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Abstract 

The surveillance of multivariate processes has received growing at­
tention during the last decade. Several generalizations of well-known 
methods such as Shew hart , CUSUM and EWMA charts have been 
proposed. Many of these multivariate procedures are based on a uni­
variate summarized statistic of the multivariate observations, usually 
the likelihood ratio statistic. In this paper we consider the surveil­
lance of multivariate observation processes for a shift between two 
fully specified alternatives. The effect of the dimension reduction 
using likelihood ratio statistics are discussed in the context of suf­
ficiency properties. Also, an example of the loss of efficiency when 
not using the univariate sufficient statistic is given. Furthermore, a 
likelihood ratio method, the LR method, for constructing surveillance 
procedures is suggested for multivariate surveillance situations. It is 
shown to produce univariate surveillance procedures based on the suf­
ficient likelihood ratios. As the LR procedure has several optimality 
properties in the univariate, it is also used here as a benchmark for 
comparisons between multivariate surveillance procedures. 

Key words: Multivariate surveillance, sufficiency, Likelihood ratio, 
CUSUM. 
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1 Introduction 

The surveillance of random processes to detect a change has received much 
attention during the last decades. Contributions have been made especially 
in industrial quality control, but also in other areas such as medicine, epi­
demiology or economy. The term surveillance is mainly used in the medical 
and epidemiological fields. Other names for this type of problem are moni­
toring, change point detection or statistical process control. 

In surveillance the process is continually observed through a sequence of 
observations made continuously or at specific intervals. These observations 
can be either the original measurements or a function of these, for example 
the mean of a sample from each time point. Whenever the process is observed 
through more than one observation sequence we have a multivariate surveil­
lance situation. Consider for example the monitoring of a manufacturing 
process to detect decreases in the product quality. In this situation several 
measurements are often taken simultaneously. For example, the quality of 
a product can be defined through several different attributes or there may 
be parallel lines of production monitored independently. In other cases the 
process is observed at different stages in the production. 

When the surveillance starts the process is considered in control with 
observations from a known and acceptable distribution. At some unknown 
random time point a change occurs in the process, resulting in a change in 
distribution of the observations. This change usually consists of a change in 
the parameter vector either to a specific new point or a general shift away 
from the in-control parameter vector. The observation sequence is usually 
assumed to be independent, both before and after the change, and to have a 
well known distribution family such as the Gaussian family. 

Of primary interest in surveillance is the random change point where a 
change occurs. Based on the observation process a decision must be made 
after each time point whether or not an event has occurred. To do this, an 
alarm-procedure of some sort is used. Examples of well-known procedures for 
univariate observation processes include the Shew hart , CUSUM and EWMA 
procedures, see for example Whetherill and Brown (1991). 

In multivariate surveillance situations the change in the underlying pro­
cess, depending on the way it is measured, can affect the observations differ­
ently. For example, if the quality in the example above depends only on the 
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raw materials used, then the change points in the different lines are likely 
to occur simultaneously in the case when parallel production lines are moni­
tored. If instead the quality is measured at different stages of the production 
line then the change points for the different observation sequences differ, de­
pending on what stage they are taken. 

Multivariate surveillance has received an increased interest during the 
last decade with many new alarm procedures suggested. There are several 
situations that have earlier been treated as univariate ones but where a mul­
tivariate perspective might be useful. For examples in the post marketing 
surveillance of medical drugs, Svereus (1995), where normally several dif­
ferent adverse events are monitored simultaneously or in the monitoring of 
economic trends, Frisen (1994), where several economic indexes are used. 
Another area where multivariate surveillance approach may be of use is in 
the surveillance of ecological systems, Pettersson (1996). 

The alarm procedures for surveilling multivariate observation processes 
can be divided into those using some univariate procedure based on a sum­
marizing statistic of some kind and others, for example those where the com­
ponent processes are monitored separately. In this paper we discuss some 
properties, such as the sufficiency property, and compare the two types of 
procedures. We will also suggest a type of likelihood ratio-based surveillance 
procedure shown to have certain optimality properties. We restrict our at­
tention to processes where a sudden shift occurs between two fully specified 
alternatives. A consequence of this limitation is that only situations where 
the change occurs simultaneously in all components processes are considered. 

