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Abstract 
EFFECTS OF 5-FLUOROURACIL ON ORAL BARRIER FUNCTIONS 

Inger von Bültzingslöwen 

Department of Endodontology/Oral Diagnosis, Faculty of Odontology, Göteborg 
University, Göteborg, Sweden 

Many anticancer drugs, e.g. 5-fluorouracil (5-FU), may cause oral mucositis and 
ulcerations. These adverse reactions can be severe and debilitating to the patient, and 
adjustment of the cancer treatment may be necessary. Efforts to develop reliable clinical 
protocols to relieve the oral side effects have so far been disappointing. Thus, further 
knowledge regarding the pathophysiology behind these lesions is warranted. 

This thesis focused on some influences of 5-FU on major oral barrier functions, the oral 
epithelium, the local immune defence and the microflora. 

Rats were treated with 5-FU (30 mg/kg; 50 mg/kg) i. v. In one experiment, the probiotic 
bacteria Lactobacillus plantarum 299v, was delivered in the drinking water during 5-FU 
treatment, to modify bacterial overgrowth. 

After the animals were sacrificed, biopsies were taken. Oral keratinocytes were 
investigated for 5-FU induced mode of cell death. Analysis was performed by flow 
cytometry, vital dye exclusion test, the TUNEL method and ultrastructural analysis. The 
number of local immunocompetent cells of the oral mucosa was compared with the number 
of similar cell populations of the dental pulp. MHC class II molecule expressing cells of the 
buccal epithelium and dental pulp were assessed for the capacity to induce a ConA stimulated 
T cell proliferation. Changes in bacterial homeostasis of the oral cavity and intestine were 
evaluated and predominating groups of facultative anaerobes were identified by colony 
morphology and gram staining appearance. The cervical and mesenteric lymph nodes were 
analysed for any numbers of viable bacteria. 

5-FU treatment caused alterations in the keratinocytes consistent with autophagic dege
neration. The local cellular immune defence of the oral mucosa and dental pulp was affected. 
5-FU caused an increase in the total number of bacteria and th e number of facultative 
anaerobes in the oral cavity and in the number of facultative anaerobes in the intestine. The 
proportions of facultative gram-negative rods increased. Bacteria increased in numbers in 
both the cervical and mesenteric lymph nodes. These findings reinforce the oral cavity, 
along with the gastrointestinal tract, as an important source for bacterial dissemination. L. 
plantarum 299v did to some extent normalise 5-FU induced disturbances in the oral a nd 
intestinal microbiota and improve the well-being of the animals. 

Conclusions: Influences of 5-FU on oral barrier functions were demonstrated. 5-FU may 
disrupt the oral epithelium, decrease the immune response and disturb the microflora . The 
findings indicate that the cervical lymph nodes may be an important route for bacterial dis
semination from the oral cavity. Probiotic bacteria may have a positive effect on some of 
these functions. 

Key words: 5-FU, rat, adverse effects, autophagic degeneration, immune system, microflora, 
mouth. 
© Inger von Bültzingslöwen 2002 ISBN 91-628-5077 
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Effects of 5-Fluorouracil on Oral Barrier Functions 

Inger von Bültzingslöwen 

Abstract 

Department of Endodontology/Oral Diagnosis, Faculty of Odontology, Göteborg University, 
Göteborg, Sweden 

Many anticancer drugs, e.g. 5-fluorouracil (5-FU), may cause oral mucositis and ulcerations. 
These adverse reactions can be severe and debilitating to the patient, and adjustment of the 
cancer treatment may be necessary. Efforts to develop reliable clinical protocols to relieve the 
oral side effects have so far been disappointing. Thus, further knowledge regarding the patho
physiology behind these lesions is warranted. 
This thesis focused on some influences of 5-FU on major oral barrier functions, the oral epi
thelium, the local immune defence and the microflora. 
Rats were treated with 5-FU (30 mg/kg; 50 mg/kg) /.v. In one experiment, the probiotic bacte
ria Lactobacillus plantarum 299v, was delivered in the drinking water during 5-FU treatment, 
to modify bacterial overgrowth. 
After the animals were sacrificed, biopsies were taken. Oral keratinocytes were investigated 
for 5-FU induced mode of cell death. Analysis was performed by flow cytometry, vital dye 
exclusion test, the TUNEL method and ultrastructural analysis. The number of local immuno
competent cells of the oral mucosa was compared with the number of similar cell populations 
of the dental pulp. MHC class II molecule expressing cells of the buccal epithelium and dental 
pulp were assessed for the capacity to induce a ConA stimulated T cell proliferation. Changes 
in bacterial homeostasis of the oral cavity and intestine were evaluated and predominating 
groups of facultative anaerobes were identified by colony morphology and gram staining ap
pearance. The cervical and mesenteric lymph nodes were analysed for any numbers of viable 
bacteria. 
5-FU treatment caused alterations in the keratinocytes consistent with autophagic degenera
tion. The local cellular immune defence of the oral mucosa and dental pulp was affected. 5-
FU caused an increase in the total number of bacteria and the number of facultative anaerobes 
in the oral cavity and in the number of facultative anaerobes in the intestine. The proportions 
of facultative gram-negative rods increased. Bacteria increased in numbers in both the cervi
cal and mesenteric lymph nodes. These findings reinforce the oral cavity, along with the gas
trointestinal tract, as an important source for bacterial dissemination. L. plantarum 299v did to 
some extent normalise 5-FU induced disturbances in the oral and intestinal microbiota and 
improve the well being of the animals. 

Conclusions: Influences of 5-FU on oral barrier functions were demonstrated. 5-FU may dis
rupt the oral epithelium, decrease the immune response and disturb the microflora. The find
ings indicate that the cervical lymph nodes may be an important route for bacterial dissemi
nation from the oral cavity. Probiotic bacteria may have a positive effect on some of these 
functions. 

Key words: 5-FU, rat, adverse effects, autophagic degeneration, immune system, microflora, 
mouth. 
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PREFACE 

This thesis is based on the following papers, which will be referred to in the text by their 

Roman numerals. 

I. 5-FluorouraciI induces autophagic degeneration in rat oral keratinocytes 

I. von Biiltzingslöwen, M. Jonteil, P. Hurst, U. Nannmark, T. Kardos 

Oral Oncol. 2001 Sep;37(6):537-44 

II. Macrophages, dendritic cells and T lymphocytes in rat buccal mucosa and 

dental pulp following 5-fluorouracil treatment 

I. von Biiltzingslöwen, M. Jonteil 

Eur J Oral Sei. 1999 Jun;107(3):194-201 

III. Effects of 5-fluorouracil on mitogen induced costimulatory capacity of 

accessory cells from rat oral mucosa and dental pulp 

I. von Biiltzingslöwen, M. Jonteil, G. Carlsson, B. Gustavsson 

J Oral Pathol Med. 2001 Jul;30(6):362-7 

IV. Microflora of the oral cavity and intestine in 5-fluorouracil treated rats, 

bacterial translocation to cervical and mesenteric lymph nodes and 

effects of probiotic bacteria 

I. v. Biiltzingslöwen, I. Adlerbert, A. Wold, G. Dahlen, M. Jontell 

Submitted to Oral Microbiol Immunol 
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ABBREVIATIONS 

5-FU 5-fluorouracil 

5-FIT30 30 mg/kg 5-fluorouracil 

5-FIT50 50 mg/kg 5-fluorouracil 

bp base pair 

BS A bovine serum albumin 

CD cluster of differentiation 

CFU colony forming units 

Con A concanavalin A 

CTL cytotoxic T lymphocyte 

DAB 3,3 '-diaminobenzidine-tetrahydrochloride 

DC dendritic cell 

DMEM Dulbecco's modified Eagle'medium 

DMEM+ DMEM supplemented with 2 mmol/L glutamine and 20 mg/L gentamicin 

DMEM++ DMEM+ supplemented with 20% fetal calf serum 

DPD dihydropyrimidine dehydrogenase 

dTTP deoxythymidin triphosphate. 

dUTP deoxyuridine triphosphate 

ED2 a differentiation-associated antigen present on tissue-resident macrophages 

EDTA ethylene diamine tetraacetic acid 

FACS fluorescence activated cell sorter 

FdUMP 5-fluoro-deoxyuridine monophosphate 

FITC fluorescein isothiocyanate 

G-CSF granulocyte colony stimulating factor 

GM-CSF granulocyte-macrophage colony stimulating factor 

Ig immunoglobulin 

IL interleukin 

i.v. intravenously 

L. plantarum Lactobacillus plantarum 

LC Langerhans cell 

LPS lipopolysaccaride 
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M molar 

MHC major histocompatibility complex 

n number 

NK cells natural killer cells 

OX-6 monoclonal atibody against rat MHC class II 

OX-34 monoclonal atibody against rat CD2 molecule 

PBS phosphate buffered saline 

S.D. standard deviation 

TBS Tris-HCL buffer (0.05 M; pH 7.6) containing 0.9% NaCl 

TBS+ TBS supplemented with bovine serum albumin 

TCR T cell receptor 

Th helper T cell 

TUNEL terminal deoxinucleotydyll tarnsferase (TdT)-mediated deoxuyridine 

triphosphate (dUTP) biotin nick end labeling 

WBC white blood cells 

VMG viability medium Gothenburg 
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INTRODUCTION 

Many anticancer drugs have a low therapeutic index and may cause severe side effects in the 

oral cavity. The oral side effects are reflected in inflammation and ulcerations of the oral 

mucosa, bleeding, xerostomia and local or disseminated infections. Adverse responses of a 

similar nature may also develop in the pharynx and in the gastrointestinal tract. Patients 

medicated with anticancer drugs may sometimes suffer from oral side effects to the degree 

that makes it necessary to adjust the course of cancer treatment. Improved methods to 

accommodate the adverse oral effects are much in need. 

Comprehensive clinical investigations have been performed with different agents in efforts to 

find means to modify the oral adverse effects. However, the pathophysiology of the 

conditions largely remains to be defined (Sonis 1998). In order to develop new treatment 

modalities, further basic knowledge is warranted regarding what cellular events that cytotoxic 

drugs induce in the oral cavity. 

The various groups of anticancer drugs affect cells at different levels in the cell cycle, with 

different outcomes. It is therefore of great value, if possible to study one anticancer drug at a 

time. Results from studies involving a mixture of antineoplastic agents are not necessarily 

applicable to all anticancer drugs. 

One group of antineoplastic agents specifically known to cause oral side effects, is 

antimetabolites. 5-Fluorouracil (5-FU) is an antimetabolite that has been extensively utilised 

for over thirty years (Heidelberg 1957) in the treatment of a wide range of solid tumours, in 

the gastrointestinal tract, breast and head and neck. 5-FU induces mucosal toxicity that may 

sometimes be severe and lifethreatening. For this reason 5-FU was selected for the 

investigations that form the basis for this thesis. 
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AIMS OF THE THESIS 

The long-term objectives of my research are to elucidate the effects of cytotoxic drugs, with 

major dose limiting side effects, on oral barrier functions. 

This thesis focused on effects of 5-FU on the oral epithelium, local immune defence and 

microbial homeostasis, major barrier functions of the oral cavity. 

The following specific questions were formulated. 

• Does 5-FU treatment induce an apoptotic mode of cell death in the keratinocytes of the 

epithelium of oral buccal mucosa? (I) 

• Do the numbers of macrophages, dendritic cells (DC) and T lymphocytes, cells of the 

cellular immune defence in the oral buccal mucosa, become affected by 5-FU and how is 

the effect on the number of these cells in the buccal mucosa, compared to the dental pulp, 

a tissue not normally exposed to microbial challenges? (II) 

• Does 5-FU influence the capacity of oral soft tissue DC to induce T cell proliferation? 

