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SUMMARY 

53BP1 is a double strand break repair protein that plays a crucial role in checkpoint activation 

and DNA repair. 53BP1 is a member of a family of proteins that contain BRCT domains and 

several of these BRCT domain-containing proteins have been shown to function as both DNA 

repair proteins and transcriptional regulators. Similarly, in addition to its involvement in the 

cellular response to double strand breaks, it has been demonstrated that 53BP1 can also 

function to regulate gene expression. 53BP1 was originally identified in a yeast two-hybrid 

screen for novel modulators of p53 transcriptional activity and several studies have shown 

that it acts as a transcriptional co-activator of p53. Despite these studies, the role of 53BP1 in 

transcriptional regulation remains poorly understood. 

To investigate the effect of 53BP1 on cellular transcription, a microarray approach was 

utilised to study the gene expression patterns in cells treated with and without 53BP1 siRNA, 

before and after ionising radiation to identify genes regulated by 53BP1. The gene expression 

profiles were compared at the level of single genes and biological pathways. Microarray 

analysis identified numerous genes whose expression was regulated by 53BP1 in the absence 

and presence of overt DNA damage. Interestingly, in the absence of DNA damage, several of 

these genes encoded proteins involved in TNFR1 signalling pathways, in particular the NF-

B signalling pathway. Consistent with the single gene analysis, analysis of biological 

pathways also highlighted TNFR1 signalling pathways as being differentially regulated by 

53BP1, independently of DNA damage. The potential role of 53BP1 in the NF- B signalling 

pathway was further investigated and 53BP1 knockdown studies indicated that 53BP1 may be 

negatively regulating NF- B transcriptional activity. In the absence of 53BP1, basal and 

phosphorylation levels of p65 were elevated in response to TNF  and ionising radiation. 

Furthermore, phosphorylation of p65 was sustained in 53BP1 depleted cells suggesting that 

53BP1 may play a role in the termination of NF- B response. Co-immunoprecipitation 

studies revealed that there was no association between 53BP1 and p65 indicating that 53BP1 

was regulating NF-κB transcriptional activity through an indirect mechanism. 

Data presented in this thesis also demonstrates that 53BP1 can function as a modulator of p53 

that can differentially regulate p53 responsive genes. Through cooperating with p53, 53BP1 

can induce the expression of PUMA and HDM2 in response to DNA damage. However, in 



 

 

contrast, 53BP1 can repress p21 expression levels in unstressed cells by repressing p53 

transcriptional activity. 

In addition, the data presented here shows that 53BP1 can bind and modulate the activity of 

the transcriptional co-activators CBP/p300. Co-immunoprecipitation and chromatographic 

studies revealed that 53BP1 and CBP/p300 interact with each other and exist in a large 

macromolecular complex. Mapping the sites of interaction showed that CBP/p300 bind to 

53BP1 via its C-terminal domains whereas 53BP1 binds to multiple regions of CBP/p300. 

When the transactivation potential of p300 was assessed with a reporter assay, cells over-

expressing 53BP1 showed an increase in p300 activity in a dose dependent manner.  

In conclusion, the data presented in this thesis indicates that 53BP1 functions as a 

transcriptional regulator and that this role for 53BP1 may be facilitated by CBP and p300. 

These findings therefore provide novel insight into our understanding of the cellular role of 

53BP1 and may possible have implications for its involvement in suppressing tumourigenesis. 
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Chapter 1 

1 

CHAPTER 1 GENERAL INTRODUCTION 

1.1 GENOMIC INSTABILITY AND CANCER 

DNA is constantly being damaged by both exogenous and endogenous sources resulting in 

the generation of a multitude of DNA lesions such as double strand breaks (DSBs) and single 

strand breaks (SSBs). To counteract this DNA damage and protect the integrity of the 

genome, cells have evolved complex mechanisms that detect and signal the presence of the 

DNA lesion and coordinate a cellular response that involves activation of cell cycle 

checkpoints and DNA repair. Collectively these mechanisms have been termed the DNA 

damage response (DDR). Failure to sense and/or repair DNA damage can lead to either 

senescence, cell death or contribute to genomic instability, the latter of which has recently 

been described as one of the hallmarks of cancer (Negrini et al 2010). One of the major forms 

of genomic instability is chromosomal instability (CIN), which is characterised by alterations 

in chromosome number and/or structure due to chromosomal rearrangements such as 

deletions and translocations. Other forms of genomic instability include the accumulation of 

mutations and microsatellite instability (MIN), which is caused by the expansion and/or 

contraction of the number of microsatellite sequences (Aguilera and Gomez-Gonzalez 2008). 

It is known the early stage tumours have elevated levels of DNA damage (Bartkova et al 

2005, Gorgoulis et al 2005). Activation of the DDR could normally act as a barrier to tumour 

progression by inducing cellular senescence or apoptosis of early tumour cells and therefore 

protecting the integrity of the genome (Bartek et al 2007). However, mutations in DDR genes 

such as TP53, ATM and BRCA1 are commonly selected for during tumour development 

because they allow tumour cells to breach this barrier and proliferate at the expense of 

elevated levels of DNA damage. This role for DDR as an anti-cancer barrier may explain why 

mutations in DDR genes occur at a high frequency in human cancers (Greenman et al 2007, 

Halazonetis et al 2008, Kastan and Bartek 2004). For example, more than 50% of sporadic 

cancers harbour TP53 mutations and germline mutations in BRCA1 and BRCA2 account for 

the majority of familial breast and ovarian cancer (Boulton 2006, Soussi and Lozano 2005). 



Chapter 1 

2 

1.2 DNA DAMAGE RESPONSE 

The DDR is primarily mediated by the phosphatidylinositol 3-kinase-like kinase (PIKK) 

family, which includes ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia 

mutated and rad3-related kinase) and DNA-PK (DNA-dependent protein kinase). ATM and 

DNA-PK are predominantly activated in response to DSBs, which are formed when both 

strands of the DNA backbone are broken simultaneously. These are the most toxic among 

DNA lesions with one unrepaired DSB being sufficient to cause cell death (Jeggo and Lobrich 

2007, Shiloh 2003). There are a variety of DNA damaging agents that induce DSBs including 

ionising radiation (IR), metabolic products such as reactive oxygen species (ROS) and 

chemicals such as those used for chemotherapy. In addition, they can also arise due to 

replication fork collapse, which occurs when the replication machinery collides with a SSB. 

Finally, even though DSBs can be lethal to the cell, they are formed in a programmed manner 

as part of normal cellular processes such as class switch recombination (CSR) and V(D)J 

recombination, which occur during immune system development (Hiom 2010, Jackson and 

Bartek 2009). However, unlike ATM, DNA-PK does not primarily function in the DDR 

signal transduction pathway, but rather coordinates the DSB repair pathway, non-homologous 

end-joining (NHEJ) (Collis et al 2005). In contrast to ATM and DNA-PK, ATR is mainly 

activated in response to single stranded DNA (ssDNA), which can be generated by bulky 

adducts, inter-strand crosslinks and replication stress caused by DNA damaging agents such 

as hydroxyurea (HU), ultraviolet light (UV) and metabolic products such as ROS (Cimprich 

and Cortez 2008). In addition, ATR can also be activated during DSB repair response since 

ssDNA is produced as an intermediate during DSB end-resection and is required to initiate 

homologous recombination (HR).  

1.2.1 ATM-mediated DNA damage response  

DSBs are sensed by the MRE11/RAD50/NBS1 (MRN) complex, which forms a bridge 

between the broken DNA ends ensuring that the ends remain in close proximity (Moreno-

Herrero et al 2005). Through an ATM binding motif in NBS1 (Nijmegen breakage syndrome 

1), the MRN complex recruits and subsequently activates ATM in the chromatin regions 

proximal to the DSB (Falck et al 2005, Lee and Paull 2004, Uziel et al 2003). Activation of 

ATM involves the dissociation of inactive ATM dimers into active monomers (Bakkenist and 

Kastan 2003). This process is facilitated by autophosphorylation of ATM on serines 367, 
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1893, 1981 and 2996 (Bakkenist and Kastan 2003, Kozlov et al 2006, Kozlov et al 2010), as 

well as acetylation of ATM on lysine 3016 by the histone acetyltransferase (HAT) Tip60 (Sun 

et al 2005). In response to DSBs, casein kinase 2 (CK2) is recruited to the DNA break where 

it phosphorylates and displaces heterochromatin protein 1  (HP1) from histone H3 tri-

methylated lysine 9 (H3K9me3), thereby enabling Tip60 to interact with H3K9me3. This 

interaction up-regulates Tip60 acetyltransferase activity leading to acetylation and activation 

of ATM, as well as acetylation of histones surrounding the DSB (Sun et al 2009). Once fully 

activated, ATM phosphorylates the histone H2A variant H2AX (termed -H2AX) on serine 

139 surrounding the DNA break triggering relocalisation of DDR proteins to the sites of the 

break in a highly ordered manner, which can be visualised microscopically as the formation of 

DNA repair protein foci (Bekker-Jensen et al 2006, Burma et al 2001). Among those proteins 

recruited is the DDR mediator protein, mediator of DNA damage checkpoint 1 (MDC1), 

which interacts with the C-terminal tail of -H2AX via its BRCT (BRCA1 C-terminal) 

domain (Stewart et al 2003, Stucki et al 2005). However, this interaction is dependent on the 

dephosphorylation of tyrosine 142 on -H2AX by the eyes absent (EYA) tyrosine 

phosphatases, EYA1 and EYA3 (Cook et al 2009, Krishnan et al 2009). Once bound to -

H2AX, MDC1 initiates a positive ATM feedback loop by promoting the stabilisation and 

further accumulation of the MRN complex and activated ATM, resulting in the spreading of 

H2AX phosphorylation over an extensive region of chromatin flanking the DSB and 

amplification of the damage signal (Chapman and Jackson 2008, Lou et al 2006, Lukas et al 

2004a, Melander et al 2008, Spycher et al 2008). In addition to serving as a molecular 

scaffold to MRN and ATM, MDC1 also orchestrates the recruitment of other DSB 

repair/checkpoint proteins to the chromatin surrounding the DNA lesion (Bekker-Jensen et al 

2006, Goldberg et al 2003, Stewart et al 2003). This role for MDC1 is achieved, in part, 

through ATM-dependent phosphorylation of MDC1, which provides a binding site recognised 

by the forkhead-associated (FHA) domain of the E3 ubiquitin ligase RNF8 (ring finger 

protein 8) and activates a ubiquitylation cascade (Huen et al 2007, Kolas et al 2007, Mailand 

et al 2007). RNF8 in conjunction with another E3 ligase, HERC2 (HECT domain and RLD 2) 

and the E2 conjugating protein, UBC13 catalyse the formation of lysine-63 (K63)-linked 

polyubiquitin chains on H2A and H2AX proximal to the break (Bekker-Jensen et al 2010, 

Wang and Elledge 2007). These ubiquitylated histones subsequently signal the recruitment of 

another E3 ubiquitin ligase, RNF168, which binds through its C-terminal MIU2 (motif 
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interacting with ubiquitin) domain. RNF168, together with UBC13 amplifies the ubiquitin 

signal by stimulating K63-linked polyubiquitylation (Doil et al 2009, Stewart et al 2009). 

Recruitment of RNF168 to the break site is facilitated by the SUMO ligase, protein inhibitor 

of activated STAT (PIAS) 4 possibly through its ability to stimulate the ubiquitin ligase 

activity of RNF8 and/or HERC2. (Galanty et al 2009, Morris et al 2009). Ubiquitylation of 

histones has been proposed to result in chromatin relaxation surrounding the break site 

allowing the break to become more accessible to proteins involved in DNA repair and 

checkpoint activation such as BRCA1 (breast cancer susceptibility gene 1) and 53BP1 (p53-

binding protein 1) (Figure 1.1).   

In this respect, the K63-linked ubiquitin chains formed on histones are recognised by the 

ubiquitin-interacting motif (UIM) of RAP80 (receptor associated protein 80), which recruits 

the BRCA1-A complex through the interaction with the scaffold protein Abraxas (Kim et al 

2007, Sobhian et al 2007, Wang and Elledge 2007, Yan et al 2007b). In addition to BRCA1, 

RAP80 and Abraxas, the BRCA1-A complex also contains BARD1 (BRCA1 associated ring 

domain 1), which together with BRCA1 forms a heterodimeric E3 ubiquitin ligase, BRCC36 

(BRCA1/2 containing complex subunit 36), a deubiquitylating enzyme and the adaptor 

proteins MERIT40 (mediator of RAP80 interactions and Targeting 40kd) and BRCC45 

(BRCA1/2 containing complex subunit 45) (Feng et al 2009, Shao et al 2009b, Wang et al 

2009). Subsequently, BRCA1 is sumoylated by the SUMO E3 ligase PIAS1, which stimulates 

its E3 ubiquitin ligase activity (Galanty et al 2009, Morris et al 2009). Once recruited 

BRCA1/BARD1 can initiate activation of cell cycle checkpoints, as well as facilitate HR 

(Huen et al 2010b).  

