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ABSTRACT 

The continual surveillance to detect changes has so far received large attention 
in the area of industrial quality control, where the monitoring of manufacturing 
processes to detect decreases in quality play an important role. However, also in 
other areas important examples can be found such as the surveillance of intensity 
care patients or the monitoring of economic trends. 

Often more than one measurement is made, resulting in a multivariate obser­
vation process. Many surveillance procedures for multivariate observation pro­
cesses are based on summarizing statistics that reduces the multivariate process 
to a univariate process. This thesis studies such surveillance procedures when a 
change to a specific alternative is of interest. We give special attention to pro­
cedures based on likelihood ratio statistics of the observation vectors since these 
are known to have several optimality properties. Also, many procedures in use 
today can be formulated in terms of likelihood ratios. 

In report I we consider the surveillance of a multivariate process with a com­
mon change point for all component processes. We show that the univariate 
reduction using the likelihood ratio statistic for the observation vector from each 
observation time is sufficient for detecting the change. Furthermore, the use of 
a likelihood ratio-based method, the LR method, for constructing surveillance 
procedures is suggested for multivariate surveillance situations. The LR proce­
dure, as several other multivariate surveillance procedures, can be formulated as 
univariate procedures based on the univariate process of likelihood ratios. Thus, 
evaluating these multivariate surveillance procedures which are based on this re­
duction can be done by using results for univariate procedures, for example those 
given in report II. The effects of not using a sufficient univariate statistic is also 



illustrated. 

In the second report a simulation study of some methods based on likelihood 
ratios of univariate processes is made. The LR method and the Roberts procedure 
are compared with two methods that today are in common use, the Shewhart 
and the CUSUM methods. Several different measurements of performance are 
used, such as the probability of successful detection, the predictive value and the 
expected delay of an alarm. The evaluation is made for geometrically distributed 
change points. For this situation the LR procedure meets several optimality cri­
teria and is therefore suitable as a benchmark. The LR procedure is shown to 
be robust against misspecifications of the intensities. The CUSUM method ap­
pears in the simulations to be closer to the Shewhart method than to the Roberts 
method in several of the properties investigated, for example the run length dis­
tribution and the predictive value. Furthermore, the Roberts procedure is shown 
to have properties close to the LR procedure for moderately large intensities. It 
has therefore near optimal properties in these cases. 

This thesis consists of two parts: 

I Some principles for surveillance adopted for multivariate processes with a com­
mon change point. 

II Evaluations of likelihood ratio methods for surveillance. 
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Abstract 

The surveillance of multivariate processes has received growing at­
tention during the last decade. Several generalizations of well-known 
methods such as Shewhart, CUSUM and EWMA charts have been 
proposed. Many of these multivariate procedures are based on a uni­
variate summarized statistic of the multivariate observations, usually 
the likelihood ratio statistic. In this paper we consider the surveil­
lance of multivariate observation processes for a shift between two 
fully specified alternatives. The effect of the dimension reduction 
using likelihood ratio statistics are discussed in the context of suf­
ficiency properties. Also, an example of the loss of efficiency when 
not using the univariate sufficient statistic is given. Furthermore, a 
likelihood ratio method, the LR method, for constructing surveillance 
procedures is suggested for multivariate surveillance situations. It is 
shown to produce univariate surveillance procedures based on the suf­
ficient likelihood ratios. As the LR procedure has several optimality 
properties in the univariate, it is also used here as a benchmark for 
comparisons between multivariate surveillance procedures. 

Key words: Multivariate surveillance, sufficiency, Likelihood ratio, 
CUSUM. 
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1 Introduction 

The surveillance of random processes to detect a change has received much 
attention during the last decades. Contributions have been made especially 
in industrial quality control, but also in other areas such as medicine, epi­
demiology or economy. The term surveillance is mainly used in the medical 
and epidemiological fields. Other names for this type of problem are moni­
toring, change point detection or statistical process control. 

In surveillance the process is continually observed through a sequence of 
observations made continuously or at specific intervals. These observations 
can be either the original measurements or a function of these, for example 
the mean of a sample from each time point. Whenever the process is observed 
through more than one observation sequence we have a multivariate surveil­
lance situation. Consider for example the monitoring of a manufacturing 
process to detect decreases in the product quality. In this situation several 
measurements are often taken simultaneously. For example, the quality of 
a product can be defined through several different attributes or there may 
be parallel lines of production monitored independently. In other cases the 
process is observed at different stages in the production. 

When the surveillance starts the process is considered in control with 
observations from a known and acceptable distribution. At some unknown 
random time point a change occurs in the process, resulting in a change in 
distribution of the observations. This change usually consists of a change in 
the parameter vector either to a specific new point or a general shift away 
from the in-control parameter vector. The observation sequence is usually 
assumed to be independent, both before and after the change, and to have a 
well known distribution family such as the Gaussian family. 

Of primary interest in surveillance is the random change point where a 
change occurs. Based on the observation process a decision must be made 
after each time point whether or not an event has occurred. To do this, an 
alarm-procedure of some sort is used. Examples of well-known procedures for 
univariate observation processes include the Shewhart, CUSUM and EWMA 
procedures, see for example Whetherill and Brown (1991). 

In multivariate surveillance situations the change in the underlying pro­
cess, depending on the way it is measured, can affect the observations differ­
ently. For example, if the quality in the example above depends only on the 
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raw materials used, then the change points in the different lines are likely 
to occur simultaneously in the case when parallel production lines are moni­
tored. If instead the quality is measured at different stages of the production 
line then the change points for the different observation sequences differ, de­
pending on what stage they are taken. 

Multivariate surveillance has received an increased interest during the 
last decade with many new alarm procedures suggested. There are several 
situations that have earlier been treated as univariate ones but where a mul­
tivariate perspective might be useful. For examples in the post marketing 
surveillance of medical drugs, Svereus (1995), where normally several dif­
ferent adverse events are monitored simultaneously or in the monitoring of 
economic trends, Frisen (1994), where several economic indexes are used. 
Another area where multivariate surveillance approach may be of use is in 
the surveillance of ecological systems, Pettersson (1996). 