(Ill) 

• How is the equilibrium of the bacterial population of the oral cavity and the intestine 

affected by 5-FU treatment? (IV) 

• Are there signs of bacterial translocation to cervical lymph nodes in 5-FU treated rats and 

how is bacterial translocation to the cervical lymph nodes compared to the mesenteric 

lymph nodes? (IV) 

• Can the probiotic bacteria Lactobacillus plantarum 299v normalise 5-FU induced 

disturbances in the microbiota and prevent bacterial dissemination to lymph nodes? (IV) 

• Can Lactobacillus plantarum 299v improve the well being of the rats, measured by rat 

body weight, amount of ingested food and degree of diarrhoea? (IV) 
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BACKGROUND 

The body endeavours to maintain homeostasis, a tendency to uniformity and stability in the 

normal body states. In order to maintain homeostasis, barrier functions are in effect to protect 

the internal environment and to prevent the body from emitting essential matters. An 

exchange with the external environment is also a fundamental part of homeostasis. Thus, the 

barriers of the body must have selective functions. 

The epithelium and the immune system constitute selective barrier functions in the 

oropharyngeal and gastrointestinal tract as does the bacterial equilibrium of these body sites. 

If one or more of the barrier functions are affected, this may lead to a distorted homeostasis 

that may give rise to severe local or generalised adverse effects. 

Cytotoxic drugs affect normal cells with a high turnover rate as well as malignant cells. Thus, 

tissues that are constantly renewed are likely to be affected by antineoplastic agents. In the 

oral cavity both cells of the epithelium and many cells of the immune system, and bacteria 

have a high turnover rate. 

ANTICANCER DRUGS 

Tumours originate from subversion of the processes that control normal cell growth, location 

and mortality. A loss of normal control mechanisms in tumour cells arises from gene 

mutations (Hesketh 1997). 

Cancer chemotherapy aims at killing tumour cells. The main objective of the drug therapy is 

to induce cell damages, leading to the activation of cell death mechanisms. Anticancer drugs 

can be classified according to functions into four different groups, namely alkylating agents, 

topoisomerase inhibitors, antimetabolites and mitosis inhibitors (Hansson et al. 1998). 

Alkylating agents. Alkylating agents bind to one or two bases in the DNA molecule. The ones 

binding to two bases are those of most clinical interest. They cause intraStrand cross-links 

between bases of the same DNA strand in a DNA molecule, or interstrand cross-links between 
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bases of the complementary DNA strain in a DNA molecule. If the cell is not capable of DNA 

repair it will die. 

Topoisomeras inhibitors. Topoisomeras inhibitors stabilise naturally occurring strand breaks, 

enzymatically induced by topoisomerases. Normally such strand breaks would be repaired. If 

the cell is not able to repair its DNA, it will not survive. 

Antimetabolites. Antimetabolites are synthetic compounds, usually a structural analogue of a 

normal metabolite, which interferes with the utilisation of the metabolite to which it is 

structurally related. Antimetabolites cause DNA strand breaks by incorporating distorted 

molecules in the DNA. If the cell cannot repair the damaged DNA molecule it will die, given 

that the cell's normal intrinsic cell death program works. Antimetabolites are classified into 

antifolates, (e.g. methotrexate), purine antimetabolites, (e.g. azatioprin, merkaptopurin) and 

fluoropyrimidines (e.g. fluorouracil). 

Mitosis inhibitors interact with cell tubulin, which is normally polymerised to microtubuli. 

Microtubuli is a component of the cell cytosceleton and are involved in chromosome 

movements during mitosis. Mitosis inhibitors induce cytotoxicity by interacting with tubulin. 

5-FLUOROURACIL (5-FU) 

5-Fluorouracil (5-FU) is biochemically the simplest of the fluorinated pyrimidines. This 

cytotoxic drug is an analogue to the naturally occuring pyrimidine uracil with a fluorine atom 

at the 5 position of the pyrimidine ring, instead of hydrogen. 5-FU is administered i.V., as 

bolus injections or as continuous infusions. In recent years, it has also been used as a prodrug 

per os. 5-FU is non-toxic before it i s metabolised intracellularly. The drug enters the cells 

very rapidly by facilitated diffusion (temperature- and energy-independant) through the same 

pathway as uracil (Wohlhueter et al. 1980). 

Anabolic pathways 

5-FU may cause cell injury by two major anabolic pathways: 

1. inhibition of the enzyme thymidylate synthase (TS) leading to impaired DNA 

formation 

2. incorporation into RNA and growth inhibition 
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1. Inhibition of the enzyme thymidylate synthase (TS) and impaired DNA formation 

A single DNA strand, a polynucleotide, is constructed from a series of phosphodiester-linked 

sugar residues, nucleotides, each carrying a base. The bases are the purines adenine (A) and 

guanine (G), and the pyrimidines cytosine (C) and thymine (T). Purine and pyrimidine bases 

are linked together in a double stranded DNA (e.g. A-T; G-C) (Mathews and van Holde 

1996). 

When uracil has entered the cell it will participate in the formation of new DNA. It will bind 

to deoxyribose and in that way the nucleoside deoxyuridine (dUrd) is formed. When 5-fluoro-

uracil is administered, fluoro-deoxyuridine (FdUrd) will be formed instead. The nucleosides 

are converted to nucleotides by thymidine kinase by linking a phosphate group to the 

nucleoside. The nucleotide with a uracil base is termed deoxyuridinemonophosphate, dUMP. 

If the uracil is replaced by 5-fluoro-uracil, the nucleotide will be converted to 5-fluoro-

deoxyuridine monophosphate, FdUMP. The natural development of dUMP is to form 

deoxythymidin monophosphate, dTMP, supplied with a methylen-group, CH2, from 

methylentetrahydrofolate. This process is enzymatically driven by thymidylate synthase, TS. 

dTMP is further transformed to deoxythymidindiphosphate, dTDP, and 

deoxythymidintriphosphate, dTTP, by pyrimidine monophosphate kinase and pyrimidine 

diphosphate kinase, respectively. The nucleotide dTTP is incorporated into the DNA 

molecule, formed by several nucleotides which are linked together to form a single strand of 

DNA. 

FdUMP will not develop further the way dUMP develops to form dTMP. 

Methylentetrahydrofolate, instead of giving a methylen-group, will form a stable complexe 

with TS and FdUMP. The phosphorylation by pyrimidine monophosphate kinase and 

pyrimidine diphosphate kinase will form FdUDP and FdUTP. FdUTP will subsequently be 

incorporated into the DNA molecule instead of dTTP. A damaged DNA is then formed by a 

DNA single strand interruption, a so-called nick (Grem 1990, Mathews and van Holde 1996). 

A DNA single strand interruption will be discovered in the G, cell cycle checkpoint, which 

will trigger an apoptotic cell death. The aim of causing cell damage, that will lead to cell 

death, has thus been accomplished. 
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2. Incorporation into RNA and growth inhibition 

5-FU is also incorporated in uridinmonophosphate, UMP, to form FUMP. FUMP is 

phosphorylated to FUDP and FUTP. FUTP is incorporated instead of UTP in RNA. 

Incorporation of FUTP into RNA may profoundly alter RNA processing and function (Glazer 

and Peale 1979) although the specific molecular locus for cytotoxicity by an RNA-related 

mechanism remains to be clarified. RNA synthesis as well as protein synthesis will be 

affected both quantitatively and qualitatively (Frösing 1994). 

Catabolic pathway 

The catabolic route for 5-FU is by enzymatic degradation. 5-FU is extensively catabolised in 

the liver through the rate limiting enzyme dihydropyrimidine dehydrogenase (DPD). DPD is 

also expressed in various other normal tissues, such as the gastrointestinal mucosa, as well as 

in tumour tissues. Several studies have demonstrated the clinical importance of DPD levels in 

cancer patients, suggesting that the efficacy of 5-FU may be related to DPD activity in tumour 

tissue. Indeed, DPD activity may be useful in determining tumour cell sensitivity to 5-FU. 

The lower the DPD activity, the greater the 5-FU efficacy. Patients with a DPD deficiency 

may exhibit severe 5-FU-related toxicities (Inada et al. 2000; Milano and Etienne 1994). 

Adverse effects of 5-FU 

As pointed out, an obstacle with cancer chemotherapy is the effects on normally proliferating 

tissues. Consistently, the main toxicities of 5-FU are exerted on rapidly dividing tissues, 

primarily the oropharyngeal and gastrointestinal mucosa and bone marrow. 5-FU toxicity 

varies with dose, schedule and route of administration. Considerable variation in the incidence 

and severity is observed among patients. Diarrhoea, mucositis, myelosuppression, nausea and 

alopecia are the most frequently reported side effects (Curreri and Ansfield 1962) 

CELL DEATH 

Since the ultimate goal of 5-FU treatment is to cause cell injury, leading to cell death in 

tumour cells, it is of value when studying adverse effects of this drug, to clarify the final fate 

of cells after the induction of DNA strand breaks. To put cell death by cancer chemotherapy 

into its proper context, the main types of cell deaths will be reviewed. 
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Apoptosis 

Normally, in proliferating tissues, constant cell renewal by mitosis is balanced by 

programmed cell death in the maintenance of tissue homeostasis (Wyllie et al. 1980). 

Programmed cell death is an induced intrinsic and orderly cell death process, which presents 

itself with distinct morphologic changes, referred to as apoptosis. 

Although the phenomenon of programmed cell death was observed already in the 19th century, 

(for review see, Majno and Joris 1995) it was first described in detail and named apoptosis by 

Kerr et al. in 1972 (Kerr et al. 1972). The process involves the breakdown of m itochondrial 

membrane potential and release of cytochrome C and apoptosis inducing factor (AIF) 

(Hortelano et al. 1997), which in turn can activate special proteases, the caspases. Bcl-2 

proteins on the other hand may inhibit apoptosis. Caspases are present in the cytoplasm as 

inactive proenzymes that require proteolytic cleavage to become activated. Nucleases, which 

are proteolytic enzymes that cleave nucleic acid, will eventually degrade chromosomal DNA. 

This leads to multiple nicks and strand breaks within the DNA molecules and results in the 

generation of DNA oligomers of the size proportional to the size of a nucleosome, 

approximately 180 bp (Mathews and van Holde 1996). A systematic and orderly disassembly 

of the cell has started. When scattered cells die by apotosis, no inflammatory reaction is 

elicited, since the cell remnants, i.e. apoptotic bodies, are phagocytosed by neighbouring 

epithelial cells or macrophages, before plasma membrane integrity is lost (for review see, 

Savillefa/. 1993). 

Although apoptosis is a normal physiologic process balancing mitosis, it can also be triggered 

in a cell by a distorted gene, as an intrinsic suicide process to dispose of cells with potentially 

dangerous gene mutations. A distorted gene, in a potentially malignant cell or a virus infected 

cell, is discovered at cell cycle checkpoints during proliferation. These checkpoints reveal the 

distorted DNA molecule and, if the DNA cannot be repaired, the intrinsic cell death program 

is induced via the protein p53 and caspase activation. Some malignant cells may obtain the 

ability to escape the intrinsic p53 checkpoint system, or distort it so that the cancer cells can 

survive. 
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Cytotoxic insults, e.g. radiotherapy or cancer chemotherapy may also kill cells by apoptosis. 

