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3 Laboratoire Analyse et Probabilités
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Abstract

We consider a bottom-up Markovian copula model of portfolio credit risk where
dependence among credit names mainly stems from the possibility of simultaneous de-
faults. Due to the Markovian copula nature of the model, calibration of marginals and
dependence parameters can be performed separately using a two-steps procedure, much
like in a standard static copula set-up. In addition, the model admits a common shocks
interpretation, which is a very important feature as, thanks to it, efficient convolution
recursion procedures are available for pricing and hedging CDO tranches, conditionally
on any given state of the underlying multivariate Markov process. As a result this model
allows us to dynamically hedge CDO tranches using single-name CDSs in a theoretically
sound and practically convenient way. To illustrate this we calibrate the model against
market data on CDO tranches and the underlying single-name CDSs. We then study
the loss distributions as well as the min-variance hedging strategies in the calibrated
portfolios.
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1 Introduction

The CDO market have been deeply and adversely impacted by the last financial crises. In
particular, CDO issuances have become quite rare. Nevertheless, there are huge notionals
of CDO contracts outstanding and market participants continue to be confronted with the
task to hedge their positions in these contracts up to maturity date. Moreover, according
to the current regulation (see [3]), tranches on standard indices and their associated liquid
hedging positions continue to be charged as hedge-sets under internal VaR-based method,
which makes the issue of hedging even more important for standardized CDO tranches. For
previous studies of this issue we refer the reader to, among others, Laurent, Cousin and
Fermanian [31], Frey and Backhaus [24], Cont and Kan [15] or Cousin, Crépey and Kan [17].
In particular it has been established empirically in [15] and [17] that a single-instrument
hedge of a CDO tranche by the corresponding credit index is often not good enough. In this
paper we deal with a bottom-up Markovian copula model, in which hedging loss derivatives
by single-name instruments can be performed in a theoretically sound and practical way.

There are two major theoretical contributions of the paper:

• First, we construct a Markov copula model that is adequate for the problem at hand,
that is for the problem of dynamic hedging of portfolio credit risk. The (dynamic)
copula property of the model allows for separation of calibration of the univariate
marginals of the underlying multivariate Markov process, from calibration of the de-
pendence structure between the components of the process. This is of critical impor-
tance from the practical point of view.

• Second, we provide the common shocks interpretation of our Markovian copula model.
This is important from the practical point of view as this interpretation underlies semi-
explicit, convolution based pricing and Greeking schemes for basket credit derivatives.
Such numerical schemes play a crucial role when calibrating credit portfolio models
and in related applications such as counterparty risk valuation for portfolios (see
[2, 6]). This allows one to address in a dynamic and theoretically consistent way the
issues of hedging basket credit derivatives by individual names, whilst preserving the
static common factor tractability.

The common shock aspect of our model is related to the work by Elouerkhaoui [22]
(see also Brigo et al. [12, 13, 14]). Consequently, some results derived in this paper are
consistent with results derived in [22]. However, there are major differences between our
study and the one presented in [22]:

• First of all, while Elouerkhaoui [22] works in a point-process set-up, we use a Marko-
vian model; the practical interest of our framework is thus an increased model tractabil-
ity, especially with regard to the dynamic hedging aspect of our approach;

– In particular, the approach of [22] suffers from the “curse of dimensionality” due
to the need of summation (integration) over the set denoted by Πn in [22] (see for
example equation (2.6) therein, and compare with our own result (17) below),
the set of all subsets of the set {1, 2, . . . , n}. By contrast, the complexity of our
formula (7) for the generator of our Markov process, or of our common shock
algorithms described in Subsection 3.3, are controlled by the cardinality of our
triggering-events set Y, which one can typically be taken of the order of n in
applications; see Section 4.
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• Secondly, as already stated, our methodology allows for separation of calibration of
idiosyncratic (marginal) laws of the underlying Markov process, from the calibration of
the dependence structure of the process. The calibration really amounts to calibrating
the infinitesimal generator of the underlying Markov process, and once this is done,
the model can be used for consistent pricing and hedging of both the underlying
products, such as CDO tranches, as well as options on such with future expiration
dates; this feature obviously contributes to increased practical use of our methodology.
In this sense, our Markov copula model is a genuine dynamic model, as a model of
dependence between underlying stochastic processes. This not really the case with
the model developed in [22], where the “dynamic copula” feature is in the sense of
Patton’s conditional copula [37], which is a stochastic process itself, and as such can’t
be calibrated to initial data.

• Last, but not least, the Markov copula approach of this paper is generic in the sense
that, as demonstrated in [10, 11], it also applies to modeling of dynamics of credit
ratings. This is not the case with the approach of [22].

Comparing now our methodology to the what is done in Brigo et al. [12, 13, 14], we
see that the major differences can be summarized as follows:

• We are using a truly dynamic copula method, whereas in [12, 13, 14] a dynamic
representation of essentially static copula – i.e. the Marshall-Olkin copula – is used.

• Our approach is a bottom-up approach, hence an approach applicable for hedging
basket products using individual names, whereas the approach taken in [12, 13] is a
top-down approach, and, as such, is not applicable for hedging basket products using
individual names;

– This also applies to the so-called GPCL extension of the model of [14] in which
individual names are represented of the model so that, in principle, hedging bas-
ket products using individual names could be considered in this setup. This is
not practical however because fault of a suitable decoupling property between
the dependence structure and the individual names in the model, the calibration
of the model can only be addressed through a global joint optimization proce-
dures involving all the model parameters at the same time, which is untractable
numerically.

• Again, our approach is generic in the sense that it also applies to modeling of dynamics
of credit ratings. This is not the case with the approach of [12, 13, 14].

The paper is organized as follows. In Section 2 we formulate a bottom-up Markovian
copula model, in which individual default processes for various credit names are coupled
together by means of simultaneous defaults. We then prove that conditionally on the full
information in this model, the dependence structure of surviving names is equivalent to a
Marshall-Olkin copula. In Section 3 we use this equivalence with the Marshall-Olkin frame-
work in order to derive a common shocks model interpretation of our Markovian setting.
This enables us to derive fast deterministic computational tractable algorithms for pricing
and Greeking schemes in our heterogeneous model. In Section 4 we present numerical results
of calibration against market data from CDO tranches as well as individual CDS spreads.
We also discuss hedging sensitivities computed in the models thus calibrated. Technical
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proofs are deferred to Appendix A.

In the rest of the paper we consider a risk neutral pricing model (Ω,F ,P), for a filtration
F = (Ft)t∈[0,T ] which will be specified below and where T ≥ 0 is a fixed time horizon. We
denote Nn = {1, . . . , n} and let Nn denote the set of all subsets of Nn where n represents
the number of obligors in the underlying credit portfolio. Further, we set max ∅ = −∞.

2 Model of Default Times

In this section we construct a bottom-up Markovian model consisting of a multivariate
factor process X and a vector H representing the default indicator processes in a pool of n
different credit names. More specifically, Ht is a vector in {0, 1}n where the i-th entry of
Ht is the indicator function for the event of a default of obligor i up to time t. The purpose
of the factor process X is to more realistically model diffusive randomness of credit spreads.

In our model defaults are the consequence of some “triggering-events” associated with
groups of obligors. We then define the following pre-specified set of groups

Y = {{1}, . . . , {n}, I1, . . . , Im},

where I1, . . . , Im are m subsets of Nn (elements of the set Nn of all parts of Nn), and each
group Il contains at least two obligors or more. The triggering events are divided in two
categories: the ones associated with singletons {1}, . . . , {n} can only trigger the default of
name 1, . . . , n individually, while the others associated with multi-name groups I1, . . . , Im
may simultaneously trigger the default of all names in these groups. Note that several
triggering events may affect the same particular name, so that only the one occurring first
effectively triggers the default of that name. As a result, when a triggering-event associated
with a specific group occurs at time t, it only triggers the default of names that are still
alive in that group at time t. In the following, the elements Y of Y will be used to designate
triggering events and we let I = (Il)1≤l≤m denote the pre-specified set of multi-name groups
of obligors.

Let ν = |Y| = n + m denote the cardinality of Y. Given a multivariate Brownian
motion W = (W Y )Y ∈Y with independent components, we assume that the factor process
X = (XY )Y ∈Y is a strong solution to

dXY
t = bY (t,XY

t ) dt + σY (t,XY
t ) dW Y

t , (1)

for suitable drift and diffusion functions bY = bY (t, x) and σY = σY (t, x). By application of
Theorem 32 page 100 of Protter [38], this makes X an FW-Markov process admitting the
following generator acting on functions v = v(t,x) with x = (xY )Y ∈Y

Atv(t,x) =
∑

Y ∈Y

(
bY (t, xY )∂xY

v(t,x) + 1
2σ

2
Y (t, xY )∂2

x2
Y
v(t,x)

)
. (2)

Let F := F (W,H) be the filtration generated by the Brownian motion W and the point
process H. Given the “intensity functions”1 of triggering-events, say λY = λY (t, xY ) for
every triggering-event Y ∈ Y, we would like to construct a model in which the F-predictable
intensity of a jump of H = (H i)1≤i≤n from Ht− = k to Ht = l, with l 6= k in {0, 1}n, is

1These functions will indeed be interpreted as shock intensity functions in subsection 2.3.
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given by

λ(t,Xt,k, l) :=
∑

{Y ∈Y ;kY =l}

λY (t,XY
t ), (3)

where, for any Z ∈ Nn, the expression kZ denotes the vector obtained from k = (k1, . . . , kn)
by replacing the components ki, i ∈ Z, by numbers one (whenever ki is not equal to one
already). The intensity of a jump of H from k to l at time t is thus equal to the sum of the
intensities of the triggering-events Y ∈ Y such that, if the joint default of the survivors in
group Y occurred at time t, then the state of H would move from k to l.

Example 2.1 Figure 1 shows one possible defaults path in our model with n = 5 and
Y = {{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}. The inner oval shows which common-
shock triggering-event happened and caused the observed default scenarios at successive
default times. At the first instant, default of name 2 is observed as the consequence of
triggering-event {2}. At the second instant, names 4 and 5 have defaulted simultaneously
as a consequence of triggering-event {4, 5}. At the fourth instant, the triggering-event
{2, 3, 4} triggers the default of name 3 alone as name 2 and 4 have already defaulted. At
the fifth instant, default of name 1 alone is observed as the consequence of triggering-event
{1, 2}. Note that the information produced by the arrival of the triggering-events cannot
be deduced from the mere observation of the sequence of states followed by Ht.

Figure 1: One possible defaults path in a model with n = 5 and Y =
{{1}, {2}, {3}, {4}, {5}, {4, 5}, {2, 3, 4}, {1, 2}}.

To achieve (3) we follow the classical methodology: we construct H by an X-related
change of probability measure, starting from a continuous-time Markov chain with intensity
one. This construction is detailed in Appendix A.1.

2.1 Itô Formula

In this subsection we state the Itô formula for functions of the Markov process (X,H).
For any set Z ∈ Nn, let the set-event indicator process HZ denote the indicator

process of a joint default of the names in Z and only in Z. For k = (k1, . . . , kn) ∈ {0, 1}n,
we introduce supp(k) = {i ∈ Nn; ki = 1} and suppc(k) = {i ∈ Nn; ki = 0}. Hence, supp(k)
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denotes the obligors who have defaulted in state k and similarly suppc(k) are the survived
names in the portfolio-state k.

The following lemma provides the structure of the so called compensated set-event
martingales MZ , which we will use later as fundamental martingales to represent the pure
jump martingale components of the various price processes involved.

Lemma 2.2 For every set Z ∈ Nn the intensity of HZ is given by ℓZ(t,Xt,Ht), so

dMZ
t = dHZ

t − ℓZ(t,Xt,Ht)dt

is a martingale, and the set-event intensity function ℓZ(t,x,k) is defined as

ℓZ(t,x,k) =
∑

Y ∈Y ;Y ∩suppc(k)=Z

λY (t, xY ). (4)

Proof. See Appendix A.1.1.

So ℓZ(t,Xt,Ht−) =
∑

Y ∈Y ;Yt=Z λY (t,XY
t ), where for every Y in Y = {{1}, . . . , {n}, I1, . . . , Im}

we define

Yt = Y ∩ suppc(Ht−), (5)

the set-valued process representing the survived obligors in Y right before time t. Let also
Zt = {Z ∈ Nn;Z = Yt for at least one Y ∈ Y} \ ∅ denote the set of all non-empty sets of
survivors of sets Y in Y right before time t.

We now derive a version of the Itô formula, which is relevant for our model. It will be
used below for establishing the Markov properties of our set-up, as well as for deriving price
dynamics. Let σ(t,x) denote the diagonal matrix with diagonal (σY (t, xY ))Y ∈Y . Given a
function u = u(t,x,k) with x = (xY )Y ∈Y and k = (ki)1≤i≤n in {0, 1}n, we denote

∇u(t,x,k) = (∂x1u(t,x,k), . . . , ∂xνu(t,x,k)).