The alarm procedures for surveilling multivariate observation processes 
can be divided into those using some univariate procedure based on a sum­
marizing statistic of some kind and others, for example those where the com­
ponent processes are monitored separately. In this paper we discuss some 
properties, such as the sufficiency property, and compare the two types of 
procedures. We will also suggest a type of likelihood ratio-based surveillance 
procedure shown to have certain optimality properties. We restrict our at­
tention to processes where a sudden shift occurs between two fully specified 
alternatives. A consequence of this limitation is that only situations where 
the change occurs simultaneously in all components processes are considered. 

In Section 2 we will give a more formal definition of the multivariate 
surveillance problem with some limitations and assumptions made in this 
paper. We shall also mention shortly some useful measurements of perfor­
mance. Section 3 contains a short review of the literature on multivari­
ate surveillance and a description of some types of alarm procedures. In 
Section 4 we consider the effect of using a summarizing statistic to reduce 
the observation-vector to a univariate observation sequence. We discuss the 
likelihood ratio-based multivariate surveillance procedures in Section 5. A 
summary and some conclusions are finally given in Section 6. 
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2 Preliminaries 

2.1 Specifications and Notation 

In multivariate surveillance the process of interest is observed through a 
p-dimensional vector 

X(t) = (Xl:(t) ) ,t = 1,2, ... 

Xp (t) 
(1) 

of observations. These observations, either the original measurement or 
transformations of these, are considered independent, with some distribution 
F (t). At unknown random time points, 717"', 7p , a change occurs in the 
different component processes, thus in multivariate surveillance the random 
change point is a random vector 

r=(J (2) 

of change points. Depending on the application of interest the structure of 
this vector assumes different forms. The change in the underlying process 
can affect the component change points simultaneously, with deterministic 
delays for some components, or stochastically, where the change point of each 
component has some distribution GTi'i = 1, ... ,po We shall here consider 
only the special case with one simultaneous change point, Ti = 7, i = 1, ... ,p, 
for all component processes following some distribution GT' In some sections, 
GT is specified to be the geometric distribution with intensity v. This is the 
most commonly used assumption in the theoretical literature and it is also 
a reasonable assumption in many practical applications. Some useful results 
for this case can be found in for example Shiryaev (1963). 

In addition to a common change point for component processes we also 
assume that there exist two fully specified alternatives. Thus, we consider an 
observation process X with distribution FO for all X (1) , X (2) , ... , X (7 - 1) 
and Fl for X (7) , X (7 + 1) , .... 

As mentioned above we are primarily interested in a sequence of crit­
ical events concerning 7. Usually we are interested in detecting a change 
whenever it has occurred. However, sometimes only some of the possible 
change points of interest at each time s are of interest, for example we might 
only be interested in detecting a change that has occurred in the latest d 
observation points. We therefore define two events in the sample space of 

4 



7, C (s) = {7 E Is ~ {1, ... , s}}, the set of time points where we, at time s, 
want to detect a change, and D (s) = {7 > s}, where no change has yet oc­
curred at time s. It should be noted that D (s) is not always the complement 
event of C (s). In fact, only if C (s) = {7 ::; s}, that is we are interested in 
detecting a change occurring at any possible change point up to time s,is 
D (s) the complement event. 

A surveillance procedure can be defined through a stopping time tA, which 
determines when an alarm should be given. We can define the stopping time 
through an alarm function P (.; C (s)) and a critical limit K (s) as 

t A = min [s; P (Xs; C (s)) > K (s) ] . (3) 

or through the alarm set 

A (s) = {xs E Slx.lp (xs; C (s)) > K (s)} (4) 

of outcomes leading to an alarm. The critical limit K (s) regulates the prob­
abilities of making a (false) alarm and the alarm function P (.) is a function 
of the available information at time s, Xs = {X (1) , ... , X (s)} E Slx., ( and 
possibly also of G r ). Note the different use of the index in Xi and Xi (t), the 
former indicating a truncated sequence and the latter the observations made 
at time t of component process i. A simple example of an alarm function 
is the alarm function for the Shewhart chart P (xs ; C (s)) = x (s). Using 
only the latest observation, the Shew hart procedure is designed to detect the 
particular critical event C (s) = {7 = s}. 

2.2 Measurements of Performance 

The performance of a procedure can be studied through the relationship be­
tween the change point 7 and the stopping time tAo To be able to construct, 
or choose between, surveillance procedures some measure of performance or 
criterion of optimality is necessary. 

Two important properties for a surveillance procedure are: i) that the 
procedure should have a high probability to detect a change and do so within 
reasonable time and ii) the procedure should have a low probability for a 
false alarm. These two properties are unfortunately in conflict with each 
other, as for example a lower false alarm probability will usually give a lower 
probability of detecting a change. The desirable properties differ between 
applications and some sort of measurement of the performance of a procedure 
is therefore useful. 
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One measurement of performance dealing with the balance between the 
two properties i) and ii) is the Predictive Value, Frisen (1992). This is defined 
as 

Pr (tA = t,T::; t) 
PV(t) = Pr(T < t ItA = t) = Pr(tA = t,T::; t) + Pr(tA = t,T > t)' (5) 

t = 1,2, ... , and measures the balance between motivated and unmotivated 
alarms, giving a measure of the confidence we can have in an alarm given 
at a certain time. Other measurements are concerned with just one of 
these two properties. For example, the average run length, ARL, where 
ARLO := E [tA IT = 00], the ARL when no change occurs, deals with prop­
erty ii) and ARLI = E [tA IT = 1] deals with property i). 

In quality control the most commonly used measure of performance is the 
ARL where a procedure is sometimes considered optimal if it minimizes the 
ARLI for fixed ARLo. The limitations of this optimality criterion have been 
discussed by Akermo, (1995) and Frisen (1996). 

Another way of defining an optimal procedure is by: 

Definition 2.1 If A ~ Ox. is an alarm set, e a critical event concerning T 

and D a proper subset of the complement of e, then A is the optimal 
alarm set if for all B ~ Ox.; 

Pr (B Ie) > Pr(A Ie) ~ Pr (B ID) > Pr (A ID) (6) 

Thus the procedure is deemed optimal if any other surveillance procedure 
with higher probability to detect a change also has a higher probability of 
giving a false alarm. 