When treating with an anticancer drug, like 5-FU, the drug is built into proliferating cells. A 

new gene damage is created within the proliferating cell, and the cell may go into apoptosis, 

activating intrinsic death mechanisms. That way the drug will assist the body with disposing 

of malignant cells. Since tumour cells often have a high turnover rate, anticancer drugs will 

target these cells. 

Furthermore, apoptosis can be induced in cells by external signals from other cells within the 

body. Cytotoxic T lymphocytes (CTL) can bind to a protein on the cell membrane on the 

target cell or release cytotoxic proteins, which enter the target cell, and in turn induce 

apoptosis. Also bacterial lipopolysaccarides (LPS) may induce apoptosis in target cells 

(Besnard et al. 2001; Kawahara et al. 2001). A cascade of caspases is activated within the 

target cell, which drives the apoptotic process. 

Necrosis 

In contrast to apoptosis, necrosis is a passive type of cell death without regulatory 

mechanisms, a catastrophic event caused by major insults. When necrosis is induced, it 

usually occurs within tracts of contiguous cells. Cells lose their plasma membrane integrity at 

an early phase in the process. Necrosis includes cell swelling and bursting, disintegration of 

the cell membrane and release of intracellular debris within the tissue, which triggers 

phagocytosis, inflammation and tissue damage (Denecker et al. 2001). 

Autophagic degeneration 

An additional form of cell death has also been recognised, type 2 cell death or autophagic 

degeneration (Clarke 1990), described as a type of programmed cell death with partly other 

features than apoptosis. It is characterised primarily by the formation of numerous autophagic 

vacuoles in the cytoplasm. The nucleus is normal or shows chromatin condensation centrally 

in the nucleus. Epithelial cells may lose junctional complexes. Blebbing, as in apoptosis, may 

occur but also endocytosis, or "inward blebbing" which serves well to reduce the area of the 

plasma membrane. Although autophagic degeneration has been suggested to be a programmed 

form of cell death, it still has some features in common with necrosis. For example it has been 

suggested that the uptake and removal of cell remnants involve inflammation (Kitanaka and 

Kuchino 1999). 
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ORAL EPITHELIUM 

Epithelial tissues line all cavities and free surfaces of the body. All epithelia have at least one 

important function in common, they serve as selective permeability barriers, separating fluids 

on each side that have different chemical compositions (Alberts et al. 1994). The integrity of 

the epithelium also acts as a physical barrier to prevent penetration of micro-organisms 

(Marsh and Martin 1999; Alberts et al. 1994). An undamaged epithelium is the first line of 

defence, and may be crucial for the maintenance of body homeostasis. 

Normal structure 

The oral cavity is lined by a stratified squamous epithelium. This type of epithelium is also 

present in the epidermis, the pharynx, eosophagus and a number of other body surfaces. In 

humans, the mucosa of the oral cavity is non-keratinised as well as keratinised. The latter is 

found on oral mucosal surfaces most exposed to masticatory forces, i.e. the hard palate, 

gingiva and tongue. In rodents the buccal epithelium and epithelium of other oral lining 

mucosa is orthokeratinised (Chen S Y and Squier CA 1984; Squier and Kremer 2001). 

The oral epithelium, like other epithelial tissues, is composed mainly of keratinocytes, 

matrices and junctions between these constituents. Some other cells, i.e. melanocytes and 

immunocompetent cells, also reside within the oral epithelium. 

Oral keratinocytes 

The keratinocytes are renewed by proliferation of immortal stem cells in the basal cell layer. 

The cells differentiate to mature keratinocytes higher up in the epithelium. The renewal rate of 

buccal mucosal epithelium has been estimated to 10-14 days in humans (Chen S Y and Squier 

CA 1984) and rats (Kärring and Loe 1972), which is slower than the single layer epithelium 

of the intestinal columnar epithelium, but faster than the keratinised epidermal stratified 

squamous epithelium of the skin. 

The oral keratinocytes were earlier thought to exert mainly passive barrier functions between 

the external environment and subepithelial tissues. Research in recent years has shown that 

the epithelial cells are actively involved in recognition of antigens, e.g. bacterial toxins, and 

signalling to underlying tissues as well as receiving signals from these tissues. Several 
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cytokines are involved in this process (Lourbakos et al. 2001; Miyauchi et al. 2001; Sandros 

et al. 2000). The cells also show selective permeability (Sloan et al. 1991). Gingival 

keratinocytes may be invaded by whole bacteria (Madianos et al. 1996). It cannot be ruled out 

that keratinocytes in other parts of the oral cavity, may also be invaded by bacteria. 

Matrices of the oral epithelium 

The intercellular substance, the matrix, is relatively sparse in the epithelium, compared to 

many other tissues. It plays a role in adhesion but also acts a lubricant, facilitating the sliding 

of cells past one another and as a medium that can regulate the diffusion of substances 

through the intercellular channels of the epithelium. The water-containing intercellular matrix 

can facilitate diffusion and selective binding of metabolites (Gerson S J and Harris RR 1984). 

Basal lamina 

The basal lamina underlies all epithelial cell sheets, separating epithelial cells from underlying 

connective tissues. It is composed of extracellular matrix materials including protein type IV 

collagen, which is synthesised by the epithelial cells. The basal lamina influences many 

functions, e.g. cell metabolism, differentiation and migrations. Substances moving from the 

connective tissue to the epithelium and vice versa must pass the basal lamina. Indeed, the 

basal lamina may serve as a rate-limiting barrier to some substances and endotoxins (Alfano 

et al. 1977; Alfano et al. 1975) and is thus important in the context of epithelial barrier 

functions. 

Cell junctions 

Epithelial cell adhesion molecules are involved in the adhesion between cells and between 

cell and matrix. Intact adhesion mechanisms are of crucial importance for the maintenance of 

epithelial barrier functions. Impairment may be detrimental for mucosal homeostasis. The cell 

junctions are of three kinds, anchoring junctions which mechanically attach cells (adherence 

junctions, desmosomes, hemidesmosomes), occluding junctions which seal cells together 

(tight junctions) and communicating junctions which mediate signals between adjacent cells. 

Some function of sealing both keratinised and nonkeratinised epithelial cells in oral 

epithelium may be done by intercellular material, derived from vesicles, the membrane-

coating granules of stratum granulosum (Chen and Squier 1984). 
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5-FU and oral epithelium 

In early studies it was noted that topical administration of 5-FU to skin created discontinuities 

in the basal lamina and widened intercellular spaces. Cell tonofilaments were reduced and 

condensed, and mitochondrial degeneration and irregularities in nucleoli were seen. Many 

degenerating keratinocytes detached (Hodge et al. 1975). Electron microscopy demonstrated 

cytoplasmic vacuoles and alterations in the mitochondria in the keratinocytes (Zelickson et al. 

1975). Other studies demonstrated that epidermal growth factor, a molecule known to 

stimulate epidermal cell division, increased oral mucosal breakdown during 5-FU therapy. 

The hypothesis was presented that the epithelial basal cell proliferation rate is one of the key 

elements in determining mucosal sensitivity to cancer chemotherapy (Sonis et al. 1992). 

Accordingly, the transforming growth factor-beta (TGF-beta) family of regulatory growth 

factors, which reversibly arrest cell division in t he G, phase of the cell cycle was shown to 

protect epithelial cells from cytotoxic damage by 5-FU in animal studies. TGF-beta also 

reduced the severity and duration of oral mucositis in animal studies (McCormack et al. 1997; 

Sonis et al. 1994). However, in a recent study, no advantage of TGF-beta3 treatment 

regarding the incidence of oral mucositis was seen in a group of patients on cancer 

chemotherapy (Foncuberta et al. 2001). 

After 5-FU treatment, large molecules have been shown to pass through the epithelium, 

implying that 5-FU may alter the epithelial barrier function. Interestingly, the number of low 

differentiated viable buccal cells, obtained by oral washings, increased after high-dose 

chemotherapy with 5-FU, implying that cells were easily detached (Wymenga et al. 1997). 

Some studies in recent years also involve cytokines in the search for effective treatments 

against mucositis (Sonis et al. 2000). 

It seems clear from these studies, that the oral epithelium is affected by 5-FU treatment. Since 

the oral epithelium is an important barrier function, cell death by 5-FU in the oral 

keratinocytes was studied in this thesis. 
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CELLULAR IMMUNE DEFENCE 

Normal structure 

The immune system protects the body from infection, foreign molecules and cancer, thereby 

constituting a major barrier function. The immune system has both non-specific and specific 

components, together making up the innate and adaptive immunity. The two systems operate 

in concert to defend the host. 

The cellular compartment of the immune defence comprises three main categories of bone 

marrow derived cells, the granulocytes (neutrophils, eosinophils, basophils and mast cells), 

the monocytes (macrophages and dendritic cells) and lymphocytes (T and B lymphocytes and 

natural killer (NK) cells) (Alberts et al. 1994). 

Cells of the innate immune system of the oral mucosa 

The innate immunity often provides the first reaction after an antigen challenge (Goldsby 

2000). Granulocytes, macrophages and NK cells are the major components, neutrophils and 

macrophages being the main professional phagocytes in the body. In the oral mucosa the 

neutrophils are rarely encountered in healthy oral mucosa. They circulate for only a few hours 

in the blood stream and survive for a couple of days after entering an insulted tissue. 

Macrophages are normally found in the mucosa and survive for a long time, even months, in 

the tissues. The macrophages are located in the lamina propria of the oral mucosa. 

In a study on inflammatory response, no significant numbers of NK cells were found in oral 

mucosa of rats (Matthews et al. 1986). 

Tissue mast cells are located in the deep lamina propria of oral mucosa, around blood vessels 

and salivary secretory ducts, in close association with nerve endings and between muscle 

fibers (Fortier et al. 1990). Mast cells may possibly have a lifespan as long as that of the 

animal itself, and may be able to regenerate granules after degranulation (Padawer 1974). 

Cells of the adaptive immune system in oral mucosa 

Dendritic cells (DC), called Langerhans cells (LC) in the ectodermal tissue of both oral 

mucosa and skin, T lymphocytes and B lymphocytes are all cells of the adaptive immune 

response. DC cells are found mainly in stratum basale of the epithelium and in the lamina 
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propria of the connective tissue. The half-life of DC has been reported to be somewhat 

different in different tissues, 2 days in airways, 7 days in lung parenchyma and 9 days in 

epidermis in mice (Ghaznawie et al. 1999b). There are also reports on a longer half-life, up to 

several months in human epidermis. 

The lymphocytes, which originate from the lymphoid stem cells, recycle between the lymph 

nodes, blood, tissues and lymph vessels and are found in large numbers in the lymph nodes. In 

the oral mucosa scattered T lymphocytes are found in the epithelium, otherwise mainly in the 

lamina propria, more prominently in the layer adjacent to the epithelium than in deeper layers 

(Lebendiger and Lehner 1981; Lundqvist and Hammarström 1993). B cells are seldom found 

in normal healthy oral mucosa. 

Cellular immunity of the dental pulp 

The dental pulp is a connective tissue structure enclosed and protected by rigid mineralised 

tissues with little exposure to bacterial challenges while the tooth structure remains intact. In 

the normal healthy dental pulp, subsets of both macrophages and dendritic MHC class II 

molecule expressing cells have been identified (Jontell et al. 1988; Okiji et al. 1992a; Okiji et 

al. 1992b). DC reside mainly in the periphery of the pulpal connective tissue but are also 

found scattered within the central portion of the pulp (Jontell et al. 1987). Studies indicate that 

macrophages on the other hand are evenly distributed within the pulp and that macrophages 

outnumber DC (Okiji 1992). In experimental pulpitis, MHC class II molecule expressing 

macrophages and DC rapidly increase following LPS challenge (Bergenholtz et al. 1991). A 

small number of T lymphocytes have also been observed. They represent both CD4+ TH cells 

and CD8+ CTL (Jontell et al. 1987; Hahn et al. 1989). The presence of B lymphocytes is 

controversial. According to Okiji it seems difficult to justify a significant role of B 

lymphocytes in the normal dental pulp, as it has only rarely been identified in this tissue 

(Hahn et al. 1989). 

