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Abstract 

The uspA promoter, driving production of the universal stress protein A in response to diverse 
stresses, is demonstrated to be under dual control. One regulatory pathway involves activation of the 
promoter by the alarmone guanosine 3',5'-bisphosphate, via the ß-subunit of RNA polymerase while 
the other consists of negative control by the FadR repressor. In contrast to canonical dual control by 
activation and repression circuits which depends on concomitant activation and derepression for 
induction to occur, the ppGpp-dependent activation of the uspA promoter overrides repression by an 
active FadR during starvation. The ability of RNA polymerase during stringency to overcome 
repression depends, in part, on the strength of the FadR operator. This emergency derepression is 
operative on other FadR regulated genes induced by starvation and is argued to be an essential 
regulatory mechanism operating during severe stress. 

The open reading frame immediately upstream uspA was demonstrated to encode a protein 
(UspB) involved in stationary phase induced resistance to ethanol. uspB is dependent of the 
stationary phase sigma factor, CTs. A mutation in the gene encoding CTs (rpoS) not only abolishes 
transcription of some genes (e.g. uspB) in stationary phase, but also causes "superinduction" of other 
stationary phase-induced genes, such as uspA. The data suggest that the superinduction of uspA is 
caused by an increased amount of a70 bound to RNA polymerase in the absence of the competing CTs. 
Increasing the ability of cr70 to compete against as by overproducing a70 mimics the effect of an rpoS 
mutation by causing superinduction of o70-dependent stationary phase-inducible genes (uspA and 
fadD) and silencing of /-dependent genes (uspB, bolApl and fadL). Similarly, overproduction of as 

markedly reduce stationary phase induction of uspA (cr70-dependent), Thus, it seems that sigma 
factors compete for limiting amounts of core RNA polymerase during stationary phase. 

0S requires ppGpp for its own accumulation and it was suggested that the similar phenotypes 
found between ppGpp0 and A rpoS mutants was due to this fact. However, we found that no activity 
from the /-dependent promoters tested (PuspB, bolAPI, Pcfa and PfadL) was detectable in the 
ppGpp0 strain even when CTs levels were ectopically produced to levels corresponding to wild type 
levels. The results suggested that ppGpp confers dual control on the RpoS regulon by i) being 
essential for efficient expression and accumulation of os and, ii) required for as function per se. 
Interestingly, the rpoB allele rpoS3449 (A532A) that is epistatic to defects exhibited by a ppGpp0 

strain (i.e. growth in minimal media) suppressed the lack of induction of the /-dependent promoters 
in the ArelA àspoT strain. Thus, the rpoB3449 allele restores both accumulation of / and the 
function of E/. This requirement of ppGpp can be explained, in part, by the fact that alternative 
sigma factors (CTs a nd cr32) compete better against a70 for core RNA polymerase in the presence of 
ppGpp. Underproduction of a70, specific mutations in rpoD (rpoD40 and rpoD35), or overproduction of 
Rsd (anti-a70) restored expression from as-dependent promoters in vivo in the absence of ppGpp 
accumulation. An in vitro transcription/competition assay with reconstituted RNA polymerase 
demonstrated that addition of ppGpp reduces the ability of wild type a70 to compete with 0s2 for core 
binding and the mutant cr70 proteins, encoded by rpoD40 and rpoD35, compete less efficiently than 
wild type a70. Similarly, an in vivo competition assay demonstrated that the ability of both /2 and crs to 
compete with a70 is diminished in cells lacking ppGpp. Consistently, the fraction of / and a32 bound 
to core was drastically reduced in ppGpp deficient cells. Thus, the stringent response encompasses a 
mechanism that alters the relative competitiveness of sigma factors in accordance with cellular 
demands during physiological stress. 

Keywords: Transcription, Escherichia coli, uspA, uspB, sigma factors, stationary phase, stress, rpoS, 
rpoD, rpoB, FadR, ppGpp, stringent response. 
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1 Introduction 

Bacteria are highly specialized species and are found in almost all environments on 

earth. For example, Pyrolobus fumarii can thrive at temperatures around 110°C 

(Blochl et al., 1997) and some species of Halobacteriaceae require at least 12% but 

can live in 25% NaCI (e.g. Kamekura, 1998). In addition, bacteria must be equipped 

with strategies to meet rapid changes in their near surroundings, such as depletion 

of carbon and nitrogen, exposure to H2O2, near-UV irradiation, temperature shifts, 

changing osmolarity, and exposure to antibiotics. Prokaryotes grow and proliferate 

exponentially as long as a supply of essential nutrients are present but enters the 

so-called stationary phase when one or more of these nutrients are exhausted. 

Many gram-positive bacteria respond to starvation by differentiating into dormant 

spores e.g. Bacillus subtilis. In contrast, most gram-negative bacterial species, such 

as Escherichia coli, respond to starvation by developing increased resistance to a 

large number of stresses without becoming dormant. The morphology of E. coli cells 

during starvation is recognized by its small and round shape, a very condensed 

cytoplasm, a highly cross-linked cell wall, and an increased periplasmic space 

(Huisman et al., 1996). 

In order to adapt to environmental changes bacteria have to change their 

pattern of gene expression and to do this quickly the bacterial cells have evolved 

clever chromosomal structures and regulatory circuits. As bacteria have been 

around for some 3000 million years (compared to the much younger eukaryote: only 

1000 million) it is reasonable to believe that basic molecular mechanisms that 

support life has first passed severe tests in prokaryotes. 

Genes with related functions are often synchronically regulated. For instance, 

the genes required for lactose utilization are located in the lac operon (e.g. Jacob 

and Monod, 1961; Lederberg, 1948). An operon consists of two or more genes that 

are cotranscribed and can therefore be coordinately regulated. Because a response 

may require regulation above the operon level, some regulators have evolved to 

activate/repress several unlinked genes and/or operans and these will then form a 

regulon. In many cases, a stimulus will influence many different régulons, operans 

and cistrons simultaneously and these genetic networks are called stimulons (Smith 

and Neidhardt, 1983). For instance, all genes that respond to phosphate limitation 
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belong to the psi (phosphate starvation-inducible) stimulon. Several studies of gene 

regulation have shown that no regulon operates in isolation and that specific genes 

and operons can and do respond to more than one signal in a combinatorial fashion 

(Neidhardt and Savageau, 1996). For example, raising the temperature not only 

induces the heat-shock regulon but also represses the cold-shock response and 

causes a transient induction of the stringent response regulon (Jones and Inouye, 

1994; Mackow and Chang, 1983). Estimations suggest that a bacterial cell has 

developed several hundred of such multigenic systems of which only a fraction has 

been discovered (Neidhardt et al., 1990b). 

In order to carry out the responses required, the cell harbors a battery of "key-

players" such as stimuli sensors, signal transducers, and regulators including 

activators, repressors, sigma factors and modifiers (e.g. cAMP and ppGpp), see 

figure 1. It should be pointed out that most of the regulation occurs at the level of 

transcription, but complementary RNA's and proteases play important regulatory 

roles at the post-transcriptional levels. 

Stimulus 

i 
Sensor 

Signal 

Transducer(s) 

Regulator 

Feed-back 
regulation Operon, OperonB Operon, 

w 
Network proteins 

Response 

Fig. 1. Gene network depicted as a stimilus-response pathway 
(Adapted from Neidhardt et al. 1990). 
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2 Transcriptional control: some important players 

2.1 DNA 

In E. coli, the genome is a single circular, covalently closed double stranded DNA 

molecule. The sequencing of the E. coli K-12 chromosome was completed in 1997 

and it turned out that it contains 4 639 221 base pairs (bp) that comprise 4288 open 

reading frames (ORFs) of which 1853 were previously described genes (Blattner et 

al., 1997). When fully extended the length of the chromosome is about 1 mm 

(Neidhardt et al., 1990a) and this has to be packed within 0.75 |am X 0.75 jam X 2 

um (the average size of a bacterial cell; Schmid, 1990). To do this a series of DNA 

binding proteins (e.g. HU, H-NS, IHF, Dps and Fis) has evolved that bend and coil 

the DNA into a structure called the nucleoid. Many, if not all, of these proteins are 

involved in gene regulation as well. For instance, IHF, which accumulates in 

stationary phase, bends DNA such that regulators that bind far away from promoters 

can come in contact with and help RNA polymerase to initiate transcription (Ditto et 

al., 1994; Nash, 1996). In contrast to IHF, Fis production is maximal during growth 

but is shut off in stationary phase (Ball et al., 1992; Nilsson et al., 1992). In addition, 

Fis has been shown to be important as an activator of rrn P1 (ribosomal RNA 

promoter) and several tRNA promoters (e.g. Gourse and Ross, 1996). 

