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ABSTRACT 

We consider hypothesis testing problems arising in e.g. the context of comparing k 

treatments with a control. The case of equi-correlated estimates is mainly discussed, 

although also unequal correlated estimates (e.g. unequal sample sizes for the 

treatments, when compared to a control treatment) are mentioned briefly. So called step 

down test procedures are compared with step up test procedures, with respect to power 

functions. Comparisons of rejected null hypotheses are also performed. No practical 

differences in performances between step up and step down test procedures could be 

found for finite sample sizes. 

1. INTRODUCTION 

Let's assume a standard normal theory linear model setting. Consider parameters 
"" " 81,82, ... ,8k, k;a:2. Further, let 81,82, ... ,8k be unbiased least squares estimates of the 

parameters 81,82, ... ,8k. They are assumed to be jointly normally distributed with 

variance var(8j)=o2,;f and correlation COrr(8j,8j)=Pjj' for i,j=1, ... ,k. Also, let the correlation 

coefficients have a product form Pjj=AjAj. Further we have {t~ for i=1, ... , k, and {pjjl for 
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i,j=1, ... ,k, are known constants defined by the design. 0 2 is the unknown error variance. 

Let S2 be an unbiased estimate of 0 2 with v df. Then vS2/02 is distributed as a ~ variate, 
"-

independent of 8j. Finally let ~ be the vector (81,82, ... ,8k). 

One example of this setting is comparison of k treatment means with a control 

mean in a one-way layout with no observations in the control group and n, observations 

for each of the treatment groups, where the groups are independent. Then 

and 'tF = I/nj +I/no' i=1, ... ,k. Mostly we are concerned with the equi-correlated case, 

where all estimates are correlated with a common correlation coefficient. In this 

example, clearly this is equivalent to the balanced design with nj=n, for i=1, ... ,k, which 

also gives that p=",2. The unbalanced design is then identical to the case when the 

" " correlation between two estimates, corr(8j,8j)=pjj' are unequal (i.e. PWo!p). 

The parameters of interest are 8j=llrllo' The hypotheses are Hj:8j=O vs. Aj: 8j>O. 

The test statistics used are (t1'~' ... ,tk), where tj=O/S't, i=1, ... ,k. This set of test statistics 

are used in the two stepwise test procedures discussed in this paper. H1,H2, ... ,Hk are 

labelled so that the statistics tj are ordered by increasing value t1<t2< ... <tk. The multiple 

test procedure's critical constants satisfy the monotonicity condition C1<C2< ... <Ck<OO, 

where cj is the critical constant to be used with ~. 

The step down test procedure starts by testing if any hypotheses could be rejected. 

If tk is sufficiently large, Hk is rejected, and the procedure continues by testing if Hk-1 and 

so on. If any hypothesis is not rejected, then all of the remaining hypotheses including 

this hypothesis are accepted. The step up procedure starts by testing the hypothesis 

corresponding to t1, H1, the least significant test statistic. The procedure continues by 

testing H2 only if H1 was not rejected, and so on. The procedure stops when a hypothesis 

was rejected. This and all not yet tested hypotheses are then rejected. 
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2. STEP UP AND STEP DOWN MULTIPLE TEST PROCEDURES 

Multiple test procedures are procedures which take into account for possible 

multiplicity effects. Such effects could result from applying many tests to the same data 

material. If all tests are performed by applying each test separately at significance level 

a, the resulting risk to reject one or more true hypotheses could well exceed a. Multiple 

test procedures are aiming to control the multiple significance level at some prechoosen 

level. The multiple level of signicance is defined as the risk to reject one or more true 

hypotheses, which ever and how many they are. 

Dunnet (1955) suggested a single step multiple test procedure for the case of 

comparing k treatments with a control treatment. Equi-correlated data was assumed. 

Later this procedure was refined by Marcus et al (1976), by using the concept of closed 

test procedures (Gabriel, 1969). They showed that the proposed test procedure was more 

powerful than the single step version. This general procedure was shown to be 

equivalent to the step down test procedure by Holm (1977). Naik (1975) proposed a step 

down test procedure for the special case of k comparisons with a control treatment. This 

problem could also be regarded as a selection problem (see e.g. Gupta and Sobel 1958). 

This is not treated further in this paper. 

The step down multiple test procedure starts by testing the hypothesis 

corresponding to the most significant test statistic and continues by testing the 

hypothesis corresponding to the next most significant test statistic. The procedure stops 

the first time a hypothesis is not rejected. All the previously hypotheses are then 

rejected. More specifically the step down procedure is as follows: Order the test 

statistics, t(1)<t(2)< ... <t(k)' and its corresponding hypotheses H(1),H(2)' ... ,H(k)' Reject any 

H(i) iff HG) is rejected for j=k, ... ,i+1 and t(i)~Ci' This procedure controls the multiple level 

at a prechosen level a. 

