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Preface 

An agreement has been signed by the Dutch Expert Committee on Occupational 

Safety (DECOS) of the Health Council of the Netherlands and the Nordic Expert 

Group for Criteria Documentation of Health Risks from Chemicals (NEG). The 

purpose of the agreement is to write joint scientific criteria documents, which 

could be used by the national regulatory authorities in both the Netherlands and  

in the Nordic countries. 

The document on aluminium and aluminium compounds has been reviewed  

by DECOS as well as by NEG. The members of both committees are listed in 

Appendix 2. The first draft of this report was prepared by G Schaafsma, S Dekkers, 

WR Leeman, ED Kroese, and JHE Arts from TNO Quality of life, Zeist, the 

Netherlands. The joint document is published separately by DECOS and NEG. 

The NEG version presented herein has been adapted to the requirements of NEG 

and the format of Arbete och Hälsa. The editorial work and technical editing have 

been carried out by Anna-Karin Alexandrie and Jill Järnberg, scientific secretaries 

of NEG, at the Swedish Work Environment Authority. 

NEG is financially supported by the Swedish Work Environment Authority and 

the Norwegian Ministry of Labour. 

 

 

 

 

G. J. Mulder      G. Johanson  

Chairman      Chairman 

DECOS      NEG 
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1. Introduction  

Aluminium is silvery, light, malleable and ductile, and the most abundant metal in 

the earth’s crust. Aluminium is used primarily for metallurgical purposes, especial-

ly to produce Al-based alloy castings and wrought Al. Aluminium compounds are 

found in consumer products such as antacids, astringents, buffered aspirin, food 

additives and antiperspirants.  

The present document on aluminium and aluminium compounds is a co-pro-

duction between the Nordic Expert Group for Criteria Documentation of Health 

Risks from Chemicals (NEG) and the Dutch Expert Committee on Occupational 

Safety (DECOS), hereafter called the committees. The joint document is published 

separately, and according to different formats, by DECOS (85) and NEG. 

This evaluation builds largely on the review by the Agency for Toxic Substances 

and Disease Registry (ATSDR) from 1999 (13), which was superseded by an up-

date in 2008 (14). The data on reproduction toxicity, however, have been extracted 

from the evaluation by DECOS’s Subcommittee on the Classification of Repro-

duction Toxic Substances, published in 2009 (84). Additional data were obtained 

from on-line databases (Chapter 16).  

Mostly, ATSDR data (13) are summarised first. The studies cited by ATSDR 

are referred to in the text by author name and year and are listed in Chapter 15. 

Additional studies, retrieved by the authors of the present document, are sub-

sequently presented. These studies are referred to by numbers and are listed in 

Chapter 14.  

Unless otherwise noted, the term aluminium in this document refers to alu-

minium metal and aluminium ions/compounds. 

Data on the effects of engineered aluminium nanoparticles are not presented 

and discussed in this document since they have their own specific toxic properties. 

2. Identity, properties and monitoring 

2.1 Chemical identity 

Chemical identification data are presented in Table 1. 

2.2 Physical and chemical properties  

Particles of metallic aluminium can only exist in a zero valence, free elemental 

state as long as they are shielded from oxygen. Aluminium atoms on the surface 

of the metal quickly combine with oxygen in the air to form a thin layer of alu-

minium oxide that protects from further oxidation (13). 

In Table 2, the physical and chemical properties of aluminium and different 

aluminium compounds are presented. No data on physical and chemical properties 

of alchlor were available. Finely stamped aluminium powder is called aluminium 

pyro powder. The size of this powder is reported to vary from less than 5 to 200 

µm in diameter and from 0.05 to 1 µm in thickness (13, 108).
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Table 1. Chemical identification data of aluminium and aluminium compounds (13, 36, 97).  

Chemical name/Synonyms  Chemical formula CAS No. EINECS No. EEC No. RTECS No. 

Aluminium       

Alumina fibre; metana; aluminium bronze; aluminium dehydrated Al  7429-90-5 231-072-3 013-001-00-6 BD330000 

Aluminium carbonate      

 Al2O3 · CO2; Al2(CO3)3 has 

not been identified  

 53547-27-6 - - - 

Aluminium chloride       

Aluminium trichloride; trichloroaluminium; aluminium chloride (1:3)  AlCl3  7446-70-0 231-208-1 013-003-00-7 BD0525000 

Aluminium chloride, basic
 a 

(unspecific)      

Aluminium chlor(o)hydrate 
b
 Aluminium chloride hydroxide; aluminium 

hydroxychloride; aluminium chlor(o)hydroxide; aluminium chloride 

oxide; aluminium chlorohydrol; aluminium hydroxide chloride; 

aluminium oxychloride 

Not available; 
a
  

AlnCl(3n-m)(OH)m; 
c 
 

[AlnCl(3n-m)(OH)m]x; 
c
  

AlyClz(OH)3y-z · nH2O 

 1327-41-9 215-477-2 - BD0549500 

Aluminium chloride hydroxide
 a
 (anhydrous monomer)      

Aluminium chlor(o)hydrate 
b
; dialuminium chloride pentahydroxide; 

aluminium monochloride pentahydroxide; chloropentahydroxydi-

aluminium; aluminium chlor(o)hydroxide; aluminium hydroxide 

chloride; aluminium hydroxychloride; basic aluminium chloride 

Al2ClH5O5;  

Al2Cl(OH)5 

 12042-91-0 234-933-1 - BD0550000 

Aluminium fluoride      

Aluminium trifluoride AlF3  7784-18-1 232-051-1 - BD0725000 

Aluminium hydroxide      

α-Alumina trihydrate; alumina hydrate; alumina hydrated; aluminium 

oxide trihydrate; aluminium oxide hydrate; aluminium(III)hydroxide; 

hydrated alumina; hydrated aluminium oxide; aluminium hydrate 

Al(OH)3  21645-51-2 244-492-7 - BD0940000 

Aluminium lactate      

Aluctyl; aluminium, tris(2-hydroxypropanoate-O
1
,O

2
); propanoic acid, 

2-hydroxy-aluminium complex; aluminium tris(α-hydropropionate) 

Al[CH3CH(OH)CO2]3  18917-91-4 242-670-9 - BD2214000 

Aluminium nitrate      

Aluminium trinitrate; aluminium(III)nitrate (1:3); nitric acid, aluminium 

salt; nitric acid aluminium (3+) salt 

Al(NO3)3  13473-90-0 236-751-8 - BD1040000 
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Table 1. Chemical identification data of aluminium and aluminium compounds (13, 36, 97).  

Chemical name/Synonyms  Chemical formula CAS No. EINECS No. EEC No. RTECS No. 

Aluminium oxide      

Activated aluminium oxide; α-aluminium, α-aluminium oxide; alumina; 

aluminium sesquioxide; aluminium trioxide; β-aluminium oxide;  

γ-alumina; γ-aluminium oxide 

Al2O3  1344-28-1 215-691-6 - BD1200000 

Aluminium phosphate      

Aluminium orthophosphate; phosphoric acid, aluminium salt (1:1); 

aluminium phosphate tribasic 

AlPO4  7784-30-7 232-056-9 - - 

Aluminium potassium sulphate      

Sulphuric acid, aluminium potassium salt (2:1:1) AlK(SO4)2  10043-67-1 233-141-3 - - 

Aluminium sulphate       

Alum; peral alum; pickle alum; cake alum; filter alum; papermakers’ 

alum; patent alum; aluminium sulphate (2:3); aluminium trisulphate; 

dialuminium sulphate; dialuminium trisulphate; sulphuric acid, 

aluminium salt (3:2) 

Al2(SO4)3  10043-01-3 233-135-0 - BD1700000 

Alchlor 
d 

      

 Al2(OH)5Cl · nH2O · mC2H6O2; 

Al2(OH)5Cl · nH2O · mC3H8O2; 

Al2(OH)4Cl2 · nH2O·mC2H6O2; 

Al2(OH)4Cl2 · nH2O · mC3H8O2 

 52231-93-3 - - - 

a
 Data provided by CAS

®
 Client Services in June 2009; other CAS numbers (e.g. 11097-68-0 and 84861-98-3) are listed as deleted registry numbers.  

b
 Preferred name in document. 

c
 0 < m < 3n.  

d 
Alchlor is a propylene glycol complex of aluminium chloride hydroxide. 
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Table 2. Physical and chemical properties of aluminium and aluminium compounds (13, 36, 97).  

Physical 

description 

Colour Molar 

mass 

(g/mol) 

Melting 

point 

(°C) 

Boiling 

point 

(°C) 

Density 

(kg/m
3
, 

25°C) 

Solubility Log P 

octanol/ 

water 

Vapour 

pressure 

(kPa) 

Relative 

density 

(air = 1) 

Flash 

point 

(°C) 

Odour 

threshold 

(mg/m
3
) 

Aluminium metal and aluminium oxide          

Aluminium            

Malleable, 

ductile metal, 

crystalline solid 

Silvery, with 

bluish tint 

26.98 660 2 450 2 700 Insoluble in water, soluble in alkali 

and acids 

n.d. 0.13 at 

1 284 °C 

n.d. 645 n.d.  

Aluminium oxide            

Crystalline 

powder 

White 101.94 2 072 2 980 3 965 Practically insoluble in water and 

non-polar organic solvents, slowly 

soluble in aqueous alkaline solution 

n.d. 0.13 at 

2 158 °C 

n.d. Not 

com-

bustible 

n.d. 

Aluminium compounds not or poorly soluble in water (except aluminium oxide)      

Aluminium carbonate           

Lumps or powder White 145.97 n.d. n.d. n.d. Insoluble in water, soluble in hot 

HCl (aq) or H2SO4 

n.d. n.d. n.d. n.d. n.d. 

Aluminium fluoride           

Hexagonal 

crystals 

White 83.98 1 291 1 276 (sub-

limation); 

1 537 

2 880 Poorly soluble in water: 0.6 g/100 ml 

at 25 °C, sparingly soluble in acids 

and alkali, insoluble in alcohol and 

acetone 

n.d. 0.13 at 

1 238 °C 

n.d. Not 

flam-

mable 

n.d. 

Aluminium hydroxide           

Bulky amorphous 

powder 

White 77.99 300 n.d. 2 420 Insoluble in water and alcohol, 

soluble in acids 

n.d. n.d. n.d. n.d. n.d. 

Aluminium phosphate           

Infusible powder 

crystals 

White 121.95 > 1 460 n.d. 2 560 

at 23 °C 

Insoluble in water, soluble in acids 

and alkali 

n.d. n.d. n.d. n.d. n.d. 
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Table 2. Physical and chemical properties of aluminium and aluminium compounds (13, 36, 97).  

Physical 

description 

Colour Molar 

mass 

(g/mol) 

Melting 

point 

(°C) 

Boiling 

point 

(°C) 

Density 

(kg/m
3
, 

25°C) 

Solubility Log P 

octanol/ 

water 

Vapour 

pressure 

(kPa) 

Relative 

density 

(air = 1) 

Flash 

point 

(°C) 

Odour 

threshold 

(mg/m
3
) 

Aluminium compounds soluble in water          

Aluminium chloride           

Crystals  White when 

pure, ordi-

narily grey 

or yellow-

to-greenish 

133.34 < -20;  

-12;  

80 

103 2 440 Reacts explosively with water 

evolving HCl gas 

n.d. 0.13 at 

100 °C 

n.d. Not 

com-

bustible 

n.d. 

Aluminium chlorohydrate           

Solid  Glassy 174.46 n.d. n.d. n.d. Soluble in water n.d. n.d. n.d. n.d. n.d. 

Aluminium lactate           

Powder Colourless, 

white-yellow 

294.18 n.d. n.d. n.d. Freely soluble in water n.d. n.d. n.d. n.d. n.d. 

Aluminium nitrate           

Nonahydrate, 

deliquescent 

crystals 

White 213 73 Decom-

position 

at 135 °C 

n.d. Soluble in water: 64 g/100 ml at  

25 °C, soluble in alkali, acetone  

and HNO3 

n.d. n.d. n.d. Not 

flam-

mable 

n.d. 

Aluminium potassium sulphate           

Powder White 258.21 n.d. n.d. n.d. Moderately soluble in water:  

5 g/100 ml at 25 °C, insoluble  

in alcohol 

n.d. n.d. n.d. n.d. n.d. 

Aluminium sulphate            

Crystals, pieces, 

granules or 

powder 

White, 

lustrous 

342.14 Decom-

position 

at 700 °C 

n.d. 2 710 Soluble in 1 part water, soluble in 

dilute acids, practically insoluble  

in alkali 

n.d. Essentially 

zero 

n.d. Not 

flam-

mable 

n.d. 

n.d.: no data, P: partition coefficient.
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Table 3. EU classification (CLP regulation) of aluminium and aluminium compounds.  
Aluminium compound  CAS No. Classification

 a, b
 

Aluminium powder (pyrophoric
 c
)  7429-90-5  Water-react. 2 (H261); pyr. sol. 1 (H250)  

Aluminium powder (stabilised)  - Water-react. 2 (H261); flam. sol. 1 (H228)  

Aluminium chloride  7446-70-0 Skin corr 1B (H314) 
a 
Hazard classes and category codes: Flam. sol. 1: flammable solids in category 1, Pyr. sol.: pyro-

phoric solids, Skin corr: skin corrosion/irritation, Water-react.: substances and mixtures, which in 

contact with water, emit flammable gases. 
b 
Hazard statement codes: H228: flammable solid, H250: catches fire spontaneously if exposed to air, 

H261: in contact with water releases flammable gases, H314: causes severe skin burns and eye 

damage. 
c
 is, even in small quantities, liable of igniting within 5 minutes after coming into contact with air. 

CLP: classification, labelling and packaging, EU: European Union. 

2.3 European Union (EU) classification and labelling 

Of the compounds mentioned in the previous sections, only aluminium (powder) 

and aluminium chloride are listed in Regulation (EC) No 1272/2008 on classifi-

cation, labelling and packaging of substances and mixtures being in force since  

20 January 2009, implementing the Globally Harmonised System, and replacing 

Directive 67/548/EEC (substances) and Directive 1999/45/EC (preparations) (60) 

(see Table 3). No concentration limits are specified for the different aluminium 

compounds.  

2.4 Analytical methods  

In this section, well-established, standard methods for detecting and/or measuring 

and monitoring aluminium and aluminium compounds in air and in biological 

samples are described. 

Generally, because of the ubiquitous nature of aluminium, contamination is a 

major problem encountered in the analysis of aluminium by all methods except 

accelerator mass spectrometry (AMS) using radioactive 
26

Al. When using other 

methods, all items used during collection, preparation and assay should be checked 

for aluminium contribution to the procedure. Only by taking these stringent pre-

cautions will accurate results be produced. 

2.4.1 Occupational air monitoring 

Aluminium in air is usually associated with particulate matter and therefore standard 

methods involve collection of air samples on membrane filters and acid extraction 

of the filters. In Table 4, a summary is presented of methods for determining alu-

minium and aluminium compounds in occupational air samples. In recent methods 

as described by the Nederlands Normalisatie-instituut (NEN) and the United States 

National Institute for Occupational Safety and Health (US NIOSH), inductively 

coupled plasma-atomic emission spectrometry (ICP-AES) for sample analysis is 

used.  
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Table 4. Analytical methods for determining aluminium and aluminium compounds, as Al, in air samples. 

Method Sampler Sample preparation Assay 

procedure 

Limit of 

detection (µg/ml) 

Reference 

US NIOSH  

method 7013 

Filter (0.8-µm cellulose ester membrane). Collection of sample on cellulose filter and 

digestion with nitric acid. 

FAAS  2 µg/sample (138) 

US NIOSH  

method 7300 

Filter (0.8-µm cellulose ester membrane or 5.0-µm 

PCV membrane). 

Collection of sample on cellulose filter and 

digestion with nitric acid. 

ICP-AES  0.0046 (139) 

US OSHA  

method ID-121 

Personal air samples are collected on mixed cellulose 

ester filters using a calibrated sampling pump. Wipe 

or bulk samples are collected using grab sampling 

techniques. 

Samples are desorbed or digested using water 

extractions or mineral acid digestions. 

AAS or AES 0.002 (149) 

US OSHA  

method ID-109-G, 

aluminium oxide 

Filter (5-µm low ash PVC membrane). Sample filters are fused with a flux consisting 

of LiBO2, NH4NO3 and NaBr in Pt crucibles. 

The fused sample is then put into aqueous 

solution and analysed for Al. 

FAAS 0.5 (148) 

US OSHA  

method ID-198SG, 

aluminium oxide 

Filter (0.8-µm cellulose ester membrane).  Filter is digested with acids using a micro-

wave. 

AAS  0.025 (147) 

NEN-ISO 15202, 

airborne particulate 

matter 

Depth filters, e.g. glass or quartz-fibre filters, and 

membrane filters, e.g. mixed cellulose ester mem-

brane filters and membrane filters made from poly-

mers such as PVC or PTFE. 

Different acid extraction methods of filters are 

specified, but for Al, sample dissolution in a 

closed vessel microwave digestion system is 

recommended. 

ICP-AES Not specified (135-137) 

HSE-MDHS 14/3, 

respirable and 

inhalable Al dust 

Filter. - Gravimetric 

analysis 

Not specified 
a
 (82) 

a
 Determined by the length of the sampling period, the sensitivity of the balance, and the weight stability of the substrate (e.g. filter) used to collect and weigh the sample. 

These factors should be chosen to ensure that the limit of detection is an order of magnitude lower than the appropriate exposure limit.  

AAS: atomic absorption spectrometry, AES: atomic emission spectrometry, FAAS: flame atomic absorption spectrometry, HSE-MDHS: Health and Safety Executive-

Methods for the determination of hazardous substances, ICP: inductively coupled plasma, NEN-ISO: Nederlands Normalisatie-instituut-International Organization for 

Standardization, NIOSH: National Institute for Occupational Safety and Health, OSHA: Occupational Safety and Health Administration, Pt: platinum, PTFE: polytetra-

fluoroethylene, PVC: polyvinyl chloride, US: United States. 
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2.4.2 Biological monitoring 

ATSDR data 

A variety of analytical methods have been used to measure aluminium levels in 

biological materials, including AMS, graphite furnace atomic absorption spectro-

metry (GFAAS), flame atomic absorption spectrometry (FAAS), neutron activation 

analysis (NAA), ICP-AES, inductively coupled plasma-mass spectrometry (ICP-

MS) and laser ablation microprobe mass analysis (Maitani et al 1994, Owen et  

al 1994, Van Landeghem et al 1994). Front-end separation techniques such as 

chromatography are frequently coupled with analytical methods. 

Table 5 summarises methods for measuring aluminium and aluminium com-

pounds in biological materials. 

3. Sources 

3.1 Natural occurrence 

ATSDR data 

Aluminium is the most abundant metal and the third most abundant element, after 

oxygen and silicon, in the earth’s crust. It is widely distributed and constitutes 

approximately 8 % of the earth’s surface layer (Brusewitz 1984). Aluminium does 

not occur naturally in the metallic, elemental state. It is found combined with other 

elements, most commonly with oxygen, silicon and fluorine (Browning 1969, 

Dinman 1983, IARC 1984, NRC 1982). These compounds are commonly found in 

soil, minerals (e.g. sapphires, rubies, turquoise), rocks (especially igneous rocks) 

and clays. These are the natural forms of aluminium rather than the silvery metal. 

The metal is obtained from aluminium containing minerals, primarily bauxite. 

Small amounts of aluminium are even found in water in dissolved or ionic form. 

The most commonly found ionic forms of aluminium are complexes formed with 

hydroxy (hydrogen attached to oxygen) ions. 

Additional data 

No additional data were found. 

3.2 Man-made sources 

3.2.1 Production 

ATSDR data 

The most important raw material for the production of aluminium is bauxite, 

which contains 40–60 % aluminium oxide (Dinman 1983, IARC 1984). Other raw 

materials sometimes used in the production of aluminium include cryolite, alu-

minium fluoride, fluorspar, corundum and kaolin minerals (Browning 1969, 

Dinman 1983, IARC 1984).  

The principal method used in producing aluminium metal involves three major 

steps: refining of bauxite by the Bayer process to produce aluminium oxide, electro- 
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Table 5. Analytical methods for determining aluminium and aluminium compounds, as Al, in biological samples. Data from ATSDR (13), unless other-

wise noted. 
Sample matrix Sample preparation Assay  

procedure  

Limit of 

detection (µg/l) 

Reference 

Serum  Direct injection into atomiser  GFAAS  Low µg/l levels King et al 1981  

Serum  Dilution with water, addition of EDTA  GFAAS  2 Alderman and Gitelman 1980 

Serum  Centrifugation and injection of supernatant GFAAS  14.3 Bettinelli et al 1985  

Serum  Precipitation of proteins in serum with ultra-pure nitric acid 

in the ratio of 1 to 20 (v/v) between the acid and serum 

GFAAS  2 Ruangyuttikarn et al 1998 (168) 

Serum  Dilution with ultrapure water  Double-focusing 

ICP-MS 

No data Muniz et al 1999 (131)  

Serum (Al-organic acid species) Addition of sodium bicarbonate, direct injection into 

chromatography column 

HPLC, ICP-AES  No data Maitani et al 1994  

Serum (Al-organic acid species) Dilution with mobile phase, fractions collected for analysis  HPLC, ETAAS  No data Wróbel et al 1995  

Serum (Al-organic acid species) Addition of citrate buffer, direct injection into chromato-

graphy column 

HPLC, ETAAS  0.12 Van Landeghem et al 1994 

Plasma  Dilution  GFAAS  3–39 Wawschinek et al 1982 

Whole blood, plasma, serum  Dilution with water  GFAAS  24 Gardiner et al 1981  

Whole blood  Addition of sodium citrate, centrifugation, injection of 

supernatant 

GFAAS  Low µg/l levels Gorsky and Dietz 1978  

Whole blood, plasma, serum  Dilution with Triton X-100  GFAAS  Serum: 1.9  

Plasma: 1.8  

Whole blood: 

2.3 

van der Voet et al 1985 

Urine, blood  Dilution with water  GFAAS,  

ICP-AES 

Low µg/l levels Sanz-Medel et al 1987 

Urine, blood  Dilution with water  ICP-AES  Urine: 1  

Blood: 4 

Allain and Mauras 1979  
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Table 5. Analytical methods for determining aluminium and aluminium compounds, as Al, in biological samples. Data from ATSDR (13), unless other-

wise noted. 
Sample matrix Sample preparation Assay  

procedure  

Limit of 

detection (µg/l) 

Reference 

Urine  Digestion, ion-exchange clean-up NAA  50 Blotcky et al 1976  

Urine  Direct injection  GFAAS  Low µg/l levels Gorsky and Dietz 1978  

Urine  Addition of hydrogen peroxide, nitric acid and Triton X-100 ETAAS  No data Campillo et al 1999 (34) 

Blood, urine, serum, faeces Acid digestion using Parr bomb technique, microwave or hot 

plate method  

ICP-AES  1 Que Hee and Boyle 1988 

Hair  Wash with isopropanol, digestion with nitric acid, dilution 

with water 

GFAAS  0.65 µg/g Chappuis et al 1988 

AAS: atomic absorption spectrometry, AES: atomic emission spectrometry, ATSDR: Agency for Toxic Substances and Disease Registry, EDTA: ethylenediaminetetraacetic 

acid, ETAAS: electrothermal atomic absorption spectrometry, GFAAS: graphite furnace atomic absorption spectrometry, HPLC: high-performance liquid chromatography, 

ICP: inductively coupled plasma, MS: mass spectrometry, NAA: neutron activation analysis. 
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lytic reduction of aluminium oxide by the Hall-Heroult process to produce alu-

minium, and casting of aluminium into ingots (Browning 1969, Dinman 1983, 

IARC 1984). 

The electrolytic reduction process of transforming aluminium oxide into alu-

minium is carried out in electrolytic cells or pots. The areas where this occurs  

are called potrooms. Two types of electrolytic cells may be used, a prebake or  

a Søderberg cell. The use of electrodes in aluminium reduction operations is 

associated with the generation of several types of wastes (Dinman 1983, IARC 

1984). In aluminium reduction facilities using the prebake process, polycyclic 

aromatic hydrocarbons (PAHs) are generated. In aluminium reduction operations 

using the Søderberg cell process, considerable amounts of volatiles from coal tar 

pitch, petroleum coke and pitch, including PAHs, are generated. 

Aluminium chloride is produced by a reaction of bauxite with coke and chlorine 

at about 875 ºC (HSDB 1995, Sax and Lewis 1987).  

Aluminium fluoride is made by heating ammonium hexafluoroaluminate to red 

heat in a stream of nitrogen, by the action of fluorine or hydrogen fluoride gas  

on aluminium trihydrate at high temperatures, followed by calcining the hydrate 

formed, by fusing sodium fluoride with aluminium sulphate or by a reaction of 

fluosilicic acid on aluminium hydrate (HSDB 1995). 

Aluminium hydroxide is produced from bauxite. The ore is dissolved in a solution 

of sodium hydroxide, and aluminium hydroxide is precipitated from the sodium 

aluminate solution by neutralisation (as with carbon dioxide) or by autoprecipitation 

(Bayer process) (HSDB 1995, Sax and Lewis 1987).  

Aluminium nitrate is formed by dissolving aluminium or aluminium hydroxide 

in dilute nitric acid and allowing the resulting solution to crystallise (HSDB 1995).  

Aluminium oxide is produced during the recovery of bauxite, which is crushed, 

ground, and kiln dried, followed by leaching with sodium hydroxide, forming 

sodium aluminate, from which aluminium hydroxide is precipitated and calcined 

(Bayer process) (HSDB 1995). 

Aluminium sulphate is manufactured by reacting freshly precipitated pure alu-

minium hydroxide, bauxite or kaolin, with an appropriate quantity of sulphuric 

acid. The resulting solution is evaporated and allowed to crystallise (HSDB 1995). 

Additional data 

No additional data were found. 

3.2.2 Use 

ATSDR data 

Aluminium metal and compounds have a wide variety of uses (Anusavice 1985, 

Browning 1969, Budavari et al 1989, Hawley 1977, HSDB 1995, Locock 1971, 

Staley and Haupin 1992, Stokinger 1981, Venugopal and Lucky 1978). Most pri-

mary aluminium is used for metallurgical purposes; 85–90 % of these uses are in 

the production of aluminium-based alloy castings and wrought aluminium pro-

ducts. Pure aluminium is soft and lacks strength. By forming alloys, the strength, 



12 

hardness and other useful properties of the metal can be increased while building 

on the inherent properties of aluminium of low density, high electrical and thermal 

conductivity, high reflectivity and corrosion resistance.  

The major uses of aluminium and its alloys are in packaging, building and con-

struction, transportation and electrical applications. Over 95 % of beer and carbo-

nated drinks are packaged in twopiece aluminium cans. Aluminium sheet and foil 

are used in pie plates, frozen food trays and other packaging applications. In con-

struction, aluminium is used for siding and roofing, doors and windows. Aluminium 

is used in the bodies, trim and mechanical parts of cars, trucks, airplanes, ships 

and boats, as well as other transportation-related structures and products such as 

bridges and highway signs. Electrical applications include overhead transmission 

lines, cable sheathing, and wiring. Other applications of aluminium include die-

cast auto parts, corrosion-resistant chemical equipment, cooking utensils, de-

corations, fencing, sporting equipment, toys, lawn furniture, jewellery, paint and  

in dental alloys for crowns and dentures. Other uses include absorbing occluded 

gases in the manufacture of steel, testing for gold, arsenic and mercury, pre-

cipitating copper, as a reducer for determining nitrates and nitrites, in coagulating 

colloidal solutions of arsenic or antimony, in explosives and in flashes for photo-

graphy. Aluminium powder is used in paints, protective coatings and fireworks. 

Aluminium compounds and materials also have a wide range of uses (Anusavice 

1985, Browning 1969, Budavari et al 1989, Hawley 1977, Locock 1971, Sax and 

Lewis 1987, Stokinger 1981, Venugopal and Lucky 1978). Naturally occurring 

aluminium-containing minerals, such as bentonite and zeolite, are used in water 

purification, sugar refining and in the brewing and paper industries. A variety of 

aluminium compounds is used in industrial, domestic, consumer and medicinal 

products. 

Aluminium chloride is used as an acid catalyst (especially in Friedel-Crafts-type 

reactions), as a chemical intermediate for other aluminium compounds, in the 

cracking of petroleum, in the manufacture of rubbers and lubricants, and as an 

antiperspirant (HSDB 1995). The hexahydrate form is used in preserving wood, 

disinfecting stables and slaughterhouses, in deodorants and antiperspirants, in 

cosmetics as a topical astringent, in refining crude oil, dyeing fabrics and manu-

facturing parchment paper (Budavari et al 1989). 

Aluminium chlorohydrate is the active ingredient in many antiperspirants and 

deodorants (Budavari et al 1989, Hawley 1977, Sax and Lewis 1987). 

Aluminium hydroxide is used in stomach antacids as a desiccant powder, in anti-

perspirants and dentifrices, in packaging materials, as a chemical intermediate, as 

a filler in plastics, rubber, cosmetics and paper, as a soft abrasive for brass and 

plastics, as a glass additive to increase mechanical strength and resistance to ther-

mal shock, weathering and chemicals, and in ceramics (HSDB 1995). Aluminium 

hydroxide is also used pharmaceutically to lower the plasma phosphorus levels of 

patients with renal failure (Budavari et al 1989, Sax and Lewis 1987). 
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Aluminium nitrate is used in antiperspirants, for tanning leather, as a corrosion 

inhibitor, in the preparation of insulating papers, on transformer core laminates, in 

incandescent filaments and in cathode ray tube heating elements (HSDB 1995). 

Aluminium oxide is used in the production of aluminium, manufacture of ab-

rasives, refractories, ceramics, electrical insulators, catalyst and catalyst supports, 

paper, spark plugs, crucibles, and laboratory works, adsorbent for gases and water 

vapours, chromatographic analysis, fluxes, light bulbs, artificial gems, heat re-

sistant fibres, food additive (dispersing agent) and in hollow-fibre membrane units 

used in water desalination, industrial ultra filtration and haemodialysis (HSDB 

1995). An application of aluminium oxide, which may have wide occupational  

use in the future, is as a dosimeter for measuring personnel radiation exposure 

(McKeever et al 1995, Radiation Safety Guide 1999, Radiation Safety Newsletter 

1998).  

Aluminium phosphate is used in over-the-counter stomach antacids (Budavari et 

al 1989, Sax and Lewis 1987). 

Aluminium sulphate is used primarily for water purification systems and sewage 

treatment systems as a flocculent, in the paper and pulp industry, in fireproofing 

and waterproofing cloth, clarifying oils and fats, waterproofing concrete, in anti-

perspirants, in tanning leather, as a mordant in dyeing, in agricultural pesticides, 

as an intermediate in the manufacture of other chemicals, as a soil conditioner to 

increase acidity for plants (e.g. rhododendrons, azaleas, camellias and blueberries), 

and in cosmetics and soap. A saturated solution of aluminium sulphate is em-

ployed as a mild caustic. Solutions containing 5–10 % aluminium sulphate have 

been used as local applications to ulcers and to arrest foul discharges from mucous 

surfaces. Aluminium sulphate is also used in the preparation of aluminium acetate 

ear drops (HSDB 1995). 

Additional data 

Aluminium salts have become the standard adjuvant in vaccines such as those 

against diphtheria, tetanus and pertussis (DTP), Haemophilus influenzae type b, 

pneumococcus conjugates, and hepatitis A and B. Aluminium salts are added to 

vaccines in the form of aluminium potassium sulphate, aluminium sulphate or 

aluminium hydroxide. The last seems to be the most immunogenic, especially 

during immunisation (99). 

With regard to (veterinary) medical purposes in the Netherlands, different drugs 

are registered which contain aluminium and aluminium compounds as the active 

substance (37). According to the Veterinary Medicinal Products Unit, which is 

responsible for the authorisation of veterinary medicines in the Netherlands, alu-

minium and aluminium hydroxide are used as active substances in veterinary 

medicines (30). In the agriculture sector in the Netherlands, aluminium sulphate  

is used as an active substance in biocides and pesticides (38). 

In the Nordic countries, the largest reported uses of aluminium and aluminium 

compounds are for aluminium oxide, aluminium hydroxide, aluminium sulphate, 

and aluminium chlorohydrate. The latter is mainly used as a complexing or 
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flocculating agent in water purification and sewage treatment, and in the pulp and 

paper industry (189).  

4. Exposure 

4.1 General population  

ATSDR data 

Aluminium is found naturally in the environment. The general population may  

be exposed to aluminium by eating food (due to its natural occurrence in edible 

plants and its use as food additives and in food and beverage packaging and 

cooking utensils), drinking water (due to its use in municipal water treatment 

compounds), ingesting medicinal products (like certain antacids and buffered 

analgesics that contain aluminium) or breathing air. Skin contact with soil, water, 

aluminium metal, antiperspirants, food additives (e.g. some baking powders) or 

other substances that contain aluminium may also occur. 

Aluminium is the most abundant metal in the earth’s crust. Its concentration in 

soils varies widely, ranging from about 700 to over 100 000 mg/kg soil (Shacklette 

and Boerngen 1984, Sorensen et al 1974) and the typical concentration is about 

71 000 mg/kg soil (Frink 1996).  

Most of the aluminium in the air is in the form of small suspended particles of 

soil (dust). Levels of atmospheric aluminium vary depending on location, weather 

conditions and the level of industrial activity or traffic in the area. High levels of 

aluminium in dust are found in areas where the air is dusty, where aluminium is 

mined or processed into aluminium metal, or near certain hazardous waste sites. 

Background levels of aluminium in the air are generally 0.005–0.18 ng/m
3
 (Hoff-

man et al 1969, Pötzl 1970, Sorensen et al 1974). Aluminium levels in US urban 

and industrial areas can range from 0.4 to 10 ng/m
3
 (Cooper et al 1979, Dzubay 

1980, Kowalczyk et al 1982, Lewis and Macias 1980, Moyers et al 1977, Ondov 

et al 1982, Pillay and Thomas 1971, Sorenson et al 1974, Stevens et al 1978). 

The concentration of aluminium in natural waters is generally below 0.1 mg/l 

water unless the water is very acidic (Brusewitz 1984, Miller et al 1984, Sorenson 

et al 1974, Taylor and Symons 1984). People generally consume very little 

aluminium from drinking water. Drinking water is sometimes treated with alu-

minium salts, but even then aluminium levels generally do not exceed 0.1 mg/l 

although levels of 0.4–1 mg/l of aluminium in drinking water have been reported 

(Schenck et al 1989).  

Aluminium occurs naturally in many edible plants and is added to many pro-

cessed foods. The concentrations in foods and beverages vary widely, depending 

upon the food product, the type of processing used and the geographical areas in 

which food crops are grown (Brusewitz 1984, Sorenson et al 1974). In general, 

the foods highest in aluminium are those that contain aluminium additives  

(e.g. processed cheese, grain products and grain-based desserts) (Greger 1992, 

Pennington 1987). Most unprocessed foods like fresh fruits, vegetables and meat 
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contain very little aluminium at amounts < 5 mg/kg (Greger 1992, Pennington 

1987, Schenck et al 1989). In processed foods (e.g. processed cheeses, baked 

goods, non-dairy cream substitutes), aluminium concentrations resulting from the 

introduction of aluminium-containing food additives may amount to ca. 2 300 

mg/kg (baking powder) (Greger et al 1985, Pennington 1987, Sorensen et al 

1974). 

While tea leaves may contain aluminium levels up to 10 000 mg/kg (Lewis 

1989), aluminium concentrations in tea steeped from tea bags may range from 0.4 

to 4.3 mg/l (Greger et al 1985, Schenck et al 1989). Aluminium concentrations in 

brewed coffee (3 % extract) and instant coffee (1 % solution) may range from ca. 

0.2 to 1.2 and ca. 0.02–0.6 mg/l, respectively (Schenk et al 1989), in alcoholic be-

verages (wine, beer, spirits) from ca. 0.07 to 3.2 mg/l (Pennington 1987, Schenck 

et al 1989), and in fruit juices and soft drinks from ca. 0.04 to 4.1 and 0.1–2.1 mg/l, 

respectively (Schenck et al 1989).  

Cow’s milk-based and soy-based infant formulae may contain aluminium levels 

up to ca. 0.7 and 2.5 mg/l (Baxter et al 1991, Simmer et al 1990). 

Generally, preparing food or beverages in aluminium cookware and storing them 

in aluminium foils or cans may increase the aluminium content (Abercrombie and 

Fowler 1997, Greger et al 1985, King et al 1981, Muller et al 1993b, Nagy and 

Nikdel 1986). 

Most adults consume 1–10 mg aluminium per day from natural sources (Greger 

1992). 

People are exposed to aluminium in some cosmetics such as deodorants and in 

pharmaceuticals such as antacids, buffered aspirin and intravenous fluids. Buffered 

aspirin and antacid preparations may contain aluminium compounds at amounts of 

20 and 200 mg aluminium per dose (tablet, capsule, etc.), respectively, which may 

result in daily intakes of as much as 700 and 5 000 mg, respectively (Brusewitz 

1984, Lione 1985, NRC 1982, Schenck et al 1989, Shore and Wyatt, 1983). 

Additional data 

In the so-called “Total Diet Study”, which is an important part of the United King-

dom (UK) Government’s surveillance programme for chemicals in food, the mean 

total dietary exposure (i.e. not including the contribution from drinking water) for 

adults to aluminium was estimated to be 12 mg/day (upper range 29 mg/day).  

This figure was estimated from the mean concentrations of aluminium (limit of de-

tection: 0.27 mg/kg fresh weight) in 20 food groups and the average consumption 

of each food group from a national food survey (203). 

Aluminium was not listed in the European Pollutant Emission Register (EPER). 

This register contains data on the emissions in air and water of 50 pollutants re-

ported by about 12 000 large and medium-sized industrial facilities, among which 

aluminium-producing and aluminium-processing ones, in the 25 EU member states 

and Norway (59).  
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4.2 Working population 

ATSDR data 

Occupational exposure to aluminium occurs not only in the refining of the pri-

mary metal, but also in secondary industries that use aluminium products (e.g. 

aircraft, automotive, and metal products) and aluminium welding (Nieboer et  

al 1995). Three major steps are involved in primary aluminium production (see 

Section 3.2.1). Aluminium is first extracted with caustic soda from bauxite ore, 

precipitated as aluminium hydroxide, and subsequently converted to aluminium 

oxide in a calcination process. In the second step, the oxide is dissolved in molten 

cryolite (Na3AlF6) and electrolysed to yield the pure molten metal. The electro-

lytic cells are called pots and the work area is called the potroom. Casting is the 

final step in the process where molten aluminium is poured into ingots in the 

foundry. 

In the initial extraction and purification process, exposure is primarily to alu-

minium hydroxide and oxide; in the potroom, to aluminium oxide and aluminium 

fluoride (as well as to tar-pitch volatiles including PAHs); and in the foundry,  

to partially oxidised aluminium metal fumes (Drabløs et al 1992, IARC 1984, 

Nieboer et al 1995). Drabløs et al (1992) studied aluminium concentrations in 

workers at an aluminium fluoride plant. Mean aluminium levels in urine were 

0.011 ± 0.007 mg/l (range 0.002–0.046 mg/l) for 15 plant workers, 0.032 ± 0.023 

mg/l (0.006–0.136 mg/l) for 7 foundry workers, and 0.054 ± 0.063 mg/l (0.005–

0.492 mg/l) for 12 potroom workers as compared to 0.005 ± 0.003 mg/l (0.001–

0.037 mg/l) for 230 unexposed controls. 

Most of the studies of occupational exposure (aluminium refining and metal 

industry workers) to aluminium have dealt with inhalation of aluminium-con-

taining dust particles. Rarely is a worker exposed solely to aluminium-containing 

dust. Exposure to mixtures of aluminium with fine respirable particles or other 

toxic chemicals is more prevalent, e.g. PAHs in coal tar pitch. 

According to the US National Occupational Exposure Survey conducted by 

NIOSH from 1981 to 1983 (NIOSH 1988, 1991), the industries with the largest 

numbers of workers potentially exposed to aluminium and aluminium compounds 

include: plumbing, heating and air conditioning, masonry and other stonework, 

electrical work, machinery except electrical, certified air transportation equip-

ment, electrical components, fabricated wire products, general medical and sur-

gical hospitals, industrial buildings and warehouses, and special dies, tools, jigs 

and fixtures. 

