically in the literature, but rather sometimes
based on our own knowledge and experience of software

As described above, we held demonstration sessions
during the later stages of the study. At this point, we

e key design features of the framework to be

mature enough for the framework to be used and evaluated
as one tool (rather than as individual components without
proper interfaces and abstraction levels). The purpose of
these sessions was to gather feedback
tool, where a potential user (i.e. a developer at the company)
could use it as intended by the design. This provided us the
opportunity to evaluate quality attributes such as usability
and extendibility, along with general impressions
design through the eyes of a user. During the sessions we
briefly presented the architecture and design, together with
concepts of implemented features, and intended usage. After
the presentation, the participant had the opportunity to use
the framework and become a bit familiarized with it, and
ask questions about the design and intended usage.
Following this, we asked the participant a set of open
questions on perceived usefulness, implications,
applicability in other areas, and how the part
the framework could affect everyday activities.

Figure 3 shows the business needs together with the
quality attributes and requirements forming the objectives of
our solution, and the implemented solution. The design
process of the implemented solution is, along with
important design decisions and the evolution of the

Figure 3: Relation of business needs, quality attributes and

requirements, and the implemented solution.

mature enough for the framework to be used and evaluated
as one tool (rather than as individual components without
proper interfaces and abstraction levels). The purpose of
these sessions was to gather feedback on the framework as a
tool, where a potential user (i.e. a developer at the company)
could use it as intended by the design. This provided us the
opportunity to evaluate quality attributes such as usability

bility, along with general impressions of the
design through the eyes of a user. During the sessions we
briefly presented the architecture and design, together with
concepts of implemented features, and intended usage. After
the presentation, the participant had the opportunity to use

ework and become a bit familiarized with it, and
ask questions about the design and intended usage.
Following this, we asked the participant a set of open-ended
questions on perceived usefulness, implications,
applicability in other areas, and how the participant believed
the framework could affect everyday activities.

he business needs together with the

quality attributes and requirements forming the objectives of
our solution, and the implemented solution. The design
process of the implemented solution is, along with
important design decisions and the evolution of the design

Figure 3: Relation of business needs, quality attributes and

requirements, and the implemented solution.

over iterations, described throughout the rest of this section.
First, the initial design decisions related to the fundamental
choices are described. These choices were not iterated in the
same manner as the other design features, but are still
important, and therefore they are presented together as a
separate ‘feature’. Following this, the key design features
that were iterated through the Design Iteration Focus
Process are described. Towards the end of the section, the
final evaluation of the framework as a tool is presented.

Initial Design Considerations

The objectives of our solution to the problem identified in
section 2 of course played an important role during all
design iterations. Initially, though, design considerations
were mostly influenced by two of the objectives;
with current system and usability respectively.

Early evaluation showed that if it is possible to integrate
the framework with the current system’s architecture, it is
more likely to be useful. Thus, even though
put no constraints on particular technology to be used, we
chose to align the framework architecture with the overall
architecture of the current system. This alignment allowed
the framework to fit as a part of a combined architecture
without changes to the current system. The framework
attaches to the current system’s integration layer as an
integral part of the same software, rather than having its
own integration layer (see figure 4). The framework is,
however, a separate system running in i
inter-process communication (IPC) between the integration
layer and the framework is realized by D
same way as the integration layer communicates with the
current system over D-Bus. Subsequently, as these design
decisions together enabled integration they also contributed
to fulfilling the objectives described in section 3.

1 For a description of the D-Bus inter-process communication
system, see Love (2005).

Figure 4: The alignment of technology of the current system

and the test automation framework.

6

over iterations, described throughout the rest of this section.
First, the initial design decisions related to the fundamental
choices are described. These choices were not iterated in the
same manner as the other design features, but are still

rtant, and therefore they are presented together as a
separate ‘feature’. Following this, the key design features

through the Design Iteration Focus
Process are described. Towards the end of the section, the

framework as a tool is presented.

