
First Page

Software Reuse And
Offshoring:

A Study Of Benefits, Difficulties And Feasibility

Hui Zhou
Monan Yao

Bachelor of Applied Information Technology Thesis

Report No. 2010:035
ISSN: 1651-4769

University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, May 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Göteborgs universitets publikationer - e-publicering och e-arkiv

https://core.ac.uk/display/16327895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract
CONTEXT – Software Reuse and Offshoring are two promising approaches to

decrease cost and increase productivity in software development. There have been
many researches made in various perspectives on both subjects but none of them have
forced on the relationship between them.

OBJECTIVE- The objective of the research is to explore the understanding of
software reuse and offshoring, and to find out the possible outcomes of applying these
approaches simultaneously in software development.

METHOD- Literature review is the main source of the research.

RESULT- It is very challenging to apply either of the two approaches in software
development. When implementing both approaches at the same time, it requires
tremendous efforts and up-front investment to make the change, and the result of
integration would lead to increasing managerial difficulties.

CONCLUSIONS- By studying Software Reuse and Offshoring, we have found the
potential benefits, difficulties and feasibility when combining both approaches in
particular cases of software development.

Preface
Our sincere thanks to Faramarz Agahi, for help and guidance throughout the

project. Last, but not least, we wish to thank all the interviewees who participated in
this project.

Table of Contents
First Page...1
Abstract...2
Preface...3
Table Of Contents.................................4
1.Introduction..5
2.Related Research...............................5

2.1.Software Reuse.......................................5
2.1.1.Advantage..6

Cost-saving..6
More than code....................................7

2.1.2. disadvantages..................................7
Hidden Costs..7
Efficient Project Management(Team
efforts)..7
Architecture Needed............................7

2.2.Software Offshoring...............................8
2.2.1.Definition and terminology.............8
2.2.2.Offshore Outsourcing......................8
2.2.3.Offshoring..9
2.2.4. Offshore Outsourcing V.S.
Offshoring...9

2.3.Software Reuse & Offshoring in IBM 10
2.3.1.Description....................................11
2.3.2. Offshoring in IBM........................11
2.3.3. Software Reuse In IBM................12

3.Theoretical Framework...................12
3.1.Two-stage Offshoring..........................12

3.2. Strategic Reuse Discipline..................13

4. Methodology....................................14
4.1.Method Of Choice................................14
4.2. Data Source...15
4.3. Data analysis16

4.3.1. Case Study of Sandklef GNU Labs
..16
4.3.2.Findings from the case(Without
SRD)...17
4.3.3. Finding of the Case(With SRD). . .18
4.3.4. Findings of Related Research.......18

5. Discussion..19
6. Conclusion.......................................20
7. Future Work....................................20
Reference...21
APPENDIX I.......................................23

Table: Data Analysis of Two-stage
Offshoring and Strategic Reuse Discipline
..23

APPENDIX II......................................24
IBM Offshoring Structure......................24
IBM in China..24

APPENDIX III....................................25
Reuse success factors in Asset-Based
Development (Ackerman et al. 2008)....25

APPENDIX IV....................................26
Interview Contents.................................26

Table Of Contents

1.Introduction
Software engineering is an engineering

discipline focusing on the cost-effective
development of high-quality software systems
(Sommerville 2006). In different organizations,
researchers and scholars have devoted countless
time and effort to numerous strategies, methods,
and theories that support building high-quality
software with lower budgets. Offshoring is one
of these approaches and it is a growing
phenomenon that takes advantage of globalized
manpower towards higher productivity and
lower cost in software development (ACM
JMTF 2006). Nowadays many software
products are regarded as valuable asset in
companies. In order to increase the return on
the investments, companies promote software
reusing for lower software production and
maintenance costs, fast delivery of systems and
increased software quality (Sommerville, 2006).
Therefore, software reuse can be considered as
another approach towards the mutual benefits in
software engineering.

As both two approaches can effectively
reduce cost, enhance the productivity of
software development, they can be compared to
the "catalyst" in chemical reaction. Since either
of the two can dramatically improve software
development, it might be possible to multiply
the benefits of both approaches by applying
these two approaches parallelly in software
development. Then it triggers the question of the
research: What is the outcome of applying
software reuse and offshoring simultaneously
in software development?

The objective of his paper is to explore the
outcome of this experiment. Software is abstract
and intangible. There comes rising difficulties to
investigate the apporaches, since these
appoaches are at least equally abstract and
intangible as software. Therefore, the research is
taken in a step-by-step fashion. The first step
hereby is to gain an intensive understanding of
software reuse and Offshoring. Both subjects
are generally complex and sophisticated, and it
requires extensive research on both subjects to

gather constructive information to establish the
theoretical framework for later research and
discussion. The second step is to form the
theoretical framework by choosing specific
theory or model within the related research. The
theoretical framework of the research consists
two models that are reasonably selected from
the approaches. Together both models represent
the theoretical framework. The third step is
data collection and data analysis. Data collecion
covers the methods that have been used to
retrieve data in the research, while the data
analysis is based on the criteria defined by the
theoretical framework. The final step is
comprised of discussion and conclusion
discovering the potential benefits, difficulties
and feasibility of applying the theoretical
framework in software development.

2.Related Research

2.1.Software Reuse
Reuse is often described as not “reinventing

the wheel” and the first step at succeeding at
reuse is to understand that you have more than
one option at your disposal (Ambler 2005).
Software reuse which is the reuse of existing
software, or software knowledge in order to
build new software. Table 1 clearly shows
different categories of reuse.

Page 5

Reuse
Category

Examples

Architected Service domains Domain components
Internal open source

Pattern Architecture patterns Design patterns
Analysis patterns

Framework External open source Technical
frameworks Business frameworks

Artifact COTS application Legacy application
Domain model

Module User interface components Technical
components Web services

Template Use case template Project plan template
Document template

Code Class libraries Functional libraries
Copy & paste

Table 1 Types of reuse in information technology (Ambler
2005)

There are four main reuse types existing in
industry software development. Opportunistic
reuse which means while the development team
starts a project, developers find that there are
existing components that they could reuse
directly. Besides that, planned reuse is one kind
of reuse that a developers strategically design
components which are reusable in future
projects. Internal reuse and external reuse are
normally implemented by individual
programmer and organisations. Individual
programmer reuses its own components which
might be easier and quicker for the internal
software development. External reuse always
implemented by a team who may choose to
license a third-party code. Licensing a third-
party code typically would reduce the cost. This
type of reuse mostly benefits from the
Free/Open software development

2.1.1.Advantage

Cost-saving

"Difficult economic and market
conditions are forcing software
development teams to do even more
with less, and to become even more
responsive to customer
needs."(Eran Strod, Quantifying the
cost savings of using open source in

software development)

In software development industry, whether an
organization relies on traditional software
development methodologies or more flexible
agile development processes, currently the reuse
of software or source code is the key to
dramatically speeding software development
and lower the cost of it at the same time. For
instance the use of open source code in reality.
Table 2 expresses the cost save specifically by
the comparing two different development
methods.

Lines of Code 100000

Finished lines of code
developed/day

20

Work days/year 222

Development staff years to
complete

22.52

Developer cost per year 84660 USD

Savings by using software
reuse(open source code)

1906757 USD

Table 2,Lines-of-Code Cost Calculator (BDS 2009)
There are fundamental cost aspect in the

creating phase of software development: Firstly,
the cost of developers time (Full time
employees) Beside that, the average number of
debugged lines of code produced and related
costs such as maintenance, documentation. In
this case, open source software has the potential
advantages to save developers from reinventing
the wheels. The obstacle of the open source
software reuse is how to properly manage it
according to corporate policies and procedures.