Shirayev (1963) defined optimality, S-optimality, using the speed of de­
tection and the false alarm rate. He defined the optimal alarm procedure as 
the one with minimal expected cost, for a specific cost function of the delay 
of an alarm and a false alarm. 

3 A Short Review of Literature and Meth­
ods 

During the last decade several new procedures for surveilling multivariate ob­
servation processes have been suggested. Most of them are generalizations of 
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procedures developed for monitoring univariate observation processes. How­
ever, a common approach is still to monitor each component separately, 
usually using a union intersection type of procedure, Hochberg & Tamhane 
(1987), to decide on an alarm. A simple example is the union intersection 
Shewhart procedure, (VI Shewhart), where an alarm is made whenever one 
component exceeds its predefined limit. 

The first one to consider the surveillance of several observation processes 
as a multivariate problem seems to have been Hotelling (1947). He suggested 
the monitoring of a shift in the mean of a multivariate Gaussian process 
using a Shewhart procedure based on a summarizing statistic, the so-called 
T2 - statistic: 

I 

T2 (t) = (x (8) - J-L0
) ~-l (x (8) - J-L0

) ,t = 1,2,... (7) 

where J-L0 is the in-control mean and ~ is the covariance matrix. When ~ is 
known the procedure is called the Shewhart X2 -chart. Further development 
of procedures based on the Shew hart chart has been done, for example using 
principal components, Alt (1985). 

Several different generalizations of the CVSVM procedure based on the 
T2_ statistic have also been suggested, see for example Pigniatello & Runger 
(1990), Alwan (1986) and Crosier (1988). These are, as the Shewhart X2 pro­
cedure, directionally invariant and constructed to detect shifts in the mean 
vector in any direction. 

In recent years also generalizations of exponential weighted moving aver­
age procedures, EWMA, have been made. For example Lowry et al. (1992) 
proposed the use of Z (t) = RX (t) + (I - R) Z (t - 1) ,t = 1,2, ... , where 
Z (0) = 0 and R = diag (rl,"" rp) and to signal an alarm when 

{ 
2-r I } min t; -r-Z (t) ~-lZ (t) > K e 

• (8) 

Thus, also this procedure is based on the T2 statistic and directional invari­
ant for changes in the mean vector. 

Woodal and Ncube (1985) used the principal components of the observa­
tions when they suggested a union intersection type of procedure based on 
univariate CUSVM charts, one for each independent principal component. 
The stopping time for the CVSUM procedure they used is defined as 

min {t; max (0, Si (t - 1) + Xi (t) - ki) > hi} ,i = 1, ... ,p, (9) 
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with 0 ::; Si (0) < hi' The reference value, ki ~ 0 and the critical limit hi 
are chosen for each component process so that the change can be detected 
quickly. 

Other examples of procedures to monitor changes to a specific alternative 
using summarizing statistics are more rare. One example is the procedure 
suggested by Healy (1987) which will be discussed later in section 4. Hawkins 
(1991 and 1993), considering monitoring of regression adjusted variables, has 
extended Healy's work to the surveillance of a set of specified alternatives. 

4 Summarizing Statistics in Surveillance Pro­
cedures of Multivariate Processes 

4.1 Sufficiency 

Many of the suggested surveillance procedures proposed so far for monitoring 
multivariate processes are based the univariate likelihood ratios of the ob­
servation vector from each observation time point. This raises the question 
of possible information loss caused by using the likelihood ratio statistic to 
reduce the dimension of the multivariate process. It is therefore of interest 
to see if the use of the likelihood ratio statistic is sufficient for detecting the 
change. Following Cox & Hinkley (1974) we define sufficiency as: 

Definition 4.1 A statistic T is sufficient for a family of distributions F if 
and only if the conditional density fXIT (x It) is the same for all F E F. 
In addition, a sufficient statistic is said to be minimal sufficient if no 
sufficient statistic of lower dimension can be found. 

Since we are here interested in sequential decisions a definition of suffi­
ciency of a sequence of statistics is also useful. Following Arnold (1988) we 
define this as: 

Definition 4.2 A sequence Tl (XI) , T2 (X2) , ••• of statistics is a sufficient 
sequence of statistics for the families F1, F2, ... of distributions if for 
all s, Ts (Xs) is a sufficient statistic for the family Fs. 

Consider as before a surveillance situation where we monitor a process 
through a sequence, X = {X (t) ; t = 1,2, ... }, of independent observations 
for which a change in the process introduces the shift in the distribution: 

{ 
FO 

X (t) rv F (t) = Fl 

8 

T > t 
T::;t' (10) 



where FO and Fl are two completely specified distributions. Notice that 
when considering this type of change we also assume a simultaneous change 
point 7 for the component processes. 

The available information Xs = (X (1) , ... , X (s)) for a decision between 
the events C (s) = {7 ::s s} and D (s) = {7 > s} has, at time s, a distribution 
from the family: 

(11) 

Thus the decision whether or not a change has occurred , based on the 
observations sequence {X (t) ; t = 1,2, ... }, can be formulated as a decision 
between whether Xs has a distribution from the family FD(s) or Fe(s). We 
therefore want to find a statistic Ts (Xs) that is sufficient for the family 
{FC(S) , FD(S)} for each s, thus making the sequence {Ts (Xs) ; s = 1,2, ... } 

a sufficient sequence of statistics for the sequence {Fe(s), FD(s); s = 1,2, ... }. 
We prove the following statement. 

Statement 4.1 For the model 'above with 7i = 7, i = 1, ... ,p the univariate 
process {l r (x (t)) ; t = 1, 2, ... } of likelihood ratios, as defined below, 
is a sufficient reduction of the multivariate observation process for the 
sequence of families {Fe(S), FD(s); s = 1,2, ... }. 

Proof: Let us first define lr (x (t)) = j1 (x (t)) / jO (x (t)) and 
lrdxs) = {lr (x (t)) , ... , lr (x (s))). 

(i) Let 7 be fixed. Then, at time s, we can write the density of Xs as: 

t-l s s s j1 (x (i)) 
fs (xs 17 = t) = g f O 

(x (i))!! fl (x (i)) = g r (x (i))!! fO (x (i)) 

s 

= h (xs) IT lr (x (i)) = h (xs) k (lrt (xs)) , (12) 
i=t 

where hand k are two real valued functions. We also use the definition 
11i=S+1 = 11?=1 = 1. The factorization theorem gives that the vector lrl (xs ) 

is sufficient for the distribution family of Xs defined by the parameter 7. 