2.2 RNA polymerase 

The multi-subunit, DNA-dependent RNA polymerase (RNAP) governs the process of 

all RNA synthesis in bacteria. In eubacteria, the 400 kDa RNAP core (E) consists of 

five different subunits, two a and one each of ß and ß', and co (a2ßß' co). RNAP core 

recognizes DNA unspecifically and is capable of elongation and termination of 

transcription. However, before RNAP can initiate transcription an additional subunit, 

sigma (a), must associate to E, which then forms the holoenzyme (EG) t hat has the 

ability to bind DNA in a promoter-specific manner (Burgess et al., 1969; Losick and 

Pero, 1981; Travers and Burgess, 1969). A promoter is the DNA sequence upstream 

the coding sequence of a gene where from transcriptional initiation occurs. It is 

thought that during the transition from initiation to elongation sigma factors are 
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released from RNAP core, leading to re-association of sigmas with free, non-

transcribing (Burgess, 1971; Hansen and McClure, 1980; Shimamoto et al., 1986; 

Stackhouse et al., 1989; see figure 2). However, a recent study identified a 

population of RNAP that retains a70 throughout elongation (Bar-Nahum and Nudler, 

2001). 

Statistical analysis of promoters recognized by Ea70, the most abundant 

holoenzyme (see below), has shown that the typical consensus promoter has two 

conserved 6-bp DNA sequences located about 35 and 10 base pairs upstream of 

the transcriptional start site, with an average separation of 17 nucleotides between 

them (Harley and Reynolds, 1987; Lisser and Margalit, 1993). With respect to gene 

regulation it is interesting to note that a growing E. coli cell contains -2000 

molecules of core RNA polymerase (Ishihama, 1997), which is less than the total 

number of genes (see above) on the E. coli chromosome. Thus, E. coli is, in 

principle, unable to transcribe all its genes at the same time. 

Termination 

•Trans 

Promoter 
clearance 

Abortive 
EaPc M • EcP0 product 

Open complex 
formation 

Fig. 2. General mechanism of transcriptional initiation. 
P denotes promoter; EcrPc, closed complex; EoP0, open 
complex; EaP,ni„ initiation complex; ETransl elongating 
core RNAP. 
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2.3 Sigma factors and anti-sigma factors 

Most bacteria have several sigma factors and all, except a54 (Merrick and Edwards, 

1995), are structurally similar to the housekeeping sigma factor, a70 (Gross et al., 

1992). Each sigma factor recognizes specific promoter sequences. Thus, depending 

on which sigma factor is associated to core, different sets of genes (régulons) can 

be transcribed. The number of sigma factors in different bacteria varies greatly; for 

instance in Mycoplasma genetalium there is only one whereas Bacillus subtilis 

contains 17 (Helmann, 1999). E. coli has seven different sigma factors, c70, aN (also 

called c54), crs (a38), aH (a32), aF (a28), aE (cr24) and aFecl, which provide the means to 

an effective and sudden response to extra- or intracellular stimuli. Most 

housekeeping genes required for growth-related tasks are dependent on a a70 

programmed RNAP while EaN, among other things, controls genes involved in 

nitrogen scavenging (Merrick and Edwards, 1995) and some stress induced genes 

(Carmona et al., 2000; Shingler, 1996). Further, as, the stationary phase sigma 

factor is required to induce several stress response genes (Hengge-Aronis, 1993; 

Loewen et al., 1998). a32 governs the heat-shock regulon, which responds to protein 

misfolding in the cytoplasm whereas aE is elevated during protein misfolding in the 

periplasmic space (Grossman et al., 1984; Jenkins et al., 1991; Morita et al., 1999a; 

Raina et al., 1995). cF stimulates expression of flagella and genes involved in 

Chemotaxis (Arnosti and Chamberlin, 1989) and cFecl is needed for the production of 

some extra-cytoplasmic proteins (e.g. Angerer et al., 1995). 

Competition studies in vitro have shown that sigma factors have different 

affinities for core RNA polymerase and a70 was shown to have the highest affinity 

(Maeda et al., 2000). In vivo measurements, using western blot analysis, suggested 

that the levels of a70, cr54 and a28 remains approximately constant in cells during 

exponential growth and stationary phase whereas crs is undetectable during growth, 

but reaches about 30 % of the levels of a70 in stationary phase (Jishage et al., 1996). 

Similarly, it has been shown that the levels of aH and aE are very low in exponential 

phase and the accumulated levels in stationary phase are still lower than the levels 

of a70 (e.g. Ishihama, 2000). 
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For the reason that none of the alternative sigma factors seems to reach the 

levels of the primary house-keeping sigma factor, a70, it is intriguing how the 

alternative sigma factors can compete for core RNA polymerase. However, it has 

been shown that during conditions inducing a heat-shock response (accumulation of 

gh), a70 is inactivated, leading to more available core RNA polymerases for oH 

(Blaszczak et al., 1995). 

Alternative sigma factors are subjected to regulation in a complex manner in 

order to be activated when required. One kind of regulatory phenomenon involves 

anti-sigma factors. Anti-sigma factors are proteins that specifically recognize and 

bind sigma factors and thereby inhibit E binding; e.g. FlgM (anti-a28) in S. 

typhimurium (Kutsukake and lino, 1994; Ohnishi et ai., 1992) and RseA (anti-aE) in 

E. coli (De Las Penas et al., 1997; Missiakas et al., 1997)). For the record, it should 

be mentioned that the first demonstration of an anti-sigma factor was done during 

experimental studies of RNA polymerase modifications during phage T4 infection. 

The anti-c70 factor, AsiA, encoded by T4, facilitates transcription of the phage-

encoded genes necessary for the life cycle of the phage by switching the RNA 

polymerase specificity such that the host a70 is substituted by the T4 specific sigma 

factor, cr9p55 (e.g. Malik et al., 1987; Orsini et al., 1993). 

In addition to blocking interaction with core RNA polymerase, some anti-

sigma factors function as deliverers of sigmas to proteolytic complexes (i.e. 

proteases). Many of the proteases found in E. coli are well conserved in both 

prokaryotes and eukaryotes. In E. coli, protein degradation plays important roles 

providing amino acids during starvation, in regulating the levels of specific proteins, 

and in eliminating damaged or abnormal proteins (e.g. during heat-shock or 

oxidative stress). Proteases also have regulatory tasks, such as controlling levels of 

other regulators (i.e. G'S) that are required during a short transient time or when no 

requirements of activity of these are called for. Recently, RssB/SprE (Muffler et al., 

1996; Pratt and Silhavy, 1996) was shown to be an anti-0S factor, and when bound 

to os, the protease CIpPX, efficiently degrades as (Becker et al., 1999; Zhou et al., 

2001 ). In a similar fashion, one of the best-characterized anti-sigma factors in E. coli, 

DnaK, regulates the levels of cr32 in association with DnaJ-GrpE and FtsH (e.g. 