Additional data 

In an aluminium powder producing and processing plant in Erlangen-Nüremberg, 

Germany, aluminium dust concentrations were between 5 and 21 mg/m
3
 during 

the production of aluminium powder. The peak values were observed with sieving 

of aluminium powder. The aluminium dust concentrations were much lower in the 

area of paste production (1.1–3.8 mg/m
3
). The values from workplaces not direct-

ly exposed to aluminium were below 0.4 mg/m
3
 (117). 
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In a comprehensive survey, exposure to chemical agents in Swedish aluminium 

foundries and aluminium-remelting plants were investigated. The industrial 

hygiene measurements were performed from 1992 to 1995. Concentrations of 

aluminium in total dust ranged from < 0.001–0.94 mg/m
3
 (mean 0.029) in found-

ries and from 0.002–0.54 mg/m
3
 (mean 0.057) in remelting plants (198, 199). 

In a study by Röllin et al, the changes in ambient aluminium levels in the pot-

rooms of a modern aluminium smelter in South Africa during the plant construction 

stage and one year into full production were investigated. Aluminium present in 

the total ambient air fraction in potrooms during construction ranged from 0 to 2.1 

mg/m
3
, with the highest median concentration of 0.17 mg/m

3
 being recorded at 17 

months. At 24 months, when full production was attained, the aluminium content 

in the total fraction obtained by personal monitoring reached median levels of 

0.03 mg/m
3
. At 36 months, i.e. one year into production, the median total airborne 

and respirable fraction samples were 0.08 and 0.03 mg/m
3
, respectively. The alu-

minium concentration in the respirable dust fraction was 44 % of the aluminium 

found in the total inhalable fraction measured at the same time (169). 

Healy et al investigated inhalation exposure at seven secondary aluminium 

smelters in the UK to quantify the main exposures and identify their sources. The 

results showed that people were exposed to a range of workplace air pollutants. 

The substances monitored were amongst others total inhalable dust and aluminium. 

The mean sampling time was 280 minutes. Personal exposure results for total in-

halable dust were between 0.7 and 5.6 mg/m
3
. The aluminium personal exposure 

ranged from 0.04 to 0.9 mg/m
3
 (mean 0.31). The average proportion of aluminium 

in total inhalable dust samples was 13 % and rotary furnace processes generated 

the most dust. From a total of 33 results, this proportion varied between 5 and 27 

%, with a standard deviation (SD) of 5 %. If it is assumed that aluminium is pre-

sent as the oxide, the average proportion of Al2O3 in the dust sampled was 25 %. 

The composition of the remaining 75 % of the dust is uncertain, although the metal 

analysis suggested that other metal oxides alone could not account for the shortfall 

(86). 

Matczak et al evaluated occupational exposure to welding fumes and its ele-

ments in aluminium welders in the Polish industry. The study included 34 total 

dust and 12 respirable dust samples from metal inert gas (MIG) welders and fitters 

in two plants and 15 total dust and 3 respirable dust samples from tungsten inert 

gas (TIG) welders and fitters in another plant. Air samples, covering 6–7 hours 

out of the 8-hour work shift (including breaks) were collected in the breathing 

zone of welders, who all used welder’s hand shields. Effective welding times were 

about 6 and about 3 hours for welders and fitters, respectively. Total and respirable 

dust concentrations were determined gravimetrically and the elements in the col-

lected dust by atomic absorption spectrometry (AAS). For MIG welding, the mean 

time-weighted average (TWA) concentrations were 6.0 mg/m
3
 (range 0.8–17.8) 

for total dust, with mean concentrations for aluminium, which was the major com-

ponent of these welding dust/fumes, of 2.1 mg/m
3
 (range 0.1–7.7), i.e. 29.4 % 

(8.9–55.7 %) of total MIG, and 2.6 mg/m
3
 (0.7–6) for respirable dust, with mean 
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concentrations for aluminium of 0.8 mg/m
3
 (0.2–2.2). For TIG welding, the mean 

TWA concentrations were 0.7 mg/m
3
 (0.3–1.4) for total dust, with mean con-

centrations of aluminium of 0.17 mg/m
3
 (0.07–0.50, i.e. 23.9 % (12.5–40.2 % ) of 

total TIG), and 0.8 mg/m
3
 (0.3–1.9) for respirable dust, with mean concentrations 

for aluminium of 0.3 mg/m
3
 (0.07–0.6) (122).  

In German automobile industry and train body and truck trailer construction, 

total respirable dust exposure of welders, measured in five consecutive samplings 

(breathing zone, 120–240 minutes) from 1999 to 2003, ranged from 0.11 to 15.6 

mg/m
3
(165). 

Riihimäki et al assessed airborne aluminium exposure in MIG welding and 

grinding shipyard workers in Finland. The welding fumes contained aluminium 

oxide particles with diameters < 0.1 µm and their aggregates. Mean 8-hour TWA 

concentrations, measured inside of the welding helmet, ranged from 0.2 to 10.0 

mg/m
3
 for total dust and from 0.008 to 2.4 mg/m

3
 for aluminium. Generally, high 

concentrations were encountered during welding in confined compartments and  

in plasma cutting. When using no respiratory protection, total dust and aluminium 

breathing zone air levels were 1.2–13.6 and 0.3–6.1 mg/m
3
, respectively (162). 

In the breathing zone air of workers exposed to bauxite (mainly aluminium 

hydroxide) and aluminium sulphate particles with diameters of 1–10 µm in a 

Finnish aluminium sulphate-producing facility, mean 8-hour TWA total dust  

and aluminium levels were 0.3–4.4 and 0.02–0.5 mg/m
3
, respectively (162). 

Delgado et al assessed potential dermal exposure to the non-volatile fractions  

of paints during the painting process in car-body repair shops with water-based 

paints containing aluminium (amounts of aluminium in paints not reported). The 

measurements were done during filling of the spray gun, paint spraying and 

cleaning of the gun. Potential dermal exposure was assessed using patches and 

gloves as dosimeters and analysing deposits of aluminium, which was used as a 

chemical tracer. For the exposure scenarios mentioned above, the potential dermal 

exposure was expressed as µg paint/cm
2
/min and µg aluminium/cm

2
/min. The 

body region areas used in the calculations were 18 720 cm
2
 for total body area 

without hands and 410 cm
2
 for the area of each hand. Potential dermal exposure  

of the hands to aluminium during filling of the spray gun ranged from 0.021 to 

13.4 µg/cm
2
/min (median 0.49, arithmetic mean (AM) 2.03, geometric mean (GM) 

0.62). During spraying, the potential dermal exposure to aluminium ranged from 

0.004 to 0.12 µg/cm
2
/min (mean 0.021, AM 0.031, GM 0.022) for the body and 

0.01 to 0.59 µg/cm
2
/min (mean 0.068, AM 0.10, GM 0.067) for the hands. With 

cleaning of the spray gun, the hands were the principal area exposed, with values 

ranging from 0.017 to 4.10 µg/cm
2
/min (AM 0.83, GM 0.42) (44). 
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5. Kinetics  

5.1 Absorption 

ATSDR data 

Evidence for absorption of aluminium after inhalation exposure in humans is 

available from several occupational studies. Occupational exposure to aluminium 

fumes, dusts and flakes has resulted in increases in aluminium levels in serum, 

tissue and urine. The percentage of aluminium absorbed following inhalation ex-

posure was not reported in the occupational toxicokinetic studies (Gitelman et al 

1995, Mussi et al 1984, Pierre et al 1995, Sjögren et al 1985, 1988). Data from 

Mussi et al (1984) suggest that the fractional absorption of aluminium from lung 

to blood is higher in individuals exposed to aluminium fumes as compared to 

aluminium dust. However, it is not known if a possible difference in particle size 

between the aluminium fumes and aluminium dust influenced absorption. 

Several animal studies indicated that aluminium is retained in the lung after in-

halation exposure to aluminium oxide (Christie et al 1963, Thomson et al 1986) 

and aluminium chlorohydrate (Steinhagen et al 1978, Stone et al 1979). However, 

no significant increases in aluminium in tissues or serum were seen, indicating 

that lung retention rather than absorption was taking place (Steinhagen et al 1978, 

Stone et al 1979). 

Mechanisms of inhalation absorption of aluminium are not well characterised, 

although it seems likely that relatively large aluminium-containing particles re-

tained in the respiratory tract are cleared to the gastrointestinal tract by ciliary 

action. As has been observed with typical particulates (ICRP 1994), it is hypo-

thesised that aluminium particles that are small enough (< 5 µm diameter) to reach 

the lungs may contribute to overall body levels by dissolution and direct uptake 

into the blood stream or by macrophage phagocytosis (Priest 1993, Reiber et al 

1995). 

Studies by Perl and Good (1987) and Zatta et al (1993) have demonstrated that 

aluminium may directly enter the brain via the olfactory tract. The aluminium 

crosses the nasal epithelium and reaches the brain via axonal transport. 

No human or reliable experimental animal studies were located regarding alu-

minium absorption after dermal exposure to aluminium or its compounds. 

Gastrointestinal absorption of aluminium is low, generally in the range of 0.1–

0.6 %, but absorption of poorly bioavailable forms such as aluminium hydroxide 

can be less than 0.01 % (Day et al 1991, DeVoto and Yokel 1994, Ganrot 1986, 

Greger and Baier 1983, Hohl et al 1994, Jones and Bennett 1986, Nieboer et al 

1995, Priest et al 1998). Gastrointestinal absorption is complex and is, amongst 

others, determined by the chemical form (type of anion) of the ingested compound 

and the presence of complexing ligands in the diet which can either enhance (e.g. 

carboxylic acids such as lactic and, especially, citric acid) or reduce (e.g. phosphate 

or dissolved silicate) uptake (DeVoto and Yokel 1994, Reiber et al 1995). 
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Additional data  

From a few studies in workers exposed to aluminium, the percentage of aluminium 

absorbed from the lung was estimated to be ca. 2 %, based on data on daily urinary 

aluminium excretion and on aluminium concentrations in occupational air. In  

two human volunteers, exposed by inhalation to 
26

Al-labelled aluminium oxide 

particles with a mean aerodynamic diameter of 1.2 µm, the fraction of aluminium 

absorbed was calculated to be 1.9 % (181). 

Riihimäki et al examined aluminium exposure and kinetics in 12 welding and 

grinding shipyard workers and 5 aluminium sulphate-production workers. The 

shipyard workers were exposed to welding fumes containing aluminium oxide 

particles with diameters < 0.1 µm and their aggregates at mean 8-hour TWA con-

centrations of aluminium of 1.1 mg/m
3
 (range 0.008–6.1). The aluminium sulphate-

production workers were exposed to bauxite (mainly aluminium hydroxide) and 

aluminium sulphate with diameters of 1–10 µm at mean 8-hour TWA aluminium 

concentrations of 0.13 mg/m
3
 (range 0.02–0.5). In welders, about 1 % of welding 

fume aluminium was estimated to be rapidly absorbed from the lungs, whereas  

an undetermined fraction was retained forming a lung burden. In the production 

workers, the fractional absorption could not be quantified but might be higher than 

that in the welders without evidence of a lung burden (162). 

Sjögren et al exposed 3 previously unexposed male volunteers to welding fumes 

for 8 hours (mean 8-hour TWA aluminium concentration: 2.4 mg/m
3
, range 0.3–

10.2) and estimated that 0.1–0.3 % of the amount of aluminium inhaled was ex-

creted in the urine within the next two days after exposure (183). 

Röllin et al investigated the bioaccumulation and excretion patterns of alu-

minium in 115 newly employed potroom workers of a modern aluminium smelter 

in South Africa at various intervals during the plant construction stage and one 

year into full production (i.e. over a total period of 36 months). As none of the 

subjects had ever worked in the aluminium industry before, they served as their 

own controls and the first blood and urine specimens were collected before com-

mencement of employment. Aluminium present in the total ambient air fraction  

in potrooms during construction ranged from 0 to 2.1 mg/m
3
, with the highest 

median concentration equalling 0.173 mg/m
3 

being recorded at 17 months. After 

12 months, the mean ± SD concentration of aluminium in serum had almost 

doubled (month 0: 3.33 ± 2.13 µg/l, month 12: 6.37 ± 3.98 µg/l), thereafter it 

levelled off (169).  

A case report of severe hyperaluminaemia in a 43-year-old woman using a 20 % 

aluminium chlorohydrate-containing antiperspirant cream on each underarm daily 

for 4 years suggested dermal absorption of aluminium. Application of 1 g of this 

cream would result in a daily external dermal dose of 0.11 g of aluminium (III), 

amounting to 157 g over the 4-year period (80). 
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5.2 Distribution 

5.2.1 Distribution through the body 

ATSDR data 

Aluminium occurs normally in the body tissues of humans (Ganrot 1986). The 

total body burden of aluminium in healthy human subjects is approximately 30–50 

mg (Alfrey 1981, 1984, Alfrey et al 1980, Cournot-Witmer et al 1981, Ganrot 

1986, Hamilton et al 1973, Tipton and Cook 1963). Of the total body burden  

of aluminium, about one-half is in the skeleton, and about one-fourth is in the 

lungs (Ganrot 1986). Most of the aluminium detected in lungs is probably due  

to accumulation of insoluble aluminium compounds that have entered the body 

via the airways. The normal level of aluminium in adult human lungs is about 20 

mg/kg wet weight and increases with age due to an accumulation of insoluble alu-

minium compounds (Ganrot 1986). Most of the aluminium in other parts of the 

body probably originates from food intake. Reported normal levels in human bone 

tissue range from 5 to 10 mg/kg (Alfrey 1980, Alfrey et al 1980, Cournot-Witmer 

et al 1981, Flendrig et al 1976, Hamilton et al 1973, Tipton and Cook 1963). Alu-

minium is also found in human skin (Alfrey 1980, Tipton and Cook 1963), lower 

gastrointestinal tract (Tipton and Cook 1963), lymph nodes (Hamilton et al 1973), 

adrenals (Stitch 1957, Tipton and Cook 1963) and parathyroid glands (Cann et al 

1979). Low aluminium levels (0.3–0.8 mg/kg wet weight) are found in most soft 

tissue organs, other than the lungs (Hamilton et al 1973, Tipton and Cook 1963). 

The normal level of aluminium in the human brain ranges from 0.25 to 0.75 mg/ 

kg wet weight, with gray matter containing about twice the concentration found 

in white matter (Alfrey et al 1976, Arieff et al 1979, McDermott et al 1978). 

There is evidence that with increasing age, aluminium concentrations may in-

crease in the brain tissue (Alfrey 1980, Crapper and DeBoni 1978, Markesbery et 

al 1981, McDermott et al 1979, Stitch 1957, Tipton and Shafer 1964). Aluminium 

levels in serum may also increase with ageing (Zapatero et al 1995).  

Aluminium binds to various ligands in the blood and distributes to every organ, 

with highest concentrations found in bone and lung tissues. Aluminium can form 

complexes with many molecules in the body (organic acids, amino acids, nucleo-

tides, phosphates, carbohydrates, macromolecules). Free aluminium ions (e.g. 

Al(H2O)6
3+

) occur in very low concentrations. 

Ohman and Martin (1994) showed that 89 % of the aluminium in serum is 

bound to transferrin. There are in vitro data indicating that aluminium can bind to 

the iron-binding sites of transferrin (Moshtaghie and Skillen 1986), and that Al
3+

 

may compete with similar ions in binding to transferrin (Ganrot 1986). Al
3+

 is  

also known to bind to a considerable extent to bone tissue, primarily in the meta-

bolically active areas of the bone (Ganrot 1986). 

Cellular uptake of aluminium by organs and tissues is believed to be relatively 

slow and most likely occurs from the aluminium bound to transferrin (Ganrot 

1986). It is likely that the density of transferring receptors in different organs 

influences the distribution of aluminium to organs. Within cells, Al
3+

 accumulates 

in the lysosomes, cell nucleus and chromatin. 
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Additional data  

Roider and Drasch investigated aluminium concentrations in human tissues (five 

different parts of the brain, lung, kidney, liver and spleen) in a not occupationally 

exposed population in Southern Bavaria (Germany). Tissue samples from 140 adults 

were obtained from autopsies and analysed by GFAAS. As far as the criteria sex 

and age were concerned, a balanced distribution was achieved (10 females and 10 

males for each age decade). The highest aluminium concentration was found in 

the lung (GM 5.55 mg Al/kg wet weight), followed by the liver (0.43 mg Al/kg), 

the spleen (0.29 mg Al/kg) and the kidney (0.24 mg Al/kg). The content in the 

brain averaged 0.31 mg Al/kg, but aluminium was not evenly distributed in the 

brain. The concentration was highest in the grey matter of cerebrum (0.34 mg Al/kg) 

and lowest in the white matter (0.19 mg Al/kg). A positive correlation was ob-

served among aluminium concentrations in all tissues (Spearman rank correlations, 

p < 0.001). Aluminium levels were age-dependent; the concentration in tissues 

increased with age. Aluminium levels in the lung depended on the locality where 

the person lived. Males living in rural areas had a higher amount of aluminium 

deposited in their lungs (164).  

The effect of stress on brain distribution of aluminium was tested in three groups 

of adult mice given 0, 300 and 600 mg Al/kg body weight (bw)/day in drinking 

water for 2 weeks (Appendix 1, Table VI). One-half of the animals in each group 

were concurrently subjected to restraint stress during 1 hour/day throughout the 

study. At the end of the behavioural testing period, mice were killed and aluminium 

concentrations were determined in a number of tissues. The levels of aluminium 

in whole brain and cerebellum were significantly enhanced in mice exposed to 

aluminium plus restraint (41). 

In a study by Ogasawara (Appendix 1, Table VI-VII), aluminium was ad-

ministered orally, intravenously and intraperitoneally to rats, in the absence or 

presence of citric acid or maltol. Oral administration of aluminium hydroxide or 

aluminium chloride with citric acid for 7 weeks was not found to increase brain 

aluminium levels. Similarly, a single intravenous injection of aluminium chloride 

in the presence or absence of either citric acid or maltol did not alter brain alu-

minium levels after 48 hours. Only daily intraperitoneal injections of aluminium 

chloride (8 mg Al/kg bw) and an equimolar amount of maltol over a 14-day period 

enhanced accumulation of aluminium in rat brain. No significant increases were 

observed for the experimental groups receiving intraperitoneal aluminium chloride 

alone or with citric acid. According to the authors, these results suggested that the 

chemical form of aluminium strongly influenced its bioavailability (143). 

Chronic subcutaneous injection of aluminium-L-glutamate in young mature rats 

showed that aluminium accumulated especially in the striatum and hippocampus 

(45). 
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5.2.2 Placental transfer 

ATSDR data 

There is limited animal evidence indicating that aluminium has the potential to 

cross the placenta and accumulate in the foetus following oral or intraperitoneal 

exposure to aluminium (Cranmer et al 1986). Increased concentrations of alu-

minium were detected in both foetuses and placentas of mice treated throughout 

gestation with aluminium chloride (Cranmer et al 1986). 

Additional data 

After exposure of female rats (sperm positive) to doses of aluminium chloride of 

345 mg/kg bw/day on gestational days 0–16 and postnatal days 0–16, significantly 

high concentrations of aluminium were observed in the placenta and in the brains 

of foetuses and sucklings (173). 

5.3 Metabolism  

No information was available on the biotransformation of aluminium and alu-

minium compounds in the body. However, as an element, aluminium is always 

found attached to other chemicals and these affinities can change within the body. 

The complexes formed are metabolically active. 

ATSDR data 

In living organisms, aluminium is believed to exist in four different forms: as free 

ions, as low-molecular-weight complexes, as physically bound macromolecular 

complexes and as covalently bound macromolecular complexes (Ganrot 1986). 

The free ion, Al
3+

, is easily bound to many substances and structures. Therefore, 

its fate is determined by its affinity to each of the ligands and their relative amounts 

and metabolism. Aluminium may also form low-molecular-weight complexes with 

organic acids, amino acids, nucleotides, phosphates and carbohydrates. These low-

molecular-weight complexes are often chelates and may be very stable. The com-

plexes are metabolically active, particularly the non-polar ones. Because aluminium 

has a very high affinity for proteins, polynucleotides and glycosaminoglycans, 

much of the aluminium in the body may exist as physically bound macromolecular 

complexes with these substances. Metabolically, these macromolecular complexes 

would be expected to be much less active than the smaller, low-molecular-weight 

complexes. 

Additional data 

No additional data were found. 



24 

5.4 Excretion  

5.4.1 Excretion from the body 

ATSDR data 

In humans, the kidney is the major route of excretion of absorbed aluminium after 

inhalation and oral exposure. The unabsorbed aluminium is excreted primarily  

in the faeces after oral exposure. No studies were located regarding excretion in 

animals after inhalation exposure to aluminium or its compounds. 

With regard to inhalation exposure, studies indicated that urinary levels were 

related to exposure concentration. However, quantitative correlations, as well as 

elimination of aluminium in the faeces, were not reported. A relationship between 

the duration of aluminium exposure and urinary concentrations has been found in 

humans (Sjögren et al 1985, 1988). Welders exposed to 0.2–5.3 mg/m
3
 (8-hour 

work shift) for more than ten years had a urinary aluminium half-time of at least 6 

months compared to 9 days for individuals exposed for less than one year (Sjögren 

et al 1988). The excretion half-time was 8 hours following a single exposure to 

aluminium welding fumes (Sjögren et al 1985). A half-time of 7.5 hours was 

estimated in workers exposed to aluminium dust (Pierre et al 1995). However, if 

urinary concentrations were measured after an exposure-free period, the level was 

related to the total number of exposed years. Apparently, the longer the exposure, 

the greater the retention of aluminium in humans. 

When humans ingested 1.71 µg Al/kg bw/day as aluminium lactate in addition 

to 0.07 mg Al/kg bw/day in the basal diet for 20 days, 0.09 and 96 % of the daily 

aluminium intake was cleared through the urine and faeces, respectively (Greger 

and Baier 1983). Excretion data collected in animal studies are consistent with the 

results from human studies. Sprague Dawley rats administered a single dose of 

one of eight aluminium compounds (all contained 35 mg aluminium) excreted 

0.015–2.27 % of the initial dose in the urine (Froment et al 1989). The difference 

in the excretion rates most likely reflected differences in gastrointestinal absorp-

tion. 

Additional data 

Letzel et al examined renal excretion kinetics by determination of biological half-

time of aluminium in aluminium welders in automobile industry in Germany. 

Spontaneous urine samples from 16 welders with aluminium concentrations > 50 

µg/l were collected before and after an exposure-free period (24–45 days). During 

the exposure-free interval, median urinary aluminium levels significantly decreased 

from 178.7 µg/l (or 118.1 µg/g creatinine) to 55.6 µg/l (or 52.7 µg/g creatinine). 

Biological half-times of 23.6 days (range 8.8–64.9) and 30.4 days (12.9–214.9) 

were calculated related to µg/l and µg/g creatinine, respectively. There was no 

relationship between the half-times and the age of the persons, the duration of pre-

vious exposure or of the exposure-free interval and the current concentration of 

aluminium in urine before the exposure-free interval. On a group basis, there was 

a tendency of having a somewhat longer biological half-time for persons with a 

higher cumulative exposure index (118).  
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Ljunggren et al studied the elimination kinetics of aluminium in workers (n = 

13) in aluminium powder production. From aluminium concentrations determined 

in urine samples collected before and after a 4–5-week exposure-free period, half-

times of 5–6 weeks were calculated. Among a separate group of workers (n = 10), 

who had been retired for 6 months to 14 years, half-times varied from 8 months to 

8 years and were related to the number of years since retirement (120). 

Other reports on individuals or groups of workers exposed to aluminium welding 

fumes or aluminium powders showed similar results suggesting accumulation of 

aluminium in the body from which it is eliminated very slowly (57, 65, 162, 165, 

169, 171, 184). 

5.4.2 Excretion in human milk 

ATSDR data 

Different studies indicated that aluminium can be excreted in human milk. The 

median aluminium level in breast milk collected from 12 Canadian women  

was reported to be 14 µg/l (range < 5–45) (Koo et al 1988). In an Australian 

study, Weintraub et al (1986) reported human breast milk concentrations of 30 

µg/l in nursing mothers. More recently, Simmer et al (1990) reported a mean 

aluminium concentration of 49 µg/l in breast milk collected from Australian 

women. In the UK, one study found aluminium levels in human breast milk in the 

range of 3–79 µg/l (mean 27) (Baxter et al 1991), while another study reported 

mean aluminium concentrations of 9.2 µg/l (95 % CI 5.6–12.7, collected from 15 

nursing mothers) (Hawkins et al 1994). The aluminium content of human milk 

from 42 nursing Croatian women in the winter of 1992–1993 ranged from 4 to 

2 670 µg/l with a mean of 380 µg/l (Mandić et al 1995). While some differences 

in aluminium content of milk were found depending on the participant’s age, 

number of deliveries, post-partum days, weight gain during pregnancy, refugee 

status and smoking status, correlations with these factors were not statistically 

significant. Mandić et al (1995) were unable to explain the high values obtained 

for aluminium in the milk of the Croatian women, especially since there was no 

data on aluminium in Croatian foodstuffs. No information on occupational ex-

posure was provided. Since the measurements using standard reference serum 

were acceptable, contamination in the analytical procedure was ruled out. While 

steps were taken to avoid contamination in the collection process, no controls to 

gauge the effectiveness of these steps were reported.  

There is limited animal evidence indicating that aluminium has the potential to 

be distributed to some extent to the milk of lactating mothers. The concentration 

of aluminium in milk of rats that ingested 420 mg Al/kg bw/day as aluminium 

lactate in the diet during gestation and lactation increased at least 4-fold beginning 

on postnatal day 12 (Golub et al 1996). Peak concentrations of aluminium were 

detected in the milk of lactating rabbits 12–24 hours after a single large gavage 

dose of aluminium lactate. However, the amount of aluminium in milk as a per-

centage of the total oral dose was not reported (Yokel and McNamara 1985). 

Although levels of aluminium in breast milk were elevated in aluminium-exposed 
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rabbits, the concentrations in the pups were not significantly different from con-

trol levels, suggesting that the aluminium was poorly absorbed (Yokel 1985). 

Additional data 

In a study assessing reference values for various minor and trace elements in 

human milk of Italian urban and rural populations (subdivided into smokers and 

non-smokers and not professionally exposed to chemicals), Coni et al found alu-

minium concentrations ranging between 39 and 1 413 µg/g (n = 59, mean 239 µg/l, 

no SD given). No individual levels were given, but in the groups of urban smoking 

mothers and of rural non-smoking mothers, maximum levels were 1 115 and 1 413 

µg/g, respectively. Coni et al used a strategy to minimise the risk of chemical con-

tamination by cleansing the nipple and the areola with doubly distilled water before 

sampling (43). 

Krachler et al found aluminium concentrations of < 10–380 µg/l (median 67 µg/l) 

in breast milk samples obtained from 27 Austrian mothers. Before collecting the 

milk, breasts were cleaned with doubly distilled water and air dried. Krachler 

stated that the highest level might be due to contamination of the specimen during 

collection or sample preparation (106).  

DECOS’s Subcommittee on the Classification of Reproduction Toxic Sub-

stances (84) noted that in some of these studies (Coni et al (43), Mandić et al 

1995) levels exceeded 710 µg aluminium per litre of breast milk which is a level 

the subcommittee considered to be tolerable based on a provisional tolerable week-

ly intake of 1.0 mg/kg bw as recommended by the Joint FAO/WHO Expert Com-

mittee on Food Additives (JECFA) (100).  

5.5 Possibilities for biological exposure monitoring  

ATSDR data 

Aluminium can be measured in the blood, urine and faeces. Since aluminium is 

found naturally in a great number of foods, it is found in everyone. Unfortunately, 

exposure levels cannot be related to serum or urine levels very accurately, primari-

ly because aluminium is very poorly absorbed by any route and its oral absorption 

in particular can be quite affected by other concurrent intakes. There is an indica-

tion that high exposure levels are reflected in urine levels, but this cannot be well 

quantified as much of the aluminium may be rapidly excreted. Aluminium can 

also be measured in the faeces, but this cannot be used to estimate absorption. 

Additional data 

The concentrations of aluminium in blood and urine are affected by short-term 

and long-term occupational exposure (98). Samples collected immediately after  

a work shift are strongly related to the current exposure, whereas samples taken 

later in the period after exposure reflect cumulative exposure (104). It is not known 

how well concentrations of aluminium in blood and urine reflect the concentrations 

in the target tissues, such as the brain (98). Riihimäki et al also mentioned that it 

is uncertain how representative the surrogates aluminium in serum and in urine 
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are for the metal concentration in the brain. They hypothesised that they are of 

value since results demonstrated an almost doubling of aluminium in serum in 

rabbits exposed to fine aluminium oxide dust over 5 months in a dusting chamber, 

and the level of aluminium in the brain was more than doubled (161).  

In order to evaluate aluminium exposure and to assess aluminium concentrations 

in plasma and urine, a reference group of persons from the urban region Erlangen-

Nüremberg, Germany, without occupational aluminium exposure (13 men and 26 

women) and a group of employees of a plant producing and processing aluminium 

powder (143 men and 26 women) were investigated. The group of employees con-

sisted of 54 persons working in the area of aluminium powder production, 48 in the 

production of special pastes containing aluminium powder, 24 in administration, 15 

in maintenance, 8 in diverse laboratories and 20 at other workplaces without direct 

contact with aluminium. The highest aluminium dust concentrations, measured by 

personal breathing zone air sampling (sampling time: 1–6 hours), were found in 

the powder-production area with levels between 5 and 21 mg/m
3
, the peak levels 

occurring when sieving aluminium powder. Concentrations in the paste pro-

duction ranged from 1 to 4 mg/m
3
 and were below 0.4 mg/m

3
 in the other areas. 

The powder-production workers had higher internal aluminium levels when com-

pared to those of the paste-production workers. The aluminium concentrations  

in the plasma of the powder-production workers varied between < 1.5 and 88.8 

µg/l (mean 14.2, median 8.5) and in the urine between 3.1 and 1 477 µg/l (mean 

132.6, median 69.6) and 8.5 and 935 µg/g creatinine (mean 102.8, median 63.0), 

respectively. In the paste-production workers, aluminium levels in plasma ranged 

from 2.3 to 30.0 µg/l (mean 8.9, median 7.3) and in urine from 1.4 to 159.4 µg/l 

(mean 29.3, median 19.4) and from 3.9 to 159.4 µg/g creatinine (mean 32.8, 

median 22.6). The aluminium concentrations in the plasma of the unexposed re-

ference subjects varied between < 1.5 and 11.0 µg/l and in the urine between 2.4 

and 30.8 µg/l and 1.9 to 20.2 µg/g creatinine, respectively. There was a statistical-

ly significant (p < 0.05) linear correlation between the aluminium concentrations 

in the plasma and urine for the total exposed group (r = 0.714) and the employees 

from the area of powder production (r = 0.849). For the workplaces with a lower 

exposure and for the reference group, no significant relationship could be deter-

mined. According to the authors, besides urine values, plasma values should be 

included in the evaluation of the exposure in the aluminium powder industry, due 

to the great danger of contamination of urine samples on site (117). 

A group of 62 aluminium welders (age in 1999: 23–51 years, median: 35 years) 

in German automobile industry and train body and truck trailer construction was 

surveyed annually from 1999 to 2003 by determination of pre- and post-shift alu-

minium in urine and plasma to evaluate an adequate strategy for biological moni-

toring of aluminium (165). Biomonitoring was supplemented by personal air 

measurements of the total dust concentration. The welders’ internal exposure was 

compared to the exposure of 60 non-exposed assembly workers (age in 1999: 21–

51 years, median: 36 years) who were surveyed in 1999, 2001 and 2003. 
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Total respirable dust exposure of the welders measured in 5 consecutive 

samplings (breathing zone, 120–240 minutes) from 1999 to 2003 ranged from 

0.11 to 15.6 mg/m
3
. According to the annual median values, which ranged from 

0.44 to 0.72 mg/m
3
, only minor fluctuations in external exposure occurred. No 

information on co-exposure was reported. 

Median concentrations of aluminium in urine of the welders decreased from 

40.1 to 19.8 µg/g creatinine and in plasma from 8.7 to 4.6 µg/l. For the control 

group, the median levels of aluminium in urine ranged from 4.8 to 5.2 µg/g 

creatinine and in plasma from 2.4 to 4.3 µg/l, indicating a higher sensitivity for 

the marker aluminium in urine. No systematic differences have been found be-

tween pre- and post-shift levels of aluminium in urine. According to the authors, 

this might be caused by the slow elimination kinetics and low systemic bio-

availability of aluminium. A correlation analysis did not yield close relationships 

between dust exposure, aluminium in plasma and aluminium in urine (165). 

Riihimäki et al investigated changes in serum and urinary aluminium con-

centrations in 12 welding and grinding shipyard workers and 5 aluminium sulphate-

producing workers over a short time (2 workdays) and a long time (2 years, in 8 

shipyard workers only). The shipyard workers were exposed to welding fumes 

containing aluminium oxide particles at mean 8-hour TWA concentrations of 

aluminium of 1.1 mg/m
3
. The aluminium sulphate-production workers were ex-

posed to bauxite (mainly aluminium hydroxide) and aluminium sulphate at mean 

8-hour TWA aluminium concentrations of 0.13 mg/m
3
 (see also Section 5.1). The 

mean post-shift serum and urinary aluminium levels in the shipyard welders were 

6 and 92 µg/l, respectively, in the aluminium sulphate workers 3.5 and 16 µg/l, 

respectively. Between two shifts, the aluminium concentration in the serum of the 

welders decreased by about 50 % (p < 0.01) while that in their urine did not change 

(p = 0.64). No such changes were seen in the production workers. One year later 

when aluminium welding at the shipyard had ceased and the workers involved 

had no longer been working with aluminium for 1–5 months, the median alu-

minium concentration in the serum decreased by about 50 % (p = 0.007) with no 

change in urinary aluminium concentration (p = 0.75). Two years after the start  

of the study, aluminium serum concentrations in 7 out of the 8 workers for whom 

samples were available were < 2.7 µg/l, i.e. the 95
th

 percentile of the normal dis-

tribution in Finnish adult city residents without occupational exposure to alu-

minium. However, urinary levels were higher than “normal” values (162). 

In its 2009 evaluation of a biological tolerance level (BAT value) for aluminium, 

the Working Group on the Derivation of Threshold Values in Biological Materials 

of the Commission for the Investigation of Health Hazards of Chemical Com-

pounds in the Work Area (a commission of the German Research Foundation 

(Deutsche Forschungsgemeinschaft (DFG)) concluded that, from human data, a 

relationship between (indicators of) internal exposure (aluminium concentration in 

plasma/serum and urine) and effects could not be assessed. Therefore, it was not 

possible to derive a BAT value based on a relationship between internal exposure 

and effects. This should therefore be based on relationships between external and 
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internal exposure taking the German occupational exposure limit of 1.5 mg/m
3
 

(see Table 6, Section 9.2) as a reference point.  

With respect to the indicators for internal exposure, the working group stated 

that the studies in German automobile industry and train body and truck trailer 

construction (see references (28, 29, 101, 102, 115, 165)) confirmed that there is 

no clear correlation between the aluminium concentration in plasma and total dust 

concentration at the workplace. Furthermore, aluminium concentrations in plasma 

of occupationally exposed groups with values < 10 µg/l differ only slightly from 

values that can be expected in the general population (< 5 µg/l). Therefore, the 

working group considered determination of aluminium concentrations in plasma 

not appropriate as an indicator of occupational exposure. 

According to the working group, the study by Rossbach et al (165) suggested 

that for the assessment of occupational aluminium exposure, aluminium in urine 

would be a more robust and sensitive parameter compared to aluminium in plasma. 

Since urinary aluminium concentrations expressed per gramme creatinine cor-

related better with aluminium concentrations in air compared to urinary con-

centrations in litres, the working group decided to use µg aluminium/g creatinine 

as the indicator of choice for internal exposure. From data presented by Mussi  

et al (133), Sjögren et al (179), and in the aforementioned German studies, the 

working group calculated that exposure to 1.5 mg/m
3
 would lead to an aluminium 

excretion in the urine of ca. 50–67 µg/g creatinine and set a BAT value of 60 µg 

Al/g creatinine. Because of the long biological half-time following chronic 

cumulative exposure to aluminium, there was no need to fix the sampling time. 

The working group noted that the BAT value is related to urine with creatinine 

concentrations of 0.5–2.5 g/l (114). 

The American Conference of Governmental Industrial Hygienists (ACGIH)  

has not specified a Biological Exposure Index (BEI) for biological monitoring  

of occupational exposure to aluminium and its compounds (4).  

5.6 Possibilities for biological effect monitoring 

ATSDR data 

There are no known simple, non-invasive tests that can be used as biomarkers of 

effects caused by aluminium. 

Additional data 

No additional data were found. 

5.7 Summary 

Inhalation and dermal absorption have not been studied in detail. The percentage 

of aluminium absorbed following inhalation might be about 2 %, whereas the 

percentage for dermal exposure is not reported. Welding of aluminium creates 

submicron-sized particles that are easily inhaled and reach the alveoli. Animal 

studies showed no significant increases in aluminium in tissues or serum after 
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inhalation exposure to aluminium oxide and aluminium chlorohydrate, indicating 

that lung retention rather than absorption was taking place.  

After oral exposure, 0.1–1 % of aluminium is absorbed (depending on the alu-

minium compound ingested and the diet composition). Furthermore, aluminium 

may directly enter the brain via the olfactory tract. The aluminium crosses the 

nasal epithelium and reaches the brain via axonal transport. 

Aluminium may exist as free ions (very low concentrations) but mainly forms 

complexes with various ligands in the blood and distributes to every organ, with 

highest concentrations found in bone and lung tissues. In animals, elevated levels 

of aluminium in the foetus were observed following oral or intraperitoneal expo-

sure, providing evidence of transplacental transfer of aluminium. 

The kidney is the major route of excretion of systemically available aluminium 

after inhalation and oral exposure. No data were available on excretion after der-

mal exposure. With regard to inhalation exposure, longer exposure times are 

associated with a decreased rate of clearance of aluminium by the kidney. Unab-

sorbed aluminium is excreted primarily in the faeces after oral exposure. Several 

studies indicated that aluminium can be excreted in human milk, in some of them 

exceeding levels which are considered to be safe. 

The concentrations of aluminium in blood and urine are affected by short-term 

and long-term occupational exposure. Samples collected immediately after a work 

shift are mainly related to the most recent exposure, whereas samples taken later in 

the period after exposure reflect cumulative exposure. The most suitable biological 

parameter for biological monitoring of persons occupationally exposed to alu-

minium is the aluminium concentration in urine (expressed as µg Al/g creatinine). 

It is not known how well concentrations of aluminium in blood and urine reflect 

the concentrations in the target tissues, such as the brain. 

6. Mechanisms of action  

ATSDR data 

In cases in which human aluminium toxicity has occurred, the target organs ap-

pear to be the lung, the central nervous system and the bone. No specific mole-

cular mechanisms have been elucidated for human toxicity to aluminium, but  

the element is known to compete in biological systems with cations, especially 

magnesium (Macdonald and Martin 1988) despite an oxidation state difference, 

and to bind to transferrin and citrate in the blood stream (Ganrot 1986). It may 

also affect second messenger systems and calcium availability (Birchall and 

Chappell 1988) and irreversibly bind to cell nucleus components (Crapper-Mc-

Lachlan 1989, Dyrssen et al 1987). Aluminium has also been shown to inhibit 

neuronal microtubule formation. 

In animal models, aluminium can also produce lung, central nervous system, 

and bone effects, as well as developmental effects in offspring. 
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6.1 Lung toxicity  

ATSDR data 

There have been several cases of lung fibrosis in humans as the result of 

occupational exposure to aluminium dusts (Jordan 1961, Mitchell et al 1961),  

and signs of lung damage have also been produced in rats, hamsters and guinea 

pigs after exposure to aluminium flakes and dusts of alchlor, aluminium fluoride, 

aluminium chloride or aluminium chlorohydrate (Drew et al 1974, Finelli et al 

1981, Gross et al 1973, Steinhagen et al 1978, Thomson et al 1986).  

The lung effects observed in humans and animals are suggestive of dust over-

load. Dust overload occurs when the volume of dust in the lungs markedly impairs 

pulmonary clearance mechanisms. Lung overload is not dependent on the inherent 

toxicity of the compound, and dust overloading has been shown to modify both 

the dosimetry and toxicological effects of the compound. When excessive amounts 

of widely considered benign dusts are persistently retained in the lungs, the re-

sultant lung effects are similar to those observed following exposure to highly 

toxic dusts. The excessive levels of dust in the lung lead to excessive engulfment 

of particles by alveolar macrophages resulting in a progressive loss of alveolar 

macrophage mobility and an aggregation of alveolar macrophages (Morrow 

1992). The relative or complete loss of alveolar macrophage mobility increases 

the likelihood of direct particle-epithelial cell interactions, often resulting in a 

prolonged inflammatory response, and interstitial localisation of dust particles. 