Immune function of the cellular adaptive immune system 

Foreign antigens that are taken up by DC, are processed within the cell. An antigen that has 

been internalised is degraded into oligopeptides by an endocytic pathway. The peptides bind 

to class II molecules, derived from major histocompatibility complex (MHC) within the cell. 

When a peptid has bound to MHC class II, the complex is transported to the plasma 

membrane and expressed on the cell surface. Only professional antigen presenting cells, i.e. 
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DC and macrophages of the cellular immune defence (and the B lymphocytes of the humoral 

immune defence), are able to present antigens together with MHC class II molecules and also 

deliver the co-stimulatory signal necessary to activate CD4+ helper T lymphocytes (TH). After 

internalising foreign antigen, the DC migrate to regional lymph nodes for antigen presentation 

(Silberberg et al. 1989). During the migratory process they upregulate their synthesis of MHC 

class II molecules. The interaction between the processed antigenic peptide, bound to a MHC 

class II molecule on the surface of the dendritic cell, and a TH cell receptor (TCR)-CD3 

complex on the surface of the TH cells, together with the second, co-stimulatory, signal and 

other membrane molecules, activate the TH. This will start a cascade of biochemical events. 

Activation leads to proliferation and differentiation and further stimulation of 

immunocompetent cells to exert barrier functions of the immune defence. 

In contrast to exogenous antigen, processed and presented by an endocytic processing 

pathway and presented together with MHC class II, endogenous antigens are degraded within 

the cytoplasm into peptides that can bind to MHC class I molecules. Virtually all cells in the 

body express MHC class I. CTL can bind via its T cell receptor (TCR) to MHC class I 

molecules that are presenting an antigen, and induce apoptosis. 

Lymph nodes 

Lymph nodes are encapsulated structures specialised for trapping antigen from local tissues. 

The lymph nodes contain a network, packed with T and B lymphocytes, macrophages and 

DC. Antigens may be carried into the regional lymph nodes by the lymph. An antigen that is 

brought in with the lymph, will be trapped by a cellular network of phagocytic cells and 

dendritic cells. Other antigens will be captured out in the peripheral tissues of the body at the 

site of entrance by DC, be processed by the DC, which will in turn migrate through the 

lymphatics to the regional lymph nodes. 

The cervical lymph nodes, used throughout the works of this thesis, were the mandibular 

lymph nodes of the rat. These lymph nodes drain the oral cavity, tongue included, salivary 

glands, external ear and rostral head region (Komarék V. et al. 2000). The mesenteric lymph 

nodes, which were used in these studies, drain the distal duodenum, ileum, cecum and 

proximal colon (Komarék V. et al. 2000; Gautreaux et al. 1994). 
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5-FU and the immune defence 

5-FU exerts toxic effects on bone marrow cells, causing myelosuppression and 

granulocyopenia as an adverse effect to treatment (Harrison et al. 1978; Vetvicka et al. 1990). 

The 5-FU effects on cells of the immune system are also illustrated by the loss in spleen 

weight in 5-FU treated animals (Carlsson et al. 1995; Ohta et al. 1980). 5-FU has also been 

shown to negatively influence the antigen-presenting capacity of spleen cells in mice (Nakano 

et al. 1991). Studies on 5-FU effects on macrophages have shown that the drug appears to 

inhibit immature macrophage, but not mature effector cells (Athlin and Domellof 1987; 

Connolly et al. 1983; Vetvicka et al. 1990). In an early study B and T cell lines both showed 

sensitivity to 5-FU, B cells more than T cells (Ohnuma et al. 1978). 

Thus, 5-FU influences several immunocompetent cells. Oral mucositis, induced by 5-

FU, most likely at some stage involves immunocompetent cells and cytokines. Yet, 

current knowledge is incomplete on the effects of 5-FU on immunocompetent cells of 

the oral mucosa. Since immunocompetent cells of the oral mucosa exert major barrier 

functions against tissue damage and invading pathogens, knowledge is warranted on 

how these cells are affected. 

MICROFLORA 

Body homeostasis requires an internal environment free from bacteria and a balanced 

microflora in organs in direct contact with the external environment, e.g. the alimentary tract. 

The ability of the microflora to maintain stability in the oropharyngeal and gastrointestinal 

tract constitutes an important barrier function. 

Normal conditions in the oral cavity and intestine 

Bacteria 

The oral cavity, with its moist environment, rich in nutrients from ingested food and salivary 

components, harbours an abundant indigenous microflora. There are four major ecosystems in 

the mouth, the buccal mucosa, the dorsum of the tongue, the supragingival tooth surface and 
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the crevice area (Schonfeld 1992). Also the intestine harbours an abundant indigenous flora, 

where the colon is the site, most rich in micro-organisms with 400-500 species (Berg 1996). 

Oral bacteria are mainly facultative anaerobes, both in humans and rats. Buccal mucosa and 

other oral lining mucosa harbour mostly gram-positive cocci, mainly Streptococcus spp 

(Schonfeld 1992). Lactobacilli are sparse in healthy humans (Marsh and Martin 1999). The 

tongue, with its papillary surface, harbours more bacteria per epithelial cell than other oral 

mucosal surfaces (Marsh and Martin 1999). Also on the tongue Streptococcus spp dominate 

the flora, however less pronounced, compared to the buccal mucosa. Some obligate 

anaerobes are found on the tongue. 

In the upper small intestine the main types of bacteria are acid-tolerant lactobacilli and 

streptococci. The large intestine is inhabited mainly by obligate anaerobes, 100-1000-fold 

more numerous than facultative anaerobes (Berg 1996). 

Bacterial translocation 

Bacterial translocation has been defined by Berg and Garlington 1979 (Berg and Garlington 

1979) as the passage of viable bacteria from the gastrointestinal tract through the epithelial 

mucosa into the lamina propria and to the mesenteric lymph nodes and other tissues. There 

have been suggestions to extend the definition to nonviable bacteria and microbial products 

such as endotoxins (Alexander 1990). 

A low degree of translocation may possibly occur under normal conditions. The presence of 

indigenous translocating bacteria in low numbers to the lamina propria and mesenteric lymph 

nodes has been suggested to be a normal beneficial mechanism for stimulating the host 

immune system to respond more quickly to exogenous pathogens (Berg 1996). 

Translocation has been shown to increase by physical disruption of the intestinal epithelium, 

compromised immune system and bacterial overgrowth (Berg et al. 1988). Enterobacteria like 

E. coli and enterococci have a transmucosal route of translocation (Alexander et al. 1990) and 

bacteremia caused by gram-negative bacteria from the gastrointestinal tract may occur 

(Kreger et al. 1980a; Kreger et al. 1980b). Some studies have examined how microbes pass 

through the intestinal epithelial barrier. In an experimental study of burn injuries, Candida 

spp. and E. coli passed through the enterocytes in the ileum and not between the cells, to the 
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lamina propria (Alexander et al. 1990). Some bacteria seem to translocate easier than others. 

Hence, Berg found that indigenous gram-negative enteric bacteria translocated in large 

numbers, gram-positive bacteria at intermediate levels and obligate anaerobes translocated at 

only very low levels (Steffen et al. 1988). 

Translocation of bacteria has been shown to occur with similar intensity throughout the gut, 

however more bacteria were shown to be killed in the process of translocation across the 

lower part of the intestinal tract (Fukushima et al. 1994). The path for bacteria to the different 

parts of the mesenteric lymph nodes can be related to their population levels in the regions of 

the gastrointestinal tract, that provide lymph to the various lymph node segments (Gautreaux 

et al. 1994). E. coli, for example, was most frequent in ascending colon, cecum and distal 

ileum, less frequent in proximal ileum and least frequent in jejunum (Steffen and Berg 1983). 

The oral cavity as a source for bacterial dissemination 

The oral cavity has for many years been considered as a source for bacterial dissemination. 

Bacteria from the oral cavity have been identified in the blood (bacteremia), e.g. in patients 

after dental procedures (Daly et al. 2001; Hall et al. 1996) and in bone marrow transplanted 

patients treated with methotrexate (Heimdahl et al. 1989). 

The proposed theory in this thesis of the cervical lymph nodes as a bacterial dissemination 

pathway after 5-FU treatment is supported by knowledge on lymph drainage. Furthermore, in 

a recent clinical study bacteria were found in neck regional lymph nodes from patients with 

oral carcinoma (Sakamoto et al. 1999). 

Probiotic bacteria 

A probiotic substance is a live microbial feed supplement, which affects the host animal by 

improving its intestinal microbial balance (Fuller and Berg 1985). Lactic acid producing 

bacteria, such as lactobacilli, have such properties. Some studies have shown, that bacterial 

overgrowth in the intestine, and translocation from the gastrointestinal tract to the mesenteric 

lymph nodes, could be hampered by supplying the gastrointestinal tract with probiotic 

bacteria. These bacteria may suppress the growth of potential pathogens. Lactobacillus 

plantarum constitutes a large part of Lactobacillus spp of human gut (Ahrne et al. 1998). 
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The strain L. plantarum. 299v was originally isolated from human intestine (Molin et al. 

1993). The strain has been shown to have the capacity to colonise rat intestine (Herias et al. 

1999). It has probiotic properties. Fed to rats treated with the anticancer drug methotrexate, it 

decreased translocation initiated by methotrexate treatment (Mao et al. 1996). 

5-FU and the microflora 

5-FU treatment may disturb the gastrointestinal microflora (Nomoto and Yokokura 1992). 

Microbial distortions in the intestine in connection with 5-FU treatment have been shown to 

cause bacterial spread to mesenteric lymph nodes and disseminated infections (Deng et al. 

1999; Nomoto et al. 1991; Sandovsky-Losica et al. 1992). Nonspecific immunostimulation 

augments host resistance against the lethal toxicity of 5-FU in tumour-bearing mice by 

intravenous administration of a preparation of heat-killed Lactobacillus casei (Nomoto and 

Yokokura 1992). 

Thorough knowledge of bacterial disturbances by 5-FU in the oral cavity is lacking. There 

seems however to be a bacterial component in oral mucositis during 5-FU treatment, as shown 

by a decreased mucositis in 5-FU treated hamsters, that received antibacterial treatment 

(Loury et al. 1999). Despite an intensive discussion on the oral cavity as a source for 

bacteremia and infections, the cervical lymph nodes as a dissemination pathway for bacteria 

from the oral cavity has not received adequate attention. 
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MATERIAL AND METHODS 

The protocols for animal experiments carried out within the framework of this thesis were 

approved by the Animal Ethics Committee in Göteborg, Sweden or by the Otago University 

Animal Ethics Committee in Dunedin, New Zealand. 

Animals (I-IV) 

Inbred female Lewis rats, 175-200 g, were used for the functional studies on T cell 

proliferation (III), since cells from several animals have to be pooled to reach a satisfactory 

number for each experiment. This requires cells from immunologically identical animals. For 

reasons of uniformity, the same breed was used throughout the works of this thesis. Before 

and after injection periods each animal was consistantly weighed. 

