provided by Géteborgs universitets publikationer - e-publicering och e-arkiv

Designing for Extensibility:

An action research study of maximizing extensibility
by means of design principles

Niklas Johansson
Anton Lofgren
Bachelor of Applied Information Technology Thesis

Report No. 2009:053
ISSN: 1651-4769

University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, May 2009

https://core.ac.uk/display/16325153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Designing for extensibility:

An action research study of maximising extensibility by means of design principles.

Niklas Johansson
IT University of Gothenburg
Software Engineering and Management
Gothenburg, Sweden

jonikl@ituniv.se

Anton Lofgren
IT University of Gothenburg
Software Engineering and Management
Gothenburg, Sweden

antonl@ituniv.se

Supervisor: Carl Magnus Olsson

IT University of Gothenburg

Software Engineering and Management

Gothenburg, Sweden

carl.olsson@ituniv.se

May 29, 2009

Abstract

This paper presents an action research study on how a set of design principles applicable to object oriented
languages can be used to counteract code rot and consequentially enhance system extensibility. The study
describes how these principles help support the system quality attributes of modifiability, maintainability and
scalability, as well as how these quality attributes correlate to extensibility. Furthermore, it also elaborates on the
relationship between extensibility and code rot and how the absence of the first can lead to the latter. The study
thus contributes by illustrating how a design science approach can be useful in action research.

Keywords: Action research, design science, extensibility, code rot.

1 Introduction

Our society today is overflowing with data and infor-
mation about everything and nothing. The Internet
has enabled us to do things with a computer which
we could only dream of just a couple of years back.
The technology we use has also evolved over this time
as new concepts emerge and become widely used. To
keep up, developers must accept and embrace the fact
that systems need to be extended in order to survive.
However, not all systems developed with an intent of
future extension, extend gracefully. The concept of

designing for change has been around since the late
1970s[1]. By this time, many companies were spend-
ing big parts of their software budgets on maintenance
and that number has been growing ever since[2]. Par-
nas suggests a set of techniques to design for change
which include "Information Hiding* and the identifica-
tion of subsets within the design[1]. Others have since
then approached the problem from a more practical
point-of-view and have implemented libraries and ex-
tensions for programming languages to tackle the prob-
lem area of extensible software[3][4]. This study pro-
poses a set of design principles which, when applied,

should have a positive effect on the way software sys-
tems react to extension and modification. We also make
use of a real life example where the application of our
design principles are implemented into a system where
extensibility is a primary goal in order to test the valid-
ity of our proposal.

The real life example is the development of a system
named Metabolism. This system will be implemented
by the authors to begin with. Metabolism’s main pur-
pose is to map the relations between Free/Libre Open
Source Software (FLOSS) development trends and the
events that trigger them. For example, what happens to
the development within the competing desktop man-
ager projects Gnome! and KDE?, when one releases
a new stable version of their system. To do this, the
idea is to collect data from the respective projects code
repositories and observe around what times the de-
velopment activity peaks, and based on that, look for
events that occurred around that date. The data is then
presented through a web-based presentation layer. To
involve and capture the users attention the real life
events will be gathered by the system, but the users
will themselves have influence on what events they
find the most likely to have set off any fluctuation in
activity. This system is being developed in close col-
laboration with the Free Software Foundation Europe
(FSFE) 2 and the GNU project*. We have been working
with people from both FSFE and GNU and communi-
cation through meetings have been held on a weekly
basis. This provides a good environment in which to
apply action research. Since we have been working
with both GNU and FSFE all the software produced
within this project will be released under the GNU
GPLv3 license[5] and the system is written completely
in Python.

lwww.gnome.org
2

www.kde.org
Shttp:/ /www.fsfe.org/
“http:/ /www.gnu.org/

2 Problem Area

2.1 Code Rot

A system built from a design that has not taken into
appropriate consideration the elements of evolution
and extensibility, may well become victim to the phe-
nomenon known as “code rot“ or "design rot“ and may
because of this ultimately be abandoned as the system
becomes too hard to maintain and extend. Having to
change a system for new features, patching old fea-
tures, cleaning up obsolete features or even supply a
customer with a specified product is all costly work,
and it may become even more costly as every change
may introduce new problems in the form of bugs and
violations of system design.