The objectives of our solution to the problem identified in
section 2 of course played an important role during all
design iterations. Initially, though, design considerations

uenced by two of the objectives; integration

respectively.
Early evaluation showed that if it is possible to integrate

the framework with the current system’s architecture, it is
more likely to be useful. Thus, even though the company
put no constraints on particular technology to be used, we
chose to align the framework architecture with the overall
architecture of the current system. This alignment allowed
the framework to fit as a part of a combined architecture

changes to the current system. The framework
s integration layer as an

integral part of the same software, rather than having its
own integration layer (see figure 4). The framework is,
however, a separate system running in its own process. The

process communication (IPC) between the integration
layer and the framework is realized by D-Bus1 calls, in the
same way as the integration layer communicates with the

Bus. Subsequently, as these design
ions together enabled integration they also contributed

to fulfilling the objectives described in section 3.

process communication

Moreover, for the framework to be useful, it should be
deployable on the same platforms as the current system and
should also introduce as few new dependencies and
constraints as possible. In addition, to avoid creating
negative impact on productivity, any writing of code as part
of the normal usage of the framework should be in a
familiar language (Finsterwalder, 2001; Boehm et al., cited
in McConnell, 2009, p. 62), i.e. the test code for the
framework should be writte
current tests. Likewise, any future extensions to the
framework should be easily added by the company’s
developers. For these reasons, we chose to implement the
framework in the programming languages used in the
current system. This meant we implemented the framework
in Python and Qt/C++, running on a Linux kernel,
ultimately increasing usability and, thus, kept the usability
objective of section 3 in consideration.

Plugins and Back-ends

With the current system relying heavily
hardware devices and wireless services, our framework was
required to be highly modular so that simulation of existing
and new technology could be easily added and managed. As
a response to this requirement, expressed as extendi
within the objectives of a solution in section 3, the proposed
architecture for our system featured, already at an early
stage, a plugin-based design (see figure 5). In the figure, a
plugin refers to an item with a set of properties that defines
a state. Examples of such items include Bluetooth adapters
or remote Bluetooth devices, audio streaming services,
social networking services, and storage media such as USB
flash drives. The purpose of the back
the state of the plugin.

Because the current system interfaces to a wide variety of
hardware and wireless services through D
implement our back-ends as D
user of the framework is however not restricted to using this
particular service. If the back
may very well be re-used, and if effort is put into creating a
large pool of back-ends, quite complex simulations could be

Figure 5: Internal architecture of the test automation framework

Figure 4: The alignment of technology of the current system

and the test automation framework.

Moreover, for the framework to be useful, it should be
deployable on the same platforms as the current system and
should also introduce as few new dependencies and
constraints as possible. In addition, to avoid creating a
negative impact on productivity, any writing of code as part
of the normal usage of the framework should be in a
familiar language (Finsterwalder, 2001; Boehm et al., cited
in McConnell, 2009, p. 62), i.e. the test code for the
framework should be written in the same language as the
current tests. Likewise, any future extensions to the
framework should be easily added by the company’s
developers. For these reasons, we chose to implement the
framework in the programming languages used in the

. This meant we implemented the framework
in Python and Qt/C++, running on a Linux kernel,
ultimately increasing usability and, thus, kept the usability
objective of section 3 in consideration.

With the current system relying heavily on a multitude of
hardware devices and wireless services, our framework was
required to be highly modular so that simulation of existing
and new technology could be easily added and managed. As

equirement, expressed as extendibility
hin the objectives of a solution in section 3, the proposed

architecture for our system featured, already at an early
based design (see figure 5). In the figure, a

plugin refers to an item with a set of properties that defines
ples of such items include Bluetooth adapters

or remote Bluetooth devices, audio streaming services,
social networking services, and storage media such as USB
flash drives. The purpose of the back-end, then, is to expose

Because the current system interfaces to a wide variety of

hardware and wireless services through D-Bus, we chose to
ends as D-Bus services as well. The

user of the framework is however not restricted to using this
particular service. If the back-ends are cleverly built they

used, and if effort is put into creating a
uite complex simulations could be

Figure 5: Internal architecture of the test automation framework

7

made possible. The evolution of the plugin and back-end
components is presented in table 1.

During design, the extendibility and usability quality
attributes were constantly kept in consideration. Ultimately,
this resulted in easily implemented, highly extendable
components with very few constraints. In fact, the only
constraints on the two components were that they had to be
Python modules, and that the plugin has to implement a
specific set of methods for it to be recognized by the
framework as a plugin. In effect, the level of complexity
within the plugin and back-end modules scales along with
the developer’s needs. Potentially desirable features of the
plugin and back-end, e.g. plugin inheritance or parallel
execution of back-ends, could thus be easily added. As
mentioned by McConnell (2009), leaving such doors open

preserves modularity, and in our case this in turn promotes a
higher degree of extendibility.