Benefit Explanation

Increased
dependability

Reused software, which has been tried
and tested in working systems, should
be more dependable than new
software because its design and
implementation faults have already
been found and fixed.

Reduced process
risk

The cost of existing software is
already known, while the costs of
development are always a matter of
judgement. This is an important factor
for project management because it
reduces the margin of error om project
cost estimation. This is particularly

Page 6

true when relatively large software
components such as sub-systems are
reused.

Effective use of
specialists

Instead doing the same work over and
over, these application specialists can
develop reusable software that
encapsulates their knowledge

Standards
compliance

Some standards, such as user interface
standards, can be implemented as a
set of standard reusable components.
For example, if menus in a user
interface are implemented using
reusable components, all applications
present the same menu formats to
users. The use of standard user
interfaces improves dependability
because users are less likely to make
mistakes when presented with a
familiar interface.

Accelerated
development

Bringing a system to market as early
as possible is often more important
than overall development costs.
Reusing software can speed up system
production because both development
and validation time should be
reduced.

Table 3, Figure Benefits of software reuse(Sommerville
2006)

More than code
Actually, although the practice is called code

reuse, much more than code could be carried in
reuse libraries. For instance assets could include
Offshoring business-process rules, best
practices, test cases, development models,
patterns and specific code at all levels.
Companies as well as individual programmers
are increasingly seeing the benefits of reusing.
Actually, there exists disadvantage of software
reuse which needs to be considered.

2.1.2. Disadvantages
problem Explanation

Increased
maintenance costs

If the source code of a reused
software system or components is
not available then maintenance
costs may be increased because the
reused elements of the system may
become increasingly incompatible
with system changes

Lack of tool
support

CASE tool-sets may not support
development with reuse. It may be
difficult or impossible to integrate

these tools with a component
library system. The software
process assumed by these tools
may not take reuse account.

Not-invented-here
syndrome

Some software engineers prefer to
rewrite components because they
believe they can improve on them.
This is partly to do with trust and
partly to do with the fact that
writing original software is seen as
more challenging than reusing
other people's software.

Creating and
maintaining a
component library

Populating a engineers prefer to
rewrite and ensuring the software
developers can use this library can
be expensive. Our current
techniques for classifying,
cataloguing and retrieving
software components are
immature.

Finding,
understanding and
adapting reusable
components

Software components have to be
discovered in a library, understood
and, sometimes, adapted to work
in a new environment. Engineers
must be reasonably confident of
finding a component in the library
before they will make include a
component search as part of their
normal development process.

Table 4,Problems with reuse (Sommerville 2006)

Hidden Costs
In reality, large-scale code reuse brings up

exceptions than developer expecting. On the
other hand, using reusable objects requires
extensive analysis as well as plan. “It is really
hard to measure the reuse. And it do depend on
how big project it is. Actually it is hard to see
how much time or budget u have save during
the project developing. it is also quite
impossible to set up the goal and timetable
about the reuse work in the beginning of the
project.” said Henrik, a software development
professor in Sweden. Normally, the developer
will need to invest extra time in testing and
quality assurance and documentation to make
sure the reused code is able to fulfill the
functionality. All of this, as listed in the table 4,
takes time which increases the hidden cost of
the code. It also depends on the size of the
development team as well as the organization
construction.

Page 7

Efficient Project Management(Team efforts)
There is a big obstacle impedes the project

team to cooperate in achieving reuse in the first
place. Few project managers are willing to
spend their time, resources as well as project
development risks to deal with their deadlines.
Because of that, it is hard to be magnanimous
and make the project developers work well
enough for reuse. In this case, software
offshoring environment provides chance for the
organisation to deal with software reuse because
of the mature management background.

Architecture Needed

Developers working with visual tools which
are able to bring up components in quicker and
easier way, but without a foundation of good
architecture, it is most unlikely the components
would work for the new application.

“Most projects have small start and
when they get bigger the code turn
into a mess. But personally i will
agree that good structure will make
reuse and maintenance easier in
later phase of the software
development.”

-Henrik

Ultimately, a standard architecture would
possibly help both vendors and individual
programmers solve the reuse dilemma. This will
force developers to spend more time thinking
about the reusability than wrestling with current
implementation. Many organizations
prematurely give up on reuse when they don't
get positive returns on their few projects or even
on their very first one. Strategic reuse discipline
is a long-term endeavor that has strategic returns
instead of tactical ones (Ambler 2004). The goal
of the discipline is to define how organizations
could succeed at reuse by the architecture
implementation. More in-depth information of
this discipline will be expressed in the follow
section as well as theoretical framework .

2.2.Software Offshoring
2.2.1.Definition And Terminology

According to Cambridge Advanced Learner's
Dictionary (CALD 2010), Offshoring means
"the practice of paying someone in another
country to do part of a company's work". It
seemingly resembles another term Outsourcing
described as "if a company outsources, it pays to
have part of its work done by another
company". The Panel of National Academy of
Public Administration in U.S. (PNAOPA 2006)
has suggested more explicit definitions for these
terms as followed:

"Outsourcing— firms contracting
out service and manufacturing
activities to unaffiliated firms
located either domestically or in
foreign countries.

Offshoring — U.S. firms shifting
service and manufacturing activities
abroad to unaffiliated firms or their
own affiliates.

Offshore Outsourcing — a subset
of both outsourcing and Offshoring
in that it refers only to those service
and manufacturing activities of U.S.
companies performed in unaffiliated
firms located abroad. (PNAOPA
2006)"

Although these terms are clearly defined, it is
still difficult to see through the differences by a
glimpse, especially Offshoring and Offshore
Outsourcing. The following sections will
present the extensive research on these two
terms exploring the similarity and difference
between them.

2.2.2.Offshore Outsourcing

Offshore Outsourcing is the outsourcing
process only contracting vendors outside of the
border. In order to study Offshore Outsourcing
in depth, it is approachable to begin with its
ancestor, outsourcing. Outsourcing has been
universally applied around world in many kinds

Page 8

of business to attain the goal of cost-saving. It
creates a win-win situation that brings both
sides of the contract great values (Lee et al.
2003). As increasingly growing business or a
scientific topic, outsourcing has been
intensively studied in numerous perspectives
such as economics, organisational sociology and
management, but the process issues of
outsourcing have been unknowingly neglected
(Ring & Van deVen 1994). Zhu et al. (2001) has
made research on the process view of
outsourcing and defined a model illustrating the
stages in the process.

The first stage is the "Planning" stage
creating a sound business plan that covers cost
of all outsourcing-related activities. The second
stage "Development" includes choosing
outsourcing vendor, making agreements,
measuring the impact and benefits and making
communication plan. The "Implementing" stage
involves creating a transition plan and checklist
preparing the project transferal to the supplier or
third-party. The final stage "Surviving" involves
assessment of the result of outsourcing to
determine if the objectives were attained. It can
be seen that this model is driven from the
outsourcer's perspective which only shows the
activities the outsourcer operates during the
process. According to the process, the outsoucer
can easily decrease the development cost by
choosing the outsourcing vendors that offers
less price.

The Zhe et al.(2001)'s model is originated
from general business background, which might
not be exactly the same model in software
outsourcing. Many organizations have studied
the process issues in Offshore Outsourcing
software development, and some of them are
outsourcing vendors. These vendors have
dedicated great efforts to create appealing
process models for business presentation.
BelHard is one of the vendors from Belarus.
BelHard's Outsourcing models shows that in
software Offshore Outsourcing there are more
involvement between the customer and the
vendor. Except for identification and
confirmation of the requirements, the outsourcer
is requested to supervise the project during the
whole software development cycle and

resolving risks in the early stages. However, the
communication between onsite and offshore is
only through both project management team,
there is no sign of direct communication
between the development teams from two sides.