Liberek et al., 1992; Straus et al., 1990; Yura and Nakahigashi, 1999). 
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Interestingly, like phage T4, E. coli cells harbors a gene, rsd, coding for an 

anti-G70 factor. It has been shown that Rsd accumulates in stationary phase in a 

ppGpp dependent manner and that Rsd interacts with cr70 in vitro (Jishage and 

Ishihama, 1998; Jishage and Ishihama, 1999). Accordingly, overproduction of Rsd 

resulted in reduced and increased transcription from a70- and as-dependent 

promoters, respectively (Jishage and Ishihama, 1999). This finding adds to the 

picture of how alternative sigma factors, despite their low levels compared to a70, 

may compete for core RNA polymerase. 

3 Exponential and Stationary phase 

A hallmark of bacterial growth is efficiency and speed. E. coli cells can divide every 

16 minutes in a rich medium as long as the nutrient supply is in excess and 

metabolic byproducts do not reach toxic levels. The dominant activity of the bacterial 

cell is protein production and therefore ribosome biosynthesis is a key event during 

fast growth. The ribosome synthesis is proportional to the square of the growth rate 

(Gausing, 1980) and coupled to the cells growth requirements (growth rate-

dependent control). As there is a continual alteration in the availability of nutrients in 

the environment, microbes have developed a highly regulated expression of 

ribosomal proteins, ribosomal RNA and transfer RNA (tRNA). There are several 

overlapping pathways regulating ribosome synthesis, yet, most of the regulation is 

thought to occur on the level of transcription but it is still not exactly clear how the 

control is brought about. However, there are basically two models describing this 

regulation, one includes guanosine tetra-phosphate (ppGpp; the stringent response) 

and the second model proposing a feedback mechanism coupled to the translational 

capacity of the cell (the ribosome feedback model; e.g. Condon et al., 1995). 

However, the two models are not mutually exclusive and it has been suggested, that 

they may work in concert (Hernandez and Bremer, 1990). 

Upon depletion of essential nutrients from the medium the growth rate slows 

down and eventually reaches zero. At this point the cells has entered stationary 

phase. In stationary phase, E. coli cells become rounder and smaller, and the 

production of stable RNA and ribosomal proteins shut off (e.g. Nomura et al., 1984). 
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In addition, in contrast to bulk RNA, the half-life of mRNA increases more than two­

fold, regardless of whether production of the transcript is repressed or stimulated 

(Albertson and Nyström, 1994). Moreover, stationary phase cells are more resistant 

than growing cells to a number of damaging agents such as, H202 (Jenkins et al., 

1988), alkylating agents, ethanol, acetone, toluene (e.g. Hengge-Aronis, 1996), and 

acidic or basic pH conditions (Lee et al., 1994; Siegele and Kolter, 1992). Even 

though the resistances obtained in stationary phase can differ depending on the 

condition leading to stationary phase (e.g. nitrogen vs. phosphate starvation; 

Ballesteros et al., 2001), it has been proposed that the factors induced in the 

transition between exponential and stationary phase provide the cells with general 

protective features (e.g. Matin, 1991; Reeve et al., 1984). Several specific stress-

inducible régulons controlled by the regulators SoxRS, OxyR, FadR and RpoH, 

contribute to the increased stress resistance in stationary phase (Dukan and 

Nyström, 1998). However, perhaps the most important factors governing stasis-

induced gene expression are the general stress response sigma factor, as, and the 

alarmone, ("magic spot") ppGpp (e.g. Cashel et al., 1996; Hengge-Aronis, 2000). 

4 Régulons and their regulation 

4.1 Sigma S regulon 

The starvation or stationary phase sigma factor, as (encoded by rpoS), is the master 

regulator of the general stress response in E. coli. as has been shown to play a 

central role in programmed switches of gene regulation leading to physiological and 

morphological changes that occur upon a number of diverse stresses in bacteria. 

For example, CTs directs transcription of genes and opérons whose products are 

involved in prevention of oxidative damage (e.g. Loewen et al., 1985; Mulvey et al., 

1990), osmoprotection (Giaever et al., 1988), ethanol resistance (PAPER II), 

virulence (Krause et al., 1991), acid shock (Atlung et al., 1997), heat-

shock/thermotolerance (e.g. Muffler et al., 1997a; Rockabrand et al., 1998), and cell-

wall synthesis (Lange and Hengge-Aronis, 1991a). Further, mutants lacking as 

exhibit an accelerated die-off during conditions of growth arrest (Lange and Hengge-
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Aronis, 1991a), and markedly elevated levels of oxidized proteins (Dukan and 

Nyström, 1998; Dukan and Nyström, 1999) as well as "superinduction" of genes 

requiring other sigma factors (PAPER III). 

4.1.1 Regulation of os 

The regulation of os concentration is complex and is controlled at the levels of rpoS 

transcription, rpoS mRNA translation, and os stability. Many different stress 

conditions result in as accumulation, and each one them appear to affect the control 

of as synthesis differently. rpoS is the second gene in an operon with nlpD. The 

majority of rpoS mRNA originates from one promoter (PrpoS) located within nlpD, 

whereas some very low basal level of transcription comes from two promoters 

located just upstream of nlpD-rpoS (e.g. Lange et al., 1995; Lange and Hengge-

Aronis, 1994; McCann et al., 1993; Takayanagi et al., 1994). Observations using 

Prpos-lacZ fusions has shown that rpoS is induced as the cells enters stationary 

phase (Lange and Hengge-Aronis, 1991b; Schellhorn and Stones, 1992). Some 

reports have indicated cAMP as a possible effector of rpoS transcription. However, 

one group found that a Acya mutant abolished transcription of rpoS (McCann et al., 

1991), whereas another group observed elevated levels of transcription in a Acya 

mutant (Lange and Hengge-Aronis, 1991b). Another signal that may affect 

transcription of rpoS is ppGpp (Lange et al., 1995), and strains lacking ppGpp (i.e. 

ArelA AspoT) have some phenotypic similarities to rpoS mutants, including a 

reduced viability in stationary phase and salt sensitivity (Hengge-Aronis, 1993). 

However, others claim that the correlations between ppGpp and/or cAMP and rpoS 

transcription are artificial and that rpoS mRNA levels actually decrease during 

growth arrest and that Gs accumulation is solely due to stabilization of the sigma 

protein (Zgurskaya et al., 1997). Nonetheless, it is clear that Gs accumulation 

requires ppGpp (Gentry et al., 1993; Lange et al., 1995; Zgurskaya et al., 1997). 

Lately, the regulatory role of small RNAs has begun to be recognized. 

Although the occurrence of antisense RNAs have been known for many years, the 

participation of small RNAs in diverse regulatory contexts, such as protein tagging 

for degradation, stimulation of transcription, and modulation of RNA polymerase are 
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relatively recent discoveries (e.g. Wassarman et al., 1999). Hfq, also called HF-1, 

was discovered as an E. coli protein required for synthesis of bacteriophage Qß 

RNA (Franze de Fernandez et al., 1968) and it turns out that Hfq binds rpoS mRNA 

in vitro (Hengge-Aronis, 2000) and is required for rpoS translation in vivo (Brown and 

Elliott, 1996; Muffler et al., 1997b). Further, Hfq has been shown to associate with 

ribosomes as well as the nucleoid and small RNAs (Azam et al., 2000; Kajitani et al., 

1994; Wassarman et al., 2001). Hfq inactivation causes a variety of phenotypic 

changes indicating that Hfq acts as a global regulator (Muffler et al., 1997b; Tsui et 

al., 1994). With respect to rpoS regulation, it is thought that Hfq directly interact with 

the rpoS message and regulatory RNAs simultaneously. For instance, DsrA, which 

contains regions of sequence complementary to at least five different genes {hns, 

argR, ilvlH, rpoS, and rbsD; Lease et al., 1998) has been demonstrated to regulate 

both hns and rpoS, by RNA-RNA interactions (Lease et al., 1998; Majdalani et al., 

1998). By binding to rpoS mRNA (probably under influence by Hfq), DsrA opens a 

stable stem-loop (Brown and Elliott, 1997; Lease et al., 1998; Majdalani et al., 1998) 

and stabilizes the rpoS transcript (Lease and Belfort, 2000). This enables access to 

the Shine-Dalgarno sequence of rpoS, which facilitates translation. In contrast, the 

small RNA, OxyS, of the oxidative stress response, negatively regulates translation 

of rpoS (Altuvia et al., 1997). Again, Hfq is required for this repression of rpoS 

translation (Zhang et al., 1998). Similarly, the nucleoid histone-like protein, H-NS, 

has a negative effect on Hfq-mediated stimulation of rpoS translation either by 

inhibiting synthesis of Hfq or by binding to Hfq (reviewed in Nogueira and Springer, 

2000). In addition, DsrA inhibits translation of hns mRNA, by blocking translational 

initiation (Lease et al., 1998). Thus, many factors contribute to the complex 

translational regulation of rpoS mRNA. Even though it is not clear how the regulation 

occurs, one important fact is that hfq is epistatic to mutations affecting all the other 

known factors (i.e. hns, dsrA and oxyS) that modulate rpoS mRNA translation. 