(ii) If 7 is stochastic with some distribution Gr then the density of Xs at 
time s can be written: 

00 

fs (xs) = Lgr (t) fs (xs 17 = t) 
t=l 
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= h (xs ) [~gr (t) k (lrt (xs )) + (1 - Gr (t)) k (lrl (xs ))] (13) 

and again using the factorization theorem we have that lrl (x s) is sufficient 
for the family {FC(s), FD(s) }. 

(iii) Finally, since lrl (xs ) is sufficient for any s, we have according to def­
inition 4.2 that the sequence {lrl (xs ) ; S = 1,2, ... } is a sufficient sequence 
for the sequence of families {FC(s) , FD(s); S = 1,2, ... }. Thus to monitor 
for a simultaneous, fully specited, shift in a multivariate observation process 
it is possible to construct a univariate surveillance procedure based on the 
sufficient sequence of likelihood ratios. 0 

For the surveillance of a univariate observation process there exists in gen­
eral no sufficient statistic of a lower dimension than the sample itself. Thus, 
a procedure based on {lrl (x s ) ; S = 1,2, ... } = {Ir (x (t)) ; t = 1,2, ... } is in 
these cases also minimal sufficient. For example in the case with observa­
tions of a univarite Gaussian distribution there is no sufficient statistic with 
a lower dimension than the sample itself, see Cox and Hinkley (1974, p.30). 

4.1.1 Sufficient Reduction for Observation from a k-Dimensional 
Exponential Family 

Most procedures proposed so far in literature have been constructed for ob­
servations from the exponential family. We consider observations from such 
a k-dimensional exponential family where we are monitoring for a shift in 
the parameter vector between two (natural) parameter vectors 0° and Ol; 

o (t) = { ( 01, ... , op T ~ t . (14 ) 
(Ol'··· ,Ok) T < t 

According to statement 4.1 we have that it is enough to monitor the univari­
ate process of likelihood ratio statistics for observations from the exponential 
family; 

k 

Ir (t) = E (OJ - OJ) Tj (x (t)) = E (OJ - OJ) Tj (x (t)) (15) 
j=l j:oJ#J 

where Tj (x (t)) is the minimal natural sufficient statistic for OJ. 

From this follows that when surveilling a process of multivariate Gaussian 
distributed observations for a sudden shift in the mean vector 

( 

Jll (t) ) 
Jl (t) = : = { 

/1p (t) 

10 

JlO = 0 T > t 
Jll = Jl T ~ t 

(16) 



with a constant covariance matrix E, then it is sufficient to monitor the 
sequence of likelihood ratio statistics TJl. (x (t)) = {JL'E-lx (t) ; t = 1,2, ... }. 
Thus, we have that the statistic is simply a weighted sum of the observations. 
In the case with standardized bivariate observations with a correlation p 
where unit shifts are of interest this statistic reduces to 

TJl. (x (t)) = Xl (t) + Xz (t) 
l+p 

If instead a shift in the covariance is monitored: 

the minimal sufficient process to monitor would be 

(17) 

(18) 

if the matrix (Eo 1 - Ell) is not singular. Notice for example that if El = eE, 
e a scalar, then the sufficient statistic to monitor is 

TE (x (t)) = ((e - 1) Ie) (x (t) - JL)' Eol (x (t) - JL). 

Thus, we have that procedures based on monitoring the Hotelling TZ-statistic 
are sufficient for surveilling a proportionate shift in the covariance matrix of 
the observation process. 

4.2 Evaluation of Efficiency 

In the previous subsection we saw that {lrl (xs) ; s = 1,2, ... } is sufficient 
for detecting C (s) = {T ::; s}. In this subsection we shall give an example of 
the loss of efficiency that can occur with a surveillance procedure that is not 
based on a sufficient reduction. We will compare two procedures based on 
the Shewhart chart, a univariate Shewhart procedure on the likelihood ratio 
statistic and a UI-Shewhart procedure based on the principal components of 
the observations. 

Several authors have suggested the use of principal components of the 
observations, e.g. Jackson & Bradley (1966), Woodall & Ncube (1985) and 
Hawkins (1991). The reason for using principal components is usually to 
reduce the dimension but it is also used as a mean to transform the observa­
tion vector in to a vector of independent components. We base our parallel 
Shewhart chart on the principal component process instead of the original 
data as a mean to simplify calculations. 

11 



As we consider Shewhart type procedures we restrict our evaluation to 
the use of average run length as a measure of performance. We define effi­
ciency in terms of minimal the ARLI for fixed ARLo. 

Let us observe a bivariate Gaussian sequence for a sudden shift in the 
mean with the covariance structure remaining unchanged. We can then with­
out loss of generality consider the standardized process 

1 ~ ~ 1 P II N2 0, P 1 7> t 
X (t) rv 1 p ,t = 1,2, ... 

N2 11, P 1 7 ~ t 
(20) 

with p ~ 0, for negative correlation we instead observe (Xl (t), -X2 (t))T. 
I 

Furthermore we here consider only equal sized shifts, 11 = (11, 11)' Then the 
principal components 

Y (t) = ~AX (t) = ...!:...- ( Xl (t) + X2 (t) ) 
v'2 v'2 Xl (t) - X2 (t) 

(21) 

are distributed 

1'>t 
(22) 

Notice that in this case all information concerning the shift is found in the 
first principal component. The normalized lr - statistic is in this case 

and it is distributed as 

{ 
N (0,1) 

Z(t)rv N(~,1) 
1'>t 
1'~t 

(23) 

(24) 

Setting m = 11 (I!P - v'2) and s = v'1+P we can see that s (Z (t) - m) = 
YI · 

To compare the two procedures we need to set their limits so that their ARLO 
equals some value "( E Z+. To set the limit for the procedure based on the 
lr-statistic is simple as the only limit satisfying ARLO = "( is K (s) = K = 

<I?-l (1~1). The parallel procedure is more complicated since the ARLO de­
pends on two critical limits, KI and K 2 . For a pair of limits to fix ARLO to 
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, the condition ARLo = 1/ (1 - FO (Kl, K 2)) = , has to be satisfied. As we 
are surveilling independent Gaussian variables this condition is equivalent to 

(25) 

Thus we have no unique pair of critical limits to fix ARLo. The possible 
choices of limits are 

The parameter p influences the amount of interest we put in each process. 