In Section 2 we will give a more formal definition of the multivariate 
surveillance problem with some limitations and assumptions made in this 
paper. We shall also mention shortly some useful measurements of perfor­
mance. Section 3 contains a short review of the literature on multivari­
ate surveillance and a description of some types of alarm procedures. In 
Section 4 we consider the effect of using a summarizing statistic to reduce 
the observation-vector to a univariate observation sequence. We discuss the 
likelihood ratio-based multivariate surveillance procedures in Section 5. A 
summary and some conclusions are finally given in Section 6. 
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2 Preliminaries 

2.1 Specifications and Notation 

In multivariate surveillance the process of interest is observed through a 
p-dimensional vector 

X(t) = (Xl:(t) ) ,t = 1,2, ... 

Xp (t) 
(1) 

of observations. These observations, either the original measurement or 
transformations of these, are considered independent, with some distribution 
F (t). At unknown random time points, Tb ... , Tp , a change occurs in the 
different component processes, thus in multivariate surveillance the random 
change point is a random vector 

(2) 

of change points. Depending on the application of interest the structure of 
this vector assumes different forms. The change in the underlying process 
can affect the component change points simultaneously, with deterministic 
delays for some components, or stochastically, where the change point of each 
component has some distribution G T" i = 1, ... , p. We shall here consider 
only the special case with one simultaneous change point, 1i = T, i = 1, ... ,p, 
for all component processes following some distribution GT" In some sections, 
GT is specified to be the geometric distribution with intensity 1/. This is the 
most commonly used assumption in the theoretical literature and it is also 
a reasonable assumption in many practical applications. Some useful results 
for this case can be found in for example Shiryaev (1963). 

In addition to a common change point for component processes we also 
assume that there exist two fully specified alternatives. Thus, we consider an 
observation process X with distribution FO for all X (1), X (2) , ... , X (T - 1) 
and Fl for X ( T) , X (T + 1) , .... 

As mentioned above we are primarily interested in a sequence of crit­
ical events concerning T. Usually we are interested in detecting a change 
whenever it has occurred. However, sometimes only some of the possible 
change points of interest at each time s are of interest, for example we might 
only be interested in detecting a change that has occurred in the latest d 
observation points. We therefore define two events in the sample space of 
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7, C (S) = {7 E Is ~ {1, ... , s}}, the set of time points where we, at time s, 
want to detect a change, and D (s) = {7 > s}, where no change has yet oc­
curred at time s. It should be noted that D (s) is not always the complement 
event of C (s). In fact, only if C (s) = {7 ~ s}, that is we are interested in 
detecting a change occurring at any possible change point up to time s,is 
D (s) the complement event. 

A surveillance procedure can be defined through a stopping time tA, which 
determines when an alarm should be given. We can define the stopping time 
through an alarm function P ('; C (s)) and a critical limit K (s) as 

t A = min [S; P (xs; C (s)) > K (s) ] . (3) 

or through the alarm set 

A (s) = {xs E Ox. Ip (xs; C (s)) > K (s)} (4) 

of outcomes leading to an alarm. The critical limit K (s) regulates the prob­
abilities of making a (false) alarm and the alarm function p (.) is a function 
of the available information at time s, Xs = {X (1), ... ,X (s)} E Ox., ( and 
possibly also of G r ). Note the different use of the index in Xi and Xi (t), the 
former indicating a truncated sequence and the latter the observations made 
at time t of component process i. A simple example of an alarm function 
is the alarm function for the Shewhart chart p (xs ; C (s)) = x (s). Using 
only the latest observation, the Shew hart procedure is designed to detect the 
particular critical event C (s) = {7 = s}. 

2.2 Measurements of Performance 

The performance of a procedure can be studied through the relationship be­
tween the change point 7 and the stopping time tAo To be able to construct, 
or choose between, surveillance procedures some measure of performance or 
criterion of optimality is necessary. 

Two important properties for a surveillance procedure are: i) that the 
procedure should have a high probability to detect a change and do so within 
reasonable time and ii) the procedure should have a low probability for a 
false alarm. These two properties are unfortunately in conflict with each 
other, as for example a lower false alarm probability will usually give a lower 
probability of detecting a change. The desirable properties differ between 
applications and some sort of measurement of the performance of a procedure 
is therefore useful. 
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One measurement of performance dealing with the balance between the 
two properties i) and ii) is the Predictive Value, Frisen (1992). This is defined 
as 

t = 1,2, ... , and measures the balance between motivated and unmotivated 
alarms, giving a measure of the confidence we can have in an alarm given 
at a certain time. Other measurements are concerned with just one of 
these two properties. For example, the average run length, ARL, where 
ARLO := E [tA IT = 00], the ARL when no change occurs, deals with prop­
erty ii) and ARLI = E [tA IT = 1] deals with property i). 