Martin[6] identifies the following four,
orthogonal, symptoms of rotting design;

non-

e Rigidity - The software tends to be difficult to
change. Changes made requires changes to be
made in dependent modules as well.

e Fragility - The software tends to break in many
places when it is changed.

e Immobility - The software tends to make it difficult
to reuse software parts, both from other projects as
well as the same project.

e Viscosity - The software tends to make it harder to
employ design preserving methods than methods
that do not preserve the design.

The purpose of this study is to identify and assess a
number of suitable design principles to minimise the
risk for code rot, as a proof-of-concept enabling the
obtaining of both practical experiences and theoretical
reflection. We are however aware of the fact that soft-
ware systems can not be kept sane by the influence of
design principles alone, and wish to make clear that we
are not suggesting this approach as a ”Silver Bullet“[7]
solution. Other factors also influence the life of a soft-
ware project, such as its developers dedication to fol-
low the set design or its managers willingness to al-
low for the design to be followed (i.e. to not stress de-
velopment in ways that make it hard for developers to
adhere to the design without falling behind schedule).

Even so, we believe that the application of and dedica-
tion to a reasonable set of design principles may well
increase the success probability of a software project in
terms of design and code rot avoidance.

2.2 Extensibility

In order to avoid code rot, software needs to be de-
signed with the goal of extensibility in mind. We define
extensibility as the ability of a system to be extended
with new functionality with minimal or no effects on its
internal structure and data flow. The quality attributes
presented below are the core contributing factors to
extensibility as a system property. Each design prin-
ciple suggested in this study is related to one or more
of those quality attributes in order to achieve the final
purpose of extensibility.

To be able to approach the problem of identifying
suitable design principles for extensible software, we
have started out by identifying the most important
quality attributes of such a software system. This study
looks in particular at the role of the following three
quality attributes as means for the development of de-
sign principles useful for acquiring extensibility;

o Modifiability
e Maintainability
e Scalability

Thus identifying that our focus would be to find and
apply design principles that supported modifiability[8],
maintainability[9] and scalability[10] as well as possi-
ble. One could argue that there are more quality at-
tributes that needs to be considered for this study in
order to cover the whole spectrum that constitutes ex-
tensibility. We agree that there are several other quality
attributes that benefit extensibility in some way. We
have however so far identified the quality attributes
presented here as the primary influences on extensi-
bility, and have for this reason decided to focus on only
these three for this study. Furthermore, the time frame
we have disables us from testing every possible qual-
ity attribute. The sections below will further explain
the quality attributes and their definitions. It will also
present what design principles map to each quality at-
tribute.

2.3 Modifiability

Modifiability as defined by Bass, Clements and
Kazman[8] is determined by how functionality is di-
vided architecturally and by how coding techniques are
applied within the code. A system is modifiable when
a change involves the least number of changes to the
least number of possible elements. We interpret this
as striving towards high cohesion® and low coupling®
within the code. We chose modifiability after discus-
sions with our industry contributors and what was envi-
sioned about the systems characteristics. We identified
that one of the most important things to think about
is that to get support from the community and to get
other people contribute to the development one must
have code that is easy to modify. If the code is hard to
read and understand it is less likely that other devel-
opers will take interest in helping the development fur-
ther. It is also of high importance to be able to conform
to new standards and other new inventions. Alfonzo
et al. argue that, for these reasons, FLOSS tools must
be built so that it is as easy to modify and maintain
as possible[11]. Figure 1 shows the relation between
the quality attribute modifiability and the set of design
principles intended to support modifiability. The de-
sign principles shown in figure 1 will be presented in
Section 2.6.

Interface Segregation Principle
Dependency Inversion Principle

Liskov Substitution Principle

Open-Closed Principle
Modularity

Modifiability

Figure 1: Principles identified to support Modifiability

5Cohesion describes how well defined and focused each modules
responsibility is.

Coupling describes the level of dependency one program module
has to other program modules.

2.4 Maintainability

Maintainability is similar to Modifiability, but we see
a distinct difference between the two in their defini-
tion. Maintainability as defined by Sommerville[9], is
to design a system to allow for the addition of new re-
quirements without risk of adding new errors. We find
that these two quality attributes used together com-
plete each other rather than having the same purpose.
This also requires the code to have high cohesion and
low coupling. We also interpret this as having to take
ripple effects into serious consideration, as adding fea-
tures and correct errors should not raise the risk of
adding new errors. Having high maintainability pro-
vides a higher probability of a smoother future for the
developers and maintainers of a project. In this case
specifically since the code is to be released as free soft-
ware, it needs to be maintainable for the project to have
any chance at all of success[11]. Figure 2 presents the
relation between the quality attribute maintainability
and the set of design principles found to support main-
tainability.