2.2.3.Offshoring

Offshoring describes the process that
companies relocate or shift their services or
manufacturing activities to low-cost
destinations. Originally Offshoring is applied as
a way to reduce cost, but in resent years
researchers and scholars have revealed that
Offshoring is not just a way to get bargain, it
has made business entering a globalized era
(CIBER 2006). Besides taking advantage of
cheap labor at low-cost countries, the
Offshoring process gives access to more
talented people and their gifts. CIBER (2006)
called this phenomenon as "next-generation
Offshoring". Labor arbitrage or global labor
arbitrage is the foundation of the next-
generation Offshoring where results in the
removal of barriers to international trade,
moving low skilled jobs to low-cost nations
while moving high skilled jobs to nations with
higher pay (Roberts 2004). As one type of
offshore software development, Offshoring can
reduce the cost of development, provide
abundant quality human resources and create an
efficient platform to integrate separated talents.

NAOPA's definition of Offshoring includes
both unaffiliated and affiliated firms as
Offshoring destinations. However, Offshoring
most generally refers to the relocation inside a
single multinational firm, which is a subset
Offshoring defined as "in-house Offshoring" or
"offshore insourcing" (Prikladnicki et al. 2007).
Olsson et al.(2008) have gone further in this
area defining the term "two-stage Offshoring".
The definition of Two-stage Offshoring is
quoted here:

"a company offshores to one
location, which then offshores work
further."

- Olsson et al.

They also found out that the shifting can keep

Page 9

moving from a low-cost destination to a even
lower one, a term "multi-stage Offshoring" is
suggested hence. The two-stage Offshoring
model creates a bridging site between the high-
cost site and low-cost site, but the function of
the bridging site is defined differently.
According to Olsson et al.'s case study, the
bridging site is regarded as the management or
communication center between the two sites.
But in any of the cases, the bridge makes
contributions to decease the cost overall
development in the organisation. And this
discovery enables in-house Offshoring to
achieve lower cost in software development
without involving outsourcing (Olsson et al.
2008).

2.2.4. Offshore Outsourcing V.S.
Offshoring

There are some similarities between Offshore
Outsourcing and Offshoring. First, they all
require offshore location to deliver tasks.
Second, both methods usually choose low-cost
locations to shift tasks. Third, in either case
Offshore Outsourcing or Offshoring, the
company requires a reasonable scale of business
to conduct these operations. And finally, both
methods encourages globalization in a variety of
perspectives.

The major difference between the two is the
points of view. Olsson et al. (2008) explained
that Offshoring is about the location of the main
operation ,while outsourcing is about who takes
charge of the operation. There is no direct
opposition or contradiction between these two
methods, there is possibly an intersection
between the two approaches.

For outsourcing, Olsson et al. (2008) has
revealed its two implications, either contracting
parts of the process or tasks outside of the firm
or delegating the entire process to an outsider.
And it seems that delegating the entire process
to an outsider is very similar to the Offshoring
that shifts service or manufacturing abroad to
unaffiliated firm. The outsourcing vendor
BelHard has also identified full project
outsourcing as an exception to their Software
Project Outsourcing Model (BelHard 2010),

they declares this due to the possible hidden
risks (BelHard Outsourcing 2010). Or it can
been seen in this way, when BelHard get a full
project, BelHard is actually delegate the entire
development of the project. While the
outsourcer of BelHard just simply pass the
project from to them, which is very likely an
Offshoring process.

In another word, hypothetically, Customer
asks Company A to develop Project X. Then
Company A contracts an entire Project X abroad
to Company B. When Company B finished the
development, it passed the project to Company
A, then Company A presents Project X to
Customer. This process can be rephrased as
company A Offshore Outsourcing or Offshoring
the project X to Company B. Therefore, there is
an possible intersection between Offshore
Outsourcing and Offshoring as Figure 1
illustrated. In addition to this point, the there is
another model showing close connection with
both methods which is defined as nearshore
outsourcing. Nearshore outsouring is a mode of
offshore outsourcing reliant on geographical
proximity between client and vendor countries
(Abbott 2007). Like offshoring, this mode
decreases the difficulties in communication and
coordination by taking advanatage of the
shorthen distance between two sides.

Page 10

Figure 1: Intersection of Offshore Outsourcing and
Offshoring

Figure 2, Process Compexity in differnt prjects
(Prikladnicki et al. 2007)

Despite the intersection between offshoring
and offshore outsourcing, it is revealed that
offshore outsourcing is more complex than in-
house offshoring in the perspective of process
(Figure 2), which means in-house offshoring
may be more efficient for software development
at offshore destinations than offshore
outsourcing. With similar advantages of
outsourcing, two-stage offshoring is a promising
approach to achieve low cost and efficient
software development at offshore destination.

2.3.Software Reuse &
Offshoring In IBM

Software reuse and offshoring are almost two
unrelated subjects in software engineering. In
order to explore the relationship between the
two, it was decided to find an organization that
has involved with both approaches in the
system. IBM is one of the companies that have
devoted tremendous efforts on both subject,
which could bring valuable insights for the
further research and discussion.

2.3.1.Description

From the merge of three companies back to
the 19 century to the gigantic enterprise with
almost 400,000 employees in over 200
countries, IBM is unadulterated a Globally

Integrated Enterprise (Palmisano 2006). As one
of the world's largest technology company, IBM
covers a variety of businesses such as
manufacturing and selling computer hardware
and software, infrastructure services, hosting
services, and consulting services etc. (IBM
2010). IBM has been actively involving with
offshoring for many decades and have resulted
in a massive complex multinational structure.

The reason of introducing IBM to the related
research is originated by the the company's great
achievement in these two areas. It is evident that
IBM have reached the stage of Next-generation
offshoring described by CIBER (2006) and
taken advantages from talents all over the world
with sophisticated labor arbitrage system. On
the other hand, software reuse is heated subject
in the company. There are have been numerous
models and theories created to illustrate the
importance of software reuse as well as the
practical approaches that implements the
theories. As mentioned above, systematic reuse
requires sophisticated plans to carry out, and
these signs can be spotted in IBM.

However, IBM is not quite transparent in
terms of organisational structure. There are no
brief documentations clearly showing how this
gigantic company operates locally and
internationally. Knowing IBM's attempt on
patenting offshoring (USP&TO 2007) it was
realized that IBM may not generously present
their offshoring workflow freely on the website.
In order to find how offshoring was managed in
IBM, the research is carried out mainly based on
reviewing published documents, brochures,
articles and web-pages on IBM's websites.

2.3.2. Offshoring In IBM

As one of the largest IT company in the
world, the structure of IBM is rather
sophisticated and somehow cryptic where there
is no clear illustration of the relationship
between different departments and how they
interact.

By analyzing the services provide by IBM,
there are mainly two types of offshore sites in
IBM: subsidiaries of IBM divisions and

Page 11

affiliated firms, and some of the affiliated firms
have been integrated with the divisions. For
example, IBM Rational or IBM Rational
Software was acquired by IBM in 2003, this
affiliated firm became part of the IBM Software.
It leads to the notion that theses affiliated firms
are working independently as peers under the
overall structure, which is quite similar to one
case in Olsson et al.'s case study on Two-stage
Offshoring.

When comes to offshore destinations, it
appears that IBM has at least two separate
divisions in each country. In China, IBM owes
two firms namely IBM Global Service and IBM
China. The IBM Global Service division covers
many services such as business consulting,
technology consulting and outsourcing. While
IBM China manages the Delivery Centers in
China (Appendix II). The Delivery Center or
Global Delivery Center (GDC) is one of the
fundamental units in IBM, GDC is where most
labor gathered and participate software and
hardware manufacturing. Global Service, on the
other hand, is dedicated to consulting in various
areas and system integration (IBM 2010). It
feels that the Global Service department plays
the role as the bridging site which is related to
management and coordination.