In quality control the most commonly used measure of performance is the 
ARL where a procedure is sometimes considered optimal if it minimizes the 
ARLI for fixed ARLo. The limitations of this optimality criterion have been 
discussed by Akermo, (1995) and Frisen (1996). 

Another way of defining an optimal procedure is by: 

Definition 2.1 If A ~ r2x. is an alarm set, e a critical event concerning T 

and D a proper subset of the complement of e, then A is the optimal 
alarm set if for all B ~ r2x.; 

Pr (B Ie) > Pr (A Ie) =? Pr (B ID) > Pr (A ID) (6) 

Thus the procedure is deemed optimal if any other surveillance procedure 
with higher probability to detect a change also has a higher probability of 
giving a false alarm. 

Shirayev (1963) defined optimality, S-optimality, using the speed of de­
tection and the false alarm rate. He defined the optimal alarm procedure as 
the one with minimal expected cost, for a specific cost function of the delay 
of an alarm and a false alarm. 

3 A Short Review of Literature and Meth­
ods 

During the last decade several new procedures for surveilling multivariate ob­
servation processes have been suggested. Most of them are generalizations of 
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procedures developed for monitoring univariate observation processes. How­
ever, a common approach is still to monitor each component separately, 
usually using a union intersection type of procedure, Hochberg & Tamhane 
(1987), to decide on an alarm. A simple example is the union intersection 
Shewhart procedure, (VI Shewhart), where an alarm is made whenever one 
component exceeds its predefined limit. 

The first one to consider the surveillance of several observation processes 
as a multivariate problem seems to have been Hotelling (1947). He suggested 
the monitoring of a shift in the mean of a multivariate Gaussian process 
using a Shew hart procedure based on a summarizing statistic, the so-called 
T2 - statistic: 

I 

T2 (t) = (x (8) - flO) E-1 (x (8) - flO) ,t = 1,2,... (7) 

where flo is the in-control mean and E is the covariance matrix. When E is 
known the procedure is called the Shewhart x2-chart. Further development 
of procedures based on the Shew hart chart has been done, for example using 
principal components, Alt (1985). 

Several different generalizations of the CUSVM procedure based on the 
T2_ statistic have also been suggested, see for example Pigniatello & Runger 
(1990), Alwan (1986) and Crosier (1988). These are, as the Shewhart X2 pro­
cedure, directionally invariant and constructed to detect shifts in the mean 
vector in any direction. 

In recent years also generalizations of exponential weighted moving aver­
age procedures, EWMA, have been made. For example Lowry et al. (1992) 
proposed the use of Z (t) = RX (t) + (J - R) Z (t - 1), t = 1,2, ... , where 
Z (0) = 0 and R = diag (rl,"" rp) and to signal an alarm when 

{ 
2-r I } min t; -r-Z (t) E-1Z (t) > K e 

. (8) 

Thus, also this procedure is based on the T2 statistic and directional invari­
ant for changes in the mean vector. 

Woodal and Ncube (1985) used the principal components of the observa­
tions when they suggested a union intersection type of procedure based on 
univariate CUSUM charts, one for each independent principal component. 
The stopping time for the CUSUM procedure they used is defined as 

min {t; max (0, Si (t - 1) + Xi (t) - ki) > hi} ,i = 1, ... ,p, (9) 
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with 0 ~ Si (0) < hi' The reference value, ki ~ 0 and the critical limit hi 
are chosen for each component process so that the change can be detected 
quickly. 

Other examples of procedures to monitor changes to a specific alternative 
using summarizing statistics are more rare. One example is the procedure 
suggested by Healy (1987) which will be discussed later in section 4. Hawkins 
(1991 and 1993), considering monitoring of regression adjusted variables, has 
extended Healy's work to the surveillance of a set of specified alternatives. 