5-Fluorouracil injections (I-IV) 

The rats were given bolus injections of 5-FU in the tail vein. Injections were given at 30 

mg/kg (II, III) or 50 mg/kg (I-IV) for one or three consecutive days (I) or on days 0, 1, 2, 5, 6 

and 7 (II-IV). The animals were killed at different time intervals after the last injection by 

carbon dioxide inhalation followed by cervical dislocation. 

Probiotic bacterial treatment (IV) 

L. plantarum 299v was tested for resistance to 5-FU. Ten pi of 5-FU 50 mg/ml was applied to 

paper discs on blood agar plates spread with L. plantarum 299v and incubated aerobically for 

48 hours. L. plantarum 299v showed resistance to 5-FU and was therefore added to the 

drinking water to the animals in one experiment, to investigate its capacity to restrain bacterial 

overgrowth during treatment with 5-FU. 

For this purpose L. plantarum 299v was cultured aerobically on Rogosa agar medium at 37°C 

for 48 h, harvested in tap water and adjusted to a concentration of 109/ml as determined by 

optical density. In one experiment fresh bacterial suspensions were administered to the rats 

each day during the experimental period, starting three days before 5-FU injections. L. 

plantarum express a mannose-specific adhesin, which mediates binding to intestinal epithelial 

cells and contributes to the colonising capacity of the bacteria. This adhesin also agglutinates 

to yeast cells. The L. plantarum 299v cultures were tested each day for their ability to 
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agglutinate the yeast Saccharomyces cerevisiae. L. plantarum 299v mutated strain, not 

expressing the adhesin, was used as a negative control. 

Tissue sampling (I-IV) 

After the animals were killed the following tissues were collected. 

Blood samples were collected after cardiac puncture and transferred to EDTA-containing vials 

(ID-

Buccal mucosa was dissected and freed from muscle layers (I-IV) 

Cervical (submandibular) and mesenteric lymph nodes were carefully dissected aseptically 

(III-IV) 

Spleens were extirpated in one experiment, and the wet weights of the spleens were registered 

(unpublished data). 

Tongue samples were taken by cutting the tip of the tongue, 5 mm of lenght. The method was 

evaluated by weighing the pieces. The method proved satisfactory reproducibility (IV). 

Dental pulps were removed with a fine forcepts from maxillary incisors that had been 

carefully extracted and split open (II, III). 

Intestinal content (7 pi) was collected half way between the lower gastric sphincter and the 

cecum and from the proximal part of the colon, by calibrated stainless steel spoons (Jordan et 

al. 1968) (IV). 

Blood cell counts (II) 

Blood samples for determination of leukocyte count, differential counts, haemoglobin and 

platelet count, were collected by cardiac puncture immediately after the animals were killed. 

Determination was performed to evaluate the influence of the 5-FU dosages on bone marrow 

derived cells in blood circulation. 

High-performance liquid chromatography (HPLC) for determination of 5-FU plasma 

levels 

Quantitative determination to establish 5-FU plasma levels in 30 mg/kg (n=5) and 50 mg/kg 

(n=5) 5-FU injected animals was performed. Two animals were used as controls. The animals 

were sacrificed in conjunction with the last injection and the thorax was cut open. Cardiac 

blood samples were taken 5 min after the 5-FU injection and transferred to heparin-containing 

vials. 5-FU plasma concentrations were determined by HPLC (unpublished data). 
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Diarrhoea (IV) 

Diarrhoea has been defined as an increase in frequency of stools and in water content of t he 

stool (Jeejeebhoy 1977). The water content of the intestinal lumenal content was estimated as 

an indicator of the likelihood of diarrhoea. 15 pi of intestinal content was placed on a filter 

paper and the diameter of the wet zone created around the probe was measured in a blinded 

way and was used as the measurement. 

Cell death detection (I) 

From untreated controls and 5-FU treated animals paraffin- or resin embedded buccal 

epithelium and buccal epithelial cellsuspensions were analysed according to the methods 

described in Table 1. 

Table 1. Methods used for cell death analyses 

Analysis Method Description Aim Source 

(i) Cell sorting Flow cytometry (fluore- Analysis of the light signals Discriminate FACScan; 
scence-activated 
sorting-FACS) 

cell from particles flowing in a 
stream past a focused light 
beam 

between cells Becton-
according to cell Dickinson 
size and 
granularity 
(Dive et al. 
1992) 

(ii) Cell staining Vital dye (Trypan Blue) 
exclusion test and cell 
counting using a light 
microscope 

Discriminate 
between live and 
dead cells 

Discrimination of viable 
(intact plasma membrane) 
and dead (damaged plasma 
membrane) cells. Cells with 
disturbed plasma membrane 
permeability stain blue, 
undamaged (viable) cells 
appear translucent 

(iii) Immunohisto- Terminal deoxynucleotidyl Nucleotide that binds to DNA Detect and 
chemistry 

Boehringer 
transferase (TdT) mediated strand breaks was added to estimate number Mannheim 
dUTP-biotin nick en 
labeling (TUNEL) method 
with peroxidase staining 

sections of paraffin-
embedded buccal mucosa. 
Adjustments of the 
manufacturer protocol was 
done to overcome problems 
of overstating 

of cells with 
apoptotic DNA 
fragmentation 
(Gavrieli et al. 
1992) 

(iv) Ultrastructural Transmission electron 
analysis microscopy (TEM) 

Analysis of cell and tissue 
morphology in ultrathin 
sections (70 nm) 

Visualise Zeiss CEM 
structural 902 
changes in the electron 
cells microscope 
(Kerr 1972) 
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Estimation of cell numbers by stereology (I) 

A stereological technique (Gundersen 1986) for quantifying biological structures was used to 

estimate the number of nuclei with DNA strand breaks and the total number of nuclei, i.e. the 

number of cells, per volume of tissue in the basal cell layer of paraffin embedded buccal 

epithelium. Five pairs of adjacent sections, randomly selected, were examined using a light 

microscope with an attached colour video camera connected to a computer. A systematic 

random sampling technique was applied to select the same field under the microscope in both 

sections of each pair. The images were saved onto the computer, printed and used for 

counting. The disector principle (Gundersen 1986) was applied for counting. Three counting 

frames of the same size were placed in a standardised manner on each image, covering areas 

of basal cell layer. The same areas were covered in both images of a pair. Only nuclei that 

were not intersected in both sections of a pair were counted. The mean number of stained cells 

and the mean total number of cells per volume of tissue was calculated as described in paper 

I, giving the mean number per volume of basal cell layer. 

Identification of immunocompetent cells by immunohistochemistry (II) 

DC, macrophages and T lymphocytes were identified by cell surface markers. 

Immunohistochemical studies, using monoclonal antibodies against the cell surface markers, 

were performed on frozen tissue sections of buccal mucosa and dental pulp. LC of the buccal 

epithelium and DC of the lamina propria and dental pulp were identified by a mouse 

monoclonal IgG anti-rat MHC class II (OX-6). Macrophages were identified by mouse 

monoclonal IgG anti-rat ED2-like molecule (HIS36). HIS36 reacts with an ED2-like antigen, 

which is found on tissue and exudate macrophages (Yamin et al. 1990). T lymphocytes were 

labeled using a mouse monoclonal IgG anti-rat CD2 that binds to CD2 molecules on 

peripheral T cells. CD2 is expressed on both CTL and TH as well as on NK cells. A secondary 

antibody and peroxidas staining was used to visualise the cells using a light microscope. The 

stained cells were counted on projected images (epithelium) or using an ocular grid to define 

consecutive fields o f the sections. 

The LC of the buccal epithelium were also visualised and counted in epithelial sheets, after 

labelling of MHC class II molecule expressing cells with fluorescein isothyocyanate (FITC)-

conjugated OX-6. A light microscope with a fluorescent illuminator was used and photos of 

three cell-rich areas from each sheet were taken, blinded and analysed for numbers of stained 

cells. 
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Identification of MHC class II expressing cells by flow cytometry (FACS) (II) 

The MHC class II expressing cells of the buccal epithelium were also identified by flow 

cytometry. Epithelial cell suspensions were prepared as described in paper II. The cell 

suspensions were incubated with FITC-conjugated OX-6. MHC class II molecule expressing 

cells were identified and counted by flow cytometry (FACSCan; Becton Dickinson). 

Immunofunctional assay (III) 

For immunofunctional assays, suspensions of pooled buccal epithelial cells or pulpal cells, 

including MHC class II molecule expressing cells, were prepared from up to 15 rats for each 

suspension. Suspensions from untreated control animals and 5-FU treated animals were 

prepared. Suspensions of T lymphocytes were prepared from lymph nodes of untreated rats. 

The T lymphocytes were extracted by negative selection, using mouse monoclonal IgG anti-

rat MHC class II molecule (OX-6) and goat anti-mouse IgG conjugated immunomagnetic 

beeds to remove MHC class II molecule expressing cells, the macrophages, DC and B-

lymphocytes. An additional technique using nylon wool columns to remove B-lymphocytes 

was used in one experiment. The epithelial cell suspensions from untreated or 5-FU treated 

animals were incubated together with T cell suspensions from lymph nodes of untreated 

animals. Concanavalin A (ConA) was added to stimulate T cell proliferation. [3H]-thymidine 

was added following 48 h of incubation. The capacity of MHC class II molecule expressing 

cells of the epithelial or pulpal cell suspensions to provide accessory signals for T cell 

proliferation was evaluated by measuring [3H]-thymidine uptake in T cells after an additional 

24 h, as a measure of proliferation. 

The T cell suspensions were checked for purity from MHC class II molecule expressing cells 

on day 1 and 3 by adding FITC conjugated OX-6 to the suspensions and analysing by flow 

cytometry. The purification of the T cell suspensions was also checked by adding ConA and 

[3H]-thymidine, but no MHC class II molecule expressing cells, and measuring T cell uptake 

of [3H]-thymidine. The values are expected to be very low in both cases. 

In a complementary in vitro study, CD4+ and CD8+ T lymphocytes from lymph nodes were 

analysed for sensitivity to 5-FU (unpublished data). Suspensions of T lymphocytes from 

lymph nodes of untreated rats were prepared. 5-FU in a concentration of 150 (ig/ml was added 

and the cellsuspensions were incubated for 12 h in 37°C. T cell suspensions without 5-FU 
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were incubated as controls. A Ficoll-Paque density gradient centrifugation was performed to 

remove dead cell. The cell suspensions were incubated with a mouse monoclonal IgG anti-rat 

CD4 (clone W3/25; Serotec, Oxford, UK) or a mouse monoclonal IgG anti-rat CD8 (clone 

MRC OX-8; Serotec, Oxford, UK). A phycoerythrin(RPE)-conjugated secondary rabbit 

monoclonal IgG anti-mouse (DAKO A/S, Glostrup, Denmark) was added and flow cytometric 

analysis was performed. The proportions of CD4+ and CD8* cells in the cell suspensions were 

estimated. 

Bacterial levels in the oropharyngeal and gastrointestinal tract and lymph nodes (IV) 

Oral biopsies (tongue, buccal mucosa), samples of small intestinal and colonic lumenal 

content and lymph node homogenates were incubated for 2 days aerobically and for 5 days in 

95% hydrogen and 5% carbon dioxide on blood agar plates. Rogosa agar culturing was done 

for 2-3 days in 90% nitrogen and 10% carbon dioxide, for identification of Lactobacillus spp. 

Colonies with different morphological appearances from aerobically incubated blood agar 

plates and Rogosa agar were grouped according to gram-staining appearance. Lymph node 

homogenates were also cultured aerobically overnight on Drigalski agar for the identification 

of enterobacteria. 