By using the recorder tool (see table 3), the state of real
devices or services could be captured and then loaded into
the plugin, thus increasing the level of authenticity of the
plugin’s properties while at the same time reducing the
demand for specific knowledge from the user. Again, the
implementation of the plugin states is not restricted to the
use of the properties captured by the recorder tool; the
recorder tool merely facilitates the capturing of these.
Moreover, the validity of our simulated plugins and back-
ends was confirmed through both code coverage reports and
by analysis of the current system’s response. The tasks of
verification and validation were then continuously carried
out during all consecutive design iterations to ensure that
functionality had not been skewed.

Plugins and back-ends Design Evaluation

Iteration 1
Rough design

A plugin-based architecture is proposed. Plugins represent

simulated devices, e.g. USB flash drives, and back-ends

represent e.g. simulated drivers or D-Bus interfaces.

A test engine (see table 2), with the responsibility to connect
the two components is suggested.

The proposed architecture is considered to be in alignment

with what the company had envisioned. Developers at the

company are curious to see a first prototype.

Iteration 2
First prototype

A simulation of the D-Bus UDisks2 interface is implemented

as a back-end service and exposed on the D-Bus session bus
instead of the system bus as the real interface is. The plugin

holds a limited set of properties possible to expose through

the simulated back-end service.

All communication between the two components is done via

the test engine.

The response to the simulated back-end from the current

system is similar to the response to the real back-end. The
approach is considered to be working as expected but back-

end services needs refinement.

Iteration 3
Refining the design of
the backend service

The implementation of the recorder tool (see table 3)

facilitates further development of the back-end service. By
using the tool, expected back-end behavior is identified and

can then be implemented.

The set of properties of a block device are recorded from

UDisks and used as properties in the plugin device.

The current system is tested with simple scripts that, via the

engine initializes the back-end service and the plugin,
simulates the insertion and removal of a simulated USB

flash drive.

The current system responds in the same way as with real

hardware and code coverage reports from the related
modules are generated, showing that the same code is

executed in both situations.

Design needs to be tested in other contexts than UDisks.

Iteration 4
Simulating BlueZ

Bluetooth adapter and device plugins as well as a simulated

back-end of the D-Bus interface to the BlueZ3 Bluetooth

stack are implemented.

The kinship relationships between Bluetooth adapter,

devices and services demand that plugins and back-ends

have more knowledge of each other.

Iteration 5
Plugin and back-end
knowledge

The test engine’s responsibility to route traffic between
plugin and back-end is removed. Plugin and back-end now
communicates directly with each other, and the functionality
to add children to a back-end or plugin is implemented.

Responsibilities of the components are ambiguous. There is
a need to clearly define these.

Iteration 6
Separating

responsibilities

A major redesign of the components is done. The plugin is

now the only component with knowledge of the back-end.

Evaluated as part of a complete tool, see table 5.

Table 1: The evolution of the plugin and back-end components.

2 The UDisks interface is described in Freedesktop.org (2012)
3 For a description of the BlueZ D-Bus interface, see Holtmann (2006).

8

Test Engine Design Evaluation

Iteration 1
Rough design

A test engine to drive and manage the tests is conceived.
The test engine only manages the initialization and removal
of plugin/back-end pairs.

There is a need to be able to specify timing in the test code, in
order to write more useful tests, especially for tests other than
‘happy path’ scenarios. Specified timing gives opportunity to
drive tests in a way more similar to real events.

Iteration 2
Events specified in
test code

The manager responsibilities in the test engine are put in a
separate module. The test engine now understands timing
and the simulation of events are decoupled from the
manager part of the framework.

The new test engine design allows more control of the test to be
put in the test code and XML. There is still partial plugin and
back-end logic implemented in the test engine. For example,
when test engine removes a plugin, it also tells the
corresponding back-end to take appropriate actions.

Iteration 3
Test engine becomes
generic

The test engine only tells plugins to change state, and adds
and removes plugin/back-end pairs by interaction with the
manager. No logic of what this means to the plugin/back-
end pairs is in the test engine or manager.

Evaluated as part of a complete tool, see table 5.

Table 2: Evolution of the test engine.