The protease-complex involved in as degradation is ClpXP (Schweder et al., 

1996). CIpP is the protease, and the ATP-dependent substrate-recognizing 

chaperone CIpX unfolds and transfers os to the proteolytic center of CIpP (Kim et al., 

2000; Singh et al., 2000). However, to efficiently accomplish this, the two-component 

response regulator protein RssB (SprE, MviA) must bind and deliver as to the ClpXP 

complex (e.g. Bearson et al., 1996; Muffleret al., 1996; Pratt and Silhavy, 1996), see 
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figure 3. In addition, it is thought that RssB may be c specific since no observations 

so far have indicated the involvement of RssB during other CIpXP proteolytic 

reactions e.g. proteolysis of XO pro tein (Zhou and Gottesman, 1998). It has been 

shown that acetyl phosphate phosphorylates the D58 residue of RssB (Bouche et 

al., 1998) and that this greatly enhances the affinity of RssB for os (Becker et al., 

1999). Moreover, studies has shown that K173 in region 2.5 of cts is essential for 

RssB binding in vitro and for as degradation in vivo (Becker et al., 1999). 

Interestingly, region 2.5 of as has been shown to be involved in promoter recognition 

and thus, binding by RssB to crs may prevent Egs promoter interaction as well as 

EOS f ormation. 

RssB-P 

a :RssB-P 

CIpXP 
er :RssB-P:ClpXP 

ATP 

ADP + Pi 

RssB 

Acetyl-P/ Sensor-
kinases + ATP 

Unfolding and 
degradation of CTS 

(Half-life is ~2 min) 

Fig. 3. Degradation of sigma S (Adapted from Hengge-Aronis, 2000). 

Because sigma factors must associate with core before transcriptional 

initiation there are further steps where as activity can be modulated, i.e. formation of 

holoenzyme and holoenzyme-promoter interaction. As pointed out, under stress 

conditions, os accumulates up to levels corresponding to only 30 % of those of a70 

(Jishage et al., 1996). In addition, several promoters dependent on sigma factors 

other than gs are activated in stationary phase e.g. PuspA (a70) (Nyström and 
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Neidhardt, 1992), Pu (a54) (de Lorenzo et al., 1993), and PdnaK (a32) (Jenkins et al., 

1991). Consequently, sigma factors have to compete for core RNA polymerase, (e.g. 

Zhou et al., 1992; and PAPER III). Interestingly, in vitro affinity measurements have 

shown that a70 has a several-fold higher affinity for core than as (Maeda et al., 

2000), indicating that some factor or factors are crucial for the formation and activity 

of as-containing holoenzyme (Eos). One such factor may be ppGpp. It was shown 

that GS-dependent promoters require ppGpp even in the presence of high levels of 

cts produced ectopically (PAPER IV). Also, many regulatory factors such as, IHF, H-

NS, Fis, and cAMP have been shown to modulate (both negatively and positively) os 

activity on specific genes. However, these regulators primarily act as common 

activators or repressors (often in concert) to control expression from a single cts-

dependent promoter, reviewed in (Hengge-Aronis, 1999) and are not expected to 

affect crs binding to core. 

4.2 Heat shock regulon 

The heat shock response, comprises expression of a number of evolutionary well 

conserved proteins involved in several processes, including modulation of unfolded 

or misfolded proteins, repair or turnover of damaged proteins, and assembly of 

proteins. Many heat-shock proteins (HSPs) are molecular chaperones or ATP-

dependent proteases and play crucial roles during both stress (i.e. heat and ethanol) 

and nonstress conditions. So far, two major heat-shock régulons have been 

discovered. The "classical" heat shock regulon is governed by sigma factor H, a32 (or 

aH; encoded by rpoH), which directs RNA polymerase to transcribe genes dealing 

with aberrant proteins in the cytoplasm, while the cE regulon, encoding periplasmic 

proteases and folding enzymes, is specifically induced by extracytoplasmatic 

stresses. 

When E. coli cells grown at 30°C are shifted to 42°C, the transcriptional 

activity at the promoters of the heat-shock regulon is increased as a result of 

accumulation of a32 (Grossman et al., 1984; Straus et al., 1987). Transcriptional 

regulation of sigma 32 is rather complex and the regulatory region of rpoH contains 

three a70-dependent promoters and one promoter requiring aE. However, it is 
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thought that the transcriptional regulation has minor effects on a32 synthesis (e.g. 

Arsene et al., 2000). Instead, heat induced accumulation of o32 is primarily regulated 

at the level of translation and protein stability (Kamath-Loeb and Gross, 1991; Nagai 

et al., 1991; Straus et al., 1990; Tilly et al., 1989). The secondary structure of rpoH 

mRNA is coupled to and dependent on temperature, leading to degrees of 

accessibility for the translational machinery (e.g. Morita et al., 1999b). In addition, 

during steady-state growth (i.e. non-stress conditions), a32 has an extremely short 

half-life (< 1 min) and it is argued that the heat shock chaperone complex DnaK-

DnaJ-GrpE may bind and deliver a32 to the heat shock protease FtsH (HfIB) for 

proteolytic degradation (e.g. Tatsuta et al., 1998). During a heat shock, the initial 

(and transient) stabilization of sigma 32 is most probably due to a32 being 

sequestered away from the DnaK-DnaJ-GrpE chaperones, which at the time 

becomes occupied in re-folding unfolded or misfolded proteins (Bukau, 1993; Craig 

and Gross, 1991; Straus et al., 1990). Subsequently, a32 becomes available for core 

RNA polymerase interaction, leading to production of heat shock proteins that 

ultimately brings about a negative feedback control of a32 by inhibiting rpoH 

translation and destabilizing a32 (see figure 4). 

Active 

> (RNAPy 
DnaK 

Degradation Inactive 

Heat shock 
DnaK 

Functional 4 Aberrant 
proteins ^ proteins 

Degradation 

Fig. 4. Homeostatic regulation of sigma 32. a32 is in equilibrium 
between an active form that can interact with RNAP during stress, 
and an inactive form, which is bound to the chaperone complex 
DnaK-DnaJ-GrpE. 
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4.3 Stringent response 

The stringent response is elicited by nutrient starvation. The hallmark of the stringent 

response is a sudden accumulation of the nucleotide guanosine 3', 5'-

bispyrophosphate (ppGpp; e.g. Baracchini and Bremer, 1988; Cashel and Gallant, 

1969; Lazzarini et al., 1971; Ryals et al., 1982a; Ryals et al., 1982b; Ryals et al., 

1982c), followed by a rapid inhibition of rRNA synthesis (e.g. Cashel and Gallant, 

1969; Sands and Roberts, 1952; Stent and Brenner, 1961; Travers, 1976). In E. coli, 

synthesis of the nucleotide, ppGpp, is mediated by the ppGpp synthetases, PSI and 

PSII, encoded by the relA and spoT genes, respectively (Xiao et al., 1991 ; see figure 

5). 