IBM has set up 41 GDCs in 16 countries, and
most of these countries are emerging countries
providing vast amount of labor (IBM Global
Briefing 2010). There is another kind of
delivery center named as "Integrated Delivery
Center (IDC)" in IBM. These centers are also
considered as strategic location or strategic
delivery center (IDC in Brno 2010). IDC is not
only an offshore development center, but also
get close to IBM's clients providing solution
with IBM's integrated technology. By
comparing the GDC and IDC with Two-stage
offshoring, there are some similarities. In Two-
stage offshoring, the bridging site focuses on
management or some sort of the integration of
the two other sites. While IDC does not directly
managing GDC, but in some direction it
integrates the assets developed on different
GDCs. Also IBM has numerous research centers
around world, and these research centers
facilitates other divisions in terms of

economical and technological resources, and
these research centers can also be regard as
some source of bridging site managing research-
based resources.

2.3.3. Software Reuse In IBM

software reuse has always been a heated topic
in software industry, and especially for big
company like IBM. There are some prominent
theories invented inside IBM describing how to
manage systematic software reuse. A team of
specialists in IBM have written a book titled
Strategic Reuse with Asset-Based Development
(Ackerman et al. 2008). This book has
introduced a strategic reuse approach named
Asset-Based Development, and made intensive
research on the subject. This approach is very
related to Ambler's SRD models. If saying
Ambler's models are the blueprint of the
systematic reuse in IBM, then Asset-Based
Development is the instruction book explained
how it works. Basically, Asset-Base
Development is a component-based
development customized by IBM. This
approach requires a specific development
infrastructure that includes planing sectors,
management sectors and various tools that
facilitate the development. The company that
adapted the approach has to invest significantly
on changing the development infrastructure as
well as adapting or purchasing tools from IBM.
But the benefits are evident. Asset-Based
Development has been widely applied in IBM
for example services in Service-Oriented
Architecture(SOA) (Balaji 2007). And it has
many success factors (Appendix IV) to be
considered in order to implement the method.

3.Theoretical Framework

3.1.Two-stage Offshoring
Two-stage offshoring is a very promising

approach that can greatly decrease development
cost while take advantage of the organisational
benefits. However, Two-stage Offshoring is not
an approach based theoretical inferences, but
discovered empirically. Since Two-stage

Page 12

Offshoring is also in-house offshoring, it
enables communication in all levels among
different sites from code to human resources. In
a individual view, developers can possibly share
the company's resources in development such as
reusable components and libraries. In an
organisational view, two-stage offshoring
models allows the company to gather talents at
all sites along with development, and reduce
cost by offshoring further to even lower
destinations.

The bridging site in this model is quite
delicate in the model. According to the case
study by Olsson et al., the bridging site is
mainly regarded as managerial outpost that
maintains the communication and coordination
between other sites.

3.2. Strategic Reuse
Discipline

The related research in software reuse area,
has provided some outstanding software reuse
models. Ambler's Strategic Reuse Discipline is
one of them which expressed software reuse in
theoretical way. In next step, Strategic Reuse
Discipline would be integrated with case 1 in
real industry software development.

Reuse isn't free; it isn't something that
happens simply because you're using certain
tools or working with certain technologies.
Instead, reuse is something that you have to
work at very hard, as you can see in the high-
level workflow for the Strategic Reuse

Page 13

Figure 3: The amalgamated workflow of the Strategic Reuse discipline (Ambler 2004)

discipline in Figure 3 The detailed amalgamated
workflow is depicted in Figure 3 (Ambler
2004).

Our perspective: In the field of offshoring
environment, code is able to be reused across
multiple applications as well as diverse
organizations. For instance the department of
the company in another place would reduces the
amount of actual source code which they need
to produce, potentially decreasing both
development and maintenance costs.
Simultaneously, the disadvantages are its scope
of the effect is limited to programming as well
as it often increases the coupling within and
application. The point here in the thesis is trying
to figure out software reuse which could
potentially be part of the whole software
offshoring process.

Consistent reuse requires a change in
mindset. Developers must be willing to work
together, to reuse each other's work, to help the
reuse efforts of their organizations and to plan to
reuse items whenever possible (Ambler 2000).
When the offshore subsidiary starts a project, it
should firstly consider what parts of the
application could be reused from elsewhere.
Perhaps another department of the company or
the other organization has built what this project
need. The flip side of the coin is that the
offshore subsidiary must be willing to share its
own work with other organizations which are
outside the boundary of its own. In this case,
there is one role called reuse registrar in the
Strategic Reuse discipline who takes the
responsible for publishing assets as well as
announcement of the reuse work. This situation
is sort of familiar with open source project
environment. Reuse eventually will be an
attitude, not a technology.

From organisation's perspective, there are
many types of software development in
association with offshore destination, and it is
more possible to apply Strategic Reuse
Discipline in the cases of in-house offshoring
than offshore outsourcing. For outsourcing or
offshore outsourcing models, there is an
organisational barrier that significantly prevents
the process of software reuse. The model of in-

house offshoring provides a direct path between
different sites of the company for software reuse
activities. The model of Two-stage offshoring is
potentially adaptable comparing to the model of
Strategic Reuse Discipline. The bridge site in
the two-stage offshoring model is mostly
considered as an management and
communication enhancement during cross-site
development. Tasks are divided and distributed
to different sites, while the bridging site
coordinates the operations at different places.
The SRD model illustrates a detailed managerial
approach towards systematic reuse inside a
single organisation. According to SRD, the
company should assign a team to be fully in
charge of the all reuse-related activities from
planing, implementation and maintenance. In
order to accomplish this settlement of this reuse
team, the size of the organisation should have
reached a reasonably large scale. Similarly,
offshoring is also practices in larger companies.
The isolation of distance can dramatically
enlarge the difficulty of management and
coordination between the associates at sites, and

Page 14

Figure 4: The workflow of the Strategic Reuse Discipline
(Ambler 2004)

it would lead to vital disorder in smaller
companies that lack of financial and managerial
assets.

Strategic Reuse Discipline also reflects the
labor arbitrary in the organisation. As the
offshoring process getting matured, labor or
jobs are delicately categorized according to the
level of skills. in distributed development such
as outsourcing and offshoring, it requires
increasingly more effort to integrate the
distributed work from different sites when the
size of the project rises (Prikladnicki et al.
2007). Strategic Reuse Discipline could be a
possible solution to simplify the complicity.
With a reuse team at bridging site in charge of
the planing,support and management of reuse
activities, the organisation could redefine the
tasks at different sites. the offshore sites(except
the bridging site) can take responsibility of
development and quality assurance of reusable
assets while the onshore site can focus on
defining the reuse standards and criteria.

4. Methodology
The proof of concept study as well as the

reasons behind the decision to chose it will be
introduced in this section as a research method
for the paper. Moreover different data collected
are identified by the specific approach for
analyzing data.

4.1.Method Of Choice
The focus of the research is studying the

benefits, difficulty and feasibility of applying
software reuse and offshoring simultaneously in
software development. Literature review is
chosen for the research method. This paper aims
to find out the outcomes while these two aspects
cooperating with each other. Research data is
collected from articles, papers and published
case studies.

The research is consisted from following
phases:

-Searching and finding related literature

-Choosing and categorizing related literature

-Few more relevant literature sources

-Analyzing the related literature.

Related literature for the research is consisted
of papers, articles, books, conferences and
publications on related content. The searching
phase mainly based on online resources which
including scientific search engines, library
catalogs or database. Two main areas are
constructed for the search phase: software
offshoring and software reuse.