Test Engine

As already mentioned, for the framework to be useful as
a tool supporting the agile work process, it needed to be
designed with future extension in mind (see section Hiding

of detail for more discussion on this). This extendibility
objective has been a major driver in the evolution of the
engine and its related modules. Considering the functional
requirement of test automation, the test engine is the core
part of the framework that allows tests to be run as defined
by an external source, allowing for automation. The generic
nature of the engine design means that this external source
could be implemented as an XML file, but the module
parsing the XML could just as well be made to parse any
other data format. Table 2 describes the evolution of the test
engine through the Design Iteration Focus Process.

To design with extendibility in mind meant that logic
related to the behavior of the plugins and back-ends, and all
things with a design specific for a certain type of test,
needed to be removed from the core parts of the framework,
i.e. the engine and manager. Otherwise, changes in the
design of above mentioned parts, i.e. extension of the
framework, would risk having ripple effects through the
whole framework. The separation of concerns by
decoupling the engine from the plugins and back-ends,
allows the user writing tests to ignore internal details of the
engine, thus playing a part in providing usability in the
framework.

Along with the aforementioned plugin component, the
test engine also provides the means necessary to model
hardware devices and wireless services as state machines.
We want to emphasize though, that this depends on how the
user decides to implement the plugin and the external source
driving the test engine. The use of state machines in testing
frameworks has been studied in other contexts where the
product to be tested also relies heavily on user interaction.
For instance, Memon et al. (2003) describe a test framework
for GUI testing that utilizes concepts similar to state
machines in order to identify the allowed state transitions of
a GUI-based application.

Recorder tool

The plugin properties and the complex relationships
between these could potentially demand much knowledge
from the user writing tests. We experienced already at an
early stage the difficulties of knowing when a property
should be changed and what behavior this should trigger.
With the desired usability quality attribute in mind, we
complemented our framework with a recorder tool able to
record the states of an actual device or service, so that the
user could easily record the sometimes quite complex set of
properties and relations between these.

The role of the recorder tool was further incorporated into
the testing framework, though still as a standalone tool, and
ultimately it supported the possibilities to record an entire
script, including temporal aspects of e.g.
mounting/unmounting a block device partition or
pairing/unpairing with a Bluetooth device, for both the
UDisks daemon and the BlueZ daemon for the Linux
Bluetooth stack. The outputted XML script could be used as
input to the test engine and as such, drive the sequence of
state transitions forward.

The concept of capturing user interaction is not new.
Indeed, Finsterwalder (2001) describes that, within the field
of GUI testing, it has been common practice to record the
often complex interaction between user and software in
scripts. These scripts are then used to simulate the
interaction during testing. During the design of the recorder
tool, by drawing on the approach from GUI testing, we were
able to hide the complexity of user interaction, triggered
responses, and plugin properties. This, we claim,
contributed to the ease of use of the recorder tool, and thus,
in turn, contributes to the objectives of a solution.
Additionally, the recorder tool not only proved useful to
capture the data described above, but also for exploratory
tasks where the user would only be interested in monitoring
and learning more about e.g. the emitted signals and
triggered responses of a specific D-Bus service.

9

Recorder tool Design Evaluation

Iteration 1
Hardcoded scripts

Scripts that manipulate individual, hardcoded,

properties of a plugin drive the framework.

The design is inflexible and requires the user to have much knowledge of

individual device properties.

During design and implementation of the block device plugin and back-
ends, a need to easily gain knowledge of emitted signals and triggered

responses is identified.

Iteration 2
Signal listener

A simple D-Bus listener is implemented. It
monitors the signals emitted and responses to
method calls from the UDisks D-Bus daemon.

The listener provides the user with readable and easily understood
information on the event sequences.

Possibility to record the actual states of the block devices is desired.

Iteration 3
Recording of states

The listener is improved and now enables the

recording of device properties to file. The files

are used as input for the plugin modules.

The listener is now referred to as the recorder.

The recorder’s output is lacking temporal aspects of state transitions as well

as kinship and causal relationships.

Iteration 4
Capturing temporal

aspects and

relationships

The design is improved and an XML script

defining the temporal, kinship and causal

relationships of the device’s states is now

possible to generate.

The XML script appears to be well suited as input to the test engine. From

test cases it is possible to control when a transition between two states

should occur. However, a need for defining breakpoints within the XML

script is identified.

Iteration 5
Breakpoints

The support for hardcoded breakpoints in
XML script is implemented.

The breakpoints serve their purpose but a discussion on whether it should
be possible to define them already during the run-time of the recorder tool

takes place. It is decided that, by hardcoding breakpoints, the user will

retain control over when they should occur, without introducing more
complexity in the recorder usage.