Dependency Inversion Principle

Interface Segregation Principle

Don't repeat yourself

Law of demeter

Modularity

Maintainability

Figure 2: Principles identified to support Maintainabil-
ity

2.5 Scalability

Scalability as defined by Bondi[10], is "the ability of a
system to expand in a chosen dimension without ma-
jor modifications to its architecture“. As our intended
system implementation has a user interface that should
be presented as a web page, and taking the possible
growth of data sources into consideration, this brings

forth a set of new problems. For example, what hap-
pens if the user load is higher than we had initially ex-
pected or that the amount of data that the system needs
to harvest is much larger than expected. This presents
an obvious need for a scalable system. Scalability is
therefore deemed one of the three quality attributes of
high importance. Having scalability provides the sys-
tem with a good possibility to grow if needed. It can
be the difference between success and failure. Kras-
ner published an article about typical design problems
in Enterprise Resource Planning systems[12] in which
he argues that users will not be pleased with having
to wait for the system to react to their input, and that
these problems can be avoided with proper scalabil-
ity. When providing a good possibility for scalability,
one also opens up for better extensibility by making
the system adaptable for many different configurations.
Figure 3 presents the relation between the quality at-
tribute scalability and the set of design principles in-
tended to support scalability.

Modularity

Scalability

Figure 3: Principles identified to support Scalability

2.6 Design Principles

When we first set out to identify this particular set of
design principles we found that Martin[6] had pro-
posed a large set of principles. Some of which are more
interesting for use in our work than others. Thus some
of the principles Martin presents have been used, but
some have been excluded. Furthermore Martin does
discuss the Liskov Substitution Principle[13] as well.
This study will test Martin’s principles with a set of
other principles as complement. The reason we chose
not to use all of Martin’s principles is that we find the
set of principles we present more suitable for the pur-
pose of this study. We also find it impossible to take
into consideration every principle available because of

the time frame we have available to carry out this study.
The set of design principles this study proposes has
been chosen primarily for the purpose of providing ex-
tensible software and avoid symptoms of code and de-
sign rot. We see the chosen set of design principles as a
good combination to design for extensibility. Below is
a list of the chosen principles;

e P1: Liskov Substitution

e P2: Open-Closed

e P3: Modularity

e P4: Don’t Repeat Yourself

e P5: Dependency Inversion

e P6: Interface Segregation

e P7: Law of Demeter

These principles will be further explained in their re-
spective paragraph below.

P1: Liskov Substitution

Liskov Substitution as first presented by Barbara
Liskov[13] and refined by Martin[6], is a principle used
for easy substitution of one class to a derived class of
the same type. So if we want to change class A to an
object of class B, class B must be a subtype of class
A and provide the necessary methods and signatures.
This will for example be applied with the aim to cre-
ate a plug-in like mechanism for the collection of data
from the code repositories of the projects. The idea is
that we will create an overall interface with a standard-
ised set of methods which all plug-ins of this kind must
implement in order to function with the system. And by
doing this it will be easy to add functionality for new
version control systems. By using this we are rewarded
with both an increase of maintainability and modifia-
bility through the ability to control where changes hap-
pen as well as extensibility through the use of a strict
design to make it easy to add new classes to the imple-
mentation.

P2: Open-Closed

The purpose of Open-Closed is to extend a module
without changing the already existing code, as first pro-
posed by Meyer[14] and later, refined by Martin[6].
Martin defines the principle as A module should be
open for extension but closed for modification®. The
application of this principle will be used to control the
stability of the system in a post-release state where
working code should not be tampered with, if not ab-
solutely necessary. We argue that the only time you
should touch "working“ code is if it is not working.
Doing so anyway only increases the risk of introduc-
ing unnecessary bugs and errors, thus digging a deeper
hole for yourself to climb out of. Furthermore its ap-
plication will strengthen the use of Liskov Substitution
by complementing its purpose to increase maintainabil-
ity and modifiability, thus increasing the extensibility of
the software.