Statistical analyses (I-IV) 

Parametric and non-parametric methods were used for statistical analyses using the 

computorised StatView program (SAS Institute Inc. North Carolina). Percentages and log data 

were evaluated using Student's t test for unpaired data (II, IV) or matched paired data (III). 

Statistical tests for differences in the number of keratinocytes between groups were performed 

according to Kruskal-Wallis and Mann-Whitney U tests (I). Bacterial translocation data were 

analysed by Mann-Whitney U test (IV). Kappa statistics was used to test reliability of the 

scoring when estimation of cell number by stereology was performed (I). 
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RESULTS AND DISCUSSION 

THE ANIMAL MODEL (I-IV) 

5-FU serum concentrations in the Lewis rats after the doses used in these studies (30 mg/kg 

and 50 mg/kg i.v. bolus injections) are shown in Fig. 1. 
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Fig. 1. Serum concentrations of 5-fluorouracil (5-FU), 
5 min after bolus injection 

WBC counts decreased significantly as expected after both low and high doses of 5-FU 

treatment, and virtually all granulocytes disappeared (II). 

30 mg/kg 5-FU treated animals lost a mean of 5.2% of their body weight during the 

experimental period, pcO.OOOl. 50 mg/kg 5-FU treated animals had a body weight loss of 

18.2% (S.D. 3.4), /xO.OOOl. The weight of the control animals slightly increased during the 

experimental period, a weight gain of 6.1% (2.9) was noted, p<0.001. 

Spleen weights of untreated animals had a mean weight of 0.51 (0.03) g. In 30 mg/kg 5-FU 

treated rats, the spleen weights had decreased to 0.37 (0.04) g, /;<0.0001, and in 50 mg/kg 5-

FU animals to 0.24 (0.04) g,p<0.00\. 

The 5-FU serum concentrations in the rats were in the range of what can be found in humans 

after 5-FU treatment, given as a bolus injection. (Heggie et al. 1987; MacMillan et al. 1978). 
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The effects of 5-FIJ on WBC, rat body weights and spleen weights were in the same range as 

those registered in earlier 5-FU studies on rats that showed antitumour effects (Carlsson et al. 

1995). It has been shown that after i.v. administration of 5-FU, the drug and metabolites are 

found in tumours, intestinal mucosa, bone marrow and liver in both humans and rats (Liss and 

Chadwick 1974). In summary, the data indicate that the rat model used throughout this thesis 

was adequate for the investigations. 

ORAL EPITHELIAL BARRIER FUNCTION 

Cell death in oral keratinocytes (I) 

(i) Cells shrink and increase their granularity during programmed cell death, while during 

necrosis, cell swelling and loss of granularity occurs (for review see Cohen 1999; McConkey 

1998). 

The flow cytometry of oral epithelial cell suspensions revealed an increased number of small 

and granulated keratinocytes with increasing 5-FU doses, compared to cells from untreated 

animals (I, Fig 4.) (Tounekti et al. 1995). 

These initial findings suggested that the oral keratinocytes had entered a programmed cell 

death pathway after the 5-FU treatment regimes, used in this study. 

Exploring the theory of an apoptotic cell death in the keratinocytes further, gave the following 

results. 

(ii) The cells kept their cell membrane integrity. This is a sign of apoptosis, since during 

apoptosis cells maintain their cell membrane integrity, while upon necrosis they lose cell 

membrane integrity. 

(iii) The biochemical hallmark of apoptosis is degradation of the genomic DNA from 

activation of nuclear endonuclease. This enzyme cleaves DNA between nucleosomal units, 

generating oligonucleosomal DNA fragments of 180-200 bp. Agarose gel electrophoresis is a 

reliable method for identifying apoptotic cells in cell suspensions since DNA fragments create 
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a distinct ladder pattern upon electrophoresis. Necrotic cells are revealed in agarose gel 

electrophoresis as a smear. However, cell suspensions from oral epithelium takes more than 

two hours to prepare, which may be a time lapse, long enough to possibly skew the results. 

Therefore the terminal deoxynucleodidyl transferase (TdT)-mediated deoxyuridine 

triphophate (dUTP)-biotin nick end labeling (TUNEL) method (Gavrieli et al. 1992) on tissue 

sections was used. By this method DNA strand breaks are labeled. 

Increasing numbers of keratinocytes with labeled DNA strand breaks were identified in the 

buccal epithelium of 5-FU treated animals, compared to controls. Hence, also these results 

were consistent with the theory of apoptosis. Yet, the results of end-labelling studies 

(TUNEL) are to be interpreted with caution, as some DNA strand breaks also in necrotic cells 

may be labeled, producing false-positive results (Grasl-Kraupp et al. 1995). Confirmation of 

the results has therefore been advocated. 

(iv) Morphological assessment by ultrastructural analysis is an irrefutable means of 

identification of apoptosis (Cummings et al. 1997). By transmission electron microscopy 

(TEM) apoptotic cells appear with chromatin condensed as crescents around the nuclear 

envelope and apoptotic bodies can easily be identified. Necrotic cells are identified by cell 

membrane loss, and low cytocolic density. In the present ultrastructural analysis neither signs 

of necrosis, nor chromatin condensation around the nuclear envelope or apoptotic bodies were 

seen. Since chromatin condensation and apoptotic bodies are structural hallmarks of 

apoptosis, the assessment of the death process in the keratinocytes did not support the full 

range of features attributed to apoptosis. 

The cells showed prominent cytoplasmic vacuoles. The morphological changes were seen in 

the cell layers closest to the basal lamina. The vacuoles were present in the perinuclear 

cytoplasm and progressed towards the perifery, with increasing exposure to 5-FU. When 

chromatin condensation was seen, it was confined to the central parts of the nuclei. The 

desmosomes could be seen, but the distances between them were larger in 5-FU treated 

animals than in untreated controls. The junctional complexes seemed to be lost to some 

extent. The keratinocytes in the basal cell layers were shrunk and the intercellular spaces 

widened. These findings, together with the other findings, are consistent with autophagic 

degeneration (Clarke 1990). Hence, it was concluded that the alterations in keratinocytes were 

compatible with autophagic degeneration. 
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Cell numbers by stereology 

The cells of the basal cell layer of rat buccal epithelium have been estimated to have an 

average volume of 600 |_im\ which increases 30-fold by the time the cells reach the granular 

layer (Meyer et al. 1970). The results, when using the stereology method (I), were well in 

accordance with these estimates. In untreated control animals there were 1.25 cells per 1000 

pm3 of epithelium in the basal cell layer, in other words one cell per 800 (im3. 

Autophagic degeneration by 5-FU 

The results of this study, featuring autophagic degeneration in the keratinocytes, were 

somewhat surprising since many studies on 5-FU report an apoptotic mode of cell death in 

different tissues (Inada et al. 1997; Lee 1993; Sakaguchi et al. 1994; Tong et al. Oncol 2000). 

In a recent in vitro study, however both apoptosis, necrosis and a third, mixed form was seen 

(Matsuo et al. 2001). A feature of cell death by apoptosis is the involvement of caspases. It 

has been proposed that cells, in which caspases are blocked, will die even though they do not 

acquire apoptotic morphology. These cells show features of autophagic degeneration. It is 

suggested that in these cells, lysosomal and other proteases are activated. In the study by 

Kitanaka it was proposed that autophagic degeneration does not involve caspase 3, the most 

central of the caspases (Kitanaka and Kuchino 1999). The level of active caspase 3 in our 

model system needs further investigation. 

The p53 protein, involved in cell-cycle control and DNA repair, exerts its functions in the gap 

1 (G,) cell-cycle checkpoint, participating in preventing a cell with distorted DNA from 

progressing from G, to the synthesis (S) phase. P53 is expressed in very small amounts in 

cells under normal conditions. It is activated in response to DNA damage. The p53 protein 

contributes to the induction of apoptosis by 5-FU (Yukimoto et al. 2001), other cytotoxic 

drugs and irradiation (Patel et al. 2000). It has been reported that p53 may be crucial for 5-FU 

induced cell death (Benhattar et al. 1996). However, recently it was shown that other factors 

may act independently of p53 in inducing cell death by 5-FU (Mirjolet et al. 2000). This 

finding may imply another route for cell death by 5-FU, possibly in line with the present 

findings. 
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The results of autophagic degeneration in oral keratinocytes after 5-FU in vivo treatment were 

new. Further studies may clarify the fate of oral kerationocytes after 5-FU treatment and if 

p53 and caspase 3 are activated in the rat oral keratinocytes. 

Inflammation 

Autophagic degeneration is not a fully defined type of cell death. The studies in this thesis did 

not clarify if, at the end of the cell death process, the affected cells from 5-FU treated rats 

would be lysed, as in necrosis, or phagocytosed with intact cell membranes as in apoptosis. 

Even though the keratinocytes seemed to enter a programmed cell death pathway, sharing 

many features with apoptosis, it cannot be ruled out that the final phase may be necrotic. 

Autophagic degeneration has been suggested to be classified under necrosis, although the 

initial phases are considered as programmed cell death. In necrotic cells, the loss of plasma 

membrane integrity results in release of intracellular debris in the tissues, which in turn will 

elicit an inflammatory reaction. 

When scattered cells die by apoptosis, the apoptotic bodies are phagocytosed by macrophages 

or neighbouring cells before plasma membrane integrity is lost (Savill et al. 1993), without 

eliciting an inflammatory reaction. However, this well-established theory has recently been 

challenged in a study in which macrophages produced pro-inflammatory cytokines after 

phagocytosis of apoptotic bodies (Kurosaka et al. 2001). If the final phase is apoptotic, the 

large quantity of contiguous cells that may be involved, may still preclude the possibility of 

phagocytosis, since there will not be enough neighbouring cells for phagocytosis. Then it is 

not unrealistic to propose that an inflammatory reaction may still occur and a mucositis may 

be elicited. 

LOCAL IMMUNE DEFENCE 

Dendritic cells (II, III) 

A reduction of the number of MHC class II molecule expressing cells with dendritic 

appearance was seen in the epithelium and lamina propria of the buccal mucosa, as well as in 

the dental pulp. In the epithelium the decrease was seen only at high dose of 5-FU (II). The 

dendrites of the Langerhans cells of the buccal epithelium showed progressive degenerative 

features with increasing doses of 5-FU (II). 
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The. functional capacity of accessory cells of both the buccal epithelium and the dental pulp to 

induce a ConA stimulated T cell proliferation was reduced after 5-FU treatment. The 

accessory capacity of the epithelial cells was reduced only after high dose of 5-FU treatment 

while in the dental pulp it was attenuated even after low dose treatment (III). The accessory 

function of epithelial or pulpal cell suspensions is carried out by MHC class II molecule 

expressing cells of these tissues. In the epithelium keratinocytes have been reported to be able 

to express MHC class II molecules under certain conditions. However, the cells in the 

epithelium, which were positive for MHC class II after immunohistochemical staining, 

showed a typical dendritic appearance in both untreated and 5-FU treated rats and were 

considered to be LC (II). Since macrophages are reported to outnumber DC in the dental pulp, 

it can not be ruled out that some of the accessory function performed by pulpal cells was 

carried out by macrophages. However, since the macrophages did not decrease in number in 

the pulp, these cells seemed to be less sensitive to 5-FU. Some of the accessory capacity could 

still have been affected. 

The findings in these studies suggest that the MHC class II molecule expressing DC were 

affected by 5-FU, both in numbers and function. A local immunosuppression of the immune 

response of DC thus seemed to be in effect. It must be born in mind that the observed 

decrease may represent a decrease in actual number of cells, or a decrease in MHC class II 

molecule expression on the cells, or both. 