The recorder tool design needs to be tested for other D-Bus interfaces, e.g.
the BlueZ D-Bus daemon.

Iteration 6
A recorder for the

BlueZ D-Bus daemon

A recorder tool that listens to signals and

triggered responses on the BlueZ D-Bus

interface is implemented.

There is much redundant source code and the tools for UDisks and BlueZ

should share whatever code they have in common.

Iteration 7
Reducing amount of
redundant source code

A component containing source code common

to both tools is implemented.

Evaluated as part of a complete tool, see table 5.

Table 3: Evolution of the recorder tool.

Hiding of Details

The evolution of abstractions, by hiding of details and
separating concerns throughout the design of key features,
has helped reach the quality attributes of usability and
extendibility. Table 4 exemplifies this by highlighting
evolution of abstraction in the recorder tool and test engine.

At times, ideas about potential future application and
usage of the framework, or parts of the framework, were
discussed during the design and evaluation iterations. While
the ideas were largely vague and not possible to fully
explore during our research, we considered extendibility to
be of importance in order to allow for future extension, a
consideration that is supported by Cervantes (2009). In
order to facilitate future possibilities, while not committing
to “design ahead” (McConnell, 2009), we constantly
refactored existing code, keeping abstractions clear, to allow
for easier adaptation later (Fowler et al., 1999; Beck, 2000).

In striving for usability, evaluation showed there was a
need to hide details from the user. While searching for a
good balance between detailed control and usability, the
external API of the framework, the format of the XML,

among other things, went through frequent changes. This in
turn highlighted ripple effects, caused by an initially
convoluted design of the core framework modules, while we
modified the design. In essence, while working with the
functionality, we got the chance to evaluate the extendibility
and modifiability of the framework. This parallel design and
evaluation is also reflected in table 4.

Evaluation of framework as a tool

During the demonstration sessions, general feedback on
the framework as a complete package was gathered, along
with opinions about possibilities, problems, and what else
that came into the mind of the participant. With the intention
of probing further into certain areas of interest, we had a set
of questions asked during all the sessions. The feedback
related to the key design features is summarized in table 5.

The high degree of integrability, the possibility to
capture actual states of devices and services, and the
possibility for the developer to scale plugin and back-end
complexity according to need, enables implementation of
highly authentic simulations. It is important, though, to
emphasize that the level of authenticity, as well as the level

10

Hiding of details Design Evaluation

Iteration 1
Usability: Individual
manipulation of properties

Extendibility: Monolithic
manager module

Usability: Manipulating individual properties trigger plugin
state changes.

Extendibility: The module managing the tests internally to the
framework also contains engine aspects of functionality, e.g.
deciding when state changes should be made in plugins.

Usability: Requires much domain specific knowledge
from the user.

Extendibility: Highly coupled design gives ripple
effects when even minor changes has to be made.

Iteration 2
Usability: Introducing the
recorder

Extendibility: Separation of
concerns

Usability: Recorder reduces the need for knowledge of
specific properties by capturing entire states.

Extendibility: The engine and manager becomes different
modules.

Usability: User still needs to know how timing and
parent and child plugins relates.

Extendibility: A clear separation of concerns makes
changes to functionality and refactoring easier and less
time consuming. Still logic related to plugins and back-
ends in engine.

Iteration 3
Usability: Introducing
XML defined behavior

Extendibility: Reducing

coupling

Usability: Temporal, causal and kinship relationships are
incorporated into the XML. The XML now contains all
necessary details, thus removing the need for detailed domain
specific knowledge when running tests.

Extendibility: Plugin and back-end communication is done
directly without the test engine as a mediator. No logic related
to plugin or back-ends left in engine or manager.

Usability: Evaluated as part of a complete tool, see
table 5.

Extendibility: Evaluated as part of a complete tool, see
table 5.

Table 4: Evolution of abstractions throughout the framework design, exemplified as usability and extendibility.

of automation, depends on how the framework is used, and
of course it is not necessarily entailed by the use of it alone.
Conversely, and as was frequently noted during the
demonstration sessions, the framework could be used to
expose the current system to rare or unnatural behavior, i.e.
“corner cases”, for instance for stress-testing purposes.