In contrast to other DSB repair proteins, initial recruitment of 53BP1 to the break site does 

not involve direct interaction with other DSB repair proteins or ubiquitin chains. Instead it has 

been suggested that RNF8/RNF168-mediated ubiquitylation in conjunction with H2AX 

phosphorylation and Tip60-mediated acetylation of the histones surrounding the DSB break 

promotes relaxation of the chromatin (van Attikum and Gasser 2009). This allows exposure of 

previously hidden histone marks, histone H4 di-methylated lysine 20 (H4K20me2) and 

possibly histone H3 di-methylated lysine 79 (H3K79me2), which are recognised by the Tudor 

domain of 53BP1 (Botuyan et al 2006, Ng et al 2003). Recently, it has been demonstrated 

that recruitment of 53BP1 to DSBs is facilitated by the SUMO E3 ligases PIAS4, which  
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Figure 1.1 ATM–mediated DDR pathway. Induction of a DSB initiates recruitment of the 

MRN complex, which subsequently recruits ATM. Activation of ATM by MRN and Tip60 leads 

to phosphorylation of H2AX. H2AX signals the recruitment of MDC1, which is 

phosphorylated by ATM triggering its association with RNF8 and HERC2. 

RNF8/HERC2/UBC13 catalyse the ubiquitylation of H2A-type histones surrounding the 

break. RNF168 is recruited to ubiquitylated histones where it amplifies the ubiquitylation 

signal by catalysing polyubiquitylation of H2A histones, resulting in chromatin relaxation, 

Subsequently, 53BP1 and BRCA1 are recruited to the DSB and are sumoylated by PIAS4 and 

PIAS1 respectively (Adapted from Ciccia and Elledge 2010). 

P

A
T

M

A
T

M

UbUb

RNF8

U
B

C
1
3HERC2

Ub

Ub
UbUb

Ub
Ub

UBC13

RNF168

PP

P

Tip60

A

Tip60

A

AA

A
T

M

A
T

M

P APA

PP

A
T

M

A
T

M

PP

PP

P A

P A

PA

PARNF8

U
B

C
1
3

HERC2

UbUb

RNF8

U
B

C
1
3HERC2

A
T

M

A
T

M

PP

PP
P APARNF8

U
B

C
1
3

HERC2

UBC13

RNF168

Ub

Ub
UbUb

Ub
Ub

UBC13

RNF168

UbUb

RNF8

U
B

C
1
3HERC2

A
T

M

A
T

M

PP

PP

P APA
RNF8

U
B

C
1
3

HERC2

UBC13

RNF168

MM

S

S

53BP1

BRCA1-A
complex

UBC9

PIAS4

RAP80

BRCA1

P

P
UBC9

PIAS1



Chapter 1 

6 

together with its E2 conjugating enzyme UBC9 catalyses its sumoylation (Galanty et al 

2009). Currently little is known about the precise function of 53BP1 in DSB repair, although 

it has been implicated in the intra-S and G2/M checkpoints (DiTullio et al 2002), DNA end-

joining (Difilippantonio et al 2008) and suppression of DNA end-resection (Bunting et al 

2010) (Figure 1.1).   

Ubiquitylation is a reversible process involving specific proteases called deubiquitylating 

enzymes (DUBs), which remove ubiquitin from protein substrates. To date three DUBs, 

namely USP3 (ubiquitin specific protease 3), BRCC36 and OTUB1 (OUT-containing 

ubiquitin aldehyde-binding protein 1) have been identified that negatively regulate the 

ubiquitin-dependent DSB signalling cascade. USP3 has been reported to deubiquitylate the 

histone H2A (Nicassio et al 2007). Furthermore, depletion of USP3 resulted in an increase in 

accumulation of 53BP1 at DSBs, whereas over-expression of USP3 prevented RNF168 

accumulation at DSBs, but had no effect on RNF8 foci formation (Doil et al 2009, Nicassio et 

al 2007). Together these data indicate that USP3 inhibits RNF8-dependent ubiquitylation 

events. BRCC36 is a member of the JAMM/MPN
+
 DUB family and specifically cleaves K63-

linked polyubiquitin chains (Cooper et al 2009). BRCC36 DUB activity requires interactions 

with the BRCA1-A complex in particular Abraxas and BRCC45 (Feng et al 2010, Patterson-

Fortin et al 2010).  BRCC36 deficient cells display increased levels of ubiquitylated H2A and 

H2AX and depletion of BRCC36 partially rescues the defect in ubiquitylation associated with 

loss of RNF8 (Feng et al 2010, Shao et al 2009a). These results suggest that, like USP3, 

BRCC36 may be a negative regulator of RNF8-dependent ubiquitylation. RNF168 

ubiquitylation has recently been shown to be suppressed by the deubiquitylating enzyme, 

OTUB1 (Nakada et al 2010). Surprisingly, inhibition of RNF168 ubiquitylation by OTUB1 

was found to occur independently of its catalytic activity since a catalytically inactive mutant 

could also inhibit 53BP1 foci formation. This data indicates that unlike the majority of DUBs, 

the action of OTUB1 did not involve removal of ubiquitin from RNF168. Instead, Nakada et 

al (2010) revealed that OTUB1 directly interacts and inhibits UBC13, thereby preventing 

formation of RNF168-mediated K63-linked polyubiquitin chains (Nakada et al 2010). 

The purpose of the DSB-induced ATM signalling pathway is to promote DNA repair and cell 

cycle arrest. ATM does this by recruiting and activating proteins that facilitate DNA repair 

through HR or NHEJ, as well as activating proteins required to induce a G1, intra-S or G2/M 
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cell cycle arrest including p53, BRCA1, NBS1, CtIP (CTBP interacting protein) and CHK2 

(checkpoint kinase 2) (Kastan and Lim 2000). One ATM substrate that is important for ATM-

dependent DNA repair is the KRAB domain associated protein 1 (KAP1). KAP1 associates 

with transcriptional repressors such as HP1 and histone deacetylases (HDAC) 1 and 2 

forming a transcriptional silencing complex that promotes heterochromatin formation (Craig 

2005). ATM-mediated phosphorylation of KAP1 at serine 824 weakens its interaction with 

the complex resulting in relaxation of the chromatin and increasing the accessibility of DNA 

repair proteins to the DNA break (Goodarzi et al 2008, Ziv et al 2006). Interestingly, large 

scale proteomic studies have highlighted that ATM-mediated signalling pathway may 

coordinate a much wider variety of cellular processes than originally thought, since ATM can 

phosphorylate over 700 substrates including proteins involved in metabolism, transcription, 

chromatin remodelling and RNA splicing (Matsuoka et al 2007).  

1.2.2 ATR-mediated DNA damage response 

Localisation of ATR to sites of DNA damage is dependent on its interacting partner, ATRIP 

(ATR-interacting protein), which recognises and binds to replication protein A (RPA), a 

single stranded DNA binding protein complex that coats and stabilises ssDNA (Cortez et al 

2001, Fanning et al 2006, Zou and Elledge 2003). In addition to the ATR-ATRIP complex, 

ssDNA-RPA complex recruits the RAD9-RAD1-HUS1 (known as 9-1-1) complex, a 

heterotrimeric ring shaped molecule with homology to PCNA (proliferating cell nuclear 

antigen), which is loaded onto the DNA by the RAD17-replication C clamp loader (Bermudez 

et al 2003, Parrilla-Castellar et al 2004, Zou et al 2003). ATR activation is not only 

dependent on the colocalisation of the ATR-ATRIP complex with the 9-1-1 complex, but also 

on the recruitment of the ATR activator, TOPBP1 (topoisomerase II binding protein 1) to the 

DNA damage site. This occurs through an interaction between two of the BRCT domains of 

TOPBP1 and the phosphorylated C-terminal tail of RAD9 from the 9-1-1 complex. 

Subsequently, the ATR-activating domain of TOPBP1 interacts with ATR-ATRIP complex 

stimulating ATR kinase activity (Delacroix et al 2007, Kumagai et al 2006) (Figure 1.2).   

Once activated, ATR can promote cell cycle arrest, DNA repair and replication fork stability 

through phosphorylation of its substrates such as p53, TOPBP1, RAD9, BRCA1 and CHK1 

(checkpoint kinase 1) (Cimprich and Cortez 2008). However, in a similar manner to ATM, the  

 



Chapter 1 

8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 ATR-mediated DDR pathway. In response to DNA damage or replication 

stress, the generation of ssDNA is recognised by RPA. RPA-coated ssDNA recruits ATR-

ATRIP and facilitates the loading of the 9-1-1 complex on to DNA by the RAD17-replication 

C complex. TOPBP1 is subsequently recruited through its stable association with the C-

terminal of RAD9 and stimulates ATR kinase activity. Through an interaction between RPA 

and Tipin, the Tipin-Timeless complex and then Claspin are able to associate with ATR at 

sites of DNA damage. ATR phosphorylates Claspin, which both promotes the interaction with 

CHK1 and facilitates the phosphorylation of CHK1 by ATR (Adapted from Kemp et al 2010). 
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list of ATR substrates is rapidly expanding due to large proteomic studies (Matsuoka et al 

2007, Stokes et al 2007). Some of the substrates identified are involved in pathways that have 

not previously been linked to the DDR such as RNA splicing and metabolic pathways, as well 

as those invoked by insulin stimulation. Furthermore, many, if not the vast majority of these 

substrates are also targeted by ATM such as p53, NBS1 and BRCA1 indicating that there is 

extensive crosstalk between the ATM and ATR pathways (Matsuoka et al 2007, Stokes et al 

2007). Despite this the checkpoint kinase, CHK1 has been the most extensively studied ATR 

substrate. Interestingly, unlike other ATR substrates, phosphorylation of CHK1 by ATR on 

serine 317 and serine 345 has been shown to be not only facilitated by TOPBP1, but also by 

another mediator protein, Claspin (Liu et al 2006). Furthermore, CHK1 phosphorylation is 

also stimulated by the Tipin subunit of the Timeless-Tipin complex, which interacts with the 

RPA2 subunit of the RPA complex and functions as a molecular scaffold for Claspin and 

CHK1 to transiently associate with ATR (Kemp et al 2010).  Phosphorylated CHK1 can then 

phosphorylate its substrates including CDC25A, CDC25C, Wee1 and p53 leading to cell 

cycle arrest (Dai and Grant 2010) (Figure 1.2). 

1.2.3 Cell cycle checkpoints 

Activation of cell cycle checkpoints in response to DNA damage delays cell cycle progression 

allowing time for the DNA to be repaired. Therefore cell cycle checkpoints are crucial in 

protecting against genomic instability. The G1/S checkpoint prevents cells entering S-phase 

with DNA damage, the intra-S-phase checkpoint (also known as the DNA replication 

checkpoint) suppresses further DNA replication until the DNA damage has been repaired and 

the G2/M checkpoint delays entry into mitosis, therefore preventing inappropriate segregation 

of damaged chromosomes during mitosis (Lukas et al 2004b). The progression into each 

phase of the cell cycle is tightly controlled by cyclin-dependent kinases (CDK) and their 

regulatory subunits known as cyclins (Figure 1.3). Phosphorylation of CDK by the Wee1 and 

Myt1 protein kinases maintains the CDK-cyclin complexes in an inactive state. When CDK 

activity becomes required for progression into the next cell cycle phase, the dual specificity 

CDC25 phosphatases dephosphorylate the CDKs, thereby activating the CDK-cyclin 

complexes. There are three mammalian CDC25 isoforms: CDC25A, -B and -C, which 

specifically regulate the activities of CDK1 and CDK2. CDC25A controls progression 

through S phase by activating CDK2-cyclin E and CDK2-cyclin A complexes, as well as  
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Figure 1.3 Cell cycle regulation by CDK-Cyclin complexes. Entry into the four stages of 

the cell cycle is regulated by CDK-Cyclin complexes. Activation of specific CDK-Cyclin 

complexes by CDC25-mediated dephosphorylation drives progression through these cell 

cycle phases. 
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progression into mitosis by activating CDK1-cyclin B complex. CDC25B and CDC25C are 

primarily involved in activating CDK1-cyclin B complex and therefore control the G2-M 

transition (Boutros et al 2007) (Figure 1.3).  

Following DNA damage, CHK1 and to a lesser extent CHK2, -mediated phosphorylation of 

CDC25A targets it for ubiquitin-dependent proteasomal degradation, which is catalysed by 

two different ubiquitin ligases, the anaphase promoting complex (APC/C) and the SCF
TRCP

 

(SKP1-CUL1-F-box ligase containing the F-box protein TRCP) complex. APC/C is 

involved in regulating CDC25A at the exit of mitosis whereas SCF
TRCP

 regulates CDC25A 

throughout the cell cycle (Donzelli et al 2002, Falck et al 2001). In contrast, phosphorylation 

of CDC25C by CHK1 and CHK2 promotes its binding to the 14-3-3 proteins, which export 

CDC25C from the nucleus subsequently preventing it from activating the CDK1-cyclin B 

complex (Matsuoka et al 1998, Peng et al 1997). Failure to dephosphorylate CDK2 and 

CDK1 leads to activation of the G1/S, intra-S-phase and G2/M checkpoints. Furthermore, 

CHK1 also phosphorylates Wee1, thereby reinforcing the inhibition of CDK-cyclin 

complexes (Raleigh and O'Connell 2000). In addition to the 14-3-3 proteins, GADD45 

(growth arrest and DNA damage inducible 45) and the CDK inhibitor, p21 have also been 

shown to be involved in activating the G2/M checkpoint by binding and inhibiting CDK1 

activity (Bates et al 1998, Medema et al 1998, Zhan et al 1999). p21 also plays a crucial role 

in G1/S checkpoint activation through inhibition of CDK4/cyclin D1 and CDK2/cyclin E-

mediated phosphorylation of pRb (Retinoblastoma protein) and E2F-dependent transcription, 

which are important events required for S-phase entry and initiation of DNA replication 

(Brugarolas et al 1999, He et al 2005, Lundberg and Weinberg 1998, Massague 2004). 