ARL1 

5 

4 

3 

2 

o 
-1.0 

----

-0.5 

----------'-~- ----
---. ...... ,'-"' ..... ,...-- ------

- p=O p=O.25 --- p=O.5 -- p=0.75 

0.0 0.5 1.0 

Figure 1: The effect of the choice of critical limits, (Kl (p), K2 (p)), on ARLI 
for a UI Shewhart procedure. Shown for different values of the correlation, 
p. 

If we choose p = 0 only the first component is surveilled. Our choice of p 
influences ARLl: for p = 1, ARLI equals ARLo and as p '\J 0 decreases 
monotonically. In Figure 1 the effect of some choices of p with fixed ARLo = 
11 is shown. Thus the most efficient or optimal choice of critical limits in our 
case is to use (Kl (0), K2 (0)). In practice this is equivalent to monitor only 
the first principal component, Y1 (t) ,t = 1,2, ... , as was suggested by Jackson 
and Muldholkar (1979). Thus the optimal "parallel" Shewhart procedure 
here is the univariate Shew hart chart based on the likelihood ratio statistic 
{lrl (xs) ; s = 1,2, ... }. 
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5 A Likelihood Ratio Based Procedure 

5.1 The General method 

In this section we discuss the use of a method to construct surveillance pro­
cedures when a specific alternative is of interest,discussed Frisen and deMare 
(1991), in the case of multivariate processes. As before we will consider sud­
den simultanous shifts in all component processes between two fully specified 
alternatives. The method, here called the alarm method, constructs likeli­
hood ratio based surveillance procedures designed for specific critical events 
and change point distributions. 

The LR-procedures uses alarm functions of the form 

dPr(xs IG(s)) 
p(xs ; G(s)) = dPr(x

s 
ID(s)) (27) 

and give an alarm whenever this function exceeds a critical limit K(s). This 
critical limit usually depends both on the time of decision, s, and the distri­
bution of the change point, GT • Depending on the critical event the alarm 
functions assume different forms. If for example we are interested in opti­
mizing the procedures to immediate detection of a change, G (s) = {'T = s}, 
the alarm function reduces to 

(28) 

where f O and j1 are the densities of X (t). Thus, with K(s) = K we have the 
Shewhart procedure based on the likelihood ratio statistic used in section 4.2. 

If instead we are interested in optimizing for the critical event G (s) = 
{'T :::; s}, the method results in an alarm function that can be written as 

(29) 

With 9T and GT being the density and distribution function of the change 
point 'T. A choice of critical limits with good properties is here K (s) = 
k· (1 - GT (s)) fGT (s), where k is a constant, as the LR-procedure is then 
equivalent to the procedure suggested by Shiryaev (1963). 

To specify the LR procedure we need here, beside the distributions of 
the observations, also some knowledge of the distribution of'T. The choice 
of distribution for 'T is often the geometric distribution. It involves only one 
parameter, the intensity v, and assumes equal probability of a change in each 
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point. As 1/ -+ 0 the procedure's dependence on the choice 1/ decreases so in 
many practical applications where 1/ is small the specific choice of 1/ is less 
important, Frisen and Wessman (1996). Also when 1/ -+ 0 the alarm function 
has the limit 

• S S j1(x(t)) 
hmp(xs ; {T ~ s}) = L: II fO ( ()) = Pr (xs ). (30) 
v-tO k=l t=k x t 

thus the LR-procedure has in this case the alarm function of Roberts (1966) 
as its limit. 

Thus, we have that the LR-procedure (29), as well as the Shewhart and 
the Roberts (28,30) are all based on the sequence {ir (x (t)) , t = 1,2, ... }, 
which is sufficient for the family {C (s) = {T ~ s} , D}. They have therefore 
the same optimality properties for this situation (as the respective univariate 
surveillance procedure). 

The LR-procedure for example is of course optimal according to defi­
nition 2.1 and satisfies several other optimality properties, see for example 
Frisen and Wessman (1996). These properties make the LR-procedure a good 
benchmark in theoretical or simulation studies for the multivariate surveil­
lance problem discussed here. For univariate surveillance situations it has 
been used in this capacity by for example Frisen (1992,1996). 

5.2 Surveillance of Multivariate Gaussian processes 

A well-studied example in multivariate surveillance is that of a shift in the 
mean vector of a Gaussian process when the covariance, E, is known and 
stable throughout the surveillance. Without loss of generality we can con­
sider shifts between flo = (0, ... ,O)T and fll = (fll, ... 'flp)T. The sufficient 
likelihood ratio statistic, ir (t), is then, after normalizing, 

and is distributed 

{ 
N (0, 1) 

~(X(t))fV N(JK,l) 
T>t 
T~t 

(31) 

(32) 

We can note that although the ir-statistic is here constructed for a shift 
to a specific point it has the same properties to detect a change to all points 
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in the parameter space satisfying {J.L* \J.L'E-1J.L* = J.L'E-1J.L}. Also, for all 

shifts to points {J.L* \J.L'E-1J.L* > J.L'E-1J.L} we have that ~(x*(s)) D ~(x(s)) 

before a shift and, since the shift is of size J J.L'E-IJ.L* > ...;;5., we have that 
D 

~(x*(s)) ~ ~(x(s)) after a shift. Thus, for these points we have better prop-
erties for detecting the shift. A multivariate surveillance procedure based on 
{~(x (t)); t = 1,2, ... } for detecting a specific alternative mean vector has 
equal or better properties for monitoring a shift to a subspace of the param­
eter space. 