PI 
gpp AMP > ppGpp pppGpp 

spoT 
Mn* 

spoT 

PPI 

* GDP GTP 
PPI ndk 

ATP 
NDP NTP 

Fig. 5. Metabolism of ppGpp (Adapted from Cashel et al., 1996). 

The RelA mediated synthesis of ppGpp is ribosome dependent and is triggered by 

amino acid starvation. The sensing/signaling mechanism is an uncharged tRNA in 

the A-site of a translating ribosome (Haseltine and Block, 1973; Haseltine et al., 

1972). SpoT, on the other hand, is responsible for (i) ppGpp synthesis during a large 

variety of conditions (except amino acid starvation) that reduce the growth rate of 

cells and (ii) ppGpp degradation when cells confront a nutritional up shift, but the 

exact signaling pathways for SpoT are not clear (Cashel et al., 1996; Hernandez and 

Bremer, 1991; Murray and Bremer, 1996; Xiao et al., 1991). There is an inverse 
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correlation between steady state growth rate and ppGpp concentrations (e.g. 

Baracchini and Bremer, 1988; Hernandez and Bremer, 1990) but as a stress is 

imposed on the cells (leading to inhibition of growth) a rapid increase in ppGpp 

concentration occurs, whereafter the levels decreases again to a new steady state 

(Cashel, 1969; Fiil et al., 1972; Lund and Kjeldgaard, 1972). 

The stringent response has mainly been studied in E. coli but there are also 

reports describing effects of ppGpp on different activities in other bacteria, including 

spore formation in Myxococcus xanthus (Harris et al., 1998), induction of virulence of 

Legionella pneumophilia (Hammer and Swanson, 1999) and Mycobacterium 

tuberculosis (Primm et al., 2000), antibiotics production in Streptomyces coelicolor 

(Kang et al., 1998) and Streptomyces antibioticus (Hoyt and Jones, 1999), and DNA 

replication and endospore formation in Bacillus subtilis (Eymann et al., 2001; Levine 

et al., 1995). In addition, a RelA/SpoT homologue has been found recently in the 

plant Arabidopsis thaliana (van der Biezen et al., 2000). 

The alarmone ppGpp binds the carboxy-terminal domain of the ß (Chatterji et 

al., 1998; Reddy et al., 1995) and the amino-terminal domain of the ß' (Toulokhonov 

et al., 2001) subunits of RNA polymerase and by doing so accomplishes an 

immense differentiation in gene expression. Gene expression studies during amino 

acid starvation (RelA-dependent ppGpp accumulation) by 2D-gel analysis indicated 

that 50% of all the proteins where affected by the lack of ppGpp, see (e.g. Cashel et 

al., 1996). Similar studies (2D-gel analysis) with strains either overproducing ppGpp, 

from an IPTG inducible Ptac-relA promoter fusion, or strains lacking ppGpp 

underline the pleiotropic effects of the stringent response (e.g. Jones et al., 1992; 

Schreiber et al., 1991). One important discovery made is that a strain lacking ppGpp, 

requires a supplement of amino acids in the media for growth (e.g. Xiao et al., 1991). 

Consequently, mutants that suppress the polyauxotrophy of a ppGpp0 strain were 

identified and isolated (e.g. Cashel et al., 1996). Most commonly, such mutations are 

found in the genes rpoB or rpoC encoding the ß and ß' subunits of RNA polymerase 

(Cashel et al., 1996). However, some mutations are localized in rpoD, encoding a70 

(Cashel et al., 1996), suggesting that ppGpp may have a role in EG70 holoenzyme 

function. In addition to suppressing amino acid auxotrophy, several of these 

suppressors have also been shown to suppress the loss of typical stationary phase 

characteristics of ppGpp0 strains, including accumulation of os in stationary phase 
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(Hernandez and Cashel, 1995), induction of the universal stress proteins, UspA 

(PAPER I and V), UspB (PAPER IV), UspC, D and E (Gustavsson et al., 2002), 

down-regulation of rRNA promoters (Barker et al., 2001a; Bartlett et al., 2000), and 

induction of the a54-dependent, Po promoter (Sze and Shingler, 1999). 

DNA sequences located between the -10 region and the transcriptional start 

site of stringently controlled promoters have been predicted to be determinants of 

stringent regulation (Travers, 1980a). Negatively regulated promoters have a 

conserved GC-rich motif in this region, which if mutated, loses its ability to inhibit 

transcription by a ppGpp programmed RNA polymerase (e.g. Travers, 1980b; 

Zacharias et al., 1989). In contrast, some positively regulated promoters exhibit an 

AT-rich motif in the discriminator region (Travers, 1984) and it has been shown that 

the his promoter has such a motif and is dependent on this motif for stimulation by 

ppGpp (Riggs et al., 1986). What has become apparent from these and later studies 

is that the effect of ppGpp on transcription initiation depends on the promoter-RNA 

polymerase interaction. For instance, based on in vitro studies, using mutated RNA 

polymerases (epistatic to ppGpp deficiency with respect to growth in the absence of 

amino acids) or addition of ppGpp, it has been suggested that the negatively 

regulated rrnB P1 forms an unstable open complex with RNA polymerase, requiring 

high levels of the initiating nucleotide to initiate transcription (Bartlett et al., 1998). 

But, upon a stringent response (ppGpp accumulation) the open complex is further 

destabilized leading to abortive transcription (Barker et al., 2001a; Barker et al., 

2001b; Bartlett et al., 1998; Ohlsen and Gralla, 1992; Zhou and Jin, 1998). 

Conversely, positively regulated promoters form extremely stable complexes with 

RNA polymerase, such that initiation is halted, and it is argued that destabilization 

with ppGpp may, in fact, help such promoters (e.g. Barker et al., 2001a; Barker et 

al., 2001b). Another model proposed suggests that a ppGpp programmed RNA 

polymerase will dissociate from stable RNA promoters and as a consequence 

become available to initiate transcription at positively regulated promoters (Zhou and 

Jin, 1998). In this scenario, positively regulated promoters are indirectly controlled by 

ppGpp-dependent alterations in RNA polymerase availability. 

While it is generally accepted that ppGpp is responsible for the immediate 

decrease in rRNA synthesis that occurs when a sudden restriction in nutrient supply 

occurs (e.g. Cashel and Gallant, 1969; Sands and Roberts, 1952; Stent and 
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Brenner, 1961; Travers, 1976), it have been, and still is, controversial whether 

ppGpp governs growth rate-dependent regulation of rRNA synthesis during 

exponential growth (reviewed in Cashel et al., 1996 and Condon et al., 1995). In 

essence, two flanks exist and could be described as pro or against ppGpp as a 

regulator of the phenomenon (e.g. Condon et al., 1995). The Pro-ppGpp model, 

"RNAP partitioning model" or "promoter selectivity model", (e.g. Baracchini and 

Bremer, 1988; Ryals et al., 1982b; Travers et al., 1980) argues that there are two 

forms of RNAP, one with and the other without ppGpp bound to it. If cells grow fast 

there is low levels of ppGpp, hence, low levels of "stringent" RNAP and therefore 

high transcriptional activity at rRNA operons. Whereas, if cells are growing slowly 

there are high levels RNAP programmed with ppGpp and thus little rRNA synthesis. 

In contrast to the model suggesting ppGpp as the regulator of growth rate-

dependent regulation, the "ribosome feedback model" (based on Jinks-Robertson et 

al., 1983) proposes that the cells are prone to produce as many ribosomes as 

possible, but not more than is required for the rate of protein synthesis needed at the 

moment. The feedback signal is not known, but an excess of translational capacity 

(i.e. extra rRNA) has been proposed to be the sensor and/or signal (reviewed in 

Condon et al., 1995). In addition, Gaal et ai. (1997) showed, in an in vitro 

transcription experiment, that the activity at stable RNA promoters correlates with 

the concentration of the initiating nucleotides (GTP and ATP). In addition, they 

showed that the GTP and ATP pools increased with increasing growth rates. Based 

on these results, the authors proposed that the nucleotides act as the feedback 

signal sensed by the rRNA operons and that they would be responsible for the 

growth rate-dependent regulation in vivo. In contrast, Peterson and Moller (2000) 

stressed that the NTP pools are independent of growth rate. Yet, given the 

complexity of rRNA regulation, it seems reasonable that different regulatory 

mechanisms might operate to varying degrees under different conditions. 