4 Summarizing Statistics in Surveillance Pro­
cedures of Multivariate Processes 

4.1 "Sufficiency 

Many of the suggested surveillance procedures proposed so far for monitoring 
multivariate processes are based the univariate likelihood ratios of the ob­
servation vector from each observation time point. This raises the question 
of possible information loss caused by using the likelihood ratio statistic to 
reduce the dimension of the multivariate process. It is therefore of interest 
to see if the use of the likelihood ratio statistic is sufficient for detecting the 
change. Following Cox & Hinkley (1974) we define sufficiency as: 

Definition 4.1 A statistic T is sufficient for a family of distributions F if 
and only if the conditional density fXIT (x It) is the same for all F E F. 
In addition, a sufficient statistic is said to be minimal sufficient if no 
sufficient statistic of lower dimension can be found. 

Since we are here interested in sequential decisions a definition of suffi­
ciency of a sequence of statistics is also useful. Following Arnold (1988) we 
define this as: 

Definition 4.2 A sequence TI (Xl) ,T2 (X2) , ••• of statistics is a sufficient 
sequence of statistics for the families F I , F2 , ••• of distributions if for 
all s, Ts (Xs) is a sufficient statistic for the family Fs. 

Consider as before a surveillance situation where we monitor a process 
through a sequence, X = {X (t) ; t = 1,2, ... }, of independent observations 
for which a change in the process introduces the shift in the distribution: 

{ 
FO 

X (t) rv F (t) = FI 
T > t 
T ~ t ' 

(10) 
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where FO and Fl are two completely specified distributions. Notice that 
when considering this type of change we also assume a simultaneous change 
point 7 for the component processes. 

The available information Xs = (X (1) , ... , X (8)) for a decision between 
the events C (8) = {7 :::; 8} and D (8) = {7 > 8} has, at time 8, a distribution 
from the family: 

(11) 

Thus the decision whether or not a change has occurred , based on the 
observations sequence {X (t) ; t = 1,2, ... }, can be formulated as a decision 
between whether Xs has a distribution from the family FD(s) or Fe(s). We 
therefore want to find a statistic Ts (Xs) that is sufficient for the family 
{Fe(S), FD(s)} for each 8, thus making the sequence {Ts (Xs) ; 8 = 1,2, ... } 

a sufficient sequence of statistics for the sequence {Fe(s), FD(s); 8 = 1,2, ... }. 
We prove the following statement. 

Statement 4.1 For the model above with Ti = 7, i = 1, ... ,p the univariate 
process {Ir (x (t)); t = 1,2, ... } of likelihood ratios, as defined below, 
is a sufficient reduction of the multivariate observation process for the 
sequence of families {Fe(s), FD(s); 8 = 1,2, ... } . 

Proof: Let us first define Ir (x (t)) = fl (x (t)) / f O (x (t)) and 
lrdxs) = {Ir (x (t)), ... , Ir (x (s))). 

(i) Let 7 be fixed. Then, at time 8, we can write the density of Xs as: 

s 

= h (xs) II Ir (x (i)) = h (xs) k (lrt (xs)) , (12) 
i=t 

where hand k are two real valued functions. We also use the definition 
rn=s+1 = rr?=l = 1. The factorization theorem gives that the vector lrl (x s ) 

is sufficient for the distribution family of Xs defined by the parameter 7. 

(ii) If 7 is stochastic with some distribution GT then the density of Xs at 
time 8 can be written: 

00 

fs (xs) = E9T (t) fs (xs 17 = t) 
t=1 
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= h (xs) [~gT (t) k (lrt (xs)) + (1- GT (t)) k (lrl (Xs))] (13) 

and again using the factorization theorem we have that lrl (x s) is sufficient 
for the family {Fe(s) , FD(s)}. 

(iii) Finally, since lrl (xs) is sufficient for any s, we have according to def­
inition 4.2 that the sequence {lrl (xs) ; S = 1,2, ... } is a sufficient sequence 
for the sequence of families {Fe(s), FD(s); S = 1,2, ... }. Thus to monitor 
for a simultaneous, fully speciked, shift in a multivariate observation process 
it is possible to construct a univariate surveillance procedure based on the 
sufficient sequence of likelihood ratios. 0 

For the surveillance of a univariate observation process there exists in gen­
eral no sufficient statistic of a lower dimension than the sample itself. Thus, 
a procedure based on {lrl (xs) ; S = 1,2, ... } = {ir (x (t)) ; t = 1,2, ... } is in 
these cases also minimal sufficient. For example in the case with observa­
tions of a univarite Gaussian distribution there is no sufficient statistic with 
a lower dimension than the sample itself, see Cox and Hinkley (1974, p.30). 