The goal of Strategic reuse discipline is to
define how organizations can succeed at reuse.
In order to have deep understanding of the
discipline, one case study is essentially needed
to ameliorate the data sources. Case study is a
research methodology common in social
science. It is base on an in-depth investigation
of a single individual, group, or event to explore
causation in order to find underlying principles

(Baxter & Jack 2008；Dul & Hak 2008). For
strategic reuse discipline, a case study based on
software development industry would be an
excellent opportunity to obtain significant
insight into the model as well as enable the
researcher to gather data from a variety of
sources which converging the data to express
the model. The case is to chosen to discover the
actual software reuse model in individual
perspective and verify the feasibility of SRD in
practice.

4.2. Data Source
The primary data source for the research was

the literature materials consist of articles, books
and online publications. For example, Table 5
shows the literature that reviewd in the related
research of IBM. And secondly, interviews
materials conducted with one company Sandklef
GNU Labs. There are two interviews has been
accomplished. The interview questions are
based on the related research outcomes which
are able to enhance the understanding of these
two subjects.

Page 15

Articles Type
Infrastructure Services, IBM Global
Briefing brochure

The future of IT application development brochure

IBM Global Services website

IBM Rational website

IDC in Brno website

Strategic Reuse with Asset-Based
Development book

Apply asset-based development to services
in an SOA

website
Article

Standards and reuse (Fay, 2004) published
Article

Table 5 Reviewed IBM Articles

Interviews are planed to be divided into
elementary interview and feedback interview.
The data would be recorded in a wide variety of
ways including audio recording and written
notes. The purpose of the interview is prove the
ideas of the interviewees about the phenomenon
of software reuse and offshoring in software
development field. Ultimately, case study in this
thesis is a method which enhance the
understanding of the strategic reuse discipline.
Therefore, it is difficult to conduct a perfect
case study by various limitations of time and
personal experiences. Interview content will be
expressed in the appendix.Different sources of
data collected in during this research is
summarized with their advantages and
limitations in the Table below.
Source Data

Collection
Type

Advantages Limitations

Sandklef GNU
Labs software
reuse
specification

Document,
architecture
specification

Real industrial
developers'
experience

Subjective
opinions may
affect objective
reality

The Leader of
Sandklef GNU
Labs

Interviews Real software
industrial
perspective

Personal
thoughts may
affect objective
reality

Literature from
IBM

Document,
reports

Valuable
information
based on
domain
knowledge

Difficult to
address all
relevant
sections

Recorded media
of interviews

Audio-visual
material

Reprocessable Interpreted
issue.

Table 6 Summarized Data Sources

Case 1 Sandklef GNU Labs

Sandklef GNU Labs are written several tools
and documents and been actively involved in
the free software community sine 1998.

Interviews

2010.5.05 Interview with the leader of the
company.

Strategic reuse discipline implementation
phase.

2010.5.17 Feedback interview with the leader
of the company.

Several softwares developed by Sandklef
GNU Labs have been reviewed which helps the
reviewer understanding the software
development process better. This also helps the
reviewer to get more feedback data when the
software reuse discipline has been implemented.

GNU Xnee is a suite of programs that would
be able to record, replay and distribute user
actions under the X11 environment. It acts as a
robot that can imitate the job user just did. GNU
Xnee is licensed under GNU GPLv3
(http://www.gnu.org/licenses/gpl.html)

Swinput is able to fake a mouse and a
keyboard by using the Linux Input System. The
swinput modules read from a device and fakes
hardware event (mouse motion, key presses etc)
as commands written on the devices. Swinput
presents status etc on the proc filesystem. It was
developed to use when testing Xnee
(http://www.gnu.org/software/xnee).

The data sources have been collectted from
these two different companies are not simply for
comparing the companies themselves. It mainly
because the Strategic Reuse Discipline need to
be implemented in at least two different types o
f companies which in order to gather efficient
feedback from the reality. The data sources are
collected simultaneously, which means there
existing comparision but the goal is mainly
about testing Strategic Reuse Discipline.

Page 16

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/software/xnee

4.3. Data Analysis
4.3.1. A Study Of Sandklef GNU Labs

Sandklef GNU Labs are written several tools
and documents and been actively involved in
the free software community sine 1998.
Sandklef GNU Labs is a one man company
forming teams with other companies that suits
the needs of the projects.

Henrik Sandklef is currently working as a
teacher at IT University and as a consultant. At
IT University Henrik is giving courses about
embedded programming and free software.
(http://www.sandklef.com/sgl/)

For Sandklef GNU Labs, framework reuse is
most implemented software reuse type . The
choice of different software reuse type also
depends on the software will be build, there is
no specific reuse type would be chose all the
time. Different requirement of the software will
lead the development team to do the right
decision.

Different perspectives from henrik expressed
that advantages and disadvantages of software
reuse, for instance, cost saving really depend on
how much code the software development team
needs, how much functionality the team needs.
In some cases, getting a feature fixed by import
or reuse a library probably will gain money in a
short term, but it also make the development
team tight up by the library too. In this situation,
software reuse will probably rise up more
complex maintenance in later phase.

For knowledge exchange, it definitely helps
the organization to exchange knowledge as well
as software development process. It also depend
on what the company need. Some of the
companies just reuse the software and keep the
improvement as private software development,
this kinda of reuse would probably not do
anything about the knowledge. Hidden costs of
software reusing, for instance, reuse one API,
the developer need to think about that is it worth
be tight up by the API.

When a development team set up a project. In

this case study, the programmers would like to
go through the old programs or code they have
wrote. But still, the requirements of the new
project have the higher priority. Set up the
architecture of the project still will help the late
work. For instance find out old software or code
which are helpful.

The Ambler's model is way too complex for
small software development companies. The
role setting is better for big project. The roles of
the Ambler's code reuse model are always
shared among normal developers. The software
reuse plan manager, in some cases, is the project
manager who is in charge the software
development process.

Actually, task of those roles in the Ambler's
model are usually done by experience
programmers. And they do not just hack it, they
will start to analysis the code or the software
they gonna reuse. These kinda persons are not
like three years software development
experience, they are really expert into this field
who are able to handle the decision of software
reuse.

Ultimately, the measurement of software
reuse is really hard to be clarified in the
beginning. And it do depend on how big project
it is. Actually it is hard to see how much time or
budget a development team have save during
the project developing. it is also quite
impossible to set up the goal and timetable
about the reuse work in the beginning of the
project. Normally, the manager would possibly
have a overview about the benefits of the code
reuse or software reuse at the end of the project.

4.3.2.Findings From The
Case(Without SRD)

Unfortunately, software reuse does not just
happen (Herndon 1995).

Due to the interviews, data sources shows
that it is highly managerial in nature and they
will not be successfully utilized without
management and process support. Reusable
assets needed to be designed and built in a well
defined with understandable documentation.

Page 17

http://www.sandklef.com/sgl/
http://www.sandklef.com/hesa

Software developers need to keep an eye
towards future use. Normally, software projects
development existing in out sourcing field are
built as “one-time only”, without reuse in mind.
Single project typically is tend to be tightly
bound within itself, without open interfaces
which ease the reuse process. The software
development process consequently must evolve
to include reuse activities.

With a reuse process in place, every new
system can be built from a set of core assets
rather than rebuilding a system from scratch for
each new customer's requirements.(Baragry
1994) This approach consequently adds new
challenges for the software development team.
For instance, instituting a training program for
reuse strategies in management, design,
implementation and test phases of development
process (Baragry 1994). In order to meet these
new challenges brought out by code reusing, a
software development organization must
possess some key abilities and have a strong
commitment to goals of reuse (Brownsword &
Clements 1996).