Most studies on the effects by ppGpp have dealt with repression/activation of 

genes requiring a70 but lately alternative sigma factors have come into focus as well. 

For instance, the Pu and Po promoters, dependent on a54, are induced only in the 

presence of ppGpp (Carmona et al., 2000; Sze et al., 2002; Sze and Shingler, 

1999). Further, as mentioned above, as is dependent on ppGpp for its accumulation 
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(Gentry et al., 1993; Lange et al., 1995; Zgurskaya et al., 1997) as well as its activity 

(PAPER IV). 

Travers (1985) argued that ppGpp might act by loosening the protein-protein 

interactions between a70 and RNA polymerase and thereby facilitating replacement 

of one sigma factor by another. VanBogelen and Neidhardt (1990) suggested that 

ppGpp might affect different sigma factors' affinity for E based on the sluggish and 

delayed induction of heat shock genes in a ppGpp0 mutant (Grossman et al., 1984; 

Jones et al., 1992; VanBogelen and Neidhardt, 1990). In addition, Hernandez and 

Cashel (1995) showed that ppGpp drastically reduces the fraction of a70 bound to E 

and put forward the idea that ppGpp may alter the competition between cr70 and 

alternative sigma factors. 

5 Aims, results and discussion 

The primary aim of this work was to elucidate the transcriptional regulation of the 

stationary phase induced universal stress ßroteins, UspA and UspB. The uspAB 

locus is located at the 77 min region of the E. coli chromosome (Nyström and 

Neidhardt, 1992). uspA and uspB are divergently transcribed and their translational 

sequences are separated by 390 bp, see figure 6. 

PuspB PuspA 
-I -10 -35 -10 

UspB 1—I 1—I—I KZZZ3 UspA 
FadR FadR 

112 bp 0U2 Ou. 

390 bp 

Fig. 7. The uspA and uspB loci (Not drawn to scale.) 
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The uspA gene is transcribed from a c70-dependent promoter located 125 bp 

upstream of the translational start (Nyström and Neidhardt, 1992). There are two 

FadR binding sites positioned between the transcriptional and translational start 

sites of uspA (Farewell et al., 1996). Expression of uspB is dependent on as and 

there is a as promoter located upstream of the translational start (PAPER II). 

5.1 The universal stress protein A, UspA 

Nyström and Neidhardt (1992) isolated and cloned the gene encoding a protein, 

UspA (universal stress ßrotein A) that appeared to be induced during more stress 

conditions than any other protein observed on 2-D gels. The UspA protein is a 

serine/threonine phosphoprotein and is important for long-term survival during 

starvation (Freestone et al., 1998; Freestone et al., 1997; Nyström and Neidhardt, 

1993; Riley and Labedan, 1996). UspA belongs to a conserved family of proteins 

(Usp family), which have been suggested to be ancestors to the developmental, 

DNA-binding, MADS-box proteins of eukaryotes (Mushegian and Koonin, 1996; 

Nyström and Gustavsson, 1998). Further, uspA homologues have been found in 

several bacterial species and often in multiple copies (e.g. Diez et ai., 2000). E. coli 

harbors six Usps of which, at least four (UspA, C, D and E), seem to share the same 

pattern of expression (Gustavsson et al., 2002). Recently, it was shown that a uspA 

mutant was less resistant to UV irradiation and mitomycin C exposure and that DNA 

aberrations transduce RecA-dependent signals to the uspA promoter, which, 

however, only affect PuspA during stasis (Diez et al., 2000). 

5.2 uspA requires ppGpp for induction 

The induction of uspA is related to growth inhibition and the expression is primarily 

regulated at the level of transcription (Nyström and Neidhardt, 1992). The fact that 

many conditions that induce uspA are known to accumulate ppGpp made us 

examine if ppGpp could have a role in activation of uspA expression. Two-

dimensional gel electrophoresis analysis of cells carrying a plasmid with the IPTG 

inducible Ptac-relA' construct, pSM11 (Schreiber et al., 1991), demonstrated that 

UspA levels was elevated upon elevating ppGpp levels (PAPER I). Thus, elevated 
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levels of ppGpp are sufficient to elicit UspA production under otherwise non-stress 

conditions. In addition, a ppGpp0 strain failed to produce UspA or to induce a PuspA-

lacZ fusion in stationary phase and the rpoS3449 allele (A532A), that is epistatic to 

defects exhibited by a ppGpp0 strain (i.e. growth in minimal media; e.g. Cashel et a!., 

1996; Zhou and Jin, 1998) suppressed this defect (PAPER I). It should be noted that 

previous results have indicated that uspA may be ppGpp independent (Farewell et 

al., 1996). However, it has now been demonstrated that the ppGpp0 strain in this 

study harbored a suppressor mutation. It is not clear how ppGpp exerts its effect on 

positively regulated promoters requiring Ea70. It has been proposed that the positive 

regulation of a70-dependent promoters by ppGpp is linked to ppGpp-dependent 

effects on RNAP availability. The accumulation of ppGpp is suggested to result in 

the dissociation of RNAP from stringent promoters (Bartlett et al., 1998; Zhou and 

Jin, 1998) resulting in more RNAP becoming available to initiate transcription at 

promoters that have a relatively poor ability to recruit RNAP. It cannot be excluded, 

however, that some a70-dependent promoters are directly regulated by ppGpp and 

examples of such positive effect of ppGpp on gene expression have been achieved 

using a coupled in vitro transcription-translation assay (Choy, 2000; Primakoff and 

Artz, 1979; Riggs et al., 1986; Stephens et al., 1975). 

5.3 FadR and uspA regulation 

uspA is a member of the FadR regulon and has two FadR binding sites downstream 

the promoter in the non-coding region (Farewell et al., 1996). FadR represses not 

only uspA, but also fad genes (genes involved in fatty acid degradation), which are 

induced in stationary phase both in E. coli (Farewell et al., 1996) and S. typhimurium 

(Spector et al., 1999). These observations led to the assumption that FadR is 

inactivated as a repressor when cells enter stasis (Farewell et al., 1996; Spector et 

al., 1999). However, since ectopic overproduction of ppGpp during exponential 

phase caused UspA accumulation (PAPER I), and a strain carrying the rpoß3449 

allele (epistatic to ppGpp deficiency) showed markedly higher PuspA-lacZ 

expression under conditions that do not inactivate FadR (data not shown), we 

wondered if ppGpp, or the mutant RNA polymerase, could overcome FadR 

repression of uspA and whether FadR is really inactivated in stationary phase. FadR 
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has been shown to be inactivated by binding long-chain fatty acyl-CoAs (Raman and 

DiRusso, 1995), which are produced from fatty acids by the gene product of fadD. 

Yet, we observed no difference between a wt and a fadD null mutant with respect to 

uspA expression pattern or induction levels (unpublished). Therefore, unless long-

chain fatty acyl-CoAs are produced via a hitherto unknown pathway, this result 

suggests that FadR is not inactivated in stationary phase. To elucidate this 

possibility, we introduced the strongest FadR operator known (the fadB 0B operator, 

see (Farewell et al., 1996)) centered at +9 with respect to the transcriptional start 

site of uspA. The ß-galactosidase activity from this construct was greatly reduced in 

stationary phase cells containing functional FadR, but not in cells lacking FadR 

(PAPER I). Thus, we suggest that FadR is active in stationary phase and that a 

"stringent" RNA polymerase (i.e. presence of ppGpp or mutated RNAP) can override 

repression by FadR if the operator is sufficiently "poor". 