Additional data 

No additional data were found. 

6.2 Neurotoxicity 

ATSDR data 

Numerous mechanistic studies of aluminium neurotoxicity have been performed 

but no single unifying mechanism has been identified (Erasmus et al 1993, Jope 

and Johnson 1992, Strong et al 1996). The main sites of action of aluminium are 

difficult to discern because the studies have been performed using a variety of 

exposure methods (including a number of different in vivo injections and in vitro 

systems) and animal species, and a number of typical effects are not common to 

all species and exposure circumstances (i.e. are only expressed using certain 

models of neurotoxicity). Although available data are insufficient to fully under-

stand the mechanism(s) of aluminium toxicity, some processes that are involved 

have been identified. 

Some of the neurotoxic effects of aluminium can be partially explained by its 

genotoxic and subcellular effects on DNA in neurons and other cells demonstrated 

in vitro. These effects include nuclear effects such as binding to DNA phosphates 

and bases, increasing histone-DNA binding, altering sister chromatid exchange 

(SCE), and decreasing cell division (Crapper-McLachlan 1989, Crapper-Mc-

Lachlan and Farnell 1985). Cytoplasmic effects include conformational changes 
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in calmodulin and increasing intracellular calcium. Although these effects may  

not specifically be caused by interactions with DNA, they will significantly affect 

neuronal functions. Since aluminium accumulates in DNA structures in the cell 

nucleus, it may alter protein-DNA interactions. This is particularly important for 

the calcium-binding protein, calmodulin. This can affect the calcium-modulated 

second messenger system which is activated by neurotransmitters. Interference 

with DNA and protein synthesis may also be part of the mechanism that is in-

volved in the creation of the neural filaments that compose the neurofibrillary 

tangles seen in Alzheimer’s patients (Bertholf 1987). 

Changes in cytoskeletal proteins, manifested as hyperphosphorylated neuro-

filamentous aggregates within the brain cells, is a characteristic response to 

aluminium in certain species (e.g. rabbits, cats, ferrets and non-human primates) 

and exposure situations (e.g. intracerebral and intracisternal administration). 

Similar neurofibrillary pathological changes have been associated with several 

neurodegenerative disorders, suggesting that the cause of aluminium-related 

abnormal neuronal function may involve changes in cytoskeletal protein functions 

in affected cells. The neurofilamentous aggregates appear to result mainly from 

altered phosphorylation, apparently by post-translational modifications in protein 

synthesis, but may also involve proteolysis, transport and synthesis (Jope and 

Johnson 1992, Strong et al 1996). Each of the processes can be influenced by 

kinases, some of which are activated by second messenger systems. For example, 

aluminium appears to influence calcium homeostasis and calcium-dependent pro-

cesses in the brain via impairment of the phosphoinositide second messenger pro-

ducing system (which modulates intracellular calcium concentrations). Calcium-

activated proteinases may be affected which could alter the distribution and con-

centration of cytoskeletal proteins and other substrates (Jope and Johnson 1992). 

The species (rodents) in which aluminium-induced neurobehavioural effects 

(e.g. changes in locomotor activity, learning and memory) have been observed  

fail to develop significant cytoskeletal pathology, but exhibit a number of neuro-

chemical alterations following in vivo or in vitro exposure (Erasmus et al 1993, 

Strong et al 1996). Studies in these animals indicate that exposure to aluminium 

can affect permeability of the blood-brain barrier, cholinergic activity, signal 

transduction pathways, lipid peroxidation and glucose metabolism as well as in-

terfere with metabolism of essential trace elements (e.g. iron) because of similar 

coordination chemistries and consequent competitive interactions. Signal path-

ways are important in all cells and control differentiation and proliferation, neuro-

transmitter release and synaptic plasticity. Glucose metabolism may be affected 

by aluminium due to specific inhibition of hexokinase and glucose-6-phosphate 

dehydrogenase (Erasmus et al 1993, Strong et al 1996). 

It is not known whether the potential mechanisms of aluminium neurotoxicity 

identified in adults parallel those active in the developing foetus and/or young 

animal. For example, aluminium competition for essential element uptake could 

be important during the development of the nervous system but less important for 

nervous system function in an adult animal (Strong et al 1996). 
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Additional data 

Schetinger et al showed that aluminium interferes with δ-aminolevulinate de-

hydratase activity in vitro in the brain of adult mice (Swiss albino) (see Appendix 

1, Table IV) (172). 

Chronic administration of aluminium in the drinking water (2.5 % aluminium 

sulphate) reduced the basal activity of guanylate cyclase and impaired the gluta-

mate-nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in the cere-

bellum in rats (see Appendix 1, Table VI) (87). 

Low molecular mass aluminium complexes induce calcium overload in heart 

and brain. The efficiency of this process depends on the nature of the ligand. Ade-

nosine 5’-triphosphate (ATP) seems to play an important role in this process (9). 

Exley has proposed a mechanism through which chronic exposure to aluminium 

would bring about subtle and persistent changes in neurotransmission. This 

mechanism involves the potentiation of the activities of neurotransmitters by the 

action of aluminium-ATP at ATP receptors in the brain (61).  

Kohila and Tähti reported decreases in ATPase activity and cellular ATP in ani-

mal cells (in vitro) after exposure to aluminium lactate (see Appendix 1, Table IV) 

(105).  

Tsunoda and Sharma reported lower dopamine, dihydroxyphenylacetic acid 

and homovanillic acid levels in the hypothalamus of mice treated with aluminium 

ammonium sulphate. According to the authors, changes in the concentration of 

dopamine and its metabolites measured in the hypothalamus suggest an inhibition 

of dopamine synthesis by aluminium (see Appendix 1, Table VI) (195). 

Fattoretti et al suggested that the ageing central nervous system of rats is parti-

cularly susceptible to aluminium (AlCl3 × 6 H2O) toxic effects which may increase 

the cell load of oxidative stress (see Appendix 1, Table VI) (63).  

Tsunoda and Sharma reported a significantly increased expression of tumour 

necrosis factor alpha (TNFα) mRNA in cerebrum of mice treated with aluminium 

ammonium sulphate. In peripheral cells, there were no significant differences of 

cytokine mRNA expressions. According to the authors, increased expression of 

TNFα mRNA by aluminium in cerebrum may reflect activation of microglia, a 

major source of TNFα in this brain region (see Appendix 1, Table VI) (196). 

Data suggest that Al
3+

 ions bind to calmodulin in the presence of Ca
2+

 ions, 

leading to an inactive, reversible conformation, instead of its physiological active 

form, which may lead to the impairment of protein flexibility and to the loss of its 

ability to interact with several other proteins, which may decrease or inhibit the 

regulatory character of calmodulin in cellular processes (119). 

6.3 Bone toxicity 

ATSDR data 

Two types of osteomalacia have been associated with aluminium exposure. The 

first type has been observed in healthy individuals using aluminium-containing 

antacids to relieve the symptoms of gastrointestinal disorders such as ulcers, colic 
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or gastritis. The aluminium in the antacids binds with dietary phosphorus and im-

pairs gastrointestinal absorption of phosphorus. The observed osteomalacia and 

rickets is directly related to the decreased phosphate body burden.  

Furthermore, osteomalacia is well documented in dialysed uraemic patients ex-

posed to aluminium via dialysis fluid or orally administered aluminium used to 

control hyperphosphataemia. In the case of the uraemic patient, bone aluminium 

levels are markedly increased and the aluminium is present between the junction 

of calcified and non-calcified bone (Alfrey 1993). The osteomalacia is charac-

terised by increased mineralisation lag time, osteoid surface and osteoid area, 

relatively low parathyroid hormone levels and mildly elevated serum calcium 

levels. 

Additional data 

No additional data were found. 

6.4 Pro-oxidant activity 

ATSDR data 

No data were available. 

Additional data 

Diseases associated with high aluminium concentrations could be partially medi-

ated by an increase in oxidative damage (formation of reactive oxygen species)  

to cell components. Aluminium could induce oxidative stress through its capacity 

to interact with active oxygen species, increasing their oxidant activity, or by 

affecting membrane rheology. Furthermore, aluminium-membrane interactions 

can also affect signalling cascades; an increase in intracellular oxidant levels can 

trigger redox-sensitive transcription factors involved in the decision of the cell to 

proliferate or undergo apoptosis (150). 

Campbell et al reported significant increases in reactive oxygen species pro-

duction and a significant decrease in glutathione content in glioma cells after 48-

hour exposure to 500 µM aluminium sulphate (see Appendix 1, Table IV) (33). 

El-Demerdash observed that aluminium chloride (oral dose of 34 mg/kg bw/day) 

induced the formation of free radicals in male rats after exposure for 30 days (see 

Appendix 1, Table VI) (56). Furthermore, treatment (intraperitoneal injection) 

with 3 mg aluminium over a 3-week period increased both cortical levels of gluta-

thione and the rates of generation of reactive oxygen species in brains of rats. 

Aluminium dosing elevated glutamine synthetase activity in the cortex. Levels of 

creatine kinase, another enzyme susceptible to oxidative stress, were also elevated 

in cortices of aluminium-treated rats. Aluminium treatment had very minor effects 

on hepatic parameters of oxidative events (see Appendix 1, Table VII) (27).  

Exley proposed a mechanism which may help to explain the pro-oxidant activity 

of aluminium. Central to this mechanism is the formation of an aluminium super-

oxide semi-reduced radical ion, AlO2
•2+

. While the existence of this radical remains 

to be confirmed, there are strong chemical precedents to support its formation and 
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its oxidising potential. It is predicted to potentiate superoxide-driven biological 

oxidation, such as the oxidation of nicotinamide adenine dinucleotide (NADH), 

and accelerate ion-driven biological oxidation, such as the peroxidation of lipids. 

It is expected to form under physiological conditions when the concentration  

of free Al
3+

 is lower than nanomolar though its formation will likely be in com-

petition with the dismutation of O2
• -

. In vivo, the formation of AlO2
•2+

 would  

be expected to facilitate the direct activities of O2
• -

 in both physiological and 

pathological processes and further aggravate oxidative damage by enhancing  

the formation of HO
•
 via the Fenton reaction. These activities may be more pro-

nounced in disease states in which aluminium has been implicated (62).  

Accumulating evidence suggests that aluminium can potentiate oxidative  

(formation of reactive oxygen species) and inflammatory events, leading to tissue 

damage and neurological disorders. Aluminium can potentiate iron-induced oxi-

dative events and aluminium may exacerbate intrinsic inflammatory activity, 

mediated by interleukins and other inflammatory cytokines, providing an irre-

solvable chronic stimulus for microglial and phagocytic activation within the 

brain (21, 32).  

6.5 Summary of the mechanisms of action of aluminium 

The target organs of aluminium appear to be the lung, the central nervous system, 

and bone. Diseases associated with high aluminium concentrations could be 

partially mediated by an increase in oxidative damage (formation of reactive 

oxygen species) to cell components. Furthermore, aluminium-membrane inter-

actions can affect signalling cascades.  

There have been several cases of lung fibrosis in humans as the result of 

occupational exposure to aluminium dusts, and signs of lung damage have  

also been produced in rats, hamsters and guinea pigs after exposure to several 

aluminium compounds. The inflammatory responses and fibrosis may be caused 

by accumulation of particles in the lungs (dust overload) and impairment of 

pulmonary clearance mechanisms which may result from exposure to high levels 

of aluminium dusts.  

Some processes that are involved in aluminium neurotoxicity have been identi-

fied. Some of the neurotoxic effects of aluminium can be partially explained by  

its effects on DNA in neurons and other cells demonstrated in vitro. Another one 

of these is changes in cytoskeletal protein functions, manifested as hyperphospho-

rylated neurofilamentous aggregates within the brain cells. Studies in animals 

indicate that exposure to aluminium can affect permeability of the blood-brain 

barrier, potentiation of the activities of neurotransmitters by the action of alu-

minium-ATP at ATP receptors, cholinergic activity, inhibition of dopamine syn-

thesis, signal transduction pathways such as the glutamate-nitric oxide-cGMP 

pathway, lipid peroxidation, and glucose metabolism as well as interfere with 

metabolism of essential trace elements (such as calcium). Alteration of the con-

formation of calmodulin, leading to an inactive, reversible conformation, instead 
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of its physiological active form, caused by aluminium binding may also have 

possible implications in the neurotoxic effects of aluminium. Furthermore, alu-

minium has been implicated in a variety of neurological disorders that have been 

associated with an increase in the formation of reactive oxygen species. Besides, 

accumulating evidence suggests that the metal can potentiate inflammatory events, 

leading to tissue damage.  

Osteomalacia has been associated with aluminium exposure. Aluminium in ant-

acids, which are ingested to relieve gastrointestinal disorders, binds with dietary 

phosphorus and impairs gastrointestinal absorption of phosphorus. Furthermore, 

osteomalacia is well documented in dialysed uraemic patients exposed to alu-

minium via dialysis fluid or orally administered aluminium used to control hyper-

phosphataemia. 

7. Effects in humans  

Effects of aluminium and aluminium compounds in humans are summarised in 

Appendix 1, Table I (case reports), Table II (non-carcinogenic respiratory effects 

after long-term exposure) and Table III (neurotoxic effects after long-term ex-

posure). The most important studies are described below. 

7.1 Irritation and sensitisation 

7.1.1 Respiratory tract  

No studies were located on local effects on the respiratory tract after acute ex-

posure. Local effects on the respiratory tract after long-term exposure are de-

scribed in Section 7.3.  

7.1.2 Skin  

ATSDR data  

No studies were located regarding dermal effects in humans after dermal exposure 

to various forms of aluminium. 

Aluminium compounds are widely used in antiperspirants without harmful 

effects to the skin (Sorenson et al 1974). Some people, however, are unusually 

sensitive to some types of antiperspirants and develop skin rashes, which may be 

caused by aluminium (Brusewitz 1984).  

Several children and one adult who had previous injections of vaccines or aller-

gens in an aluminium based vehicle showed hypersensitivity to aluminium chloride 

(soluble) in a patch test (Böhler-Sommeregger and Lindemayr 1986, Veien et al 

1986).  

Additional data  

Additional human data regarding local skin effects are summarised in Appendix 1, 

Table I.  
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A 43-year-old women did not have any rash or skin irritation due to daily 

application of 1 g of an antiperspirant cream containing 20 % aluminium chloro-

hydrate (soluble) on each underarm for 4 years (80).  

Several case reports involving injections of vaccines in an aluminium-based 

vehicle showed local skin reactions/hypersensitivity to aluminium and aluminium 

hydroxide (insoluble) (185). 

A 34-year-old man with a 2-year history of eczema of both hands and the right 

elbow flexure had used at work a compressor air pistol with his right hand to blow 

fillings out of newly milled narrow aluminium threads. Aluminium particles were 

thus impelled at high speed into the right hand. Clinically, there was erythema, 

hyperkeratosis, fissuring and partial desquamation on the hand. Patch testing was 

positive for aluminium (152). 

In general, sensitisation to aluminium is very rare despite its wide distribution 

in cosmetics and its extensive use in several industries (7). As described above, 

aluminium is used as an adjuvant in most commonly used hyposensitisation ex-

tracts, as aluminium prolongs the period of absorption and increases the immuno-

logical response. Several studies have been published in the literature in which 

sensitisation to aluminium has been caused by repeated injections of substances 

containing aluminium given over a prolonged period in the course of hyposensi-

tisation therapy. Children with aluminium sensitivity have been reported to de-

velop persistent subcutaneous nodules at the sites of hyposensitisation therapy (7). 

Although aluminium injected as hydroxide in an absorbed vaccine and antigen 

extracts can cause granulomas, the small number of reports of aluminium allergy 

from the aluminium industry indicated that epicutaneous application of aluminium 

is not strongly sensitising.  

7.1.3 Eyes  

ATSDR data 

No studies were located regarding ocular effects in humans following acute-  

or intermediate-duration inhalation exposure to various forms of aluminium. 

Following the cessation of exposure, normal eye examination results were 

reported in a man chronically exposed to metallic aluminium and aluminium 

oxide powders in air (De Vuyst et al 1987).  

Additional data  

No additional studies were located on effects on the eyes.  

7.2 General systemic toxicity 

Since human data suggest that the respiratory tract and the nervous system may be 

the most sensitive organs of occupational aluminium exposure, the corresponding 

studies are discussed in separate sections (7.3 and 7.4, respectively).  
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ATSDR data  

No studies were presented regarding mortality and cardiovascular, gastroin-

testinal, haematological, musculoskeletal, hepatic, renal and endocrine effects 

after acute inhalation or dermal exposure to aluminium and aluminium com-

pounds in occupational settings.  

Following repeated exposure, mortality has been reported in workers exposed  

to finely powdered metallic aluminium (aluminium concentrations: ca. 650 mg/m
3
 

as total dust, ca. 50 mg/m
3
 as respirable dust) or to aluminium flake powder. Both 

mortality and the heart effects observed in these workers were considered to be 

secondary to severe pulmonary fibrosis and poor pulmonary function (McLaughlin 

et al 1962, Mitchell et al 1961).  

Epidemiological studies in cohorts ranging from 340 to 21 829 men working  

in aluminium industry failed to identify increased mortality from cardiovascular 

disease (Milham 1979, Mur et al 1987, Rockette and Arena 1983, Theriault et al 

1984). In a study on cardiovascular tests (electrocardiogram, blood pressure), 

there were no differences between the results of 22 aluminium workers exposed 

for 10 years or more and those of 16 unexposed controls (Bast-Pettersen et al 

1994). 

No adverse haematological effects were observed in a group of 7 workers 

following a 6-month exposure to aluminium fumes or dusts at breathing zone air 

levels of 1–6.2 mg Al/m
3
 (mainly aluminium oxide) (Mussi et al 1984). In 30 out 

of 36 workers with long-term exposure to aluminium oxide dust, prolongation of 

prothrombin time was seen (Waldron-Edward et al 1971).  

Bone mineral content, assessed by osteodensitometry, was not significantly 

changed in workers exposed to average concentrations of aluminium powder of  

12 mg/m
3
 for an average of about 12–13 years (Schmid et al 1995).  

In the aforementioned group of 7 workers, there was no effect on liver function 

or on hepatic microanatomy (determined from biopsy samples) (Mussi et al 1984).  

No adverse effects were observed on renal function and standard urine tests in 

the aforementioned group (Mussi et al 1984) or in other groups chronically ex-

posed to aluminium powder (De Vuyst et al 1987, McLaughlin et al 1962).  

No studies were reported on gastrointestinal and endocrine effects in repeatedly 

exposed groups of workers.  

With regard to oral exposure, dietary intake of aluminium, recently estimated  

to be in the 0.10–0.12 mg Al/kg bw/day range in adults (Pennington and Schoen 

1995), has not been of historical concern with regard to toxicity due to its pre-

sence in food and the generally recognised as safe (GRAS) status of aluminium-

containing food additives by the US Food and Drug Administration (FDA). Users 

of aluminium-containing medications that are healthy (i.e. have normal kidney 

function) can ingest much larger amounts of aluminium than in the diet, possibly 

as high as 12–71 mg Al/kg bw/day from antacid/anti-ulcer products and 2–10 mg 

Al/kg bw/day from buffered analgesics when taken at recommended doses (Lione 

1985). 
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Additional data 

No additional key studies were identified on the effects of aluminium and aluminium 

compounds after single inhalation, dermal or oral exposure.  

An increased risk of coronary heart disease has been observed in two studies of 

aluminium production (smelters) workers but not in another study. Air pollutant 

particles in general, and not aluminium per se, were considered to be responsible 

for the effect observed (181). 

No other studies on effects following repeated occupational exposure were 

found. 

7.3 Respiratory tract toxicity  

ATSDR data  

The most convincing evidence that aluminium exposure results in respiratory 

effects in humans comes from studies of workers exposed to fine aluminium  

dust (pyro powder) or aluminium oxide (insoluble). The early studies deal with 

aluminium powder workers exposed years ago when exposure conditions were  

not typical of today’s conditions. Although detailed exposure data are lacking, 

there is reason to believe that exposure levels at which the above mentioned 

effects occurred were extremely high. Random tests with filter papers and im-

pingers have shown the dust content in air to be in general between 4 and 50 

mg/m
3
 and occasionally several times higher. Today, the exposure is thought  

to be much lower after technical improvements.  

In a number of studies, the potential for airborne aluminium to induce re-

spiratory effects in chronically exposed workers were examined. Exposure to 

aluminium fumes and dust occurs in potrooms. Wheezing, dyspnoea and impaired 

lung function have been observed in potroom workers. Because these workers 

were also exposed to a number of other toxic chemicals, including sulphur di-

oxide, PAHs, carbon monoxide and hydrogen fluoride, it is difficult to ascribe  

the respiratory effects to aluminium only.  

Lung fibrosis is the most commonly reported respiratory effect observed in 

workers exposed to fine aluminium dust (pyro powder), aluminium oxide (in-

soluble) or bauxite. However, reports on the fibrogenic potential of aluminium  

are conflicting, most probably due to differences in the lubricant used to retard 

surface oxidation during milling (Dinman 1987). The lung fibrosis has only been 

associated with pyro powders utilising non-polar aliphatic oil lubricants to retard 

surface oxidation such as mineral oil (Edling 1961, McLaughlin et al 1962, 

Mitchell et al 1961, Ueda et al 1958) and this process is no longer used. Exposure 

to pyro powder which used stearic acid as a lubricant did not result in fibrosis 

(Crombie et al 1944, Meiklejohn and Posner 1957, Posner and Kennedy 1967).  

Additional data  

Additional data with regard to effects on the respiratory tract are summarised in 

Appendix 1, Table II.  
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Potroom and foundry workers  

Workers in aluminium potrooms are exposed to various air pollutants, and 26 sub-

stances to which exposure can occur have been listed, such as dusts (aluminium, 

cryolite (a fluorinated compound of sodium and aluminium), carbon dust and 

fluorides), fumes and gases (mainly hydrogen fluorides and sulphur dioxide) (121, 

157, 187, 188). As the concentrations of several pollutants are correlated to each 

other, it has been difficult to identify the causal agent of potroom asthma, although 

a number of authors have suggested fluoride compounds to be the major candidate 

(178, 187, 188). Furthermore, smoking and former exposures were found to be 

risk factors. High blood eosinophil count, atopic history, exposure duration and 

level of exposure were also found to be risk factors (187, 188).  

Negative findings in studies on lung function impairment could be due to a 

healthy worker effect (157). 

Aluminium metal dust and aluminium oxide  

Between 1944 and 1979, McIntyre powder, which was reported to contain 15 % 

elemental aluminium and 85 % aluminium oxide, was used as a prophylactic agent 

against silicotic disease in mines in Ontario, Canada (160). Miners inhaled the 

aluminium particles for 10 or 20 minutes before each underground shift. The 

estimated concentration to which the miners were exposed during 10 minutes was 

about 350 mg/m
3
. For a 10-minute exposure at this concentration, the amount  

of aluminium retained in the lung is calculated to be about 20 mg, assuming an 

effective tidal volume of 450 cm
3
/breathe and 12 breaths/minute. This corresponds 

to 2 mg/m
3
 over an 8-hour working day assuming the conventional inhalation 

volume of 10 m
3
. With regard to respiratory effects, no adverse health effects on 

the lung were observed (22). 

Aluminium welding fumes  

Hull and Abraham reported the clinical, radiographic, microscopic and micro-

analytic results of 2 co-workers who were chronically exposed to high unspecified 

concentrations of fumes during aluminium arc welding and died of complications 

from aluminium welding fume-induced lung fibrosis. The individuals worked at 

the same aluminium shipbuilding facility. The severe lung fibrosis was charac-

terised by diffuse pulmonary accumulation of aluminium metal and a corre-

sponding reduction in lung function. Scanning electron microscopy and energy 

dispersive X-ray analysis of the exogenous particle content in the lung tissue of 

these cases revealed the highest concentrations of aluminium particles (average  

of 9.26 billion aluminium particles per cm
3
 of lung tissue) among 812 similar 

analyses in a pneumoconiosis database of the authors. One patient had an original 

clinical diagnosis of sarcoidosis but no evidence of granulomatous inflammation 

(91) (Appendix 1, Table I).  

In a cross-sectional study by Abbate et al, a group of 50 male shipyard welders 

who were exposed to aluminium underwent medical examination, standard chest 

X-rays and spirometry. Environmental monitoring displayed concentrations of 
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6.2–20.2 mg/m
3
 for five different areas. Five samplings were performed, each 

lasting 120 minutes. The welding aerosol contained mainly breathable aluminium-

bearing particles. The chemical characterisation of the welding aerosol caused 

aluminium to be fully oxidised. No information on co-exposure was reported. The 

data were compared with those of a homogeneous group of controls, all with 

blood aluminium levels below 7.5 µg/l. Subjects with a history of allergic and/or 

respiratory disorders and those who smoked over three cigarettes per day were ex-

cluded from the study. Statistical analysis was performed on the following spiro-

metric parameters: vital capacity (VC), forced vital capacity (FVC), maximum 

forced expiratory volume in 1 second (FEV1), and mean forced expiratory flow 

during mid-half of FVC (FEF25–75). Fifty male workers with an average age of 

31.8 ± 5.1 years, occupational exposure of 11.8 ± 3.7 years, presented with average 

aluminium blood levels of 32.6 ± 8.7 µg/l (measured on Monday morning at the 

beginning of the working week). Unexposed subjects had blood aluminium levels 

below 7.5 µg/l. Clinical and radiographic examination did not reveal pathological 

conditions affecting the respiratory apparatus. Statistical comparison of the spiro-

metric parameters showed a decrease in the examined values in exposed workers. 

This decrease was found to be directly proportional to the blood aluminium level 

(1).  

Letzel et al (115) performed a longitudinal study of about 4 years with three 

cross-sectional studies integrated within intervals of two years each (1999, 2001, 

2003). Two study groups were formed. For the first group, 101 aluminium welders 

(median age at the start of the study: 35 years, range 23–51 years; total duration  

of welding at the start of the study: 7–118 months; 83 % smokers and ex-smokers) 

in the car-body construction industry were selected of which 98 completed the 

first investigation. The control group consisted of 50 non-exposed car-production 

workers of the same plant. There was no relevant loss of test persons during the 

course of the study. However, in 2003, only 68 of them were still working as 

welders. The medical programme included, amongst others, standardised medical 

history, physical examination, parameters of pulmonary function, high-resolution 

computed tomography (HRCT) of the lung of welders and biomonitoring of alu-

minium levels in urine and plasma. Air monitoring consisted of measurement of 

aluminium (as total dust with personal air sampler “Alpha 1” with a welding fume 

sampling head) and ozone. In 1999, 2001 and 2003, the median (range) dust levels 

were 0.47 mg/m
3
 (0.1–6.2), 0.67 mg/m

3
 (0.2–1.5) and 0.55 mg/m

3
 (0.15–0.96), 

respectively. Median (of average of pre- and post-shift) levels in urine were 57.6, 

52.4 and 19.7 µg/l, respectively.  

Compared to the controls, welders reported, partly significantly, more respiratory 

symptoms. In the 2003 investigation, a decrease in complaints was observed. 

Analyses of the results of pulmonary function parameters did not show clear 

evidence of an increased occurrence of restrictive pulmonary ventilation dis-

orders. However, welders had worse results in the flow-volume curve, especially 

for the maximal expiratory flow at 25 and 50 % of FVC (MEF25 and MEF50) at all 

investigations. No changes were observed in FEV1 and VC. HRCT revealed an 
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increase in the incidence of emphysematous lung changes during the observation 

period (1999: 31.7 %, 2003: 58.8 %), while in one welder, signs suspicious of an 

early stage of lung fibrosis were observed.  

The second group consisted of 46 aluminium welders (median age 1999: 40 

years) from five different companies in the field of railway vehicle engineering 

and special vehicle production and 37 non-exposed controls (median age 1999: 38 

years). During the course of the study, there was a decrease in the study population. 

Median dust levels were about 5–7 mg/m
3
 with maximum levels of ca. 20–50 mg/ 

m
3
 (in 2001, a maximum level of 273 mg/m

3
 was reported). Median urine con-

centrations ranged from ca. 120 to 150 µg/l with maximum values of ca. 650 µg/l. 

Results were similar as those seen in the first group of welders in the motor car 

industry. The welders reported more respiratory symptoms than controls. The 

results of pulmonary function tests were not consistent: in some tests (e.g. peak 

expiratory flow – PEF – in 2001), results were better for the welders, in other 

worse (e.g. MEF25 in 2001). Generally, higher exposed welders had worse results 

than less exposed workers. From HRCT, an increase in the incidence of emphy-

sematous lung changes during the observation period (1999: 37.2 %, 2003: 50 %) 

was seen, while there were signs suspicious of an early stage of lung fibrosis in 8 

welders.  

The authors concluded that in this study inflammatory changes were found in 

the lungs of especially “high” exposed aluminium welders. However, a causal 

relationship with aluminium could not be established, because of the co-exposure 

to ozone and because the changes observed in HRCT mainly concerned smokers 

and ex-smokers (115). 

Aluminium pyro powder  

Kraus et al noted that since the beginning of the 1990s, several new – severe – 

cases of aluminium-induced lung fibrosis have been reported in aluminium 

powder industry in Germany (107, 108). After having established in a case report 

that HRCT is suitable and more sensitive for detecting early stages of aluminium 

dust-induced lung disease (108), Kraus et al performed a cross-sectional study 

among a group of 62 male workers from eight departments of two aluminium 

powder-producing plants. The investigation included a standardised questionnaire, 

physical examination, lung function analysis (VC, FEV1, total resistance), total 

lung capacity, biological monitoring of aluminium in plasma and urine, chest X-

ray, HRTC, and a great number of immunological tests. Workplace air was not 

monitored. The median exposure duration was 123 months (range 13–360). The 

median (range) concentrations of aluminium were 104 µg/g creatinine (7.9–821) 

or 83.3 µg/l (3.7–630) in urine and 12.5 µg/l (2.5–84.4) in plasma. There were  

no clinically relevant findings from immunological tests. Chronic bronchitis was 

observed in 15 workers (24 %) and dyspnoea during exercise in four (6.5 %). 

HRTC revealed aluminium-induced changes in the lungs, characterised by small 

rounded and ill-defined centrilobular nodular opacities mainly in the upper lobes, 

in 15 workers (5 and 4 of the affected workers reported chronic bronchitis and 
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dyspnoea, respectively). Affected workers had higher concentrations of alu-

minium in urine (340 vs. 135 µg/g creatinine in non-affected workers, p = 0.007) 

and plasma (33.5 vs. 15.4 µg/l, p = 0.01) (10 workers had urinary levels > 200 

µg/l, the German biological limit value at the time of the study). With respect to 

lung function analysis, affected workers only showed differences in VC (decrease, 

p = 0.01) when compared to non-affected workers. Years of exposure and con-

centration of aluminium in urine and plasma were found to be the best predictors 

for HRCT findings. Age and decreased VC were of borderline significance. Final-

ly, Kraus et al noted that all participants were exposed to non-greased and at least 

barely greased aluminium powder. Affected workers were mainly workers exposed 

to barely or non-greased powders in the stamping workplace with the highest levels 

of aluminium dust, most of it being respirable with diameters < 5 µm (107).  

Letzel found decreases in FEV1, MEF25, MEF50 and MEF75 in a group of 32 

workers exposed to aluminium in an aluminium powder plant compared to 30 non-

exposed workers from the same facility. Further analysis revealed that smoking 

contributed more to the statistically significance difference in FEV1 and MEF25 

than exposure to aluminium. Exploratory personal air sampling showed maximum 

total dust levels of 33.6 mg/m
3
 of which 62 % consisted of aluminium. The ex-

posed workers had aluminium concentrations between 5.0 and 337 µg/l in urine 

and between 5.1 and 25.9 µg/l in plasma (113).  

Other  

Six and seven cases of asthma developed in 1975 and 1976, respectively, in a 

group of 35–40 workers of a Swedish aluminium fluoride-producing facility ex-

posed to mean aluminium fluoride concentrations (personal air sampling) of 5.5 

and 2.6 mg/m
3
, respectively. During 1978–1980, when measures resulted in lower 

concentrations of 0.4–1.0 mg/m
3
, two new cases appeared, while none occurred in 

1981 and 1982 (no exposure levels reported) (177). 

Four cases of short-lasting asthma occurred during 1971–1980 in a group of 37 

workers of a Swedish aluminium sulphate-producing facility exposed to average 

aluminium sulphate concentrations varying between 0.2 and 4 mg/m
3
. The induc-

tion of asthma was reported to be related to “heavy” dust exposure during rinsing 

or repair work (177). 

Hjortsberg et al reported an increase of bronchial reactivity in small airways 

due to exposure to potassium aluminium tetrafluoride used as a flux for soldering 

aluminium. Median exposure levels of respirable dust and of respirable particulate 

fluoride were 1.1 and 0.3 mg/m
3
, respectively, while subsequent measures lowered 

levels to 0.7 and 0.1 mg/m
3
, respectively (88). 

7.4 Neurotoxicity  

ATSDR data 

No studies were presented regarding neurological effects in humans following 

acute or short-term inhalation exposure to various forms of aluminium. A number 

of occupational studies have investigated the neurotoxic potential of airborne 
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aluminium in chronically exposed workers. The workers were exposed to alu-

minium dust in the form of McIntyre powder (which was reported to contain 15 % 

elemental aluminium and 85 % aluminium oxide), aluminium dust and fumes in 

potrooms and foundries, and aluminium fumes during welding. With the exception 

of some isolated cases (e.g. McLaughlin et al 1962), inhalation exposure has not 

been associated with overt signs or symptoms of neurotoxicity. However, in some 

of the studies, subclinical neurological effects such as impairment on neurobe-

havioural tests for psychomotor and cognitive performance and an increased in-

cidence of subjective neurological symptoms (Hänninen et al 1994, Hosovski et  

al 1990, Rifat et al 1990, Sim et al 1997, Sjögren et al 1996, White et al 1992) 

were found. Further details of some important studies are described in the section 

“Additional data” below. In general, these occupational studies poorly characterise 

aluminium exposure. The lack of adequate exposure monitoring data and the 

different types of aluminium exposure makes it difficult to compare these studies 

and draw conclusions regarding the neurotoxic potential of inhaled aluminium in 

workers.  

Evidence is equivocal on the possible relationship between aluminium and 

Alzheimer’s disease. Epidemiology and case-control studies that examined the 

possible relationship between Alzheimer’s disease and aluminium report con-

flicting results. No increases in Alzheimer’s disease-related deaths were observed 

in workers exposed to airborne aluminium (Salib and Hillier 1996). Some studies 

designed to show the possible relationship between oral exposure to aluminium 

and the incidence of Alzheimer’s disease have found significant associations. 

There is no consensus on whether, collectively, the human studies provide suf-

ficient evidence for suggesting an association between aluminium and Alzheimer’s 

disease.  

Graves et al (1990) examined the association between Alzheimer’s disease and 

the use of aluminium-containing antiperspirants in a case-control study using 130 

matched pairs. The Alzheimer’s disease was clinically diagnosed at two geriatric 

psychiatric centres. The controls were friends or non-blood relatives of the Alz-

heimer patients. Information on life-time use of antiperspirants/deodorants was 

collected via a telephone interview with the subject’s spouse. No association was 

found between Alzheimer’s disease and antiperspirant/deodorant use, regardless 

of aluminium content (odds ratio (OR) 1.2, 95 % confidence interval (CI) 0.6–

2.4). When only users of aluminium-containing antiperspirants/deodorants were 

examined, the adjusted OR was 1.6 (95 % CI 1.04–2.4). A trend (p = 0.03) toward 

a higher risk of Alzheimer’s with increasing use of aluminium-containing antiper-

spirants/deodorants was also found. 

Additional data  

Additional data on central nervous system effects are summarised in Appendix 1, 

Table III.  
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Potroom and foundry workers  

Exposure in potrooms is primarily to aluminium oxide and aluminium fluoride 

and exposure in foundries is partially to oxidised aluminium metal fumes (see 

Chapter 4). 

Studies demonstrated neurological effects like slower psychomotor reactions 

and reduced coordination, as well as memory problems and other mental dis-

turbances. Furthermore, an increase of the prevalence of neurological symptoms 

(coordination problems, difficulty buttoning, and depression) was reported.  

However, workers in aluminium potrooms and foundries are not only exposed 

to aluminium compounds. Exposure occurs to various air pollutants and over  

20 substances to which exposure can occur have been listed, such as dusts (alu-

minium, cryolite (a fluorinated compound of sodium and aluminium), carbon dust 

and fluorides), fumes and gases (mainly hydrogen fluorides and sulphur dioxide) 

(121, 157, 187, 188). Several pollutants are correlated to each other (178). Röllin 

et al reported that the aluminium concentration in the respirable dust fraction 

amounted to 44 % of the aluminium found in the total inhalable fraction measured 

at the same time in the potrooms of a modern aluminium smelter in South Africa 

(169). 

Healy et al investigated inhalation exposure at seven secondary aluminium 

smelters in the UK. The substances monitored were, amongst others, total in-

halable dust and aluminium. Personal exposure results for total inhalable dust 

were 0.7–56 mg/m
3
. The aluminium personal exposure ranged from 0.04 to 0.9 

(mean 0.3) mg/m
3
. The average proportion of aluminium in total inhalable dust 

samples was 13 %. From a total of 33 results, this proportion varied between 5 and 

27 %, with a standard deviation of 5 %. If it is assumed that aluminium is present 

as the oxide, the average proportion of Al2O3 in the dust sampled was 25 %. The 

composition of the remaining 75 % of the dust was uncertain, although the metal 

analysis suggested that other metal oxides alone could not account for the shortfall 

according to the authors (86). 

Information in the toxicological profile of the ATSDR (13, 14) reported that in 

aluminium reduction facilities using the prebake process, PAHs are generated. 

Furthermore, in aluminium reduction operations using the Søderberg cell process, 

considerable amounts of volatiles from coal tar pitch, petroleum coke, and pitch, 

including PAHs, are generated.  

Because the concomitant exposure to these other compounds, it is not possible 

to attribute the observed effects to aluminium specifically.  

Aluminium metal dust and aluminium oxide 

There were no significant differences in diagnoses of neurological disorder be-

tween miners inhaling Mclntyre powder as a prophylactic agent against silicotic 

disease (see Section 7.3) and those who did not. Performance of a group of 261 

miners exposed to aluminium was compared to that of 346 unexposed miners in 

three cognitive tests. A higher proportion of miners with impaired cognitive 
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functions were reported among those with longer lasting treatment periods (160), 

but re-design and re-analysis of the study did not confirm the results (142). 

Two cross-sectional studies were conducted by Letzel et al at a German alu-

minium powder plant to evaluate possible nervous system effects from occupational 

aluminium exposure. The investigation included biological monitoring, a neuro-

psychological test battery and event-related P300 potentials. The first examination 

involved 32 aluminium dust-exposed workers (median exposure time: 12.6 years, 

range 2–41.3) and 30 unexposed controls from the same plant who were matched 

for age, gender, professional training, and education level. Exposed workers had 

median (range) aluminium concentrations in urine of 87.6 µg/g creatinine (4.6–

605) or 110 µg/l (5.0–337) and in plasma of 8.7 µg/l (5.1–25) (it was not mentioned 

at which time points aluminium sampling in serum and urine were performed). 

Unexposed workers had median aluminium (range) concentrations of 9.0 µg/g 

creatinine (1.9–51.8) or 7.6 µg/l (2.6–73.8) in urine and of 4.3 µg/l (1.6–7.1) in 

plasma. No information on co-exposure was reported. High alcohol consumption 

reported in some workers in the two groups could mask mild aluminium-induced 

central nervous changes. There was no dose-effect relationship for the length of 

exposure or internal aluminium concentrations in plasma or urine and any of the 

primary neurological variables (110, 116). Five years later, all available workers 

from both groups, viz. 21 exposed (15 still exposed, 6 formerly exposed, median 

exposure time: 16 years, range 2–41.2 years) and 15 unexposed controls were re-

assessed using the same methods except for the P300 potentials. The other persons 

were no longer willing to participate in the voluntary follow-up investigation or 

had left the plant. A shift in age between the exposed and control groups (self-

selection) was reported. There was no evidence that persons with a below-average 

test performance or high or long exposure to aluminium did not participate in the 

follow-up examination. A tendency for persons who admitted to high alcohol 

consumption in the first evaluation not to participate in the follow-up evaluation 

was observed. Exposed workers had median (range) aluminium concentrations of 

19.8 µg/g creatinine (3–203) and of 24.1 µg/l (3.4–219) in urine and of 6.7 µg/l 

(1.6–20.6) in plasma. For unexposed workers, figures were 4.5 µg/g creatinine 

(2.2–15.9) and 6.5 µg/l (2–25.4) in urine and 4.3 µg/l (1.9–12.9) in plasma. As 

with the first examination, no significant exposure-related differences between the 

two study groups were found for the primary neurological variables. Longitudinal 

comparison of the two examinations showed a significant reduction in the renal 

aluminium excretion (likely to be the result of improved occupational hygienic 

measures taken after the first investigation) (116). 