The LR alarm function derived for the critical events mentioned above 
becomes 

(33) 

and 

(34) 

respectively. The Roberts surveillance procedure consequently becomes 

s s 
Pr (xs) = 2: II ev'Ll~(x(t))-t~ (35) 

k=l t=k 

Also, for the situation considered in this section Healy (1987) showed that 
the CUSUM-procedure 

( ( J1 (x (t))) ) s (xs) = max S (Xs-l) + log fO (x (t)) ,0 . (36) 

can, after normalizing, be written as 

S (xs) = max (s (xs-d + ~ (x (t)) - ~-v"E, 0) . (37) 

Thus, all four multivariate surveillance procedures considered here are re­
duced to univariate surveillance procedures based on the univariate Gaus­
sian process {~(x (t)); t = 1,2, ... }. We can therefore compare them using 
results for the surveillance of the mean of a univariate Gaussian process, 
for example a change in distribution between N (0, 1) and N (1,1). Such a 
comparison can be found in Frisen and Wessman (1996). 
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6 Conclusions 

In many multivariate surveillance applications detection of changes in a spe­
cific direction is of interest. It is sometimes of interest to construct a method 
with good properties to detect a change between two fully specified alter­
natives, one before and one after the change, for the case when the change 
points occur simultaneously. We have shown that in these cases observing 
the univariate likelihood ratio statistic of the observations made at each time 
is sufficient for detecting the critical event C (s) = {1" ~ s}. In some cases it 
is also minimal sufficient. A good choice of surveillance procedure is therefore 
one based on this univariate process since the loss in efficiency when using a 
procedure not based on a sufficient reduction can be large, as was shown in 
section 4.2. 

A multivariate surveillance procedure constructed by the LR-method is 
here shown to be equivalent to the surveillance procedure for the surveil­
lance of a univariate process and to retain any optimality properties shown 
for univariate surveillance situations. The procedure is therefore a good 
candidate both as a surveillance procedure and as a benchmark in compar­
isons between different multivariate surveillance procedures. We also show 
that comparisons between the Shew hart , the CUSUM, the Roberts and the 
LR-procedure are especially simple when multivariate Gaussian observation 
processes are considered. Such results can be found in for example Frisen & 
Wessman (1996). 
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Methods based on likelihood ratios are known to have several optimality 

properties. When control charts are used in practice, knowledge about 

several characteristics of the method is important for the judgement of 

which action is appropriate at an alarm. The probability of a false alarm, the 

delay of an alarm and the predictive value of an alarm are qualities (besides 

the usual ARL) which are described by a simulation study for the 

evaluations. Since the methods also have interesting optimality properties, 

the results also enlighten different criteria of optimality. Evaluations are 

made of the "The Likelihood Ratio Method" which utilizes an assumption 

on the intensity and has the Shityaev optimality. Also, the Roberts and the 

CUSUM method are evaluated. These two methods combine the likelihood 

ratios in other ways. A comparison is also made with the Shewhart method, 

which is a commonly used method. 
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2 

In many areas there is a need for continual observation of time series, with 

the goal of detecting an important change in the underlying process as soon 

as possible after it has occurred. In recent years there has been a growing 

number of papers in economics, medicine, environmental control and other 

areas dealing with the need of methods for surveillance. Examples are given 

in Frisen (1992) and Frisen (1994a). The timeliness of decisions is taken 

into account in the vast literature on quality control charts where simplicity 

is often a major concern. Also, the literature on stopping rules is relevant. 

For an overview, see the textbook by Wetherill and Brown (1990) the 

survey by Zacks (1983) and the bibliography by Frisen (1994 b). 

Methods based on likelihood ratios are known to have several optimality 

properties. Evaluations are made of the LR method that is based on 

likelihood ratios and which in the case studied here has the Shiryaev 

optimality. Also, the Roberts method and the CUSUM method are 

evaluated. These two methods combine the likelihood ratios in other ways. 

A comparison is also made with the Shewhart method which is a commonly 

used method. When control charts are used in practice, it is necessruy to 

know several characteristics of the method. Asymptotic properties have 

been studied by e.g. Srivastava and Wu (1993). Here properties for fInite 

time of change are studied. The probability of a false alarm, the expected 

delay, the probability of successful detection and the predictive value are 

measures (besides the usual ARL) used for evaluations. Since the methods 

have interesting optimality properties, the results also enlighten different 

criteria of optimality. 

In Section 1 some notations are given and there is a specifIcation of the 

situation that is studied. In Section 2 the methods are described and their 

relations to each other and to different optimality criteria are discussed. In 

Section 3 comparisons based on a simulation study are reported. In Section 

4 some concluding remarks are given. 
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1. NOTATIONS AND SPECIFICATIONS 

The variable under surveillance is X = {X(t): t = 1,2, ... }, where the 

observation at time t is X(t). It may be an average or some other derived 

statistic. The random process which detennines the state of the system is 

denoted Il = {Ilt: t = 1,2, ... }. 

The critical event of interest at decision time s is denoted C(s). As in most 

literature on quality control, the case of shift in the mean of Gaussian 

random variables from an acceptable value Il ° (say zero) to an unacceptable 

value III is considered. Only one-sided procedures are considered here. It is 

assumed that if a change in the process occurs, the level suddenly moves to 

another constant level, Ill>llo, and remains on this new level. That is Ilt = Ilo 

for t= 1, ... ;t-l and !It = III for t= 1:, 1:+ 1, .... We want to discriminate between 

Here Il ° and III are regarded as known values and the time 1: where the 

critical event occurs is regarded as a random variable with the density 

and [TIt = l-TIoo • The intensity Vt of a change is 

The aim is to discriminate between the states of the system at each decision 

time s, s=I,2~ ... by the observation X. = {Xes): t ~ s} under the assumption 

that X(I) - Ill' X(2) - 1l2,'" are independent nonnally distributed random 

variables with mean zero and with the same known standard deviation (say 

0=1). In some calculations below, where no confusion is possible, III is 

denoted Il and llo=O and 0=1 for typographical clarity. 
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Active surveillance (Frisen and de Mare 1991) is assumed. That means that 

the surveillance is stopped at an alarm. Thus, only one alarm is possible. 

A study of the properties of the ftrst alarm at passive surveillance gives the 

same results. 

2. METHODS 

2.1 The Likelihood Ratio method 

The problem of fmding the method which maximizes the detection 

probability for a ftxed false alann probability and a ftxed decision time was 

treated by de Mare (1980) and Frisen and de Mare (1991). The likelihood 

ratio (LR) method, discussed below, is the solution to this criterion. 