5.4 The universal stress protein UspB 

A search in the database for genes similar to uspB yielded only one (86% homology) 

candidate (PAPER II). The homologue, an uncharacterized ORF, was found in Y. 

pestis. As in E. coli, upstream (-700 bp) the uspB-Wke sequence in Y. pestis a 

divergently transcribed UspA homologue (89%) was found. Thus, the organization of 

this locus may be conserved between these species. However, a recent search for 

proteins with similarity to UspB (BLAST @ NCBI) generated some homologues in 

species such as Salmonella typhimurium and Vibrio cholerae. Likewise, a 

divergently transcribed gene similar to uspA was found to be localized upstream of 

the homologue of uspB in S. typhimurium. But, since the list of newly sequenced 

genomes is still growing, more homologues are expected to be revealed. 

UspB is composed of 111 amino acids and has the electrophoretic mobility of 

a 14 kDa protein. Examinations by protein sequence analysis programs suggested 

that UspB contains two putative membrane-spanning domains and that the proximal 

one could be a signal peptide separated from the second domain by a putative 

signal peptide cleavage site. Notably, UspB does not belong to the new Usp family 
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of proteins, but was originally named UspB because it is induced during a large 

number of stress conditions (see below). 

5.5 Phenotypic analysis of uspB mutants 

A strain harboring a uspB null mutation was compared to its otherwise isogenic wild 

type parent with respect to growth and survival in a number of environmental 

conditions, including growth in minimal medium and LB, survival in glucose 

starvation and LB stationary phase, recovery from long-term starvation, survival 

during osmotic, heat, and oxidative stress, growth on various carbon sources 

(ribose, glycerol, acetate and glucose), and growth under anaerobiosis, but no 

differences were observed. However, the uspB null mutant did not develop as high 

resistance to ethanol as the wild type strain in stationary phase but no difference 

was observed during exponential growth (PAPER II). Ethanol is well known to affect 

protein stability as well as membrane integrity (Gross, 1996; Ingram and Vreeland, 

1980). Intriguingly, no difference was observed, between the AuspB and wt strains, 

during a heat shock, which is, as ethanol, known to disturb protein stability and 

membrane integrity (Gross, 1996; Sanchez and Charlier, 1989). Thus, UspB might 

act through a separate pathway than heat-inflicted damages of the membrane in 

stationary phase. In addition, recent studies (A. Farewell, personal communication) 

have shown that UspB might be involved in resistance to UV irradiation and 

mitomycin C exposure. Overproduction of UspB is detrimental to cell viability, and 

high copy number plasmids containing the entire uspB gene are extremely unstable 

in E. coli (PAPER II). The reason for this is still unknown. 

5.6 Expression pattern of uspB 

By using a PuspB-lacZ fusion recombined into X phage and integrated at the X att 

site in the chromosome as a single copy we determined the expression pattern of 

uspB. In contrast to uspA, which is o70-dependent (Nyström and Neidhardt, 1992), 

uspB induction depends on the stationary phase sigma factor, as (PAPER II). During 

exponential growth in LB the expression of uspB is very low but is induced about 50-

fold as cells enter stationary phase. Similarly, we found that when cells were grown 
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in minimal medium limiting for various nutrients, such as glucose, phosphate and 

nitrogen, PuspB-lacZ expression was induced as cells entered stationary phase in 

agreement with the dependence on cts. Further, in addition to starvation conditions, 

the PuspB-lacZ fusion was induced during exponential growth if environmental 

challenges such as NaCI, sucrose (osmotic shock), H202 (oxidative stress) or 4% 

ethanol were imposed upon cells. To determine the mode of regulation of uspB a 

number of mutations in known global regulators were introduced into the strain 

carrying the PuspB-lacZ fusion. Mutations in the nucleoid protein H-NS, known to 

increase as levels in log phase (Yamashino et al., 1995), showed a seven-fold 

increased expression of uspB in log phase and a two-fold increase in stationary 

phase. The sequence in the region 85 bp upstream of the transcriptional start of 

uspB resembles an IHF binding site (Nash, 1996). Overproduction of IHF from a 

plasmid caused a three-fold reduction of PuspB-lacZ expression. However, a 

deletion of the putative IHF binding site did not change the effect of overproduction 

of IHF. We concluded that IHF has an indirect effect on uspB expression unless IHF 

binds to a hitherto unknown DNA sequence in the uspB region. Finally, uspB does 

not seem to be autoregulated since a A uspB mutation did not alter the expression 

pattern of PuspB-lacZ under any conditions tested. In conclusion, although some 

known global regulators (IHF, H-NS and CRP; PAPER II) are involved in regulation 

of uspB none of them seems to be essential for growth phase dependent expression 

of uspB. 

5.7 uspB and uspA expression is affected by sigma factor competition 

Interestingly, a mutation in rpoS not only abolishes induction of crs-dependent genes 

but "superinduces" genes requiring other sigma factors (PAPER III). For instance, 

the rate of synthesis of UspA (a70-dependent) and Psp (a54-dependent) is higher in 

stationary phase in a A rpoS mutant compared to an rpoS+ strain. One explanation 

for this may be that if one sigma factor (as in this case) is not expressed, other 

sigma factors will be favored in core RNA polymerase binding and genes requiring 

such sigma factors will be "superinduced". Such a hypothesis has previously been 

put forward based on data demonstrating that in cells harboring a temperature 
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sensitive c70, several c32-dependent genes are "superinduced" during a temperature 

shift from 30°C to 42°C (Osawa and Yura, 1981). To test if sigma factors compete 

for core RNAP, we introduced a plasmid-borne Ptac-rpoD construct (Bedwell and 

Nomura, 1986) into our test strain and measured expression patterns of the a70-

dependent promoters PuspA and PfadD. Overproduction of a70 (~2.5-fold) caused 

an essentially identical superinduction of PuspA-lacZ and PfadD-lacZ as an rpoS 

null allele (PAPER III). In addition, lacZ fusions to the as-dependent bolApl and 

PuspB promoters were essentially shut down when a70 were overproduced (western 

blot analysis showed that the levels of cs were the same in the strains whether a70 

was overproduced or not). Similarly, uspA expression decreased when a high-copy-

number plasmid, pMMKatF2 (Mulvey et al., 1988), overproducing as (~10-fold) was 

present in the cells. These results strongly support the idea that sigma factors 

compete for limiting amounts of core RNA polymerase. Therefore, it is fascinating 

how os manages to compete and operate successfully in stationary phase, despite 

its relatively low levels (30% of cr70; Jishage and Ishihama, 1995) and its weak 

affinity for core (approximately 16-fold lower than a70 in vitro; Maeda et al., 2000). 

Another possible explanation for the "superinduction" of uspA could be that an 

rpoS null mutant has lower levels of FadR and therefore higher uspA expression. To 

test, this we introduced a fadR::Tn10 allele, by P1 transduction, into our test strains 

(wt or A rpoS) and monitored P uspA-lacZ expression. The fadR:: Tn10 mutation only 

affected PuspA-lacZ expression during exponential growth, while the rpoS mutation 

only had an effect in stationary phase. Accordingly, the A rpoS fadR:: Tn10 double 

mutant displayed higher expression of PuspA-lacZ in both log and stationary phase, 

indicating that the repression of uspA by as and FadR are mediated via different 

pathways as well as during different growth phases. Another idea of how RpoS 

could mediate repression of uspA transcription was raised by the fact that a putative 

IHF site is located upstream of uspA (PAPER II, III), and that overexpression of IHF 

affect UspA expression positively (Nyström, 1995). Previously, it has been shown 

that IHF can bend DNA so that upstream DNA with bound proteins comes in 

proximity with downstream regulatory sequences, such as promoters (e.g. Nash, 

1996). Thus, if IHF binds the putative IHF binding site upstream of PuspA the DNA 

may bend so that the PuspB-Ecys complex will interfere with sigma 70 programmed 
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RNAP to initiate transcription from PuspA. To approach this possibility, we 

constructed a mutation in the IHF consensus sequence as well as a deletion of the 

upstream DNA from the middle of the putative IHF binding site and measured 

PuspA-lacZ expression. As shown in PAPER III, neither of these two mutations of 

the uspA promoter region had any effect on uspA expression. In addition, IHF 

overproduction and an rpoS mutation caused an additive effect on uspA expression, 

indicating that the pathways are distinct. Thus, it is clear that uspA expression is not 

dependent on the region from the middle of the IHF consensus sequence and 

upstream and that the effects of an rpoS null mutation and IHF are most likely 

indirect. 