Firstly, members of the software development
required training to perform their technical
assignments associated with software reuse. As
Henrik mentioned in the interview, experience
software developers have the advantage when
they are facing the software reuse. Beside that, a
development team that is responsible for the
maintenance of the reuse infrastructure must
exist. Ultimately, responsibility must be
assigned on each project of outsourcing or
Offshoring companies for the registration and
maintenance of reusable components. In
essence, the organization itself must have a
strong software development process foundation
before attempting to incorporate reuse into the
software life-cycle.

Along with many of the current familiar
techniques, such as layered architectures,
abstract interfaces design. The biggest new
technical challenge on a product line approach
is the initial design of the software architecture
for the robustness towards potential future
expansions, and its subsequent maintenance to
deal with technology changes. This is also

means the design of the software architecture
should be carried out by people with experience
and a solid understanding of software reuse
development (Govardhan & Premchand 2005).
Three main stages has been inferred from the
case.

Planning the reuse program The outsourcing
organizations must actively plan as well as
budget for reuse. From the offshore subsidiary
perspective, the time and resources are
necessary needed to allocate to make reuse
success. There is a bottom line that it is difficult
for individual programmer to operate a reuse
program within a organization. Most
organizations fail because they make their own
programs too complicated which provides no
chance for the others to reuse.

Measuring the reuse programs When the
organization set up the reuse programs in place,
it is necessary to define the goals for it. For
instance improving quality, reducing cost, and
reducing time to market. The grandiose goals
are easy to set up, but it is difficult to prove that
the organization or different organizations have
achieved them in practice.

The architecture of the code reuse process
The architecture of code reuse, basically is
divided in three main modules. Firstly, Code
Incorporation center is in charge of uploading
source code files which take responsible for
transforming them into documents. (Relates to
the code reuse registrar) Besides that,
documents retrieval database is the foundation
of executing queries over the connection
between code incorporation center and code
retrieval module. Code retrieval module is
connecting the processes of the results obtained
by documents retrieval database and use. It is
able get the source code related to each
document as well as provide it to the end code
reuse participants.

Page 18

Figure 5, Basic Code Reuse Architecture (Adapted
from Improving source code reuse through documentation

standardization Basic architecture)

4.3.3. Finding Of The Case(With SRD)

After integrated the Strategic Reuse
Discipline (SRD) with Sandklef GNU Labs
case, findings are that there exists significant
differences between the theory and software
reuse process in reality software development
process.

Firstly, from an individual software
developer's perspective, the workflow of the
Strategic Reuse Discipline is significantly
helpful. For instance, from the plan of the reuse
till the support as well as the measurement of
the reuse are the essential steps for developers.
And these processes usually would be neglected
during the software reuse development by small
group of developers.

From the small size software development
company's perspective, specific process as well
as reuse participants established in the strategic
reuse discipline normally could not be
completely implemented. In the reality software
development field, especially for small
companies the strategic reuse discipline,
somehow, is too complex to be implemented.
On the other hand, when software offshoring
deal with software reuse during the
development process, a reuse discipline would
possibly enhance the development in some
cases. Beside that, implementing the Strategic
Reuse discipline brings up changes for the
company. Change becomes to be an inherent
section of the software development especially
for software offshoring. As change occurs, the
development team must have the most effective
reaction for managing change with the software
reuse.

Sandklef GNU Labs case also shows that the
strategic reuse discipline potentially is
serviceable for small size of software
development company. Especially when the
company is aiming sustainable development.

4.3.4. Findings Of Related Research

The related related research is based on
literatrue review and has accumulated broad
information on software reuse and offshoring.
For software reuse, the major find is the
challenges in applying SRD in software
development. By reviewing IBM's study on this
subject, it seems that the challenges have
overthrown the benefits of the adaption. Asset-
Base Development would not be fully
functional even after all the changes
successfully implemented. It takes time for the
company to convert their already-made products
into reusable assets or building more assets.
Meanwhile, the cost of the change will results in
all perspectives individually and
organisationally. There will also be a rise of
managerial challenges. The Asset-Base
Development requires management focus on
support, versioning and configuration of assets.
In a view, Asset-Base Development reflects the
division of labor in manufacturing different
asset based on expertise. And this feature can be
integrated with labor arbitrage in offshroing.

For offshoring, the major finding is the
benefits and difficulties of Two-stage
Offshoring. In brief, the benefit of Two-stage
offshoring is continuously cost-reduction
without involvement of outsourcing. The
difficulty of applying Two-stage offshoring is
the emerging challenges in controls of
communication and coordination. The
companies that have involved with offshoring
are generally large firms with terms of
employees on different sites. Two-stage
offshoring is actually an evolved version of
offshoring. IBM has even pushed this step to
Multi-stage offshoring. From North America to
Eastern Europe then to India, Philippines and
China, all sites of the company can potentially
function as either a development site of a
bridging site.

Page 19

5. Discussion
Introducing Strategic Reuse Discipline (SRD)

to Sandklef GNU Labs case, it reveals
significant conflict between the theory and
reality. The theory defines several dedicated
postitions (roles) for specific tasks during
development. While the actual reuse process in
the case, however, does not necessarily requires
such amount of effort on controlling reuse, since
most of the project are comparably small. For
small companies, the strategic reuse discipline is
beyond the capability of the firm and it is way
too complex to implement. The most optimistic
way of applying SRD in small firms is the
adaption of the workflow. The Workflow of
SRD describes the phases and activities in the
reuse process. These phases and activities can
be adapted individually, for example when one
developer starts a new project, he or she can
start with harvesting assets from various sources
instead of building the wheel again. For larger
firms , systematic reuse can be approachable but
it takes enormous cost to make the change. The
change also brings more difficulties which are
mainly associated with management and
planning of reuse. As for Strategic Reuse
Discipline and the Asset-Based Development,
this method has made the software development
even more complicated. In order to take Asset-
Base Development into practice, there will be a
lot of changes. The development will In this
method, There are many success factors in
Asset-Based Development, and most of the
them are associated with planing and
management, such as identifying the asset to be
built, management of support and versioning
and configuration and so on.

It is obvious that offshoring is mostly likely
to carry out in larger companies. Two-stage
offshoring is a particular type of in-house
offshoring. The bridging site in Two-stage
offshoring is usually regarded as a
communication hub between different sites, and
managing the shifting of the task from one site
to the other. The main difficulty in Two-stage
Offshoring is how to ensure the communication,
coordination, integration and conflict resolution
(Olsson et al. 2008) in the development process.

The Two-stage Offshoring has fully illustrated
the theory of labor arbitrage or labor division
inside the company. In addition Two-stage
offshoring shares the benefits of distance
proximity. Two-stage offshoring can be
extended to nearshore locations with lower cost,
on the other hand the overall structure of in-
house offshoring would not break, and it can
lessen the difficulties in communication and
coordination in terms of operational processes.
The company could assign different tasks on
different sites based on the level of skills. In
some cases, the software development process
are distributed at different sites, for example one
site focusing on coding and one site for quality
assurance. In order to make the overall
development successfully, the bridging site is
vital due to its managerial function. And
successful management at the bridging site
becomes one major challenge in Two-stage
Offshoring model.

Back to the research question of thesis: What
is the outcome when applying software reuse
and offshoring simultaneously in software
development? It is quite critical to answer. For
software reuse, the way that how company treat
this subject is differentiated by the size of the
company. Nevertheless, it requires great amount
of cost to adapt systematic software reuse, for
instance SRD. Offshoring is almost a "patent"
for large companies. It takes investment to set
up offshore subsidiaries while it needs more
resources on managing these sites. Therefore,
when using both approach in software
development, it automatically increase the
difficulties. The difficulties come from three
directions: great amount of investment,
tremendous difficulty of change and incremental
managerial difficulties. If these worked out, the
benefits are the union of both approaches. For
feasibility, it is possible. IBM is a grand
example, and surely IBM cannot stand for all
companies.