4.1.1 Sufficient Reduction for Observation from a k-Dimensional 
Exponential Family 

Most procedures proposed so far in literature have been constructed for ob­
servations from the exponential family. We consider observations from such 
a k-dimensional exponential family where we are monitoring for a shift in 
the parameter vector between two (natural) parameter vectors 0° and 01: 

o (t) = { ( 01, ... , op T? t . (14) 
(01"" 'Ok) T < t 

According to statement 4.1 we have that it is enough to monitor the univari­
ate process of likelihood ratio statistics for observations from the exponential 
family; 

k 

ir (t) = L (OJ - OJ) Tj (x (t)) = L (OJ - OJ) Tj (x (t)) (15) 
j=l j:o;#oJ 

where Tj (x (t)) is the minimal natural sufficient statistic for OJ. 

From this follows that when surveilling a process of multivariate Gaussian 
distributed observations for a sudden shift in the mean vector 
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with a constant covariance matrix ~, then it is sufficient to monitor the 
sequence of likelihood ratio statistics Til- (x (t)) = {J-t'~-IX (t); t = 1,2, ... }. 
Thus, we have that the statistic is simply a weighted sum of the observations. 
In the case with standardized bivariate observations with a correlation p 
where unit shifts are of interest this statistic reduces to 

Til- (x (t)) = Xl (t) + X2 (t) 
l+p 

If instead a shift in the covariance is monitored: 

the minimal sufficient process to monitor would be 

(17) 

(18) 

if the matrix (~Ol - ~11) is not singular. Notice for example that if~l = e~, 
e a scalar, then the sufficient statistic to monitor is 

TE (x (t)) = ((e - 1) Ie) (x (t) - J-t)' ~Ol (x (t) - J-t). 

Thus, we have that procedures based on monitoring the Hotelling T2-statistic 
are sufficient for surveilling a proportionate shift in the covariance matrix of 
the observation process. 

4.2 Evaluation of Efficiency 

In the previous subsection we saw that {lrl (xs) ; s = 1,2, ... } is sufficient 
for detecting C (s) = {T ~ s}. In this subsection we shall give an example of 
the loss of efficiency that can occur with a surveillance procedure that is not 
based on a sufficient reduction. We will compare two procedures based on 
the Shewhart chart, a univariate Shewhart procedure on the likelihood ratio 
statistic and a UI-Shewhart procedure based on the principal components of 
the observations. 

Several authors have suggested the use of principal components of the 
observations, e.g. Jackson & Bradley (1966), Woodall & Ncube (1985) and 
Hawkins (1991). The reason for using principal components is usually to 
reduce the dimension but it is also used as a mean to transform the observa­
tion vector in to a vector of independent components. We base our parallel 
Shewhart chart on the principal component process instead of the original 
data as a mean to simplify calculations. 
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As we consider Shew hart type procedures we restrict our evaluation to 
the use of average run length as a measure of performance. We define effi­
ciency in terms of minimal the ARL1 for fixed ARLo. 

Let us observe a bivariate Gaussian sequence for a sudden shift in the 
mean with the covariance structure remaining unchanged. We can then with­
out loss of generality consider the standardized process 

1 
N2 ~o, ~ ~ i II T > t X(t) "" 1 P ,t = 1,2, ... 
N2 J-l, pIT ~ t 

(20) 

with p ~ 0, for negative correlation we instead observe (Xl (t), -X2 (t))T. , 
Furthermore we here consider only equal sized shifts, J-l = (J-l, J-l). Then the 
principal components 

Y (t) = ~AX (t) = ~ ( Xl (t) + X2 (t) ) 
J2 J2 Xl (t) - X2 (t) 

(21) 

are distributed 

(22) 

Notice that in this case all information concerning the shift is found in the 
first principal component. The normalized lr - statistic is in this case 

J-l' B-1 X (t) 
Z(t) = J ,t = 1,2, ... 