P3: Modularity

Booch defines modularity as ”[...] the property of a
system that has been decomposed into a set of cohesive
and loosely coupled modules.“[15] In addition, Lar-
man suggests that ”(at object level) we achieve mod-
ularity by designing each method with a clear, single
purpose and by grouping a related set of concerns into
a class.“[16]

Even though modularity is sometimes considered a
quality attribute, we have chosen to include it in our set
of design principles for a couple of reasons. First off,
we believe it provides developers with enough practi-
cal guidance to constitute a principle in this case. Also,
after consultancy with our industry collaborator, mod-
ularity did not fit into the quality attributes that were
requested, which convinced us even further to include
it in our design principle set. Furthermore, the use of
modularity also provides the system with a means of
being scalable, since one module can be easily replaced
if needed. Not only scalability gains from the use of
modularity, but maintainability and modifiability too.
Having a system designed in a way that allows the ex-
change of modules easily makes it easier to both modify
and maintain.

P4: Don’t Repeat Yourself (DRY)

Hunt and Thomas[17] defines the DRY principle as
follows;

"Every piece of knowledge must have a single, unam-
biguous, authoritative representation within a system.“

The thought is that by adhering to this principle, the
system being developed will be both easier to maintain
and to understand. By not having the same information
expressed in multiple places, developers do not have
to keep track of all the places where that information
is expressed. As a consequence, developers need not
worry about breaking the system by changing the in-
formation. The principle applies to all aspects of a soft-
ware project, including specifications and documenta-
tion, processes and programs. Applying this principle
limits the places where you have to change code to cor-
rect errors and lowers the risk of introducing new bugs
and causing a ripple effect. Thus increasing modifia-
bility and maintainability through the application of a
strict code structure. Furthermore it enhances the pos-
sibility to reuse the code.

P5: Dependency Inversion

Dependency Inversion is a principle proposed by
Martin[6], which implies that one should depend upon
abstractions rather than upon concretions. The strat-
egy is to depend upon interfaces rather than the actual
implementation of the interface. Which provides the
possibility to easily exchange, for instance, faulty im-
plementation to correct implementation without hav-
ing to change the code that depends upon the inter-
face. This further complements the use of both Liskov
Substitution and Open-Closed. It also provides a good
structural basis for the treating of inheritance and ab-
stract classes. Being able to exchange modules, classes
and other code entities brings forth a better growing
ground for maintainability and modifiability.

P6: Interface Segregation

Martin also proposes Interface Segregation[6],
which is used to further structure the use of interfaces
and abstract classes. Martin suggests that when more
than one client class accesses the same service (that
contains client specific methods and functions) each
client should be assigned its own interface to this ser-

vice. The application of this principle will render the
code easier to change and maintain, thus supporting
both maintainability and modifiability. It also creates
a more readable code structure which is always good
when you expect other people to contribute to the code
base. Furthermore it allows further support to the ap-
plication of Law of Demeter (see below).

P7: Law of Demeter

The Law of Demeter as propounded by Lieberherr,
Ilolland and Riel in 1988[18] implies that software en-
tities should only speak directly to their closest neigh-
bour. This can be simplified into saying for example,
that when you drive a car you accelerate by pressing
the gas pedal and not by telling your motor directly to
throttle. Another example would be that you use the
steering wheel to turn your car, and not by telling each
individual wheel directly to turn a certain amount. Ap-
plying the Law of Demeter, the design will be tightly
connected to the flow of data, making it easier to iden-
tify which parts of the system that should be responsi-
ble for what tasks. This also makes it easier to iden-
tify flaws in the design while implementing. This will
of course lead to redesign, but we believe that this is
a better option than to be stuck with a system that is
faulty by design.

Principle Map

Figure 4 describes how the design principles are used
to support the quality attributes and how the quality
attributes ultimately is intended to support the idea of
extensibility. We can see that some of the design prin-
ciples are used to support both modifiability and main-
tainability. This is a result of the likeness between mod-
ifiability and maintainability, where some of the design
principles gives advantages to both purposes. Moreover
the need for high cohesion and low coupling are strong
in both these quality attributes and therefore principles
that enable these two practical advantages all are con-
sidered to support these quality attributes. The sorting
of the design principles does not imply any difference
in importance, but is only a means of making the map
more readable.

To understand the importance of each branch in the
map one should read from left to right. This is how we

have thought when developing this set of design prin-
ciples. After discussions with our industry collaborator
we came to the conclusion that we wanted a system
that was extensible and by this we identified the qual-
ity attributes that help us accomplish this. From these
quality attributes we looked at possible design princi-
ples to support each of them. As mentioned above it
has been identified that some of the principles support
only one quality attribute, whilst other support two or
even all of the quality attributes.