Hiding details from the user with the intention of
increasing usability gave rise to some tension between
detailed control and a desire to reduce the amount of
knowledge of implementation details required. For example,
the hiding of D-Bus properties in state files which do not
allow the user to manipulate all details separately, was also
perceived as removing control from the user. The responses

to this were mixed during the demonstration sessions; some
requested more control and some saw the advantages of not
having to learn all the specifics of a device or service to
simulate. Similarly, hiding details which meant that
previously direct method calls in the test code, were
substituted with generic calls to the framework, seemed off-
putting to some developers. The limited scope of this study
leaves it difficult to determine if this perceived loss of
control is due to lack of familiarity with the tool or a
perception that will remain. In any case, keeping all
previous control and level of detail at the hands of the test
writer, would have rendered many of the features that
enables automation impossible.

Key design feature Evaluation

Plugins and back-ends The responsibilities of the modules are considered well-defined. The design is modular, user-friendly and extendable. The
design enables simulation of devices and services, not only for testing purposes, but also for development, e.g. when access
to actual hardware is limited.

Test engine Not having to modify the core components when extending functionality of the framework increases extendibility. In
addition, the test engine’s ability to drive pre-recorded scripts provides opportunities in debugging, testing, and presentation
contexts.

Recorder tool Future suggestions include the incorporation of the two recorders into one tool. Possibilities not considered during the
design iterations are found, e.g. using the recorder when reporting bugs, so that system states and events can be reproduced.
Making the recorder more general could lead to increased usefulness.

Hiding of details Usability: Interfaces and responsibilities are largely evaluated as clear and unambiguous. Some developers do not like the
perceived loss of control in cases where an otherwise direct method call is now substituted by a more generic call to the test
engine. Hiding some test details in XML creates concerns about maintainability and readability.

Extendibility: The generic nature of the engine gives less ripple effect when extending simulation functionality in
plugins/back-ends, or when implementing new plugin/back-ends. The idea of extending the framework in this area is
perceived as easy.

Table 5: Evaluation of the key design features in their final prototype state.

11

A few themes in the concerns of the company have been
emerging from the continuous evaluation during this study.
One concern is that a tool like this kind of framework has to
introduce as little work overhead as possible. Otherwise it
will not be perceived as helpful. An example of this is the
implicit requirement of the framework to be easily
integrated with the current system with as few additional
dependencies as possible. If the framework is perceived by
management and developers as consuming more time than it
helps gain, there is a risk it will not even be used. This also
creates a tension between usefulness and overhead. For
example, if the framework opens up new possibilities, it will
as a consequence require work to exploit, since the
opportunity is new. One way to try and mitigate this tension,
could be to let things be only as complicated as needed. The
minimal requirements the framework places on plugins and
other modules typically modified to extend the frameworks
utility, contributes to a complexity scalability in the
framework design. This scalability implies that a quick
extension of the framework, e.g. for prototyping tasks, can
be produced with minor complexity involved, while a full
simulation of a device could become just as complex as
needed.

During the demonstration sessions, a majority of the
participants agreed that the tool could facilitate regression
testing and automated nightly tests. The participants also
saw how this in turn could impact their current work process
positively, e.g. by provided support for test driven
approaches to design and development. In addition, other
usages of the framework were discussed and several of the
developers, as well as the project manager, envisioned how
the tool could be complemented with a UI from which the
developer could trigger state changes, e.g. the mounting of a
USB flash drive partition, and in turn examine the triggered
system response. Similarly, a UI like that could be used
during presentations of the product, e.g. to show how the
system handles certain resources. Moreover, the role of the
recorder tool was discussed and several of the employees at
the company visualized how it could be further developed
into a debugging tool that also monitors the current system's
response. This was regarded as something potentially useful
in situations where customers need to send bug reports to
the company.

4.2.3. Design and Evaluation Reflection

We have found that a complex design process is essential
to address the problems identified in section 2, the business
needs found during our Design Iteration Focus Process, and
the quality attributes and requirements derived from these.
This complexity is necessary because the literature, on e.g.
agile, merely helps define the problems and goals, while a
practical implementation of a tool is sometimes required to
actually enable people to work as intended. Designing such
tool while considering all relevant issues, demands a design
process that allows design decisions to be iteratively refined,
and that incorporates relevant feedback and analysis. To

address these concerns, we followed our adapted version of
the DSRP (Peffers et al., 2006). Still, even when the
business needs and objectives of a solution have been
defined, the actual process of design is left to deal with, a
process which is full of details that need to be discovered,
and decisions to be made. While developing and designing,
we have had to work extensively as developers within our
own research process, in order to drive the design forward
based on the evaluations made throughout the Design
Iteration Focus Process.