1.3 DOUBLE STRAND BREAK REPAIR 

Repair of DSBs can be carried out by various pathways, but the two main pathways are non-

homologous end-joining (NHEJ) and homologous recombination (HR). Repair by NHEJ is 

error-prone because it involves religating the DNA ends at the break using small regions of 

sequence homology that can potentially lead to the loss of DNA bases immediately adjacent 

to the break. In contrast, HR is regarded as an error-free mechanism since it uses a 

homologous template to replace the DNA bases across the break. As the sister chromatid is 

the preferred template, HR predominantly operates in the late S and G2 phases of the cell 
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cycle. However, HR can also use homologous sequences within the genome as a template, so 

can occur in G1, although this can potentially lead to loss of heterozygosity, deletions and 

chromosomal translocations. Therefore, NHEJ is the preferred method of repair in G1, 

although it can also occur in S and G2. In addition to sister chromatid availability, the choice 

between HR and NHEJ is also dependent on the activity of CDKs and their ability to promote 

DNA end-resection. DNA end-resection is fundamental for HR, so in the presence of high 

levels of CDK activity HR is the favoured pathway (Branzei and Foiani 2008).  

1.3.1 Homologous recombination 

HR is initiated by DNA end-resection, which involves the degradation of the 5  ends of either 

side of the DSB to produce 3  ssDNA overhangs. The MRN complex together with CtIP is 

responsible for the formation of these ssDNA overhangs at DSBs (Limbo et al 2007, Sartori 

et al 2007, Yun and Hiom 2009). The function of CtIP is highly regulated by post-

translational modifications to ensure that DNA end-resection and HR occur at the appropriate 

stages of the cell cycle.  This requires the kinase activity of CDKs, which phosphorylate CtIP 

on serine 327 and threonine 847 during S and G2 (Huertas and Jackson 2009). 

Phosphorylation at both these sites is essential for DSB resection. However, only 

phosphorylation at serine 327 is required for CtIP to interact with BRCA1, which 

subsequently ubiquitylates CtIP facilitating its association with damage sites (Yu and Chen 

2004, Yu et al 2006). Recruitment of CtIP is also dependent on the MRN complex and this is 

thought to stimulate the nuclease activity of MRE11, which is important for DNA end-

resection, but not for the role of MRN in DSB sensing or ATM recruitment and activation 

(Buis et al 2008, Chen et al 2008, Sartori et al 2007, Williams et al 2008). Finally, ATM is 

important for DSB resection, although its precise role is currently unknown (Adams et al 

2006, Cuadrado et al 2006, Jazayeri et al 2006, Myers and Cortez 2006). Recently, it has been 

suggested that ATM kinase activity may promote the recruitment of CtIP to DSBs. However, 

whether this is dependent on ATM phosphorylation of CtIP is unknown (You et al 2009). 

DNA end-resection is currently thought to proceed through a two step mechanism based 

initially on studies in yeast (Mimitou and Symington 2008, Zhu et al 2008). First, the initial 

end processing is mediated through the nuclease activity of the MRN complex in a CtIP-

dependent manner. Following this priming step, the resulting partially resected DNA is 

further processed by the action of the exonucleases EXO1 (exonuclease 1) and DNA2 (DNA  
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Figure 1.4 DNA end-resection. The MRN complex in conjunction with CtIP catalyses 

limited nucleolytic processing of the DNA ends. This process is dependent on CDK-mediated 

phosphorylation of CtIP and is facilitated by BRCA1, which binds to phosphorylated serine 

327 and ubiquitylates CtIP. The action of MRN and CtIP primes the DNA ends for resection 

by nucleases such as EXO1 and DNA2. This activity is facilitated by the helicase, BLM.  

53BP1 is thought to suppress DNA end-resection (Adapted from Ciccia and Elledge 2010). 
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replication helicase 2) together with BLM (Bloom syndrome protein) in human cells (Gravel 

et al 2008, Nimonkar et al 2008, Nimonkar et al 2011, Zhu et al 2008) (Figure 1.4). Initially, 

the 3  ssDNA ends generated by DNA end-resection become coated with RPA triggering 

activation of ATR and subsequent phosphorylation of CHK1. However, RPA is soon 

displaced by RAD51 in conjunction with RAD52, BRCA2 (breast cancer susceptibility gene 

2) and PALB2 (partner and localizer of BRCA2) to form a RAD51 nucleoprotein filament 

(Chen et al 1998b, Sugiyama and Kowalczykowski 2002, Zhang et al 2009a). The RAD51 

nucleoprotein filament together with RAD54 then invades the homologous double-stranded 

DNA template and promotes exchange of the DNA strands resulting in the formation a 

heteroduplex structure known as a D-loop (Mazin et al 2000, Petukhova et al 1998). DNA 

synthesis is then performed by DNA polymerases, which use the homologous DNA strand as 

a template to replace the sequence where the DSB was located on the damaged strand. 

Initially, the DNA polymerases, Pol  and Pol  were thought to mediate HR DNA synthesis. 

However, a recent study has suggested that DNA polymerase  (Pol ) may be the preferred 

enzyme (Maloisel et al 2008). 

At this point the newly synthesised strand can be displaced from the D-loop and annealed to 

the ssDNA tail created by resection at the other end of the break in a process known as 

synthesis-dependent strand-annealing (SDSA). Alternatively, the second resected strand can 

be annealed to the displaced strand in a process that is mediated by RAD52 and is referred to 

as second end capture (Nimonkar et al 2009). DNA synthesis at both sides of the structure 

and branch migration produces a double Holliday junction. Resolution of the Holliday 

structure is then required in order to separate the covalently bound sister chromatids. This can 

be carried out by endonucleases complexes such as MUS81/EME1, SLX1/SLX4 and GEN1 

which cleave the Holliday junction generating two products (Ciccia et al 2003, Constantinou 

et al 2002, Fekairi et al 2009, Ip et al 2008, Svendsen et al 2009). If there is no exchange of 

the DNA sequences flanking the original DSB, then non-crossover products are produced. 

However, if DNA is exchanged between the two chromosomes then crossover products are 

created. Alternatively, Holliday junctions can be dissolved by the Topoisomerase III /BLM 

complex through convergent branch migration, which exclusively yields non-crossover 

products (Plank et al 2006, Wu and Hickson 2003) (Figure 1.5). 
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Figure 1.5 Repair of DSBs by HR. RPA binds to the ssDNA tails generated by DNA end-

resection where it is subsequently displaced by RAD52. Together with BRCA1, BRCA2 and 

PALB2, RAD52 facilitates the formation of the RAD51 nucleoprotein filament. The filament 

then invades the homologous DNA with the aid of RAD54 to form a D-loop structure. The 

other 3  end of the DSB is captured, a process that is mediated by RAD52. DNA synthesis 

followed by branch migration and ligation of the nicks generates double Holliday junctions 

(dHJ). Resolution of the recombination intermediates to produce crossovers and non-

crossovers completes DSB repair (Adapted from Nimonkar et al 2008). 
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1.3.2 Non-homologous end-joining 

In the absence of high levels of CDK activity, the default repair pathway is NHEJ.  DSBs are 

recognised by the KU70/KU80 heterodimer, a ring shaped complex that has high affinity for 

DNA ends (Walker et al 2001). Once loaded onto the DNA ends, the KU complex then 

functions as a scaffold for the assembly of other NHEJ proteins. The first protein to be 

recruited is the serine/threonine kinase, DNA-dependent protein kinase catalytic subunit 

(DNA-PKcs). The complex that forms through the association of KU70/80 and DNA-PKcs at 

the DNA ends is generally referred to as DNA-PK and localises within seconds of the DSB 

being generated (Uematsu et al 2007). Once the complex is assembled at either side of the 

DSB, the two DNA-PKcs subunits tether the DNA ends together forming a synaptic complex 

(DeFazio et al 2002). The kinase activity of DNA-PKcs can then be activated allowing DNA-

PKcs to phosphorylate its targets, some of which are components of the NHEJ pathway 

including XRCC4 (X-ray cross complementing 4), Artemis and KU70/80 (Burma and Chen 

2004). Even though it is unclear what the biological relevance of these phosphorylation events 

are on NHEJ, it is well established that autophosphorylation of itself is important for efficient 

progression of the NHEJ (Chan et al 2002, Ding et al 2003). The unphosphorylated form of 

DNA-PKcs protects the ends from degradation or premature and incorrect ligation (Block et 

al 2004, Weterings et al 2003). However, once the synaptic complex has formed, trans-

autophosphorylation of DNA-PKcs induces a conformational change, which allows the DNA 

ends to become accessible to processing enzymes and ligases (Meek et al 2007). 

The synaptic complex acts as a scaffold for the religation of the DNA ends. However, very 

few DSBs produced have blunt ends that can be directly religated together. In the majority of 

cases, the two DNA ends will not be directly compatible because at least one of them will 

possess a 3  or 5  single strand overhang. In order to ligate the ends back together, the 

overhangs need to either be filled in by DNA synthesis using the overhang as a template or be 

removed by nucleotide trimming. Several enzymes have been implicated in the processing of 

DNA ends in preparation for ligation including the error prone polymerase such as terminal 

deoxynucleotidyltransferase (TdT), DNA polymerase  (Pol ) and DNA polymerase  

(Pol ), as well as the nuclease Artemis (Ma et al 2002, Mahajan et al 1999, Mahajan et al 

2002). Artemis has intrinsic 5 - 3  exonuclease activity. However, its association with DNA-

PKcs allows it to acquire the endonuclease activity needed to process the overhangs (Ma et al 
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2002). It has been proposed that phosphorylation of Artemis by DNA-PK is also key for its 

endonuclease function (Niewolik et al 2006). In contrast, another report suggested that the 

kinase activity of DNA-PK is dispensable for Artemis endonuclease activation and instead 

DNA-PK autophosphorylation is important (Goodarzi et al 2006). Once processed the DNA 

ends can be ligated together by the DNA ligase IV/XRCC4 complex, which is thought to be 

recruited to the synaptic complex via an interaction with KU70/80 (Costantini et al 2007, 

Nick McElhinny et al 2000). Despite the fact that this complex can ligate DNA in vitro, 

association with the XRCC4-like factor (Cernunnos/XLF) has been shown to further 

potentiate this activity (Ahnesorg et al 2006, Hentges et al 2006, Lu et al 2007). Furthermore, 

the addition of XLF to this complex facilitates the ligation of non-compatible ends (Gu et al 

2007, Tsai et al 2007) (Figure 1.6). 

1.3.3 Alternative DSB repair pathways 

In addition to the principal DSB repair pathways, HR and NHEJ, two other DSB repair 

pathways have recently been identified, which are single strand annealing (SSA) and 

alternative end-joining (Alt-EJ). Both these pathways are error-prone and result in 

chromosomal abnormalities such as deletions and chromosomal translocations. 

1.3.3.1  Single strand annealing 

SSA can either occur if the DSB has been formed between two repetitive sequences or if 

components of HR are lost such as RAD51 and BRCA2 (Stark et al 2004). As in HR, the first 

step in SSA is DNA end-resection, which is performed using the same set of proteins. When 

the homologous single stranded regions of the two repeats are exposed they can anneal to one 

another in a process facilitated by RAD52 (Singleton et al 2002). The displaced non-

homologous 3  ssDNA tails are removed by the flap endonucleases, excision repair cross 

complementation 1 (ERCC1)/xeroderma pigmentosum F (XPF) and the two strands are then 

ligated together. (Ahmad et al 2008, Al-Minawi et al 2008). SSA results in large deletions 

because efficient SSA depends on the length of the homologous sequence flanking the DSB 

being >30bp (Sugawara et al 2000).  
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Figure 1.6 Repair of DSBs by NHEJ. The KU70/80 heterodimer associates with the two 

ends of the DSB and recruits DNA-PKcs. DNA-PKcs tethers the DNA ends together to form a 

synaptic complex. Once formed, DNA-PKcs undergoes autophosphorylation, which makes the 

DNA ends accessible to NHEJ processing enzymes. Non-compatible DNA ends are processed 

either by nucleases such as Artemis, which remove the unwanted nucleotides or by 

polymerase, which fill in the gap. Subsequently, the blunt DNA ends are ligated together by 

the LigIV/XRCC4/XLF complex (Adapted from Wetterings and Chen 2008). 
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1.3.3.2  Alternative end-joining 

Alt-EJ has been described as a variation of classical end-joining that can repair DSBs 

independently of the core components of NHEJ namely, KU70, KU80, DNA ligase IV, XLF 

and XRCC4 (Boulton and Jackson 1996, Liang and Jasin 1996, Wang et al 2003a). Instead, 

Alt-EJ utilises proteins from HR, mismatch repair and base excision repair and is considered a 

backup end-joining pathway since it mainly operates when core NHEJ components are absent. 