Let also δuZ represent the sensitivity of u to the event Z ∈ Nn, so

δuZ(t,x,k) = u(t,x,kZ) − u(t,x,k).

Proposition 2.3 Given a regular enough function u = u(t,x,k), one has

du(t,Xt,Ht) =
(
∂t + At

)
u(t,Xt,Ht)dt + ∇u(t,Xt,Ht)σ(t,Xt)dWt

+
∑

Z∈Zt

δuZ(t,Xt,Ht−)dMZ
t ,

(6)

where

Atu(t,x,k) =
∑

Y ∈Y

(
bY (t, xY )∂xY

u(t,x,k) +
1

2
σ2

Y (t, xY )∂2
x2

Y
u(t,x,k)

)

+
∑

Y ∈Y

λY (t, xY )δuY (t,x,k).
(7)
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Proof. See Appendix A.1.2.

In the Itô formula (6), the jump term may involve any of the 2n set-events martingales
MZ for Z ∈ Nn. This suggests that the martingale dimension2 of the model is ν + 2n,

where ν = n + m corresponds to the dimension of the Brownian motion W driving the
factor process X and 2n corresponds to the jump component H. Yet by a reduction which
is due to specific structure of the intensities in our set-up, the jump term of At in (7) is a
sum over the set of triggering-events Y, which has cardinality ν.

Note that our model excludes direct contagion effects in which intensities of surviving
names would be affected by past defaults, as opposed to the bottom-up contagion models
treated by e.g. [16, 27, 28, 31]. To provide some understanding in this regard, we give a
simple illustrative example.

Example 2.4 Take Nn = {1, 2, 3}, so that the state space of H contains 8 elements:

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} .

Now, let Y be given as Y = {{1}, {2}, {3}, {1, 2}, {1, 2, 3}}. This is an example of the nested
structure of I with I1 = {1, 2} ⊂ I2 = {1, 2, 3}. Suppose for simplicity that λY does not
depend either on t or on x (dependence in t,x will be dealt with in Subsection 2.2). Then,
the generator A of the chain H is given in matrix-form by

A ≡





· λ{1} λ{2} λ{3} λ{1,2} 0 0 λ{1,2,3}

0 · 0 0 λ{2} + λ{1,2} λ{3} 0 λ{1,2,3}

0 0 · 0 λ{1} + λ{1,2} 0 λ{3} λ{1,2,3}

0 0 0 · 0 λ{1} λ{2} λ{1,2,3} + λ{1,2}

0 0 0 0 · 0 0 λ{3} + λ{1,2,3}

0 0 0 0 0 · 0 λ{2} + λ{1,2,3} + λ{1,2}

0 0 0 0 0 0 · λ{1} + λ{1,2,3} + λ{1,2}

0 0 0 0 0 0 0 0





(8)

where ‘·’ represents the sum of all other elements in the row multiplied with −1. Now,
consider group {1, 2, 3}. Suppose, that at some point of time obligor 2 is defaulted, but
obligors 1 and 3 are still alive, so that process H is in state (0, 1, 0). In this case the
two survivors in the group {1, 2, 3} may default simultaneously with intensity λ{1,2,3}. Of
course, here λ{1,2,3} cannot be interpreted as intensity of all three defaulting simultaneously,
as obligor 2 has already defaulted. In fact, the only state of the model in which λ{1,2,3} can
be interpreted as the intensity of all three defaulting, is state (0, 0, 0). Note that obligor
1 defaults with intensity λ{1} + λ{1,2,3} + λ{1,2} regardless of the state of the pool, as long
company 1 is alive. Similarly, obligor 2 will default with intensity λ{2} + λ{1,2,3} + λ{1,2}

regardless of the state of the pool, as long company 1 is alive. Also, obligors 1 and 2 will
default together with intensity λ{1,2,3} + λ{1,2} regardless of the state of the pool, as long
as company 1 and 2 still are alive.

2Minimal number of fundamental martingales which can be used as integrators to represent all the
martingales in the model, see Appendix A.1.
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2.2 Markov Copula Properties

Below, for every obligor i, a real-valued marginal factor process Xi will be defined as a
suitable function of the above multivariate factor process X = (XY )Y ∈Y . We shall then
state conditions on the default intensities which enables us to prove that the marginal pair
(Xi,H i) is a Markov process. Markovianity of the model marginals (Xi,H i) is crucial at the
stage of calibration of the model, so that these marginals can be calibrated independently.

Observe that in view of (3), the intensity of a jump of H i from H i
t− = 0 to 1 is given

by, for t ∈ [0, T ], ∑

{Y ∈Y ; i∈Y }

λY (t,XY
t ), (9)

where the sum in this expression is taken over all pre-specified groups that contain name i.
We define the marginal factor Xi as a linear functional ϕi of the multivariate factor process
X = (XY )Y ∈Y so that Xi

t := ϕi(Xt). In general the transition intensity (9) implies non-
Markovianity of the marginal (Xi,H i). Hence, in order to make the process (Xi,H i) to be
Markov, one needs to impose a more specified parametrization of (9) as well as conditions
on the mapping ϕi. To be more specific:

Assumption 2.5 For every obligor i, there exists a linear form ϕi(x) and a real-valued
function λi(t, x) such that for every (t,x) with x = (xY )Y ∈Y

∑

{Y ∈Y ; i∈Y }

λY (t, xY ) = λi(t, ϕi(x)), (10)

where, in addition, Xi
t := ϕi(Xt) is a Markov-process with respect to the filtration F =

F (W,H), with the following generator acting on functions vi = vi(t, x) with x ∈ R

Ai
tvi(t, x) = bi(t, x)∂xvi(t, x) +

1

2
σ2

i (t, x)∂
2
x2vi(t, x) (11)

for suitable drift and diffusion coefficients bi(t, x) and σi(t, x).

Note that under such a specification of the intensities, dependence between defaults in
the model does not only stem from the possibility of common jumps as in Example 2.4 but
it can also come from the factor process X as in Example 2.7 below.

In the above assumption we require that Xi
t = ϕi(Xt) is a Markov process. This

assumption is a non-trivial in general, as a process which is a measurable function of a
Markov process does not have to be a Markov process itself. We refer to Pitman and Rogers
[39] for some discussion of this issue. In our model set-up one, one can show that under
appropriate regularity conditions, if for every (t,x, x) with x = (xY )Y ∈Y and x = ϕi(x),
one has

∑

{Y ∈Y}

bY (t,x)∂xY
ϕi(x) = bi(t, x)

∑

{Y ∈Y}

σ2
Y (t,x)(∂xY

ϕi(x))2 = σ2
i (t, x)

(12)

then Xi
t = ϕi(Xt) is an F-Markov process with generator Ai in (11). The proof follows

from Lemma A.2 (up to the reservation which is made right after the lemma regarding
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technicalities about the domain of the generators) since for every regular test-function
vi = vi(t, x), one has with u(t,x) := vi(t, ϕ

i(x))

vi(t,X
i
t) −

∫ t

0

(
∂s +Ai

s

)
vi(s,X

i
s)ds

= u(t,Xt) −
∫ t

0

(
∂s +As

)
u(s,Xs)ds.

In the two examples given below, the F-Markov property of Xi
t = ϕi(Xt) also rigorously

follows, in case of Example 2.6 where ϕi is a coordinate projection operator, from the Markov
consistency results of [8], or, in case of Example 2.7, from the semimartingale representation
of Xi provided by the SDE (14). The F-Markov property of Xi in Example 2.7 thus follows
from the fact that a strong solution to the Markovian SDE (14) driven by the F-Brownian
motion W i, is an F-Markov process, by application of Theorem 32 page 100 of Protter
[38]. Example 2.7 is important, as it goes beyond the case of Example 2.6 where the λI

are deterministic functions of time, and it provides a fully stochastic specification of the λY

(including the λI).

Example 2.6 (Deterministic Group Intensities) For every group I ∈ I, the intensity
λI(t,x) does not depend on x.

Letting ϕi(x) = x{i}, then (10) and (12) hold with

λi(t, x) := λ{i}(t, x) +
∑

{I∈I; i∈I}

λI(t)

bi(t, x) := b{i}(t, x)

σi(t, x) := σ{i}(t, x).

So, Xi = X{i} is F-Markov with drift and diffusion coefficients bi(t, x) and generator σi(t, x)
thus specified.

Example 2.7 (Extended CIR Intensities) For every Y ∈ Y, the pre-specified group
intensities are given by λY (t,XY

t ) = XY
t , where the factor XY is an extended CIR process

dXY
t = a(bY (t) −XY

t )dt + c

√
XY

t dW
Y
t (13)

for non-negative constants a, c and non-negative functions bY (t). The SDE-s for the factors
XY have thus the same coefficients except for the bY (t).

Letting ϕi(x) =
∑

{Y ∈Y ; i∈Y }

xY = x{i} +
∑

{I∈I; i∈I}

xI , and denoting likewise bi(t) =

∑

{Y ∈Y ; i∈Y }

bY (t) = b{i}(t) +
∑

{I∈I; i∈I}

bI(t), then (10) and (12) hold with

λi(t, x) := x

bi(t, x) := a(bi(t) − x)

σi(t, x) := c
√
x.

So, Xi =
∑

{Y ∈Y ; i∈Y }

XY is an F-Markov process with drift and diffusion coefficients bi(t, x)

and generator σi(t, x) thus specified.
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Note that Xi satisfies the following extended CIR SDE with parameters a, bi(t) and c
as

dXi
t = a(bi(t) −Xi

t)dt+ c

√
Xi

tdW
i
t (14)

for the F-Brownian motion W i such that
√
Xi

tdW
i
t =

∑

i∈Y

√
XY

t dW
Y
t , dW

i
t =

∑

i∈Y

√
XY

t√∑
i∈Y X

Y
t

dW Y
t .

Remark 2.8 Both the time-deterministic group intensities specification of Example 2.6
and the affine intensities specification of Example 2.7 have already been fruitfully used in
the context of various credit and counterparty credit risk applications (anticipating the
theoretical aspects of the model which are dealt with in the present paper), see [7, 2, 6].

For every Y ∈ Y and every set of non-negative constants ti, we define the quantities
ΛY

s,t,Λ
Y
t and θY

t as

ΛY
s,t =

∫ t

s
λY (s,XY

s )ds , ΛY
t = ΛY

0,t =

∫ t

0
λY (s,XY

s )ds and θY
t = max

i∈Y ∩suppc(Ht)
ti

where Y ∩ suppc(Ht) in θY
t is the set of survivors in Y at time t (and we use in θY

t our
convention that max ∅ = −∞). Note that ΛI is a deterministic function of time for every
group I ∈ I. Let τi denote the default time for obligor i. Since H i is the default indicator
of name i, we have

τi = inf{t > 0 ;H i
t = 1}, H i

t = 1{τi≤t}.

The following Proposition gathers the Markov properties of the model.

Proposition 2.9 (i) (X,H) is an F-Markov process with infinitesimal generator given by

A.

(ii) For every obligor i, (Xi,H i) is an F-Markov process3 admitting the following generator

acting on functions ui = ui(t, xi, ki) with (xi, ki) ∈ R × {0, 1}

Ai
tui(t, xi, ki) = bi(t, xi)∂xiui(t, xi, ki) +

1

2
σ2

i (t, xi)∂
2
x2

i
ui(t, xi, ki)

+λi(t, xi)
(
ui(t, xi, 1) − ui(t, xi, ki)

)
. (15)

Moreover, the F-intensity process4 of H i is given by 1{τi>t}λi(t,X
i
t). In other words, the

process M i defined by

M i
t = 1{τi≤t} −

∫ t

0
1{τi>s}λi(s,X

i
s)ds, (16)

is an F-martingale.5

(iii) For any fixed non-negative constants t, t1, . . . , tn, one has

P (τ1 > t1, . . . , τn > tn | Ft) = P (τ1 > t1, . . . , τn > tn | Ht,Xt) (17)

= 1{ti<τi , i∈supp(Ht)}E

{
exp

(
−
∑

Y ∈Y

ΛY
t,θY

t

) ∣∣∣Xt

}
.

3And hence an F(Xi,Hi)-Markov process.
4And hence, F(Xi,Hi)-intensity process.
5And hence, an F(Xi,Hi)-martingale.
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The conditional survival probability function of every obligor i is given by, for every ti ≥ t,

P(τi > ti | Ft) = P(τi > ti |Ht,Xt)

= 1{τi>t}E




exp
(
−

∑

Y ∈Y , i∈Y

ΛY
t,ti

) ∣∣∣Xt






= 1{τi>t}E

{
exp

(
−
∫ ti

t
λi(s,X

i
s)ds

)
|Xi

t

}

= 1{τi>t}G
i
t(ti),

(18)

with

Gi
t(ti) = E

{
exp

(
−
∫ ti

t
λi(s,X

i
s)ds

)
|Xi

t

}
. (19)

In particular

E

{
exp

(
− Λ

{i}
t

)}
= exp

{

−
(

Γi(t) −
∑

i∈I

ΛI
t

)}

, (20)

where Γi(t) = − lnGi
0(t) = − ln(P(τi > t)) is the hazard function of name i.