Aluminium pyro powders  

Iregren et al examined possible neurotoxic effects in a small group of workers 

(n = 16, median age: 34.7 years (range 22–48), median seniority: 8 years (range  

2–22), median alcohol index: 1 (range 0–5)) exposed to aluminium in the pro-

duction of flake powder (exposed years not specified). Exposure to aluminium 

was evaluated with aluminium concentrations in blood and urine as well as a 
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questionnaire. The samples from most of the flake powder-production workers 

were collected after five exposure-free days. The groups exposed to aluminium 

were compared with a group of 39 mild steel welders (median (range) age 39 (23–

59) years, median seniority 12 (5–30) years, median alcohol index 2 (0–5)). The 

two study groups were homogeneous. Neurotoxic effects were studied with mood 

and symptom questionnaires and several psychological and neurophysiological 

tests. Flake powder producers had median (range) aluminium levels in urine of 

59.0 µg/g creatinine (12–139) and of 83.0 µg/l (12–282) and in blood of 9.0 µg/l 

(< 1–21). Mild steel welders had median (range) aluminium concentration in urine 

of 4.7 µg/g creatinine (< 1–25) and of 3.0 µg/l (< 1–26) and in blood of 1.0 µg/l  

(< 1–11). Aluminium was not found to affect the functioning of the nervous system 

in flake powder producers (98). 

Aluminium welding fumes  

In a study to investigate prevalences of symptoms for groups of welders with 

different exposures, responses from 282 workers were analysed, among them 65 

welding aluminium. All welders responded to the Q16 symptom questionnaire. 

Two symptoms were specifically related to exposure to aluminium (“do you often 

have problems with concentrating?” and “do you often feel depressed without 

reason?”). Furthermore, welders reporting exposure to aluminium fumes for more 

than 20 000 hours (corresponding to about 13 years of full-time exposure) had a 

doubled risk for reporting more than three symptoms in this questionnaire (OR 

2.79, 95 % CI 1.08–7.21) (180).  

Hänninen et al investigated 17 male aluminium welders in a shipyard (mean 

age: 37 years, range 24–48) who had been engaged in welding for 5–27 years 

(mean 15 years) but had been MIG welding on aluminium for only about the last  

4 years. Central nervous system functions were examined with neuropsychological 

tests, symptom and mood questionnaires, quantitative electroencephalography 

(EEG), and P300 evoked responses. No control group was included. The mean 

serum and urine aluminium concentrations were 5.7 µg/l (range 0.8–17.3) and 

75.5 µg/l (range 24.3–164.6), respectively. Although the welders performed 

normally on the neuropsychological tests, there was a negative association be-

tween all four memory tests and urinary aluminium and a positive association 

between the variability of visual reaction times and serum aluminium con-

centration. The neuropsychological assessment suggested disturbing effects of 

aluminium on short-term memory, learning, and attention. In the quantitative 

EEG, a corresponding exposure-effect relationship was found for activity in the 

frontal region (93). 

Akila et al performed a cross-sectional study of asymptomatic MIG aluminium 

welders (history of aluminium welding for up to 23 years) and a reference group 

of mild steel welders. Subjects underwent a semi-structural interview by a physi-

cian to provide details on age, education, health, smoking, alcohol consumption, 

etc. A comprehensive neuropsychological examination was undertaken to assess 

psychomotor function, simple visual reaction time, attention related tasks, verbal 
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and visual or visuospatial abilities, verbal and visual learning, and memory. 

Levels of aluminium were determined in urine and serum, and of lead in blood. 

Urine samples were collected after two consecutive exposure-free days and blood 

samples were taken in the morning of the test day. Based on urinary aluminium 

concentrations, welders were classified into a reference and a low- and high-ex-

posure group (n = 28, 27 and 24, respectively). There was no evidence of con-

current exposure to other neurotoxins. Each company was visited to ensure that 

there were no potentially confounding exposures. Blood lead levels were all in  

the normal range of 0.1–0.4 µmol/l. There was no current or recent use of ant-

acids containing aluminium. The mean urinary aluminium concentrations were  

12, 60 and 269 µg/l, respectively. No urine concentrations corrected for creatinine 

clearance were reported. The mean serum aluminium concentrations were 2.4,  

4.6 and 14.3 µg/l, respectively.  

Aluminium welders showed no impairment on the finger tapping, Santa Ana 

dexterity, simple visual reaction times, any of the verbal memory tasks, the 

similarities subtest of Wechsler adult intelligence scale or the Stroop task. How-

ever, the low-exposure group performed poorer on the memory for designs and  

on more difficult block design items demanding preliminary visuospatial analysis. 

The time limited synonym task, embedded figures, digit symbol speed, and the 

backward counting component of the divided attention task showed exposure-

response relations with statistically significant effects in the high-exposure group. 

The impairments found were circumscribed. Overall, the performance difficulties 

were mainly detected in tasks demanding complex attention, requiring working 

memory, and particularly in time limited tasks involving visually presented 

material (6). 

Riihimäki et al analysed essentially the same study population, which consisted, 

however, of more welders and less referents. The study population was divided 

into three subgroups: a referent group (n = 25, median age: 37.4 years, median Al 

serum and urine levels: 2.2 and 11 µg/l, respectively), a low-exposed group (n = 

29, median age: 35.7 years, median Al serum and urine levels: 3.8 and 49 µg/l, 

respectively), and a high-exposed group (n = 30, median age: 43.9 years, median 

Al serum and urine levels: 12.4 and 192 µg/l, respectively). Age was a potential 

confounder and was controlled for in the statistical analyses. The final study 

population was homogenous in terms of ethnic and cultural background, education, 

social status, social consumption of alcohol, occupation and the main job charac-

teristics. There were no heavy drinkers, psychotropic drug users or users of alu-

minium-containing antacids. Blood lead levels (< 0.4 µmol/l) were in the normal 

range.  

Comparison of the symptom scales by covariance analysis, with age as a co-

variate, revealed significant differences between the high-exposure group and the 

control group for memory and concentration difficulties (p = 0.004), fatigue (p = 

0.027) and emotional lability (p = 0.045). Similarly, significant differences were 

found for 6 out of 18 neuropsychological tests (Bourbon-Wiersma dot cancel-

lation accuracy, p = 0.0497; counting backwards, p = 0.042; dual-task cancellation 
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speed, p = 0.047; dual-task counting speed, p = 0.021; synonyms, p = 0.011; and 

memory for designs, p = 0.030). The test results indicated a circumscribed effect 

of aluminium, mainly in tasks demanding complex attention and the processing  

of information in the working memory system and in the analysis and recall of ab-

stract visual patterns. The visual EEG analysis revealed mild diffuse abnormalities 

in 17 % of the low-exposure group and in 27 % of the high-exposure group, and 

mild to moderate epileptiform abnormalities in 7 % and 17 %, respectively (161). 

Kilburn noticed that it was not reported whether manganese exposure as a result 

of welding was taken into account. According to Kilburn, most commercial alu-

minium is alloyed with copper, manganese or zinc. Studies have described effects 

on the central nervous system after exposure to aluminium-manganese from re-

melting and welding. Therefore, dose effects attributed solely to aluminium in the 

present study should probably be interpreted as applying to aluminium-manganese 

mixtures, since exposure to manganese alone slows visual reaction times, disturbs 

head steadiness and eye-hand coordination, and impairs short-term memory (104). 

Sjögren et al examined the effects on the nervous system in 38 welders exposed 

to aluminium (years worked with welding: 17.1 years). According to a question-

naire, the welders had welded lead or high alloy manganese steel for a total of less 

than 10 hours. As a control group, 39 railway track welders were included (years 

worked with welding 13.8 years). None of the participants had been occupationally 

exposed to solvents. Two control welders had been exposed to solvents to some 

extent during leisure activities. Previous head trauma was somewhat more common 

among control welders. This was not taken into account in the analysis, and the 

effect, probably minor, would have underestimated group differences. The only 

subject who had ingested antacids containing aluminium daily during the past 10 

years was a control welder (highest urinary concentration of aluminium – 26 µg/l 

– among the controls). The investigation included four different questionnaires on 

peripheral and central nervous system symptoms, psychological and neurophysio-

logical tests and determination of blood and urine concentrations of aluminium, 

lead and manganese. One sample of blood and one sample of urine were taken 

from each participant. Some samples were taken several hours post-shift. The 

urinary concentrations were therefore recalculated to correspond to concentrations 

immediately after the shift. The median (range) concentrations of aluminium in 

urine were 24 µg/g creatinine (4.5–162) and 22 µg/l (4–255) and in blood 3 µg/l  

(< 1–27). The welders had about 6–7 times higher concentrations of aluminium in 

urine than the controls (median (range) 4.7 (< 1–24.9) µg/g creatinine and 3 µg/l  

(< 1–26) µg/l). Median blood concentrations of controls were 1 (range < 1–11) 

µg/l. The median exposure time of aluminium welders was 7 065 hours (range 

1 766–21 980). Blood lead and manganese levels were comparable between the 

welders and referents.  

Regarding the symptom questionnaires, aluminium welders reported statistical-

ly significantly more symptoms of the nervous system (especially fatigue) at the 

time of test (as well as fewer symptoms of pain during the past 6 months) than the 

controls. In addition, aluminium welders scored significantly lower in 4 out of 20 



50 

psychological tests (non-dominant hand tapping speed, Luria-Nebraska motor 

scale task No. 3 and No. 4, dominant-hand pegboard) and had significantly higher 

amplitude of the dominant hand in the diadochokinesis test. For the symptoms and 

two of the five tests, the effect was dose-related (182). However, when Sjögren 

and colleagues re-analysed their data together with two other aluminium-exposed 

groups (smelters and flake production workers) by controlling for age and multiple 

comparisons (Bonferroni), the above mentioned significant differences disappeared 

(98).  

In a cross-sectional study, Bast-Petterson et al tested 20 aluminium welders 

(mean age: 33 years, range 21–52), having been exposed to aluminium for an 

average of 8.1 years (range 2–21), for tremor and reaction time and screened for 

neuropsychiatric symptoms. Exclusion criteria were exposure to solvents (not 

further specified by the authors), disease which could affect the central nervous 

system, including cancer, cerebrovascular diseases, neurological diseases and 

diabetes. Alcohol consumption was slightly (not significantly) higher among the 

referents. The similarity in the distribution of background variables indicated that 

the construction workers were suitable as referents. The welders were instructed 

to void the first morning urine at home and the first post-shift urine after changing 

to their own clothes. The number of collected urine samples was 189. The mean 

number of urine samples was 9.5 (range 4–10) for each exposed subject. The 

median urinary aluminium concentration for each individual was used for further 

statistical calculations. The median (range) urinary aluminium concentrations 

were 36 (14–110) µg/g creatinine and 41 (19–130) µg/l.  

With regard to exposure, during the MIG and pulsed metal active gas (MAG) 

welding operations, the electrodes were consumed under a protected layer of 

argon/carbon dioxide shielding gas. The welding aerosol contained mainly re-

spirable aluminium-containing particles. Chemical characterisation of the welding 

aerosol and mass balance consideration showed that aluminium was fully oxidised. 

Nitrogen oxides and ozone were also emitted. Aluminium in air was measured 

inside the respiratory protection of 17 welders. Each worker wore his equipment 

for an average of 4 days (range 2–5 days). Sixty-nine measurements were per-

formed and the concentrations of airborne aluminium were based on the individual 

median concentrations. The mean and median airborne aluminium concentrations 

inside the protection were 1.18 and 0.91 mg/m
3
 (range 0.57–3.77), respectively.  

The welders were compared with 20 age-matched construction workers. The 

welders reported more neuropsychiatric symptoms (median: 2 vs. 1, p = 0.047). 

Although the welders as a group performed better than the referents on a tremor 

test, years of exposure, but not age, was predictive of poorer performance. The 

welders’ reaction times were rapid by clinical standards (mean simple reaction 

time: 221 milliseconds; mean continuous performance test: 364 milliseconds). In 

addition, the welders had more rapid reaction times than the referents. However, 

there was a statistically significant relation between longer reaction times and 

aluminium in air. The relations between hand steadiness and years exposed, and 

between reaction time and aluminium in air, could indicate slight effects from 
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exposure to aluminium. The possibility of selection of workers with high manual 

skills into welding work and a possible job-related training effect, might partly 

serve to explain the good performance among the welders. Furthermore, per-

formance on reaction time tasks may be sensitive to motivational factors and the 

exposed welders could have been more motivated to perform well, since they 

were more concerned about an effect of welding on the nervous system (18).  

In Germany, a longitudinal study of about 4 years with three cross-sectional 

studies integrated within intervals of two years each (1999, 2001, 2003) was 

performed. Two study groups were formed. For the first group, 101 aluminium 

welders (median age at the start of the study: 35 years (range 23–51), total duration 

of welding at the start of the study: 7–118 months, 83 % smokers and ex-smokers) 

in the car-body construction industry were selected of which 98 completed the 

first investigation. The control group with a similar structure consisted of 50 non-

exposed car-production workers of the same plant. There was no relevant loss of 

test persons during the course of the study. However, in 2003, only 68 of them 

were still working as welders. The examination programme consisted, amongst 

others, of a standardised medical history, physical examination, neurobehavioural 

tests to evaluate the level of neurotoxic symptoms, premorbid intelligence and 

deficits in the domains of motor performance, logical thinking, short-term and 

working memory, perceptual speed, and switching attention. Furthermore, alu-

minium levels were determined in urine and plasma and in air (as total dust with 

personal air sampler “Alpha 1” with a welding fume sampling head) and ozone.  

In 1999, 2001 and 2003, the median (range) dust levels were 0.47 mg/m
3
 (0.1–

6.17), 0.67 mg/m
3
 (0.2–1.5) and 0.55 mg/m

3
 (0.15–0.96), respectively. Median  

(of average of pre- and post-shift) levels in urine were 57.6, 52.4 and 19.7 µg/l, 

respectively. Welders did not report more symptoms in the modified Q16 when 

compared to controls. Furthermore, no statistically significant differences in 

psychomotor performance and other neurobehavioural tasks were detected. Some 

small changes in reaction time between welders and non-welders were observed 

comparing data from the investigations in 1999 and 2001, but they were not seen 

in 2003, and therefore not considered to be relevant (28, 101, 115).  

The second group started with 46 aluminium welders (median age 1999: 40 

years) from five different companies in the field of railway vehicle engineering 

and special vehicle production and 37 non-exposed controls (median age 1999: 38 

years). During the course of the study, there was a decrease in the study population, 

leaving 75 % (n = 33) of the exposed and 70 % (n = 26) of the controls in 2001, 

and 45 % (n = 20) and 32 % (n = 12), respectively, in 2003. The longitudinal study 

compared repeatedly measured exposure data and neurobehavioural data of 20 

male aluminium welders (mean (± SD) aluminium-welding years 14.8 ± 4.1 years, 

mean age 43.3 ± 7.4 years, mean education index 1.4 ± 0.4, mean plasma carbo-

hydrate-deficient transferrin 4.3 ± 4.2 U/l) with data of 12 controls (mean age: 

42.9 ± 5.7 years, mean education index: 1.2 ± 0.4, mean plasma carbohydrate-

deficient transferrin: 2.9 ± 5.5 U/l) on the basis of three investigations over a  

4-year period. The second group underwent the same examinations as the first 
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group. The characteristics of the biological monitoring data and the relationship  

to neurobehavioural data were examined with correlation and regression analysis. 

The courses of neurobehavioural changes were analysed with multivariate co-

variance-analytical methods (MANCOVA) considering the covariates age, in-

dicators of “a priori” intelligence differences (education or “premorbid” intelli-

gence) and alcohol consumption (carbohydrate-deficient transferrin levels).  

The mean total dust levels, measured near to the routinely worn ventilated 

helmets, were in the range of 5–8 mg/m
3
 (with the minium level at the second 

examination and the maximum at the third). Pre-shift levels of aluminium in  

urine had a maximum at the second examination and a minimum at the third 

examination (140 and 88 µg/g creatinine, respectively, p < 0.001). Plasma levels 

rose from about 13 µg/l at the first examination to about 16 µg/l at both other 

examinations (not significant). Post-shift urine and plasma values were higher 

than pre-shift values by 30 µg/g creatinine and 3.5 µg/l, respectively. Statistical 

analysis of the biological monitoring data showed high long-term stability and 

sensitivity to acute shift-dependent exposure changes. When compared to con-

trols, the welders showed no differences in symptom scores or in neurobe-

havioural performance courses during the 4-year period. There was no correlation 

between biological monitoring and performance variables. Explorative modelling 

indicated that the structure of neurobehavioural outcomes could be determined by 

possible indicators of “a priori” intelligence differences between subjects, but not 

by their exposure information (102) (see also (29, 115)).  

7.5 Carcinogenicity  

ATSDR data  

No studies were presented regarding carcinogenic effects in humans following 

inhalation, dermal or oral exposure to various forms of aluminium. In studies on 

workers in the aluminium-production industry, increased cancer mortality rates 

were observed, but other compounds to which the workers were exposed, such  

as PAHs and tobacco smoke, were considered to be the causative agents (Gibbs 

and Horowitz 1979, Milham 1979, Mur et al 1987, Rockette and Arena 1983, 

Thériault et al 1984).  

Additional data  

The studies mentioned above and additional epidemiological studies in workers in 

aluminium industry were evaluated by the International Agency for Research on 

Cancer (IARC) in 2005. In a summary, IARC mentioned that the first reports on 

risks of cancer associated with work in the aluminium production industry were 

made in the 1970s in the former Soviet Union. Further, in a series of Canadian 

reports from Québec, statistically significant excess risks and positive exposure-

response relationships were observed for lung and urinary bladder cancer after 

adjustment for tobacco smoking. A study of another Canadian aluminium pro-

duction plant in British Columbia showed statistically significant exposure-related 

trends in both lung and urinary bladder cancer risks. A French study reported 
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excesses in lung and urinary bladder cancer risks. In a Norwegian cohort study, 

there was an increased risk for urinary bladder cancer but not for lung cancer. A 

study in multiple US plants showed a lung cancer risk close to that expected but  

a statistically significant excess risk for urinary bladder cancer. In a meta-analysis 

of studies that used benzo[a]pyrene as an index of exposure to PAHs, results were 

pooled from eight cohort studies of lung cancer and six of urinary cancer in alu-

minium workers. Pooled risk estimates indicated a positive exposure-response 

relationship between cumulative exposure to benzo[a]pyrene and both urinary 

bladder and lung cancer.  

In addition, two studies demonstrated statistically significantly increased in-

cidences of lymphatic and haematopoietic cancers while there was a small excess 

risk in a third study. Finally, an increased risk for pancreatic cancer was found in 

two studies (94). 

Studies among workers involved in the manufacture of synthetic abrasive 

materials, containing amongst others aluminium oxide and silicon carbide, showed 

an increased risk of stomach cancer in a Swedish and a US study and of lung 

cancer in a Canadian study. Among silicon carbide-production workers, with co-

exposure to crystalline silica, increased risks of cancer of the lungs were reported 

in a Canadian and a Norwegian study and of the stomach in a Norwegian study 

(see Sjögren et al (181)).  

7.6 Reproduction toxicity  

The effects of exposure to aluminium and aluminium compounds on reproduction 

have been reviewed and separately published by DECOS’s Subcommittee on the 

Classification of Reproduction Toxic Substances. Data and conclusions of the sub-

committee are summarised below. For detailed information on individual studies, 

it is referred to the subcommittee’s report (84). 

7.6.1 Fertility  

Hovatta et al studied the effect of aluminium on semen quality by comparing 

semen of a group consisting of 27 employees of a Finnish refinery and a poly-

olefin factory (mean age: 34 years) with semen of a group consisting of 45 sperm 

donor candidates of a Finnish sperm bank (mean age: 28 years). A statistically 

significant inverse correlation was observed between aluminium concentration in 

the spermatozoa and sperm motility and sperm morphology, but no correlation 

was observed between the concentration of aluminium in seminal plasma and 

sperm parameters. Hovatta et al did not present data on occupational exposures 

(compounds, concentrations). They stated that the factories were situated in a rural 

area, that most of the employees lived in the countryside, and that the sperm bank 

donor candidates were from the urban Helsinki area (90).  

7.6.2 Developmental effects  

Apart from a statistically significant incidence of children showing clubfoot (4 

cases vs. 1 control), Golding et al did not find effects when comparing outcome  
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of all singleton pregnancies (n = 92) in an area in north Cornwall, England, with 

high drinking water concentrations of aluminium sulphate resulting from a water 

pollution incident (not specified) with the outcome of two control groups. The 

control groups consisted of pregnancies completed before the pollution incident  

(n = 68) and of pregnancies in a neighbouring area (n = 193) (66). The Golding 

study was one of a number of studies investigating the potential health effects of 

chemical exposure, viz. aluminium, sulphate, copper, zinc, lead, iron and manga-

nese, resulting from the water pollution incident. A specially convened subgroup 

of the Committee on Toxicity of Chemicals in Food, Consumer Products and the 

Environment of the UK Department of Health, concluded that no delayed or per-

sistent harm was expected as a consequence of the exposure to the chemicals from 

this incident (42). 

Morton et al determined the concentrations of 20 trace elements by AAS, and 

examined the associations between the presence of trace elements found in re-

presentative samples of tap water collected from 48 local authority areas in South 

Wales and central nervous system malformation rates for the areas. They found a 

statistically significant positive association for aluminium (129). The subcom-

mittee of DECOS questioned the relevance of these findings noting that the mean 

concentrations of aluminium in morning (n = 48) and evening (n = 48) samples 

were 0.061 and 0.049 mg/l, respectively, i.e. below the drinking water guideline 

value of 0.2 mg/l. Assuming a daily water consumption of 1.5 litres, daily intake 

of aluminium from these sources would amount to 0.09 mg, which is far below 

the daily dietary exposure (3.2 mg, from the UK Total Diet Study 1976 to 1997 

(203)) and the daily amount that would be tolerable according to the World Health 

Organization (WHO) (9 mg/day, calculated from a provisional tolerable weekly 

intake of 1 mg/kg bw) (100). 

7.7 Immunotoxicity  

ATSDR data  

Sarcoid-like epithelioid granulomas were found in the lungs of a 32-year-old man 

chronically exposed to metallic aluminium and aluminium dust. Immunological 

testing failed to confirm sarcoidosis, but did find helper T-lymphocyte alveolitis 

and blastic transformation of peripheral blood lymphocytes in presence of the 

soluble aluminium compound. Additional testing one year after termination of 

exposure indicated that the man no longer had alveolitis. However, this patient 

had also been exposed to cobalt, vanadium, manganese, palladium and silica (De 

Vuyst et al 1987).  

Additional data  

No additional information was found on immunological effects of aluminium and 

aluminium compounds in humans.  
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7.8 Summary and evaluation  

No human data were available on the irritation of skin, eyes and respiratory tract 

following acute or single occupational exposure to metallic aluminium or alu-

minium compounds.  

Although widely and extensively used in industries and cosmetics, sensitisation 

to aluminium or its compounds is generally rare. Several of the positive reports 

concern the use of aluminium (hydroxide) in vaccines or in hyposensitisation 

therapy which is of little relevance for extrapolation to workplace conditions.  

There were no data indicative of toxicologically relevant systemic health effects 

following acute exposure to aluminium or its compounds.  

In a great number of studies, the potential effects of occupational exposure to 

aluminium on the nervous system and the respiratory tract have been examined  

in potroom and foundry workers, aluminium powder plant workers, aluminium 

welders, and miners who used the so-called McIntyre powder (15 % elemental 

aluminium and 85 % aluminium oxide) as a prophylactic agent against silicosis.  

In none of the studies addressing neurotoxicity were overt signs or symptoms  

of neurotoxicity reported. However, in some of them, subclinical effects were ob-

served. They included increased incidences of subjective neurological symptoms, 

impaired performance in tests concerning reaction time, eye-hand coordination, 

memory, and/or motor skills and changes in quantitative EEG. Only in a few 

studies were concentrations of aluminium in workplace air presented, mostly 

single observations at the time of investigation, but data from the past when expo-

sure may have been much higher were lacking. Among the few studies examining 

the potential association between neurotoxic effects and aluminium concentrations 

in blood or urine, some found a significant association while others did not.  

Respiratory effects, especially impaired lung function and pulmonary fibrosis, 

have been observed in several groups of workers exposed to aluminium dust or 

fumes under several working conditions. In recent German studies in welders and 

workers in aluminium powder industry, the use of HRCT revealed increased in-

cidences of emphysematous lung changes. However, generally, no exposure data, 

especially those from the past, were given. In addition, there was frequently ex-

posure to other compounds (e.g. ozone and manganese in welders, hydrogen 

fluoride and hydrogen chloride in potroom/foundry workers).  

Increased cancer mortality rates were found in studies in workers in the alu-

minium production industry where there was co-exposure to carcinogenic com-

pounds such as PAHs.  

There were no studies on the effects of occupational exposure to aluminium or 

aluminium compounds on reproductive capacity, pregnancy outcome or post-natal 

development.  

In a Finnish study, the effect of aluminium on semen quality was examined 

comparing a group of workers potentially exposed to aluminium with a group of 

semen donor candidates. Generally, the donor candidates had higher aluminium 

levels in spermatozoa and seminal plasma. A statistically significant inverse cor-

relation was observed between aluminium concentration in the spermatozoa and 
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sperm motility and sperm morphology, but no correlation was observed between 

the concentration of aluminium in seminal plasma and sperm parameters. 

8. Animal and in vitro experiments  

8.1 Irritation and sensitisation  

8.1.1 Respiratory tract  

ATSDR data 

Rats exposed for 4 hours to 200 and 1 000 mg/m
3
 aluminium flakes developed 

microgranulomata in the respiratory tract at 14 days post-exposure. The micro-

granulomata were persistent, i.e. still present at 3 and 6 months post-exposure.  

No effects were observed at 10, 50 and 100 mg/m
3
 (Thomson et al 1986). 

Additional data  

No additional studies on local effects on the respiratory tract were located.  

8.1.2 Skin  

ATSDR data  

Skin damage has been observed in female TF1 Carworth mice, New Zealand 

rabbits and Large White pigs following the application of 10 % aluminium chloride 

(soluble) (0.5–100 mg Al) or aluminium nitrate (soluble) (0.6–13 mg Al) for 5 

days. The damage consisted of hyperplasia, microabscess formation, dermal 

inflammatory cell infiltration and occasional ulceration. Aluminium sulphate 

(soluble), chlorohydrate (soluble) or hydroxide (insoluble) did not cause skin 

effects (Lansdown 1973). 

Additional data  

Aluminium chloride (soluble) was negative when tested in a local lymph node 

assay with mice (CBA/Ca, n = 4) at concentrations of 5, 10 or 25 % (vehicle: pet-

rolatum) (16, 17). The committees note that, generally, this test is considered less 

appropriate for detecting sensitising capacity of metals.  

8.1.3 Eyes  

ATSDR data  

No data on the irritating potential following instillation of aluminium or its com-

pounds into the eyes of animals were presented. No (histological) effects were 

seen on the eyes of rats and guinea pigs exposed to aluminium chlorohydrate 

(soluble) concentrations of 25 mg/m
3
 (6.1 mg Al/m

3
) (for details, see Section 

8.3.2) (Steinhagen et al 1978).  

Additional data  

No behaviour suggesting irritation of the eyes was noted in rats exposed to con-

centrations of aerosolised aluminium chlorohydrate (soluble) in a silicone-ethanol 
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vehicle of 0.34 (± 0.22) and 2.50 (± 0.37) mg/m
3
, 4 hours/day, 5 days/week for  

22 days (see Section 8.3.1) (193). No other studies on local effects on the eyes 

were located.  

8.2 Toxicity due to single exposure  

ATSDR data  

Lethal concentrations for 50 % of the animals at single exposure (LC50s) for in-

halation exposure were not presented. Exposure for 4 hours to up to 1 000 mg 

Al/m
3
 as aluminium oxide did not induce mortality in groups of 12–18 male 

Fischer 344 rats (Thomson et al 1986).  

No quantitative data on acute dermal toxicity were found.  

Data on acute lethality of ingested aluminium are available, but actual oral 

doses are unclear due to insufficient information on aluminium intake from the 

base diet. For aluminium nitrate (soluble), lethal doses for 50 % of the exposed 

animals at single administration (LD50s) of 261 and 286 mg Al/kg bw have been 

reported for Sprague Dawley rats and Swiss Webster mice, respectively (Llobet et 

al 1987). For aluminium chloride (soluble), LD50 values of 370, 222 and 770 mg 

Al/kg bw have been reported for Sprague Dawley rats, Swiss Webster mice and 

male Dobra Voda mice, respectively (Llobet et al 1987, Ondreicka et al 1966). 

The LD50 for aluminium sulphate (soluble) in male Dobra Voda mice was 980 mg 

Al/kg bw (Ondreicka et al 1966). Time to death and clinical signs were not given. 

A single gavage exposure to 540 mg Al/kg bw as aluminium lactate (soluble) was 

fatal to 5/5 lactating female New Zealand rabbits (Yokel and McNamara 1985). 

Time to death was reported to be 8–48 hours.  

Furthermore, there are no indications of other toxicologically relevant systemic 

health effects after acute inhalation, dermal and oral exposure to aluminium and 

aluminium compounds.  

Additional data  

Kumar exposed male Wistar rats to doses of aluminium chloride (AlCl3 × 6 H2O, 

water soluble) of 0, 1 600, 2 560, 4 069 and 6 553 mg/kg bw (i.e. ca. 180, 280, 

450 and 720 mg Al/kg bw). A median oral lethal dose of 3 630 mg/kg bw (i.e.  

ca. 400 mg Al/kg bw) was estimated. Toxic effects at the two higher doses were 

lethargy, reduced spontaneous movement and lachrymation. Difficulty in breathing 

followed by death after 3 hours was observed in 50 %, 75 %, and 100 % of the 

animals at 2 560, 4 069 and 6 553 mg/kg bw, respectively (109). 

8.3 Toxicity due to repeated exposure  

8.3.1 General toxicity studies  

ATSDR data 

There are no indications of toxicologically relevant systemic health effects in 

animals after inhalation, dermal and oral short-term exposure to aluminium and 

aluminium compounds. In guinea pigs and rats exposed to concentrations of 
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aluminium chlorohydrate (soluble) of 25 mg/m
3
 (6.1 mg Al/m

3
), apart from de-

creased body weights in rats and effects on the lungs, no effects were seen on 

organ weights or upon pathological or haematological examinations (for details, 

see Section 8.3.2) (Steinhagen et al 1978).  

Additional data  

Tansy et al exposed groups of rats (Sprague Dawley, n = 15/sex/group) to con-

centrations of aerosolised aluminium chlorohydrate (soluble, presumably 

Al13O4(OH)24(H2O)12Cl7) in a silicone-ethanol vehicle of 0.34 (± 0.22) and 2.50  

(± 0.37) mg/m
3
, 4 hours/day, 5 days/week for 22 days. The mass median aero-

dynamic diameters (MMADs) were 1.57 (± 0.45) and 4.28 (± 0.93) µm, respec-

tively. Sham and propellant/vehicle control groups were included. There was no 

mortality in any of the groups. Exposure to aluminium chlorohydrate did not in-

duce changes on serum analyses data, body and organ weights. Mean aluminium 

tissue concentrations of the liver, gastric mucosa and parathyroid glands did not 

show any consistent relationship between exposure conditions and measured alu-

minium concentrations. No remarkable abnormalities were seen upon gross post-

mortem examinations, or upon histological examination conducted on the livers, 

kidneys, adrenals and parathyroids of 6 animals/sex/group (see Section 8.3.2) (193).  

In the environmental health criteria monograph on aluminium of the IPCS/WHO 

(1997) additional information to the ATSDR was found. Adequate inhalation 

studies were not identified. However, following intratracheal administration of 

aluminium oxide, particle-associated fibrosis was observed, similar to that found 

in other studies on silica and coal dust. In oral short-term studies in which an ade-

quate range of endpoints was examined following exposure of rats, mice or dogs 

to various aluminium compounds (sodium aluminium phosphate (soluble), alu-

minium hydroxide (insoluble), aluminium nitrate (soluble)) in the diet or drinking-

water, only minimal effects (decreases in body weight gain generally associated 

with decreases in food consumption or mild histological effects) have been ob-

served at the highest administered doses (70–300 mg Al/kg bw/day). Systemic 

effects following parenteral administration also included kidney dysfunction (96).  

Yousef reported effects of aluminium on haemato-biochemical parameters, lipid 

peroxidation and enzyme activities in male rabbits (New Zealand, n = 6/group) 

given oral doses of aluminium chloride (soluble) of 34 mg/kg bw/day (i.e. ca 7  

mg Al/kg bw/day), every other day for 16 weeks. Concomitant administration of 

ascorbic acid (40 mg/kg bw/day) generally reduced the effects induced by alu-

minium (202).  

8.3.2 Respiratory effects 

ATSDR data  

There are limited data on the pulmonary toxicity of aluminium in animals 

following chronic exposure. A biologically significant increase in relative lung 

weights have been observed in rats and guinea pigs exposed to 25 mg/m
3
 alu-

minium chlorohydrate (soluble, unspecified), 6 hours/day, 5 days/week for 
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approximately 2 years. Lung weights were not affected at 2.5 mg/m
3
. The lungs 

were not histologically examined (Stone et al 1979).  

Pigott et al (1981) did not find evidence of lung fibrosis in rats exposed to 2.18 

or 2.45 mg/m
3
 manufactured or aged Saffil alumina fibres (a refractory material 

containing aluminium oxide (insoluble) and about 4 % silica). The animals were 

exposed for 86 weeks followed by a 42-week observation period.  

Additional data  

No additional data were found on respiratory effects after exposure to aluminium 

and aluminium compounds. However, relevant studies presented by ATSDR are 

described in this section.  

In the study by Tansy et al, no histological effects were observed in the nasal 

mucosa and lungs of rats exposed to concentrations of aerosolised aluminium 

chlorohydrate (soluble) in a silicone-ethanol vehicle of 0.34 (± 0.22) and 2.50  

(± 0.37) mg/m
3
, 4 hours/day, 5 days/week for 22 days. Mean aluminium con-

centrations in the lungs of exposed animals did not differ from those of controls 

(see Section 8.3.1) (193).  

Steinhagen et al exposed groups of weanling Fischer 344 rats and Hartley strain 

guinea pigs (n = 10/ species/sex/group) by inhalation to nominal concentrations of 

soluble aluminium chlorohydrate (Al2(OH)5Cl × xH2O) of 0, 0.25, 2.5 and 25 mg/ 

m
3
, 6 hours/day, 5 days/week for 6 months. Analysis of the chlorohydrate used 

showed it to contain 24.5 % aluminium, i.e. exposure levels were 0, 0.061, 0.61 

and 6.1 mg Al/m
3
. Aluminium chlorohydrate was generated as a particulate dry 

dust using a Wright dust feed mechanism. Actual concentrations were 0.245 

(± 0.46), 2.63 (± 0.92) and 21.18 (± 2.75) mg/m
3
. The MMADs were 1.6, 1.20 and 

1.53 µm, respectively; the 84 % diameters 6.20, 5.78 and 5.34 µm, respectively. 

(The geometric SDs were 3.88, 4.82 and 3.49, respectively). After 6 months of ex-

posure, 5 animals/species/sex/group were sacrificed for pathological examinations 

and the remainder for haematology and tissue aluminium concentration deter-

minations. There was no effect on haematology endpoints. Exposure to 25 mg/m
3
 

caused significant decreases in body weights in male and female rats while no 

body weight effects were seen in the other exposed groups. Absolute and relative 

weights of heart, liver, kidney, spleen or brains were not affected. In the groups 

exposed to 25 mg/m
3
, statistically significant (p < 0.01) increases in relative lung 

weights were observed in all rats and all guinea pigs (in absolute lung weights 

only in rats) while no lung weight changes were seen at 0.25 and 2.5 mg/m
3
. In 

both rats and guinea pigs, there was a significant dose-related increase in the 

amount of aluminium in the lungs (as µg Al/g wet tissue). Upon pathological 

examination, only effects in the respiratory tract were seen. In the animals ex-

posed to 0.25 mg/m
3
, there were slight exposure-related changes in 3 (out of 10) 

guinea pigs, characterised by an increase in alveolar macrophages which were 

more diffusively distributed when compared to control animals. Also in rats, 

alveolar macrophages were increased slightly, while there was an indication of 

granulomatous change in the peribronchial lymph node of one rat. In the groups 
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exposed to 2.5 or 25 mg/m
3
, all rats and guinea pigs had multifocal granulomatous 

pneumonia characterised by proliferation and/or infiltration of mononuclear in-

flammatory cells and large macrophages in alveoli around the termination of air 

passage ways. In addition, in the peribronchial lymph nodes, there were micro-

granulomas composed of large cells with eosinophilic cytoplasm but not con-

taining vacuoles or other evidence of phagocytised material. Further, in the high-

concentration groups, the number of goblet cells was increased in the nasal 

cavities. In the trachea, no lesions were observed (190). 

Drew et al observed acute bronchopneumonia and moderate thickening of the 

alveolar walls in hamsters exposed for 3 days to 164 mg/m
3
 of alchlor (a propylene 

glycol complex of aluminium-chloride-hydroxide) (6 hours on day 1 and 4 hours 

on days 2 and 3) and in rabbits exposed to 212 mg/m
3
, 4 hours/day for 5 days. 

Ten, 20 or 30 6-hour exposures to 52 mg/m
3
 alchlor caused granulomatous in-

flammation in the lungs that persisted through a 6-week post-exposure period 

(55). 

Finelli et al exposed male rats (Sprague Dawley, n = 50/group) to respirable 

dust (< 10 µm) concentrations of aluminium chloride (soluble) and aluminium 

fluoride (poorly soluble) of 1.83 and 1.28 mg/m
3
 (0.37 and 0.41 mg Al/m

3
), re-

spectively, 6 hours/day, 5 days/week for 5 months. A control group exposed to 

filtered air was included. Groups of 10 animals were sacrificed at study week 5, 9, 

13, 18 and 26 (i.e. after an exposure-free period of 63 days). Besides body weights 

and (relative) weights of kidney, liver, lungs and brain, only a selected number of 

lung parameters thought to provide early warning of any pathological effects were 

determined. There were no differences in mean body weights and relative lung 

and brain weights between the three groups. At study weeks 13 and 18, increases 

of about 10 % were observed in relative liver and/or kidney weights [due to con-

fusing reporting, these changes cannot be related specifically to the aluminium 

fluoride or aluminium chloride group]. In both groups, there was evidence sug-

gestive of damage to alveolar macrophages (increases in lysozyme levels, protein 

levels) (aluminium chloride only) and to type II cells (increased alkaline phospha-

tase activity) (both compounds) in the lavage fluid (64).  

Exposure to aqueous aerosol concentrations of aluminium sulphate (soluble)  

of 2 mg/m
3
 (no data on exposure conditions and particle size given) were reported 

to affect the lungs of rats: increases in the number of pulmonary alveolar macro-

phages and of distorted, oversized pulmonary alveolar macrophages and granulo-

cytes and in the permeability of the alveolar wall; increased lung weights, stiffer 

lungs and fibrosis (at the level of the terminal and respiratory bronchioles); de-

creased levels of copper, zinc and iron. Comparison with the results from similar, 

concurrent studies with sulphuric acid and potassium sulphate suggested that the 

aluminium ion was the toxic factor (no more data presented) (64). 
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8.3.3 Neurological effects  

ATSDR data 

No studies were presented regarding neurological effects in animals following 

acute inhalation exposure to various forms of aluminium. No brain weight or 

histological changes were observed in Fischer 344 rats or Hartley guinea pigs 

exposed to up to 6.1 mg Al/m
3
 as aluminium chlorohydrate (soluble) (25 mg/m

3
) 

for 6 months (Steinhagen et al 1978). No brain weight effects were observed  

in Sprague Dawley rats exposed by inhalation to 0.37 mg Al/m
3
 as aluminium 

chloride (soluble) or 0.41 mg Al/m
3
 as aluminium fluoride (poorly soluble) for 5 

months, although tissues were not examined histologically (Finelli et al 1981). No 

differences in brain weights were observed in Fischer 344 rats or Hartley guinea 

pigs exposed by inhalation to 25 mg/m
3
 of aluminium chlorohydrate (soluble)  

for up to 24 months (Stone et al 1979).  