The continuous evaluation throughout our research
process has led to the key design features that, combined,
successfully meet the objectives of a solution described in
section 3. The initial design considerations together with the
evolution of the plugins and back-ends, recorder tool, test
engine, and the hiding of detail feature, all create a way to
meet the quality attributes of extendibility and usability, as
well as the requirements of integration and automation.
Emerging from this continuous evaluation is the tension
between desired functionality and the opportunities it would
create, and the time needed to exploit the new opportunities.
As previously mentioned, the design of the framework
allows things to get as complex as they need to be, but does
not add complexity automatically. In this sense, the
framework in itself does not consume more time, but rather,
the company can choose when there is a need to add
complexity, and consequently spend more time.

By keeping the design modular and extendable, the usage
of the framework for other purposes, e.g. the simulation tool
brought up during the demonstration sessions, could easily
be supported. It is interesting to note how our process may
have contributed to these quite colorful insights from the
employees of the company, i.e. how the continuous
demonstration, design and evaluation has given them time
to reflect and refine their own visions of the framework, and
ultimately present these when opportunity was given during
the demonstration sessions.

5. CONCLUSION

Within this paper we have explored how business needs
related to test automation within agile work processes can
be addressed through careful design of a test automation
framework. The problems giving rise to the business needs,
however, turned out to be rather complex and demanded a
suitable research process that would allow these to be
addressed properly. Much of this paper’s emphasis thus
rests upon the design and evaluation process, and we have
given a comprehensive description of how we planned and
carried out the design science research focused on the
development of a test automation framework. We consider
this detailed description to be a part of our contribution.

Our modified version of the DSRP (Peffers et al., 2006),
which we have referred to as the Design Iteration Focus
Process, enabled us to conduct the research in a setting
where our prototype was continuously demonstrated to, and
evaluated by, its potential users. This, in turn, enabled

12

shorter and more frequent design-and-evaluate cycles
throughout the study, and ultimately resulted in a test
automation framework that fulfilled the quality attributes
and requirements brought forth by the employees of the
company, while still conforming to best-practices described
in the literature. The evaluation of the framework’s potential
impact on the work process at the company could clearly be
helpful to other companies finding themselves in similar
situations.

During the study, the continuous evaluation has also led
to new ideas and insights at the studied company, as to what
other possibilities there might be, compared to the original
purpose of the framework. Our research process, in which
both the studied company’s concerns as well as relevant
literature have been considered, has been efficient in
creating a design well suited to address the defined
problems. However, it becomes apparent that identifying a
need for a tool does not mean that the development and
introduction of such a tool is obvious. An organization with
a need for tool support must also be willing to spend time on
exploiting the opportunities that arise. Still, a design well
suited for the purpose, i.e. a design that has addressed all
necessary concerns, seems more likely to be used.

Suggested entry points for future work include an
examination of the framework’s long term impact on the
agile work process and testing procedures at the company,
and an assessment of how usable the employees at the
company considered the framework to be after working with
it for a period of time. In addition, the extendibility quality
attribute could in a separate study be evaluated by
attempting to extend functionality, for instance by using the
framework for other purposes than those originally
intended, e.g. the implementation and design of a
demonstration UI.

6. REFERENCES
Bass, L., Clements, P., Kazman, R. (2003). Software Architecture in

Practice 2:nd Edition. Addison-Wesley, Boston.

Beck, K. (2000). Extreme Programming Explained: Embrace Change.
Addison-Wesley, Reading.

Berner, S., Weber, R. and Keller, R.K. (2005). Observations and Lessons
Learned from Automated Testing. In: Proceedings of the ICSE’05, May 15
- 21, 2005, pp. 571-579. St. Louis, Missouri, USA.

Cervantes, A. (2009). Exploring the Use of a Test Automation Framework.
In: Proceedings of the 2009 IEEE Aerospace Conference, March 7 – 14,
2009, pp. 1-9. Big Sky, MT, USA.

Clements, P. and Bass, L. (2010). The Business Goals Viewpoint. IEEE

Software, 27(6), pp. 38-45.

Conboy, K., Coyle, S., Wang, X. and Pikkarainen, M. (2011). People Over
Processes: Key Challenges in Agile Development. IEEE Software, 28(4),
pp. 48-57.