Different kinds of utility functions were discussed by Frisen and de Mare 

(1991). An important speciftcation of utility is that of Girshick and Rubin 

(1952) and Shiryaev (1963). They treat the case of constant intensity where 

the gain of an alarm is a linear function of the difference tA -T between the 

time of the alarm and the time of the change. The loss of a false alarm is a 

function of the same difference. The utility can be expressed as U= E{u(T, 

tJ}, where 

Their solution to the maximization of the expected utility is identical to the 

LR method for the situation specifted in Section 1 (Frisen 1996). 

The general method uses combinations of likelihood ratios. Even though 

methods based on likelihood ratios have been suggested earlier, for other 

reasons, the use in practice is (yet) rare. Here, the method is applied to the 
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shift case specified in Section 1. The II catastrophe II to be detected at 

decision time s is C = { 't ~ s} and the alternative is D = { 't > s}. 

The LR method has an alarm set consisting of those ~ for which the 

likelihood ratio exceeds a limit: 

00 

= L w(t)L(t) > K(s) 
t=1 

where wet) = Pr('t=t)/Pr('r~s) and L(t) is the likelihood ratio when 't=t. 

For the case of normal distribution, C( s)= { 't ~ s} and D( s )= { 't>s} specified 

in Section 1 we have 

where 

and 

h(s) = exp( -(s+ 1)(/11)2/2) 
Pr('t~s) 

which is a nonlinear function of the observations. 

In order to achieve the optimal error probabilities discussed by Frisen and 

de Mare (1991) an alarm should be given as soon as p(Xg) > K(s). 

In order also to achieve maximization of the utility of Shiryaev it is required 

that 



p(xs» Pr( -r>s) K 
Pr(-r~s) l-K 

where K is a constant. Now we must also consider the function h(s). 

2.2 Roberts method 

6 

Roberts (1966) suggested that an alarm is triggered at the ftrst time s, for 

which 

s 

L L(t) > K 
t=l 

where K is a constant. 

This is the limit of the LR method 

s 

L w(t)L(t) > K(s) 
t=1 

when v tends to zero since both the weights w(t) and the limit K(s) tend to 

constants. Thus the Roberts method approximately satisftes the optimality 

criterion of Shiryaev (1963) for small values of the intensity v. Roberts 

(1966) motivated the method by the conjecture that the intensity parameter 

v has very little influence on the LR method, when v is in the interval zero 

to 0.2 and thus the weights which depend on v can be omitted. The Roberts 

method is sometimes called the Shiryaev-Roberts method. Pollak (1985) 

demonstrated that the Roberts procedure is asymptotically (as K -. 00) 

minimax. Mevorach and Pollak (1991) examined the expected delay (see 

below) by simulations in a small sample setting and concluded that the 

difference between this method and the CUSUM method is small. 
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2.3 CUSUM 

The cumulative sum 

( 

C(= L (X(i)-~o) 
i= 1 

is used in several CUSUM- variants. The most commonly advocated variant 

gives an alann for the fIrst t for which Ct-Ct-i > h + ki (for some i=I,2, ... t), 

where Co=O and hand k are chosen constants (Page 1954). 

Sometimes the CUSUM test is defIned in a more general way by likelihood 

ratios (Siegmund 1985 and Park and Kim 1990). This reduces to the method 

above in the case specifIed in Section 1. 

In the simulation study below the slope (~O+~l)/2 is used. The values ~o=O 

and ~1=1 gives the slope k=1I2. The requirement of ARLo=l1 gives the 

parameter h=0.985. The short ARLO was chosen to make the computer 

time, necessary for the study, reasonable. 

2.4 The Shew hart method 

Shewhart (1931) suggested that an alarm is triggered as soon as a value 

which deviates too much from the target is observed. Frisen and de Mare 

(1991) demonstrated that this is the same as the LR method with C={ T=S}. 

That is p(Xg)=LR(s). For the normal case described in Section 1 this reduces 

to p(xs)=x(s). The limit G for an alarm is calculated by the relation: 

Pr(X(s»GI~=~O)=lIARLo. ARLo=l1 gives G= 1.3353. 

3. RESULTS 

F or the Shewhart method exact calculations were made. For the other 

methods simulations of 10 000 000 replicates were made for each point in 

the diagrams. 
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3.1 Probability of a false alarm 

In all simulations the parameters of the different methods were chosen so 

that ARLo was equal for all methods (equal to 11) to make them 

comparable. To fix the value of ARLo is not the only way to do this, but it 

is in accordance with most comparative studies in this area. 

Equal values of ARLo do not imply that the run length distributions are 

identical when ~=~o. The distributions can have different shapes. This is 

demonstrated in Figures 1 and 2. In Figure 1 the probabilities of an alarm 

at a specific time point, when no change has occurred, are given for some 

different methods. The skewness of the distributions is less pronounced for 

the LR method with a great intensity parameter. For the chosen parameters, 

the distributions for the Shewhart and the CUSUM methods are very similar 

except at the first point. In Figure 2, the probability of an alarm no later than 

at t given that no change has occurred, at = Pre t A ~ t I ~ F ~ 0), is 

illustrated. This is also the cumulative distribution ftmction of the run length 

when the process is in control. The results of the LR method with 

parameters v=O.OOI and v=O.OI, cannot be distinguished from those of the 

Roberts method in the scale of the figures and are therefore not included. 

The results for v=O.1 are also very close to those of Roberts method and are 

included only in Figure 1 where more details can be seen. 

A summarizing measure of the false alarm distribution is the probability of 

a false alarm, when the probability of a change has a geometric distribution 

with the intensity v. Pr(tA<-r) is illustrated as a function ofv in Figure 4. 

00 

Pr(tA <-r) = L Pre -r =t)Pr(tA <tl-r =t) 
t=1 

e first factor in the sum does not depend on the method but only on the true 

intensity v. The second factor depends only on the run length distribution 

when ~=~o. Since the values of the ARLo are equal for all methods only the 

different shapes and not their locations will influence the false alarm 

probability. Thus only the very modest differences as are seen in Figure 4 

can be expected. 
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3.2 Delay of an alarm 

As was seen above, the correspondence to the level of significance in an 

ordinary test is not a value but a distribution. For the power the 

correspondence is still more complicated. To describe the ability of 

detecting a change we need a set of run length distributions. Some kind of 

summarizing measure is of value. 