The majority of Alt-EJ events require sequences of extensive microhomology (5-25bp) to 

anneal the DNA ends and therefore, Alt-EJ is sometimes referred to as microhomology 

mediated end-joining (MMEJ) (McVey and Lee 2008). The regions of microhomology 

flanking the break site are exposed as a result of limited MRN and CtIP- dependent DNA end-

resection (Bennardo et al 2008, Rass et al 2009, Xie et al 2009, Yun and Hiom 2009). 

However, unlike HR, DNA end-resection in Alt-EJ is carried out in a BRCA1-independent 

manner (Yun and Hiom 2009). Annealing at the two microhomology regions is thought to 

produce 3  ssDNA tails containing the non-complementary DNA, which are removed by 

ERCC1/XPF (Ahmad et al 2008). In addition, the ends are also processed by error-prone 

polymerase such as Pol  and Pol  and polynucleotide kinase (PNK) (Audebert et al 2006, Gu 

et al 2007, Simsek and Jasin 2010). Finally, ligation of the ends is independent of DNA ligase 

IV, but is facilitated by DNA ligase I and the DNA ligase III/XRCC1 complex (Liang et al 

2008, Wang et al 2005). Recruitment of DNA ligase III/XRCC1 to DNA ends relies on 

PARP1, which can interact with both XRCC1 and DNA ligase III (Audebert et al 2006). 

Furthermore, PNK has been shown to be co-recruited with the DNA ligase III/XRCC1 

complex to DNA ends where it is activated by XRCC1 (Whitehouse et al 2001). 

1.3.4 Repair of programmed DSBs 

DSBs occur as normal intermediates during the immunological processes, V(D)J 

recombination and CSR. These pathways are fundamental for generating a diverse antigen 

receptor repertoire, which is important for the immune system to be able to respond to a wide 

variety of antigens. 
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1.3.4.1  V(D)J recombination 

The variable regions of antigen receptors are important for recognising and binding specific 

antigens. These regions are generated by randomly recombining dispersed variable (V), 

diversity (D) and joining (J) gene segments through a process known as V(D)J recombination. 

The T cell receptor (TCR)  and  chains and the immunoglobulin heavy chain (IgH) variable 

regions are formed from V, D and J segments whilst the TCR  and  chains and the Ig light 

chain (IgL) variable region only consists of the V and J segments. In the case of the IgH, the 

D and J segments are recombined first, followed by the joining of the DJ assembly with a V 

segment. The initial stages of V(D)J recombination are carried out by the lymphoid specific 

recombination-activating genes, RAG1 and RAG2, which form an endonuclease complex. 

The RAG1/RAG2 complex binds to recombination signal (RS) sequences flanking each V, D 

and J gene segments and introduces a single strand nick between the coding and RS 

sequences. A direct transesterification reaction then follows, in which the free hydroxyl group 

at the 3  end of the coding sequence attacks the phosphodiester bond on the opposite strand of 

DNA forming a DSB. This cleavage generates covalently sealed hairpin coding ends and 

blunt 5  phosphorylated signal ends (McBlane et al 1995, van Gent et al 1996). The four ends 

remain associated with the RAG1 and RAG2 in the stable synaptic complex, which serves as 

a scaffold to recruit proteins that facilitate repair (Yarnell Schultz et al 2001). 

Completion of V(D)J recombination occurs through the classical NHEJ pathway. The hairpin 

coding ends are bound by KU70/80, which recruits DNA-PKcs, which in turn recruits and 

activates Artemis enabling it to open the hairpin ends through its acquired endonucleolytic  

activity (Ma et al 2002). The DNA end-processing step that follows is different between 

classical, repair-associated NHEJ and VDJ recombination. Unlike during classical NHEJ 

where the ends undergo limited processing to protect the integrity of the genome, the exposed 

coding ends in V(D)J recombination are subject to extensive processing. Firstly, the ends are 

trimmed by nucleases, then gap filling is performed by DNA synthesis (template-dependent) 

using DNA polymerases such as Pol  and Pol  and finally the template-independent 

polymerase TdT inserts random nucleotides to the end of the DNA. These modifications 

contribute to creating diversity in the variable regions of the antigen receptor, which are 

important for antigen specificity (Bertocci et al 2006). The two processed coding ends are 

then ligated together by the DNA ligase IV/XRCC4/XLF complex. In addition, ligation of the 



Chapter 1 

21 

two blunt signal ends results in the formation of a circular double stranded episome 

containing the unwanted intervening DNA sequence between the coding gene segments 

(Arnal and Roth 2007). Assembly of the IgH and IgL variable regions leads to expression of 

IgM, which is displayed on the cell surface of a B cell.  

1.3.4.2  Class switch recombination 

Following stimulation by antigens, the Ig receptors formed during V(D)J recombination 

undergo further genetic alterations through CSR. This process involves exchanging the 

initially expressed IgH constant region gene, C  with one of the downstream IgH constant 

region genes such as C , C  or C , resulting in a switching of Ig isotype from IgM to IgG, 

IgE or IgA respectively. Therefore, CSR allows the expression of antigen receptors that have 

the same antigen specificity, but a different effector function. Even though CSR is a deletional 

recombination reaction similar to V(D)J recombination, the method in which DSBs are 

formed is different between these two processes (Chaudhuri and Alt 2004). Unlike during 

V(D)J recombination, where DSBs are induced directly by the RAG endonuclease complex in 

a sequence specific manner, DSBs in CSR are created in a region specific manner involving 

the B cell specific enzyme activation-induced cytidine deaminase (AID) (Muramatsu et al 

2000, Revy et al 2000). AID deaminates cytosine to uracil in switch (S) regions, which are 

repetitive sequences that precede the constant region gene segments. Prior to deamination the 

S regions are transcribed generating secondary structures such as R loops that provide the 

ssDNA required for AID activity (Chaudhuri et al 2003, Shinkura et al 2003, Sohail et al 

2003). Following deamination, the inappropriate uracil is recognised and excised by uracil 

DNA glycosylase (UNG) creating an abasic site that is converted into a SSB by the 

endonucleases, APE1 and APE2 (Guikema et al 2007, Krokan et al 2002). Staggered DSBs 

can be generated through the close proximity of two SSBs on opposite strands of the DNA. 

Alternatively, the uracil-guanine mismatches can be recognised and processed by components 

of the mismatch repair pathway resulting in the formation of a DSB (Stavnezer and Schrader 

2006). The staggered DNA ends are then processed to generate blunt ends DSBs or overhangs 

that are short enough for efficient ligation. This could be achieved by error prone polymerases 

such as Pol , which fill in the overhangs by DNA synthesis or by endonucleases such as the 

ERCC1/XPF complex, which remove the overhangs (Stavnezer et al 2008). Subsequent 

recombination between the two breaks located within these switch regions results in exchange 
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of the heavy constant region with deletion of the intervening sequences, including C , which 

is released as an episomal circle. 

Finally, ligation of the DNA ends involves proteins from the classical NHEJ including DNA-

PKcs, KU70/80 and DNA ligase IV/XRCC4/XLF (Casellas et al 1998, Franco et al 2008, 

Manis et al 1998, Yan et al 2007a). Initially, Artemis was considered to be dispensable for 

end-joining in CSR (Rooney et al 2005). However, recent reports indicate that it may also 

function in CSR (Du et al 2008, Franco et al 2008, Rivera-Munoz et al 2009). Interestingly, 

CSR is not totally abrogated in the absence of these proteins. A recent study revealed that 

CSR in cells deficient in the core components of classical NHEJ could occur through two 

different Alt-EJ pathways depending on which NHEJ component was missing. The pathway 

that operates in the absence of XRCC4 or DNA ligase IV utilises the upstream classical NHEJ 

proteins such as KU and substitutes the DNA ligase for either DNA ligase 1 or DNA ligase 

III. Furthermore, end-joining in this pathway is mediated by regions of microhomology and 

therefore is likely to require DNA end-resection by MRN and CtIP (Boboila et al 2010, 

Dinkelmann et al 2009, Lee-Theilen et al 2011). The other Alt-EJ pathway functions in the 

absence of both KU70 and DNA ligase IV and also utilises microhomology to ligate ends. 

However, in contrast to XRCC4 or DNA ligase IV deficient cells, this pathway also generates 

a number of direct joins indicating that the proteins involved in the two pathways are different 

(Boboila et al 2010). Consistent with this data, Mansour et al (2010) demonstrated that KU 

deficient cells did not necessarily require microhomology for efficient ligation (Mansour et al 

2010). These data support the notion that not all Alt-EJ events are reliant on microhomology 

(McVey and Lee 2008, Zha et al 2009).  

In addition to the NHEJ machinery, CSR has also been shown to be affected by components 

of the DDR as illustrated by the observed CSR defects in cells deficient in ATM (Lumsden et 

al 2004, Pan et al 2002, Reina-San-Martin et al 2004), MRN (Dinkelmann et al 2009), H2AX 

(Reina-San-Martin et al 2003), MDC1 (Lou et al 2006), RNF8 (Li et al 2010, Santos et al 

2010) and 53BP1 (Manis et al 2004, Ward et al 2004). These observations highlight the 

essential requirement for the ubiquitin-dependent DDR pathway in immune system 

development. 
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1.3.5 Human DSB repair syndromes 

Repair of DSBs is crucial for maintaining the integrity of the genome and for normal 

developmental processes, in particular immune system development. Mutations in DSB repair 

genes result in the inability to properly repair DNA damage and are the underlying cause for a 

number of human autosomal recessive genetic syndromes. 

1.3.5.1  Ataxia-Telangiectasia 

The first human DSB repair disorder to be described was Ataxia-Telangiectasia (A-T), which 

is an early onset disease caused by mutations in the ATM gene. Hallmark clinical features of 

A-T include progressive cerebellar neurodegeneration that causes ataxia (lack of balance) and 

dysarthria (speech impediment), telangiectasia (diluted blood vessels) mainly of the eyes, face 

and ears, immunodeficiency that affects both the cellular and humoral components of the 

immune system, profound radiosensitivity and a elevated predisposition to the development of 

cancer, in particular leukemia and lymphoma (Lavin and Shiloh 1997, Taylor et al 1975). 

1.3.5.2  Syndromes affecting the MRN complex 

Nijmegen Breakage Syndrome (NBS) is caused by mutations in the NBS1 gene. Unlike A-T, 

NBS patients primarily present with mild to moderate microcephaly, mental retardation, 

growth retardation and ‘bird-like’ facial features. However, similar to A-T, NBS patients 

exhibit a hypersensitivity to IR, immunodeficiency affecting both the humoral and cellular 

components of the immune system and have increased predisposition to lymphoid 

malignancies (Digweed and Sperling 2004).  

Initially, it was thought that mutations in MRE11 and RAD50 genes caused the hereditary 

disorders, Ataxia-Telangeictasia-Like-Disorder (A-TLD) and Nijmegen Breakage Syndrome-

Like Disorder (NBSLD) respectively (Stewart et al 1999, Taylor et al 2004, Waltes et al 

2009). However, recently, two patients have been identified that have mutations in MRE11, 

but have NBSLD and not A-TLD indicating that MRE11 mutations can give rise to a wider 

range of clinical features than was previously thought (Matsumoto et al 2011). As the name 

suggests A-TLD patients have a clinical phenotype resembling that of A-T, whereas patients 

with NBSLD exhibit clinical symptoms mirroring those of NBS. Interestingly, unlike A-T and 

NBS patients, A-TLD and NBSLD patients are not immunodeficient despite the involvement 

of MRN complex in both V(D)J recombination and CSR. Furthermore, despite the low 
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numbers of patients identified with these disorders, a predisposition to lymphoid malignancies 

has not been observed, although two A-TLD patients did develop lung cancer (Uchisaka et al 

2009).  

1.3.5.3  RIDDLE syndrome 

RIDDLE (Radiosensitivity, Immunodeficency, Dysmorphic features and Learning 

Difficulties) syndrome is a newly described human DSB repair syndrome that is caused by 

mutations in the RNF168 gene. To date only two patients have been identified with RIDDLE 

syndrome whose clinical features include short stature, mild hypersensitivity to IR, 

dysmorphic facial features, learning difficulties and immunodeficiency. The 

immunodeficiency in these patients is presented as abnormal immunoglobulin levels 

indicating that it is likely to be caused by a CSR rather than V(D)J recombination defect 

(Devgan et al 2011, Stewart et al 2007). In contrast to the first patient, the second patient also 

exhibited ataxia and telangiectasia (Devgan et al 2011).   

1.3.5.4  Seckel syndrome 

Seckel syndrome (SCKL) is characterised by growth retardation, mental retardation, 

microcephaly and ‘bird-like’ facial features. In addition, some Seckel patients have also been 

reported to have lymphoma (Alderton et al 2004). Unlike other DSB repair disorders, Seckel 

syndrome demonstrates genetic heterogeneity. Genetic mapping studies have revealed four 

Seckel syndrome causative genomic loci, namely Skl 1-4, however to date only two genetic 

defects have been identified in this disorder (Borglum et al 2001, Faivre et al 2002, Goodship 

et al 2000, Kilinc et al 2003). Some individuals with Seckel syndrome have mutations in 

ATR and have ATR-Seckel syndrome (also referred to as SCKL1), whereas other individuals 

have been reported that have mutations in the gene encoding pericentrin and have PCNT-

Seckel syndrome (also known as SCKL4) (Griffith et al 2008, O'Driscoll et al 2003). 