J-l' B-1 J-l 
(23) 

and it is distributed as 

{ 
N (0,1) 

Z (t) "" N (~,1) (24) 

Setting m = J-l (l!P - J2) and s = v'f+P we can see that s (Z (t) - m) = 
Y1' 
To compare the two procedures we need to set their limits so that their ARLO 
equals some value 'Y E Z+. To set the limit for the procedure based on the 
lr-statistic is simple as the only limit satisfying ARLO = 'Y is K (s) = K = 

q>-1 (1~1). The parallel procedure is more complicated since the ARLO de­
pends on two critical limits, K1 and K 2• For a pair of limits to fix ARLO to 
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'Y the condition ARLo = 1/ (1 - FO (Kl' K2)) = 'Y has to be satisfied. As we 
are surveilling independent Gaussian variables this condition is equivalent to 

(25) 

Thus we have no unique pair of critical limits to fix ARLo. The possible 
choices of limits are 

The parameter p influences the amount of interest we put in each process. 

ARL1 

5 

4 

3 

2 

o 
-1.0 

---
---

------ ---

-0.5 

----
- ---;---------..... -............... -- -- -- ---

,,,-",,,"" -... - _ ... ----
..... _--
...... _ ...... -

- p=O p=0.25 --- p=O.5 -- p=0.75 

0.0 0.5 1.0 

Figure 1: The effect of the choice of critical limits, (Kl (p), K2 (p)), on ARLI 
for a UI Shewhart procedure. Shown for different values of the correlation, 
p. 

If we choose p = 0 only the first component is surveilled. Our choice of p 
influences ARLl: for p = 1, ARLI equals ARLo and as p "\c 0 decreases 
monotonically. In Figure 1 the effect of some choices of p with fixed ARLo = 
11 is shown. Thus the most efficient or optimal choice of critical limits in our 
case is to use (Kl (0) ,K2 (0)). In practice this is equivalent to monitor only 
the first principal component, Y1 (t), t = 1,2, ... , as was suggested by Jackson 
and Muldholkar (1979). Thus the optimal "parallel" Shewhart procedure 
here is the univariate Shewhart chart based on the likelihood ratio statistic 
{lrl (xs) ; s = 1,2, ... }. 
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5 A Likelihood Ratio Based Procedure 

5.1 The General method 

In this section we discuss the use of a method to construct surveillance pro­
cedures when a specific alternative is of interest,discussed Frisen and de Mare 
(1991), in the case of multivariate processes. As before we will consider sud­
den simultanous shifts in all component processes between two fully specified 
alternatives. The method, here called the alarm method, constructs likeli­
hood ratio based surveillance procedures designed for specific critical events 
and change point distributions. 

The LR-procedures uses alarm functions of the form 

dPr(xs IC(8)) 
p(Xs;C(8)) = dPr(xsID(8)) (27) 

and give an alarm whenever this function exceeds a critical limit K(8). This 
critical limit usually depends both on the time of decision, 8, and the distri­
bution of the change point, a,.. Depending on the critical event the alarm 
functions assume different forms. If for example we are interested in opti­
mizing the procedures to immediate detection of a change, C (8) = {T = 8}, 
the alarm function reduces to 

p (x (8)) 
P (x s; {T = 8} ) = 10 (x (8)) (28) 

where rand P are the densities of X (t). Thus, with K (8) = K we have the 
Shewhart procedure based on the likelihood ratio statistic used in section 4.2. 

If instead we are interested in optimizing for the critical event C (8) 
{T ~ 8}, the method results in an alarm function that can be written as 

(29) 

With gT and G T being the density and distribution function of the change 
point T. A choice of critical limits with good properties is here K (8) = 
k· (1 - GT (8)) IGT (8), where k is a constant, as the LR-procedure is then 
equivalent to the procedure suggested by Shiryaev (1963). 

To specify the LR procedure we need here, beside the distributions of 
the observations, also some knowledge of the distribution of T. The choice 
of distribution for T is often the geometric distribution. It involves only one 
parameter, the intensity v, and assumes equal probability of a change in each 
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point. As v ~ 0 the procedure's dependence on the choice v decreases so in 
many practical applications where v is small the specific choice of v is less 
important, Frisen and Wessman (1996). Also when v ~ 0 the alarm function 
has the limit 

• S S j1 (x (t)) 
hmp(xs;{r:::;s})=EIIjo( ()) =Pr(xs )' (30) 
v-tO k=l t=k x t 

thus the LR-procedure has in this case the alarm function of Roberts (1966) 
as its limit. 