Scalability __Modularity

Interface Segregation Principle
Dont Repeat Yourself
Law of Demeter

Dependency Inversion Principle
Modularity

Dependency Inversion Principle

Medularity
Modifiability / Interface Segregation Principle
Liskov Substitution Principle

Figure 4: Design Principle Mapping

Maintainability

3 Research method

3.1 Action Research

The research was carried out in an iterative manner, in
order to allow us to refine our set of design principles
to further investigate the correctness of our choices.
In short, our research model resembles that of action
research as defined by Susman [19]. This process is
also illustrated in figure 5. Our use of action research
has been adapted in order to fit the rather narrow time
frame given to this research project. The practical im-
pact this deviation has had is that a smaller number of
iterations has been used rather than what is usual in
action research. All cycles of the research process has
thus not be considered in our research. The advantages
gained from using the action research model has how-
ever outweighed the fact that this project did not match
the template perfectly. O’Brien states that;

“Participants in an action research project are
co-researchers. The principle of collabora-
tive resource presupposes that each person’s

ideas are equally significant as potential re-
sources for creating interpretive categories of
analysis, negotiated among the participants.
It strives to avoid the skewing of credibility
stemming from the prior status of an idea-
holder. It especially makes possible the in-
sights gleaned from noting the contradictions
both between many viewpoints and within a
single viewpoint.“[20]

This suited our research project well since a large
amount of industry collaboration comes naturally
to the research we have performed. Furthermore,
Baskerville suggests that ”Action research is empiri-
cal, though the collected data is typically qualitative
and interpretive“[21], thus also supporting the way in
which we have collected and analysed our data as is
presented in section 4.

Additionally, we will present examples of how our
design principles have influenced the actual design of
the system at a practical level in order to further illus-
trate their impact.

Translated into terms of our research project, the
phases present in the research model shown in figure 5
are what we worked from. These activities are further
described in their respective subsection in this chapter.

Diagnosing

Identifying/defining
problem

Action
Planning

Considering alternative
courses of action

Evaluating Taking Action

Studying the
consequences of
an action

Selecting course
of action

Figure 5: Action research model (adapted from [19])

3.2 Diagnosing

During the diagnosing phase we had already estab-
lished good interaction with our industry collaborators.
We had set up weekly meetings for communicating the
work that had been done and what we were currently
doing as well as planning for the next step. These meet-
ings also served as a kind of acceptance meeting for any
changes that had come up as our work progressed. Fur-
thermore, we identified modifiability, maintainability
and scalability as good quality attributes to use when
designing for extensibility.

3.3 Action Planning

This phase was used primarily to identify which design
principles we saw fit for the purpose of providing exten-
sibility and thus counteract code rot. We spent a large
amount of time studying the related research and try-
ing to come to terms with where the design principles
would fit in, and to what extent they would be useful.
Moreover, we looked at possible frameworks to help us
achieve the purpose of our application.

3.4 Taking Action

The taking action phase was used to create and refine
the system design, the architecture and to implement
the application. We based our design and implemen-
tation upon the design principles we identified in the
action planning phase. The architecture can be seen in
figure 3.4. When the design and architecture was com-
plete and perceived as embodying the design principles
identified in the action planning phase, we proceeded
to implement the system.

3.5 Evaluating

The evaluating phase was used for interviews. We in-
vited a group of experts to assess our design and the
specific implementation of the principles. We received
overall positive results (described in better detail in sec-
tion 4.1). Furthermore, we reflected over how well we
could see our design principles working ourselves. As
an example of this, we can highlight the bug fixing pro-
cess. Mostly we only had to change code in one mod-

ule to fix bugs. Thus, showing that ripple effects had
been prevented in a good manner. We also reflected
upon our choice of programming language for the im-
plementation. We had chosen Python, as we had some
prior knowledge of the language and had found that
Python oftentimes gives a rapid development process.
The time it took us to implement big parts of the sys-
tem was also surprisingly short to our customer. This
allowed us to spend more time on refactoring and re-
fining the code base”.

3.6 Specifying Learning

In this phase we analysed the results from the inter-
views conducted during the evaluating phase. We also
reflected upon what we had learned throughout of all
of the prior phases. We looked at what could be im-
proved for the next cycle in terms of design principles.
Furthermore, Walsham[22] states that there are four
different types of information system research general-
isations.

e Development of concepts

e Generation of theory

e Drawing of specific implications
e Contribution of rich insight

We found ourselves in between two of these fields, in
particular Drawing of specific implications and Contri-
bution of rich insight. We do not contribute with rich
insight directly, but most of our work is based on prior
rich insight contributions from other authors. This is
specifically true for the various design principles pre-
sented in this study. We do on the other hand con-
tribute directly with the relationship between our de-
sign principles and the system property of extensibility.