1.3.5.5  Ligase IV syndrome 

DNA ligase IV was the first component of the core NHEJ machinery to be found mutated in a 

human syndrome. All the patients diagnosed so far exhibit hypersensitivity to IR and with the 

exception of the first patient, some form of immunodeficiency, typically pancytopenia 

(Riballo et al 1999). This is likely to be due to the involvement of DNA ligase IV in V(D)J 

recombination and consequently these patients are all predisposed to lymphomas. 
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Furthermore, the vast majority of patients also exhibit clinical features that overlap with NBS 

including microcephaly, developmental delay, severely delayed growth and ‘bird-like’ facial 

features.  Some additional clinical features also overlap with those observed in A-T patients 

such as the presence of telangiectasia and type 2 diabetes (Ben-Omran et al 2005, Buck et al 

2006b, Enders et al 2006, O'Driscoll et al 2001). 

1.3.5.6  Radiosensitive Severe Combined Immunodeficiency (RS-SCID) 

To date there are two forms of RS-SCID, which are Artemis-dependent RS-SCID and XLF-

dependent RS-SCID caused by mutations in ARTEMIS and XLF genes respectively. Complete 

loss of Artemis protein is associated with the most severe form the disease that typically 

presents with T B NK  SCID, as well as a hypersensitivity to IR (Moshous et al 2001). 

Patients with hypomorphic mutations in ARTEMIS are less severely affected, as they do 

develop T and B lymphocytes, but at reduced levels (Moshous et al 2003). The severity of the 

immunodeficiency in patients with Artemis-dependent RS-SCID highlights the critical role of 

Artemis in NHEJ DSB repair during V(D)J recombination (Rooney et al 2003). Furthermore, 

patients with hypomorphic mutations also have hypogammaglobulinaemia affecting IgG and 

IgA indicating a role for Artemis during the repair of CSR associated DSBs (Du et al 2008, 

Moshous et al 2003). Unsurprisingly, these patients are predisposed to develop lymphoid 

malignancies (Moshous et al 2003).  

The immunodeficiency observed in XLF-dependent RS-SCID is similar to that observed in 

the less severely affected Artemis-dependent RS-SCID patients, with most patients exhibiting 

a hypersensitivity to IR, severe lymphopenia involving both B and T lymphocytes and 

reduced or absent IgG and IgA. These characteristics support a role for XLF in V(D)J 

recombination and CSR. Unlike Artemis-dependent RS-SCID, these patients also present with 

non-immunological clinical features including microcephaly, growth retardation and 

dysmorphic facial features. This highlights the importance of XLF in the repair of DSBs 

outside of the immune system (Buck et al 2006a, Dutrannoy et al 2010).  

1.3.6 Mediators 

Mediators are proteins that act downstream of the ATM and ATR kinases and are important 

for transducing the DNA damage signal to effector proteins. These proteins facilitate the 

interactions between ATM/ATR and their substrates and/or act as scaffolds to aid recruitment 
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of other DDR proteins to the damage sites. MDC1, PTIP, BRCA1, Microcephalin (MCPH1) 

and 53BP1 are mainly involved in the ATM pathway whereas TOPBP1 and Claspin have 

been proposed to co-regulate the ATR pathway (Harper and Elledge 2007). All these proteins 

contain protein-protein interaction modules such as BRCT domains and/or FHA domains. 

Furthermore, apart from the E3 ubiquitin ligase activity of BRCA1, these proteins have no 

characterised intrinsic enzymatic activity (Mohammad and Yaffe 2009). Here I will focus on 

MDC1, BRCA1 and 53BP1, proteins which are orthologues of the budding yeast 

Saccharomyces cerevisiae (S.cerevisiae) RAD9 and the fission yeast Schizosaccharomyces 

pombe (S.pombe) Crb2 (FitzGerald et al 2009). 

1.3.6.1  MDC1 

MDC1 is a large nuclear protein that is composed of several distinct sequence domains. 

Besides a N-terminal FHA domain and two BRCT domains at its C-terminus, MDC1 also 

features a unique repeat region in the middle of the protein known as the proline, serine and 

threonine (PST) region, a cluster of TQXF motifs and a SDTD repeat region. Localisation of 

MDC1 to DSBs is dependent on H2AX, as MDC1 failed to form foci in H2AX
-/-

 MEFs 

following IR. Phosphorylated serine 139 of H2AX produces a binding site recognised by the 

BRCT domains of MDC1 (Stucki et al 2005). However, H2AX is constitutively 

phosphorylated on tyrosine 142 by the kinase WSTF (Williams syndrome transcription 

factor), which prevents MDC1 from being recruited. Consequently, the binding of MDC1 to 

H2AX was shown to be dependent on tyrosine 142 dephosphorylation by the tyrosine 

phosphatases EYA1/3 (Cook et al 2009, Krishnan et al 2009). Once bound to H2AX, MDC1 

plays a crucial role as a core scaffold in DDR where it recruits several key DDR proteins to 

the DSB. MDC1 interacts with NBS1 through multiple SDTD motifs that are constitutively 

phosphorylated by CK2 stabilising the MRN complex at the DNA ends (Lukas et al 2004a, 

Melander et al 2008, Spycher et al 2008). In addition, MDC1 also associates with activated 

ATM via its FHA domain facilitating the retention of ATM at sites of DSBs. These 

interactions result in propagation of H2AX along the chromatin through a MDC1-dependent 

positive feedback loop (Lou et al 2006). Furthermore, phosphorylation of MDC1 on its TQXF 

motifs by ATM aids recruitment of RNF8, ultimately triggering the ubiquitin dependent 

component of the ATM cascade (Huen et al 2007, Kolas et al 2007, Mailand et al 2007). In 

the absence of MDC1, many proteins involved in DNA repair and checkpoint activation such 
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as 53BP1, BRCA1 and the MRN complex fail to accumulate at sites of DNA damage. As a 

consequence, these cells have defective ATM signalling and fail to activate the intra-S phase 

and G2/M phase checkpoints (Goldberg et al 2003, Stewart et al 2003). Therefore, MDC1 

plays an important role in amplification of the damage signal.  

MDC1 has also been shown to function in DNA DSB repair. siRNA studies demonstrated that 

MDC1 promotes HR by directly interacting with RAD51 and is required for the recruitment 

of RAD51 to ionising radiation-induced foci (IRIF) and for maintaining RAD51 protein 

stability (Zhang et al 2005). In addition, MDC1 increases the rate of NHEJ at dysfunctional 

telomeres, which may be due to its ability to interact and regulate DNA-PK 

autophosphorylation, although currently this is unknown (Dimitrova and de Lange 2006, Lou 

et al 2004). In support of its importance in the DDR, MDC1 knockout mice are growth 

retarded, sensitive to IR, have a mild CSR defect and have gross genomic instability in 

response to IR (Lou et al 2006).  

More recently, MDC1 has been reported to be involved in mitotic progression, independent of 

DNA damage. MDC1 regulates the metaphase to anaphase transition through its ability to 

interact directly with the APC/C and modulates its E3 ubiquitin ligase activity. As a result, 

mitotic cells deficient in MDC1 have reduced APC/C activity and arrest in metaphase 

(Townsend et al 2009). 

1.3.6.2  BRCA1 

BRCA1 is a tumour suppressor protein that is important in maintaining genome stability. 

Germ line heterozygous mutations in BRCA1 lead to an enhanced predisposition to both 

breast and ovarian cancer. In addition to its two C-terminal BRCT domains, BRCA1 also 

contains an N-terminal RING domain that enables it to interact with E2 conjugating enzymes. 

BRCA1 has been implicated in a multitude of cellular processes including checkpoint 

activation, DNA repair and transcriptional regulation (Boulton 2006, Huen et al 2010b). 

The RING domain of BRCA1 mediates its stable association with another RING/BRCT 

domain containing protein, BARD1 (Brzovic et al 2001). This heterodimer serves as an E3 

ubiquitin ligase at sites of DSBs and facilitates the formation of lysine-6 (K6)-linked ubiquitin 

chains (Morris and Solomon 2004). Recently, it has been reported that conjugation of SUMO-

1 on BRCA1 by PIAS1 together with its E2 conjugating enzyme, UBC9 stimulates this E3 

ubiquitin ligase activity (Morris et al 2009). Despite, the function of the K6-linked ubiquitin 
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chains being unknown, they are essential for BRCA1-mediated suppression of genomic 

instability (Morris et al 2006, Ruffner et al 2001).  

In response to DSBs, BRCA1-BARD1 heterodimers form a number of protein super-

complexes. One of these complexes, BRAC1-A consists of RAP80, Abraxas, BRCC36, 

BRCC45 and MERIT40 and is important for the localisation of BRCA1 to sites of DSBs 

(Feng et al 2009, Kim et al 2007, Shao et al 2009b, Sobhian et al 2007, Wang et al 2007, 

Wang et al 2009). Abraxas interacts with the BRCT domains of BRCA1 and links it to 

RAP80, which targets BRCA1 to the DSB by binding to K63-linked ubiquitin chains through 

its UIM domains. Cells depleted of RAP80 and Abraxas exhibit impaired accumulation of 

BRCA1 at sites of DSBs. 

Once recruited to DSBs by this complex, BRCA1 plays a role in G2/M checkpoint activation. 

This is partly by regulating the expression, phosphorylation and localisation of CHK1, a 

known regulator of the G2/M checkpoint (Yarden et al 2002). However, prior 

phosphorylation of BRCA1 on serine 1423 by ATM is required for activation of the G2/M 

checkpoint (Xu et al 2001a). The importance of BRCA1 in G2/M checkpoint activation is 

illustrated by the fact that cells lacking functional BRCA1 exhibit severe defects in 

checkpoint activation (Xu et al 1999b).   

In addition to the G2/M checkpoint, BRCA1 has also been shown to be involved in the intra-

S-phase checkpoint that is activated in response to replication stress such as stalled replication 

forks (Xu et al 2001a). This requires ATM-dependent phosphorylation of BRCA1 on serine 

1387 and involves interactions between BRCA1 with BACH1 and TOPBP1, which together 

form the BRCA1-B complex (Greenberg et al 2006, Xu et al 2002). Absence of any of these 

three proteins results in the failure of cells to reduce the rate of DNA replication when 

irradiated, a phenomenon known as radioresistant DNA synthesis (RDS) and a consequence 

of a defective intra-S-phase checkpoint (Greenberg et al 2006). 

The involvement of BRCA1 in HR-mediated DNA repair has long been known, but is poorly 

understood. BRCA1 facilitates the recruitment of RAD51 to DSBs through its association 

with BRCA2 (Bekker-Jensen et al 2006, Chen et al 1998a, Greenberg et al 2006, Scully et al 

1997b). In the absence of BRCA1, RAD51 fail to form foci and consequently cells lacking 

functional BRCA1 are deficient in homology-mediated repair (Greenberg et al 2006, 

Moynahan et al 1999, Scully et al 1999). Furthermore, this interaction between BRCA1 and 
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BRCA2 is mediated by PALB2. PALB2 directly associates with BRCA1 and promotes the 

accumulation of BRCA2 and RAD51 to DSBs (Sy et al 2009, Zhang et al 2009b). The 

interaction between PALB2 and BRCA1 is crucial for HR since mutations in the PALB2 

binding site in BRCA1 result in compromised HR (Zhang et al 2009b). Despite these studies, 

the mechanism by which BRCA1 promotes HR remains unclear. More recently, BRCA1 has 

been shown to be involved in DNA end-resection through its ability to interact with 

components of the BRCA1-C complex, CtIP and the MRN complex (Chen et al 2008). In 

support of a role for BRCA1 in DNA end-resection, accumulation of RPA at sites of DNA 

damage was found to be impaired in BRCA1 defective cells (Schlegel et al 2006). 

Interestingly, DNA end-resection is a prerequisite for RAD51 nucleoprotein filament 

formation, therefore the reason behind the lack of RAD51 foci formation may be due to an 

inability of BRCA1 deficient cells to efficiently process the ends of DSBs.  

Further to its roles in checkpoint activation and DNA repair, BRCA1 also functions in 

transcription regulation. BRCA1 has been shown to be a component of the general 

transcription machinery as it interacts with the RNA polymerase II holoenzyme complex, in 

part through binding to RNA helicase A (Anderson et al 1998, Scully et al 1997a). Although 

BRCA1 has not been demonstrated to bind DNA in a sequence specific manner, it has been 

established that it can interact with various transcription factors and function as a co-

regulator. In response to DNA damage, BRCA1 cooperates with p53 to stimulate the 

expression of some of its target genes, in particular those involved in cell cycle arrest and 

DNA repair such as p21 and GADD45 (Harkin et al 1999, MacLachlan et al 2002, Ouchi et 

al 1998, Zhang et al 1998). Furthermore, it has been reported that BRCA1 can also induce the 

expression of p21 and GADD45 in a p53-independent manner (Harkin et al 1999, 

Somasundaram et al 1997). In the case of GADD45, this is mediated through interactions 

between BRCA1 and the transcription factors, Oct1 and NF-Y (Fan et al 2002). In addition to 

p53, BRCA1 also acts as a co-activator for STAT1 (Ouchi et al 2000), NF- B (Benezra et al 

2003), ATF1 (Houvras et al 2000) and androgen receptor-dependent transcription (Park et al 

2000, Yeh et al 2000). Moreover, BRCA1 has also been shown to function as a co-repressor 

of transcription, as it inhibits the transcriptional activity of the estrogen receptor (Fan et al 

2001) and c-myc (Wang et al 1998). Finally, through its BRCT domains, BRCA1 interacts 

with various transcriptional regulatory proteins, which may contribute to its ability to function 

as a transcriptional co-regulator. These include the HATs, CBP (CREB binding protein) and 
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p300, which are general transcriptional co-activators (Pao et al 2000), as well as HDAC1/2 

and the retinoblastoma susceptibility protein, RB1 (Yarden and Brody 1999). The biological 

consequences of many of these interactions still remain to be elucidated. However, a recent 

study revealed that the BRCT domains of BRCA1 preferentially bound to methylated p300. 