Proof. See Appendix A.2.1.

We shall illustrate part (iii) of the above proposition using the following example.

Example 2.10 In case of two obligors and Y = {{1}, {2}, {1, 2}}, one can easily check that
(17) boils down to

P (τ1 > t1, τ2 > t2 | Ft) = 1{τ1>t}1{τ2>t}E

{

exp
(
−
∑

Y ∈Y

∫ t1∨t2

t
λY (s,Xs)

) ∣∣∣Xt

}

+1{t2<τ2≤t}1{τ1>t}E

{
exp

(
−
∫ t1

t
λ1(s,X

1
s ) ds

) ∣∣∣X1
t

}

+1{t1<τ1≤t}1{τ2>t}E

{
exp

(
−
∫ t2

t
λ2(s,X

2
s ) ds

) ∣∣∣X2
t

}

+1{t1<τ1≤t}1{t2<τ2≤t}.

2.3 Common Shocks Model Interpretation

In this subsection we establish a connection between the dynamic Markovian model (X,H),
and a common shock model with a Marshall-Olkin common factor structure of default times
as in Lindskog and McNeil [35], Elouerkhaoui [22] or Brigo et al. [12, 13, 14].

In rough terms, conditionally on any given state (x,k) of (X,H) at time t, it is possible
to define a common shock model of default times of the surviving names at time t, such
that the conditional law of the default times in the common shock model is the same as
the corresponding conditional distribution in the original Markov model. This connection
between the Markovian model and the common shock framework is the main theoretical
contribution of this paper.
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We thus introduce a family of common shocks copula models, parameterized by the
current time t. For every Y ∈ Y, we define

τY (t) = inf{θ > t; ΛY
θ > ΛY

t + EY },

where the random variables EY are i.i.d. and exponentially distributed with parameter 1.
For every obligor i we let

τi(t) = min
{Y ∈Y ; i∈Y }

τY (t) , (21)

which defines the default time of obligor i in the common shocks copula model starting at
time t. We also introduce the common shock model indicator processes HY

θ (t) = 1{τY (t)≤θ}

and H i
θ(t) = 1{τi(t)≤θ}, for every triggering-event Y , obligor i and time horizon θ ≥ t. Let

Z ∈ Nn denote a set of obligors, meant in the probabilistic interpretation to represent the
set suppc(Ht) of survived obligors in the Markov model at time t. We now prove that on
{suppc(Ht) = Z}, the conditional law of (τi)i∈suppc(Ht) given Ft in the Markov model, is
equal to the conditional law of (τi(t))i∈Z given Xt in the common shocks framework. Let
also Nθ =

∑
1≤i≤nH

i
θ denote the cumulative number of defaulted obligors in the Markov

model up to time θ. Let Nθ(t, Z) = n− |Z|+∑i∈Z H
i
θ(t), denote the cumulative number of

defaulted obligors in the common shocks framework up to time θ where |Z| is the cardinality
of the set Z.

Proposition 2.11 Let Z ∈ Nn denote an arbitrary subset of obligors and let t ≥ 0. Then,

(i) for every t1, . . . , tn ≥ t, one has

1{suppc(Ht)=Z}P
(
τi > ti, i ∈ suppc(Ht)

∣∣Ft

)
= 1{suppc(Ht)=Z}P

(
τi(t) > ti, i ∈ Z

∣∣∣Xt

)
.(22)

(ii) for every θ ≥ t, one has that for every k = n− |Z|, . . . , n,

1{suppc(Ht)=Z}P
(
Nθ = k

∣∣Ft

)
= 1{suppc(Ht)=Z}P

(
Nθ(t, Z) = k

∣∣∣Xt

)
.

Proof. Part (ii) readily follows from part (i), that we now show. Let, for every obligor i,
t̃i = 1i∈suppc(Ht)ti. Note that one has, for Y ∈ Y

max
i∈Y ∩suppc(Ht)

t̃i = max
i∈Y ∩suppc(Ht)

ti = θY
t .

Thus, by application of identity (17) in Proposition 2.9 to the sequence of times (t̃i)1≤i≤n,
it comes,

1{suppc(Ht)=Z}P
(
τi > ti, i ∈ suppc(Ht)

∣∣Ft

)

= 1{suppc(Ht)=Z}P
((
τi > ti, i ∈ Z

)
,
(
τi > 0, i ∈ Zc

) ∣∣Ft

)

= 1{suppc(Ht)=Z}E

{

exp
(
−
∑

Y ∈Y

ΛY
t,θY

t

) ∣∣∣Xt

}

which on {suppc(Ht) = Z} coincides with the expression

E

{

exp
(
−
∑

Y ∈Y

ΛY
t,maxi∈Y ∩Z ti

) ∣∣∣Xt

}
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derived for P(τi(t) > ti, i ∈ Z
∣∣∣Xt) in the common shocks model of Elouerkhaoui [22]. 2

For instance, in the situation of Example 2.4, the shock interpretation at time t = 0
is clear: there are five different shocks, corresponding to the elements of Y. In particular,
obligors 1 and 2 can default simultaneously if either the shock corresponding to {1, 2}
arrives, or the shock corresponding to {1, 2, 3} arrives.

This interpretation will be used in the next section for deriving fast exact convolution
recursion procedures for pricing portfolio loss derivatives.

The common shocks interpretation can also be used for simulation purposes. In view
of Proposition 2.11(i) and given Ft, the simulation of the random times (τi)i∈suppc(Ht), or
equivalently on {suppc(Ht) = Z}, (τi(t))i∈Z , is fast. One essentially needs to simulate IID
exponential random variables EY .

3 Pricing, Calibration and Hedging Issues

This section treats the pricing, calibration and hedging issues in the Markov copula model
of Section 2. First, in Subsection 3.1 we derive the price dynamics for CDS contracts and
for CDO tranches in this model. In Subsection 3.2 we use dynamics of Subsection 3.1 to
derive min-variance hedging strategies in the Markov copula model. In the case of CDO-
s these formulas lead to a very large PDE-system which in practice is difficult to solve.
So, in Subsection 3.3 we instead exploit the relationship between our Markov model and
the common shock model, which enables us to derive fast, deterministic, computationally
tractable algorithms for derivation of the prices and sensitivities.

For notational convenience, we assume zero interest rates. The extension of all theo-
retical results to time dependent, deterministic interest rates is straightforward but more
cumbersome notationally, especially regarding hedging. Time-dependent deterministic in-
terest rates will be used in the numerical part.

3.1 Pricing Equations

In this subsection we derive price dynamics formulas for CDS contracts and CDO tranches in
the Markov model; all prices are considered from perspective of the protection buyers. These
dynamics will be useful when deriving the min-variance hedging strategies in Subsection 3.2.

In a zero interest-rates environment, the (ex-dividend) price process of an asset is
simply given by the risk neutral conditional expectation of future cash flows associated
with the asset; the cumulative value process is the sum of the price process and of the
cumulative cash-flows process. The cumulative value process is a martingale, as opposed
to the price process. When it comes to hedging, the cumulative value process is the main
quantity of interest (see for instance Frey and Backhaus [24]).

For a fixed maturity T , we let Si denote the T -year CDS spread for obligor i, with
recovery rate Ri. Similarly, we let S denote the T -year model CDO tranche spread for the
tranche [a, b], with payoff process

L
a,b
t = La,b(Ht) = (Lt − a)+ − (Lt − b)+ , (23)

where Lt = 1
n

∑n
i=1(1 − Ri)H

i
t is the credit loss process for the underlying portfolio. The

premium legs in these products are payed at t1 < t2 < . . . < tp = T where tj − tj−1 = h
and h is typically a quarter. Below, the notation is the same as in the Itô formula (6).



14

Proposition 3.1 (i) The price P i and the cumulative value P̂ i at time t ∈ [0, T ] of the

single-name CDS on obligor i with contractual spread Si are given by

P i
t = 1{τi>t}vi(t,X

i
t )

dP̂ i
t = 1{τi>t}∂xivi(t,X

i
t)σi(t,X

i
t)dW

i
t +

∑

Z∈Zt

1i∈Z

(
1 −Ri − vi(t,X

i
t)
)
dMZ

t
(24)

for a pre-default pricing function vi(t, xi) such that

1{τi>t}vi(t,X
i
t) = E[−Sih

∑

t<tj≤T

1{τi>tj} + (1 −Ri)1{t<τi≤T}|Ft].

(ii) The price process Π and cumulative value Π̂ at time t ∈ [0, T ] of a CDO tranche [a, b]
with contractual spread S are given by

Πt = u(t,Xt,Ht)

dΠ̂t = ∇u(t,Xt,Ht)σ(t,Xt)dWt

+
∑

Z∈Zt

(
La,b(H

Z
t−) − La,b(Ht−) + δuZ(t,Xt,Ht−)

)
dMZ

t

(25)

for a pricing function u(t,x,k) such that

u(t,Xt,Ht) = E

[
− S h

∑

t<tj≤T

(
b− a− L

a,b
tj

)
+ L

a,b
T − L

a,b
t

∣∣∣Ft

]
.

Proof. See Appendix A.2.2.

Note that in view of the marginal Markov property of the model, the martingale
representation (24) of P̂ i can be reduced to a “univariate” martingale representation based
on the compensated martingale M i of H i in (16). However, as will be clear from Subsection
3.2, it is more useful to state martingale representations of Π̂ and P̂ i relatively to a common
set of fundamental martingales in order to handle the hedging issue.

The pricing functions vi and u can be characterized as the unique solutions to the
related Kolmogorov equations (68) and (70) in Appendix A.2.2. If the pricing functions
are known, the prices at a given time are recovered by plugging the corresponding state of
the model into the right-hand-side of the first lines of (24) or (25). The pricing equation
(70) for a CDO tranche leads to a large system of PDEs which in practice is impossible to
handle numerically as soon as n is larger than a few units. As a remedy for this we will in
Subsection 3.3 instead use the translation to a Marshall-Olkin framework which allows us
to derive practical recursive pricing schemes for CDO tranche price processes.

3.2 Min-Variance Hedging

In this subsection we use the price dynamics from Subsection 3.1 to derive min-variance
hedging strategies in the Markov copula model. By min-variance hedging strategies we
mean strategies that minimize the variance of the hedging error. Note that one could also
try to minimize the variance relatively to the historical probability measure, however in this
paper we minimize the risk-neutral variance for simplicity: see Schweizer [40] for a survey
about various quadratic hedging approaches. The hedging strategies are theoretically sound
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due to our bottom-up Markovian framework and they will be shown in Subsection 3.3 to be
computationally tractable thanks to the Marshall-Olkin copula interpretation of Subsection
2.3.

Consider a CDO tranche [a, b] with pricing function u specified in Proposition 3.1.
Our aim is to find explicit min-variance hedging formulas when hedging this CDO tranche
by using the savings account and d single-name CDSs with pricing functions vi given by
Proposition 3.1. First we introduce the CDS cumulative value vector-function

v(t,x,k) = (1k1=0v1(t, x1) + 1k1=1(1 −R1), . . . ,1kd=0vd(t, xd) + 1kd=1(1 −Rd))
T .

Let ∇v denote the Jacobian matrix of v with respect to x in the sense of the d× ν-matrix
such that ∇v(t,x,k)ji = 1kj=0∂xjvi(t, xi), for every 1 ≤ i ≤ d and 1 ≤ j ≤ ν. Let ∆vZ

represent the vector-function of the sensitivities of v with respect to the event Z ∈ Nn, so

∆vZ(t,x,k) = (11∈Z, k1=0 ((1 −R1) − v1(t, x1)) , . . . ,1d∈Z, kd=0 ((1 −Rd) − vd(t, xd)))
T.

By using the vector notation P̂ = (P̂ i)1≤i≤d, one has in view of Proposition 3.1(i)

dP̂t = ∇v(t,Xt,Ht)σ(t,Xt)dWt +
∑

Z∈Zt

∆vZ(t,Xt,Ht−)dMZ
t . (26)

Let

∆uZ(t,x,k) = δZu(t,x,k) + La,b(k
Z) − La,b(k).

represent the function of sensitivity of the CDO tranche [a, b] cumulative value process with
respect to the event Z ∈ Nn. Let ζ be an d-dimensional row-vector process, representing
the number of units held in the first d CDSs which are used in a self-financing6 hedging
strategy for the CDO tranche [a, b]. Given (25) and (26), the tracking error (et) of the
hedged portfolio satisfies e0 = 0 and, for t ∈ [0, T ]

det = dΠ̂t − ζtdP̂t

=
(
∇u(t,Xt,Ht) − ζt∇v(t,Xt,Ht)

)
σ(t,Xt)dWt

+
∑

Z∈Zt

(
∆uZ(t,Xt,Ht−) − ζt∆vZ(t,Xt,Ht−)

)
dMZ

t .