Decrease in the number of MHC class II cells (II, III) 

If a decrease in the actual number of cells occured in 5-FU treated animals, it is reasonable to 

assume that this mirrored a decreased supply of new DC from the bone marrow, since DC are 

bone marrow derived cells. The disappearance of cells from the tissues could theoretically be 

an effect of 5-FU on proliferating DC in the periphery. However, there is little evidence for 

DC peripheral division within the tissues. In a recent study, after an induced epidermal heat 

injury with total depletion of LC in mice, repopulation occurred from the circulation and 

increased dramatically after 5-7 days and reached normal density 11 days after injury 

(Ghaznawie et al. 1999a). No mitotic activity in the LC was registered in the peripheral tissue. 

Data thus suggested that the disappearance of DC from the tissues be due to senescence and 

apoptosis or evacuation of cells from the tissues to the lymph nodes. With an estimated 

turnover rate of 2-9 days it is reasonable to assume that the decrease in t he number of DC 9 
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days after start of 5-FU treatment in the present study would, to some extent, be attributed to a 

decreased supply of these cells from the bone marrow. 

Decrease in MHC class II molecule expression (II, III) 

However, it can not be ruled out that a decrease of MHC class II molecule expression on 

remaining DC also occurred. This is supported by the findings that a suspension of lymph 

node cells from 5-FU treated rats, depleted of MHC class II expressing cells, after 3 days in 

culture contained some cells which displayed MHC class II molecules and a T cell 

proliferation was initiated (III). This would not be expected. In this experiment depletion of 

DC may not have been successful if there were DC in the initial cell suspension with a 

debilitated capacity to express MHC class II molecules, caused by 5-FU. 5-FU affects RNA 

and protein synthesis. It is tempting to speculate that MHC class II molecules, being 

glycoproteins, were affected by this 5-FU effect. 

Decrease in function (III) 

The impaired accessory capacity of the cells in epithelial (50 mg/kg 5-FU) or pulpal (30 

mg/kg50; mg/kg 5-FU) cell suspensions to induce T cell proliferation (III) could reflect the 

combined effects of decrease in MHC class II molecule expressing cells, (whether by a 

decreased cell number or a decreased MHC class II expression) and an impaired capability of 

existing MHC class II molecules to function adequately. Increasing the number of epithelial 

cells from 5-FU treated rats in the cell suspensions did not restore the T cell proliferation (III). 

This may indicate that the function of MHC class II molecule expressing cells was debilitated 

after 50 mg/kg 5-FU treatment. 

There was a difference in the accessory capacity between epithelial cells and pulpal cells, 

obtained from 30 mg /kg 5-FU treated rats (III). The number of LC also remained unchanged 

in the epithelium of 30 mg/kg 5-FU rats but not in the connective tissue and not in the dental 

pulp (II). These findings could possibly reflect an upgrading of LC capacity in the epithelium, 

related to an increased antigen exposure from the oral cavity in 5-FU treated rats. An elevated 

antigenic load of the oral epithelium compared to the dental pulp, with upregulated MHC 

class II molecule expression and cytokine expression, may explain the differences in capacity 

of accessory cells of the buccal epithelium and dental pulp to induce T cell proliferation in 30 

mg/kg 5-FU rats. 
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At 50 mg/kg 5-FU, stimulation by an even higher bacterial load and further destruction of 

keratinocytes would most likely still not result in upregulated function of the DC, since the 

effect of the higher dose of 5-FU will have a detrimental effect on DC. 

Degenerative features ofLC (II) 

The dendrites of the LC of the buccal epithelium showed progressive degenerative dendritic 

features after 8 days with increasing doses of 5-FU, adding to the picture of debilitated LC 

(II). These LC in the epithelium after 8 days of 5-FU high dose treatment could be remaining 

surviving cells. Despite short supply of bone marrow derived immunocompetent cells, they 

could also be some newly arrived LC, trying to develop to fully mature LC. 

T lymphocytes (II) 

CD2 positive cells (T H ,  C T L  a n d  N K  c e l l s )  decreased in number in the epithelium and in the 

lamina propria of the buccal mucosa and in the dental pulp, both at low and high dose (II). 

The proportions of CD4/CD8 expressing cells, 75%/25%, in cell suspensions from the lymph 

nodes of control rats did not change after 5-FU treatment. From this observation it is 

concluded that there was no difference in sensitivity to 5-FU in these clones. 

Macrophages (II) 

ED2, a specific marker for macrophages, was used to identify these cells (Dijkstra et al. 

1985). Macrophages of the dental pulp were not affected while the mucosal connective tissue 

macrophages showed a decrease in number. This may be attributed to différenciés in the 

macrophages. During early phases of 5-FU treatment there may have been a recruitment to the 

oral mucosa of macrophages, due to increased antigenic load. These macrophages may react 

differently to 5-FU. Excudate macrophages are more sensitive than tissue macrophages, the 

latter being known to be fairly resistant. They do not proliferate for a long time, and may 

escape the effects of 5-FU. Studies on 5-FU effects on macrophages have shown that the drug 

appears to inhibit immature macrophages but not mature cells (Athlin and Domellof 1987; 

Connolly et al. 1983; Vetvicka et al. 1990). 
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Eosinophils and mast cells (IV) 

Mast cells and occasional eosinophils were seen releasing their granules in the lamina propria 

of the buccal mucosa of 5-FU treated animals. It has been postulated that the mast cells do not 

release their contents or degranulate under normal physiological conditions. It can not be 

ruled out that these cells are involved in the inflammatory reactions of the oral mucosa after 

chemotherapy treatment. Because of the low mitotic activity of mast cells it i s possible that 

mast cells are not destroyed by 5-FU treatment. This has to be further investigated. 

MICROFLORA OF THE ORAL CAVITY AND INTESTINE (IV) 

An increase in the number of facultative and strictly anaerobic bacteria in the oral cavity was 

found. There was also an increase in facultative anaerobic bacteria in the large intestine after 

5-FU treatment. This is in line with other reports on an increased bacterial load in the intestine 

after 5-FU treatment. The number of facultative anaerobic gram-negative rods increased and 

gram-positive cocci decreased in numbers. 

The increased numbers of obligate anaerobes and gram-negative rods in the oral cavity may 

be due to the decrease of gram-positive cocci, which were sensitive to 5-FU. The sensitivity 

by gram-positive cocci is in line with an early study which showed that a Streptococcus strain 

could be used for studies on sensitivity to 5-FU (Brandberg et al. 1977). 

The tongue, which was used for anaerobic measurement, may harbour anaerobic bacteria in 

the papillary surface. It cannot be ruled out that an increase in the number of obligate 

anaerobes would have been found also in the intestine, if the samples of intestinal content had 

been taken from the intestinal mucosa instead of the lumenal content. 

There are extensive studies showing the intense exchange of nutrients and waste products 

between intestinal lumen, the single layer columnar epithelium and underlying tissues. The 

exchange occurs through the epithelial cells, while permeation between the cells is limited, 

due to tight junctions. Also bacteria may enter endothelial cells or even disrupt tight junctions 

(Simonovic et al. 2001). In an injured intestinal epithelium the risk for bacterial invasion 

increases. Studies indicate, however, that also when the epithelium is injured the bacteria will 

enter through and not between the epithelial cells. 
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There are studies in recent years that have shown that bacteria may enter epithelial cells also 

in the oral epithelium. Hence Porphyromonas gingivalis can invade cells in an epithelial cell 

line via receptor-mediated endocytosis (Sandros et al. 1996). It has also been shown that such 

invasion will recruit immune defence cells. It cannot be ruled out that bacteria may invade 

keratinocytes also in other parts of the oral cavity. 

BACTERIAL TR ANSLOCATION T O C ERVICAL AN D M ESENTERIC L YMPH NO DES 

(IV) 

The findings in the intestine, with an increased bacterial load (IV), injured epithelium (I, II) 

and impaired immune defence (II, III), may be prerequisites for bacterial translocation from 

the intestine to the mesenteric lymph nodes (Berg et al. 1988). It is not unreasonable to 

assume that translocation may also occur from the oral cavity to regional lymph nodes if 

corresponding alterations in barrier functions occur in the oral cavity. The finding that 

bacteria were identified in the cervical lymph nodes after 5-FU treatment was a new and 

interesting finding. In particular, facultative gram-negative rods increased in number. From 

the studies performed it can not be determined whether the increased number of bacteria in 

the lymph nodes reflects an increased translocation after 5-FU treatment or if bacteria, 

translocated already before treatment, proliferated during 5-FU treatment. Yet, it can be 

concluded, that the cervical lymph nodes are a route for bacterial spread from the oral cavity 

in range with bacterial spread from the intestine to the mesenteric lymph nodes. These 

findings reinforce the oral cavity, along with the gastrointestinal tract, as an important source 

for bacterial dissemination. 

EFFECTS OF PROBIOTIC BACTERIA (IV) 

Lactic acid bacteria are present in the intestine of most animals. The beneficial role played by 

these microorganisms in humans and animals, including the effect on the immune system, has 

been extensively reported. 
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In the intestine L. plantarum 299v to 5-FU treated animals lowered the numbers of facultative 

anaerobes compared to 5-FU treated rats, however the same was not seen in the oral cavity. 

The predominance of gram-negative rods that 5-FU had evoked both in the oral cavity and in 

the intestine was not normalised by L. plantarum 299v. In the cervical and mesenteric lymph 

nodes the total numbers of facultative anaerobes did not differ significantly between 5-FU 

treated animals and 5-FU treated animals receiving L. plantarum 299v. 

5-FU treated rats supplemented with L. plantarum 299v lost less in weight, 12.1 % compared 

to 5-FU treated rats on tap water, /><0.001 and improved their food intake. The 5-FU induced 

diarrhoea, measured by liquid content of lumenal content, was not prevented by the 

administration of L. plantarum 299v. This points to the notion that it is not the total bacterial 

numbers or the numbers of facultative anaerobes that are crucial in 5-FU induced diarrhoea. 

Taken together, L. plantarum 299v to some extent normalised 5-FU induced disturbances in 

the microbiota, but only in the intestine. It did not prevent bacterial dissemination to lymph 

nodes and did not improve diarrhoea. Yet, it improved the well being of the rats as measured 

by food intake and body weight. Further studies are needed to evaluate if L. plantarum 299v 

can have some positive outcomes in the efforts to hamper bacterial overgrowth in the oral 

cavity. 
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GENERAL DISCUSSION 

Disrupted oral barrier functions by 5-FU 
Cytotoxic drugs like 5-FU may cause oral mucositis. Mucositis is an inflammatory reaction in 

oral soft tissues, with the signs of inflammation, tumor (swelling) rubor (redness), dolor (pain) 

and calor (heat). Ulcerations, which sometimes also develop during treatment, are usually 

considered as a subsequent event to, or part of, a mucositis reaction. An inflammatory 

reaction can be induced by tissue injury or infection (Go ldsby et al. 2000). In this thesis both 

tissue injuries and disturbed bacterial equilibrium were demonstrated in the oral cavity. 

Furthermore, the immune defence was debilitated, which may cause an invasion of bacteria 

with detrimental effects. 

5-FU is rapidly transported into the cell by facilitated diffusion. Rapid metabolic elimination 

leads to a fall in 5-FU plasma levels with a primary ha lf-life of 8 to 14 minutes (Grem 1990). 

The clinical signs of mucositis will however usually not occur until 7-10 days after treatment. 