Interestingly, methylation of p300 by the co-activator associated arginine methyltransferase 1 

(CARM1) has been demonstrated to be increased in response to DNA damage suggesting that 

the damage-inducible interaction of BRCA1 with co-activators may potentiate its role in 

regulating transcription (Lee et al 2011).     

1.3.6.3  53BP1 

53BP1 is comprised of 1972 amino acids and contains several domains including two tandem 

BRCT domains at the C-terminus and a tandem Tudor domain that recognises methylated 

histones (Callebaut and Mornon 1997, Charier et al 2004). Theses domains are also present in 

S.cerevisiae RAD9 and S.pombe Crb2. Therefore, even though MDC1 and BRCA1 share 

some functional similarities to RAD9 and Crb2, 53BP1 is considered to be the most closely 

related orthologue (FitzGerald et al 2009). 53BP1 also contains a GAR domain 

(glycine/arginine rich region) that is methylated by the protein arginine methyltransferase 1 

(PRMT1) and is required for the DNA binding activity of 53BP1 (Boisvert et al 2005). 53BP1 

also possess several PIKK S/TQ (Serine/Threonine-Glutamine) consensus sites, which are 

phosphorylated in a PIKK-dependent manner following IR and UV (Jowsey et al 2007) 

(Figure 1.7). 53BP1 has also been shown to be a substrate for CDKs, as mapping of 

phosphorylation networks revealed that 53BP1 contains multiple CDK-dependent 

phosphorylation sites (Linding et al 2007). The function of many of these phosphorylation 

sites is currently unknown, although the roles of some of these sites have been characterised.  

ATM-dependent phosphorylation of 53BP1 on serine 25 is required for the interaction 

between 53BP1 and PTIP. Abrogation of this interaction results in a defective cellular 

response to DNA damage (Munoz et al 2007). Additionally, phosphorylation of 53BP1 on 

serine 1219 by ATM has been reported to function in G2/M cell cycle arrest following IR 

(Lee et al 2009). However, ATM-mediated phosphorylation of 53BP1 is dispensable for the 

recruitment of 53BP1 to sites of DSBs (Schultz et al 2000) 

The Tudor domain of 53BP1 is important for its localisation to sites of DNA DSBs through its 

ability to interact with methylated histones. In yeast it has been shown that S. cerevisiae  
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RAD9 is recruited to DNA DSBs via binding of its Tudor domain to H3K79me2 (Grenon et 

al 2007, Wysocki et al 2005), whereas S.pombe Crb2 is recruited via binding to H4K20me2 

(Greeson et al 2008, Sanders et al 2004). Both these modifications have been implicated in 

the recruitment of 53BP1 to chromatin. The involvement of H3K79me2 in the recruitment of 

53BP1 was first reported by Huyen et al (2004), who showed that the Tudor domain of 

53BP1 binds to H3K79me2 both in vitro and in vivo (Huyen et al 2004). Point mutations in 

the Tudor domain abolished this interaction and impaired 53BP1 foci formation. Furthermore, 

depletion of hDot1/KMT4, the histone methyltransferase that di-methylates H3K79 also 

reduced foci formation indicating that methylation of H3K79 by hDot1/KMT4 was important 

for 53BP1 recruitment (Huyen et al 2004). However, subsequent reports suggested a 

predominant role for H4K20me2 in recruitment of 53BP1 to foci. 53BP1 was found to bind to 

H4K20me2 with greater affinity than to H3K79. In addition, reduction of H4K20 methylation 

levels through knockdown of the H4K20 histone methyltransferases, MMSET, Set8/KMT5A, 

Suv4-20h1/KMT5B and Suv4-20h2/KMT5C decreased 53BP1 foci formation (Botuyan et al 

2006, Pei et al 2011, Yang et al 2008a). It is still unclear why 53BP1 requires two 

methylation marks for its recruitment to chromatin. However, it has been suggested that these 

two methylation marks may function redundantly in humans (FitzGerald et al 2009). These 

methylation marks are present on chromatin independently of DNA damage and their levels 

are not altered following DNA damage. Furthermore, they are normally found buried within 

the chromatin. Initially, it was postulated that DNA damage induced passive relaxation of the 

chromatin structure surrounding the DSB, thereby allowing 53BP1 to bind to 

H3K79me2/H4K20me2 (Huyen et al 2004, Sanders et al 2004). However, more recently, it 

has been demonstrated that ubiquitylation of histones by RNF8/RNF168, phosphorylation of 

H2AX and acetylation of histones by Tip60 facilitate the recruitment of 53BP1 to DSBs by 

allowing H3K79me2/H4K20me2 to become accessible to 53BP1 through the formation of a 

more open chromatin structure (Doil et al 2009, Murr et al 2006). Even though recruitment of 

53BP1 to DSBs is not dependent on it directly interacting with other DDR proteins, its 

retention at DSBs is mediated through interacting with H2AX (Celeste et al 2003, 

Fernandez-Capetillo et al 2002, Ward et al 2003a). Currently it is unknown what the 

functional significance of this interaction is. However, two recent studies revealed that the 

interaction between the BRCT domains of S.pombe Crb2 and H2AX is important to maintain 

cell cycle arrest mediated by the G2/M DNA damage checkpoint (Sanders et al 2010, Sofueva 
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et al 2010). Furthermore, sumoylation of 53BP1 by PIAS4 has been shown to be necessary 

for the accumulation of 53BP1 at DSBs, although the biological relevance of this 

modification is currently unknown (Galanty et al 2009).  

53BP1 has been implicated in cell cycle checkpoint activation and maintenance following IR. 

Human cells depleted of 53BP1 by siRNA and mouse 53BP1
-/- 

cells have a mild G2/M 

checkpoint defect. This was only observed after exposure to low, but not high doses of IR 

(DiTullio et al 2002, Fernandez-Capetillo et al 2002, Wang et al 2002). However, in contrast 

to these results, other groups have reported no defects in G2/M checkpoint activation in the 

absence of 53BP1 (Morales et al 2003, Shibata et al 2010, Ward et al 2003b). Moreover, a 

recent study has indicated that 53BP1 may not be required for G2/M checkpoint activation, 

but rather may play a role in maintaining the IR-induced G2/M checkpoint arrest (Shibata et 

al 2010). Partial intra-S-phase checkpoint defects have also been observed in cells lacking 

53BP1 following IR (Wang et al 2002). These defects may be due to the requirement of 

53BP1 in the recruitment of the intra-S-phase checkpoint protein, Rif1 to sites of DSBs 

(Silverman et al 2004).  

One of the most recent functions of 53BP1 to be identified is that it is involved in limiting or 

suppressing DNA end-resection. Mice homozygous for exon 11 deletion ( 11) isoform of 

BRCA1 (BRCA1
11/ 11

) die during embryonic development. However, this embryonic 

lethality can be rescued by loss of one or both copies of p53, but as a consequence, the viable 

mice develop multiple types of tumours and age prematurely (Xu et al 2001c). It is likely that 

the increased genome instability and tumour predisposition observed in the BRCA1
11/ 11 

/p53
+/- 

mice is due to reduced HR caused by defective DNA end-resection. Interestingly, loss 

of 53BP1 also rescues the embryonic lethality of the BRCA1
11/ 11

 mice, as well as the tumour 

susceptibility and premature aging (Cao et al 2009). Moreover, the reduced HR caused by 

loss of BRCA1 is significantly enhanced in the absence of 53BP1 as a consequence of 

elevated levels of DNA end-resection (Bunting et al 2010). This suggests that a function of 

53BP1 may be to limit HR by controlling the level of processing at DNA ends. This 

observation is supported by further investigations conducted in 53BP1 depleted BRCA1 null 

MEFs and embryonic stem cells (ES) which showed restored RAD51 foci formation and 

partial, although not complete, restoration of HR compared to conditional BRCA1-deleted 

cells (Bouwman et al 2010). However, the ability of BRCA1
11/ 11 

53BP1
-/-

 cells to perform 
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DNA end-resection is dependent on ATM and CtIP, as was shown from the failure of 

BRCA1
11/ 11 

53BP1
-/-

 cells to restore RPA phosphorylation in response to IR when ATM was 

inhibited or CtIP was depleted (Bunting et al 2010). In light of these observations, it has been 

postulated that 53BP1 acts as a barrier to DNA end-resection and that this activity of 53BP1 

may be important for preventing HR-mediated DNA repair of breaks that should be repaired 

by NHEJ (Boulton 2010).  

One of the key functions of 53BP1 was discovered from 53BP1 knockout (53BP1
-/-

) mouse 

models. 53BP1
-/- 

mice are severely impaired in performing CSR and consequently are 

immunodeficient (Manis et al 2004, Ward et al 2004). The CSR defect observed in these mice 

is more severe than that exhibited by mice null for H2AX, MDC1 and RNF8, highlighting the 

importance of 53BP1 during immune system development. In 53BP1
-/-

 cells there is almost a 

complete loss of long-range CSR and a concomitant increase in the frequency of short-range 

intra-switch recombination (Manis et al 2004, Reina-San-Martin et al 2007, Ward et al 2004). 

Currently, two roles for 53BP1 in CSR have been proposed. One of these roles is that 53BP1 

facilitates end-joining through promoting and/or maintaining synapsis of two distal switch 

regions (Reina-San-Martin et al 2007). Alternatively, it has suggested that 53BP1 promotes 

long-range CSR by protecting the DNA ends from unwanted resection. Conversely, loss of 

53BP1 results in an ATM-dependent increase in resection leading to short-range joining 

between regions of microhomology within the switch regions by Alt-EJ (Bothmer et al 2010). 

However, as discussed by Bothmer et al (2010), it is unlikely that a switch from C-NHEJ to 

Alt-EJ can solely account for the profound defects in CSR in 53BP1
-/-

 B cells. Therefore, it 

has been suggested that both these functions of 53BP1 are required to explain the dominant 

effect of 53BP1 on CSR (Bothmer et al 2010).  

In contrast to its importance in CSR, 53BP1 has been described as being dispensable for 

V(D)J recombination (Manis et al 2004, Ward et al 2004). However, a recent report has 

demonstrated that 53BP1 does play a role in V(D)J recombination by facilitating long-range 

DNA end-joining. Loss of 53BP1 resulted in a decrease in V(D)J recombination between 

distal gene segments (Difilippantonio et al 2008). Interestingly, 53BP1 has been shown to 

promote the fusion of deprotected telomeres by increasing chromatin mobility and thereby 

increasing the chance that the two telomere ends come within sufficient proximity to allow 

the NHEJ machinery to bind (Dimitrova et al 2008). Therefore, it has been suggested that by 

increasing the mobility of the local chromatin surrounding the break site, 53BP1 is able to 
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facilitate NHEJ by bringing together distally located DNA ends, such as those DNA ends 

created by DSBs during V(D)J recombination and CSR, that otherwise would have a low 

probability of encountering each other (Difilippantonio et al 2008, Dimitrova et al 2008).  

Taken together the involvement of 53BP1 in cell cycle checkpoint control and DNA repair 

indicates that 53BP1 plays an integral role in maintaining genomic stability and suppressing 

tumourigenesis. In support of this, 53BP1
+/-

 and 53BP1
-/-

 mice exhibit chromosomal 

aberrations, which are indicative of a defect in DNA repair and are prone to developing 

tumours, in particular lymphoma, that could be enhanced when combined with a loss of p53 

(Morales et al 2003, Morales et al 2006, Ward et al 2003b, Ward et al 2005). Loss of one or 

both alleles of 53BP1 greatly accelerated tumour development in a p53 null background. 

Interestingly in human tumours, loss of 53BP1 has been shown to correlate with cancer 

progression (Gorgoulis et al 2005). Moreover, loss of 53BP1 has been found to be associated 

with triple-negative breast cancer and BRCA1 and BRCA2-mutated breast cancer (Bouwman 

et al 2010). 

53BP1 was originally identified as a p53 interacting protein in a yeast two-hybrid screen. The 

core DNA binding region of p53 was found to interact with the BRCT domains of 53BP1. 