The upper a point of the distribution of max Ti, the maximum of T1,T2, ... ,Tm, 

which have am-variate t-distribution with v degrees of freedom and a common 

correlation coefficient p, for m=1, ... ,k, are used to determine the critical test constants 

c~=t:,~,p for the step down test procedure. The corresponding two-sided procedure 
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exists. Bechhofer and Dunnet (1988) has published tables with critical constants for 

different m, a, v and p. 

These tables are for the case of balanced designs, i.e. a common p for all test 

statistics. For the unbalanced case with arbitrary Pjj'S, a computer program (see Dunnet, 

1985 and Dunnet & Tamhane 1991) is necessary to obtain critical values, because of the 

large number of different possible configurations with Pjj's. 

The step up multiple test procedure, proposed in Dunnet and Tamhane (1992), 

goes as follows: Start to test the hypothesis corresponding to the the least significant test 

statistic, t1. If this hypothesis, H1, is not rejected proceed to test hypothesis 

corresponding to the the next least significant test statistic, t2. The procedure stops the 

first time a Hj is rejected. This Hj and all remaining Hj is then rejected. This procedure 

controls the multiple significance level at a prechosen a-level. 

The critical constants for the step up procedure, developed by Dunnet & Tamhane 

(1991), is harder to determine than for the step down procedure, where the critical 

constants for different values of m can be computed independently of each other. Critical 

constants for the step-up procedure are determined by solving the following equation 

recursively for cm given c1' ... ,cm_1: 

for m = 1, ... ,k. T l' T 2' ... ,T m have a central m -variate t -distribution with v df and 

correlation matrix Rm, which is the correlation matrix corresponding to the m smallest t 

test statistics. (T1,T2, ... ,Tm)«C1,C2, ... ,cm) denotes that T(1)<C(1)' T(2)<C(2)'''' ,T(m)<c(m)' 

where T(j) and c(j) are the ordered Tj and cj. These Cj'S are also assumed to satisfy the 

monotonicity condition, although it has not been possible to show analytically for m>2. 

Dunnet & Tamhane (1992) conjectures that the condition is satisfied, and support the 

conjecture by numerical computations for ms8 and a=O.05. Values of critical constants 

are tabulated in Dunnet & Tamhane (1992). It is comparatively easy to calculate these 

Cj'S if the correlation between all tj and tj are equal. If not, the computing of the cj would 

also depend on the observed ordering among the test statistics. This requires the 
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solution of an equation involving an integral in multiple dimensions, which requires a 

very difficult numerical integration. These computations are required to repeat for each 

problem. Dunnet & Tamhane (1994) proposes two different approximate solutions to the 

case when PWl!p. One is to replace the unequal correlation coefficients by their arithmetic 

averages, and then using the tables for the equal correlation case. Conjectures are made 

that this type of approximation results in conservative critical limits, if the assumption 

about product structure for the Pij'S, are true. This has not yet been been proven by 

analytical results. Some calculations made by the author indicates that the approximate 

critical limits estimates the true limits with a surprisingly good precision, despite designs 

which are quit unbalanced. 

3. COMPARING MULTIPLE TEST METHODS 

In general, it is a difficult problem to compare different multiple test procedures. 

There exists no satisfying general concept concerning optimality of multiple test 

procedures (see Finner 1994). Several methods have been proposed for comparison of 

multiple tests, but unfortunately, the theoretical results are sparse. For the most cases, it 

is nearly impossible to obtain theoretical results concerning the power of such 

complicated test Situations, as that of multiple testing. A consequence is that most power 

comparisons of multiple test procedures are carried out by Monte Carlo simulation 

studies. One exception is the result of Spj0tvoll (1972). 

Tests for a single hypothesis are often compared in terms of their power functions. 

One often used definition of multiple power is the probability to reject a certain subset of 

false hypotheses, for multiple tests with given multiple significance level a.. This is in line 

of the definition of the P-subset power, of Einot and Gabriel (1975). The P-subset power 

definition focuses on rejecting some on forehand selected false hypotheses. If P denotes 

a specific hypotheses, then the power is to be interpreted as the probability to reject that 

particular hypotheses. Another applicable notion of multiple power is the overall power. 

This is defined as the probability to reject all false hypotheses. This notion was used by 

Welsch (1977). In line of the proposition of Ramsey (1978), we could also define the 
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power as the probability to reject at least one false hypothesis. This could be any 

hypothesis. Generalisation to subsets are obvious. 