Page 20

6. Conclusion
It appears possible to let software reuse and

offshoring co-exist in software development.
But it depends on the capability of software
development companies.

First benefits, both approaches has numerous
features enhancing software development.
Therefore, the combination of the two will
unify the different advantages in both
approaches, and extend cost-reduction and fast-
delivery to a higher degree.

The for the difficulties, the adaption of either
approach will result in increased managerial
challenges. Applying both approaches
simultaneously would probably multiplied the
challenges of management in software
development. Besides, the change itself cost
great amount of investment and efforts.

Therefore, this article is also useful for those
small companies who want to pursue a
preliminary understanding about the
implementation of a software reuse model.
However, before suggesting how software reuse
could be integrated with offshoring software
development, it is also essential to look at the
goal of the software development company.
Small or medium size of organisation would
prefer less investment with more returns.

Findings from the Sandklef GNU Labs case
show that the strategic reuse discipline is still
serviceable for small size of software
development company. Based on the factors of
feasibility, in the long run, strategic reuse also
have chances to enhance the software
development with the help of certain offshoring.
As the successful example from IBM, there
existing possibility of integrate strategic reuse
discipline with offshoring. However, IBM case
could not represent all kind of software develop
companies. The feasibility of integrating them
depends on how those companies deal with the
difficulties expressed above.

All in all, implementation of software reuse
and offshoring in software industry is not just
another process improvement story of software
development. However, like most good
development methods, it requires a lot of
planning, discipline, and up front investment. It
is hard to move fast when people are running on
a rough road. In the case of software reuse as
well as offshoring, high quality of management
in reality provides the smooth pavement for a
faster ride.

7. Future Work
Future research are needed for several

research aspects in this thesis. First of all, the
goal of this paper is trying to find out the
outcomes of applying two different software
development methods. Therefore, more case
study as well as literature review are needed to
clarify the answer for the research problem.
Secondly, the solution of by this research
provides a preliminary theoretical guidelines.
However, more empirical data analysis need to
be explored to proof the solution. It is necessary
to implement the Strategic Reuse Discipline in
the real industry with all different size of
companies. And observe how these companies
could benefit from the model. Further more,
how Strategic Reuse Discipline integrate with
software Offshoring would be another
interesting and advance research.

Page 21

Reference
Abbott P 2007, What do we know about
distance in offshore outsourcing? First
Information Systems Workshop on Global
Sourcing: Services, Knowledge and
InnovationVal d'Isère, France 13-15 March
2007, Management Information
SystemsUniversity College Dublin.

Ackerman, L, Elder, P, Busch, C, Lopz-
Mancisidor, A, Kimura, J, Balaji,R 2008,
Strategic Reuse with Asset-Based Development,
viewed April 25th 2010,
<http://www.redbooks.ibm.com/redbooks/pdfs/s
g247529.pdf >

ACM Job Migration Task Force (JMTF), 2006,
Globalization and Offshoring of Software

Ambler, SW 2000. Reuse Patterns and Anti
patterns. Viewed March 24th
2010,<http://www.drdobbs.com/184414576 >

Ambler, SW 2005. Types of Reuse In
Information Technology. Viewed March 24th
2010,<http://www.ambysoft.com/essays/typesO
fReuse.html>

Ambler, SW 2004.The Strategic Reuse
Discipline: Scaling Agile Software
Development, viewed Feb 23rd, 2010
<http://www.enterpriseunifiedprocess.com/essa
ys/strategicReuse.html>

Baxter, P and Jack, S. (2008) Qualitative Case
Study Methodology: Study design and
implementation for novice researchers, in The
Qualitative Report, 13(4): 544-559

BelHard Outsourcing, 2010, Software Project
Outsourcing Model, Viewed March 20th 2010,
<http://soft.belhard.com/partnerships_1.html >

Black Duck Software 2009 Software
Engineering Institute, Carnegie Mellon. Lines-
of-Code Cost Calculator, viewed March 2nd
2010,

<http://www.dwheeler.com/oss_fs_why.html >

Brownsword, Lisa & Paul Clements. October,
1996. A Case Study in Successful Product Line
Development, Software Engineering Institute
Technical Report, CMU/SEI-96-TR-016

Balaji RS, 2007, Apply asset-based
development to services in an SOA, Viewed
April 12rd, 2010
<http://www.ibm.com/developerworks/webservi
ces/library/ws-soa-asset1/>

Baragry, Jason.1994. Summary of the ICSE 16
Panel on Software Reuse, Sorrento, Italy.

CALD 2010, Cambridge Advanced Learner's
Dictionary, 2010, Viewed March 10th,
<http://dictionary.cambridge.org/dictionary/briti
sh/>

Dul, J. and Hak, T (2008). Case Study
Methodology in Business Research. Oxford:
Butterworth-Heinemann.

Duke Center for International Business
Education and Research (CIBER) 2006, Next
Generation offshoring: The Globalization of
innovation, Duke Univeristy, the Fuqua School
of Business.

Govardhan, A & Premchand, P, 2005, A
Pragmatic Apporach to Software Reuse, Journal
of Theoretical and Applied Information
Technology, viewd May 10th 2010,
<http://www.jatit.org/volumes/research-
papers/Vol14No2/3Vol14No2.pdf >

Herndon, VA, 1995. Software Productivity
Consortium Services Corporation. Reuse-
Driven Software Process Guidebook Product
Description, SPC-93146-N,version 01.00.04

IBM, 2010, IBM Global Services <http://www-
935.ibm.com/services/us/index.wss>IBM
Rational Software <http://www-
01.ibm.com/software/rational>, viewed 10th
May 2010

IBM Global Briefing, 2010, Infrastructure Servi

Page 22

ces, <http://www.ibm.com/investor/events/globa
l0606/summaries/Infrastructure_Services.pdf >,
viewed 18th June 2010.

IDC in Brno, 2010, viewed May 4th
2010<http://www-
05.ibm.com/employment/cz/idc_brno/index.htm
l>.

Lee,J, Huynh, MQ, Kwok,RC, Pi,S 2003, IT
outsourcing evolution: past, present, and future,
Volume 46 , Issue 5 (May 2003) Wireless
networking security Pages: 84 – 89 Year of
Publication: 2003 ISSN:0001-0782

Olsson, H, Conchuir, E, Agerfalk, P, Fitzgerald,
B 2008, Two-stage Offshoring: An Investigation
of The Irish Bridge, MIS Quarterly Vol. 32 No.
2, pp. June 2008.

Palmisano S, 2006, The Globally Integrated
Enterprise, viewed 10th May2010,
<http://www.ibm.com/ibm/governmentalprogra
ms/samforeignaffairs.pdf>

Panel of the NATIONAL ACADEMY
OFPUBLIC
ADMINISTRATION(PNAOA),2006, Off-
shoring: An Elusive Phenomenon, National
Academy of Public Administration

Prikladnicki R, et al. 2007, Distributed Software
Development: Practices and Challenges in
different business strategies of offshoring and
onshoring, international Conference on Global
Software Engineering 2007.

Roberts, PC 2004, “Global Labor Arbitrage”
Dismantling America, July 28,viewed March
10th 2010,
<http://vdare.com/roberts/labor_arbitrage.htm>

Ring, P.S. & Van de Ven, A.H., Developmental
processes of cooperative interorganizational
relationships. Acad. Mgmnt Rev., 1994, 19, 90–
118.

Sommerville, I 2006, Software Engineering 8th
Edition, Chapter 18 Software reuse, Addison
Wesley.