Furthermore, the conformation of p53 appears to be crucial for this interaction because 53BP1 

failed to bind to mutant p53 (R175H) (Iwabuchi et al 1994). In a subsequent report, 53BP1 

was proposed to function as a transcriptional co-activator of p53 based on its ability to 

enhance p53 transcriptional activity in a reporter assay (Iwabuchi et al 1998). However, this 

function of 53BP1 appeared unlikely when the crystal structure of the 53BP1-p53 interaction 

was solved. These studies revealed that the p53 residues involved in binding to 53BP1 were 

the same as those required for p53 to bind to DNA demonstrating that it is sterically 

impossible for p53 to bind simultaneously to 53BP1 and the p53 DNA binding sites present in 

the promoters of p53 target genes (Derbyshire et al 2002, Joo et al 2002). Interestingly, in 

contrast to previous data, recent reports have shown that the interaction between 53BP1 and 

p53 is dependent on lysine methylation and involves the Tudor domain of 53BP1 (Huang et al 

2007a, Kachirskaia et al 2008). Huang et al (2007) revealed that the interaction between 

53BP1 and p53 required di-methylation of lysine 370 of p53 and this association resulted in 

an increase in p53 transactivation, thereby supporting a role for 53BP1 in transcriptional 

regulation (Huang et al 2007a). In addition, 53BP1 was shown to bind to di-methylated lysine 

382 of p53 in response to DNA damage. However, the functional consequence of this 
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interaction is currently unknown (Kachirskaia et al 2008). Taken together these observations 

indicate that 53BP1 does associate with p53 and may potentially act as a transcriptional 

regulator of p53. 

1.4 p53 

Since its discovery in 1979, the role of the p53 protein in cancer has been intensively studied 

(Levine and Oren 2009). p53 is a sequence specific DNA binding transcription factor that has 

been described as the ‘guardian of the genome’ because of its role in coordinating diverse 

cellular responses to a plethora of cellular stresses including DNA damage, hypoxia and 

oncogene activation (Lane 1992). Depending on the type and level of cellular stress, p53 can 

induce cell cycle arrest, DNA repair, cellular senescence, apoptosis, differentiation, cell 

metabolism and angiogenesis. Transactivation of its vast array of target genes is essential for 

p53 to impact on so many cellular processes, although it has been suggested that some effects 

of p53 may be independent of transcription (Bensaad and Vousden 2007, Marchenko and 

Moll 2007, Vousden and Lane 2007). In light of the complex role of p53, this section of the 

introduction will mainly focus on the regulation and functions of p53 in response to DNA 

damage. 

1.4.1 p53 has a fundamental role in tumour suppression 

p53 is a crucial tumour suppressor gene, as evidenced by the fact that >50% of all human 

cancers harbour somatic mutations in TP53 gene and that dysregulation of the p53 pathway 

commonly occurs in tumours that retain a wild type TP53 gene. Most of the mutations are 

missense mutations resulting in the production of a dominant negative protein that is capable 

of complexing with wild type p53 and overriding normal p53 cellular functions (de Vries et al 

2002).  In addition, germline mutations in TP53 are the underlying cause of Li-Fraumeni 

syndrome, which is characterised by a susceptibility to a broad spectrum of cancers including 

breast cancer, sarcomas, brain tumours and adrenal cortical carcinoma (Malkin et al 1990, 

Varley 2003). Further confirmation of the importance of p53 in tumour suppression came 

from the TP53 knockout mouse, which develops cancer rapidly and with 100% penetrance 

(Donehower et al 1992, Jacks et al 1994).  
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1.4.2 Structure of p53 

The N-terminus of the p53 protein comprises of two transcriptional activation domains 

(TADs), TAD1 and TAD2, which span residues 20-40 and 40-60. These domains can enhance 

transcription of p53 target genes by recruiting histone modifying enzymes, components of the 

basal transcriptional machinery and co-activator complexes. This region also contains the 

binding sites for the p53 inhibitory proteins HDM2 (human double minute protein 2) and 

HDMX (also known as HDM4, human double minute protein 4), which bind to the TAD1 and 

regulate both its stability and transcriptional activity. C-terminal to the TADs lies the proline 

rich domain (residues 60-90), which has been proposed to be involved in mediating protein-

protein interactions due to the presence of PxxP motifs that mediate binding of Src homology 

3 (SH3) domain-containing proteins. The central core region of p53 mediates the sequence 

specific DNA binding of the protein to response elements in its target genes. Although, 

bioinformatics studies predict that there may be >4000 human genes that contain putative p53 

binding sites (Wang et al 2001b), analysis using various chromatin immunoprecipitation 

based techniques have recently placed this number to be between 500 and 1600 genes 

(Cawley et al 2004, Wei et al 2006). The vast majority of cancer associated TP53 mutations 

occur in this domain, which includes the six most frequent mutations: R248Q, R273H, 

R175H, R282W, R249S and G245S. These mutations fall into two categories:1. Those that 

alter residues required for contacting the DNA (R248, R273) and 2. Those that are important 

for maintaining the structural conformational of the domain (R175, G245, R249, R282) 

(Brosh and Rotter 2009, Petitjean et al 2007). In addition, to abrogating the ability of p53 to 

bind to DNA, these mutant p53 proteins can acquire new oncogenic properties, known as 

‘gain of-function’ properties that enable it to promote tumourigenesis (Brosh and Rotter 

2009). For p53 to act as an efficient transcription factor, it requires the ability to self-associate 

with four molecules of the p53 monomer required to bind its response elements. This ability 

of p53 requires its oligomerisation domain, which is located towards the C-terminal end of the 

protein. Finally, p53 contains a serine and lysine rich domain at the extreme C-terminus 

(residues 363-393). This domain undergoes extensive post-translational modifications such as 

phosphorylation, acetylation, methylation and ubiquitylation that have been demonstrated to 

be critical in modulating both its stabilisation and transcriptional activity. 
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1.4.3 p53 functions 

Low levels of DNA damage result in the activation of cell cycle checkpoints leading to a 

transient cell cycle arrest. This allows the cell time to repair the DNA damage and thereby 

prevents the damaged DNA from undergoing replication or mitosis. p53 plays a role in 

regulating the checkpoints during the G1 and G2 phases of the cell cycle. In the case of severe 

levels of DNA damage, p53 promotes apoptosis. 

1.4.3.1  G1 growth arrest 

The ability of p53 to induce a G1 arrest in response to DNA damage is largely dependent on 

its ability to induce the expression of p21
 
(el-Deiry et al 1993). p21 mediates p53-dependent 

G1 arrest by inhibiting the activity of the CDK-cyclin complexes, CDK4/6-cyclin D1 and 

CDK2-cyclin E, which are associated with regulating the G1 phase of the cell cycle (He et al 

2005, Lundberg and Weinberg 1998). These kinases are responsible for sequentially 

phosphorylating pRb resulting in its inactivation. CDK-mediated phosphorylation of pRb 

promotes the release of the E2F transcription factor from inhibitory effects of pRb, 

subsequently allowing transactivation of E2F responsive genes required for the G1- to S-

phase transition. In its hypophosphorylated state, pRb sequesters the E2F transcription factor, 

thereby preventing entry into S phase (Harbour and Dean 2000). This model is supported by 

the fact that over-expression of E2F1 can drive quiescent cells into S phase by relieving p21-

mediated inhibition of CDK activity (Johnson et al 1993). 

p53 is also capable of inducing a G1 arrest by non-transcriptional mechanisms through its 

ability to bind to cyclin H, which is part of the CDK7/cyclin H/Mat1 CDK activating kinase 

complex (CAK). CAK plays a crucial role in activating cell cycle progression by 

phosphorylating and activating CDK2, and, as part of the TFIIH complex by controlling 

transcriptional activity of RNA polymerase II (Schneider et al 1998). 

1.4.3.2  G2 growth arrest 

In addition to the G1 arrest, p53 also influences the damage-induced G2/M arrest. In response 

to DNA damage, cells lacking p53 and p21 are capable of initiating a G2 arrest, but are unable 

to sustain the arrest, resulting in mitotic catastrophe (Bunz et al 1998). Progression from G2 

phase to mitosis requires the nuclear accumulation and subsequent activation of the mitosis 

promoting complex CDK1-cyclin B1. Activation of CDK1 involves dephosphorylation of 
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threonine 14 and tyrosine 15 by the CDC25 phosphatases and phosphorylation by CAK on 

threonine 161. It is thought that the involvement of p21 in G2 arrest is through its ability to 

bind to CDK1-cyclin B1 and inhibit CAK-mediated CDK1 activation since DNA damage or 

high levels of p21 have been demonstrated to reduce the phosphorylation of CDK1 on 

threonine 161 (Medema et al 1998, Smits et al 2000).  

In addition to the p53 regulated expression of p21, the G2 arrest also appears to require 

additional transcriptional targets of p53, including GADD45 and 14-3-3σ protein (Hermeking 

et al 1997). After DNA damage, the G2/M cell cycle arrest is initiated by a p53-independent 

pathway involving the phosphorylation of the CDC25C phosphatase on serine 216 by CHK1, 

thereby creating a binding site for the 14-3-3 proteins. Phosphorylated CDC25C is 

sequestered in the cytoplasm by the 14-3-3 proteins, which prevents the dephosphorylation of 

nuclear CDK1 required to activate it (Lopez-Girona et al 1999, Peng et al 1997). Even though 

14-3-3σ is not essential for the initial G2 arrest, it is required for maintaining the G2 arrest, as 

demonstrated by the observation that cells deficient in 14-3-3σ undergo premature G2/M 

checkpoint release and subsequent mitotic catastrophe. This is likely due to the inability of 

these cells to anchor CDK1-cyclin B1 complex in the cytoplasm (Chan et al 1999).  GADD45 

has been shown to activate G2/M checkpoint by disrupting the CDK1-cyclin B1 complex 

(Zhan et al 1999). Furthermore, p53 is also capable of repressing cyclin B1 expression 

following DNA damage, which is required by CDK1 to initiate the onset of mitosis 

(Innocente et al 1999).  

1.4.3.3  Apoptosis 

Apoptosis induced by p53 is a crucial mechanism of tumour suppression and involves the 

coordination of transcription-dependent and transcription-independent functions of p53. The 

role of p53 in apoptosis was firmly established by studies in knockout mice, which showed 

that p53
-/-

 thymocytes exhibit a pronounced resistance to the induction of apoptosis following 

exposure to IR (Clarke et al 1993, Lowe et al 1993). A large proportion of p53 responsive 

genes are pro-apoptotic genes, which belong to the intrinsic and extrinsic apoptotic pathways. 

Within the intrinsic pathway p53 induces the expression of the pro-apoptotic Bcl-2 family 

members such as Bax (Bcl-2-associated protein X) and the BH3-only proteins, PUMA (p53 

up-regulated modulator of apoptosis), NOXA and BID (Bcl-2 interacting domain death 

agonist). BH3 only proteins most likely trigger apoptosis by binding and displacing the Bcl-2 
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pro-survival proteins such as Bcl-2 and Bcl-Xl from Bax and Bak leading to their homo-

oligomerisation and subsequent activation. Activation of Bax and Bak results in 

mitochondrial outer membrane permeabilisation allowing release of apoptosis inducing factor 

(AIF), the inhibitor of IAPs Smac/DIABLO and cytochrome c. Consequently, the caspase 

cascade is activated, ultimately resulting in cell death (Wei et al 2001, Zong et al 2001).  

Cell surface death receptors transmit rapid apoptotic signals initiated by the binding of their 

ligands, which results in activation of the extrinsic rather than intrinsic apoptosis pathway 

(Ashkenazi and Dixit 1998). p53 induces the expression of the TNFR (Tumour necrosis factor 

receptor) family members FAS/CD95/Apo1, death receptor 4 (DR4) and DR5 (also known as 

TRAIL-R1 and TRAIL-R2). Transcription of FAS was shown to be induced by p53 through a 

p53 response element located within the first intron of the CD95 gene (Muller et al 1998). 

Although, the involvement of FAS transactivation in p53-mediated apoptosis appears to be 

cell type dependent (Bouvard et al 2000). Expression of both DR4 and DR5 have been 

reported to be increased upon DNA damage in a p53-dependent manner. However, the 

expression of these receptors also involves p53-independent mechanisms (Guan et al 2001, 

Takimoto and El-Deiry 2000, Wu et al 1997). Finally, there are numerous other genes not 

mentioned here that influence the cell type and stress specific apoptotic responses induced by 

p53 (Riley et al 2008). 

While the transactivation activities of p53 clearly play an important role during the induction 

of apoptosis, several studies have shown that under certain conditions p53 can activate 

apoptosis through transcriptionally independent mechanisms (Caelles et al 1994, Haupt et al 

1995). These functions of p53 involve its ability to promote mitochondrial outer membrane 

permeabilisation by directly interacting with members of the Bcl-2 family leading to 

activation of the BH3 only proteins (Moll et al 2005). The importance of this role for p53 is 

supported by the fact that the compound, pitithrin  which selectively inhibits the 

mitochondrial function of p53, dramatically reduced p53-mediated apoptosis in irradiated 

thymocytes without hindering the transcriptional activity of p53 (Strom et al 2006). Despite 

this, it is clear that p53 coordinates both its transcription-dependent and -independent pro-

apoptotic activities to cause cell death. 
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1.4.4 p53 target gene selection 

p53 is clearly capable of stimulating the expression of genes involved in cell cycle arrest and 

apoptosis, which compromises the two major p53-dependent responses to DNA damage. 