Thus, we have that the LR-procedure (29), as well as the Shewhart and 
the Roberts (28,30) are all based on the sequence {ir (x (t)), t = 1,2, ... }, 
which is sufficient for the family {C (s) = {r :::; s} , D}. They have therefore 
the same optimality properties for this situation (as the respective univariate 
surveillance procedure). 

The LR-procedure for example is of course optimal according to defi­
nition 2.1 and satisfies several other optimality properties, see for example 
Frisen and Wessman (1996). These properties make the LR-procedure a good 
benchmark in theoretical or simulation studies for the multivariate surveil­
lance problem discussed here. For univariate surveillance situations it has 
been used in this capacity by for example Frisen (1992,1996). 

5.2 Surveillance of Multivariate Gaussian processes 

A well-studied example in multivariate surveillance is that of a shift in the 
mean vector of a Gaussian process when the covariance, ~, is known and 
stable throughout the surveillance. Without loss of generality we can con­
sider shifts between Jlo = (0, ... ,O)T and Jll = (Jll, . .. , jlp)T. The sufficient 
likelihood ratio statistic, ir (t), is then, after normalizing, 

and is distributed 

{ 
N(O,l) 

~(X(t))fV N(JK,l) 
r>t 
r:::;t 

(31) 

(32) 

We can note that although the ir-statistic is here constructed for a shift 
to a specific point it has the same properties to detect a change to all points 
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in the parameter space satisfying {J.L* 1J.t'E-1J.L* = J.L'E-1J.L}. Also, for all 

shifts to points {J.L* 1J.L'E-1J.L* > J.L'E-1J.L} we have that ~(x*(s)) D ~(x(s)) 

before a shift and, since the shift is of size J J.L'E-IJ.L* > vz;., we have that 
D 

~(x*(s)) ~ ~(x(s)) after a shift. Thus, for these points we have better prop-
erties for detecting the shift. A multivariate surveillance procedure based on 
{ ~ (x (t)) ; t = 1, 2, ... } for detecting a specific alternative mean vector has 
equal or better properties for monitoring a shift to a subspace of the param­
eter space. 

The LR alarm function derived for the critical events mentioned above 
becomes 

(33) 

and 
S (k) S 1 

P (Xs; {7 ~ s}) = L gT II ev'A{(X(t»-2~ 
k=l GT (s) t=k 

(34) 

respectively. The Roberts surveillance procedure consequently becomes 

s s 
Pr (Xs) = L II ev'A{(x(t»-t~ (35) 

k=l t=k 

Also, for the situation considered in this section Healy (1987) showed that 
the CUSUM-procedure 

( (F (x (t))) ) s (xs) = max S (Xs-l) + log f O (x (t)) ,0 . (36) 

can, after normalizing, be written as 

S (xs) = max (S (Xs-l) + ~ (x (t)) - ~~, 0) . (37) 

Thus, all four multivariate surveillance procedures considered here are re­
duced to univariate surveillance procedures based on the univariate Gaus­
sian process {~(x (t)); t = 1,2, ... }. We can therefore compare them using 
results for the surveillance of the mean of a univariate Gaussian process, 
for example a change in distribution between N (0, 1) and N (1, 1). Such a 
comparison can be found in Frisen and Wessman (1996). 
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6 Conclusions 

In many multivariate surveillance applications detection of changes in a spe­
cific direction is of interest. It is sometimes of interest to construct a method 
with good properties to detect a change between two fully specified alter­
natives, one before and one after the change, for the case when the change 
points occur simultaneously. We have shown that in these cases observing 
the univariate likelihood ratio statistic of the observations made at each time 
is sufficient for detecting the critical event C (s) = {7 ~ s}. In some cases it 
is also minimal sufficient. A good choice of surveillance procedure is therefore 
one based on this univariate process since the loss in efficiency when using a 
procedure not based on a sufficient reduction can be large, as was shown in 
section 4.2. 

A multivariate surveillance procedure constructed by the LR-method is 
here shown to be equivalent to the surveillance procedure for the surveil­
lance of a univariate process and to retain any optimality properties shown 
for univariate surveillance situations. The procedure is therefore a good 
candidate both as a surveillance procedure and as a benchmark in compar­
isons between different multivariate surveillance procedures. We also show 
that comparisons between the Shewhart, the CUSUM, the Roberts and the 
LR-procedure are especially simple when multivariate Gaussian observation 
processes are considered. Such results can be found in for example Frisen & 
Wessman (1996). 
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