The distribution of tA , the time of an alarm, when the change occurred 

before the surveillance started (-r=I) , that is /l=/lo, is illustrated in Figure 

3 for some methods. 

The average run length under the alternative hypothesis, ARL 1, is the mean 

number of decisions that must be taken to detect a true level change (that 

occurred at the same time as the inspection started). The part of the 

definition in the parenthesis is seldom spelled out but seems to be generally 

used in the literature on quality control. The values of ARL 1 for the methods 

and situations examined are given in Table 1. 

Since the case -r= 1 of is not the only case of interest the expected delay is 

calculated also for other values -r=t. 

is given in Figure 5. For -r=1 the values of this function equal the values of 

ARL 1 
- 1. The differences in shapes of these curves demonstrate the need 

for other measures than the conventional ARL. Although the Roberts 

method has worse ARLl, and thus worse delay for a change at -r=I, than the 

Shewhart method, it is better for all other times of change. The CUSUM and 

the Shewhart methods are very much alike for -r= 1 but the CUSUM is here 

much better for other change points. 

In some applications the loss of a delay is directly proportional to the 

expected value of the delay. The expected delay also with the respect to the 

distribution of -r is: 
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It is given as a function of v in Figure 6, for the case when the distribution 

of't" is geometrical with the intensity v. Since the computer time necessary 

for reliable values for small values of v is too great, these values were not 

given in the figure. The shapes of the curves for small values are similar to 

the curve (exactly calculated) for the Shewhart method. When v tends to 

one, the expected delay tends to ARL 1_1. 

In some applications there is a limited time available for rescuing actions. 

Then, the expected value of the difference 't"-tA is not of main interest. 

Instead of using the expected value, the probability that the difference does 

not exceed a fixed limit is used. The fixed limit, say d, is the time available 

for successful detection. 

The probability of successful detection, 

PSD('t",d)=Pr(tA -'t"~dltA~'t")· 

was suggested by Frisen (1992) as a measure of the performance. It is 

illustrated in Figure 7. The PSD is better for the CUSUM than for the 

Shewhart method for d=3. The shape of the curve for CUSUM with the 

present parameters is very similar to the constant curve for Shewhart. The 

Roberts and the LR methods have a worse probability of detection of a 

change which happens early but better for late changes. 

3.3 Predicted value 

The predictive value PV(t) = Pr('t" ~t ItA=t) has been used as a criterion of 

evaluation by Frisen (1992), Frisen and Akermo (1993) and Frisen and 

Cassel (1994). It is illustrated in Figure 8. The price for the high probability 

of detection of a change in the beginning of the surveillance (as was 

demonstrated in Figure 7) for the CUSUM and the Shewhart method is that 

the early alarms are not reliable. 
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4. CONCLUDING REMARKS 

At large, the properties differ between the LR methods on one hand and the 

Shewhart and the CUSUM methods on the other, in the simulations. In 

comparison with this, the choice of the intensity parameter of the LR 

method has very little influence on the performance. The results here 

confirm the conjecture by Roberts (1966) about the robustness of the LR 

method. 

That the Roberts method is the limit of the LR method when the intensity 

v tends to zero is also seen by the simulated results. The smaller the 

intensity parameter, the smaller the difference between the LR method and 

the Roberts method. Simulations were made also for v=O.OOI and v=O.OI 

but these results were not included in the figures since the differences to 

those of the Roberts method are less than the line width. The results for 

v=O.1 were included only in the first figure where more details are given. 

The Roberts method is a good approximation of the optimal LR method 

and thus approximately optimal, for small values of v. 

Sometimes the LR method is considered to be a Bayesian method while the 

Roberts method is considered a frequentistic one. Here, however all 

evaluations are made in the frequentistic framework. No Bayesian 

assumptions are necessary for the LR method. The properties of the method 

will be better if the intensity parameter is not far from the actual intensity. 

However, since the LR method is very robust for misspecification of the 

value of the intensity parameter v the gain with a precise search for the best 

value of the intensity parameter might not be worthwhile for a specific 

application. 

The optimal method when the intensity is great should intuitively increase 

the probability of early alarms. Some of the present results might seem 

surprising in this light and will now be discussed. 

The shapes (see Figures 1-3) of the distributions of the alarm time tA might 

seem surprising. The probability of a very early alarm by the LR method 
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with a low intensity parameter is greater than for a large value of the 

parameter. However, for a low intensity the probability of a late change is 

great and thus a thick tail of the distribution of tA is appropriate. As the 

expected value ARLo is fixed the only possibility is a high probability in the 

beginning. This also causes the differences in false alann probabilities in 

Figure 4. 

The greater expected delay (see Figures 5 and 6) for the LR method with a 

great intensity parameter v might seem surprising. For a fixed false alann 

loss I the delay will be less for greater values of the intensity parameter v. 

However, now we have a fixed ARLO, and thus a greater value of 1, which 

implies that the delay is increased to make the locations of the distributions 

of tA equal. The only difference between the distributions is the shape and 

this difference causes the expected delay to be greater for the greater values 

of the intensity parameter. 

The result by Mevorach and Pollak (1991), that the expected delay is 

similar for the Robert and CUSUM methods, was not confmned. They 

studied an artificial quasi-stationary situation where the time of change, 't, 

does not have any influence. For a more realistic situation and the low ARLo 

used here the CUSUM in many aspects is very similar to the Shewhart 

method and not to the Roberts method. 

Figure 7 demonstrates that the Roberts method has higher probability of a 

quick (within three time units) detection than the Shewhart method, unless 

the change occurs very early. For the LR(O.5) method this difference to the 

Shewhart method is still more pronounced. 

In Figure 8 the predicted value of an alann is given. This reflects the trust 

you should have in an alann. The Roberts method has a relatively constant 

predicted value. This means that the same kind of action is appropriate both 

for early and late alanns. 
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Method ARLl 

CUSUM 2.61 

Shewhart 2.71 

Roberts 3.00 

LR(O.OOI) 3.00 

LR(O.OI) 3.01 

LR(O.I) 3.07 

LR(0.5) 3.85 

Table 1. The expected value of the alarm time tN when the change occurs 

immediately (1:= 1), and the parameters are set to make the expected value, 

when no change occurs, the same for all methods (ARLo = 11). 
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