Suggestions have been made to compare multiple tests pointwise and 

simultaneously in all components (Finner 1994). He uses the following definitions of 

power: An multiple a-level test is not less (in power to reject hypotheses, true or not) 

than another a-level test, if the power to reject a given subset of hypotheses are at least 

as large as the other test, for all possible values of the test procedures. One test 

procedure is greater than the other if its power is greater than or equal the second test 

procedure at most values, and greater than for at least one value. These measures are 

then used for obtaining results about admissiblity of multiple test procedures. Even when 

using a trivial loss function the results are scarce and very limited. Admissibility is only 

possible to prove for some very specialized cases. 

Another important criterion when comparing multiple test procedures, is to study 

the (expected) number of rejected hypotheses. This measure was advocated for by 

Spj0tvoll (1972), in the case of finite families. With a family is here meant any col/ection 

of inferences for which it is meaningful to take into account some combined measure of 

errors. He suggested that the (expected) number of rejected null hypotheses was the 

error level that should be controlled for finite families of hypotheses, not the multiple 

significance level as defined above in this report. The reason was amongst other that this 

later definition imposes a penalty in direct proportion to the number of errors, while the 

multiple significance level definition corresponds to a zero-one loss function. He gave 

the following example 'Suppose a statistician uses (the expected number of false 

rejections) y =0.05, then in average for every twentieth problem he makes one false 

statement. On the other hand if he uses (the probability to falsely reject one or more 

hypotheses) a=0.05, then in average for every twentieth problem he makes false 

rejections, but he does not know how many false rejections he makes'. His definition of 

error level also gives an upper bound on the multiple level of significance, so controlling 

the former also controls the latter. It could be argued which error level that should be 

used when applying a multiple test procedure, but certainly it is wise to use the definition 

of Spj0tvoll, when comparing procedures. This is in contrast to the often used error level 

as defined by the multiple level of significance. The former error level is an upper bound 
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on the latter one. It seems to be necessary to study the expected number of rejected null 

hypotheses when examining the power of different methods, since there could be 

differences with respect to the number of rejected null hypotheses, as well as the power 

of the methods. 

With this constraint he showed that amongst other results, the single step test 

procedure for comparing k groups parameter value with a control groups parameter 

value, as proposed by Ounnet (1955), was optimal in the sense to maximize the 

minimum (average) power over specified subsets of parameter spaces. The proposed 

optimality measures are aiming at to maximizing the performances of the individual 

tests. It does not tell us anything about the probability of rejecting several false 

hypotheses, i.e. nothing about their simultaneous performance. 

4. SIMULATION RESULTS 

To investigate some different aspects of the step-down (SU) and step-up (SO) 

procedures, simulation studies were performed, for which some chosen results are given 

here. First, let Zj' for i=O,1, ... ,k, be independent N(O, 1) random variables. Further, let U 

be a ~xVv random variable, with v df, independent of Zj. The test statistics could then 

be written as 

for 1sism, msk. Further, for power simulation studies, we use 

to obtain test statistics for false hypotheses, where OJ is a shift parameter giving the 

difference from groups with true hypotheses. All simulation results presented in this 

report were obtained from the following set up: Normal pseudo-random variates Zj' 
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Zj-N(0,1), were generated. U was generated with v=27 df, independent of Zj' i=O, ... ,k. 

The common correlation coefficient p was taken to be 0.5. The pseudo-random deviates 

were generated for some different configurations. Each configuration was replicated 

1000 times. 

To estimate the observed multiple a-level, counts were made the first time in each 

replicate a true hypothesis was rejected at level a. This is in accordance to the definition 

of multiple significance level, as put in Holm (1977). To estimate the power of a method, 

counts were made when the procedure succeeded in rejecting all false groups. Counts 

was also made for the first rejected false hypothesis. This was done for different values 

for a suitable set of shift parameters. 