4 Analysis and Discussion

To evaluate whether our principles have had a positive
or negative impact on the system, we have conducted
interviews with potential extenders of the system. We

7 Available at: http://itupw056.itu.chalmers.se/metabolism_docs/

Figure 6: System architecture

O

Database

- Django <

Analyzer

>

Collector <] .
Repository

<H

V

Public API Presentation Event Crawler

<——

Developer Admin

User

analysed their answers in order to find flaws in any as-
sumptions we have made about what constitutes good
extensible software systems as well as any shortcom-
ings in our design principle set. We have also carried
out experiments to test the extensibility of the system
in order to directly test its extension capabilities. These
experiments have been on a software testing level. We
have investigated the use of other modules and pack-
ages, and their effect on our system’s performance.
This may also come into use when proving the mod-
ularity of the system. We have made use of test-driven
development (TDD) as described by Beck[23] in order
to easily detect system breakage when performing ex-
tensibility experiments. Test results have thus given us
additional indications as to whether our system is easy
to extend or not.

For the purpose of comprehensiveness of this study,
we have chosen to analyse only a subset of the mod-
ules of the system. A diagram of this subset is shown in
figure 7 in Appendix A. This particular subset has been
chosen because these modules form the foundation of
the system and are as such the most likely target for

significant extension. We see an extension as signifi-
cant when it provides the system with new functional-
ity that changes the scope or alters the requirements of
the system. This module controls the interaction with
project source code repositories, and it is responsible
for the gathering of project data.

To reiterate, we have used a mixed approach to data
collection in our research project. Both qualitative and
quantitative data have been collected and analysed in
order to get a more holistic view of our results. Our
data collection and data analysis relates to the use of
action research in the sense that many data sources was
used. Since we were only performing one cycle of the
action research method in the scope of this project we
can make use of the information gathered from the data
when developing the system further.

In order to minimise violations of the DRY principle,
we made use of a tool, Clone Digger®, that detects and
reports on duplicated and cloned code segments, e.g, a
certain method being called with the same arguments

8http://clonedigger.sourceforge.net

from several different, unrelated points in the program.
The tool achieves this by using various algorithms pre-
sented in [24]. We have analysed the output from this
tool regularly in order to find such violations at an early
stage, enabling us to refactor duplicate segments into
cleaner methods and classes and achieving a better ad-
herence to the DRY principle. Clone Digger grades the
clones by a factor where one is segments that are iden-
tical to each other. These identical segments have been
actively located and refactored throughout the devel-
opment to adhere to the DRY principle. This is has
proven very powerful since each person contributing to
a project can not have a perfect understanding of what
other developers are producing.

During the development, it became evident that the
principle of Dependency Inversion was not applicable
for the specific implementation we present here. In our
case, third-party tools largely handled the parts where
this principle normally would have been applied. We
nevertheless feel that this principle is relevant for con-
sideration, but it highlights an important factor still -
that design principles may not all be directly applica-
ble for implementation, as long as they are seriously
considered.

4.1 Interviews

In order to validate that all applicable design principles
had been applied in an adequate manner, we asked
three different industry experts to evaluate the afore-
mentioned module subset. As we have already dis-
cussed, the principle of Dependency Inversion is not
part of this evaluation. Nor did we ask the industry
experts to evaluate the application of the Open-Closed
principle as it is not a suitable target for static evalua-
tion. Since our interpretation of the Open-Closed prin-
ciple is that it should be applied once the code has been
functionality tested and released it is only used post-
release. The system built during this study has not yet
reached a state where it can be considered ready for
release and we see Open-closed as a principle to be ap-
plied in the future. For each of the applicable design
principles, we asked the experts to rate their agree-
ment level with the statement; "The design principle
is applied well to the software module" on a scale from
one to five (a rating of one meaning "strongly disagree"

and a rating of five meaning "strongly agree"). The re-
sults of this analysis are shown in table 1. The table
shows that the experts generally consider the design
principles to be well implemented, even though there
are a few deviations. Expert 1 considers all of the de-
sign principles except for DRY to be well implemented.
The expert however comments that Liskov Substitution
may be somewhat hard to evaluate due to "the small
amount of inheritance on the same "level"“. Expert 1
also suggests that there are hidden duplication present
in the module subset in the form of different functions
performing the same tasks, thus violating the DRY prin-
ciple.