(27)

Since the martingale dimension of the model is ν+ 2n, replication is typically out-of-reach7

in the Markov model. However, in view of (27), we still can find min-variance hedging
formulas.

Proposition 3.2 The min-variance hedging strategy ζ is

ζt =
d〈Π̂, P̂〉t

dt

(
d〈P̂〉t
dt

)−1

= ζ (t,Xt,Ht−) (28)

where ζ = (u,v)(v,v)−1, with

(u,v) = (∇u)σ2(∇v)T +
∑

Y ∈Y

λY ∆uY (∆vY )T

(v,v) = (∇v)σ2(∇v)T +
∑

Y ∈Y

λY ∆vY (∆vY )T.
(29)

6Using also the savings account (constant asset).
7See the comments following Proposition 2.3.
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Proof. The first identity in (28) is a classical risk neutral min-variance hedging8 formula,
derived for instance in Section 3.5 of Crépey [18]. Moreover, one has by computation of the
oblique brackets based on the second lines in (24) and (25):

d〈Π̂, P̂〉t
dt

=

(
(∇u)σ2(∇v)T +

∑

Z∈Zt

λZ∆uZ(∆vZ)T

)
(t,Xt,Ht−) = (u,v)(t,Xt,Ht−)

d〈P̂〉t
dt

=

(

(∇v)σ2(∇v)T +
∑

Z∈Zt

λZ∆vZ(∆vZ)T

)

(t,Xt,Ht−) = (v,v)(t,Xt,Ht−)

(30)

where the second identities in both lines of (30) use simplifications similar to those used in
the proof of the Itô formula (6) in Appendix A.1.2. 2

In (29), the u-related terms can be computed by using the conditional convolution-
recursion procedures presented in Subsection 3.3; the vi-related terms can be computed very
quickly (actually semi-explicitly in either of the specifications of examples 2.6 and 2.7). We
will illustrate in Subsection 4.5 the tractability of this approach for computing min-variance
hedging deltas.

We refer the reader to Elouerkhaoui [22] for analogous results in the context of the
common shock model presented in Subsection 2.3. A nice feature of our set-up however is
that due to the specific structure of the intensities, the sums in (29) are over the set Y of
triggering-events Y which is of cardinality ν = n + m rather than over the set Nn of all
set-events Z, which would be of cardinality 2n.

We also refer the reader to Frey and Backhaus [24] for other related min-variance
hedging formulas.

3.3 Convolution Recursion Pricing Schemes

In this subsection we use the common shock model interpretation to derive fast convolution
recursion algorithms for computing the portfolio loss distribution. In the case where the
recovery rate is the same for all names, i.e., Ri = R, i = 1, . . . , n, the aggregate loss Lt at
time t is equal to (1 − R)Nt, where we recall Nt is the total number of defaults that have
occurred in the Markov model up to time t. It is well known, see, e.g., [15, 24, 26, 31],
and Proposition 3.1(ii), that the price process for a CDO tranche [a, b] is determined by
the probabilities P [Nθ = k | Ft] for k = |Ht|, . . . , n and θ ≥ t ≥ 0. Thanks to the common
shock model interpretation of Subsection 2.3, one has from Proposition 2.11(ii) that

P [Nθ = k | Ft] = P [Nθ(t, Z) = k |Xt]

on the event {suppc(Ht) = Z}, so we will focus on computation of the latter probabilities,
which are derived in formula (32) below. Furthermore, recall that suppc(Ht) denotes the
obligors who have survived in state Ht at time t.

We henceforth assume a nested structure of the sets Ij given by

I1 ⊂ . . . ⊂ Im. (31)

This structure implies that if all obligors in group Ik have defaulted, then all obligors
in group I1, . . . , Ik−1 have also defaulted. As we shall detail in Remark 3.4, the nested

8See Schweizer [40]
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structure (31) yields a particularly tractable expression for the portfolio loss distribution.
This nested structure also makes sense financially with regards to the hierarchical structure
of risks which is reflected in standard CDO tranches.

Remark 3.3 A dynamic group structure would be preferable from a financial point of view.
In the same vein one could deplore the absence of direct contagion effects in this model (it
only has joint defaults). However it should be stressed that we are building a pricing model,
not an econometric model; the applications we have in mind are hedging CDO tranches by
individual names (see Subsection 4.5), as well as valuation and hedging of counterparty risk
on credit portfolios (see [6]). In these regards, efficient pricing (at any future point in time,
not only at time 0 [6]) and Greeking procedures, as well as efficient joint calibration to CDS
and CDO data (see Subsections 4.1 and 4.3), are the main issues, and these are already
quite difficult to achieve simultaneously in a single model.

Denoting conventionally I0 = ∅ and HI0
θ (t) = 1, then in view of (31), the events

Ωj
θ(t) := {HIj

θ (t) = 1,H
Ij+1

θ (t) = 0, . . . ,HIm
θ (t) = 0}, 0 ≤ j ≤ m

form a partition of Ω. Hence, we have

P(Nθ(t, Z) = k |Xt) =
∑

0≤j≤m

P
(
Nθ(t, Z) = k |Ωj

θ(t),Xt

)
P
(
Ωj

θ(t) |Xt

)
(32)

where, by construction of the HI
θ (t) and independence of the λI(t,X

I
t ) we have

P
(
Ωj

θ(t) |Xt

)
=
(
1 − E

(
e
−Λ

Ij
t,θ |XIj

t

)) ∏

j+1≤l≤m

E
(
e
−Λ

Il
t,θ |XIl

t

)
(33)

which in our Markov setup can be computed very quickly (actually, semi-explicitly in either
of the specifications of examples 2.6 and 2.7). We now turn to the computation of the term

P
(
Nθ(t, Z) = k |Ωj

θ(t),Xt

)
(34)

appearing in (32). Recall first that Nθ(t, Z) = n− |Z| +∑i∈Z H
i
θ(t) with |Z| denoting the

cardinality of Z. We know that for every group j = 1, . . . ,m, given Ωj
θ(t), the marginal

default indicators H i
θ(t) for i ∈ Z are such that:

H i
θ(t) =

{
1, i ∈ Ij ,
H

{i}
θ (t), else.

(35)

Hence, the H i
θ(t) are conditionally independent given Ωj

θ(t). Finally, conditionally on

(Ωj
θ(t),Xt) the random vector Hθ(t) = (H i

θ(t))i∈Nn is a vector of independent Bernoulli

random variables with parameter p = (pi,j
θ (t))i∈Nn , where

p
i,j
θ (t) =

{
1, i ∈ Ij ,

1 − E

{
exp

(
− Λ

{i}
t,θ

)
|X{i}

t

}
, else

(36)

The conditional probability (34) can therefore be computed by a standard convolution
recursive procedure (see, for instance, Andersen and Sidenius [1]).
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Remark 3.4 The linear number of terms in the sum of (32) is due to the nested structure
of the groups Ij in (32). Note that a convolution recursion procedure is possible for an
arbitrary structuring of the groups Ij . However, a general structuring of the m groups Ij
would imply 2m terms instead of m in the sum of (32), which in practice would only work
for very few groups m. The nested structure (32) of the Ij , or equivalently, the tranched
structure of the Ij \ Ij−1, is also quite natural from the point of view of application to CDO
tranches.

3.4 Random Recoveries

In this subsection we outline how to modify the Markov copula to include stochastic recover-
ies. The implementation details are here omitted and we refer the readers to [5] for a more
comprehensive description of the methodology. Let L = (Li)1≤i≤n represent the [0, 1]n-
valued vector process of the loss given defaults in the pool of names. The process L is a
multivariate process where L0 ∈ 0, and where each component Li

t represents the fractional
loss that name i may have suffered due to default until time t. Assuming unit notional for
each name, the cumulative loss process for the entire portfolio is given by Lt = 1

n

∑n
i=1 L

i
t.

We assume that all obligors i have i.i.d. distribution for the recovery. The default times are
defined as before, but at every time of jump of H, an independent recovery draw is made
for every newly defaulted name i, determining the recovery Ri of name i. In particular, the
recovery rates resulting from a joint default are thus drawn independently for the affected
names.

Independent recoveries do not break the Markovian nor the Markovian copula struc-
ture. However by introducing stochastic recoveries we can no longer use the exact convolu-
tion recursion procedures of Subsection 3.3 for pricing CDO tranches. Instead we will here
use an approximate procedure based on the exponential approximations of the so called
hockey stick function, as presented in Iscoe et al. [32], [33] and originally developed by [34].
We now briefly outline how to use this method for computing the price of a CDO tranche
in our Markov model conditionally on Ft.

Recall that the tranche-loss function L
a,b
t for the tranche [a, b] as a function of the

portfolio credit loss Lt is given by La,b
t = (Lt − a)+ − (Lt − b)+ . This function can in turn

be rewritten as (see e.g [32])

L
a,b
t = b

(
1 − h

(
Lt

b

))
− a

(
1 − h

(
Lt

a

))
(37)

where h(x) is the so-called hockey stick function given by

h(x) =

{
1 − x if 0 ≤ x ≤ 1,
0 if 1 < x.

(38)

Next, [34] shows that for any fixed ǫ > 0, the function h(x) can be approximated by a
function h(q)

exp(x) on [0, d] for any d > 0 so that |h(x) − h(q)
exp(x)| ≤ ǫ for all x ∈ [0, d] where

q = q(ǫ) is positive integer and h(q)
exp(x) is given by

h(q)
exp(x) =

q∑

ℓ=1

ωℓ exp
(
γℓ
x

d

)
. (39)

Here (ωℓ)
q
ℓ=1 and (γℓ)

q
ℓ=1 are complex numbers obtained as roots of polynomials whose

coefficients can be computed numerically in a straightforward way. Figure 2 visualizes the
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approximation h(q)
exp(x) of h(x) for d = 2 on x ∈ [0, 10] with q = 5 and q = 50 as well as

the approximation error |h(x) − h(q)
exp(x)| for the same q. As can be seen in Figure 2, the

approximation is fairly good already for small values values of q and also works well outside
the interval [0, d] = [0, 2], that is on the interval (2, 10].
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Approx. of h(x) with q =50
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Figure 2: The function h(q)
exp(x) as approximation of h(x) for x ∈ [0, 10] with q = 5 and

q = 50 (top) and the corresponding approximation errors (bottom).

In [32], [33] the authors chooses d = 2 for (39) in all their numerical implementations,
see also [5]. In the rest of this paper we will use d = 2 in (39).

In view of (37)-(39) for any two time points θ > t, the conditional pricing of a CDO
tranche given the information Ft at any time t, boils down to computation of conditional
expectations of the form

E

(
eγℓ

Lθ
2c | Ft

)
(40)

for ℓ = 1, 2, . . . , q and different attachment points c and time horizons θ > t. Note that the
case t = 0 is used in the calibration, while the case t > 0 with θ > t is needed for pricing the
credit valuation adjustment (CVA) on a CDO tranche in a counterparty risky environment,
a topical issue since the 2007-09 credit crisis (see [19]). Since the algorithm for computing

E

(
eγℓ

Lθ
2c | Ft

)
is the same for each ℓ = 1, 2, . . . , q and any attachment point c, we will below

for notational convenience simply write E
(
eγLθ | Ft

)
instead of E

(
eγℓ

Lθ
2c | Ft

)
.

Now, by the common shock model interpretation as in Subsection 3.3 (and using the
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same notation that was introduced there), one has much like in Proposition 2.11(ii) that
for every Z ∈ Nn

1{suppc(Lt)=Z}E
(
eγLθ | Ft

)
= 1{suppc(Lt)=Z}E

(
eγLθ(t,Z) |Xt

)
(41)

where Lθ(t, Z) :=
∑

i/∈Z L
i
t+
∑

i∈Z(1−Ri)H
i
θ(t) andH i

θ(t) is defined as in (35). Furthermore,
Ri is a random recovery with values in [0, 1]. One then has as in (32) that

E
(
eγLθ(t,Z) |Xt

)
=

∑

0≤j≤m

E
(
eγLθ(t,Z) |Ωj

θ(t),Xt

)
P
(
Ωj

θ(t) |Xt

)
(42)

where P
(
Ωj

θ(t) |Xt

)
is given by (33). Moreover by conditional independence one has on

1{suppc(Lt)=Z} that

E
(
eγLθ(t,Z) |Ωj

θ(t),Xt

)

= eγ
∑

i/∈Z Li
tE
(
eγ
∑

i∈Z(1−Ri)Hi
θ(t) |Ωj

θ(t),Xt

)

= eγ
∑

i/∈Z Li
t

∏

i∈Z

E
(
eγ(1−Ri)Hi

θ(t) |Ωj
θ(t),Xt

)
.

Now observe that for every i

E
(
eγ(1−Ri)Hi

θ(t) |Ωj
θ(t),Xt

)
=

{
E
(
eγ(1−Ri)

)
, i ∈ Ij ,

E
(
eγ(1−Ri)H

{i}
θ (t) |X{i}

t

)
, else

(43)

in which by independence of Ri and H i
θ(t) implies that

E
(
eγ(1−Ri)H

{i}
θ (t) |X{i}

t

)
= 1 − p

i,j
θ (t)

(
1 − Eeγ(1−Ri)

)
(44)

where pi,j
θ (t) was defined in (36).