5.8 as and ppGpp is required in concert for induction of crs-dependent 

promoters 

cs requires ppGpp for its own accumulation (Gentry et al., 1993; Lange et al., 1995; 

Zgurskaya et al., 1997) and it was suggested that the similar phenotypes found in 

ppGpp0 and A rpoS mutants was due to this fact. However, we found that no activity 

from the os-dependent promoters tested (PuspB, £>o//4P1, Pcfa and PfadL) was 

detectable in the ppGpp0 strain even when gs levels were ectopically produced to 

levels corresponding to wild type levels (PAPER IV). The results suggested that 

ppGpp confers dual control on the RpoS regulon by i) being essential for efficient 

expression and accumulation of crs and, ii) required for as function per se. 

Interestingly, the rpoB allele, rpoß3449, suppressed the lack of induction of the as-

dependent promoters tested in the ArelA AspoT strain (PAPER IV). Thus, the 

rpoß3449 allele restores both accumulation of as and the function of Ecs. 

5.9 Competition between alternative sigma factors and a70 is affected by 

ppGpp 

Previously, Hernandez and Cashel (1995) had shown that the amounts of a70 bound 

to RNAP core is elevated in a ppGpp0 strain compared to a wt strain. Also, if the 

rpoD mutations rpoDS506F and rpoDP504L (epistatic to ppGpp deficiency) were 
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introduced into the ppGpp0 strain, the levels of a70 bound to core were similar to the 

levels observed in a wild type strain. This, together with the fact that the rpo63449 

allele suppresses the lack of induction of cs-dependent promoters in a ppGpp0 

background (PAPER IV), made us investigate if ppGpp is an absolute requirement 

for as function. 

First, we found that the lack of PuspB-lacZ induction in a ppGpp0 mutant 

could be alleviated by under-producing a70 or overproducing Rsd (anti-a70), 

especially if the cells harbored the multi-copy plasmid pMMKatF2, carrying the 

structural gene for rpoS (PAPER V). This indicated that ppGpp is not an absolute 

requirement for as function as long as the level of active a70 is reduced. To further 

investigate this, we made use of two rpoD mutants (rpoD35 and rpoD40) functionally 

related to rpoDS506F and rpoDP504L that had been isolated in V. Shinglers 

laboratory (A. Laurie and V. Shingler, unpublished). These mutations were shown to 

suppress the ppGpp requirement of the a54-dependent Po promoter (A. Laurie and 

V. Shingler, unpublished; Sze and Shingler, 1999). Expression of the model 

promoter, PuspB, was partially rescued by these rpoD alleles in a ppGpp0 

background (PAPER V). Thus, rpoD mutants that rescue a aM-dependent promoter, 

also restore induction of a as-dependent promoter, in a ppGpp0 background. This 

prompted us to set up an in vitro transcription (IVT) competition assay to test if 

ppGpp may allow alternative sigma factors to compete more successfully with the 

housekeeping sigma factor, a70. Since it is known that cr70 and cs recognizes similar 

promoter sequences (e.g. Kusano et al., 1996), and exhibit cross reactivity in vitro, 

we decided to perform in vitro competition with a32, which is known to recognize 

vastly different promoters than a70 (Gross et al., 1992). To elucidate the relative 

competitiveness (inhibition of transcription from PdnaK) of the wt and mutant or70, we 

added increasing amounts of the different a70 proteins to our IVT reaction mix that 

contained a fixed level of a32, and measured the relative level of the dnaK transcript. 

Increasing amounts of wt a70 drastically inhibited transcription from dnaK. Inhibition 

by the RpoD35 protein was significantly lower than by wt a70 and the RpoD40 

protein was the least effective in inhibiting transcription from the dnaK promoter 

(PAPER V). Next we examined if the behavior of the mutant RpoD proteins would 

mimic the phenotype of a normal stringent response; i.e. if ppGpp would reduce the 
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competitive ability of wt a70. We approached this question by repeating the in vitro 

competition assay with wild type a70 and a32 competing in the presence and absence 

of ppGpp. The competitiveness of wt a70 was markedly reduced by the addition of 

ppGpp. Thus, ppGpp has a positive effect on in vitro dnaK transcription under 

conditions of competition between a32 and a70 but have no observable effect when 

a32 operates alone (ppGpp had no effect on the transcriptional activity from the dnaK 

promoter when no a70 was provided to the system; PAPER V). Next, we used lac 

fusions to a70-dependent promoters and measured the ability of gs and a32 to down-

regulate these promoters in wt and ppGpp0 strains. We found that both as and a32 

were clearly better in down-regulating the a70-dependent promoters in the presence 

of ppGpp. 

In addition, to determine whether the observed effects were the result of 

competition for E binding, we repeated the same experiment with ectopic 

overproduction of the Q80R mutant a32, which exhibits a drastically reduced affinity 

for E (Joo et al., 1997). Indeed, overproduction of this mutated sigma totally failed to 

repress the c70-dependent promoter PuspA, whereas wt o32 was very effective. This 

confirms that the observed inhibition of uspA and fadD transcription is an effect of 

ci32 out-competing a70 for E binding. Next, we measured the fraction of total as and 

a32 bound to core in wt and ppGpp0 strains and observed a substantial lower portion 

of each sigma factor bound to core in the AreiA AspoT strain than in the wt. 

Thus, it appears that the ability of gs and a32 to compete with a70 for E binding 

is facilitated in the presence of ppGpp and that the ppGpp requirement can be 

suppressed by c70 underproduction. Further, ppGpp-dependent alteration in sigma 

factor competition for E binding seems to be an integral part of the typical stringent 

response. Thus, despite the fact that ppGpp accumulation decreases the 

competitiveness of cr70 during stringency, many Ea70-dependent promoters may well 

experience an increased EG70 availability since a large fraction of the holoenzyme is 

no longer sequestered in transcribing stable RNA opérons. 
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Fig. 7. Model of ppGpp action during stress. ppGpp accumulates and binds core 
RNAP (E), which is directed away from stable RNA opérons to stress genes. 
Simultaneously, as and a32will compete better against a70 for E binding. 

Additional experiments, such as affinity measurements between as and core 

RNA polymerase, with or without ppGpp, are required to pinpoint an exact 

mechanism for the results obtained. For instance, is ppGpp acting by weakening a70 

core interaction and/or strengthening crs/cr32/a54 core interaction? (see figure 7). 
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6 Conclusions 

A new member, uspB, of the sigma S regulon was discovered. The protein, UspB, is 

involved in stationary phase induced resistance to ethanol. Studies on the 

transcriptional regulation of uspB demonstrates that as is not only dependent on 

ppGpp for its accumulation in stationary phase, but also for its activity because uspB 

and other as-dependent genes require ppGpp even when as levels are ectopically 

produced to wild type levels. This requirement can be explained, in part, by the fact 

that alternative sigma factors (cs and a32) compete better against a70 for core RNA 

polymerase in the presence of ppGpp both in vitro and in vivo. For instance, a 

significantly lower level of Gs and a32 are bound to core in cells lacking ppGpp and 

cr32-dependent transcription in vitro is facilitated in the presence of ppGpp under 

conditions of competition between a32 and a70 but have no observable effect when 

a32 operates alone. 

Another novel role of ppGpp was found during analysis of the a70-dependent 

uspA promoter, in that ppGpp accumulation overcomes repression by an active 

FadR. This mechanism of regulation is important since the induction of uspA and 

other FadR regulated genes is essential for stasis survival and we called this 

regulation emergency derepression. 
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