Expert 2, on the other hand, did not find any viola-
tions of the DRY principle. The expert however com-
ments that he had trouble finding any examples of the
implementation of Interface Segregation. The expert
also mentions that the reason for his grading of four on
Modularity stems from a number of static attributes in
one of the classes. He infers that this leads to a higher
level of coupling than necessary. Additionally, this ex-
pert has graded the Liskov Substitution principle lower
than any of the other experts in this study but has not
provided any further explanation as to why this is. Ex-
pert 2 furthermore proposes the future consideration
of the Dependency Injection[25] principle, a principle
which is quite similar to Dependency Inversion, as they
are both inversion of control principles.

In the light of these results, the answers given by
Expert 3 may be somewhat surprising. It is hard to say
how this deviation in grading came to be, since no com-
ments on the specific design principles were provided.
Expert 3 did on the other hand provide general com-
ments. He states that from his own experience the use
of these design principles or any design principles for
that matter, should be considered separately for each
project you find yourself working on. Thus basing the
decisions on what the future holds for each system in-
dividually. This is a good point indeed, and we fully
agree that there are no perfect set of design principles
to use for each project or product.

Two of the experts also commented on the use of de-
sign principles in general and offered some insight on
the subject. Similarly to what was suggested in section
2.1, they believe that the sanity and success of a soft-
ware system is not solely dependent on design princi-

10

Table 1: Inquiry results

Subject Liskov Substitution Modularity DRY Interface Segregation Law of Demeter
Expert 1 5 5 3 5 5
Expert 2 3 4 5 3 5
Expert 3 5 5 5 5 5

ples but rather on the individual assessment of what is
needed for each project and product. There was also
comments discussing the pace at which the field of in-
formation systems development moves, and that this
would present a problem for the application of the kind
of solutions presented in this article. We do not neces-
sarily agree to this statement, since this proposition is
not in any way language or system specific. Our im-
plementation has been done exclusively in the Python
programming language, but the theories should be ap-
plicable to any object oriented language.

5 Conclusion

We find that our implementation of the proposed de-
sign principles is to be considered successful. The re-
sults of the expert inquiry shows that there are different
opinions to the level of how well each principle were
implemented. But since all principles that were investi-
gated by the experts have an overall result that is posi-
tive we interpret the results of the inquiry as positive. It
has also become apparent that each project and prod-
uct has its own set of needs, thus rendering each project
in some way unique. This has to be considered when
making design decisions but the set of design principles
we propose in this article is a good starting point when
striving towards extensibility. As has become evident
from the implementation presented in this paper, not
all of the suggested design principles fit the scope of
all projects. However, as long as all principles are se-
riously considered, this set carry several advantages by
reducing the risk for code rot when developing a sys-
tem that may require future extension. The research
upon which this study has been based, in particular the
design principles have already proven the advantages
gained when the specific principles are applied. We are
therefore confident that this set of principles carry a

11

good ground for extensibility.

The natural step for the next cycle of this research
is to look at the design principles that did not apply to
this study and study their appropriateness further, as
well as extend the application. Extension for the ap-
plication would include, but are not limited to, support
for other repository systems and an open API for ex-
ternal resources. The reason for an open API is that
it would be interesting to see if the design principles
would have an effect on how well an API evolves over
time. The system that was produced during this study
is still in early development, but support for Subversion
repositories has been added and is functional. Some
screenshots of the alpha version can be found in Ap-
pendix B.

References

[1] D. Parnas, “Designing software for ease of exten-
sion and contraction,” IEEE transactions on soft-
ware engineering, pp. 128-138, 1979.

[2] J. Koskinen, “Software Maintenance
Costs,” 2003. Acessed 2009-04-06 at:
http://www.cs.jyu.fi/ koskinen/smcosts.htm.

L. Tokuda and D. Batory, “Automated software
evolution via design pattern transformations,” in
Proceedings of the 3rd International Symposium on
Applied Corporate Computing, 1995.

M. Zenger, “Evolving software with extensible
modules,” in International Workshop on Unantici-
pated Software Evolution, 2002.

FE S. Foundation, “GNU General Public Li-
cense,” 2007. Accessed 2009-04-06 at:
http://www.gnu.org/licenses/gpl.txt.