We first consider the definition of power that require all false hypotheses to be 

rejected. In Ounnet and Tamhane (1992), it was conjectured that if exactly one 

hypothesis is false, then SU is uniformly more powerful than SO, for all values of the 

shift parameter. Further, they found that SU dominates SO uniformly when all 

hypotheses are false. The numerical results given in their paper, also gave that when an 

intermediate number of hypotheses are false, SU is more powerful than SO for small 

departures from the null values, while SO is more powerful in the other case. The other 

definition of power used in Ounnet and Tamhane (1992), i.e. the probability to reject at 

least on false hypothesis, resulted in the following result: Again SU dominates SO 

uniformly when all hypotheses are false. Also that the advantage of SU increased with 

increasing k, particularly at low levels of power. It was also found that when exactly one 

hypothesis is false, the advantage of SO decreases with k and is in most cases negligibly 

small. Ounnet & Tamhane (1992) presented the result that the SU procedure had a non 

negligible power advantage only in those situations where most hypotheses are false and 

it is desired to reject all of them. They also concluded that this power advantage 

increases with the number of false hypotheses. They also stated that even for the case of 

only a few false hypotheses, the SU procedure was only marginally worse than SO 

procedure to reject them. But their result was calculated with the degrees of freedom 

assumed to be large, i.e. v=oo, and for number of groups k=6 and lower. For more 

realistic assumption about the degrees of freedom, any practical advantage for the SU 

procedure as compared to the SO procedure, seems to vanish. The results published 
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here, with k=8 and v=27 shows that the observed level of significance were within the 

level aimed at, i.e. lower than or equal with 5%, for both SU and SO. We obtained results 

pointing towards the conclusion that the power differences of any practical magnitude, in 

favour of the SU procedure, was negligible for any configuration of true and false 

hypotheses. Simulation results supporting this, are given for the case that 8, 4, and 1 

hypotheses are false, when a group size of 8 was considered. Other results not published 

in this report, shows that although the results is in accordance with the results in Ounnet 

& Tamhane (1992), the differences are not significant (at 5%), not even forv=72. 

Table 1-8 were obtained for shift parameters 01=0.5, 02=1.0, 03=2.0, 04=4.0, 

05=8.0. The same value on the shift parameter was applied to all groups in the set of 

groups with f.tj>f.to' for all iEt;I, where I is the set of true hypotheses. Table 1-2 displays 

the result for the case of 8 false hypotheses out of a total of 8 hypotheses. No consistent 

pattern were found. The power differences were negligible for both of the power 

definitions, i.e. the probability to reject all false hypotheses and the power to reject at 

least one arbitrary false hypothesis. 

Table 1 Probability to reject 8 false for the configuration with 8 false hypotheses. 

D SU SD i 

0.5 0.00190 0.00190 1 

1.0 0.00610 0.00620 2 

2.0 0.05560 0.05650 3 

4.0 0.51220 0.51200 4 

8.0 0.99970 0.99960 5 

Table 3 displays the result for the case of 1 false hypothesis out of a total of 8 

hypotheses. Again, no consistent pattern were found. In Table 4, the observed 

significance level are given for the same configuration. Both procedures are within the 

multiple level of significance aimed at, 5%. The increase in observed significance level 

with increasing D is mainly due to the fact that for high values of D, we certainly rejects 

all the false hypotheses in their correct positions before the procedure stops, and are 

thence more exposed to the risk to reject one or more true hypotheses. The results given 
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pointing towards the conclusion that the power differences of any practical magnitude, in 

favour of the SU procedure, was negligible for any configuration of true and false 

hypotheses. Simulation results supporting this, are given for the case that 8, 4, and 1 

hypotheses are false, when a group size of 8 was considered. Other results not published 

in this report, shows that although the results is in accordance with the results in Ounnet 

& Tamhane (1992), the differences are not significant (at 5%), not even forv=72. 

Table 1-8 were obtained for shift parameters 01=0.5, 02=1.0, 03=2.0, 04=4.0, 

05=8.0. The same value on the shift parameter was applied to all groups in the set of 

groups with IAj>lAo, for all i~I, where I is the set of true hypotheses. Table 1-2 displays 

the result for the case of 8 false hypotheses out of a total of 8 hypotheses. No consistent 

pattern were found. The power differences were negligible for both of the power 

definitions, i.e. the probability to reject all false hypotheses and the power to reject at 

least one arbitrary false hypothesis. 

Table 1 Probability to reject 8 false for the configuration with 8 false hypotheses. 

D SU SD i 

0.5 0.00190 0.00190 1 

1.0 0.00610 0.00620 2 

2.0 0.05560 0.05650 3 

4.0 0.51220 0.51200 4 

8.0 0.99970 0.99960 5 

Table 3 displays the result for the case of 1 false hypothesis out of a total of 8 

hypotheses. Again, no consistent pattern were found. In Table 4, the observed 

significance level are given for the same configuration. Both procedures are within the 

multiple level of significance aimed at, 5%. The increase in observed significance level 

with increasing D is mainly due to the fact that for high values of D, we certainly rejects 

all the false hypotheses in their correct positions before the procedure stops, and are 

thence more exposed to the risk to reject one or more true hypotheses. The results given 
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above were also exhibited for the configuration with 4 false hypotheses out of 8 

hypotheses. Other investigated configurations resulted in about the same result. 