With regard to oral exposure, the lowest tested reliable neurotoxic doses  

(i.e. among those that include base dietary aluminium) are in mice. The most 

frequently affected neurobehavioural endpoints in mice exposed as adults, or 

exposed during development and tested as adults, included decreases in motor 

activity, grip strength and startle responsiveness, and effects most commonly 

found in exposed weanlings and young mice included increases in grip strength 

and landing foot splay and decreased thermal sensitivity, indicating that the 

spectrum of effects is different in adult and developing animals (Donald et al 

1989, Golub and Germann 1998, Golub et al 1987, 1989, 1992a, 1992b, 1994, 

1995) (see also Section 8.5.2). Neurobehavioural effects that have been associated 

with oral exposure to aluminium in rats include impaired motor coordination and 

operant learning (Bernuzzi et al 1989a, 1989b, Bilkei-Gorzo 1993, Cherroret et al 

1992, Commissaris et al 1982, Muller et al 1990, 1993a, Thorne et al 1986, 1987).  

A lowest observed adverse effect level (LOAEL) of 130 mg Al/kg bw/day was 

identified for decreased spontaneous motor activity in adult mice that were ex-

posed to dietary aluminium lactate (soluble) for 6 weeks (Golub et al 1989). 

Aluminium lactate is a representative form of aluminium that is intermediate in 

bioavailability between inorganic complexes such as aluminium hydroxide and 

carboxylic acid complexes such as aluminium citrate. Overall activity was re-

duced about 20 % compared to controls due to less frequent occurrence of the 

highest activity states, which usually occurred during the diurnal period of peak 

activity. The duration of peak activity periods was also reduced (about 35 % com-

pared to controls) and vertical movement (primarily rearing and feeding) was 

more affected than horizontal movement (primarily locomotion), but there was  

no shift in the diurnal activity cycle or any prolonged periods of inactivity. No 

effects on motor activity occurred at 62 mg Al/kg bw/day. Mice that ingested 

doses higher than 130 mg Al/kg bw/day as aluminium chloride (soluble) for 49 

days or aluminium lactate for 90 days, and were tested using a standardised neuro-

toxicity screening battery, also showed decreased motor activity, as well as de-

creased grip strength and startle responsiveness (Golub et al 1992a, Oteiza et al 

1993).  
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Depressed motor activity has also been observed in exposed adult rats, sug-

gesting that this effect is a consistent neurobehavioural outcome associated with 

ingested aluminium (Golub et al 1992b).  

Other studies found histological changes in the brain of rats exposed by diet  

to 92 mg Al/kg bw/day as aluminium chloride (soluble) in combination with an 

unnaturally high level of citrate for 6 months (Florence et al 1994) or to 12 mg 

Al/kg bw/day as aluminium fluoride (poorly soluble) in drinking water and the 

base diet for 45–52 weeks (Varner et al 1993, 1994, 1998). Unusual exposure 

conditions preclude identifying relevant LOAELs for brain histopathology from 

these studies. In particular, the effects appear to be due to greatly enhanced bio-

availability because both studies were designed to maximise the uptake of alu-

minium (i.e. by the massive co-exposure to citrate, and the use of aluminium 

fluoride to form an optimum fluoro-aluminium species capable of crossing the  

gut and blood-brain vascular barriers).  

Neurodegenerative changes in the brain, manifested as intraneuronal hyper-

phosphorylated neurofilamentous aggregates, is a characteristic response to 

aluminium in certain species and non-natural exposure situations generally in-

volving direct application to brain tissue, particularly intracerebral and intra-

cisternal administration and in vitro incubation in rabbits, cats, ferrets and non-

human primates (Erasmus et al 1993, Jope and Johnson 1992).  

Additional data  

During exposure to concentrations of aerosolised aluminium chlorohydrate in a 

silicone-ethanol vehicle of 0.34 (± 0.22) and 2.50 (± 0.37) mg/m
3
, 4 hours/day,  

5 days/week for 22 days, rats began to huddle after a few minutes. For the rest  

of the exposure period, the majority huddled. Some of them exhibited a bout of 

preening, but otherwise behaviour was essentially unremarkable (for details, see 

Section 8.3.1) (193).  

Three groups of adult mice were given 0, 300 and 600 mg Al/kg bw/day as 

aluminium nitrate nonahydrate (soluble) in drinking water for 2 weeks. One-half 

of the animals in each group were concurrently subjected to restraint stress during 

1 hour/day throughout the study. After cessation of treatment, open-field activity, 

active avoidance learning, and motor resistance and coordination of the animals 

were evaluated. At the end of the behavioural testing period, mice were killed and 

aluminium concentrations were determined in a number of tissues. There were no 

remarkable effects of aluminium, restraint stress or their combined administration 

on either open-field activity or on the number of avoidances in an automatic reflex 

conditioner. However, a lower motor resistance and coordination in a rotarod were 

observed following exposure to 600 mg Al/kg bw/day, restraint alone, or to alu-

minium (300 and 600 mg/kg bw/day) plus restraint stress. The levels of aluminium 

in whole brain and cerebellum were significantly enhanced in mice exposed to 

aluminium plus restraint (41). 

Groups of male BALB/c mice were administered aluminium ammonium 

sulphate dodecahydrate (soluble) in drinking water ad libitum at 0, 5, 25 and 125 
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mg Al/l (estimated to be ca. 0, 1, 4 and 21 mg Al/kg bw/day) for 1 month. An 

additional group received 250 mg/l ammonium as ammonium sulphate (soluble). 

In addition, all groups received ca. 22 mg Al/kg bw/day via the diet. No signs of 

gross behavioural alterations were observed (196). 

8.3.4 Immunological effects  

ATSDR data  

In rats exposed to aluminium flakes for 5 days, there were multifocal micro-

granulomas in the lungs and hilar lymph nodes at 200 mg Al/m
3
, but not at 100 

mg/m
3
 (Thomson et al 1986). An increase in granulomatous lesions in the lungs 

and peribronchial lymph nodes were also observed in rats and guinea pigs ex-

posed to 0.61 or 6.1 mg Al/m
3
 as aluminium chlorohydrate (soluble) for 6 hours/ 

day, 5 days/week for 6 months (Steinhagen et al 1978). There is some evidence 

that developmental exposure to aluminium may adversely affect the immune 

system in young animals. A 19 % increase in spleen weights, depressed spleen cell 

concentrations of interleukin-2, interferon-γ, and TNFα, and a deficiency of CD4+ 

cells in T-cell populations were observed in Swiss Webster mice that were ex-

posed to aluminium from conception through 6 months of age (Golub et al 1993). 

The maternal animals consumed 200 mg Al/kg/day as aluminium lactate (soluble) 

in the diet from conception through lactation and the offspring were subsequently 

fed the same diet as the dams. Susceptibility to bacterial infection was increased 

in offspring of Swiss Webster mice that were exposed to dietary aluminium 

lactate (soluble) in a dose of 155 mg Al/kg bw from conception through 10 days 

of age, but not in 6-week-old mice exposed to 195 mg Al/kg bw/day for 6 weeks 

(Yoshida et al 1989). Susceptibility to infection was evaluated by assessing sur-

vival following intravenous inoculation with Listeria monocytogenes at the end  

of the exposure periods.  

Additional data  

No additional data were found on immunological effects after exposure to alu-

minium and aluminium compounds.  

8.3.5 Carcinogenicity  

ATSDR data 

No carcinogenic potential was observed in male and female B6C3F1 mice (n = 60/ 

sex) given doses of 979 mg Al/kg/day as aluminium potassium sulphate (soluble) 

in the feed (base dietary aluminium not reported) for 20 months (Oneda et al 1994) 

and in male and female Long Evans rats and Swiss mice given 0.6 and 1.2 mg Al/ 

kg/day as aluminium potassium sulphate (soluble) in drinking water (base dietary 

aluminium not reported), respectively, for 2–2.5 years (Schroeder and Mitchener 

1975a, 1975b).  

No increase in cancer was observed in male and female Wistar rats exposed via 

whole-body inhalation to refractory fibres consisting of 96 % aluminium oxide 

and about 4 % silica at concentrations of 2.18 or 2.45 mg/m
3
 (as manufactured or 

aged fibres) for 86 weeks (Pigott et al 1981).  
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No studies were presented regarding cancer in animals after dermal exposure to 

various forms of aluminium.  

Additional data  

Female rats (SPF Wistar, n = 48/group) received doses of 6 mg ultrafine (nano)-

particles of (insoluble) aluminium oxide or aluminium silicate (mean diameter: 

0.013 and 0.015 µm, respectively) through intratracheal instillation once a week 

for 5 or 10 weeks. Of the animals treated with aluminium oxide for 5 or 10 times, 

64 % (28/44) and 55 % (26/47) had one or more primary lung tumours. Of the 

animals treated with aluminium silicate, these figures were 49 % in each group 

(23/47 and 22/45, respectively). The incidence in control animals was 2 % (1/47). 

The period after first instillation in which 50 % of the animals died (excluding rats 

which died immediately after anaesthesia preceding instillation) was generally 

shorter in the treated groups (oxide: 111 and 97 weeks, respectively; silicate: 107 

and 108 weeks, respectively) when compared to controls (111 weeks) (128, 156). 

Lung tumour formation by intratracheal instillation of dusts is assumed to be 

caused by particle overload which may occur when the volume of particles in  

the lungs markedly impairs pulmonary clearance mechanisms (79, 95). Inter-

nationally, the relevance of intratracheal instillation is under debate and several 

investigators consider particle deposition by intratracheal instillation different 

from particle deposition by chronic inhalation. In addition, ultrafine particles were 

administered that have their own specific toxicological properties. Therefore, it is 

concluded that these experiments are of little relevance in assessing the potential 

carcinogenicity of aluminium (compounds) under occupational exposure con-

ditions.  

8.4 Genotoxicity  

8.4.1 In vitro tests  

ATSDR data 

Aluminium was negative in an in vitro mutagenicity test in S. typhimurium 

(Marzin and Phi 1985). Results from a recombination repair (rec) assay in B. 

subtilis were negative as well (Kanematsu et al 1980).
1
 

Additional data  

Gene mutation assays  

Aluminium fluoride (poorly soluble) was negative when tested in S. typhimurium 

strains TA98, TA100, TA1535, TA1537 and TA1538 and in E. coli strain 

WP2uvrA at concentrations of 1–5 000 µg/plate with and without a metabolic 

activation system from induced male rat livers (S9) (175).  

                                      
1
 According to IPCS/WHO 1997, the test in S. typhimurium was performed with aluminium 

chloride (soluble) in strain TA102 at concentrations of 10–100 nM per plate (i.e. ca. 1–10 

µg/plate). In the rec assay, aluminium oxide (insoluble), chloride (soluble), sulphate (in-

soluble), and phosphate (soluble) were tested at concentrations of 1–10 mM (96).  
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Aluminium chloride (soluble) was not mutagenic when tested alone or com-

bined with 9-aminoacridine in S. typhimurium strains TA98, TA100, TA102, 

TA1537 and TA2637 (concentration range tested: 1–5 000 µmoles/plate) (144). 

Other results from assays on aluminium chloride were listed in the Chemical 

Carcinogenesis Research Information System (CCRIS), published by the US 

National Library of Medicine (35). A pre-incubation assay in S. typhimurium 

strain TA98 without metabolic activation at concentrations of 0.3–3 ppm was 

reported to be negative (Ahn and Jeffery 1994). Pre-incubation assays in S. 

typhimurium strains TA98 and TA100, with and without induced rat liver S9  

mix at concentrations of 20–5 000 µg/plate were positive, while testing under 

similar conditions in strains TA1535, TA1537 and TA1538 was negative (Japan 

Chemical Industry Ecotoxicology - Toxicology and Information Center 1996).  

A spot (without metabolic activation, concentration range: 0–0.8 M/disc) and a 

pre-incubation (with and without induced rat liver S9, concentration range: 20–

5 000 µg/plate) assay in E. coli strain WP2uvra were both negative (Seo and Lee 

1993, Japan Chemical Industry Ecotoxicology - Toxicology and Information 

Center 1996).  

Aluminium chloride was found negative in the TK+/- L5178Y mouse lym-

phoma assay at concentrations of 570–625 µg/ml with and without S9. The 

mutation frequency was constant at about a 2-fold increase over control values, 

and total survival was not linearly related. Re-testing again resulted in non-linear 

cytotoxicity and little or no increase in mutation frequency (141). 

Cytogenicity assays  

Trippi et al performed a micronucleus test in cultures of lymphocytes and fibro-

blasts obtained from patients with sporadic or familial Alzheimer’s disease and 

from healthy persons. In both groups of patients, the spontaneous frequencies of 

micronuclei in both cell cultures were statistically significantly higher than those 

in the respective control groups. In neither of the patient groups did incubation 

with 1 mM of aluminium sulphate (soluble) (for 72 hours) cause increases in the 

frequencies of micronuclei compared to spontaneous values. When lymphocytes 

and fibroblasts of healthy persons were treated with 1 mM aluminium sulphate, 

1.8- to 2.7-fold increases in the micronucleus frequencies were found (194).  

Migliore et al examined the induction of micronuclei in peripheral blood 

lymphocytes isolated from two young healthy non-smoking donors at con-

centrations of 0.5, 1, 2 and 4 mM aluminium sulphate (soluble) (treatment time:  

72 hours). In donor A, there was a 1.9-fold (p < 0.05) and 2.5-fold (p < 0.01) in- 

crease in the frequency of micronuclei at 1 and 2 mM, respectively. In donor B, 

frequencies were increased about 2.3-fold (p < 0.05) at 0.5, 2 and 4 mM and 3.5-

fold (p < 0.01) at 1 mM. Additional analysis with the fluorescence in situ hyb-

ridisation (FISH) technique of lymphocytes from donor B and treated with 0, 1 

and 2 mM aluminium sulphate revealed increased frequency of centromere-

positive and centromere-negative micronuclei. The concentrations tested did not 

show severe toxicity based on the relative amount of binucleated cells. Based on 
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these results, aluminium can act by means of clastogenic and aneuploidogenic 

mechanisms, showing the ability to interfere with chromosome segregation (125). 

Human peripheral blood lymphocytes were treated with 1, 2, 5, 10 and 25 µg/ 

ml aluminium chloride (soluble) in the G0/G1 phase, in the S/G2 phase, and during 

the whole cell cycle. The frequency of micronuclei increased initially, but de-

creased at high aluminium chloride concentrations. This drop of micronuclei 

frequency could be explained by a strong increase in the frequency of apoptosis. 

Aluminium chloride induced both micronuclei with and without centromeres 

(only studied at the concentration of 5 µg/ml). The G0/G1 phase of the cell cycle 

was found to be more sensitive than were the S and G2 phases. This points toward 

oxidative stress or liberation of DNase as the major source of DNA damage in-

duced by aluminium (15). 

Other tests  

Aluminium chloride (soluble) and aluminium sulphate (soluble) were negative in 

the SOS chromotest in E. coli strains PQ37. The compounds were tested without 

adding S9 at concentrations up to 3 000 nM/ml, which were cytotoxic (145). 

Valverde et al reported in an abstract that aluminium chloride (soluble) induced 

DNA single strand breaks only at the lowest concentration tested (0.1 µM) in an 

alkaline single cell gel electrophoresis assay. Aluminium chloride induced more 

damage in whole blood cells (leukocytes) than in isolated lymphocytes (197). 

Lankoff et al investigated the level of DNA damage in human peripheral blood 

lymphocytes treated with aluminium and the impact of aluminium on the repair  

of DNA damage induced by ionising radiation. Cells were treated with different 

doses of aluminium chloride (soluble) (1, 2, 5, 10 and 25 µg/ml) for 72 hours. The 

level of DNA damage and of apoptosis was determined by the comet assay. The 

level of oxidative damage was determined by the application of endonuclease III 

and formamidopyrimidine DNA glycosylase. Based on the fluorescence intensity, 

cells were divided into cohorts of different relative DNA content that corresponds 

to G1, S and G2 phases of the cell cycle. The results revealed that aluminium in-

duced DNA damage in a dose-dependent manner. However, at 25 µg/ml the level 

of damage declined. This decline was accompanied by a high level of apoptosis 

indicating selective elimination of damaged cells. Cells pre-treated with aluminium 

showed a decreased repair capacity indicating that aluminium inhibits DNA repair. 

It is assumed that the inhibition of proteins which contain so-called zinc finger 

domains or an impaired ligation step may be a possible mechanism of DNA repair 

inhibition (111). 

Dominguez et al cultured primary human dermal fibroblasts from the outgrowth 

of skin biopsies from 10 persons. Cells were exposed for up to 5 days to a range 

of aluminium nitrate concentrations (1.85–74 µM) at physiological pH. Daily 

measurements were performed to assess the effect on cell DNA synthesis (using 
3
H-thymidine incorporation measured by liquid scintillation counting) and cell 

proliferation (cell protein measurements). Culture conditions were in the absence 

of serum (quiescent cultures). A clear time- and concentration-related induction of 



67 

DNA synthesis was observed, although only a moderate induction of cell protein 

was determined. Furthermore, the mitogenic activity was found to be minimal, 

inconsistent, and not related to the induction of DNA synthesis. According to the 

authors, a second mitotic agent is probably required to let the cells pass to mitosis 

(53). 

Latha et al showed that aluminium interacts with topological changes in (CCG)12 

triplet repeats in blood samples of 10 fragile X syndrome patients. In the presence 

of 10 µM aluminium (maltolate), DNA induced stable Z-conformation in (CCG)12 

repeats, inhibiting gene expression of the FMR1 gene in fragile X syndrome (112).  

8.4.2 In vivo tests 

ATSDR data  

A significant increase in chromatid-type aberrations
2
, with a non-random dis-

tribution over the chromosome complement, was found in the bone marrow of 

mice following intraperitoneal injections of 0.01, 0.05 or 0.1 molar of (soluble) 

aluminium chloride. No dose-response relationship could be demonstrated, al-

though the highest dose of aluminium chloride did produce the greatest number  

of aberrations (Manna and Das 1972).  

Aluminium chloride (soluble) caused cross-linking of chromosomal proteins 

and DNA in ascites hepatoma cells from Sprague Dawley rats (Wedrychowski et 

al 1986). Micromolar aluminium levels also reduced 
3
H-thymidine incorporation 

in a transformed cell line (UMR 106-01), which indicates that aluminium may 

impede cell cycle progression (Blair et al 1989).  

Furthermore, a negative transformation assay in Syrian hamster cells was 

reported (DiPaolo and Casto 1979).  

Additional data  

In a bone marrow chromosomal aberration test, Roy et al administered oral 

(gavage) doses of aluminium sulphate (soluble) of 0, 212, 265, 353, 530, 1 060  

or 2 120 mg/kg bw/day (i.e. 0, 17, 22, 28, 43, 85, 172 mg Al/kg bw/day) or of 

aluminium potassium sulphate of 0, 503 or 764 mg/kg bw/day (i.e. 0, 28, 43 mg 

Al/kg bw/day) to groups of male rats (Rattus norvegicus, n = 5/group) for 7, 14  

or 21 days. Administration of aluminium sulphate caused decreases in the mitotic 

index and increases in the frequency of abnormal cells and in the number of 

breaks per cell in all dose groups at all treatment periods. Most aberrations were 

chromatid breaks. Comparison of cytotoxic and clastogenic effects of aluminium 

sulphate and aluminium potassium sulphate (soluble) at doses having similar 

aluminium content did not show great differences (167). 

In a bone marrow micronucleus test, Roy et al administered intraperitoneally 

doses of hydrated aluminium sulphate (soluble) of 250 or 500 mg/kg bw/day (i.e. 

ca. 20 and 40 mg Al/kg bw/day) for 2 days to groups of Swiss mice (n = 6/group, 

sex not reported). Additional groups received saline (vehicle control) or mito-

                                      
2
 According to IPCS/WHO, 1997, the aberrations included gaps, breaks, translocation and ring 

formations (96). 
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mycin C (positive control). Animals were killed 24 or 48 hours after the second 

dose. Per animal, 1 000 polychromatic erythrocytes (PCEs) were scored for de-

termining the frequency of micronucleated cells and 1 000 normochromatic erythro-

cytes (NCEs) counted to evaluate cytotoxic effects. There was no effect on the 

NCE/PCE ratio. The frequency of micronucleated cells was increased by a factor 

of 2.2 (24 hours, not significant) and 2.5 (48 hours, not significant) at 250 mg/kg 

bw and by a factor of 5.3 (24 hours, p < 0.05) and 6.6 (48 hours, p < 0.05) at 500 

mg/kg bw, when compared to vehicle controls. In both dose groups, a 7-day pre-

treatment with a fruit extract or with comparable doses of ascorbic acid (the main 

extract component) induced frequencies similar to those seen in vehicle controls 

(166). 

Dhir et al investigated the induction of SCEs in bone marrow cells of male 

Swiss mice (n = 5/group) obtained 24 hours after single intraperitoneal injections 

of doses of hydrated aluminium sulphate (soluble) of 100, 200 or 400 mg/kg bw 

(i.e. ca. 8, 16, 32 mg Al/kg bw). Per animal, 60 intact second division metaphases 

were scored for SCEs, and 100 metaphase cells were used to determine the pro-

liferation rate index. Vehicle (saline) control and positive (mitomycin C) control 

groups were included. There was no effect on the proliferation rate index. The 

frequency of SCEs was dose-dependently (one-tailed trend test, p < 0.001) in-

creased, by factors of 1.5, 2.1 and 2.8, respectively, when compared to vehicle 

control values. A 7-day pre-treatment with a fruit extract or with comparable 

doses of ascorbic acid (the main extract component) significantly reduced SCEs 

frequencies (48).  

8.5 Reproduction toxicity  

The effects of exposure to aluminium and aluminium compounds on reproduction 

have been reviewed and separately published by DECOS’s Subcommittee on the 

Classification of Reproduction Toxic Substances. Data and conclusions presented 

by the subcommittee are summarised below. For detailed information on individual 

studies, it is referred to the subcommittee’s report (84). 

8.5.1 Fertility  

The subcommittee did not present data on the effects of exposure to metallic alu-

minium on fertility.  

In studies with water soluble compounds, administration of aluminium chloride 

(hexahydrate) via the drinking water did not affect fertility of mice or rats. In a 

poorly reported multi-generation study in mice, doses of 19.3 mg Al/kg bw/day 

(only dose tested) did not affect female or male reproductive capacity (146). In 

rats, concentrations up to ca. 500 mg Al/l (i.e. ca. 23 mg/kg bw/day, assuming a 

water intake of 10 ml/100 g bw and a rat body weight of 450 g (84)) did not cause 

changes in male reproductive capacity, changes in body or organ (including testis) 

weights, or (histo)pathological effects (19, 50). However, in another study, levels 

of ca. 11 mg Al/kg bw/day (calculated from a given body weight of 300 g, an 

assumed water intake of 10 ml/100 g bw and a drinking water concentration of 
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100 mg Al/l) suppressed sexual behaviour and induced decreases in absolute (but 

not in relative) testis and seminal vehicle weights, as well as in body weights. 

Male reproductive capacity was not affected (19). 

Regarding compounds not soluble in water, dietary administration of basic 

sodium aluminium phosphate at doses of 75 mg Al/kg bw/day induced decreased 

absolute testis weights and histological changes (in 2/4) in male beagle dogs. No 

such effects were seen at a dose of 27 mg Al/kg bw (amounts included Al present 

in the basal diet) (154).  

8.5.2 Developmental toxicity 

The subcommittee did not present data on the effects of exposure to metallic alu-

minium on development.  

The effects of water-soluble aluminium compounds were widely investigated  

in a series of prenatal and postnatal developmental toxicity studies. In the prenatal 

studies, no effects were observed in the foetuses of dams orally treated at dose 

levels that did not induce general toxic effects (124). In the foetuses of dams oral-

ly treated at dose levels inducing general toxicity (13 mg Al/kg bw/day in rats, 29 

mg Al/kg bw/day in mice) decreased foetal weights and retarded ossification were 

seen (8, 23, 151). In the postnatal studies, (neuro)developmental and/or (neuro)-

behavioural effects were investigated in the offspring of dams treated during 

gestation (5, 25, 26, 76, 126, 127, 130, 159, 170, 201) or during gestation and 

lactation (52, 54, 67-70, 72). No effects were observed on reproductive outcome 

parameters (pregnancy rate, absorptions, implantation sites, litter size, pup weight 

at birth). Aluminium doses that caused general toxic effects generally resulted in 

decreased pup weight gain, increased pup mortality, and neurodevelopmental  

and behavioural effects. However, after oral administration of doses not inducing 

general toxic effects, increased pup mortality and neurodevelopmental and be-

havioural effects were also observed (25, 54, 67, 69, 70, 126, 130). In mice, no 

effects were observed at daily dietary amounts of 10 mg Al/kg bw, while effects 

were observed at 50 mg Al/kg bw/day (67). In rats, no effects were seen at gavage 

doses of 18 mg Al/kg bw/day (effect level: 36 mg Al/kg bw/day) (126).  

Regarding compounds not soluble in water, no effects on prenatal development 

in rats and mice were seen at the doses tested in the studies available. In all these 

studies, aluminium hydroxide was administered by gavage during gestational days 

6–15. The highest levels tested were ca. 100 and 270 mg Al/kg bw in mice and 

rats, respectively (39, 40, 51, 74, 75). The subcommittee did not present data on 

effects on postnatal development.  

8.6 Summary and evaluation 

Rats exposed for 4 hours to 200 and 1 000 mg/m
3
 aluminium flakes developed 

persistent microgranulomata in the respiratory tract at 14 days post-exposure. No 

effects were observed at levels of 100 mg/m
3
 and below.  
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Solutions of 10 % of aluminium chloride (soluble) and aluminium nitrate 

(soluble) induced skin damage in mice, rabbits and pigs, while aluminium 

sulphate (soluble), chlorohydrate (soluble), and hydroxide (insoluble) did not.  

Aluminium chloride (soluble) was negative in a mouse local lymph node assay, 

a test considered less appropriate for detecting sensitising capacity of metals.  

Exposure to aluminium chlorohydrate (soluble) concentrations of 25 mg/m
3 

 

(6.1 mg Al/m
3
) did not induce (histological) effects on the eyes. No irritation 

studies following instillation of aluminium or its compounds into eyes of labora-

tory animals were available.  

No mortality was induced in rats following 4-hour exposures to up to 1 000 mg 

Al/m
3
 as aluminium oxide (insoluble).  

No data on acute dermal toxicity were available.  

Oral LD50 values in rats and mice ranging from 261 to 980 mg/kg bw were re-

ported for several water-soluble aluminium compounds.  

Following repeated inhalation exposure, mainly effects on the respiratory tract 

were observed. In a study with aerosolised aluminium chlorohydrate (soluble) in a 

silicone-ethanol vehicle, no effects were seen in rats concerning blood biochemistry 

endpoints or several organs/tissues including lungs and nose at exposure to 2.5 

mg/m
3
 (MMAD 4.28 ± 0.93 µm), 4 hours/day, 5 days/week for 22 days. However, 

in guinea pigs and rats exposed to 2.5 mg/m
3
 aluminium chlorohydrate dust for 6 

months, multifocal granulomatous pneumonia was observed. In addition, there 

were microgranulomas in the peribronchial lymph nodes. No effects were seen in 

the nasal cavities or the trachea. At 0.25 mg/m
3
 (0.061 mg Al/m

3
), there was an 

indication of granulomatous change in the peribronchial lymph node of one rat 

and slightly increased alveolar macrophages in a few rats and guinea pigs. In 

poorly reported studies, exposure to 1.3 and 1.8 mg/m
3
 (0.37 and 0.41 mg Al/m

3
) 

of respirable dusts of aluminium chloride or aluminium fluoride, respectively, for 

5 months caused some changes in lung parameters indicative of alveolar macro-

phage damage. Similar effects as well as fibrosis and increased lung weights were 

seen in rats exposed to 2 mg/m
3
 of an aqueous aerosol of aluminium sulphate,  

but not in concurrent experiments with sulphuric acid and potassium sulphate, 

suggesting the aluminium ion to be the toxic factor. No fibrosis was seen in rats 

examined 42 weeks after an 86-week exposure to a refractory material containing 

96 % aluminium oxide and about 4 % silica at concentrations of 2.18 or 2.45 mg/ 

m
3
 (as manufactured or aged fibres). There were no data from neurotoxicity in-

halation studies. 

Oral studies in which an adequate range of endpoints was examined following 

repeated exposure of rats, mice or dogs to various aluminium compounds (sodium 

aluminium phosphate, aluminium hydroxide, aluminium nitrate) in the diet or 

drinking-water, showed only minimal effects (decreases in body weight gain 

generally associated with decreases in food consumption or mild histological 

effects) at the highest doses administered (70–300 mg Al/kg bw/day). In neuro-

toxicity studies in rats and mice, no significant histological changes in the brain 

were found, although neuromotor, behavioural and cognitive changes have been 
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observed consistently in these species. A LOAEL of 130 mg Al/kg bw/day was 

identified for decreased spontaneous motor activity in adult mice that were ex-

posed to dietary aluminium lactate for 6 weeks. No decreased spontaneous motor 

activity was observed at 62 mg Al/kg bw/day.  

No increase in tumour incidences was found in rats exposed to a refractory 

material consisting of 96 % aluminium oxide and 4 % silica at concentrations of 

2.18 or 2.45 mg/m
3
 for 86 weeks, with an additional exposure-free period of 42 

weeks.  

Aluminium potassium sulphate did not increase tumour incidences in mice 

given dietary doses as high as 979 mg Al/kg bw/day for 20 months or in rats 

(male) and mice (female) at drinking water doses of 0.6 and 1.2 mg Al/kg bw/day, 

respectively, for 2–2.5 years.  

Intratracheal instillation of doses of 6 mg of ultrafine particles of aluminium 

oxide (mean diameter: 0.013 μm), once a week for 5 or 10 times, increased the 

number of animals having one or more primary tumours when compared to con-

trols (64 % and 55 %, respectively, vs. 2 % in controls). Similar treatment with 

aluminium silicate (mean diameter: 0.015 µm) had similar results (49 % in both 

groups).  

Aluminium chloride was not mutagenic in S. typhimurium strains TA102, 

TA1535, TA1537, TA1538 and TA2637, in E. coli strain WP2uvrA or in mouse 

lymphoma cells. Conflicting results were reported for S. typhimurium strains 

TA98 and TA100. Aluminium fluoride was not mutagenic in S. typhimurium or  

E. coli.  

Aluminium chloride and aluminium sulphate induced increased frequencies of 

micronuclei in human lymphocytes and fibroblasts by means of clastogenic and 

aneuploidogenic mechanisms.  

Aluminium (chloride) caused DNA damage and inhibited DNA repair. It in-

duced DNA single strand breaks and cross-linked DNA and chromosomal pro-

teins.  

In vivo, levels ≥ 17 mg Al/kg bw, administered orally as its sulphate or potassium 

sulphate to rats or intraperitoneally as its sulphate to mice, increased the frequency 

of chromosomal aberrations in bone marrow cells of rats and mice, and of micro-

nuclei and SCEs in bone marrow cells of mice (not tested in rats). Lower levels 

were not tested.  

There were no inhalation reproduction toxicity studies or studies on the effects 

of metallic aluminium on fertility or development.  

In studies with water-soluble compounds, doses of 19 mg Al/kg bw/day (as 

aluminium chloride) in the drinking water did not affect reproductive capacity in 

male or female mice. In rats, no effect was seen on male reproductive capacity  

at drinking water levels of ca. 23 mg Al/kg bw/day (as aluminium chloride). Re-

garding compounds not soluble in water, dietary administration of doses of 27 mg 

Al/kg bw/day did not result in testis weight or histological changes in male beagle 

dogs.  
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In prenatal developmental toxicity studies in which water-soluble aluminium 

compounds were orally administered to dams during gestation, no effects were 

observed in the foetuses at dose levels that did not induce general toxic effects.  

In the foetuses of dams treated at dose levels inducing general toxicity (13 mg Al 

/kg bw/day in rats, 29 mg Al/kg bw/day in mice) decreased foetal weights and re-

tarded ossification were seen. In postnatal studies, investigating (neuro)develop-

mental and/or (neuro)behavioural effects in the offspring of dams treated with 

water soluble aluminium compounds during gestation or during gestation and 

lactation, no effects were seen on reproductive parameters such as pregnancy rate, 

absorptions, implantation sites, litter size and pup weight at birth. Generally, 

effects on postnatal development such as pup weight gain, pup mortality and 

(neuro)behaviour were observed in the presence of general toxicity. However, 

increased pup mortality and neurodevelopmental and behavioural effects were 

also seen at doses not inducing general toxicity. In mice, dietary amounts of 10 

mg Al/kg bw/day did not induce effects. In rats, there was impaired motor de-

velopment at gavage doses of 36 mg Al/kg bw/day in one study, but not at doses 

of 18 mg/kg bw/day. Regarding compounds not soluble in water, no effects on 

prenatal development were seen following administration of aluminium hydroxide 

by gavage on gestational days 6-15 at the highest levels tested, i.e. ca. 100 mg 

Al/kg bw/day in mice and ca. 270 mg Al/kg bw/day in rats.  

9. Existing guidelines, standards and evaluations  

9.1 General population  

No inhalation limit values for the general population could be located for alu-

minium and aluminium compounds.  

9.2 Working population  

Occupational exposure limits for aluminium and aluminium compounds in some 

European countries and the US, listed in the most recent publications available to 

the committees, are presented in Table 6. None of the countries or organisations 

attached a “skin notation” or considered aluminium or one of its compounds to 

have sensitising properties. 

9.3 Evaluations  

American Conference of Governmental Industrial Hygienists (ACGIH)  

Aluminium metal and insoluble compounds. In its threshold limit value (TLV) 

documentation of 2008, ACGIH stated that, generally, insoluble forms of 

aluminium are poorly absorbed and readily cleared from the lungs by muco- 

ciliary and bronchoalveolar clearance, but that there is evidence of aluminium 

accumulation in the body with long-term exposure. In workers exposed to high  
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Table 6. Occupational exposure limits (OELs) (as 8-hour TWAs) for aluminium and aluminium 

compounds in various countries. 

Country - organisation Aluminium compound  OEL (mg Al/m3) Ref. 

Norway  Welding fume  

Oxide  

Pyro powder  

Soluble salts  

  5 a 

10 a (total dust) 

  5 a 

  2  

(10) 

Sweden  Metal, oxide  

 

Soluble compounds 

Potassium aluminium tetrafluoride  

Stearates 

  5 (total dust)  

  2 (respirable dust)  

  1 (total dust)  

  0.4 a (inhalable dust)  

  5 a (total dust)  

(191) 

Denmark  Metal, oxide (powder, dust)  

 

Metal fume 

Soluble salts  

  5 (total dust)  

  2 (respirable dust)  

  5 

  1 

(11) 

Finland  Welding fume  

Soluble compounds  

Fluoride  

Sulphate 

  1.5 

  2 

  1 a (15-min value) 

  1 

(186) 

Iceland  Metal (powder, dust) 

Oxide 

Fume 

Soluble compounds 

10 

10 

  5 

  2 

(200) 

the Netherlands - b   - b (192) 

United Kingdom - Health and Safety 

Executive 

Metal, oxide  

 

Soluble salts  

10 (inhalable dust)  

  4 (respirable dust)  

  2  

(83) 

Germany - Deutsche Forschungs-

gemeinschaft (MAK-Kommission) 

Metal-, oxide-, hydroxide- 

containing dusts c 

  4 (inhalable fraction)  

  1.5 (respirable fraction) 

(47) 

- Arbeits- und Gesundheitsschutz (AGS)  -   - (20) 

United States    

- American Conference of Govern-

mental Industrial Hygienists (ACGIH) 

Metal, insoluble compounds  

 

  1 d  (3) 

- Occupational Safety and Health 

Administration (OSHA) 

Metal 15 (total dust)  

  5 (respirable fraction) 

(3) 

- National Institute for Occupational 

Safety and Health (NIOSH) 

Metal  

 

Pyro powder  

Soluble salts 

10 (total dust)  

  5 (respirable dust)  

  5 

  2 

(3) 

European Union -   - (58) 
a Listed as mg/m3.  
b For inorganic fluorides, there is a 15-minutes time-weighted average (TWA) limit value of 2 mg F/m3. For 

aluminium fluoride, this would be equivalent to 0.9 mg Al/m3. 
c Ultrafine particles and fibrous aluminium oxide are excepted. Aluminium oxide fibrous dust is classified in 

carcinogenicity category 2, i.e. listed among substances considered to be carcinogenic for man because suf-

ficient data from long-term animal studies or limited evidence from animal studies substantiated by evidence 

from epidemiological studies indicate that they can make a significant contribution to cancer risk. Limited 

data from animal studies can be supported by evidence that the substance causes cancer by a mode of action 

that is relevant to man and by results of in vitro tests and short-term animal studies (see also Section 9.3). 
d As respirable particulate matter. Aluminium metal and insoluble compounds are classified into carcinogeni-

city category A4, i.e. not classifiable as a human carcinogen: agents which cause concern that they could be 

carcinogenic to humans but which cannot be assessed conclusively because of lack of data. In vitro or animal 

studies do not provide indications of carcinogenicity which are sufficient to classify the agent into one of the 

other categories.  
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levels of aluminium dust (100 mg/m
3
-years, equivalent to 40 years of exposure  

at 2.5 mg/m
3
), radiographic and mild pulmonary function changes have been 

observed. In animals, effects on the respiratory tract, including granulomatous 

reactions and biochemical alterations in bronchoalveolar lavage fluid, have been 

demonstrated after exposure to insoluble forms of aluminium at concentrations  

as low as 2.5 mg/m
3
 of respirable particles. According to ACGIH, several studies 

suggest that long-term inhalation exposure to aluminium, resulting in body burdens 

corresponding to inhalation of 1.6 mg/m
3
 for 40 years, can lead to subtle neuro-

logical deficits. Airborne concentrations in this range correspond to urinary alu-

minium levels of 100 µg/l, which appears to be a threshold for neurological 

effects. From these data, ACGIH concluded that a TLV-TWA of 1 mg/m
3
, re-

spirable particulate matter, should provide sufficient protection against potential 

adverse effects on the lungs and the nervous system. The recommended TLV-

TWA applies to insoluble aluminium compounds (e.g. aluminium metal, alu-

minium oxide, stamped aluminium, aluminium in bauxite ore, emery).  

ACGIH concluded further that the toxicological data were inadequate for the 

soluble aluminium compounds, aluminium alkyl compounds, and for aluminium 

metal flakes and powder coated with oxidation inhibited oils (2). 

Deutsche Forschungsgemeinschaft (DFG)  

Dusts containing aluminium metal, oxide or hydroxide. In 2007, an evaluation of 

the health effects of dusts containing aluminium, aluminium oxide and aluminium 

hydroxide was published. The Commission for the Investigation of Health Hazards 

of Chemical Compounds in the Work Area considered the lungs and the central 

nervous system to be the target organs in humans. High concentrations of aluminium 

in occupational air, which in the past often exceeded 6 mg/m
3
 (respirable fraction) 

frequently induced lung fibrosis. Accompanying urinary levels of aluminium were 

higher than 200 µg/l (i.e. the biological limit value). However, dose-response re-

lationships or no observed adverse effect levels (NOAELs) for lung fibrosis could 

not be established from the epidemiological studies. The exposure data were in-

adequate. Further, there was frequently co-exposure to other compounds and the 

aetiological role of aluminium could not be unequivocally identified. Similarly, 

effects on the central nervous system in occupationally exposed workers could  

not be evaluated. The DFG Commission temporarily maintains the current MAK-

values of 1.5 and 4 mg/m
3
 for respirable and inhalable aluminium dusts, respec-

tively, but excludes ultrafine particles, which can among others occur during alu-

minium welding (as well as aluminium oxide fibres).  

From developmental toxicity studies, the DFG Commission concluded that, 

especially for soluble aluminium compounds, effects on foetal and offspring body 

weights are the key developmental toxicity effects with a (subcutaneous) NOAEL 

of 2.7 mg Al/kg bw in rabbits and a (subcutaneous) LOAEL of 0.2 mg Al/kg bw 

in rats, respectively. Although the NOAEL in rabbits warrants a classification in 

pregnancy risk group C (i.e. “there is no reason to fear damage to the embryo or 

foetus when MAK and BAT values are observed”), the DFG Commission decided 
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to classify the aluminium dusts into pregnancy risk group D (i.e. among substances 

for which either there were no data for an assessment of damage to the embryo or 

foetus or the currently available data were not sufficient for classification in one 

of the groups A, B or C) based on the LOAEL in rats.  