[6]

[7]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

R. Martin, “Design principles and design pat-
terns,” Object Mentor, 2000.

F. Brooks, “No silver bullet: Essence and accidents
of software engineering,” IEEE computer, vol. 20,
no. 4, pp. 10-19, 1987.

L. Bass, P Clements, and R. Kazman, Software
architecture in practice. Addison-Wesley Profes-
sional, 2003.

I. Sommerville, Software Engineering 8. Addison-
Wesley Professional, 2007.

A. Bondi, “Characteristics of scalability and their
impact on performance,” in Proceedings of the 2nd
international workshop on Software and perfor-
mance, pp. 195-203, ACM New York, NY, USA,
2000.

O. Alfonzo, K. Dominguez, L. Rivas, M. Pérez,
L. Mendoza, and M. Ortega, “Quality Measure-
ment Model for Analysis and Design Tools based
on FLOSS 19th Australian Software Engineering
Conference (ASWEC 2008),” in Proceedings of the
19th Australian Software Engineering Conference
(ASWEC 2008), vol. 1, pp. 258-267.

H. Krasner and K. Consulting, “Ensuring e-
business success by learning from ERP failures,”
IT Professional, vol. 2, no. 1, pp. 22-27, 2000.

B. Liskov, “Data abstraction and hierarchy,” 1987.

M. Bertrand, Object oriented software construc-
tion. Prentice Hall, 1988.

G. Booch, Object-oriented analysis and design.
Addison-Wesley Reading, MA, 1996.

C. Larman, Applying UML and patterns: an intro-
duction to object-oriented analysis and design and
iterative development. Prentice Hall PTR Upper
Saddle River, NJ, USA, 2004.

A. H. et al., The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley Profes-
sional, 1999.

12

[18]

K. Lieberherr, 1. Ilolland, and A. Riel, “Object-
oriented programming: An objective sense of
style,” 1988.

G. Susman, “Action research: a sociotechnical sys-
tems perspective,” Beyond method: Strategies for
social research, pp. 95-113, 1983.

R. O'Brien, “An overview of the methodological
approach of action research,” Unpublished paper
to Professor Joan Cherry, Course LIS3005Y, Faculty
of Information Studies, University of Toronto. April,
vol. 17, 1998.

R. Baskerville, “Investigating information systems
with action research,” Communications of the AIS,
vol. 2, no. 3es, 1999.

G. Walsham, “Interpretive case studies in IS re-
search: nature and method,” European Journal of
information systems, vol. 4, pp. 74-74, 1995.

K. Beck, Test-driven development:
Addison-Wesley Professional, 2003.

By example.

P Bulychev and M. Minea, “Duplicate code de-
tection using anti-unification,” in Spring Young
Researchers Colloquium on Software Engineering,
SYRCoSE, vol. 2008, p. 4, 2008.

M. Fowler, “Inversion of control containers and
the dependency injection pattern,” Actualizado el,
vol. 23.

Appendix A

metabolism.collection

RepositorySourceFile

id AutoField

path CharField

size IntegerField
type CharField
revision ForeignKey
line_count IntegerField
repositorytextfile_ptr OneToOneField
language CharField
license CharField

code_line_count IntegerField
comment_line_count IntegerField

epositorytextfile_ptr

SvnRevision
id AutoField
path CharField

revision CharField i AutoField
committer CharField . path CharFieid evisi
message CharField Size IntegerField
IntagerFiald

dale DaleTimeField ;I; s e CharField
entry_time DateTimeField e ForaignKe: ravision ForeignKey
repository ForeignKey e line_count IntegerField
revision_ptr OneToOneField

evision_ptr evision evision

Ren n

id AutoField

path CharField SvnRepository

revision CharField id AutoField
repository committer CharField uri CharField

message CharField info OneToOneField

date DateTimeField repository_ptr OneToOneField

entry_time DateTimeField
repository ForeignKey

\Ymsnmy epository_ptr

id AutoField
uri CharField
info OneToOneField

infa

fo

Repositoryinfo
usermname CharField
password CharField
uri CharField
busy BooleanField
busy_since DateTimeField

Figure 7: Module subset used during the inquiry

13

n

Appendix B

Current Crawled Information:

Added Repositories:

Figure 8: Metabolism presentation layer

Y

Figure 9: Repository Language Distribution Graph

14

1: bsd_2clause_ish,gpl3_or_later,gpl

Figure 10: Repository Information Summary

15