United States Patent & Trademark Office
(USP&TO), 2007, United States Patent
Application 20070162321,viewed May 1st
2010. <http://appft1.uspto.gov/netacgi/nph-
Parser?
Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&
u=/netahtml/PTO/srchnum.html&r=1&f=G&l=5
0&s1="20070162321".PGNR.&OS=DN/20070
162321&RS=DN/20070162321>

Zhu, Z., Hsu, K. and Lillie, J., Outsourcing – a
strategic move: the process and the ingredients
for success. Mgmnt Decision, 2001, 39, 373–378.

Page 23

APPENDIX I
Table: Data Analysis Of Two-stage

Offshoring And Strategic Reuse
Discipline

Page 24

Table : Data Analysis of Two-stage Offshoring and Strategic Reuse Discipline
B: Benefits, D: Dificulties, F: Feasibility

* Pennysoft is from the case study by Olsson et al. In Two-stage Offshoring: An Investigation
of The Irish Bridge

N/A: some of the data is not available.

APPENDIX II

IBM Offshoring Structure

IBM In China

Page 25

Appendix_Figure 2: IBM in China

Appendix_Figure 1: IBM Structure

APPENDIX III
Reuse Success Factors In Asset-Based

Development (Ackerman Et Al. 2008)

Management support: As with most initiatives, it is
important to have executive support.In the case of
reuse, this is critical. However, we also find that the
development ofreusable assets is most often bottom-
up. Therefore, it is important to have top-
downsupport while implementing assets bottom-up.

Identifying the right asset to build: Next to
management support, this is the next mos timportant
factor to consider. In this case, we need to decide
what assets must be built. A strategy that only looks
at measuring success based on the number of assets
in the Repository is unlikely to succeed. The correct
approach is to measure success based on the value
that assets bring to your organization. When
selecting what assets to build, look for recurring
problems and best practices that need to be captured
and ensure that there is indeed a need and a
consumer for the solution. An asset that does not get
used provides little value to the organization.

Versioning and configuration management:
Typically an asset is composed of multiple artifacts.
As we build, maintain, and then support assets, it is
expected that there will need to be new versions
created. We end up seeing that there are two types of
versioning that are needed - one to keep track of the
versions of the artifacts, and then as we build and
create the asset that contains the artifact, we will
specify versions for the asset.

Training for producers and consumers: For reuse
to be successful, those people producing assets must
have skills in producing assets that are reusable. The
Asset Consumers need to understand how to find
assets, use them in the environments, and if
appropriate, customize the assets for a particular
situation.

Measuring productivity and quality:
Understanding asset usage, asset quality, and the
cost and impact of assets is key to the program.

Sponsorship and maintenance of assets: Much like
a software application, the cost to maintain and
support an asset does not end at the first release.
There needs to be a plan and support for the
continued maintenance of the asset.

Communication of asset status to Asset
Consumers: The Asset Producer needs to
understand where and how the asset is being used.
This will assist the producer in prioritizing the repair
of defects and how to introduce and manage changes
to the asset.

Commitment to high quality assets: Without a
focus on high quality assets, a Repository will
become a junkyard, a dumping ground for any old
thing that might be reusable. This environment is
unlikely to find success as the consumers of assets
quickly learn that it is quicker, easier, and less risky
to proceed on their own.

Well-understood domains: Assets are meant to
contain and represent best practice solutions. To be
able to build and support such assets, the Asset
Producer needs to understand the domain for the
asset.

Customizable, coarse-grained reuse: Successful
assets tend to have built-in support for
customization. In cases where there is unlimited
access to changing and customizing the asset, the
consumer will find the asset’s flexibility
overwhelming and lacking in guidance.

Architectures established to create and use assets:
Related to understanding thedomain, we also need to
understand the architectures that are targeted by the
assets being built.

Process and organizational structure to support
reuse: In order for reuse to succeedwithin the
organization, there generally must be a team that
focuses on manufacturingassets. The challenge of
this is that there are many technology domains for
which reusable assets can be created, and it is
difficult if not impossible to have one team that has
all of the experts needed. Therefore, you generally
have a core team that understands the principles of
asset manufacturing, and you have visiting experts
that join for a time to give guidance on the
development of specific asset types. The enterprise
needs to support this activity of harvesting expert
knowledge into reusable assets, when and where it
makes sense to the business.

Page 26

APPENDIX IV
Interview Contents

Henrik, Sandklef GNU Labs

Q:What kind of softwar you work with, free or
proprietary?
A:FOSS, comercial applications, never proiatory.

Q: Are you familiar with the Strategic Reuse
Discipline model? which is part of Enterprise
Unified Process.
A: Never heard of them.

Q:What company you have worked with?
A: Ericsson, Volvo trucks, Consta Engerring

Q: How big is the team you been work with
normally?
A: Around 10-15 people.

Q: How many people were working on the
project in that specific department?
A: Maximum 25 people.

Q: Do you think code reuse is important?
A:Yes!

Q: How do you reuse code?
A: - Harvesting existing assets (From the
software/code you made before) from free software,
own code,libruray of companies.
- Obtaining External Assets (From FOSS)

Q: Is there a position called "reuse engineer" in a
development team/organization based on your
experience?
A: Not really, there is not such title there in the
company, but about one or two people will take care
of reuse.

Q: Systematical software reuse does not happen
spontaneously, have you ever made plans for
reusing code?
A: When you have years of expirences, you can
quickly find out a solution.

Q: Do you consider re-usability as an important
software quality when you start a project (so you
can reuse the code in the future)?
A: Yes, but most projects start smalland when they
get bigger the code turn into a mess. But I will

surely agree to make good structure to make reuse
and mantainance easier.

Q: - You said structure, do you mean the
structure of code or the structure of the
company(organisation)?
A: - both of them.

Q: Do you evolve and support your assets(code)
to meet new requirements? How do you evolve
your robust assets over time? Do you often fix
bugs and make new updates to your old stuff (or
let someone else do that for you)?
A: Yes, I constently. But sometimes I make
sacrifaices for the code in order to meet the
requiremnets. But this sacrifices usually can be fixed
later.

Q: Do you publish your assets so someone else
can reuse them? Have you heard of something
called " Reuse Registrar"? And does Reuse
manager exsit in this world? Since the author of
this model has defined a few specialists that
carefully control the reuse process, and I am
wondering if these roles really exists.
A: yes, I have published a lot of code. But most
cases, they are small scale end-user application.
People use them as the way they are.

Q: Have you ever thought about retiring an
asset? For example, delete the old versions that
you cannot support any more.
Quite a lot of times. So I do not need to support the
code anymore.

Q:Have ever done that?
Well, some of the project just died out, since the
number of user is zero.

Q: Have you ever measured Reuse? How much
time/budget saved? (maybe not the case for
engineers)
A: No, but Interesting question. It is very difficult to
measure in this case, but I would like to know if

Q: How much percentage of code reuse u have
done in your whole programming life?
A:The code reuse is kinda depend on the
requirement of the software u gonna develop. If u
meam the whole life of programming, 60 to 70
percentage of code reuse i have done.

Q: When a development team set up a project.
Would them start to go through old code or
software, or just start to write the new program

Page 27

instantly.

A: Personaly, i would like to go through the old
programs or code i have wrote. But still, the
requirements of the new project have the higher
proiety. Set up the architecture of the project still
will help the late work. For instance find out old
software or code which are helpful.

Q: What is your personal idea about code
reuse. R u insterested in it.

A: Ofc, it doest matter what the new project is,
developers probably would have done quite a lot
work on reusability, like code reuse, module reuse as
well as architecture design etc

Q: Have you ever measure reuse? How much
time or budget saved?

It is really hard to measure the reuse. And it
do depend on how big project it is. Actually it is
hard to see how much time or budget u have
save during the project developing. it is also
quite impossible to set up the goal and timetable
about the reuse work in the beginning of the
project. Normally, the manager would possibly
have a overview about the benefits of the code
reuse or software reuse at the end of the project.

Page 28