Based on the negative carcinogenicity study with potassium aluminium sulphate 

in mice, the DFG Commission did not classify aluminium into one of the carcino-

genicity groups. The DFG Commission concluded that aluminium was not muta-

genic in bacterial and mammalian cell systems. The induction of chromosomal 

aberrations and micronuclei was observed in in vitro systems, as well as in vivo  

in laboratory animals at high doses; however, low doses were not tested. Overall, 

these findings could be seen only as an indication of a genotoxic potential in vivo. 

The DFG Commission was further of the opinion that the genotoxic effects ob-

served were indirect effects for which no-effect levels might exist but cannot be 

indicated from the data available.  

Despite the extensive exposure to aluminium, aluminium oxide and aluminium 

salts, only a few cases of (contact) sensitisation have been reported. In several of 

these cases, sensitisation occurred following subcutaneous application of aluminium 

oxide-containing vaccines that was not considered relevant to workplace conditions. 

Experimental animal studies were negative. In several studies, allergic lung dis-

eases were observed following massive inhalation exposure to aluminium or 

aluminium oxide. However, there was no firm evidence of respiratory tract sen-

sitisation. Based on the available data, the commission considered aluminium not 

to be a sensitising agent (78).  

Aluminium oxide fibrous dusts. In 1993, the DFG Commission evaluated and 

classified various types of fibrous dust with respect to their carcinogenic potential. 

In carcinogenicity studies in which aluminium oxide fibres were intrapleurally 

administered to rats, increased incidences of pleural sarcomas were observed. Al-

though recognising that the intrapleural route is an unphysiological exposure route, 

the DFG Commission concluded that the data provided sufficient evidence of a 

carcinogenic potential of aluminium oxide fibres. Therefore, the DFG Commission 

stated that theses fibres should be handled like fibres classified in carcinogenicity 

category 2 (see also Table 6) (46). 

Health and Safety Executive (HSE)  

Aluminium metal. In 1991, HSE stated that the solubility of metallic aluminium is 

very low, although the exact extent of its bioavailability is not known and may de-

pend on whether the particle surface is oxidised or covered by a stamping lubricant. 

Powders coated with mineral oil were associated with lung fibrosis. Since these 

were no longer produced in the UK, HSE excluded these powders – along with 

aluminium fume – from consideration of a limit. HSE concluded that there was no 

evidence that, when inhaled, aluminium is sufficiently absorbed to cause systemic 

effects and considered, for example, any link with Alzheimer’s disease to be re-

mote. Because of methodological problems, HSE doubted the validity and results 

of the neurotoxicity study in Canadian miners (see Rifat et al (160)) and regarded 
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this study as unconvincing and not a basis for firm conclusions. HSE found only 

little relevant information on the mutagenic or carcinogenic potential of alu-

minium. The excess cancer incidence among aluminium smelter workers was 

thought to be related to factors other than exposure of aluminium. HSE concluded 

that lung fibrosis was the critical health effect. Animal studies showed some lung 

effects, but not fibrosis, at 20–100 mg/m
3
. Since, according to HSE, there was no 

evidence for effects in humans at levels below this range, HSE set occupational 

exposure limits at 4 mg/m
3
 (respirable dust) and 10 mg/m

3
 (inhalable dust), as 8-

hour TWA (81). 

Aluminium oxide. HSE stated that the solubility (and consequently bioavailability) 

of aluminium oxide was very low, and that there was no evidence that the slight 

absorption that might occur from inhaled dust is sufficient to cause any systemic 

effects. Any link between exposure and Alzheimer’s disease was found to be 

remote. The neurotoxicity study in Canadian miners (see above) was found not 

convincing and not suitable for firm conclusions. HSE stated that there was no 

reliable evidence to suggest that significant health effects may arise from single 

exposures to aluminium or aluminium oxide dusts. It regarded the excess cancer 

incidence among aluminium smelter workers as probably related to factors other 

than aluminium or aluminium oxide. HSE found no evidence of genotoxicity and 

no information on reproduction toxicity. HSE concluded that, despite some case 

reports of effects on lungs in exposed workers, there was no evidence of such 

effects at the levels of 20–100 mg/m
3
 used in animal studies (see above), and set 

occupational exposure levels at 4 mg/m
3
 (respirable dust) and 10 mg/m

3
 (inhalable 

dust) (81). 

Finland  

Aluminium fluoride. The occupational exposure limit for aluminium fluoride is 

based on increased incidences of bronchial hyperreactivity and asthma reported  

by Simonsson et al (1985) (177) and Hjortsberg et al (1994) (88). According to 

Simonsson et al, 6 and 7 cases of asthma occurred in 1975 and 1976, respectively, 

in a group of 35–40 workers of a Swedish aluminium fluoride-producing facility 

exposed to mean aluminium fluoride concentrations (personal air sampling) of 5.5 

and 2.6 mg/m
3
, respectively. During 1978–1980, when measures resulted in lower 

concentrations of 0.4–1.0 mg/m
3
, 2 new cases appeared, while none occurred in 

1981 and 1982 (no exposure levels reported) (177). Hjortsberg et al reported that 

exposure to potassium aluminium tetrafluoride used as a flux for soldering alu-

minium induced an increase of bronchial reactivity in small airways. Median ex-

posure levels of respirable dust and of repirable particulate fluoride were 1.1 and 

0.3 mg/m
3
, respectively, while subsequent measures lowered levels to 0.7 and 0.1 

mg/m
3
, respectively (88). 

Aluminium sulphate. The occupational exposure limit for aluminium sulphate  

is based on 4 cases of short-lasting asthma occurring during 1971–1980 in a group 

of 37 workers of a Swedish aluminium sulphate-producing facility exposed to 

average aluminium sulphate concentrations varying between 0.2 and 4 mg/m
3
. 
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The induction of asthma was reported to be related to “heavy” dust exposure 

during rinsing or repair work (177). 

World Health Organization (WHO)  

The International Programme on Chemical Safety (IPCS), a joint venture of  

the United Nations Environmental Program (UNEP), the International Labour 

Organisation (ILO) and the World Health Organization (WHO), published an 

environmental health criteria document on aluminium in 1997. It was concluded 

that workers having long-term, high-level exposure to fine aluminium particulates 

might be at increased risk of adverse health effects. However, there were in-

sufficient data from which occupational exposure limits with regards to the ad-

verse effects of aluminium could be developed with any degree of certainty. It 

was stated that exposure to stamped pyrotechnic aluminium powder most often 

coated with mineral oil lubricants had caused pulmonary fibrosis, whereas ex-

posure to other forms of aluminium had not been proven to cause pulmonary 

fibrosis. In most reported cases, there was exposure to other potentially fibrogenic 

agents. Further, it was said that irritant-induced asthma had been associated with 

inhalation of aluminium sulphate, aluminium fluoride or potassium aluminium 

tetrafluoride, and with the complex environment within the potrooms during alu-

minium production. IPCS was of the opinion that the data in support of the hypo-

thesis that occupational exposure may be associated with non-specific impaired 

function were inadequate (96).  

Agency for Toxic Substances and Disease Registry (ATSDR).  

In its toxicological profile for aluminium, published in September 2008, ATSDR 

stated that the occupational exposure studies and animal studies suggested that the 

lungs and the nervous system might be the target organs of toxicity following in-

halation exposure. Respiratory effects, in particular impaired lung function and 

fibrosis, have been found in numerous studies on a variety of aluminium workers. 

However, these effects have not been consistently seen across studies and inter-

pretation of the data is also complicated by the lack of exposure assessment and 

the potential for concomitant exposure to other toxic compounds. Respiratory 

effects (granulomatous lesions) have also been observed in rats, hamsters and 

guinea pigs. According to ATSDR, it was unclear whether these effects were 

related to direct toxic effects of aluminium in lung tissue or on dust overload. 

Therefore, inhalation minimal risk levels (MRLs) for respiratory effects were not 

derived. Subtle neurological effects, including impaired performance on neuro-

behavioural tests and increased reporting of subjective neurological symptoms, 

have also been seen in workers chronically exposed to aluminium dust or fumes. 

Neurological examinations in experimental animal studies have been limited to 

measurement of brain weight and/or brain histopathology and no neurobehavioural 

tests were performed. In view of the poor characterisation of the exposure in the 

human studies, ATSDR did not derive inhalation minimal risk levels for aluminium 

(14).  
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International Agency for Research on Cancer (IARC).  

In an evaluation of the carcinogenic effects of PAHs performed in 2005, IARC 

concluded that there was sufficient evidence in humans for the carcinogenicity of 

occupational exposures during aluminium production. This conclusion was based 

on several epidemiological studies on aluminium production workers in plants in 

Canada, France, Italy, Norway and the US. Several of these studies showed in-

creased risks for cancer of the lungs and the urinary bladder. In a meta-analysis, a 

positive exposure-response relationship between cumulative exposure to benzo[a]-

pyrene, as an index of exposure to PAHs, and both urinary bladder and lung cancer 

was found. In addition, in some of the studies, increased risks were found for 

lymphatic and haematopoietic as well as pancreatic cancer (94).  

 

Health Council of the Netherlands: DECOS’s Subcommittee on the Classification  

of Reproduction Toxic Substances  

In its evaluation from 2009, the subcommittee concluded that two studies indicated 

that aluminium can be excreted in human milk at levels exceeding 710 µg/l, which 

is a level considered by the committee to be safe for breastfed babies. Based on 

this finding, the subcommittee recommended to label water-soluble aluminium 

compounds for effects during lactation with R64 (may cause harm to breastfed 

babies).  

Further, based on prenatal development toxicity studies, the subcommittee re-

commended classifying water-soluble aluminium compounds (in accordance with 

the Directive 93/21/EEC of the EU) for developmental toxicity into Category 2 

(substances which could be regarded as if they cause developmental toxicity in 

humans) and labelling water-soluble aluminium compounds with T; R61 (may 

cause harm to the unborn child). Due to a lack of appropriate data, the committee 

recommended neither classifying water-soluble aluminium compounds for effects 

on fertility nor metallic aluminium and insoluble aluminium compounds for effects 

on fertility or on developmental toxicity (84). 

10. Hazard assessment  

10.1 Assessment of the health risk  

Inhalation and dermal absorption have not been studied in detail. The percentage 

of aluminium absorbed following inhalation of fumes might be about 2 % but is 

likely to depend on solubility and size. The percentage for dermal exposure is not 

reported.  

Animal studies showed no significant increases in aluminium in tissues or 

serum after inhalation exposure to aluminium oxide (insoluble) and aluminium 

chlorohydrate (soluble), indicating that lung retention rather than absorption was 

taking place. After oral exposure, 0.1–1 % of aluminium is absorbed (depending 

on aluminium compound ingested and composition of the diet). Furthermore, 
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aluminium may directly enter the brain via the olfactory tract. The aluminium 

crosses the nasal epithelium and reaches the brain via axonal transport.  

In animals, elevated levels of aluminium were observed in the foetus, providing 

evidence of transplacental transfer of aluminium. Several studies also indicated 

that aluminium can be excreted in human milk.  

No human studies were found on local effects on the eyes and on the respiratory 

tract after acute exposure. Aluminium compounds are widely used in antiperspirants 

without harmful effects to the skin. In animal experiments, solutions of 10 % of 

aluminium chloride (soluble) and nitrate (soluble) were damaging to the skin, while 

aluminium sulphate (soluble), chlorohydrate (soluble) and hydroxide (insoluble) 

were not. Human data do not indicate that aluminium or its compounds are strong-

ly sensitising. In laboratory animals – a mouse local lymph node assay –, aluminium 

chloride (soluble) was not sensitising. This test, however, is considered less ap-

propriate for detecting sensitising capacity of metals.  

No human studies were found regarding mortality or toxicologically relevant 

systemic health effects after acute exposure to aluminium and aluminium com-

pounds.  

Rats exposed for 4 hours to 200 and 1 000 mg/m
3
 aluminium flakes developed 

persistent microgranulomata in the respiratory tract at 14 days post-exposure. No 

effects were observed at levels of 100 mg/m
3
 and below. Exposure to aluminium 

chlorohydrate (soluble) concentrations of 25 mg/m
3
 (6.1 mg Al/m

3
) did not induce 

(histological) effects on the eyes. There were no irritation studies following in-

stillation of aluminium or its compounds into the eyes of laboratory animals. No 

mortality was induced in rats following 4-hour exposures to up to 1 000 mg Al/m
3
 

as aluminium oxide. No data on acute dermal toxicity were available. Oral LD50 

values in rats and mice ranged from 261 to 980 mg/kg bw for several water-

soluble aluminium compounds.  

Numerous studies have examined the effects following occupational exposure 

to aluminium. They included workers exposed to aluminium oxide, aluminium 

fluoride, and partially oxidised aluminium metal fumes in primary aluminium pro-

duction (potrooms and foundries), workers exposed to aluminium dusts in plants 

producing or processing aluminium powder, miners inhaling the so-called McIn-

tyre powder (15 % elemental aluminium and 85 % aluminium oxide) as a pro-

phylactic agent against silicosis, and welders exposed to welding aerosols con-

taining respirable aluminium-containing particles and aluminium oxide fumes. 

Generally, it was shown that under the varying working conditions, aluminium 

can cause effects on the respiratory tract, such as impaired lung function and 

pulmonary fibrosis, and, less consistently, mild effects on the nervous system, 

such as impaired performance in neurobehavioural tests on psychomotor and 

cognitive skills and changes in quantitative EEG.  

However, in some cases, other compounds such as hydrogen fluoride and 

hydrogen chloride (in potrooms/foundries) or manganese and ozone (in welding) 

or smoking may have played a role. Further, exposure data, especially those from 

past exposure, are lacking. The data did not show a consistent relationship be-
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tween neurotoxic effects and aluminium concentrations in blood or urine, which 

unfortunately cannot be recalculated to exposure concentrations. Therefore, the 

epidemiological studies are considered to be inappropriate to assess clear dose-

response relationships and to identify critical effect levels. 

There are only a few, limited repeated animal inhalation studies, in which 

mainly effects on the respiratory tract were examined and/or observed. In a study 

with aerosolised aluminium chlorohydrate (water soluble) in a silicone-ethanol 

vehicle, no effects were seen in rats (n = 15/sex/group) concerning blood bio-

chemistry endpoints or several organs/tissues including lungs and nose at ex-

posure to 2.5 mg/m
3
, 4 hours/day, 5 days/week for 22 days. However, in guinea 

pigs and rats (n = 10/species/sex/group, gross and histological observations are 

from only 5 animals/species/sex/group) exposed to 2.5 mg/m
3
 aluminium chloro-

hydrate (soluble) dusts for 6 months, multifocal granulomatous pneumonia was 

observed in all animals. In addition, there were microgranulomas in the peri-

bronchial lymph nodes. No effects were seen in the nasal cavities or the trachea. 

At 0.25 mg/m
3
, the lowest concentration tested (corresponding to 0.061 mg Al/ 

m
3
), there was an indication of granulomatous change in the peribronchial lymph 

node of one rat and slightly increased alveolar macrophages in a few rats and 

guinea pigs.  

In two limited and poorly reported studies, exposure of rats to ca. 1.3–2 mg/m
3
 

of aluminium fluoride (poorly soluble) or aluminium chloride (soluble) dusts or  

of an aqueous aluminium sulphate aerosol affected the lungs as well (increased 

weights, stiff lungs, fibrosis, increased number of alveolar macrophages and of 

abnormal macrophages and granulocytes). No fibrosis was seen in rats examined 

42 weeks after an 86-week exposure to a refractory material containing 96 % alu-

minium oxide and about 4 % silica at concentrations of ca. 2.3 mg/m
3
. There are 

no data from neurotoxicity inhalation studies. However, aluminium compounds 

are neurotoxic in orally exposed animals at high doses (LOAEL of 130 mg Al/kg 

bw/day).  

Both human and experimental animal data indicate that the effects on the re-

spiratory tract are the key effects. The oral studies, in which an adequate range  

of endpoints was examined following repeated exposure of rats, mice or dogs  

to various aluminium compounds (sodium aluminium phosphate, aluminium 

hydroxide, aluminium nitrate, aluminium lactate) in the diet or drinking water  

and which showed only - minimal - effects at relatively high doses (> 60 mg Al/ 

kg bw/day), are therefore not relevant for identifying critical effect levels.  

In studies in workers in the aluminium production industry, where there was co-

exposure to carcinogenic compounds such as PAHs, increased cancer mortality 

rates were reported. No studies were found on the (potential) carcinogenic effects 

in other groups of workers occupationally exposed to aluminium.  

In rats exposed to a refractory material consisting of 96 % aluminium oxide and 

4 % silica at aluminium concentrations of ca. 2.3 mg/m
3
 for 86 weeks, with an 

additional exposure-free period of 42 weeks, no increase in tumour incidences 

was found.  



81 

Intratracheal instillation of doses of 6 mg of ultrafine particles of aluminium 

oxide (insoluble) (mean diameter 0.013 µm), once a week for 5 or 10 times, in-

creased the number of animals having one or more primary tumours when com-

pared to controls (64 % and 55 %, respectively vs. 2 % in controls). Similar 

treatment with aluminium silicate (mean diameter 0.015 µm) had similar results 

(49 % in both groups).  

Aluminium potassium sulphate (soluble) did not increase tumour incidences in 

mice given dietary doses as high as 979 mg Al/kg bw/day for 20 months or in rats 

(male) and mice (female) at drinking water doses of 0.6 and 1.2 mg Al/kg bw/day, 

respectively, for 2–2.5 years.  

These human and experimental animal data do not allow firm conclusions on 

the potential carcinogencity of aluminium or its compounds.  

Apart from conflicting results in S. typhimurium strains TA98 and TA100, alu-

minium chloride (soluble) was not mutagenic in other S. typhimurium strains, E. 

coli or in mouse lymphoma cells. Aluminium fluoride (poorly soluble) was not 

mutagenic in S. typhimurium or E. coli.  

Aluminium chloride (soluble) and aluminium sulphate (soluble) induced in-

creases in the frequency of micronuclei in human lymphocytes and fibroblasts  

by means of both clastogenic and aneuploidogenic mechanisms.  

Aluminium (chloride) caused DNA damage and inhibited DNA repair. It in-

duced DNA single strand breaks and cross-linked DNA and chromosomal pro-

teins.  

In vivo, levels ≥ 17 mg Al/kg bw, administered orally as its sulphate or potassium 

sulphate to rats or intraperitoneally as its sulphate to mice, increased the frequency 

of chromosomal aberrations in bone marrow cells of rats and mice, and of micro-

nuclei and SCEs in bone marrow cells of mice (not tested in rats). Lower levels 

were not tested.  

These data indicate that aluminium is not mutagenic but that especially the 

water-soluble sulphate is clastogenic. In vitro experiments showed among others 

that aluminium interacts with DNA phosphate groups, which can result in changes 

in DNA structure, or with the microtubuli, which can cause aneuploidy. The clasto-

genic effects might therefore be indirect effects for which no-effect levels may 

exist. However, the in vivo experiments were performed at high-dose ranges that 

did not include no-effect levels.  

There were no inhalation reproduction toxicity studies or studies on the effects 

of metallic aluminium on fertility or development.  

In studies with water-soluble compounds, doses of 19 mg Al/kg bw/day (as 

aluminium chloride) in the drinking water did not affect female or male repro-

ductive capacity in mice. In rats, no effect was seen on male reproductive capacity 

at drinking water levels of ca. 23 mg Al/kg bw/day (as soluble aluminium chloride). 

Regarding compounds not soluble in water, dietary administration of doses of 27 

mg Al/kg bw/day (as basic sodium aluminium phosphate) did not result in testis 

weight or histological changes in male beagle dogs.  
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In prenatal developmental toxicity studies in which water-soluble aluminium 

compounds were orally administered to dams during gestation, effects on foetuses 

(decreased weights and retarded ossification) were only observed at dose levels 

inducing general toxicity effects (13 mg Al/kg bw/day in rats, 29 mg Al/kg bw/ 

day in mice). In postnatal studies, investigating (neuro)developmental and/or 

(neuro)behavioural effects in the offspring of dams treated with water-soluble 

aluminium compounds during gestation or during gestation and lactation, no 

effects were seen on reproductive parameters such as pregnancy rate, absorptions, 

implantation sites, litter size and pup weight at birth. Generally, effects on post-

natal development such as pup weight gain, pup mortality and (neuro)behaviour 

were observed in the presence of general toxicity. However, pup mortality and 

neurodevelopmental and behavioural effects were also seen at doses not inducing 

general toxicity. In mice, dietary amounts of 10 mg Al/kg bw/day did not induce 

effects. In rats, there was impaired motor development at gavage doses of 36 mg 

Al/kg bw/day, but not at doses of 18 mg/kg bw/day. Regarding compounds not 

soluble in water, no effects on prenatal development were seen following ad-

ministration of aluminium hydroxide by gavage on gestational days 6–15 at the 

highest levels tested, i.e. ca. 100 mg Al/kg bw/day in mice and ca. 270 mg Al/kg 

bw/day in rats.  

The available human data are considered insufficient to identify critical effect 

levels for aluminium metal and aluminium compounds. With respect to animal 

data, the committees are aware of the discussion on particle overload and effects 

in rats at high aluminium exposure, mostly about carcinogenic effects. There is 

also discussion whether non-neoplastic effects are relevant for humans or not. 

Especially in this case where the effects observed concern clearance mechanisms 

which differ between man and rat. However, the effects were seen at relatively 

low levels in rats as well as in guinea pigs and included infiltration of inflamma-

tory cells and granuloma formation. Because pulmonary effects were also reported 

in occupationally exposed workers, the animal study of Steinhagen et al (190) is 

considered relevant to identify the critical effect level. In this study performed 

with aluminium chlorohydrate, a NOAEL could not be identified. At 0.25 mg/m
3
, 

the lowest level tested (corresponding to 0.061 mg Al/m
3
), there was an indication 

of granulomatous change in the peribronchial lymph node of 1/10 rats examined. 

Since these changes were seen at higher incidences at 2.5 mg/m
3
 (the next higher 

concentration tested), 0.25 mg/m
3
 is considered to be a minimal LOAEL, i.e. 

probably close to the NOAEL. The exposure duration of 6 months is considered 

sufficient for assessment of long-term exposure. 

Aluminium chlorohydrate is regarded to be soluble. Commercially, it is, amongst 

others, available as solutions that remain clear and free of precipitate after years of 

storage at room temperature. However, aqueous dilution and/or an increase in pH 

to higher levels (pH 5–6) result in precipitation of forms of aluminium hydroxide 

(176). DECOS and NEG infer that a similar process may take place under the 

physiological conditions in the lung and that the effects seen in the study above 

are in fact likely to be caused by insoluble forms of aluminium hydroxide. Other 
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aluminium compounds may behave in the lungs in a similar way. However, too 

little is known regarding the factors that determine the aluminium toxicity in  

the lungs to allow extrapolation to other aluminium compounds. Therefore, the 

committees conclude that, except for aluminium chlorohydrate, the data are in-

sufficient as a basis for occupational exposure limit(s) for aluminium metal or 

aluminium compounds. Still, NEG notes that workers exposed to aluminium oxide, 

1-2 orders of magnitude above the minimal LOAEL for pulmonary toxicity of the 

chlorohydrate, exhibited similar lung effects. This indicates that aluminium oxide 

is less toxic than the chlorohydrate (1, 22, 115).  

10.2 Groups at extra risk  

Individuals with renal failure may be at extra risk for aluminium toxicity.  

10.3 Scientific basis for an occupational exposure limit 

The data are insufficient as a scientific basis for occupational exposure limits for 

aluminium metal or aluminium compounds other than aluminium chlorohydrate 

(soluble). For aluminium chlorohydrate, a minimal LOAEL for pulmonary effects 

in rats was indicated at 0.25 mg/m
3
 (0.061 mg Al/m

3
), the lowest level tested. Due 

to lack of data, no assessment can be made for other water soluble aluminium com-

pounds.  

The effects of aluminium chlorohydrate were probably caused by insoluble 

forms of precipitated aluminium hydroxide. The committees infer that insoluble or 

poorly soluble forms of aluminium might act similarly in the lungs and therefore 

might have similar effect levels as aluminium chlorohydrate. However, NEG notes 

that data on workers indicate that aluminium oxide is less toxic.  

The scientific data do not suggest the need for a short-term exposure limit for 

aluminium and aluminium compounds.  

11. Recommendation for research  

No recommendations for research are made.  
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12. Summary  

The Nordic Expert Group for Criteria Documentation of Health Risks from 

Chemicals and the Dutch Expert Committee on Occupational Safety. 

145. Aluminium and aluminium compounds. Arbete och Hälsa 2011;45(7):1-142. 

 

Aluminium (Al) is silvery, light, malleable and ductile, and the most abundant 

metal in the earth’s crust. Al is used primarily for metallurgical purposes, especial-

ly to produce Al-based alloy castings and wrought Al. Al compounds are found in 

consumer products such as antacids, astringents, buffered aspirin, food additives 

and antiperspirants. Powdered Al metal is often used in explosives and fireworks. 

No human data were available on respiratory tract and eye irritation following 

acute/single exposure to Al or Al compounds. Despite the wide use of Al, the 

small number of reports on effects indicates that Al is not harmful to the skin.  

Occupational high-level inhalatory exposure to Al can cause lung disorders 

such as impaired lung function and pulmonary fibrosis. In the most relevant re-

peated animal inhalation study, rats and guinea pigs were exposed to 0.25, 2.5  

or 25 mg/m
3 

Al chlorohydrate for 6 months. All animals in the two higher dose 

groups had multifocal granulomatomous pneumonia and microgranulomas in the 

peribronchial lymph nodes. At the lowest dose, these effects were regarded as 

minimal. Thus, 0.25 mg/m
3
 (0.061 mg Al/m

3
) is probably close to the no-effect 

level. 

Some field studies suggest that Al induce subclinical neurotoxic effects, but no 

exposure-response relationships could be established and co-exposure to other 

compounds may have played a role. Al compounds are neurotoxic in orally ex-

posed animals at high doses. There are no animal inhalation neurotoxicity studies.  

Available data indicate that Al is not mutagenic, but that especially the water-

soluble sulphate may cause chromosomal damage. Human and experimental 

animal data do not allow firm conclusions on the potential carcinogenicity of Al or 

its compounds. Increased cancer mortality rates in workers in the Al production 

industry especially for lung and urinary bladder is generally considered to be 

caused by co-exposure to carcinogenic compounds such as polycyclic aromatic 

hydrocarbons.  

No studies were found on the effects of occupational exposure to Al or Al com-

pounds on reproductive capacity, pregnancy outcome or postnatal development. In 

animals, there are studies in which Al compounds were administered in the diet or 

drinking water. Water-soluble Al compounds have induced postnatal development 

effects. No effects on prenatal development were reported. 

Overall, the data are insufficient to identify a critical effect level except for Al 

chlorohydrate for which minimal pulmonary effects were seen in an animal study 

at 0.061 mg Al/m
3
. 

 

Keywords: aluminium, fibrosis, lung function, neurotoxicity, occupational 

exposure limit, pulmonary, review, risk assessment, toxicity  
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13. Summary in Swedish  

The Nordic Expert Group for Criteria Documentation of Health Risks from 

Chemicals and the Dutch Expert Committee on Occupational Safety. 

145. Aluminium and aluminium compounds. Arbete och Hälsa 2011;45(7):1-142. 

 

Aluminium (Al) är silverglänsande, lätt och formbart och den vanligaste metallen 

i jordskorpan. Al används främst inom metallurgi, i synnerhet för att tillverka Al-

baserade gjutlegeringar och smidesaluminium. Al-föreningar finns i konsument-

produkter som vissa läkemedel, livsmedelstillsatser och antiperspiranter. Al-pulver 

används ofta i sprängämnen och fyrverkerier. 

Det saknas humandata för ögon- och luftvägsirritation efter akut/enstaka expo-

nering för Al eller dess föreningar. Den omfattande användningen i kombination 

med få rapporter om effekter tyder på att Al inte är skadligt för  huden. 

Hög yrkesmässig exponering för Al via inandning kan orsaka lungsjukdom som 

försämrad lungfunktion och lungfibros. I den mest relevanta djurstudien expone-

rades råttor och marsvin via inandning för 0,25, 2,5 och 25 mg/m
3
 Al-klorhydrat  

i 6 månader. Vid de två högsta doserna hade alla djur multifokal granulomatös 

lunginflammation och mikrogranulom i peribronkiella lymfknutor. Vid den lägsta 

dosen bedömdes dessa effekter vara minimals, dvs. 0,25 mg/m
3
 (0,061 mg Al/m

3
) 

är troligen nära icke-effektnivån. 

En del fältstudier antyder att Al ger upphov till subkliniska neurotoxiska effek-

ter, men dos-responssamband har inte kunnat fastställas och samtidig exponering 

för andra ämnen kan ha haft betydelse. Al-föreningar i höga doser är neurotoxiska 

på djur vid oral tillförsel. Inhalationsstudier på djur saknas. 

Tillgängliga data indikerar att Al inte är mutagent, men att särskilt den vatten-

lösliga sulfaten orsakar kromosomskador. Det går inte att dra några bestämda 

slutsatser om Al och dess föreningar är carcinogena utifrån studier på människa 

och djur. Den ökade dödligheten i cancer bland arbetare i Al-produktion, i synner-

het i lunga och urinblåsa, anses vara orsakad av samtidig exponering för cancer-

framkallande ämnen såsom polycykliska aromatiska kolväten. 

Inga studier om effekter vid yrkesmässig exponering för Al eller dess föreningar 

har påträffats avseende reproduktionsförmåga, graviditetsutfall eller utvecklingen 

hos nyfödda. I djurförsök har Al-föreningar endast getts via födan eller dricks-

vattnet. Vattenlösliga Al-föreningar har då orsakat utvecklingsstörningar hos ny-

födda. Inga effekter på fosterutveckling har rapporterats.  

Sammanfattningsvis är data otillräckliga för att identifiera någon kritisk effekt-

nivå utom för Al-klorhydrat för vilken minimala lungeffekter påvisats hos djur vid 

0,061 mg Al/m
3
. 

 

 

Keywords: aluminium, fibros, hygieniskt gränsvärde, lungfunktion, neurotoxicitet, 

riskbedömning, toxicitet, översikt   
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16. Data bases used in search of literature 

This document has been based on publicly available scientific data. Except for 

sections related to reproduction toxicity, the evaluation of the toxicity of aluminium 

and aluminium compounds builds on the review by ATSDR from 1999 (13), which 

was superseded by an update in 2008 (14). The data on reproduction toxicity have 

been extracted from the evaluation by DECOS’s Subcommittee on the Classification 

of Reproduction Toxic Substances, published in 2009 (84).  

Additional data were obtained from the on-line databases Toxline, Medline, 

Chemical Abstracts, and TSCATS, covering the period January1998 to June 2005. 

The following chemical names and Chemical Abstracts Service (CAS) registry 

numbers were used:  

alumin(i)um (7429-90-5),  

alumin(i)um chloride (7446-70-0),  

alumin(i)um chlorohydrate (1327-41-9, 11097-68-0, 84861-98-3),  

alumin(i)um hydroxide (21645-51-2),  

alumin(i)um lactate (18917-91-4),  

alumin(i)um nitrate (13473-90-0),  

alumin(i)um oxide (1344-28-1),  

alumin(i)um phosphate (7784-30-7),  

alumin(i)um fluoride (7784-18-1), 

alumin(i)um sulphate (10043-01-3),  

alumin(i)um carbonate (53547-27-6),  

alumin(i)um potassium phosphate (10043-67-1),  

alchlor (52231-93-3),  

alumin(i)um pyro powder,  

alumin(i)um flake powder, and  

alumin(i)um welding fume  

in combination with the following key words: expos*, kinetic*, toxic, animal, 

human, adverse effects.  

This resulted in a very large amount of hits. Considering the scope of the pre-

sent evaluation, literature references containing one of the following key terms 

were therefore excluded: transgenic; in vitro; alumin(i)um - pharmacology; thera-

peutic; dose-response relationship - drug; cells - cultured; drug effects; brain - 

drug effects; cell survival - drug effects; neurons - drug effects; cell division - 

drug effects; body weight - drug effects; plant roots - drug effects; vaccines - 

adverse effects; renal dialysis; renal dialysis - adverse effects; drug interactions; 

drug resistance - genetics; treatment outcome; ecology; crops - agricultural; soil; 

marine biology; adsorption; plant roots - growth and development; plant roots, 

metabolism; water; fresh water.  

From June 2005 onwards, several updating searches were performed in PubMed. 

The final search was performed in April 2009.  

 

Submitted for publication November 30, 2011.  
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Appendix 1. Tables with human, in vitro and animal data  

Effects of aluminium and aluminium compounds in humans, in vitro and in 

animal are summarised in Tables I-VII. 

 

Table I. Human case reports. 

 

Table II. Human studies on (non-carcinogenic) respiratory tract effects after long-

term exposure. 

 

Table III. Human studies on neurotoxic effects after long-term exposure. 

 

Table IV. In vitro studies. 

 

Table V. Animal studies on toxicity due to repeated exposure: inhalation studies. 

 

Table VI. Animal studies on toxicity due to repeated exposure: oral studies. 

 

Table VII. Animal studies on toxicity due to repeated exposure: parenteral studies. 
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Table I. Human case reports. 

Human involved Procedure Effects Remarks Ref. 

Inhalation     

46-year-old smoker 

(non-atopic) 

Working as a caster of molten Al 

for 19 years in a rolling mill. 

Occupational asthma: baseline spirometry showed airflow ob-

struction (FEV1/FVC 2.56/4.72, predicted 3.53/4.32); moderate 

histamine reactivity (PC20 1.2 µmol); 2 hourly PEF measurements 

showed a significant occupational effect (software OASYS-2 score 

2.67, positive > 2.51) with a diurnal variation of less than 20 %. 

Specific bronchial provocation testing showed a dual asthmatic re-

action after a 3-min exposure to AlCl3 (10 mg/ml), with a negative 

reaction to potassium chloride (10 mg/ml) at the same pH.  

Subject was reassigned to work as 

a fork-lift truck driver outside the 

foundry. Non-specific reactivity 

returned to normal and serial PEF 

record showed no work-related 

effect, but asthmatic symptoms  

in relation to non-specific stimuli 

remained.  

(31) 

40-year-old worker Working as a stamper for 14 years 

in a plant producing Al pyro pow-

der. Exposure to high levels of Al: 

plasma: 41.0 µg/l (upper reference 

value: 10 µg/l) and urine: 407 µg/l 

(upper reference value: 15 µg/l). 

Exercise-induced shortness of breath; reduction (57.5 %) of the 

vital capacity. Chest X-ray showed unspecific changes; small 

centrilobular, nodular opacities and slightly thickened interlobular 

septae. 

Exposure to other fibrotic agents 

could be excluded. 

(108) 

2 co-workers,  

employed by the 

same Al ship-

building facility 

Chronic exposure to high un-

specified concentrations of fumes 

during Al arc welding. 

Severe pneumoconiosis characterised by diffuse pulmonary accu-

mulation of Al metal and a corresponding reduction in lung function 

(Al fume-induced pneumoconiosis). Highest concentratio ns of Al 

particles in lung tissue (average of 9.26 billion Al particles per cm
3
 

of lung tissue) among 812 similar analyses in a pneumoconiosis 

database. One patient had an original clinical diagnosis of sar-

coidosis but no evidence of granulomatous inflammation. Both 

patients died. 

One subject smoked 4 cigarettes 

per day for 5 years. Other subject 

had a smoking history of 13–40 

pack-years. 

(91) 
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Table I. Human case reports. 

Human involved Procedure Effects Remarks Ref. 

Dermal exposure     

34-year-old man 

with a 2-year history 

of eczema of both 

hands and the right 

elbow flexure 

At work, the man had used a com-

pressor air pistol with his right 

hand to blow fillings out of newly 

milled narrow Al threads. 

Erythema, hyperkeratosis, fissuring and partial desquamation on 

the hands. Patch testing was positive for Al. 

- (152) 

43-year-old woman Application of 1 g of a 20 % Al 

chlorohydrate-containing anti-

perspirant cream on each under-

arm, constituting a daily dose of 

0.108 g of Al(III), which over a 4-

year period amounted to 157 g Al. 

Severe hyperaluminaemia (increase in plasma and urine Al 

concentrations), bone pain, extreme fatigue. Underarms, which 

were shaved regularly, did not have any rash or skin irritation. 

- (80) 

8-year-old boy Trauma of the hands in 

combination with exposure 

(hands) to Al dust. 

Both hand palms had erythematous, oedematous, deep-seated, 

tender nodules and plaques over the thenar and hypothenar 

eminences, as well as over the palmar aspects of the metacarpo-

phalangeal joints. Histopathology: a moderately heavy infiltration 

of neutrophils and some lymphocytes surrounding the eccrine 

structures in the dermis, with the most pronounced inflammation  

in the deep dermis around the eccrine coils. These findings were 

consistent with eccrine hidradenitis. Special staining was negative 

for bacterial and fungal microorganisms. 

Patient had engaged in excessive 

physical activity at a baseball 

camp, primarily with overuse  

of his hands. Presumably this 

contributed to the sudden 

occurrence of skin lesions.  

(174) 

9-year-old boy Patch test. A single Finn Chamber was applied alone on Scanpor tape. A 

positive reaction as an infiltrated ring of papules at the area of  

most intense contact with the rim of the Al Finn Chambers at 48 

and 96 hours indicated contact allergy to Al. 

Al sensitivity attributed to ex-

posure to Al-absorbed vaccines 

even though the patient had re-

ceived his childhood vaccinations 

without any adverse effects.  

(7) 
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Table I. Human case reports. 

Human involved Procedure Effects Remarks Ref. 

19-year-old woman 

with intermittent face 

dermatitis (flushes) 

and leg dermatitis 

Patch test. Patch testing with AlCl3 in plastic chambers showed an allergic 

reaction by all three test concentrations. 

- (92) 

Other routes (injections)     

26-year-old woman Vaccination against hepatitis B 

with 2 intramuscular injections at 

monthly intervals. 

Pruritic, sore, erythematous, subcutaneous nodules at the injection 

site which persisted for 8 months. 

All the cases involved Al-

absorbed vaccines. 

(185) 

33-year-old woman  Vaccination as described above. Pruritic, painless papules and nodules at the injections site which 

resolved within 6 months. In the weeks following a booster 1 year 

later, papules, nodules and brown hyperpigmentation at the in-

jection site which persisted for 8 months. 

 (185) 

27-year-old woman  3 monthly intramuscular 

vaccinations against hepatitis B.  

1 month after the 3
rd

 vaccination, a painful erythematous nodule 

developed, which became a brown hyperpigmental plaque with 

hypertrichosis and subcutaneous granuloma, which persisted for 

over 1 year.  

 (185) 

27-year-old woman  3 injections at monthly intervals.  2 weeks after the booster, pruritic, inflammatory infiltrated nodules 

appeared which increased pre-menstrually and persisted for 2 years. 

Patch tests showed 3 positives to 1 % aq. AlCl3, 2 to 10 % aq. or 

pet. Al2O3, and 3 to blank Finn Chambers. 

 (185) 

19-year-old and  

37-year-old women 

Immunisation with vaccines 

adsorbed on Al(OH)3 for the 

treatment of extrinsic asthma and 

rhinitis for 4 and 10 years, resp. 

Development of multiple itching nodules. Lesions were persistent 

and lasted for several years. Histopathological findings: foreign 

body reaction. Al was most probably involved in the pathogenesis  

of these lesions because its presence could be demonstrated in 

macrophages using energy-dispersive X-ray microanalysis. 

 (134) 

FEV1: forced expiratory volume in 1 second, FVC: forced vital capacity, PC20: the histamine provocation concentration producing a 20 % fall in FEV1, PEF: peak expiratory 

flow.  
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Table II. Human studies on (non-carcinogenic) respiratory tract effects after long-term exposure (in chronological order). 
Study design/study population Exposure assessment Effects/Results Remarks Ref. 

Cross-sectional study/  

Exposed: 261 miners in Ontario, Canada.  

Controls: 346 unexposed miners. 

Between 1944 and 1979, miners inhaled 

McIntyre powder (15 % elemental Al  

and 85 % Al2O3) as a prophylactic agent 

against silicotic disease for 10 or 20 min 

before each underground shift. The con-

centration of Al particles inhaled was 

estimated to be ca. 350 mg/m
3
. For a 10-

min exposure, the amount of Al retained 

in the lung was calculated to be about  

20 mg assuming a tidal volume of 450 

cm
3
/breathe and 12 breaths/min. This 

corresponds to 2 mg/m
3
 over an 8-hour 

workday assuming the conventional 

inhalation volume of 10 m
3
. 

With regard to respiratory effects, no adverse 

health effects on the lung observed. 

- (22, 160) 

Cross-sectional study/ 

Exposed: 32 workers of an Al powder 

plant. Median exposure duration 12.6 

(range 2–41.3) yrs and median age 41.5 

(range 26–60) yrs.  