In Subsection 4.2 we will give an explicitly example of the recovery rate Ri which will
be used with the above hockey-stick method when calibrating the Markov copula against
market data on CDO tranches. As will be seen in Subsection 4.3, using stochastic recoveries
will for some data sets render much better calibration results compared with the case of
using constant recoveries.

4 Numerical Results

In this section we briefly discuss the calibration of the model and some few numerical results
connected to the loss-distributions and the min-variance hedging. Subsection 4.1 outlines
the calibration methodology with piecewise constant default intensities and constant recov-
eries while Subsection 4.2 describes the calibration procedure with stochastic recoveries and
piecewise constant default intensities. Then Subsection 4.3 presents the numerical calibra-
tion of the Markov copula model against market data both with constant and stochastic
recoveries. We also study the implied loss-distributions in our fitted model for the case
with constant recoveries. Furthermore, in Subsection 4.4, we consider that individual and
joint defaults are driven by stochastic default intensities and we describe the calibration
methodology and results for a particular model specification. Finally, Subsection 4.5 dis-
cusses min-variance hedging sensitivities in the calibrated models using constant recoveries.
A more extensive numerical study of the model can be found in the paper [5].
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4.1 Calibration Methodology with Piecewise Constant Default Intensities

and Constant Recoveries

In this subsection we discuss one of the calibration methodologies that will be used when fit-
ting the Markov copula model against CDO tranches on the iTraxx Europe and CDX.NA.IG
series in Subsection 4.3. This first calibration methodology will use piecewise constant de-
fault intensities and constant recoveries in the convolution pricing algorithm of Subsection
3.3.

The first step is to calibrate the single-name CDS for every obligor. Given the T -year
market CDS spread S∗

i for obligor we want to find the individual default parameters for
obligor i so that P i

0(S
∗
i ) = 0, or in view of Proposition 3.1(i),

S∗
i =

(1 −Ri)P (τi < T )

h
∑

0<tj≤T P (τi > tj)
(45)

where we used the facts that interest rate is zero and that the recovery Ri is constant.
Hence, the first step is to extract the implied hazard function Γ∗

i (t) in (20) from the CDS
curve of every obligor i by using a standard bootstrapping procedure based on (45).

Given the marginal hazard functions, the law of the total number of defaults N at
a fixed time t is a function of the joint default intensity functions λI(t), as described by
the recursive algorithm of Subsection 3.3. The second step is therefore to calibrate the
common-shock intensities {λI(t)} so that the model CDO tranche spreads coincide with the
corresponding market spreads. This is done by using the recursive algorithm of Subsection
3.3, for λI(t)-s parameterized as non-negative and piecewise constant functions of time.
Moreover, in view of (20), for every obligor i and at each time t we impose the constraint

∑

I∈I; i∈I

λI(t) ≤ λ∗i (t) (46)

where λ∗i :=
dΓ∗

i
dt denotes the hazard rate (or hazard intensity) of name i. For constant joint

default intensities λI(t) = λI the constraints (46) reduce to

∑

I∋i

λI ≤ λi := inf
t∈[0,T ]

λ∗i (t) for every obligor i.

Given the nested structure of the groups Ij-s specified in (31), this is equivalent to

m∑

j=l

λIj ≤ λIl
:= min

i∈Il\Il−1

λi for every group l. (47)

Furthermore, for piecewise constant common shock intensities on a time grid (Tk), the
condition (47) extends to the following constraint

m∑

j=l

λk
Ij

≤ λk
Il

:= min
i∈Il\Il−1

λk
i for every l, k where λk

i := inf
t∈[Tk−1,Tk]

λ∗i (t). (48)

We remark that insisting on calibrating all CDS names in the portfolio, including the safest
ones, implies via (47) or (48) a very constrained region for the common shock parameters.
This region can be expanded by relaxing the system of constraints for the joint default
intensities, by excluding the safest CDSs from the calibration.
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In this paper we will use a time grid consisting of two maturities T1 and T2. Hence,
the single-name CDSs constituting the entities in the credit portfolio are bootstrapped
from their market spreads for T = T1 and T = T2. This is done by using piecewise constant
individual default intensity λi-s on the time intervals [0, T1] and [T1, T2].

Before we leave this subsection, we give some few more details on the calibration of
the common shock intensities for the m groups in the second calibration step. From now on
we assume that the joint default intensities {λIj (t)}m

j=1 are piecewise constant functions of

time, so that λIj(t) = λ
(1)
Ij

for t ∈ [0, T1] and λIj(t) = λ
(2)
Ij

for t ∈ [T1, T2] and for every group

j. Next, the joint default intensities λ = (λ
(k)
Ij

)j,k = {λ(k)
Ij

: j = 1, . . . ,m and k = 1, 2} are

then calibrated so that the five-year model spread Sal,bl
(λ) =: Sl(λ) will coincide with the

corresponding market spread S∗
l for each tranche l. To be more specific, the parameters

λ = (λ
(k)
Ij

)j,k are obtained according to

λ = argmin
λ̂

∑

l

(
Sl(λ̂) − S∗

l

S∗
l

)2

(49)

under the constraints that all elements in λ are nonnegative and that λ satisfies the in-
equalities (48) for every group Il and in each time interval [Tk−1, Tk] where T0 = 0. In Sl(λ̂)

we have emphasized that the model spread for tranche l is a function of λ = (λ
(k)
Ij

)j,k but we
suppressed the dependence in other parameters like interest rate, payment frequency or λi,
i = 1, . . . , n. In the calibration we used an interest rate of 3%, the payments in the premium
leg were quarterly and the integral in the default leg was discretized on a quarterly mesh.
For each data-set we use a constant recovery of 40%. We use MatLab in our numerical
calculations and the objective function (49) is minimized by using the built in optimization
routine fmincon together with the constraints given by equations on the form (48).

In Subsection 4.3 we use the above setting for our two data-set and perform a calibra-
tion with constant recovery of 40%.

4.2 Calibration Methodology with Piecewise Constant Default Intensities

and Stochastic Recoveries

In this subsection we discuss the second calibration methodology used when fitting the
Markov copula model against CDO tranches on the iTraxx Europe and CDX.NA.IG series
in Subsection 4.3. This method relies on piecewise constant default intensities and stochas-
tic recoveries. Recall that compared with constant recoveries, using stochastic recoveries
requires a more sophisticated method in order to compute the tranche loss distribution,
as was explained in Subsection 3.4. The methodology and constraints connected to the
piecewise constant default intensities are the same as in Subsection 4.1. Therefore we will
in this subsection only discuss the distribution for the individual stochastic recoveries Ri as
well as accompanying constraints used in the calibration. This distribution will determine
the quantity E

(
eγ(1−Ri)

)
in (44) which is needed to compute the tranche loss distribution.

We assume that the individual recoveries {Ri} are i.i.d and have a binomial mixture
distribution on the following form

Ri ∼
1

K
Bin (K,R∗(p0 + (1 − Θ)p1)) where Θ ∈ {0, 1} and P [Θ = 1] = q (50)

where R∗, q p0 and p1 are positive constants and K is an integer (in this paper we let
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K = 10). As a result, the recovery rate distribution function is given by

P

[
Ri =

k

K

]
=

1∑

ξ=0

µ(ξ)

(
K

k

)
p(ξ)k(1 − p(ξ))K−k where p(ξ) = R∗ (p0 + (1 − ξ)p1) (51)

for ξ ∈ {0, 1} and µ(1) = q, µ(0) = 1 − q. Let the constant R∗ in (50) represent the
average recovery for each obligor in the portfolio, which we assume to be the same for
all obligors. We next impose the constraint E [Ri] = R∗ which is necessary in order to
have a calibration of the single-name CDSs that is separate from the calibration of the
common-shock parameters. The condition E [Ri] = R∗ leads to the following constraint on
the parameters q (see in [5] for a detailed derivation)

q < min

(
1,

1

p0
,

1 −R∗

1 −R∗p0

)
. (52)

Furthermore, the constraint E [Ri] = R∗ also implies that p1 = 1−p0

1−q so p1 can be seen as
a function of q and p0. The constraints (52) will be used in our calibration of the CDO
tranches simultaneously with the other constraints for the common shock intensities. In
our calibrations the parameters p0 and R∗ will be treated as exogenously given parameters
where we set R∗ = 40% while p0 can be any positive scalar satisfying p0 <

1
R∗ . The scalar

p0 will give us some freedom to fine-tune our calibrations. A more detailed description of
the constraints for p0, q and p1 are given in [5].

In this subsection we thus combine the stochastic recoveries in (50) with piecewise
constant default intensities as described in Subsection 4.1 so the parameters to be calibrated
will be on the form θ = (λ, q) where λ are the same as in Subsection 4.1. Consequently, using
the same notation as in Subsection 4.1 the parameters θ = (λ, q) are obtained according to

θ = argmin
θ̂

∑

l

(
Sl(θ̂) − S∗

l

S∗
l

)2

(53)

where λ must satisfies the same constraints as in Subsection 4.1 while q must obey (52).
The rest of the notation in (53) are defined as in Subsection 4.1. In Subsection 4.3 we
use the above setting with stochastic recoveries when calibrating this model against two
different CDO data-sets.

Finally, note that if the i.i.d recoveries Ri would follow other distributions than (50)
we simply modify Eeγ(1−Ri) in (44) in Subsection 3.4 but the rest of the computations are
the same. Of course, changing (50) will also imply that the constraints in (52) will no longer
be relevant.

4.3 Calibration Results with Piecewise Constant Default Intensities

In this subsection we calibrate our model against CDO tranches on the iTraxx Europe
and CDX.NA.IG series with maturity of five years. We use the calibration methodology
described in Subsection 4.1 and Subsection 4.2.
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Figure 3: The 3 and 5-year market CDS spreads for the 125 obligors used in the single-name
bootstrapping, for the two portfolios CDX.NA.IG sampled on December 17, 2007 and the
iTraxx Europe series sampled on March 31, 2008. The CDS spreads are sorted in decreasing
order.

Hence, the 125 single-name CDSs constituting the entities in these series are boot-
strapped from their market spreads for T1 = 3 and T2 = 5 using piecewise constant indi-
vidual default intensities on the time intervals [0, 3] and [3, 5]. Figure 3 displays the 3 and
5-year market CDS spreads for the 125 obligors used in the single-name bootstrapping, for
the two portfolios CDX.NA.IG sampled on December 17, 2007 and the iTraxx Europe series
sampled on March 31, 2008. The CDS spreads are sorted in decreasing order.

When calibrating the joint default intensities λ = (λ
(k)
Ij

)j,k for the CDX.NA.IG Se-

ries 9, December 17, 2007 we used 5 groups I1, I2, . . . , I5 where Ij = {1, . . . , ij} for ij =
6, 19, 25, 61, 125. Recall that we label the obligors by decreasing level of riskiness. We use
the average over 3-year and 5-year CDS spreads as a measure of riskiness. Consequently,
obligor 1 has the highest average CDS spread while company 125 has the lowest average
CDS spread. Moreover, the obligors in the set I5 \ I4 consisting of the 64 safest companies
are assumed to never default individually, and the corresponding CDSs are excluded from
the calibration, which in turn relaxes the constraints for λ in (48). Hence, the obligors
in I5 \ I4 can only bankrupt due to a simultaneous default of the companies in the group
I5 = {1, . . . , 125}, i.e., in an Armageddon event. With this structure the calibration against
the December 17, 2007 data-set is very good as can be seen in Table 1. By using stochas-
tic recoveries specified as in (50) and (51) we get a perfect fit of the same data-set. The
calibrated common shock intensities λ for the 5 groups in the December 17, 2007 data-set,
both for constant and stochastic recoveries, are displayed in the left subplot in Figure 4.

Note that the shock intensities λ
(1)
Ij

for the first pillar (i.e. on the interval [0, 3]) follows the
same trends both in the constant and stochastic recovery case, while the shock intensities

λ
(2)
Ij

for the second pillar (i.e. on the interval [3, 5]) has less common trend.
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The calibration of the joint default intensities λ = (λ
(k)
Ij

)j,k for the data sampled
at March 31, 2008 is more demanding. This time we use 18 groups I1, I2, . . . , I18 where
Ij = {1, . . . , ij} for ij = 1, 2, . . . , 11, 13, 14, 15, 19, 25, 79, 125. In order to improve the fit, as
in the 2007-case, we relax the constraints for λ in (48) by excluding from the calibration
the CDSs corresponding to the obligors in I18 \ I17. Hence, we assume that the obligors in
I18 \ I17 never default individually, but can only bankrupt due to an simultaneous default
of all companies in the group I18 = {1, . . . , 125}. In this setting, the calibration of the
2008 data-set with constant recoveries yields an acceptable fit except for the [3, 6] tranche,
as can be seen in Table 1. However, by including stochastic recoveries (50), (51) the fit
is substantially improved as seen in Table 1. Furthermore, in both recovery versions, the
more groups added the better the fit, which explain why we use as many as 18 groups.