An issue to be raised is, if clinical signs of cytotoxicity will take this long to develop. Another 

notion would be that the cell and tissue injuries develop very fast and the signs of mucositis 

are due to a secondary infection, which will take 7-10 days to develop. In other words, is it the 

primary tissue injury by cytotoxicity, or a secondary infection, which elicits the clinical signs 

of mucositis. 

Tissue injury by cytotoxicity 

A comparison of oral epithelium to other tissues may give some indication on how fast the 

clinical signs of cell injury by 5-FU may arise. WBC have a nadir count 6-8 days after a 

single dose of 5-FU (Friberg et al. 2000; Simonsen et al. 2000). Since bone marrow cells have 

a turnover rate that is higher than epithelial cells it seems reasonable to assume that effects of 

cytotoxicity on keratinocytes will not display until several days after treatment. The results 

from study I showed that the keratinocytes degenerate by 5-FU and that more cells were 

affected after 3 days than after 1 day. After 3 days, the cell layers closest to the basement 

membrane were affected while cells higher up in the epithelium still seemed rather unaffected 

(I). These findings support the theory that it will take several days for keratinocytes affected 

by cytotoxicity to reach the epithelial surface. 
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The changes in the oral keratinocytes were consistent with autophagic degeneration. If the cell 

remnants in autophagic degeneration are phagocytosed like apoptotic cells, inflammation is 

not expected. If there is a lack of adjacent viable cells capable of phagocytosing the apoptotic 

bodies an inflammatory reaction might still develop. If the end product of autophagic 

degeneration is necrosis, an inflammatory reaction will certainly be elicited, if there are 

enough inflammatory cells. A tissue injury may induce a complex cascade of events in the 

inflammatory reaction, including vasodilation (Goldsby 2000) and leaking of fluid. This leads 

to accumulation of fluid in the tissues, oedema, with tumor, rubor and calor as part of the 

inflammatory reaction. 

Infection 

If the main cause of mucositis is infection the scenario may be the following. The epithelial 

cells die rather quickly by autophagic degeneration. With a high turnover rate in epithelium, 

the oral epithelial barrier function may be deteriorating by cytotoxicity within days, enough 

for the increased amount of bacteria in the oral cavity, shown in study IV, to gain access to 

the tissues, and infection may be the result. Also in this case, a cascade of events in the 

inflammatory reaction, including vasodilation and leaking of fluid, will occur, causing 

mucositis symptoms. 

Both deteriorating keratinocytes, and invading bacteria or toxins, will elicit cytokine 

expression, which will in turn contribute to an inflammatory reaction. 

Other factors 

When epithelial cells degenerate and die following anticancer treatment the epithelium 

becomes thinner and detaches (II). The oral mucosa is constantly exposed to mechanical 

forces by mastication, which increases the risk of ulcerations in the attenuated epithelium. 

Based on clinical experience, not yet scientifically studied, it is evident that ulcerations are 

often found in the lining buccal mucosa (Squier 1990) at the level of the upper molars, inside 

the corner of the mouth, inside the lower lip or in the floor of the mouth. The ulcers may 

develop as a consequence of a thinner epithelium and mechanical trauma on surfaces 

especially exposed. 
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The normal epithelial thickness may also be of importance. The floor of the mouth and the 

ventral tongue have a thinner epithelial layer (170 pm) than the buccal mucosa (767 pm) 

(Chen and Squier 1984). The buccal mucosa in turn is nonkeratinised in humans while the 

epithelium on the dorsum of the tongue and palate have a keratinised layer. The buccal 

mucosa of rats is orthokeratinised. Interestingly, the rats did not show clinical signs of 

mucositis (II) although both the keratinocytes, the bacteria and the immunocompetent cells 

were disturbed in the current rat model. It cannot be ruled out that the keratinised layer served 

some protective function. 

The differences in epithelial cell proliferation activity at different locations in the oral cavity 

may be another factor. Cells with a high turnover rate are more likely to be affected by 5-FU. 

Thomson et al have shown that cells undergoing DNA synthesis in human oral tissues, 

measured by percentage of cells within the S phase of the cell cycle, were highest in the floor 

of the mouth and ventral tongue while activity was lowest in the dorsum of tongue and the 

palate (Thomson et al. 1999). The buccal mucosa had a higher number of cells in S phase than 

mandibular gingiva (Thomson et al. 2001). 

An additional load of cytotoxicity may also be anticipated, from cytotoxic drug supplied from 

the major salivary glands, since it has been shown that 5-FU is secreted in the saliva (Oliff et 

al. 1979). This will particullary expose the lining mucosa around the orifice of the salivary 

gland ducts, i.e. the buccal mucosa and the floor of the mouth. 

Saliva composition and quantity were not investigated in this thesis. However, it deserves to 

be mentioned. Many patients experience a feeling of roughness on oral mucosal surfaces 

during 5-FU treatment. Changes in salivary quantity and quality may cause secondary effects 

since the saliva has both a protective and lubricating function on oral mocosa, as well as 

taking part in food processing. Reduced salivary flow, which has been recorded as a risk 

factor for developing mucositis during 5-FU treatment (McCarthy et al. 1998) or impaired 

quality, make mucosal surfaces more vulnerable to mechanical forces and may facilitate 

bacterial colonisation. 

The capacity of individuals to enzymatically degrade 5-FU by DPD (the rate limiting enzyme 

dihydropyrimidine dehydrogenase) may vary. It is possible that the increased tendency in 

some patients to develop oral mucositis may be due to a deficiency in DPD in epithelial cells. 
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Multifactoral aetiology 

Mucositis is a clinical diagnosis based on symptoms. As in many biological events there may 

be a series of competing factors leading to the clinical symptoms. In fact, all these factors may 

work in concert, the vascular changes, degenerating keratinocytes and attenuated epithelium, 

bacterial imbalance and affected immune response, salivary changes as well as individual 

factors in the development of mucositis. It has been suggested that the condition should be 

better referred to as mucosal barrier injury (MBI), with the notion that it is a complex and 

dynamic pathobiological process manifested not only in the mouth but also throughout the 

entire digestive tract (Blijlevens 2000). 

Different cytotoxic drugs may affect the various factors described above differently, 

depending on the type of effect on a cellular level. It may be speculated that only one, or a 

few of the phenomena, may arise in some cases or that all are in action but only one or a few 

are dominating. They may run in parallel or in a specific sequence that finally will be 

clinically revealed as mucositis. Indeed, it is likely that they interact. 

Four phases have been proposed regarding the mechanisms by which mucositis, induced by 

cytotoxic drugs, develops and heals: inflammatory/vascular phase, epithelial phase, 

ulcerative/bacteriological phase and healing phase (Sonis 1998). To take this classification 

further, the concept of compartments is hereby proposed in the context of oral mucositis. 

Cancer chemotherapy is the cause but involves individual compartments differently in 

different patients. This model opens the possibility that one compartment is involved at 

several steps during the development of mucositis. A salivary compartment has been included 

in the model and the inflammatory/vascular phase has been separated to an immunological 

and a vascular compartment. The following classification is proposed, based on current 

knowledge on oral mucositis by cancer chemotherapy (Table 2). Note that the order in Table 

2 does not imply a fixed order of appearance. Of the compartments, this thesis deals with (c) 

the keratinocyte/epithelial compartment (I), (d) the immunological compartment (II, III) and 

(f) the bacterial compartment (IV). 

The compartments represent different barrier functions. Every compartment will include 

many components of cellular and biochemical events. In the course of mucositis development, 

a compartment will be involved at different levels with different components. The different 

components may be outlined according to Tabel 3 (compartment in brackets). 
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In the rat model, it was also shown that bacteria may be found passed the major barrier 

functions after 5-FU treatment, in the cervical as well as the mesenteric lymph nodes. This 

was an important finding, in the ongoing discussion on the oral cavity as a source for bacterial 

spread and dissemination of infections. 

Table 2. Compartments of events during the course of mucositis, caused by cancer 

chemotherapy 

(a) Drug distribution compartment 

(b) Vascular compartment 

(c) Keratinocyte/epithelial compartment 

(d) Immunological compartment 

(e) Salivary compartment 

(f) Bacterial compartment 

(g) Healing compartment 

Table 3. An outline of the different components during the course of mucositis, caused by 

cancer chemotherapy. Compartments are indicated in brackets. 

i Treatment and drug distribution (a) 

>1 Interaction with hematopoetic cells (d) 

>1 Interaction with keratinocyte cell cycle/autophagic degeneration (c) 

i Cytokine release from keratinocytes (c) 

4- Vascular endothelial permeability increase/migration of immunocompetent cells/oedema (a, b, d) 

i Recruitment of innate immunocompetent cells (d) 

i Cytokine release from immunocompetent cells (d) 

1 Activation of specific immune response (d) 

4 Saliva affected (flow, composition) (e) 

i Drug interaction with bacteria/distortions in bacterial balance (0 

i Bacterial interaction with epithelium/colonisation (f) 

i Decreased number/downregulation of immunocompetent cells (d) 

1 Cytokine release from keratinocytes and bacteria (c, f) 

i Morphological changes in the whole epithelium, increased permeability (c) 

i Bacterial invasion (0 

>1 Bacterial translocation (f) 

i Drug elimination and healing (g) 
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CONCLUSIONS 

• 5-FU in vivo treatment did not cause a typical apoptotic mode of cell death in the 

keratinocytes of the epithelium of the buccal oral mucosa. 5-FU treatment induced 

alterations that are consistent with autophagic degeneration. The changes were confined to 

the cell layers closest to the basement membrane after a 3-day treatment (I). 

• A reduction in the number of MHC class II molecule expressing cells with dendritic 

appearance (DC) was seen in the epithelium and lamina propria of the buccal oral mucosa 

and in the dental pulp. In the epithelium, the decrease was seen only after 5-FU high dose 

treatment. The dendrites of the Langerhans cells of the buccal epithelium showed 

degenerative features. T cells decreased in numbers both in the oral mucosa and dental 

pulp. Macrophages decreased in number in the lamina propria of the oral mucosa (II). 

• The capacity of accessory cells of the buccal oral epithelium to induce a conA stimulated 

T cell proliferation was decreased after 5-FU high dose treatment. The capacity of 

accessory pulpal cells to induce a conA stimulated T cell proliferation was decreased at 

both low and high dose treatments. An elevated antigenic load of the oral epithelium, 

compared to the dental pulp, with upregulated MHC class II molecule expression and 

cytokine expression, may explain the differences in capacity of accessory cells of the 

buccal epithelium and dental pulp to induce T cell proliferation (III). 

• 5-FU caused an increase in the numbers of facultative and strictly anaerobic bacteria in 

the oral cavity and in the number of facultative anaerobes in the intestine. The proportions 

of facultative gram-negative rods increased (IV). 

• The cervical lymph nodes seemed to be an important route for spread of bacteria from the 

oral cavity during 5-FU treatment, on a level with the mesenteric lymph nodes. This 

finding reinforces the oral cavity, along with the gastrointestinal tract, as a source for 

bacterial dissemination (IV). 

44 



• The use of a probiotic bacterium, L. plantarum 299v, may to some extent normalise 5-FU 

induced bacterial disturbances in the oral cavity and intestine. However, L. plantarum 

299v did not decrease the total bacterial numbers in the lymph nodes of 5-FU treated 

animals (IV). 

• The use of L. plantarum 299v improved the well being of 5-FU treated animals by 

improved food intake and increased body weight compared to rats on 5-FU alone. L. 

plantarum 299v did not improve 5-FU induced diarrhoea (IV). 
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