Controls: 30 workers of the same plant, 

not exposed to Al. Median age 42.5 

(range 26–60) yrs. 

Al levels in workplace air, mean 

(range): 12.1 (5–21) mg/m
3
 (n = 11) 

Al levels exposed, median (range):  

plasma: 8.7 (5.1–25.9) µg/l 

urine: 109.9 (5.0–337) µg/l or  

87.6 (4.6–605) µg/g creat.  

Al levels controls, median (range):  

plasma: 4.3 (1.6–25.9) µg/l  

urine:  7.6 (2.6–73.8) µg/l or 

 9.0 (1.9–51.8) µg/g creat.  

Decreased FEV1, MEF25, MEF50, and MEF75. 

No diagnosis of lung fibrosis in any of the 

test persons. 

Investigations included among 

others comprehensive anam-

nesis, whole body plethysmo-

graphic lung function test and 

X-ray thorax photography. 

Smoking contributed more to 

statistically significant dif-

ference in FEV1 and MEF25 

than exposure to Al. 

(113) 

Cross-sectional study/ 

Exposed: 55 male workers from an Al 

factory in Seydisehir, Turkey. 

Controls: 30 healthy male controls living 

and working far from the factory.  

Serum Al levels:  

Al workers: 72.7 ± 9.9 µg/l 

Controls: 31.1 ± 3.9 µg/l  

Spirometric parameters were significantly 

lower in workers than in controls (p < 0.001) 

and correlated negatively with both exposure 

time and serum Al levels. 

Co-exposure to hydrogen 

fluoride, carbon monoxide, 

carbon dioxide, sulphur oxide 

and oxides of nitrogen. 

(140) 
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Table II. Human studies on (non-carcinogenic) respiratory tract effects after long-term exposure (in chronological order). 
Study design/study population Exposure assessment Effects/Results Remarks Ref. 

Cross-sectional study/ 

Exposed: 147 workers of a modern 

German prebake Al plant (78 potroom 

workers, 24 foundry workers, 45 carbon-

plant workers).  

Controls: 56 workers of the same plant 

(watchmen, craftsmen, office workers, 

laboratory employees). 

No Al exposure assessment. Only 

urinary fluoride monitoring. 

Potroom workers had significantly lower pre-

shift results with regard to FVC (99.5 % vs. 

107.2 % predicted, p < 0.05) and PEF (85.2 % 

vs. 98.4 % predicted, p < 0.01) as compared to 

controls. In a multiple regression model, a 

small but significant negative correlation was 

found between post-shift urinary fluoride 

concentrations and FVC, FEV1 and PEF. 

Across-shift spirometric changes only in FVC 

among carbon-plant workers (103.0 ± 13.3 % 

predicted pre-shift value vs. 101.2 ± 13.6 % 

predicted post-shift value, p < 0.05).  

Correction for smoking habits. 

Co-exposure to cryolite, fluo-

rides, fumes, and gases (mainly 

hydrogen fluoride and sulphur 

dioxide). 

(157) 

Cross-sectional study/ 

Exposed: 75 potroom workers of a 

German prebake Al smelter (23 never-

smokers, 38 current smokers, 14 ex-

smokers).  

Controls: 56 workers of same smelter 

(watchmen, craftsmen, office workers, 

laboratory employees; 18 non-smokers, 

21 current smokers, 17 ex-smokers).  

No data presented. No effects of potroom work on the prevalence 

of respiratory symptoms. Smokers in the 

potroom group had a lower prevalence of 

respiratory symptoms than never-smokers or 

ex-smokers, being significant for wheezing 

(2.6 % vs. 17.4 % and 28.6 %, resp., both  

p < 0.01), whereas respiratory symptoms in 

controls tended to be highest in smokers. 

Impairment of lung function found only in 

non-smokers, with lower results for FVC 

(98.8 % predicted), FEV1 (96.1 % predicted) 

and PEF (80.2 % predicted) compared to 

controls (114.2, 109.9 and 105.9 % predicted, 

each p < 0.001). Effects of smoking on lung 

function only detectable in non-exposed 

controls (current smokers vs. non-smokers: 

FVC 98.8 % vs. 114.2 % predicted, p < 0.01; 

FEV1 95.5 % vs. 109.9 % predicted, p < 0.05). 

Effects of both smoking and 

occupational exposure on 

respiratory health may be 

masked in subjects with both 

risk factors, probably due to 

strong selection processes 

which result in least suscept-

ible subjects continuing to 

smoke and working in an 

atmosphere with respiratory 

irritants (healthy worker 

effect). Co-exposure to cryo-

lite, fluorides, fumes and gases 

(mainly hydrogen fluoride and 

sulphur dioxide). 

(158) 
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Table II. Human studies on (non-carcinogenic) respiratory tract effects after long-term exposure (in chronological order). 
Study design/study population Exposure assessment Effects/Results Remarks Ref. 

Cross-sectional study/  

Exposed: 2 964 current employees of  

3 Al refineries in Western Australia.  

2 388 males and 192 females provided 

complete data sets. 138 of the women 

worked in the administration process 

group, it was therefore decided to con-

fine further analysis to men only. 

Median duration of employment 10 

(range 0–33) yrs.  

No controls. 

Range of geometric means in different 

process groups (4-hour TWAs) 

Refinery 1:  

Bauxite: 0.69–2.85 mg/m
3
  

Al: 1.56–2.18 mg/m
3
 

Caustic mist (NaOH): 0.34 mg/m
3
 

Refinery 2:  

Bauxite: 0.66–4.0 mg/m
3
  

Al: 0.98–1.37 mg/m
3
 

Caustic mist (NaOH): 0.34 mg/m
3
 

Refinery 3:  

Bauxite: 0.68–0.9 mg/m
3
 

Al: 1.2 mg/m
3
 

Caustic mist (NaOH): 0.09–0.4 mg/m
3
 

(15-min samples) 

Work-related wheeze, chest tightness, short-

ness of breath and rhinitis reported by 5.0 %, 

3.5 %, 2.5 % and 9.5 % of participants, resp. 

After adjustment for age, smoking and atopy, 

most groups of production workers reported 

a greater prevalence of work-related symp-

toms than did office employees. After ad-

justment for age, smoking, height and atopy, 

subjects reporting work-related wheeze, 

chest tightness and shortness of breath had 

significantly lower mean levels of FEV1 

(186, 162 and 272 ml, resp.) than subjects 

without these symptoms. Significant dif-

ferences in FVC and FEV1/FVC ratio, but 

not FEV1, found between different process 

groups. Reduction in FEV1/FVC was not re-

lated to any one of the particular exposures 

that had been estimated for the process 

groups.  

Exposure to aluminium, bau-

xite and caustic mist (NaOH) 

was quantified. Smoking 

associated with an increased 

prevalence of work-related 

symptoms, and a deficit in the 

level of lung function among 

all employees. Atopic subjects 

were more likely to experience 

work-related symptoms than 

non-atopic subjects and had a 

lower FEV1/FVC ratio. Un-

even distribution of atopy 

between the various process 

groups and between refineries, 

suggesting selection factors 

before employment may 

account for some of the 

differences in symptom pre-

valence between groups. 

(132) 
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Table II. Human studies on (non-carcinogenic) respiratory tract effects after long-term exposure (in chronological order). 
Study design/study population Exposure assessment Effects/Results Remarks Ref. 

Cross-sectional study/ 

Exposed: community of Ouro Preto, 

Brazil, located near an Al plant (hospital 

admissions in 1997 for selected respira-

tory diseases).  

Controls: communities far from any 

source of industrial air pollution: 

- Diamantina, Brazil, used for qualitative 

assessment of exposure to air pollution.  

- Vicosa, Minas Gerais, used for hospital 

admissions in 1997 for selected respira-

tory diseases. 

Dust collected (n = 36 in each location) 

and analysed for Al, Mn, Mg and Ca 

content. Significantly different (p < 0.05) 

levels of Al in the 2 communities (21.7 ± 

25.5 µg vs. 9.7 ± 6.4 µg on a filter over 

30 days). The highest quantities were 

found near the Al plant. Furthermore, 

both 24-hour maximum values and 

annual mean concentrations of sus-

pended particulate matter exceeded  

the average of international standards 

in Ouro Preto and fluorides exceeded 

standards by as much as 600 %. 

Relative risk of hospital admissions for 

selected respiratory diseases: 4.11 (95 %  

CI 2.96–5.70). Risk was highest among 

individuals 30–39-years old (relative risk 

11.70, 95 % CI 1.52–89.96). Admissions  

per thousand residents were highest for 

individuals younger than 10 years of age  

and for individuals older than 70 years. 

2 control communities used 

for practical reasons. Co-ex-

posure to other dust particulate 

matter and fluorides. Unability 

to determine whether Al was 

present in the more dangerous, 

inhalable particulate matter. 

Respiratory diseases often 

cause symptoms for which 

patients seek treatment outside 

a hospital. In Ouro Petro, less 

hospital beds were available. 

(153) 

Cross-sectional study/ 

Exposed: 50 male shipyard workers from 

Messina, Italy. Average age 31.82 ± 5.05 

yrs and average occupational exposure 

11.8 ± 3.71 yrs.  

Controls: 50 subjects not subject to ex-

posure, homogenous in terms of age and 

gender.  

Range of Al air levels for 5 different 

shipyard areas: 6.2–20.2 mg/m
3
 

(sampling time: 120 min)  

Average Al blood levels:  

exposed: 32.64 ± 8.69 µg/l  

unexposed: < 7.5 µg/l 

No significant pathological conditions. 

Statistical comparison of the spirometric 

parameters (VC, FVC, FEV1 and FEF25–75 

showed a significant decrease (p < 0.01) in  

the examined values in exposed workers.  

This decrease was found to be directly pro-

portional to the blood Al level. 

No information reported on  

co-exposure. Subjects with a 

history of allergic and/or re-

spiratory disorders and those 

who smoked over 3 cigarettes 

per day were excluded. 

(1) 

Case-control study/ 

Cases: 13 males with potroom asthma 

from an Al smelter in Spokane, 

Washington, US (age 19–45 yrs). 

Controls: 38 males, 1 female without 

potroom asthma from the same smelter 

(age 19–45 yrs).  

No data presented. No differences observed in genotyping for 

the β2-adrenoreceptor, high-affinity immuno-

globulin (Ig)E receptor and TNFα on pot-

room workers with an asthma-like condition 

and on individuals who did not develop re-

spiratory problems. 

Workers in potrooms are ex-

posed to various air pollutants. 

Previous or current use of any 

tobacco product, including 

cigarettes, was common among 

the subjects (39 % of cases, 46 

% of controls). A small number 

of subjects were studied. 

(12) 
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Table II. Human studies on (non-carcinogenic) respiratory tract effects after long-term exposure (in chronological order). 
Study design/study population Exposure assessment Effects/Results Remarks Ref. 

Analysis of bronchial biopsy specimens 

from:  

20 asthmatic Al potroom workers 

(8 non-smokers, 12 smokers)  

15 healthy Al potroom workers 

(8 non-smokers, 7 smokers)  

10 non-exposed controls 

(all non-smokers) 

Not estimated. Median reticular basement membrane thick-

ness significantly increased in both asthmatic 

workers (8.2 µm) and healthy workers (7.4 

µm) compared to non-exposed controls (6.7 

µm). Significantly increased median density 

of lamina propria CD45+ leukocytes (1 519 

vs. 660 and 887 cells/mm
2
) and eosinophils 

(27 vs. 10 and 3 cells/mm
2
) and significantly 

increased concentrations of exhaled NO  

(18.1 vs. 6.5 and 5.1 ppb) in non-smoking 

asthmatic workers compared to non-smoking 

healthy workers and non-exposed controls. 

Significantly increased numbers of eosino-

phils in lamina propria in asthmatic smokers 

compared to non-exposed controls (10 vs. 3 

cells/mm
2
). Leukocyte counts and exhaled 

NO concentrations varied with smoking 

habits. Fewer leukocytes observed in asthma-

tic smokers than in non-smokers. Both 

eosinophilic and non-eosinophilic phenol-

types of asthma recognised in potroom 

workers. Signs of airway inflammation also 

observed in healthy workers. 

Potroom workers are exposed 

to a complex mixture of parti-

culates and gases.  

(178) 
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Cross-sectional study/ 

Exposed: 62 male workers of 2 Al 

powder-producing plants in Germany 

(20 non-smokers, 32 current smokers,  

10 ex-smokers). Median exposure 

duration 123 (range 13–360) months, 

median age 41 (range 22–64) yrs and 

mean age 41.4 ± 9.9 yrs.  

No controls.  

No workplace air monitoring.  

Median (range) Al levels: 

plasma: 12.5 (2.5–84.4) µg/l  

urine: 83.3 (3.7–630) µg/l or  

104 (7.9–821) µg/g creat. 

No clinically relevant findings from immuno-

logical tests. 15 (24 %) workers had chronic 

bronchitis, 4 (6.5 %) dyspnoea during exer-

cise. 15 workers, among which 5 with chronic 

bronchitis and 4 with dyspnoea, had HRCT 

findings characterised by small rounded and 

ill-defined centrilobular nodular opacities, 

mainly in the upper lobes. With respect to 

lung function analysis, these workers showed 

only differences in VC (decrease, p < 0.01) 

when compared to workers without HRCT 

findings. Exposure years and Al plasma and 

urine concentrations appeared best predictors 

for HRCT findings. Age and decreased VC 

were of borderline significance.  

Study aimed to investigate the 

possibility to detect HRCT 

findings in Al powder workers, 

which are consistent with 

early stages of lung fibrosis. 

Investigation included a 

standardised questionnaire, 

physical examination, lung 

function analysis (VC, FEV1, 

Rtot, total lung capacity), chest 

X-ray, HRCT, immunological 

tests, and determination of  

Al in plasma and urine. All 

participants exposed to non-

greased and at least barely 

greased powder. Affected 

workers were mainly workers 

exposed to barely or non-

greased powders in the 

stamping workplace with 

highest Al dust levels (most  

of it with diameters < 5 µm).  

(107) 

 

  



118 

 

Table II. Human studies on (non-carcinogenic) respiratory tract effects after long-term exposure. 

Study design/population Exposure assessment Effects/Results Remarks Ref. 

Longitudinal study with  

3 cross-sectional studies 

integrated within intervals 

of 2 years each.  

Exposed: 101 male Al 

welders of car-body 

construction industry with 

exposure duration 7–118 

months, median age 35 

(range 23–51) yrs, and 83 % 

smokers and ex-smokers  

(at study start). 

Controls: 50 male workers 

of same facility with median 

age 35 yrs (at study start).  

Median (range) workplace Al levels (as total dust with personal 

air sampler “Alpha 1” with a welding fume sampling head)  

1999: 0.47 (0.1–6.2) mg/m
3
, n = 50 (start of the study) 

2001: 0.67 (0.2–1.5) mg/m
3
, n = 26 

2003: 0.55 (0.15–0.96) mg/m
3
, n = 26 

Median (range) pre-shift Al levels in exposed: plasma  

1999: 10.3 (2.3–20.7) µg/l, n = 101 

2001: 4.3 (1.1–11.2) µg/l, n = 97 

2003: 4.3 (1.7–11.4) µg/l, n = 93 

Median (range) pre-shift Al levels in exposed: urine  

1999: 71.8 (12.1–224) µg/l or 38.4 (12.9–112) µg/g creat., n = 101 

2001: 58.3 (2.4–244.0) µg/l or 35.0 (5.1–195) µg/g creat., n = 96 

2003: 21.7 (2.8–775) µg/l or 12.6 (1.9–646) µg/g creat., n = 99 

Median (range) post-shift Al levels in exposed: plasma  

1999: 8.3 (2.3–42.3) µg/l, n = 100 

2001: 4.1 (0.7–11.7) µg/l, n = 78 

2003: 4.3 (1.8–15.6) µg/l, n = 66  

Median (range) post-shift Al levels in exposed: urine  

1999: 47.6 (7.0–182) µg/l or 37.9 (7.0–120) µg/g creat., n = 101 

2001: 39.8 (3.1–200) µg/l or 33.6 (9.0–230) µg/g creat., n = 79 

2003: 16.1 (0.5–203) µg/l or 15.4 (0.7–94.9) µg/g creat., n = 69  

Median (range) post-shift Al levels in controls: plasma  

1999: 4.4 (2.3–20.7) µg/l, n = 50 

2001: 2.3 (0.7–5.4) µg/l, n = 48 

2003: 3.8 (1.6–10.0) µg/l, n = 47 

Median (range) post-shift Al levels in controls: urine  

1999: 9.0 (2.8–40.2) µg/l or 5.2 (1.7–30.3) µg/g creat., n = 50 

2001: 7.3 (2.2–93.6) µg/l or 6.0 (1.6–60.9) µg/g creat., n = 47 

2003: 9.3 (0.5–95.4) µg/l or 5.0 (0.2–40.3) µg/g creat., n = 49 

Welders reported, partly signi-

ficantly, more respiratory symp-

toms; in 2003, decrease in com-

plaints. No evidence of an in-

creased occurrence of restrictive 

pulmonary ventilation disorders, 

but in welders, worse results in 

the flow-volume curve, especially 

for the MEF25 and MEF50 at all 

investigations. No changes in 

FEV1 and VC. HRCT revealed  

an increase in the incidence of 

emphysematous lung changes 

during the observation period 

(1999: 31.7 %; 2003: 58.8 %).  

In one welder, signs suspicious  

of an early stage of lung fibrosis.  

Investigations included, 

amongst others, standardised 

medical history, physical 

examination, parameters of 

pulmonary function, HRCT 

of the lung of welders, de-

termination of Al levels in 

urine and plasma.  

98/101 welders completed 

first investigation. No re-

levant loss of test persons 

during the course of study 

but only 68/98 were still 

working as welders in 2003.  

Co-exposure to ozone  

(5-min TWAs (time 

weighted averages)):  

1999: 38–75 mg/m
3
, n = 3 

2001: 32–126 mg/m
3
, n = 6 

2003: 16–68 mg/m
3
, n = 6 

(115) 
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Table II. Human studies on (non-carcinogenic) respiratory tract effects after long-term exposure. 

Study design/population Exposure assessment Effects/Results Remarks Ref. 

Longitudinal study with  

3 cross-sectional studies 

integrated within intervals 

of 2 years each. 

Exposed: 46 welders of 5 

railway vehicle engineering 

and special vehicle pro-

duction companies with 

median age 40 yrs (at study 

start). 

Controls: 37 workers of 

same companies with 

median age 38 yrs  

(at study start).  

Median (range) workplace air dust levels  

1999: 5.4 (0–31.5) mg/m
3
, n = 37 (start of study) 

2001: 5.4 (1.3–273) mg/m
3
, n = 22 

2003: 6.8 (1.9–29.7) mg/m
3
, n = 19 

Median (range) pre-shift Al levels in exposed: plasma 

1999: 9.6 (4.1–31.0) µg/l, n = 32  

2001: 10.6 (3.3–40.3) µg/l, n = 34  

2003: 10.8 (4.0–39.3) µg/l, n = 28  

Median (range) pre-shift Al levels in exposed: urine  

1999: 137 (24.8–540) µg/l or 92.1 (17.9–292) µg/g creat., n = 33 

2001: 153 (2.9–656) µg/l or 83.0 (5.2–421) µg/g creat., n = 34 

2003: 97.7 (9.9–801) µg/l or 12.6 (1.9–646) µg/g creat., n = 31 

Median (range) post-shift Al levels in exposed: plasma  

1999: 11.6 (5.0–39.6) µg/l, n = 31 

2001: 14.3 (3.8–51.0) µg/l, n = 22 

2003: 13.2 (6.6–44.3) µg/l, n = 20 

Median (range) post-shift Al levels in exposed: urine  

1999: 130 (22.8–810 µg/l or 97.0 (17.9–399) µg/g creat., n = 31 

2001: 146 (5.0–656) µg/l or 144 (8.9–423) µg/g creat., n = 25 

2003: 93.7 (26.8–569) µg/l or 64.5 (23.9–560) µg/g creat., n = 22 

Median (range) post-shift Al levels in controls: plasma 

1999: 3.5 (1.0–8.2) µg/l, n = 27 

2001: 2.8 (1.3–5.9) µg/l, n = 23 

2003: 4.5 (3.3–5.9) µg/l, n = 17 

Median (range) post-shift Al levels in controls: urine 

1999: 5.8 (1.9–148) µg/l or 4.0 (1.6–78.9) µg/g creat., n = 27 

2001: 6.0 (1.6–88.8) µg/l or 4.5 (1.6–86.2) µg/g creat., n = 24 

2003: 8.3 (4.4–41.2) µg/l or 8.5 (1.8–37.5) µg/g creat., n = 17 

Welders reported more symptoms 

than controls. Results of pul-

monary function tests not con-

sistent. Welders performed better 

in some tests (e.g. PEF in 2001) 

but worse in others (e.g. MEF25 in 

2001). Generally, higher exposed 

welders had worse results than less 

exposed welders. HRCT revealed 

increased incidences of emphyse-

matous lung changes during the 

observation period (1999: 37.2 %, 

2003: 50 %). Signs suspicious of 

an early stage of lung fibrosis in  

8 welders. 

Investigations: see above:  

ref. (115). Decrease in study 

population during the study. 

Co-exposure to ozone (only 

exploratory measurements with 

test tubes; median: 0.16–0.42 

ppm; maximum: 0.58–0.9 

ppm). Inflammatory changes 

were found in the lungs of 

especially “high” exposed 

welders; changes observed  

in HRCT mainly concerned 

smokers and ex-smokers. 

[note: although pre-shift urine 

values seem to be higher than 

post-shift values, especially 

among car-body production 

workers, see above: ref (115), 

analysis of data from a sub-

group of 62 workers surveyed 

annually from 1999–2003 did 

not show systematic differences 

between pre- and post-shift 

urinary Al concentrations, see 

Section 5.5 and Rossbach et al 

(165)]. 

(115) 

FEF25-75: forced expiratory flow between 25 and 75 % of FVC, FEV1: forced expiratory volume in 1 second, FVC: forced vital capacity, HRCT: high-resolution computed 

tomography, MEFx: maximal expiratory flow at x % VC, PEF: peak expiratory flow, Rtot: total resistance, TNFα: tumour necrosis factor alpha, VC: vital capacity.   
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Table III. Human studies on neurotoxic effects after long-term exposure (in chronological order).  
Study design/population Exposure assessment Effects/Results Remarks Ref. 

Cross-sectional study/ 

Exposed: 261 miners in 

Ontario, Canada.  

Controls: 346 unexposed 

miners. 

Between 1944 and 1979, 

miners inhaled McIntyre 

powder (15 % elemental Al 

and 85 % Al2O3) as a prophy-

lactic agent against silicotic 

disease for 10 or 20 min 

before each underground shift. 

This corresponds to 2 mg/m
3
 

over an 8-hour workday (see 

Table II, references (22, 160). 

No significant differences between exposed and non-

exposed miners in reported diagnoses of neurological 

disorder. Exposed miners performed less well than did 

unexposed workers on cognitive state examinations: 

impaired cognitive functions in 4 % of the unexposed 

miners, 10 % of the miners with 0.5–9.9 yrs of exposure, 

15 % of the miners with 10.0–19.9 yrs of exposure, and 

20 % of miners with > 20 yrs of exposure. 

- (22, 

160) 

Cross-sectional study/ 

Exposed: 38 Al welders. 

Mean age 39.0 (range 

26–56) yrs and no. of 

welding yrs 17.1.  

Controls: 39 railway 

track (mild steel) 

welders. Mean age 40.1 

(range 23–59) yrs and 

no. of welding yrs 13.8. 

No workplace air monitoring 

Median (range) Al levels:  

Exposed:  

blood: 3 (< 1–27) µg/l  

urine: 22 (4–255) µg/l or  

24 (4.5–162) µg/g creat.  

Controls:  

blood: 1 (< 1–11) µg/l  

urine: 3 (< 1–26) µg/l or  

4.7 (< 1–25) µg/g creat. 

Regarding the symptoms questionnaires, Al welders re-

ported statistically significantly more symptoms from  

the nervous system (especially fatigue) at the time of  

test (as well as fewer symptoms of pain during the past  

6 months) than the controls. Compared to controls, Al 

welders scored significantly lower in 4 out of 20 psycho-

logical tests (non-dominant hand tapping speed, Luria-

Nebraska motor scale task No. 3 and No. 4, dominant 

hand pegboard) and had significantly higher amplitude 

of the dominant hand in the diadochokinesis test. Of the 

varying variables, “acute symptoms from the central 

nervous system”, “symptoms (6 months) pains and 

aches”, “tapping (speed) non-dominant hand” and “Luria-

Nebraska motor scale task No. 4” showed a statistically 

significant dose-effect relation according to the analysis 

of variance. Similar dose-effect relation also found 

adjusting urinary concentrations to µg/g creat; 75th 

percentile was 24.5 µg/g creat. Dose-effect relation also 

calculated between the number of hours exposed to Al 

and blood concentrations. An Al exposure > 7 028 hours 

Investigations included 4 different question-

naires on symptoms, psychological methods 

(simple reaction time, finger tapping speed 

and endurance, digit span, vocabulary, 

tracking, symbol digit, cylinders, olfactory 

threshold, Luria-Nebraska motor scale), 

neurophysiological methods (electroence-

phalography, event-related auditory evoked 

potential (P300), brainstem auditory evoked 

potential and diadochokinesometry), deter-

mination of Al levels in urine and blood. Al 

welders and controls merged and subdivided 

into 3 groups based on urinary Al levels:  

8 µg/l (50
th

 percentile, n = 39), > 8–24 µg/l 

(50
th

–75
th

 percentile, n = 19) and > 24 µg/l  

(> 75
th

 percentile, n = 19) for further analysis 

of possible dose-effect relationships; in the 

3
rd

 group, the median urinary Al level was 

59 µg/l while levels were > 100 µg/l in 5 

welders. Groups comparable as to education 

(182), 

see 

also 

(98) 
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had the same effect as a urinary Al concentration > 24 

µg/l. Concentration of Al in blood did not relate to 

symptoms or performance. Re-analysing these data 

(together with 2 other Al-exposed groups-see below:  

ref. (98)) controlling for age and multiple comparisons 

(Bonferroni), observed differences disappeared. 

and social background. No effect of adjust-

ment for age or alcohol consumption on any 

of the results. Some co-exposure to solvents 

during leisure activities in 2 controls. The 

only subject who had ingested Al-containing 

antacids daily during the past 10 years was  

a control welder (highest urinary Al con-

centration among the controls of 26 µg/l). 

Cross-sectional study/ 

Exposed: 41 workers 

from an Al reclamation 

plant in South eastern 

US.  

Controls: 32 local and 

66 regional referents.  

No workplace air or biological 

monitoring.  

Compared to referents, exposed subjects had slower 

simple and choice reaction times (i.e. 77 milliseconds 

(ms) vs. 137 ms, resp., p < 0.0001); faster balance, 

measured as sway speed (with eyes closed) by 0.32 cm/s 

(p < 0.005); less acute colour discrimination (p< 0.0001); 

lower cognitive function scores by a factor of 8.3 (p < 

0.0001); longer Trail Making A and Trail Making B 

(dexterity, coordination, decision making, peripheral 

sensation and discrimination) scores by 10 s (p < 0.001) 

and 50 s (p < 0.0001), resp.; longer peg placement scores 

by an additional 9 s (p < 0.008); 4-fold higher POMS 

(tension, depression, anger, vigour, fatigue and confusion) 

scores (p < 0.0001); more neurobehavioural, rheumatic, 

and respiratory symptoms. 

Exposed subjects motivated by health 

concern (selection bias). Exposure to Al,  

Mn, vinyl chloride monomer and other 

chemicals. Correction for age. Alveolar 

carbon monoxide levels which provided 

evidence of cigarette smoking lower in the 

exposed than in the referent subjects  

(103) 

Case-control study/ 

Cases: 89 subjects 

diagnosed with probable 

Alzheimer’s disease 

from a large health main-

tenance organisation in 

Seattle, Washington, US.  

Controls: 89 controls 

No workplace air or biological 

monitoring. Occupational 

history obtained from spouses 

of cases and controls as well 

as from controls themselves. 

After the interview, an indus-

trial hygienist, blinded to case-

control status, rated exposures 

Non-significant association found between Alzheimer’s 

disease and ever having been occupationally exposed  

to Al (OR 1.46, 95 % CI 0.62–3.42). Dose-response 

analyses not significant for duration of exposure in  

years, intensity of exposure, and age at which half the 

cumulative life-time exposure was achieved. 

Alcohol consumption neither a confounder 

nor an effect modifier with regard to Alz-

heimer’s disease, initially, dietary intake of  

Al thought to be the route of exposure, how-

ever, because Al is poorly absorbed from the 

gastro-intestinal tract, this theory has met with 

controversy and scepticism. Alternative pro-

posals have focussed on inhalation of Al as a 

(77) 
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matched by age, sex, and 

type of informant. 

per job: 0, 1, 2.5 and 5 (repre-

senting no, low, moderate and 

high exposure, resp.). 

possible route of exposure. Olfactory neurons 

are in contact with both the nasal lumen and 

the olfactory bulbs, making them nearly the 

first tissue accessible to inhaled toxicants and 

potentially providing a direct single-cell 

pathway to the central nervous system (49). 

Cross-sectional study/ 

Exposed: 51 male Al 

welders from 10 Finnish 

companies  

Controls: 28 male mild 

steel welders. 

Based on mean serum and 

urinary Al levels, 3 groups 

defined:  

High-exposure group (n = 24): 

14.3 and 269 µg/l, resp. 

Low-exposure group (n = 27): 

4.6 and 60 µg/l, resp. 

Controls:  

2.4 and 12 µg/l, resp. 

No impairment on the finger tapping, Santa Ana dex-

terity, simple visual reaction times, any of the verbal 

memory tasks, the similarities subtest of Wechsler adult 

intelligence scale, or the Stroop task. The low-exposed 

group performed poorer on the memory for designs and 

on more difficult block design items demanding pre-

liminary visuospatial analysis. The time limited synonym 

task, embedded figures, digit symbol speed, and the 

backward counting component of the divided attention 

task showed exposure-response relations. 

Investigations included interviews to obtain 

details on education, occupational history, 

past and present exposure to neurotoxic 

agents, general health, past and present dis-

eases, injuries, clinical symptoms, medica-

tion (incl. Al-containing antacids), smoking 

habits, alcohol consumption; neuropsycho-

logical tests assessing the main cognitive 

domains (psychomotor function, attention, 

verbal abilities, visuospatial skills, memory 

and learning); and determination of Al levels 

in serum and urine and of blood Pb. Exclu-

sion criteria: neurological illness, exposure  

to other neurotoxic agents, possible primary 

learning disabilities, native language other 

than Finnish or Swedish. No heavy drinkers 

or psychotropic drug users. No difference in 

social consumption of alcohol between 

groups. No use of Al-containing antacids.  

No data on possible co-exposure (to e.g. Mn), 

but site visits did not reveal potentially con-

founding exposures. Blood Pb levels were 

within normal range (0.2–0.4 µmol/l). 

(6) 
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Cross-sectional study/ 

Exposed: 62 male and 3 

female Al welders from 

10 Finnish companies.  

Controls: 25 male mild 

steel welders. 

No workplace air monitoring. 

Based on median serum and 

urinary Al levels, 3 groups 

defined:  

High-exposure group (n = 30): 

12.4 and 192 µg/l, resp. 

Low-exposure group (n = 29): 

3.8 and 49 µg/l, resp. 

Controls (n = 25):  

2.2 and 11 µg/l, resp. 

Comparison by covariance analysis, with age as a co-

variate, revealed significant differences between high-

exposure group and controls: in symptom scales: fatigue 

(p = 0.027), emotional lability depression (p = 0.045), 

memory and concentration problems (p = 0.004); in 

neuropsychological tests: Bourbon-Wiersma dot can-

cellation accuracy (p = 0.0497), counting backwards (p = 

0.042), dual-task cancellation speed (p = 0.047), dual-

task counting speed (p = 0.021), synonyms (p = 0.011), 

memory for designs (p = 0.021) (performance of digit 

span forward tended to improve with exposure); in 

neurophysiological tests: visual EEG analysis showed 

mild diffuse abnormalities in 17 % of the low-exposure 

group and 27 % of the high-exposure group, and mild to 

moderate epileptiform abnormalities in 7 and 17 %, resp. 

(both with a significant exposure-related linear trend). 

Same study population (differing in numbers) 

as in ref. (6) above. Investigations: mood and 

symptoms questionnaires and neurophysio-

logical tests (quantitative and visual EEG 

analysis, P3 ERP), see ref. (6) above. Poten-

tial confounder age was controlled in the 

statistical analyses. Study population was 

homogenous in terms of ethnic/cultural back-

ground, education, social status, occupation, 

and the main job characteristics; see further 

ref. (6).  

(161) 

Longitudinal study with  

2 cross-sectional studies 

integrated with a 5-yr 

interval  

1
st
 study:  

Exposed: 32 workers  

of a German Al powder 

plant. Median exposure 

duration 12.6 (range 2–

41.3) yrs and median age 

41.5 (range 26–60) yrs. 

Controls: 30 unexposed 

workers from the same 

plant. Median employ-

No workplace air monitoring.  

 

 

 

 

Median (range) Al levels:  

Exposed:  

plasma: 8.7 (5.1–25) µg/l  

urine: 110 (5.0–337) µg/l or 

87.6 (4.6–605) µg/g creat.  

Controls:  

plasma: 4.3 (1.6–7.1) µg/l 

urine: 7.6 (2.6–73.8) µg/l or  

9.0 (1.9–51.8) µg/g creat.  

In the 2 cross-sectional studies, no significant exposure-

related differences between the 2 study groups found  

for the psychometric tests and P300 parameters. 

Longitudinal comparison of the 2 evaluations revealed 

statistically significantly improved performances in the 

exposed subjects for 4 of the psychometric tests and a 

significantly poorer performance in one other test. 

Similarly, controls performed better in some tests and 

poorer in other ones. No dose-effect relationship for 

length of exposure or plasma or urinary Al concentrations 

and any of the primary neurological variables.  

Investigations included standardised medical 

history, neuropsychological tests, evaluation 

of P300 potentials (not in 2nd study), de-

termination of plasma and urinary Al levels. 

Groups were matched for age, gender, pro-

fessional training and education level. No 

information reported on co-exposure. No 

evidence found that medication containing 

Al was taken. High alcohol consumption 

reported in some workers in the 2 groups 

could mask mild Al-induced central nervous 

system changes. Shift in age between the 

exposed and control groups (self-selection). 

No evidence that persons with a below-

(116) 
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ment duration 15.7 (range 

2.8–37.4) yrs and median 

age 42.5 (range 26–60) 

yrs. 

2
nd

 study:  

Exposed: 21 Al powder 

workers. Median ex-

posure duration 16 (range 

2–41.2) yrs and median 

age 46 (range 31–65) yrs. 

Controls: 15 unexposed 

workers from the same 

plant. Median employ-

ment duration 17.2 (range 

6.1–35.1) yrs and median 

age 41 (range 30–57) yrs. 

 

 

 

 

 

Median (range) Al levels:  

Exposed:  

plasma: 6.7 (1.6–20.6) µg/l 

urine: 24.1 (3.4–218.9) µg/l or 

19.8 (3–202.7) µg/g creat.  

Controls:  

plasma: 4.3 (1.9–12.9) µg/l 

urine: 6.5 (2–25.4) µg/l or  

4.5 (2.2–15.9) µg/g creat. 

average test performance or high or long 

exposure to Al did not participate in the 

follow-up examination. Tendency for 

persons who admitted to high alcohol 

consumption in the first evaluation not to 

participate in the follow-up evaluation. 

Cross-sectional study/ 

Exposed: 20 Al welders 

of a railroad wagon pro-

duction facility. Median 

exposure duration 7 

(range 2–21) yrs and 

median age 28.0 (range 

21–52) yrs.  

Controls: 20 construction 

workers. Median age 

30.5 (range 22–53) yrs. 

Median Al levels in workplace 

air - measured inside 

respiratory protection:  

0.9 (0.6–3.8) mg/m
3
. 

Median Al urinary level:  

41 (19–130) µg/l or  

36 (14–110) µg/g creat. 

Welders had more subjective neuropsychiatric symptoms 

than referents (median 2 vs. 1, p = 0.047). Welders as a 

group performed better than referents on a tremor test 

(hand steadiness), but years of exposure, not age, was 

predictive of poorer performance. Welders’ reaction 

times rapid by clinical standards (mean simple reaction 

time (SRT): 221 ms; mean continuous performance test 

(CPT): 364 ms). However, there was a statistically 

significant relation between longer reaction times and  

Al in air. 

Investigations included a questionnaire  

(related to neurological symptoms and to 

memory and concentration difficulties) and 

neuropsychological tests. The welding aero-

sol contained mainly respirable Al-con-

taining particles; nitrogen oxides and ozone 

were also emitted. Inclusion criteria: at least 

one year of employment and being currently 

at work. Exclusion criteria: exposure to sol-

vents, disease which could affect the CNS, 

including cancer, cerebrovascular diseases, 

neurological diseases and diabetes. Alcohol 

consumption slightly (not significantly) 

higher among controls. The possibility of 

(18) 
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Table III. Human studies on neurotoxic effects after long-term exposure (in chronological order).  
Study design/population Exposure assessment Effects/Results Remarks Ref. 

selection of workers with high manual skills 

into welding work and a possible job-related 

training effect might partly explain the good 

performance among welders. Performance 

on reaction time tasks may be sensitive to 

motivational factors; exposed welders could 

have been more motivated to perform well, 

since they were more concerned about an 

effect of welding on the nervous system. 

Cross-sectional study/ 

Exposed: 119 male 

smelters (33 potroom, 86 

male foundry workers) 

Exposure duration ≥ 5 

yrs and median age 46.1 

(range 24–63) yrs. 

16 Al flake powder pro-

duction workers. Median 

age 34.7 (range 22–48) 

yrs. 

38 Al welders. Mean age 

39.0 (range 26–56) yrs 

and no. of welding yrs 

17.1. 

Controls: 39 mild steel 

welders. Median age 

39.0 (range 23–59) yrs. 

No workplace air monitoring. 

Median (range) blood and 

urinary Al levels:  

Smelters:  

1.0 (< 1–18) µg/l and  

4.0 (< 1–34) µg/l or  

4.2 (< 1–23) µg/g creat.  

Flake powder production 

workers:  

9.0 (< 1–21) µg/l and  

83.0 (12–282) µg/l or  

59.0 (12–139) µg/g creat.  

Al welders:  

3 (1–27) µg/l and  

22 (4–255) µg/l or  

24 (4.5–162) µg/g creat.  

Mild steel welders:  

1.0 (< 1–11) µg/l and  

3.0 (< 1–26) µg/l or  

4.7 (< 1–25) µg/g creat. 

Smelters showed very low Al uptake as their Al blood 

and urinary levels were close to normal. No effects on 

the nervous system detected. The group of workers ex-

posed to flake powder had high concentrations of Al  

in blood and urine, even higher than those of the Al 

welders. However, Al has not been shown to affect the 

functioning of the nervous system in flake powder 

producers. Contrary to a previous analysis (see above: 

ref. (182)), no significant differences found for the Al 

welders. 

 

 

Investigations included a symptom and 

mood questionnaire, psychological and 

neurophysiological tests, determination of 

Al in urine and of Al, Pb and Mn in blood. 

Workers exposed to Al flake powder were 

also exposed to white spirit vapours (mean 

76, range 24–99 mg/m
3
). There could have 

been a slight effect from shift work in the 

potroom and foundry workers as they more 

often than steel welders reported sleep 

disturbances. No confounding by alcohol. 

The flake powder production workers had 

lower Pb blood levels than the other groups. 

Mn blood levels did not differ between 

groups. There was a negative correlation 

between Al blood levels and seniority 

among the flake powder producers. 

(98), 

see 

also 

(182) 
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Table III. Human studies on neurotoxic effects after long-term exposure (in chronological order).  
Study design/population Exposure assessment Effects/Results Remarks Ref. 

Cross-sectional case-

control study conducted 

in northern Italy/ 

Exposed: 64 former Al 

dust-exposed workers fr. 

an Al-remelting plant. 

Mean age 67.8 ± 0.9 yrs.  

Controls: 32 unexposed 

demographically similar 

blue collar workers. 

Mean age 66.9 ± 1.1 yrs. 

Significantly higher internal 

doses of aluminium in serum  

(14.1 ± 3.5 vs. 8.2 ± 1.17 µg/l) 

and iron in blood (408.6 ± 100.6 

vs. 277.3 ± 84.20 mg/l) in the 

ex-employees compared to the 

control group.  