Table 1: CDX.NA.IG Series 9, December 17, 2007 and iTraxx Europe Series 9, March 31,
2008. The market and model spreads and the corresponding absolute errors, both in bp
and in percent of the market spread. The [0, 3] spread is quoted in %. All maturities are
for five years.

CDX 2007-12-17: Calibration with constant recovery

Tranche [0, 3] [3, 7] [7, 10] [10, 15] [15, 30]

Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 48.07 254.0 124.0 61.00 38.94

Absolute error in bp 0.010 0.000 0.000 0.000 2.061
Relative error in % 0.0001 0.000 0.000 0.000 5.027

CDX 2007-12-17: Calibration with stochastic recovery

Tranche [0, 3] [3, 7] [7, 10] [10, 15] [15, 30]

Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 48.07 254.0 124.0 61.00 41.00

Absolute error in bp 0.000 0.000 0.000 0.000 0.000
Relative error in % 0.000 0.000 0.000 0.000 0.000

iTraxx Europe 2008-03-31: Calibration with constant recovery

Tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Market spread 40.15 479.5 309.5 215.1 109.4
Model spread 41.68 429.7 309.4 215.1 103.7

Absolute error in bp 153.1 49.81 0.0441 0.0331 5.711
Relative error in % 3.812 10.39 0.0142 0.0154 5.218

iTraxx Europe 2008-03-31: Calibration with stochastic recovery

Tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Market spread 40.15 479.5 309.5 215.1 109.4
Model spread 40.54 463.6 307.8 215.7 108.3

Absolute error in bp 39.69 15.90 1.676 0.5905 1.153
Relative error in % 0.9886 3.316 0.5414 0.2745 1.053
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Figure 4: The calibrated common shock intensities (λ
(k)
Ij

)j,k both in the constant and
stochastic recovery case for the two portfolios CDX.NA.IG sampled on December 17, 2007
(left) and the iTraxx Europe series sampled on March 31, 2008 (right).

The calibrated common shock intensities λ for the 18 groups in the March 2008 data-
set, both for constant and stochastic recoveries, are displayed in the right subplot in Figure 4.
In this subplot we note that for the 13 first groups I1, . . . , I13, the common shock intensities

λ
(1)
Ij

for the first pillar are identical in the constant and stochastic recovery case, and then
diverge quite a lot on the last five groups I14, . . . , I18, except for group I16. Similarly, in the

same subplot we also see that for the 11 first groups I1, . . . , I11, the shock intensities λ
(2)
Ij

for the second pillar are identical in the constant and stochastic recovery case, and then
differ quite a lot on the last seven groups, except for group I13. The optimal parameters q
and p0 used in the stochastic recovery model was given by q = 0.4405 and p0 = 0.4 for the
2007 data set and q = 0.6002 and p0 = 0.4 for the 2008 case.

Let us finally discuss the choice of the groupings I1 ⊂ I2 ⊂ . . . ⊂ Im in our calibrations.
First, for the CDX.NA.IG Series 9, December 17, 2007 data set, we used m = 5 groups
with as always im = n. For j = 1, 2 and 4 the choice of ij corresponds to the number
of defaults needed for the loss process with constant recovery of 40% to reach the j-th
attachment points. Hence, ij · 1−R

n with R = 40% and n = 125 then approximates the
attachment points 3%, 10%, 30% which explains the choice i1 = 6, i2 = 19, i4 = 61. The
choice of i3 = 25 implies a loss of 12% and gave a better fit than choosing i3 to exactly match
15%. Finally, no group was chosen to match the attachment point of 7% since this made
the calibration worse off for all groupings we tried. With the above grouping structure
we got almost perfect fits in the constant recovery case, and perfect fit with stochastic
recovery, as was seen in Table 1. Unfortunately, using the same technique on the market
CDO data from the iTraxx Europe series sampled on March 31, 2008 was not enough to
achieve good calibrations. Instead more groups had to be added and we tried different
groupings which led to the optimal choice rendering the calibration in Table 1. To this end,
it is of interest to study the sensitivity of the calibrations with respect to the choice of the
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groupings on the form I1 ⊂ I2 ⊂ . . . ⊂ Im where Ij = {1, . . . , ij} for ij ∈ {1, 2, . . . ,m} and
i1 < . . . < im = 125 on the March 31, 2008, data set. Three such groupings are displayed in
Table 2 and the corresponding calibration results on the 2008 data set is showed in Table
3.

Table 2: Three different groupings (denoted A,B and C) consisting of m = 7, 9, 13 groups
having the structure I1 ⊂ I2 ⊂ . . . ⊂ Im where Ij = {1, . . . , ij} for ij ∈ {1, 2, . . . ,m} and
i1 < . . . < im = 125.

Three different groupings

ij i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13
Grouping A 6 14 15 19 25 79 125
Grouping B 2 4 6 14 15 19 25 79 125
Grouping C 2 4 6 8 9 10 11 14 15 19 25 79 125

Table 3: The relative calibration error in percent of the market spread, for the three
different groupings A, B and C in Table 2, when calibrated against CDO tranche on iTraxx
Europe Series 9, March 31, 2008 (see also in Table 1).

Relative calibration error in % (constant recovery)

Tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Error for grouping A 6.875 18.33 0.0606 0.0235 4.8411
Error for grouping B 6.622 16.05 0.0499 0.0206 5.5676
Error for grouping C 4.107 11.76 0.0458 0.0319 3.3076

Relative calibration error in % (stochastic recovery)

Tranche [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]

Error for grouping A 3.929 9.174 2.902 1.053 2.109
Error for grouping B 2.962 7.381 2.807 1.002 1.982
Error for grouping C 1.439 4.402 0.5094 0.2907 1.235

From Table 3 we see that in the case with constant recovery the relative calibration
error in percent of the market spread decreased monotonically for the first three thranches
as the number of groups increased. Furthermore, in the case with stochastic recovery the
relative calibration error decreased monotonically for all five tranches as the number of
groups increased in each grouping. The rest of the parameters in the calibration where the
same as in the optimal calibration in Table 1.

Finally, we remark that the two optimal groupings used in Table 1 in the two different
data sets CDX.NA.IG Series 9, December 17, 2007 and iTraxx Europe Series 9, March 31,
2008 differ quite a lot. However, the CDX.NA.IG Series is composed by North American
obligors while the iTraxx Europe Series is formed by European companies. Thus, there is no
model risk or inconsistency created by using different groupings for these two different data
sets, coming from two disjoint markets. If on the other hand the same series is calibrated
and assessed (e.g. for hedging) at different time points in a short time span, it is of course
desirable to use the same grouping in order to avoid model risk.
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4.3.1 The Implied Loss Distribution

After the fit of the model against market spreads we can use the calibrated portfolio param-

eters λ = (λ
(k)
Ij

)j,k together with the calibrated individual default intensities, to study the
credit-loss distribution in the portfolio. In this paper we only focus on some few examples
derived from the loss distribution with constant recoveries evaluated at T = 5 years.
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Figure 5: The implied distribution P [N5 = k] on {0, 1, . . . , ℓ} where ℓ = 125 (top) and
ℓ = 35 (bottom) when the model is calibrated against CDX.NA.IG Series 9, December 17,
2007 and iTraxx Europe Series 9, March 31, 2008.

The allowance of joint defaults of the obligors in the groups Ij together with the
restriction of the most safest obligors not being able to default individually, will lead to
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some interesting effects of the loss distribution, as can be seen in Figures 5 and 6. For
example, we clearly see that the support of the loss-distributions will in practice be limited
to a rather compact set. To be more specific, the upper and lower graphs in Figure 5
indicate that P [N5 = k] roughly has support on the set {1, . . . , 35} ∪ {61} ∪ {125} for the
2007 case and on {1, . . . , 40} ∪ {79} ∪ {125} for the 2008 data-set. This becomes even more
clear in a log-loss distribution, as is seen in the upper and lower graphs in Figure 6.
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Figure 6: The implied log distribution ln(P [N5 = k]) on {0, 1, . . . , ℓ} where ℓ = 125 (top)
and ℓ = 35 (bottom) when the model is calibrated against CDX.NA.IG Series 9, December
17, 2007 and iTraxx Europe Series 9, March 31, 2008.

From the upper graph in Figure 6 we see that the default-distribution is nonzero on
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{36, . . . , 61} in the 2007-case and nonzero on {41, . . . , 79} for the 2008-sample, but the
actual size of the loss-probabilities are in the range 10−10 to 10−70. Such low values will
obviously be treated as zero in any practically relevant computation. Furthermore, the
reasons for the empty gap in the upper graph in Figure 6 on the interval {62, . . . , 124} for
the 2007-case is due to the fact that we forced the obligors in the set I5 \ I4 to never default
individually, but only due to an simultaneous common shock default of the companies in
the group I5 = {1, . . . , 125}. This Armageddon event is displayed as an isolated nonzero
‘dot’ at default nr 125 in the upper graph of Figure 6. The gap on {80, . . . , 124} in the 2008
case is explained similarly due to our assumption on the companies in the set I19 \I18. Also
note that the two ‘dots’ at default nr 125 in the top plot of Figure 6 are manifested as spikes
in the upper graph displayed in Figure 5. The shape of the multimodal loss distributions
presented in Figure 5 and Figure 6 are typical for models allowing simultaneous defaults,
see for example Figure 2, page 59 in [13] and Figure 2, page 710 in [22].

4.4 Calibration Methodology and Results with Stochastic Intensities

We now consider that pre-specified group intensities are stochastic CIR processes given as in
Example 2.7. For simplicity, a and c are fixed a priori and we assume a piecewise-constant
parameterization of every mean-reversion function bY (t) (see expression (13)), so for every
k = 1 . . .M,

bY (t) = b
(k)
Y , t ∈ [Tk−1, Tk).

where T0 = 0. The time grid (Tk) is the same than the one used in the previous section,
i.e., M = 2, T1 = 3, T2 = 5. It corresponds to the set of standard CDS maturities which
are lower or equal to the maturity of the fitted CDO tranches. In order to reduce the
number of parameters at hands, we consider that, for every group Y ∈ Y, the starting point
of the corresponding intensity process is given by its first-pillar mean-reversion parameter,

i.e., XY
0 = b

(1)
Y . This specification guarantees that there are exactly the same number

of parameters to fit than in Subsection 4.1 (piecewise-constant intensities and constant
recovery). All other aspects of the model are the same as in Subsection 4.1. So, we
reproduce the same calibration methodology except that now individual mean-reversion

parameters {b(k)
i : i = 1, . . . , n and k = 1, 2} play the role of former parameters {λ(k)

i : i =

1, . . . , n and k = 1, 2} and shock parameters {b(k)
Ij

: j = 1, . . . ,m and k = 1, 2} play the role

of former parameters {λ(k)
Ij

: j = 1, . . . ,m and k = 1, 2}.
In order to construct a tractable CDS and CDO pricer, the “building blocks” survival

group probabilities

E

[
exp

(
−
∫ t

0
XY

u du

)]

have to be computed very efficiently. Fortunately, for CIR processes XY , the latter quan-
tities are solution of related ODEs which can be solved analytically.

We now study the calibration performance of this model specification. Playing with
different values of parameters a (speed of mean-reversion) and c (volatility) may slightly
affect the quality of the fit. We consider thereafter that a = 3 and c = 0.5 which render our
best results.
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Table 4: CDX.NA.IG Series 9, December 17, 2007. The market and model spreads and the
corresponding absolute errors, both in bp and in percent of the market spread. The [0, 3]
spread is quoted in %. All maturities are for five years.

CDX 2007-12-17: Calibration with constant recovery

Tranche [0, 3] [3, 7] [7, 10] [10, 15] [15, 30]

Market spread 48.07 254.0 124.0 61.00 41.00
Model spread 50.37 258.01 124.68 61.32 41.91

Absolute error in bp 2.301 4.016 0.684 0.327 0.912
Relative error in % 4.787 1.581 0.552 0.536 2.225

As can be seen in Table 4, we obtain a correct fit for CDX 2007-12-17 even in the
case where no name is removed from the calibration constraints. Here, we use 5 groups
I1, I2, . . . , I5 where Ij = {1, . . . , ij} for ij = 8, 19, 27, 102, 125. Note that when the last
group I5 is retrieved from the calibration constraints, we are able to obtain a perfect fit as
observed with the piecewise constant intensity model with stochastic recovery.

For iTraxx Europe 2008-03-31, the calibration results are not improved with respect
to the piecewise-constant intensity model with constant recovery.

4.5 Min-Variance Hedging Deltas

In this subsection we present some numerical results illustrating performance of the min-
variance hedging strategies given in Proposition 3.2. We here only focus on hedging strate-
gies for the data of CDX.NA.IG Series 9 on December 17, 2007 calibrated in the constant
recovery model presented in Subsection 4.1.