Coram, M. and Bohner, S. (2005). The Impact of Agile Methods on
Software Project Management. In: Proceedings of the 12th IEEE

International Conference and Workshops on the Engineering of Computer-

Based Systems (ECBS’05), 4 - 7 April, 2005, pp. 363-370.

Finsterwalder, M. (2001). Automating Acceptance Tests for GUI
Applications in an Extreme Programming Environment. In: Proceedings of

the 2nd International Conference on eXtreme Programming and Flexible

Processes in Software Engineering, pp. 114-117. Addison-Wesley: Boston
MA.

Fowler, M., Beck, K. and Brant, J. (1999). Refactoring: Improving the

Design of Existing Code. Addison-Wesley.

Fowler, M. and Highsmith, J. (2001). The Agile Manifesto. Software

Development, 9(1), pp. 28-32.

Freedesktop.org (2012). Software/udisks. [online] Available at:
<http://www.freedesktop.org/wiki/Software/udisks> [Accessed May 15
2012].

Gregor, S. (2006). The Nature of Theory in Information Systems. MIS

Quarterly, 30(3), pp. 611-642.

Hevner, A.R., March, S.T., Park, J. and Ram, S. (2004). Design Science in
Information Systems Research. MIS Quarterly, 28(1), pp. 75-105.

Holtmann, M. (2006). Playing BlueZ on the D-Bus. In Proceedings of the

Linux Symposium Volume One, 19 - 22 July, 2006, pp. 421-426. Ottawa,
Ontario, Canada.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F.,
Tesoriero, R., Williams, L. and Zelkowitz, M. (2002). Empirical Findings
in Agile Methods. In: Proceedings of the Second XP Universe and First

Agile Universe Conference on Extreme Programming and Agile Methods -

XP/Agile Universe, 4 - 7 August, 2002, pp. 197-207. Chicago, IL, USA.

Love, R. (2005). Get on the D-BUS. [online] Available at:
<http://www.linuxjournal.com/article/7744> [Accessed May 5 2012].

March, S.T., and Smith, G.F. Design and Natural Science Research on
Information Technology. Decision Support Systems, 15(4), pp. 251-266.

Markus, M.L., Majchrzak, A. and Gasser, L. (2002). A Design Theory that
Support Emergent Knowledge Processes. MIS Quarterly, 26(3), pp. 179-
212.

Martin, R., C. (2009). Clean Code: A Handbook of Agile Software

Craftsmanship. Prentice-Hall.

McConnell, S. (2009). Code Complete: A Practical Handbook of Software

Construction 2nd ed. Microsoft Press.

Memon, A., Banerjee, I., Hashmi, N. and Nagarajan, A. (2003). DART: A
Framework for Regression Testing “Nightly/daily Builds” of GUI
Applications. In: Proceedings of the International Conference on Software

Maintenance (ICSM’03), September 22 – 26, 2003, pp. 410-419.
Amsterdam, The Netherlands.

Moe, N.B., Dingsøyr, T. and Dybå, T. (2009). Overcoming Barriers to
Self-Management in Software Teams. IEEE Software, 26(6), pp. 20-26.

Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A. and Succi, G. A Case
Study on the Impact of Refactoring on Quality and Productivity in an Agile
Team.

Nunamaker, J.F., Chen, M. and Purdin, T.D.M. (1991). Systems
Development in Information Systems Research. Journal of Management

Information Systems, 7(3), pp. 89-106.

Peffers, K., Tuunanen, T., Gengler, C.E., Ross, M., Hui, W., Virtanen,
V.,and Bragge, J. (2006). The Design Science Research Process: A Model
for Producing and Presenting Information Systems Research. DESRIST,
24(3), pp. 83-106.

Puleio, M. (2006). How Not to do Agile Testing. In: Proceedings of AGILE

2006 Conference, July 23 - 28, 2006, pp. 305-314. Minneapolis, MN, USA.

Shaye, S.D. (2008). Transitioning a Team to Agile Test Methods. In:
AGILE 2008 Conference, pp. 470-477. IBM, Armonk, NY, USA.

13

Sumrell, M. (2007). From Waterfall to Agile - How does a QA Team
Transition? In: AGILE 2007, pp. 291-295, Misys Healthcare Syst., Raleigh,
NC, USA.

Sommerville, I. (2007). Software Engineering 8:th Edition. Addison-
Wesley, London

Winter, R. (2008). Design science research in Europe. European Journal of

Information Systems. 2008(17), pp. 470-475.