Concerning blood/serum metal levels, only levels of Al 

and Fe were significantly different (i.e. higher in exposed) 

between groups. Neuropsychological and -physiological 

tests showed a significant difference in the latency of 

P300, MMSE score, MMSE-time, CDT score and CDT-

time between exposed and controls. P300 latency was 

found to correlate positively with Al in serum and MMSE-

time. Al in serum affected on all tests: a negative relation-

ship observed between internal concentrations, MMSE 

score, and CDT score; a positive relationship found be-

tween internal concentrations, MMSE-time and CDT-time.  

Groups matched for age, professional 

training, economic status, educational and 

clinical features. Investigations included 

clinical and neuropsychological and neuro-

physiological tests, and determination of 

levels of Al, Cu and Zn in serum, and of  

Mn, Pb and Fe in blood. Potential con-

founders such as age, height, weight, blood 

pressure, schooling years, alcohol, coffee 

consumption and smoking habit taken into 

account. 

(155) 

Longitudinal study with 

3 cross-sectional studies 

integrated within inter-

vals of 2 yrs each/ 

Exposed: 101 male Al 

welders of car-body 

construction industry 

with exposure duration 

7–118 months, median 

age 35 (range 23–51) yrs 

and 83 % smokers and 

ex-smokers (at study 

start).  

Controls: 50 male 

workers of same facility 

with median age 35 yrs 

(at study start).  

Levels of Al in workplace air 

and in plasma and urine: see 

Table II: ref. (115).  

Compared to controls: no more symptoms in the modi-

fied Q16 questionnaire. No statistically significant dif-

ferences in psychomotor performance and other be-

havioural tasks. Some small changes in reaction time 

when comparing data from 1999 and 2001, but since 

they were not seen in 2003, they are not considered to  

be relevant.  

Investigations included, amongst others, stan-

dardised medical history, physical examina-

tion including the neurological status, and 

neurobehavioural testing among which a 

symptom questionnaire, modified Q16, and 

computerised and non-computerised tests: 

psychomotor performance (steadiness, line 

tracing, aiming, tapping), verbal intelligence 

(WST), simple reaction time, block design 

(HAWIE), digit span, symbol-digit substitu-

tion, switching attention (EURO-NES), and 

standard progressive matrices and determi-

nation of Al levels in urine and plasma. 98 of 

101 welders completed first investigation. No 

relevant decrease in study population during 

course of study but only 68/98 still working 

as welders in 2003. No mixed exposure to 

possible neurotoxic substances such as 

solvents, Mn and other welding fumes.  

(28, 

101, 

115) 
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Table III. Human studies on neurotoxic effects after long-term exposure (in chronological order).  
Study design/population Exposure assessment Effects/Results Remarks Ref. 

Longitudinal study with 

3 cross-sectional studies 

integrated within inter-

vals of 2 yrs each/ 

Exposed: 46 welders of 

5 railway vehicle en-

gineering and special 

vehicle production com-

panies with median age 

40 yrs (at study start).  

Controls: 37 workers of 

same companies with 

median age 38 yrs (at 

study start).  

Levels of Al in workplace  

air and in plasma and urine: 

see Table II, ref. (115) 

(differences are noticed be-

tween some data presented by 

Letzel and those by Kiess-

wetter, probably because of 

differences in sample sizes). 

Final analysis concerned 20 welders (mean age 43.3 ± 7.4 

yrs, mean education index 1.4 ± 0.4, mean plasma carbo-

hydrate-deficient transferrin: 4.3 ± 4.2 U/l, mean Al-

welding yrs 14.8 ± 4.1) and 12 controls (mean age 42.9 ± 

5.7, mean education index 1.2 ± 0.4, mean carbohydrate-

deficient transferrin 2.9 ± 5.5 U/l). Course of total dust 

levels had U-shape with minimum of 5.5 mg/m
3
 at 2

nd
 

examination and maximum of 8.1 mg/m
3
 at 3

rd
 exami-

nation (n.s.). Biomonitoring data showed inverse u-shape 

trend: pre-shift urinary Al levels had maximum at 2
nd

 

examination and minimum at 3
rd

 (140 and 88 µg/g creat., 

resp.; p < 0.001); plasma Al levels rose from about 13 

µg/l at 1
st
 examination to about 16 mg/l at both others 

(n.s.). Post-shift urine and plasma values were higher 

than pre-shift values by 30 µg/g creat. and 3.5 µg/l, resp. 

Statistical analysis of the biomonitoring data showed 

high long-term stability and sensitivity to acute shift-

dependent exposure changes. No significantly increased 

symptom levels in welders. No significant differences in 

performance courses during the 4-year period. No corre-

lation between biomonitoring and performance variables. 

Structure of neurobehavioural outcomes determined by 

possible indicators of “a priori” intelligence differences 

between subjects, not by their exposure information. 

Investigations: see above. Due to economic 

problems (close-down, lay-offs) significant 

decrease in study population during the 

study, leaving 75 % (n = 33) of the exposed 

and 70 % (n = 26) of the controls in 2001,  

and 45 (n = 20) and 32 % (n = 12), resp., in 

2003. Only “pure” Al welders with at least  

2 years of Al exposure and no current or 

former exposure to other potential neurotoxic 

exposures at work included. Controls had no 

known neurotoxic exposures at work. Courses 

of neurobehavioural changes analysed with 

MANCOVA considering the covariates age, 

indicators of “a priori” intelligence differen-

ces (education or “premorbid” intelligence), 

and alcohol consumption (plasma carbo-

hydrate-deficient transferrin). 

(102), 

see 

also 

(29, 

115) 
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Study design/population Exposure assessment Effects/Results Remarks Ref. 

Oral exposure     

Case-control study/ 

Cases: 23 subjects with 

newly-diagnosed Alz-

heimer's disease from the 

Loretto Geriatric Center, 

Syracuse, NewYork, US. 

Controls: 23 subjects 

without newly-diagnosed 

Alzheimer’s disease 

matched to cases on age, 

gender and date of ad-

mission to the centre.  

Next-of-kin asked to complete 

information on the resident’s 

medical history, lifestyle 

behaviour and dietary intake 

before admission to the centre. 

An expanded form of the 

Health Habits and History 

Questionnaire was used to 

determine dietary intake.  

The crude OR for daily intake of foods containing high 

levels of Al was 2.0 and, when adjusted for covariates, 

8.6 (p = 0.19). Intake of pancakes, waffles, biscuits, 

muffins, cornbread and/or corn tortillas differed sig-

nificantly (p = 0.025) between cases and controls. 

Adjusted odds ratios were also elevated for grain pro-

duct desserts, American cheese, chocolate pudding or 

beverages, salt and chewing gum. However, the odds 

ratio was not elevated for tea consumption. 

According to the authors, larger studies 

warranted to corroborate or refute these 

preliminary findings. 

(163) 

CDT: clock drawing test, EURO-NES: European neurobehavioural evaluation system, HAWIE: Hamburg-Wechsler-Intelligenztest für Erwachsene, MANCOVA: multiple 

analysis of covariance, MMSE: mini-mental state examination, n.s.: non-significant, OR: odds ratio, POMS: profile of mood states, WST: Wortshatztest (vocabulary test).  
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Table IV. In vitro studies (in chronological order). 
Cell type Concentrations tested Remarks/results Reference 

Calvaria cell cultures from foetuses 

of timed-pregnant Wistar rats  

0, 3, 10, 30, 100 and 3 000 µM AlCl3  

(the total Al content, determined by 

AAS, in the medium was the equivalent 

of 0.98, 6.07, 16.82, 40.19, 88.45 and 

284.52 µM, resp., and the corresponding 

free Al
3+

 concentrations (assessed after 

ultrafiltration) were 1.11, 1.75, 3.40, 

6.22, 5.38 and 12.11 µM). 

Examination of the effects of AlCl3 on osteoprogenitor proliferation and 

differentiation, cell survival, and bone formation. A dose-dependent in-

crease in the number of bone nodules present at early times (day 11) but 

no significant effect on nodule numbers at later times (day 17). From 

time course experiments, increased nodule number beginning from day 

7. Alkaline phosphatase activity stimulated. Decreased colony formation, 

inhibited cell growth in late log phase, and decreased saturation density 

of the treated cultures. At concentrations of > 30 µM: degeneration of 

the cell layer and an increasing fibrillar appearance of the matrix pre-

sent in between or adjacent to nodules when cultures were maintained 

for more than 15 days; significantly decreased viability of cells obtained 

from 13–17 days cultures; cellular toxicity frequently observed in cul-

tures containing 300 µM Al, and by days 17–19, cells, nodules and 

matrix were disintegrating in these cultures.  

(24) 

Rat glioma (C-6) and murine 

neuroblastoma (NBP2) cells  

0.5 mM Al2(SO4)3 Assessment of early changes in oxidative parameters consequent to a 

48-hour exposure to Al2(SO4)3. Significant increase in reactive oxygen 

species (ROS) production. Significant decrease in glutathione (GSH) 

content in glioma cells. No significant changes in the neuroblastoma 

cells. Mitochondrial respiratory activity in glioma cells also significant-

ly higher in the treated cells. As judged by morin-metal complex 

formation, Al can enter glioma cells much more readily than neuro-

blastoma cells.  

(33) 

Brain, liver, kidney homogenates  

of adult mice  

0, 0.5, 1.0, 2.5, 4.0, 5.0 mM Al2(SO4)3 Examination of effect of Al2(SO4)3 on δ-aminolevulinate dehydratase 

(ALA-D); Al2(SO4)3 concentration needed to inhibit the enzyme 

activity: 0.5–5.0 mM (n = 3) in brain, 4.0–5.0 mM (n = 3) in liver,  

1.0–5.0 mM (n = 3) in kidney.  

(172) 
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Table IV. In vitro studies (in chronological order). 
Cell type Concentrations tested Remarks/results Reference 

Organotypic cultures of 2–4 day-old 

newborn Wistar rat hippocampus  

50 µM glutamate and 0.4 mM AlCl3 in 

the growth medium separately or in 

combination  

Examination of the effect of Al on the development of glutamate-

mediated neurotoxicity. Exposure to glutamate in the presence of Al
3+

 

ions for up to 24 hours resulted in the development of typical excito-

toxic neuronal changes, whereas separate glutamate treatment or single 

Al application did not. The neuronal lesions consisted of pronounced 

mitochondrial abnormalities, which are characteristic for early excito-

toxic events. Severe swelling of the mitochondria led to disruption of 

their internal structure and resulted in an apparent microvacuolisation 

of the perikaryal cytoplasm of some pyramidal neurons.  

(123) 

Synaptosomes from a specific 

mouse strain, heterozygous for a 

GDNF and the corresponding 

wildtype mouse cerebral tissue. 

0, 0.3, 0.9, 1.5, 2.0, 2.8 mM Al lactate Examination of effect of 1-hour exposure at 37 
o
C of Al on the activity 

of the neural membrane integral protein, ATPase (total ATPase activity 

and Mg
2+

-ATPase activity). Decreased synaptosomal total ATPase and 

Mg
2+

-ATPase activities from 0.9 mM. GDNF+/- synaptosomas less 

sensitive than wildtype cerebral synaptosomes.  

(105) 

SH-SY5Y neuroblastoma cells 0, 0.3, 0.9, 1.5, 2.0, 2.8 mM Al lactate Acute 24-hour cell toxicity test. Dose-dependent decrease in cellular 

ATP content observed from 0.3 mM. These concentrations also caused 

a decreased ATPase activity of synaptosomal membranes. 

(105) 

ATP: adenosine triphosphate, GDNF: glial cell line-derived neurotrophic factor. 
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Table V. Animal studies on toxicity due to repeated exposure: inhalation studies.  

Species, strain/ 

no. per group 

Exposure conditions Remarks/results Reference 

Rat, Fischer 344 and 

guinea pig, Hartley/  

n = 10/sex/species/group 

0.25, 2.5, 25 mg/m
3
 Al chloro-

hydrate, 

6 h/day, 5 days/wk, 6 months 

The chlorohydrate used contained 24.5 % Al. Actual concentrations: 0.245 (± 0.46), 

2.63 (± 0.92), and 21.18 (± 2.75) mg/m
3
. Median MMAD: 1.6, 1.20 and 1.53 μm, re-

specttively; 84 % MMAD: 6.20, 5.78 and 5.34 μm, respectively (geometric SD: 3.88, 

4.82, and 3.49, respectively). Body weights regularly recorded during study. At study 

termination, 5 animals/sex/ group sacrificed for pathological evaluation, remaining 5 

animals/sex/ group for haematology and Al tissue level determinations. No effect on 

haematological parameters. Decreased body weights in rats exposed to 25 mg/m
3
. 

Markedly increased lung weights and significantly increased relative lung weights in rats 

and guinea pigs exposed to 25 mg/m
3
. Lungs of all rats and guinea pigs showed signi-

ficant dose-related increases in Al accumulation when exposed to 0.25, 2.5 or 25 mg/m
3
. 

Upon pathological evaluation, only effects on respiratory tract: at 0.25 mg/m
3
: slight 

exposure-related changes in 3/10 guinea pigs, characterised by an increase in alveolar 

macrophages which were more diffusively distributed when compared to control 

animals. Also in rats, slightly increased alveolar macrophages and an indication of 

granulomatous change in the peribronchial lymph node of one rat. At 2.5 or 25 mg/m
3
: 

multifocal granulomatous pneumonia in all (n = 10) rats and (n = 10) guinea pigs, charac-

terised by proliferation and/or infiltration of mononuclear inflammatory cells and large 

macrophages in alveoli around the termination of air passage ways. Also, in the peri-

bronchial lymph nodes, microgranulomas composed of large cells with eosinophilic 

cytoplasm but not containing vacuoles or other evidence of phagocytised material. At 25 

mg/m
3
: increased number of goblet cells in the nasal cavities. No lesions in the trachea. 

(190) 

Rat, Sprague Dawley/ 

n = 15/sex/group 

0, 0.34 (± 0.22), 2.50 (± 0.37) 

mg/m
3
 aerosolised Al chloro-

hydrate (in a silicone-ethanol 

vehicle), 

4 h/day, 5 days/wk, 22 days 

Mean MMAD: 1.57 (± 0.45) and 4.28 (± 0.93) µm, resp. Sham- and vehicle-control 

group included. No behaviour suggesting eye irritation. No mortality in any of the 

groups. No effect on final mean body weights. No effect on “normalised” wet tissue/ 

organ weights. No effect on serum analyses data. No consistent relationship between Al 

tissue concentrations of the liver, gastric mucosa and parathyroid glands and exposure 

conditions and measured Al concentrations. No remarkable abnormalities upon gross 

post-mortem examinations. No remarkable abnormalities upon histological examination 

of the livers, kidneys, adrenals and parathyroids of 6 animals/sex/group. 

(193) 
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Species, strain/ 

no. per group 

Exposure conditions Remarks/results Reference 

Rat (no more data) 2 mg/m
3
 Al2(SO4)3 as  

an aqueous aerosol  

No data on exposure conditions and particle size. Increases in the number of pulmonary 

alveolar macrophages and of distorted oversized pulmonary alveolar macrophages and 

granulocytes, and in the permeability of the alveolar wall; increased lung weights, stiffer 

lungs, fibrosis (at the level of the terminal and respiratory bronchioles); decreases in 

copper, zinc, and iron levels. 

(64) 

Rat, Sprague Dawley/ 

n = 50 males/group 

0, 1.83 (± 0.7) mg/m
3
 AlCl3 or 

1.28 (± 0.3) mg/m
3
 AlF3,  

6 h/day, 5 days/wk, 5 months 

Particle size < 10 µm. Rats (n = 10/group) killed at (approximately) monthly intervals. 

Aimed at physiological and biochemical parameters as early adverse effect indicators 

(lysozome level; glucose-6-phosphate dehydrogenase, alkaline phosphatase activity in 

lung lavage fluid; leakage of iv-injected 
125

I-serum albumin into alveolar fluids, amount 

of tracer retained in circulatory system; lavage fluid protein; pulmonary alveolar macro-

phage number and viability; body weight; liver, kidney, brain, lung weight). No effect on 

body weight. Authors summarised that AlCl3 induced increases proportional to exposure 

time in lysozyme levels and alkaline phosphatase activities, total protein, and relative 

kidney and liver weights; that AlF3 increased relative liver weights and alkaline phospha-

tase activity; that Al affected pulmonary alveolar macrophage integrity and the kidney, 

but that the effects on the liver and on Type II cells of the alveoli were antagonised by 

fluoride. [note of committees: poor and inconsistent reporting hampers proper evaluation].  

(64) 

Rabbit, New Zealand 

white/ 

n = 8 males/group 

0, 212 mg/m
3
 alchlor 

a
, 

4 h/day, 5 days 

Increased absolute lung weights (p < 0.01). Acute bronchopneumonia and moderate 

thickening of alveolar walls seen at histological examination of 3 animals. 

(55) 

Hamster, Syrian golden/ 

n = 10 males/group 

0, 16, 35, 53, 168 mg/m
3
 alchlor 

a
, 

4 h/day, 3 days 

Aimed at establishing a dose-response relationship for changes in absolute lung weight. 

Decreased body weight (p < 0.01) (not further specified). Increased absolute lung weights 

at 16 mg/m
3
 (0.05 < p <0.1) and at 35, 53 and 168 mg/m

3
 (p < 0.01). 

(55) 

Hamster, Syrian golden/ 

n = 30 males/group 

0, 49 mg/m
3
 alchlor 

a
, 

4 h/day, 3 days  

Groups of animals killed at post-exposure days 1, 2, 3, 4 and 7. Decreased body weight 

(p ≤ 0.01). Increased absolute lung weights at day 1 (p ≤ 0.01) and at days 2, 3 and 4  

(p ≤ 0.025) (lung weight data were from 10 animals/group which would imply that 50 

animals were exposed and not 30).  

(55) 
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Species, strain/ 

no. per group 

Exposure conditions Remarks/results Reference 

Hamster, Syrian golden/ 

n = 20 males/group 

0, 164 mg/m
3
 alchlor 

a
, 

6 h/day on day 1 and  

4 h/day on days 2 and 3. 

Animals (n = 4/group) killed at post-exposure days 1, 3, 6, 10 and 27. Markedly decreased 

body weights with apparently complete recovery within 2 wks. Acute bronchopneumonia. 

Moderate to marked thickening of alveolar walls due to neutrophil and macrophage in-

filtration. Small granulomatous foci at bronchioloalveolar junction. Decrease in severity 

of these changes with time. No microscopic changes in liver, heart, kidneys. 

(55) 

Hamster, Syrian golden/ 

n = 24 males/group 

0, 52 mg/m
3
 alchlor 

a
, 

6 h/day, 10, 20 or 30 exposures 

Animals (n = 4/group) killed after 10, 20 and 30 exposures and after 2, 4 and 6 post-

exposure weeks. After 10 exposures: microscopic changes in lungs characterised by a 

few foci of macrophages and heterophils. After 20 and 30 exposures: these changes were 

more marked; numerous foci of macrophages and heterophils in parenchymatous tissue 

especially at the bronchioloalveolar junction; fine bluish dark granules in macrophages 

in the granulomatous nodules. 2 weeks after 30 exposures: thickened alveolar walls due 

to infiltration of macrophages and heterophils. Lung changes still present 4 and 6 weeks 

post-exposure. 

(55) 

a
 A propylene glycol complex of Al-chloride hydroxide. 

MMAD: mass median aerodynamic diameter, SD: standard deviation. 
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Table VI. Animal studies on toxicity due to repeated exposure: oral studies.  

Species, strain, no./group Exposure conditions Remarks/results Reference 

Rat, Sprague Dawley 

exposed: n = 4 males  

controls: n = 10 males 

0, 1 000 mg AlCl3/l 

in drinking water for 12 wks 

Abolished aggression: suppression of lateralisations, boxing bouts, fight with stud 

male, ventral presenting postures. 

(19) 

Rat, Wistar 

n = 3 males/group 

0, 25 mg Al/rat/day  

(i.e. ca. 85 mg Al/kg bw/day)  

as Al2(SO4)3 in drinking water  

for 3–5 wks 

Rats maintained on the diet remained healthy and their body weight was 86 ± 5 % of 

control rats. Reduction of NMDA-induced increase of extracellular cGMP by 50 %; the 

increase in extracellular cGMP induced by the nitric oxide-generating agent S-nitroso-

N-acetylpenicillamine higher (240 %) in rats treated with Al. Immunoblotting showed 

that Al reduced the cerebellar content of calmodulin and nitric oxide synthase by 34 

and 15 %, resp. Basal activity of soluble guanylate cyclase decreased by 66 % in Al-

treated rats. Activity after stimulation with S-nitroso-N-acetylpenicillamine similar to 

controls. Basal cGMP in the cerebellar extracellular space decreased by 50 % in alu-

minium-treated rats. 

(87) 

Rat, Wistar 

n = 6–7 males/group 

0 (< 50 µg Al/l),  

270 mg Al/l as Al(OH)3,  

270 mg Al/l as AlCl3 and  

citric acid (molar ratio 1:2) (n = 6)  

in drinking water for 7 wks 

Study aimed at Al accumulation in the brain. No statistically significantly increased Al 

levels in plasma and brain. 

(143) 

Rat, Sprague Dawley 

n = 7 males/group 

34 mg AlCl3/kg bw/day  

(i.e. ca. 7 mg Al/kg bw/day),  

every other day for 30 days 

Study aimed at biochemical parameters, free radicals, and enzyme activities in plasma 

and different tissues of male rats. Significant (p < 0.05) induction of free radicals (thio-

barbituric acid-reactive substances). Decreased activity of glutathione S-transferase  

and levels of sulphydryl groups in rat plasma, liver, brain, testes, kidney. Significantly 

decreased aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, 

acid phosphatase, and phosphorylase activities in liver and testes. Significantly in-

creased activities of these enzymes in plasma. Significantly increased lactate dehydro-

genase activities in plasma, liver, testes, brain. Significantly decreased acetylcholin-

esterase activities in brain and plasma. Significantly decreased plasma total protein, 

albumin, total lipids. Significantly increased glucose, urea, creatinine, bilirubin, chole-

sterol levels.  

(56) 
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Table VI. Animal studies on toxicity due to repeated exposure: oral studies.  

Species, strain, no./group Exposure conditions Remarks/results Reference 

Rat, Wistar 

n = 12 males/group 

2 g/l AlCl3×6 H2O  

in the drinking water (ad libitum),  

for 6 months 

Examination of the potential role of Al accumulation in the brain of aged (i.e. 22-

month-old) rats on the development of neurodegenerative features observed in Alz-

heimer’s disease. Measurement of levels of Al, Zn, Cu, Mn in brain sections (prosen-

cephalon + mesencephalon, cerebellum, pons-medulla) in n = 6/group. Measurement of 

area covered by mossy fibres in about 25 consecutive hippocampal sections (by com-

puter-assisted morphometric methods following Timm’s preferential staining). No data 

given on actual Al exposure from diet and drinking water. During exposure, aggressive-

ness evident. Increase (p < 0.05) in Al level in prosencephalon + mesencephalon, pons-

medulla (not in cerebelllum). Increase in Cu level in pons-medulla only (p < 0.05). In-

crease in Zn level in cerebellum only (p < 0.01). No changes in Mn levels. Significant 

increase (+ 32 %) in the area occupied by the mossy fibres in the hippocampal CA3 

field. The authors stated that since Cu, Zn and Mn are essential components of the cyto-

solic and mitochondrial superoxide dismutases, it is possible that the increased content 

of these ions in the rats represents an increased amount of genetic expression of these 

antioxidant enzymes. Considering that the positivity to Timm’s reaction is based on  

the presence of free or loosely bound Zn
2+

 ions within synaptic terminals and that Zn
2+

 

ions are reported to be accumulated by hippocampal neurons when tissue injury occurs, 

the increased area of the mossy fibres in CA3 field of treated rats could indicate in-

creased hippocampal damage. The ageing CNS might be particular susceptible to Al 

toxic effects which may increase the cell load of oxidative stress and may contribute, as 

an aggravating factor, to the development of neurodegenerative events as observed in 

Alzheimer’s disease. 

(63) 

Mouse, Swiss Webster 

n = 3/sex/group 

0.007 (control), 1 mg Al/g diet  

(i.e. probably ca. 1 and 152 mg 

Al/kg bw/day; see (71)) as Al 

lactate, from conception to maturity 

Abstract. Diffuse decreased thickness of myelin sheaths; mean myelin sheath widths  

16 % smaller (p = 0.04); axon perimeters also smaller on the average (not significant). 

(73) 
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Table VI. Animal studies on toxicity due to repeated exposure: oral studies.  

Species, strain, no./group Exposure conditions Remarks/results Reference 

Mouse, CD-1 

n = 25 males/group 

0, 300, 600 mg Al/kg bw/day,  

as Al(NO3)3 × 9 H2O in drinking 

water for 2 wks.  

One-half of the animals in each group were concurrently subjected to restraint stress 

during 1 hour/day throughout the study. No remarkable effects on open-field activity or 

on the number of avoidances in an automatic reflex conditioner. Lower motor resistance 

and coordination in a rotarod at 600 mg Al/kg bw/day, restraint stress alone or con-

current administration of Al (300 and 600 mg/kg bw/day) plus restraint stress. Signifi-

cantly increased Al levels in whole brain and cerebellum after exposure to Al plus 

restraint stress. 

(41) 

Mouse, Swiss 

n = 8/sex/group 

0, 1 g % (34 mM) sodium citrate 

and 1 g % (34 mM) sodium citrate 

+ 3.3 g % (49.5 mM) Al2(SO4)3  

in drinking water, for 1 month. 

Study aimed to investigate the in vitro and in vivo effects of Al2(SO4)3 on δ-amino-

levulinic acid dehydratase (ALA-D) activity in the brain, liver and kidney of adult mice. 

Al2(SO4)3 significantly inhibited ALA-D activity in kidney (23.3 ± 3.7 % (mean ± SE)), 

but significantly enhanced it in liver (31.2 ± 15.0 %). Significant increase in Al levels in 

the liver (527 ± 3.9 %), kidney (283 ± 1.7 %), not in the brain. Hepatic Al concentrations 

increased in animals treated only with 1 g % sodium citrate (34 mM) (217 ± 1.5 %). 

(172) 

Mouse, BALB/c 

n = 5 males/group 

0, 0.95, 4.3, 21.3 mg Al/kg bw/day, 

as AlNH4(SO4)2 in drinking water, 

for 1 month (Al taken from basal 

diet calculated to be ca. 22 mg/kg 

bw/day). 

No treatment related differences in final body weight, in relative organ weights, in body 

weight gain. No signs of gross behavioural alterations. Expression of TNFα mRNA in 

cerebrum significantly increased among Al-treated groups in a dose-dependent manner. 

No Al-related effects on other cytokines. No significant differences in cytokine mRNA 

expressions in peripheral cells (splenic macrophages and lymphocytes). 

(196) 

Mouse, BALB/c 

n = 5 males/group 

0, 0.9, 4.6, 23 mg Al/kg bw/day,  

as AlNH4(SO4)2 in drinking water, 

for 4 wks (Al taken from basal diet 

calculated to be 25 mg/kg bw/day).  

Lower levels of dopamine, dihydroxyphenylacetic acid, homovanillic acid in the hypo-

thalamus of Al-treated mice, most notably in the low-dose group. No marked alterations 

in norepinephrine, serotonin, 5-hydroxyindoleacetic acid levels in any brain region. 

(195) 

Mouse, Swiss Webster 

(45-days old; beginning 

at puberty) 

exposed: n = 10–11 

males/group,  

controls: n = 22 males 

1 (control), 17, 78, 122, 152 mg Al/ 

kg bw/day, as Al lactate in diet, for 

4 wks; 1 (control), 12, 69, 98, 137 

mg Al/kg bw/day, as Al lactate in 

diet, for 8 wks (with or without 3.2 

% citrate to promote Al absorption).  

Dose-response effect on brain weight, brain Al and Mn levels, and grip strength at the 

end of the 4-wk exposure. Increased brain Al levels at the end of the 8-wk exposure, 

but no dose-response effects on other variables. Neither exposure influenced auditory 

startle amplitude.  

 

(71) 
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Table VII. Animal studies on toxicity due to repeated exposure: parenteral studies.  

Species, strain/no. per group Exposure conditions Remarks/results Reference 

Rat, Sprague Dawley 

n = 8 males/group  

3 mg Al/rat (i.e. ca. 21–33 mg Al/kg bw/day),  

as Al gluconate.  

Intraperitoneal injection every 3
rd

 day for 3 wks.  

Increased cortical levels of glutathione and rates of generation of re-

active oxygen species. Increased glutamine synthetase activity in the 

cortex. Increased levels of creatine kinase (another enzyme susceptible 

to oxidative stress) in cortices of treated rats. Treatment had very minor 

effects on hepatic parameters of oxidative events.  

(27) 

Rat, Wistar 

n = 12 males/group  

5.4 mg Al/kg bw/day, as Al-L-glutamate sus-

pension (294 mg/kg), Na-L-glutamate suspen-

sion (294 mg/kg), or 0.9 % NaCl.  

Subcutaneous injection 6 days/wk for 10 wks.  

Decreased Fe plasma level. Al accumulation in, especially, the striatum 

where Fe levels were decreased and in the hippocampus where thio-

barbituric acid-reactive substances were increased without polyun-

saturated fatty acid modifications.  

(24) 

Rat, Wistar 

n = 3 males/group  

2.0 mg Al/kg bw, as Al chloride in saline.  

Single intravenous injection, with or without 

either citric acid or maltol. 

Study aimed at Al accumulation in brain. No statistically significant 

increase in brain Al levels after 48 hours.  

(143) 

Rat, Wistar 

n = 5 males/group  

8 mg Al/kg bw/day, as AlCl3 in saline. 

Intraperitoneal injection 6 days/wk for 2 wks,  

with or without either citric acid or maltol.  

Study aimed at Al accumulation in brain. Injections of AlCl3 and an 

equimolar amount of maltol enhanced accumulation of Al in the brain. 

No significant increases in groups receiving Al chloride alone or with 

citric acid.  

(143) 

Rabbits, New Zealand 

White 

n = 8 males/group  

2.7 mg Al/kg bw/day, as Al lactate. 

Intravenous injection 5 days/wk for 4 wks  

(control group: 0.3 mmol/kg sodium lactate).  

Distended mesangial cells in the glomerular tufts in 6/8 rabbits with 

greyish blue granular material, which was identified as an Al com-

pound. Other consistent findings in the glomeruli: microaneurysm and 

segmental sclerosis in 6/8 rabbits. Less frequently observed glomerular 

changes: crescent formation, necrosis with calcification, fibrosis of the 

Bowman’s capsule, cystic dilation of the Bowman’s space, exudation  

of erythrocytes into the Bowman’s space.  

(89) 

CNS: central nervous system, cGMP: cyclic guanosine monophosphate, NMDA: N-methyl-D-aspartate, TNFα: tumour necrosis factor alpha. 
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Appendix 2. The committees 

Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals (NEG) 

Gunnar Johanson, chairman Institute of Environmental Medicine, Karolinska Institutet, Sweden 

Kristina Kjærheim Cancer Registry of Norway 

Anne Thoustrup Saber National Research Centre for the Working Environment, Denmark 

Tiina Santonen Finnish Institute of Occupational Health 

Vidar Skaug National Institute of Occupational Health, Norway 

Mattias Öberg Institute of Environmental Medicine, Karolinska Institutet, Sweden 

Jill Järnberg and  

Anna-Karin Alexandrie,  

scientific secretaries 

Swedish Work Environment Authority 

 

 

 

Dutch Expert Committee on Occupational Safety (DECOS) 

GJ Mulder, chairman Leiden University 

RB Beems Formerly employed at the National Institute for Public Health and 

the Environment 

PJ Boogaard Shell International BV 

JJAM Brokamp, advisor Social and Economic Council 

DJJ Heederik Institute for Risk Assessment Sciences, Utrecht University 

R Houba Netherlands Expertise Centre for Occupational Respiratory 

Disorders (NECORD) 

H van Loveren Maastricht University and National Institute for Public Health and 

the Environment 

TM Pal Netherlands Center for Occupational Diseases 

AH Piersma National Institute for Public Health and the Environment 

HPJ te Riele VU University Amsterdam 

IMCM Rietjens Wageningen University and Research Centre 

H Roelfzema, advisor Ministry of Health, Welfare and Sport 

GMH Swaen Dow Benelux N.V. 

RCH Vermeulen Institute for Risk Assessment Sciences, Utrecht university 

RA Woutersen TNO Quality of Life and Wageningen University and Research 

Centre 

PB Wulp Labour Inspectorate 

JHJ Stouten, scientific 

secretary 

Health Council of the Netherlands 
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Appendix 3. Previous NEG criteria documents 

NEG criteria documents published in the scientific serial Arbete och Hälsa (Work 

and Health): 
Substance/Agent Arbete och Hälsa issue 

Acetonitrile 1989:22, 1989:37* 

Acid aerosols, inorganic 1992:33, 1993:1* 

Acrylonitrile 1985:4 

Allyl alcohol 1986:8 

Aluminium 1992:45, 1993:1* 

Ammonia 1986:31, 2005:13* 

Antimony 1998:11* 

Arsenic, inorganic 1981:22, 1991:9, 1991:50* 

Arsine 1986:41 

Asbestos 1982:29 

Benomyl 1984:28 

Benzene 1981:11 

1,2,3-Benzotriazole 2000:24*D 

Boric acid, Borax 1980:13 

1,3-Butadiene 1994:36*, 1994:42 

1-Butanol 1980:20 

γ-Butyrolactone 2004:7*D 

Cadmium 1981:29, 1992:26, 1993:1* 

7/8 Carbon chain aliphatic monoketones 1990:2*D 

Carbon monoxide 1980:8 

Ceramic Fibres, Refractory 1996:30*, 1998:20 

Chlorine, Chlorine dioxide 1980:6 

Chloromequat chloride 1984:36 

4-Chloro-2-methylphenoxy acetic acid 1981:14 

Chlorophenols 1984:46 

Chlorotrimethylsilane 2002:2 

Chromium 1979:33 

Cobalt 1982:16, 1994:39*, 1994:42 

Copper 1980:21 

Creosote 1988:13, 1988:33* 

Cyanoacrylates 1995:25*, 1995:27 

Cyclic acid anhydrides 2004:15*D 

Cyclohexanone, Cyclopentanone 1985:42 

n-Decane 1987:25, 1987:40* 

Deodorized kerosene 1985:24 

Diacetone alcohol 1989:4, 1989:37* 

Dichlorobenzenes 1998:4*, 1998:20 

Diesel exhaust 1993:34, 1993:35* 

Diethylamine 1994:23*, 1994:42 

2-Diethylaminoethanol 1994:25*N 

Diethylenetriamine 1994:23*, 1994:42 

Diisocyanates 1979:34, 1985:19 

Dimethylamine 1994:23*, 1994:42 

Dimethyldithiocarbamates 1990:26, 1991:2* 

Dimethylethylamine 1991:26, 1991:50* 

Dimethylformamide 1983:28 

Dimethylsulfoxide 1991:37, 1991:50* 

Dioxane 1982:6 

Endotoxins 2011;45(4)*D 
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Substance/Agent Arbete och Hälsa issue 

Enzymes, industrial 1994:28*, 1994:42 

Epichlorohydrin 1981:10 

Ethyl acetate 1990:35* 

Ethylbenzene 1986:19 

Ethylenediamine 1994:23*, 1994:42 

Ethylenebisdithiocarbamates and Ethylenethiourea 1993:24, 1993:35* 

Ethylene glycol 1980:14 

Ethylene glycol monoalkyl ethers 1985:34 

Ethylene oxide 1982:7 

Ethyl ether 1992:30* N 

2-Ethylhexanoic acid 1994:31*, 1994:42 

Flour dust 1996:27*, 1998:20 

Formaldehyde 1978:21, 1982:27, 2003:11*D 

Fungal spores 2006:21* 

Furfuryl alcohol 1984:24 

Gasoline 1984:7 

Glutaraldehyde 1997:20*D, 1998:20 

Glyoxal 1995:2*, 1995:27 

Halothane 1984:17 

n-Hexane 1980:19, 1986:20 

Hydrazine, Hydrazine salts 1985:6 

Hydrogen fluoride 1983:7 

Hydrogen sulphide 1982:31, 2001:14*D 

Hydroquinone 1989:15, 1989:37* 

Industrial enzymes 1994:28* 

Isoflurane, sevoflurane and desflurane 2009;43(9)* 

Isophorone 1991:14, 1991:50* 

Isopropanol 1980:18 

Lead, inorganic 1979:24, 1992:43, 1993:1* 

Limonene 1993:14, 1993:35* 

Lithium and lithium compounds 2002:16* 

Manganese 1982:10 

Mercury, inorganic 1985:20 

Methacrylates 1983:21 

Methanol 1984:41 

Methyl bromide 1987:18, 1987:40* 

Methyl chloride 1992:27*D 

Methyl chloroform 1981:12 

Methylcyclopentadienyl manganese tricarbonyl 1982:10 

Methylene chloride 1979:15, 1987:29, 1987:40* 

Methyl ethyl ketone 1983:25 

Methyl formate 1989:29, 1989:37* 

Methyl isobutyl ketone 1988:20, 1988:33* 

Methyl methacrylate 1991:36*D 

N-Methyl-2-pyrrolidone  1994:40*, 1994:42 

Methyl-tert-butyl ether 1994:22*D 

Microbial volatile organic compounds (MVOCs) 2006:13* 

Microorganisms 1991:44, 1991:50* 

Mineral fibers 1981:26 

Nickel 1981:28, 1995:26*, 1995:27 

Nitrilotriacetic acid 1989:16, 1989:37* 

Nitroalkanes 1988:29, 1988:33* 

Nitrogen oxides 1983:28 

N-Nitroso compounds 1990:33, 1991:2* 
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Substance/Agent Arbete och Hälsa issue 

Nitrous oxide 1982:20 

Occupational exposure to chemicals and hearing impairment 2010;44(4)* 

Oil mist 1985:13 

Organic acid anhydrides 1990:48, 1991:2* 

Ozone 1986:28 

Paper dust 1989:30, 1989:37* 

Penicillins 2004:6* 

Permethrin 1982:22 

Petrol 1984:7 

Phenol 1984:33 

Phosphate triesters with flame retardant properties 2010;44(6)* 

Phthalate esters 1982:12 

Platinum 1997:14*D, 1998:20 

Polyethylene,  1998:12* 

Polypropylene, Thermal degradation products in the 

processing of plastics 

1998:12* 

Polystyrene, Thermal degradation products in the 

processing of plastics 

1998:12* 

Polyvinylchloride, Thermal degradation products in the 

processing of plastics 

1998:12* 

Polytetrafluoroethylene, Thermal degradation products in 

the processing of plastics 

1998:12* 

Propene 1995:7*, 1995:27 

Propylene glycol 1983:27 

Propylene glycol ethers and their acetates 1990:32*N  

Propylene oxide 1985:23 

Refined petroleum solvents 1982:21 

Refractory Ceramic Fibres 1996:30* 

Selenium 1992:35, 1993:1* 

Silica, crystalline 1993:2, 1993:35* 

Styrene 1979:14, 1990:49*, 1991:2 

Sulphur dioxide 1984:18 

Sulphuric, hydrochloric, nitric and phosphoric acids 2009;43(7)* 

Synthetic pyretroids 1982:22 

Tetrachloroethane 1996:28*D 

Tetrachloroethylene 1979:25, 2003:14*D 

Thermal degradation products of plastics 1998:12* 

Thiurams 1990:26, 1991:2* 

Tin and inorganic tin compounds 2002:10*D 

Toluene 1979:5, 1989:3, 1989:37*, 2000:19* 

1,1,1-Trichloroethane 1981:12 

Trichloroethylene 1979:13, 1991:43, 1991:50* 

Triglycidyl isocyanurate 2001:18* 

n-Undecane 1987:25, 1987:40* 

Vanadium 1982:18 

Vinyl acetate 1988:26, 1988:33* 

Vinyl chloride 1986:17 

Welding gases and fumes 1990:28, 1991:2* 

White spirit 1986:1 

Wood dust 1987:36 

Xylene 1979:35 

Zinc 1981:13 

* in English, remaining documents are in a Scandinavian language.  

D = collaboration with the Dutch Expert Committee on Occupational Safety (DECOS).  

N = collaboration with the US National Institute for Occupational Safety and Health (NIOSH).  
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To order further copies in this series, please contact: 

Arbets- och miljömedicin, Göteborgs universitet 

Att: Cina Holmer, Box 414, SE-405 30 Göteborg, Sweden  

E-mail: arbeteochhalsa@amm.gu.se  

The NEG documents are also available on the web at: 

www.nordicexpertgroup.org or www.amm.se/aoh 

 
 

 

 

  

 