The aim of this subsection is to analyze the composition of the hedging portfolio at
time t = 0 (the calibration date) when standardized CDO tranches are hedged with a group
of d single-name CDSs, which are included in the underlying CDS index. Since no spread
factor X is used in the model, Proposition 3.2 then implies that the min-variance hedging
ratios at time t = 0 is given by ζva(0,H0) = (u,v)(v,v)−1(0,H0) where

(u,v) =
∑

Y ∈Y

λY (0)∆uY (∆vY )T and (v,v) =
∑

Y ∈Y

λY (0)∆vY (∆vY )T.

Hence, computing the min-variance hedging ratios involves a summation of the “jump differ-
entials” λY (0)∆uY (∆vY )T and λY (0)∆vY (∆vY )T over all possible triggering events Y ∈ Y
where Y = {{1}, . . . , {n}, I1, . . . , Im}.

In the calibration of the CDX.NA.IG Series 9, we usedm = 5 groups I1, I2, . . . , I5 where
Ij = {1, . . . , ij} for ij = 6, 19, 25, 61, 125 and the obligors have been labeled by decreasing
level of riskiness. At the calibration date t = 0 associated with December 17, 2007, no name
has defaulted in CDX Series 9 so we set H0 = 0. In our empirical framework, the intensities
λY (0), Y ∈ Y are computed from the constant default intensities λi that fit market spreads
of 3-year maturity CDSs and from the 3-year horizon joint default intensities λIj calibrated
to CDO tranche quotes. The terms ∆uY (0,H0) and ∆vY (0,H0) corresponds to the change
in value of the tranche and the single-name CDSs, at the arrival of the triggering event
affecting all names in group Y . Recall that the cumulative change in value of the tranche
is equal to

∆uY (0,H0) = La,b(H
Y
0 ) − La,b(H0) + u(0,HY

0 ) − u(0,H0)
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where HY
0 is the vector of {0, 1}n such that only the components i ∈ Y are equal to one.

Hence, the tranche sensitivity ∆uY (0,H0) includes both the protection payment on the
tranche associated with the default of group Y and the change in the ex-dividend price
u of the tranche. Note that the price sensitivity is obtained by computing the change in
the present value of the default leg and the premium leg. The latter quantity involves the
contractual spread that defines cash-flows on the premium leg. As for CDX.NA.IG Series
9, the contractual spreads were equal to 500 bps, 130 bps, 45 bps, 25 bps and 15 bps for
the tranches [0-3%], [3-7%], [7-10%], [10-15%] and [15-30%]. We use the common-shock
interpretation to compute u(0,HY

0 ) and u(0,H0) with the convolution recursion pricing
scheme detailed in Subsection 3.3. More precisely, using the same notation as in Subsec-
tion 3.3, the CDO tranche price u(0,HY

0 ) (resp. u(0,H0)) is computed using the recursion
procedure with Z = Nn \ Y (resp. Z = Nn). We let i1, . . . id be the CDSs used in the
min-variance hedging and assume that they all are initiated at time t = 0. Hence, the
market value at t = 0 for these CDSs are zero. As a result, when group Y defaults simul-
taneously, the change in value ∆vY (0,H0) for buy-protection positions on these CDSs is
only due to protection payment associated with names in group Y . Hence, for one unit
of nominal exposure on hedging CDSs, the corresponding vector of sensitivities is equal to
∆vY (0,H0) = ((1 − R)1i1∈Y , . . . , (1 − R)1id∈Y )T where the recovery rate R is assumed to
be constant and equal to 40%.

Table 5: The names and CDS spreads (in bp) of the six riskiest obligors used in the hedging
strategy displayed by Figure 7.

Company (Ticker) CCR-HomeLoans RDN LEN SFI PHM CTX

3-year CDS spread 1190 723 624 414 404 393

Figure 7 displays the nominal exposure for the d most riskiest CDSs when hedging one
unit of nominal exposure in a CDO by using the min-variance hedging strategy in Proposi-
tion 3.2. We use d = 3, 4, 5 and d = 6 in our computations. Furthermore, Table 5 displays
the names and sizes of the 3-year CDS spreads used in the hedging strategy. Each plot in
Figure 7 should be interpreted as follows: in every pair (x, y) the x-component represents
the size of the 3-year CDS spread at the hedging time t = 0 while the y-component is
the corresponding nominal CDS-exposure computed via Proposition 3.2 using the d riskiest
CDSs. The graphs are ordered from top to bottom, where the top panel corresponds to
hedging with the d = 3 riskiest CDS and the bottom panel corresponds to hedging with the
d = 6 riskiest names. Note that the x-axes are displayed from the riskiest obligor to the
safest. Thus, hedge-sizes y for riskier CDSs are aligned to the left in each plot while y-values
for safer CDSs are consequently displayed more to the right. In doing this, going from the
top to the bottom panel consists in observing the effect of including new safer names from
the right part of the graphs. We have connected the pairs (x, y) with lines forming graphs
that visualizes possible trends of the min-variance hedging strategies for the d most riskiest
CDSs. For example, when the three riskiest names are used for hedging (top panel), we
observe that the amount of nominal exposure in hedging instruments decreases with the
degree of subordination, i.e., the [0-3%] equity tranche requires more nominal exposure in
CDSs than the upper tranches.
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Figure 7: Min-variance hedging strategies associated with the d riskiest CDSs, d = 3, 4, 5, 6
for one unit of nominal exposure of different CDO tranches in a model calibrated to market
spreads of CDX.NA.IG Series 9 on December 17, 2007.
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Note moreover that the min-variance hedging portfolio contains more CDSs on names
with lower spreads. When lower-spread CDSs are added in the portfolio, the picture remains
almost the same for the 3 riskiest names. For the remaining safer names however, the picture
depends on the characteristics of the tranche. For the [0-3%] equity tranche, the quantity
of the remaining CDSs required for hedging sharply decrease as additional safer names are
added. One possible explanation is that adding too many names in the hedging strategy
will be useless when hedging the equity tranche. This is intuitively clear since one expects
that the most riskiest obligors will default first and consequently reduce the equity tranche
substantially, explaining the higher hedge-ratios for riskier names, while it is less likely that
the more safer names will default first and thus incur losses on the first tranche which
explains the lower hedge ratios for the safer names. We observe the opposite trend for
the senior (safer) tranches: adding new (safer) names in the hedging portfolio seems to
be useful for “non equity” tranches since the nominal exposure required for these names
increases when they are successively added.

Figure 8 and 9 display min-variance hedging strategies when hedging a standard
tranche with the 61 riskiest names, i.e., all names excepted names in group I5 \I4. Contrary
to Figure 7, these graphs allow to visualize the effect of the “grouping structure” on the
composition of the hedging portfolio. In this respect, we use different marker styles in order
to distinguish names in the different disjoint groups I1, I2\I1, I3\I2, I4 \I3. As one can see,
the min-variance hedging strategies are quite different among tranches. Moreover, whereas
nominal exposures required for hedging are clearly monotone for names belonging to the
same disjoint group, this tendency is broken when we consider names in different groups.
This suggests that the grouping structure has a substantial impact on the distribution of
names in the hedging portfolio. For the equity tranche, we observe in Figure 7 that less
safer-names are required for hedging. This feature is retained in Figure 8 when we look at
names in specific disjoint groups. Indeed, names in a given disjoint group are affected by
the same common-shocks which in turn affect the equity tranche with the same severity.
The only effect that may explain differences in nominal exposure among names in the same
disjoint group is spontaneous defaults: names with wider spreads are more likely to default
first, then we need them in greater quantity for hedging than names with tighter spreads.

Note that nominal exposure in hedging CDS even becomes negative for names within
groups I2 \ I1 and I4 \ I3 when spreads are low. However, in Figure 8 we observe that,
for the equity tranche, some of the riskiest names in I4 \ I3 are more useful in the hedging
than some of the safest names in group I1, which may sound strange at a first glance, given
that the credit spread of the latter is much larger than the credit spread of the former.
Recall that the equity tranche triggers protection payments corresponding to the few first
defaults, if these occur before maturity. Even if names in group I4\I3 have a very low default
probability, the fact that they can affect the tranche at the arrival of common-shocks I4 or
I5 makes these names appealing for hedging because they are less costly (they require less
premium payments) than names in I1.

Figure 8 suggests that names with the lowest spreads should be ineffective to hedge
the [0-3%] and the [3-7%] tranches. As can be seen in Figure 9, this is the contrary for the
other tranches, i.e., the amount of low-spread names in the hedging portfolio increases as
the tranche becomes less and less risky. For the [15-30%] super-senior tranche, we can see
on the lowest graph of Figure 9 that the safer a name is, the larger the quantity which is
required for hedging. Furthermore, Figure 9 also shows that in a consistent dynamic model
of portfolio credit risk calibrated to a real data set, the [15-30%] super-senior tranche has
significant (in fact, most of its) sensitivity to very safe names with spreads less than a few
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dozens of bp-s. For this tranche it is actually likely that one could improve the hedge by
inclusion of even safer names to the set of hedging instruments, provided these additional
names could also be calibrated to. Recall that on the data of CDX.NA.IG Series 9 on
December 17, 2007, we calibrated our model to the 64 safest names in the portfolio.
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Figure 8: Min-variance hedging strategies when hedging one unit of nominal exposure in
the [0-3%] equity tranche (top) and the [3-7%] mezzanine tranche (bottom) using the d
riskiest CDSs, d = 61 (all names excepted names in group I5 \ I4) for one unit of nominal
exposure.
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Figure 9: Min-variance hedging strategies when hedging one unit of nominal exposure in
the [7-10%] tranche (top), the [10-15%] tranche (middle) and the [15-30%] tranche (bottom)
with the d riskiest CDSs, d = 61 (all names excepted names in group I5 \ I4).
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A Appendix

A.1 Model Construction

The point process H with intensity depending on the factor process X in (3), is constructed
by an X-related change of probability measure, starting from an independent continuous-
time Markov chain. So, given a factor process X as in (1), let H denote a continuous-time
Markov chain with P̂-intensity one of transition from k to l, for every l 6= k. Let then the
P̂-martingale9 Γ be defined by Γ0 = 1 and, for t ∈ [0, T ],

dΓt

Γt−
=

∑

l∈{0,1}n

(λ(t,Xt,Ht−, l) − 1)
(
dNt(Ht−, l) − 1l 6=Ht−dt

)

=
∑

l 6=Ht−

(λ(t,Xt,Ht−, l) − 1) (dNt(Ht−, l) − dt),

where the functions λ(t,x,k, l) are those of (3), and where Nt(k, l) is the point process with
P̂-intensity 1{k=Ht−,l 6=k} counting the transitions of H from k to l, for every k, l ∈ {0, 1}n.

Defining the measure P by dP

dP̂
= ΓT , it is then standard to check10 that the point process H

has intensity (3) under P. To be precise the intensity of Nt(k, l) is given by (3), with respect
to the model filtration F = F (W,H), and the probability measure P. Moreover, process W
remains a Brownian motion under P, the measure-change preserves Markov property of X
with respect to filtration F , and the generator of X under the new measure is still At.

Note that since martingale representation holds under P̂,11 martingale representation
also holds under the equivalent measure P.

Remark A.1 The prevailing risk neutral probability measure in the paper is P, whereas
the auxiliary measure P̂ is only a mathematical tool used for constructing the model, with
no particular financial interpretation.

A.1.1 Proof of Lemma 2.2

By definition of the set-event indicator process HZ , where Z ∈ Nn, one has in our model,
for t ∈ [0, T ],

dHZ
t =

∑

{k,l∈{0,1}n ; supp(l)\supp(k)=Z}

dNt(k, l).

9Under suitable regularity and growth assumptions on the model coefficients, see Ethier and Kurtz [23]
or Crépey [18].

10See for instance the proof of Lemma 8 in Crépey [18], or Lemma 7.5 in the online pre-print version of
[18].

11In virtue of standard arguments, see for instance Chapter 10 of [30].
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So, by (3),

ℓZt =
∑

{k,l∈{0,1}n ; supp(l)\supp(k)=Z}

1{Ht−=k}

∑

{Y ∈Y ;kY =l}

λY (t,XY
t )

=
∑

{l∈{0,1}n ; supp(l)\supp(Ht−)=Z}

∑

{Y ∈Y ;HY
t−=l}

λY (t,XY
t )

=
∑

{Y ∈Y ;supp(HY
t−)\supp(Ht−)=Z}

λY (t,XY
t )

=
∑

{Y ∈Y ;Yt=Z}

λY (t,XY
t ).