We also investigated the distribution of rejected true Hi' i.e. how many times 

exactly one true hypotheses are rejected, exactly two true hypotheses are rejected, and 

so on. The distribution of rejected true hypotheses are given in Table 8, for the 

configuration with 4 false hypotheses out of 8 hypotheses. There is no differences of any 

practical magnitude between the two procedures. This frequency distribution could be 

used to form the expected number of true rejected hypotheses. The results gives that 

there is no detectable difference between the two procedures, with respect to the 

frequency distribution of wrongly rejected hypotheses. This pattern was also found for 

other configurations of true and false hypotheses. 

Table 2 Probability to reject at least one false hypotheses. Same configuration as 
in Table 1. 

0 SU SO i 

0.5 0.10640 0.10600 1 

1.0 0.19340 0.19340 2 

2.0 0.45500 0.45310 3 

4.0 0.92640 0.92640 4 

8.0 1.00000 1.00000 5 

Table 3 Probability to reject one false hypothesis, for the case that 1 is false 
out of 8 hypotheses. 

0 SU SO i 

0.5 0.02210 0.02200 1 

1.0 0.04830 0.04820 2 

2.0 0.16200 0.16200 3 

4.0 0.61380 0.61400 4 

8.0 0.99820 0.99820 5 
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Table 4 Observed multiple significance level with 7 true and 1 false hypotheses. 

0 su SO i 

0.5 0.04630 0.04620 1 

1.0 0.04880 0.04680 2 

2.0 0.04820 0.04850 3 

4.0 0.04940 0.04980 4 

8.0 0.04970 0.05010 5 

Table 5 Probability to reject all 4 false hypotheses out of 8 hypotheses. 

0 SU SO i 

0.5 0.00230 0.00200 1 

1.0 0.00640 0.00630 2 

2.0 0.04110 0.04040 3 

4.0 0.39640 0.39700 4 

8.0 0.99670 0.99670 5 

Table 6 Probability to reject at least one false hypotheses out of 4 false hypotheses 
when there is 8 groups. 

0 SU SO i 

0.5 0.06940 0.06940 1 

1.0 0.13120 0.13120 2 

2.0 0.34890 0.34820 3 

4.0 0.86410 0.86290 4 

8.0 1.00000 1.00000 5 
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Table 7 Observed multiple significance level, same configuration as in Table 5-6. 

D SU SD i 

0.5 0.03500 0.03480 1 

1.0 0.03770 0.03730 2 

2.0 0.04450 0.04370 3 

4.0 0.05200 0.05240 4 

8.0 0.05300 0.05330 5 

5. CONCLUSIONS 

The conclusions from this report gives no support for the conclusion that SU 

procedures are preferred before SD procedures, when analysing data with the given 

correlation structure, if the analysis was performed on situations with small number of 

degrees of freedom. Support for this conclusion comes both from the power studies as 

well as the detailed study of structures of wrongly rejected hypotheses. Both aspects 

should be taken in to account when comparing multiple test methods, since the power 

only gives information about the method's ability to reject false hypotheses. The most 

often used definition of multiple level of significance, the probability to reject one or more 

true hypotheses, disregarding which they are, does not take into account that a penalty 

should be given a method that more often rejects more than one true hypothesis. The 

increased power, as compared to some other method, could then emanate from an 

increase in the number of rejected true hypotheses. This is not the case here since the 

power seems to be equal for the two methods compared, as well as the structure of 

rejected true hypotheses. This makes the use of the SU method, with complex 

computations to determine critical test constants, less motivated to use in applied 

situations. Hence, it must be more compelling to use the more easily applied SD method. 

This conclusion does not preclude that further research might show that SU procedures 

are useful. 
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Table 8 The frequency distribution of rejected true hypotheses. 

Number SU% SO% 

1 0.02570 0.02570 

0=0.5 2 0.00650 0.00670 

3 0.00160 0.00120 

4 0.00120 0.00120 

1 0.02700 0.02670 

0=1.0 2 0.00720 0.00740 

3 0.00210 0.00180 

4 0.00140 0.00140 

1 0.03120 0.03080 

0=2.0 2 0.00860 0.00850 

3 0.00300 0.00270 

4 0.00170 0.00170 

1 0.03700 0.03730 

0=4.0 2 0.00920 0.00970 

3 0.00400 0.00350 

4 0.00180 0.00190 

1 0.03800 0.03820 

0=8.0 2 0.00920 0.00970 

3 0.00400 0.00350 

4 0.00180 0.00190 
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