A.1.2 Proof of Proposition 2.3

Observe that [MY ,MZ ] = 0 for Y 6= Z. One thus has the following Itô formula (see for
instance Theorem 3.89 page 109 of Jacod [29] or Crépey [18])

du(t,Xt,Ht) =
(
∂t + Ac

t

)
u(t,Xt,Ht)dt +∇u(t,Xt,Ht)σ(t,Xt)dWt

+
∑

Z∈Nn

δuZ(t,Xt,Ht−)dHZ
t

(54)

where

Ac
tu(t,x,k) =

∑

Y ∈Y

(
bY (t, xY )∂xY

u(t,x,k) +
1

2
σ2

Y (t, xY )∂2
x2

Y
u(t,x,k)

)
. (55)

Moreover, the structure (4) of the set intensities implies that
∑

Z∈Nn

δuZ(t,Xt,Ht−)dHZ
t =

∑

Z∈Zt

δuZ(t,Xt,Ht−)dHZ
t ,

which we may further rewrite as
∑

Z∈Zt

ℓZ(t,Xt,Ht−)δuZ(t,Xt,Ht−)dt

+
∑

Z∈Zt

(
δuZ(t,Xt,Ht−)dHZ

t − ℓZ(t,Xt,Ht)δu
Z(t,Xt,Ht)dt

)
.

Here the second term is
∑

Z∈Zt
δuZ(t,Xt,Ht−)dMZ

t , whereas one has by (4) in the first
term:

∑

Z∈Zt

ℓZ(t,Xt,Ht−)δuZ(t,Xt,Ht−)

=
∑

Z∈Zt

∑

Y ∈Y ;Yt=Z

λY (t,XY
t )δuZ(t,Xt,Ht−)

=
∑

Y ∈Y

λY (t,XY
t )δuY (t,Xt,Ht−)

using in the last identity that

δuZ(t,x,k) = δuY (t,x,k),

for every t,x,k, Y and Z such that Yt = Z. Thus (54) indeed reduces to (6).
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A.2 Markov Properties

Let us first recall the following local martingale characterization of a Markov process with
generator L. We work under the standing assumption that uniqueness holds for the solution
of the martingale problem defined by L.

Lemma A.2 (See, e.g., Ethier and Kurtz [23]) Let X be a right-continuous process

with Euclidean state space E, adapted to some filtration F . For X to be an F- Markov

process with infinitesimal generator L, it is necessary and sufficient that, for every real-

valued function ϕ in the domain of L,

ϕ(t,Xt) −
∫ t

0

(
∂s + Ls

)
ϕ(s,Xs)ds (56)

is an F- local martingale.

We shall use this characterization informally in this paper, ignoring the technicalities related
to the notion of domain of an operator. Furthermore, throughout the paper we work
under the standing assumption that the valuation equation associated to any infinitesimal
generator that we use, is well posed in an appropriate functional space. Finally, we assume
that uniqueness holds for the solution of the related martingale problem. The reader is
referred to Ethier and Kurtz [23] for more details and for specific conditions which can be
postulated in these regards.

A.2.1 Proof of Proposition 2.9

(i) In view of the Itô formula (6), (X,H) solves the martingale problem with generator A
in the filtration F , and is thus an F-Markov process.
(ii) By application of the local martingale characterization of an F-Markov process (X,H)
with generator A to test-functions of the form u(t,x,k) = vi(t, xi, ki), we get the local
martingale characterization of an F- Markov process with generator Ai for (Xi,H i). Con-
sidering vi(t, xi, ki) = 1ki=1 therein yields that M i in (16) is an F-local martingale.
(iii) We denote tZ = maxi∈Z ti, for every Z ∈ Nn. Formula (17) follows directly from
Lemma A.3 below since one has, for every t, t1, . . . , tn ≥ 0,

P (τ1 > t1, . . . , τn > tn | Ft) =
∑

Z∈Nn

1{suppc(Ht)=Z}P (τ1 > t1, . . . , τn > tn | Ft)

=
∑

Z∈Nn

(
∏

i/∈Z

1ti<τi≤t

)

E

{
∏

i∈Z

1τi>ti∨t

∣∣∣Ft

}

and

1{ti<τi , i∈supp(Ht)}E

{
exp

(
−
∑

Y ∈Y

ΛY
t,θY

t

) ∣∣∣Xt

}

=
∑

Z∈Nn

1{suppc(Ht)=Z}1{ti<τi , i/∈Z}E

{

exp
(
−
∑

Y ∈Y

ΛY
t,θY

t

) ∣∣∣Xt

}

=
∑

Z∈Nn

(
∏

i/∈Z

1ti<τi≤t

)(
∏

i∈Z

1τi>t

)

E

{

exp
(
−
∑

Y ∈Y

ΛY
t,tY ∩Z

) ∣∣∣Xt

}

.

Given (17), the other formulas of part (iii) in Proposition 2.9 are straightforward.
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Lemma A.3 For every t, t1, . . . , tn ≥ 0, and for every Z ∈ Nn, one has,

E

{∏
i∈Z 1τi>ti∨t

∣∣∣Ft

}
=
(∏

i∈Z 1τi>t

)
E

{
exp

(
−∑Y ∈Y ; Y ∩Z 6=∅ ΛY

t,tY

) ∣∣∣Xt

}
. (57)

Proof. It is enough to prove that for ti ≥ t one has, for every Z ∈ Nn,

E

{
∏

i∈Z

1τi>ti

∣∣∣Ft

}

=

(
∏

i∈Z

1τi>t

)

E

{

exp
(
−
∑

Y ∈Y

ΛY
t,tY ∩Z

) ∣∣∣Xt

}

. (58)

Indeed, for general ti, applying (58) to the ti ∨ t yields

E

{
∏

i∈Z

1τi>ti∨t

∣∣∣Ft

}
=

(
∏

i∈Z

1τi>t

)
E

{
exp

(
−
∑

Y ∈Y

ΛY
t,maxi∈Y ∩Z ti∨t

) ∣∣∣Xt

}

=

(
∏

i∈Z

1τi>t

)
E




exp



−
∑

Y ∈Y ; Y ∩Z 6=∅

ΛY
t,maxi∈Z ti




∣∣∣Xt




 ,

which is (57). Let us thus show (58) for ti ≥ t, by induction on the cardinality d of Z. For
d = 0, the result is trivial. Assuming the result at rank d− 1 ≥ 0, let us show the result at
rank d. Let us suppose, without loss of generality, that Z = Nd and t1 ≥ t2 ≥ · · · ≥ td ≥ t.

One then needs to prove that, using the notation J l = 1 −H l for every l ∈ Nd,

E(

d∏

l=1

J l
tl
| Ft) =

( d∏

l=1

J l
t

)
E

{
exp

(
−
∑

Y ∈Y

ΛY
t,tNd∩Y

) ∣∣∣Xt

}
. (59)

To establish (59) one first observes that

E(
∏d

l=1 J
l
tl
| Ft) = E

{
Jd

td
E

{∏d−1
l=1 J

l
tl

∣∣∣Ftd

} ∣∣∣Ft

}
, (60)

where by the induction hypothesis at rank d − 1 the inner conditional expectation can be
represented as

(∏d−1
l=1 J

l
td

)
E

{
exp

(
−∑Y ∈Y ΛY

td,tNd−1∩Y

) ∣∣∣Xtd

}
=
(∏d−1

l=1 J
l
td

)
v(td,Xtd) (61)

for a suitable function v = v(t,x) over [0, td−1] × R
Y , by the Markov property of X. Here

the upper bound td−1 for the domain of definition of the function v follows from the fact
that td ≤ td−1 ≤ tNd−1∩Y , for every Y ∈ Y with Nd−1 ∩ Y 6= ∅. Inserting (61) into (60)
yields by the Markov property of (X,H) that

E(

d∏

l=1

J l
tl
| Ft) = E

{
( d∏

l=1

J l
td

)
v(td,Xtd)

∣∣∣Ft

}

= u(t,Xt,Ht),

for a function u = u(t,x,k) over [0, td] × R
Y × {0, 1}n characterized by:






u(td,x,k) =
( d∏

l=1

(1 − kl)
)
v(td,x), x = (xY )Y ∈Y , k = (k1, . . . , kn) ∈ {0, 1}n

(
∂t + At

)
u(t,x,k) = 0, t < td, x = (xY )Y ∈Y , k ∈ {0, 1}n.

(62)
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One finally shows that the RHS in (59) admits a representation of the form
(∏d

l=1 J
l
t

)
w(t,Xt),

where the function ũ(t,x,k) =
(∏d

l=1(1− kl)
)
w(t,x) solves (62). By our standing assump-

tion in this paper equation (62) has a unique solution. Thus ũ = u, which proves (59).
Since X is Markov with generator A (cf. (i)), the conditional expectation in the RHS

of (59) can be represented as w(t,Xt), for a deterministic function w = w(t,x) over the
domain [0, td] × R

Y . In order to get the analytic characterization of w, first note that for
every Y ∈ Y, one has:

ΛY
td,tNd−1∩Y

= ΛY
td,tNd∩Y

= ΛY
td,tNd∩Y

.

This yields the terminal condition w(td,x) = v(td,x), x = (xY )Y ∈Y . One further has by an
application of the Feynman-Kac formula that (see, e.g., Jeanblanc et al. [30])

(
∂t +At

)
w(t,x) =

( ∑

Y ∈Y ; Y ∩Z 6=∅

λY (t, xY )
)
w(t,x), t < td, x = (xY )Y ∈Y .

As a result the function w = w(t,x) is the solution on [0, td] × R
Y to the following Kol-

mogorov pricing PDE:





w(td,x) = v(td,x), x = (xY )Y ∈Y(
∂t +At

)
w(t,x) =

( ∑

Y ∈Y ;Y ∩Z 6=∅

λY (t, xY )
)
w(t,x), t < td, x = (xY )Y ∈Y .

(63)

Denoting ũ(t,x,k) =
(∏

l∈Nd
(1−kl)

)
w(t,x), an application of the operator At of (7) yields:

(
∂t + At

)
ũ(t,x,k) =

( ∏

l∈Nd

(1 − kl)
)(
∂t +At

)
w(t,x) + w(t,x) ×

×
∑

Y ∈Y

λY (t, xY )
(( ∏

l∈Nd

(1 − kY
l )
)
−
∏

l∈Nd

(1 − kl)
)
, (64)

where we set, for Y ∈ Y and l ∈ Nd,

kY
l =

{
1, Y ∋ l,

kl, else.

Therefore
∑

Y ∈Y

λY (t, xY )
(( ∏

l∈Nd

(1 − kY
l )
)
−
∏

l∈Nd

(1 − kl)
)

= −
∏

l∈Nd

(1 − kl)
∑

Y ∈Y ;Y ∩Nd 6=∅

λY (t, xY ). (65)

Plugging (63) and (65) in the RHS of (64) yields that
(
∂t + At

)
ũ(t,x,k) = 0. Finally ũ

solves (62), which finishes the demonstration. 2

A.2.2 Proof of Proposition 3.1

Given a function f = f(t, y), let f(tj−, x) be a notation for the formal limit

lim
(t,y)→(tj ,x) with t<tj

f(t, y). (66)

In view of the Markov properties of the model gathered in Proposition 2.9, the following
lemma holds in virtue of the Feynman-Kac formula.12

12See, e.g., Jeanblanc et al. [30].
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Lemma A.4 (i) Given real numbers φi and ψi, one has E[φi

∑
t<tj≤T (1−H i

tj )+ψiH
i
T |Ft] =

(1 −H i
t)vi(t,X

i
t) + ψiH

i
t , where the pre-default function vi(t, xi) solves the following Kol-

mogorov equation: vi(T, xi) = 0, xi ∈ R, and for j decreasing from p to 1:

• At t = tj,

vi(tj−, xi) = vi(tj, xi) + φi, xi ∈ R, (67)

• On the time interval [tj−1, tj),

(
∂t +Ai

t

)
vi(t, xi) + λi(t, xi)ψi = 0, xi ∈ R. (68)

(ii) Given real-valued functions φ(k) and ψ(k), one has E[
∑

t<tj≤T φ(Htj ) + ψ(HT )|Ft] =

w(t,Xt,Ht) , where the function w(t,x,k) is the solution to the following Kolmogorov pric-

ing PDE system: w(T,x,k) = ψ(k), x = (xY )Y ∈Y , k ∈ {0, 1}n, and for j decreasing from

p to 1:

• At t = tj,

w(tj−,x,k) = w(tj ,x,k) + φ(k), x = (xY )Y ∈Y , k ∈ {0, 1}n, (69)

• On the time interval [tj−1, tj),

(
∂t + At

)
w(t,x,k) = 0, x = (xY )Y ∈Y , k ∈ {0, 1}n. (70)

Applying this Lemma with

ψi = (1 −Ri), φi = −Sih

in part (i) and

ψ = La,b, φ = −Sh
(
b− a− La,b

)

in part (ii), establishes the first lines in identities (24) and (25). Regarding the latter, note
that the ex-dividend pricing function u(t,k,x) in (25), is provided by w(t,k,x) − La,b(k)
here.

Moreover, in the filtration F = FW,H, a martingale can only jump at totally unpre-
dictable stopping times. In particular, the cumulative value processes cannot jump at the
fixed times tj . Given the first lines in (24) and (25), the second lines then readily follow
using the Itô formula (6).
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