Multiple factors can contribute to influencing p53 target gene selection and therefore the final 

outcome of p53 activation. These factors are likely to be dependent on the cell type, nature of 

the stress and the severity of the stress (Murray-Zmijewski et al 2008). 

It has been proposed that p53 selects which genes to activate based on its abundance and 

affinity for a particular promoter. In other words, when p53 levels are low, it activates genes 

with high affinity promoters that tend to be associated with cell cycle arrest, and when p53 

levels are high, it activates low-affinity promoters that tend to be involved in the apoptotic 

response (Chen et al 1996, Weinberg et al 2005, Zhao et al 2000). However, it is evident that 

promoter selectivity is not as simple as this. Certain p53 cofactors and p53 post-translational 

modifications have been demonstrated to be important for fine tuning the p53 response to 

specific stresses by enabling p53 to discriminate among its target genes (discussed below).  

1.4.5 Regulation of p53 stability 

Due to the crucial role of p53 in maintaining the integrity of the genome, a multitude of 

mechanisms have evolved to regulate its activity. Having a short half-life, p53 is normally 

maintained at low levels under ‘non-stressed’ conditions through its ubiquitin-mediated 

proteasomal degradation. Following cellular stress, p53 is post-translationally modified on a 

number of residues, increasing its stability and accumulation in the nucleus, as well as 

inducing its transcriptional activity (Figure 1.8).  

A key player in the regulation of the p53 protein is the HDM2. As a result of its interaction 

with the transactivation domain within the N-terminal domain of p53, HDM2 can repress the 

transcriptional activity of p53 by blocking its interaction with components of the 

transcriptional machinery (Momand et al 1992, Oliner et al 1993). In addition, HDM2 has 

also been shown to function as an E3 ubiquitin ligase, which targets p53 for degradation by 

the proteasome, thereby maintaining low levels of p53 protein in unstressed cells (Haupt et al 

1997, Honda et al 1997, Kubbutat et al 1997). Proteasomal degradation of p53 is facilitated 

by the transcriptional co-activator proteins, CBP and p300 acting as E4 polyubiquitin ligases 

(Ferreon et al 2009, Grossman et al 2003, Shi et al 2009). CBP and p300-dependent 
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polyubiquitylation of p53 is dependent on prior monoubiquitylation of p53 by HDM2. 

Furthermore it is believed that HDM2 can translocate p53 from the nucleus to the cytoplasm 

where it undergoes degradation (Roth et al 1998). HDM2 is also a transcriptional target of 

p53, which creates an autoregulatory loop in which p53 positively regulates HDM2 

expression while HDM2 negatively regulates p53 levels and activity (Wu et al 1993) The 

importance of effective negative regulation of p53 activity is highlighted by the embryonic 

lethality of MDM2 knockout mice, which die due to aberrant p53-induced apoptosis. This 

phenotype is completely rescued following deletion of the p53 gene, demonstrating that it is 

the uncontrolled activity of p53 that prevents development of the mice (Jones et al 1995, 

Montes de Oca Luna et al 1995). 

Another prominent negative regulator of p53 is HDMX. Like HDM2, deletion of HDMX in 

mice causes embryonic lethality, which again is completely rescued by inactivation of p53 

(Migliorini et al 2002, Parant et al 2001). Despite its sequence homology to HDM2 and the 

presence of a RING domain, HDMX does not have any intrinsic E3 ligase activity. HDMX 

has been demonstrated to inhibit p53 transcriptional activity through its ability to directly bind 

to the transactivation domain of p53 (Sabbatini and McCormick 2002, Shvarts et al 1996). In 

addition, HDMX can form a complex with HDM2 and promote its E3 ligase activity (Linares 

et al 2003, Uldrijan et al 2007).   

To further complicate matters, HDM2-mediated regulation of p53 stability is controlled by the 

deubiquitylating enzyme, HAUSP (also known as USP7). HDM2 is an unstable protein, 

primarily due to its autoubiquitylation (Fang et al 2000). HAUSP was originally reported to 

deubiquitylate p53 (Li et al 2002a). However, it was subsequently shown to have an 

additional role in modulating HDM2 ubiquitylation (Cummins et al 2004, Li et al 2004). 

Structural studies revealed that HAUSP binds to HDM2 and p53 in a mutually exclusive 

manner, but that HAUSP has a higher binding affinity for HDM2 than p53 (Hu et al 2006). 

Therefore, it has been proposed that under ‘non-stressed’ conditions HDM2 rather than p53 is 

the preferred substrate for HAUSP. This results in HDM2 stabilisation and subsequent 

degradation of p53. Following DNA damage, the HAUSP-HDM2 interaction is abrogated by 

ATM-mediated phosphorylation of HDM2 enabling HAUSP to interact with p53 

(Meulmeester et al 2005). Furthermore, the adaptor protein DAXX was shown to regulate 

HAUSP-mediated deubiquitylation of HDM2 under ‘non-stressed’ conditions by associating  
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Figure 1.8 Activation of p53 in response to DNA damage. Under non-stressed 

conditions, DAXX and HAUSP interact with HDM2 resulting in the stabilisation of HDM2 

and HDMX. HDM2 ubiquitylates p53 and targets it for degradation by the proteasome. In 

response to DNA damage, HDM2 and HDMX are phosphorylated causing disruption of the 

HDM2-DAXX-HAUSP-HDMX complex. Subsequently, HDM2 ubiquitylates itself and HDMX. 

This results in degradation of HDM2 and HDMX by the proteasome allowing stabilisation 

and activation of p53. Activated p53 then induces the expression of its target genes including 

growth arrest and pro-apoptotic genes following various post-translational modifications. 
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with HDM2 and HAUSP (Tang et al 2006a). More recently, the assembly of this multi-

protein complex is in part regulated by RASSF1A. RASSF1A disrupts the interaction 

between HDM2, DAXX and HAUSP, thereby promoting HDM2 ubiquitylation and 

consequently resulting in p53 stabilisation (Song et al 2008). As demonstrated, there is an 

ever growing number of proteins being identified that affect the levels or activities of HDM2 

and therefore influence p53 levels. 

1.4.6 Post-translational modifications of p53 

p53 is subject to a complex and diverse array of post-translational modifications, which 

induce its transcriptional activity and influence the expression of its target genes. These 

modifications include mono- and polyubiquitylation, sumoylation, neddylation, methylation, 

and acetylation, all of which compete for the same lysine internal residues, and proline prolyl-

isomerisation, as well as phosphorylation, which targets serine and threonine residues of p53. 

In this section, I will mainly focus on phosphorylation, acetylation and methylation of p53. 

1.4.6.1  Phosphorylation 

Human p53 is phosphorylated by a variety of kinases such as ATM, ATR, DNA-PK, CHK1 

and CHK2 on sites that are primarily in the N-terminal TADs and the C-terminal regulatory 

domain of p53. Most sites that are phosphorylated in response to DNA damage lead to p53 

stabilisation and thereby enhance its function and/or affect its ability to bind to promoter 

sequences (Bode and Dong 2004). Serine 15, threonine 18 and serine 20 have all been 

implicated in inhibiting the interaction of p53 and HDM2 in response to DNA damage. 

Initially, it was proposed that phosphorylation of p53 at serine 15 reduced ability of HDM2 to 

interact with p53 (Shieh et al 1997). However, subsequent studies disputed this finding and 

suggested that phosphorylation of serine 15 does not affect the ability of p53 to be targeted for 

HDM2-mediated degradation but rather increases the transactivation potential of p53 through 

increasing its interaction with CBP and p300 (Dumaz and Meek 1999, Lambert et al 1998). 

Instead, damage-induced phosphorylation of threonine 18 and serine 20 has been 

demonstrated to interfere with the interaction with HDM2, thereby promoting stabilisation of 

p53 (Chehab et al 1999, Sakaguchi et al 2000). Phosphorylation of other residues including 

threonine 18 and serine 20 was shown to be dependent on prior phosphorylation of serine 15 

(Dumaz et al 1999, Saito et al 2003). Further studies using phospho-specific antibodies have 
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indicated that in response to a variety of DNA damaging agents, p53 can be phosphorylated 

on a multitude of other serine and threonine residues, most of which are associated with p53 

activation (Toledo and Wahl 2006). 

Interestingly, p53 phosphorylation at serine 46 has been implicated in mediating selectivity in 

promoter binding by p53. In response to UV and genotoxic stress, p53 is phosphorylated on 

serine 46 by the kinases HIPK-2 (homeodomain-interacting protein kinase 2) and the dual 

specificity tyrosine phosphorylation regulated kinase-2 (DYRK-2) respectively (D'Orazi et al 

2002, Hofmann et al 2002, Taira et al 2007). This phosphorylation site specifically promotes 

the induction of apoptosis inducing genes such as p53-regulated apoptosis-inducing protein 1 

(p53AIP) (Oda et al 2000). This is accompanied by the down-regulation of p21 expression, 

ultimately resulting in p53-dependent apoptosis. Some sites on p53, serine 376, serine 378 

and threonine 55 are constitutively phosphorylated in unstressed cells, which are thought to be 

involved in promoting proteasomal-mediated degradation of p53. In contrast to damage-

induced phosphorylation, these sites have been shown to be dephosphorylated in response to 

DNA damage, resulting in activation of p53 (Li et al 2007, Waterman et al 1998). 

Several studies have shown that phosphorylation of p53 represents a ‘priming event’ for 

subsequent modifications. For example, phosphorylation of serine 15, threonine 18 and serine 

20 stimulates the recruitment of the HATs p300, CBP and PCAF that promote C-terminal 

acetylation (Li et al 2002b). Furthermore, phosphorylation of p53 on serine 33, threonine 81 

and serine 315 in response to stress leads to efficient interaction with the prolyl isomerise 

Pin1, which in turn induces a conformational change in p53 that enhances its activity (Zacchi 

et al 2002, Zheng et al 2002). 

1.4.6.2  Acetylation and methylation 

HATs not only acetylate lysine residues in histones, but also acetylate p53 (Gu and Roeder 

1997). CBP and p300 acetylate lysines 305, 370, 372, 373, 381, 382 and 386 within the C-

terminal domain and lysine 164 in the DNA binding domain (Gu and Roeder 1997, Sakaguchi 

et al 1998, Tang et al 2008, Wang et al 2003b), whereas lysine 320 is acetylated by the 

p300/CBP-associated factor, PCAF (Liu et al 1999, Sakaguchi et al 1998). In addition, within 

the MYST family of acetyl transferases, hMOF and Tip60 have also been shown to acetylate 

lysine 120 in the DNA binding domain (Sykes et al 2006, Tang et al 2006b).  
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Several roles for p53 acetylation have been suggested. Early studies showed that acetylation 

of p53 enhanced the DNA binding activity of p53 (Gu and Roeder 1997, Sakaguchi et al 

1998). However, others have suggested that the main function of p53 acetylation was to 

promote the interaction of p53 with co-activators (Barlev et al 2001). More recently, it has 

been demonstrated that acetylation of p53 is important for perturbing its interaction with 

HDM2 at the promoters of p53 responsive genes (Tang et al 2008).  

As with phosphorylation, acetylation of certain lysine residues has differential effects on 

which target genes are activated by p53. Using acetylation-mimicking lysine-to-glutamine 

mutations, functional differences between lysine 320 and lysine 373 were reported. 

Acetylation of lysine 320 in p53 was shown to favour interaction with high affinity p53 

binding sites such as those found in p21, thereby promoting cell cycle arrest and cell survival. 

In contrast, acetylation of lysine 373 increased the ability of p53 to transactivate low-affinity 

binding sites such as those found in the pro-apoptotic genes PIG3, BAX and p53AIP1, thereby 

promoting cell death (Knights et al 2006). p53-dependent apoptosis can also be specifically 

enhanced following DNA damage through acetylation of lysine 120. Acetylation of this site 

leads to an increase in recruitment of p53 specifically to pro-apoptotic target genes such as 

PUMA and BAX. This modification appears to be required for p53-dependent apoptosis, as 

mutating this site to an arginine residue was shown to diminish the ability of p53 to induce 

apoptosis. However, p53-mediated cell cycle arrest was not affected (Sykes et al 2006, Tang 

et al 2006b).  

Acetylation levels of p53 can be regulated via deacetylation by HDAC1 containing complexes 

or SIRT1. Deacetylation of the C-terminal lysines was shown to repress p53-dependent 

transcriptional activation and modulate p53 effect on apoptosis and cell growth (Luo et al 

2000, Luo et al 2001, Vaziri et al 2001). Furthermore, p53 stability is also affected by 

deacetylation, as several studies have demonstrated that HDM2 inhibits acetylation of p53 by 

p300 and PCAF and promotes HDAC1-mediated acetylation of p53 (Ito et al 2001, Ito et al 

2002, Jin et al 2002). More recently, lysine 120 has been shown to be deacetylated by 

HDAC1 and this is dependent on KAP1 and other components of the NuRD co-repressor 

complex. This represses lysine 120-dependent p53-mediated apoptosis (Mellert et al 2011). 

Finally, lysine residues that can be subjected to acetylation are also targeted by 

methyltransferases. Methylation of lysine 372 by the SET domain methyltransferase Set9 has 
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been shown to increase the stability of p53 and enhance p53-dependent transcription 

(Chuikov et al 2004). Interestingly, methylation of lysine 382 by Set8 can suppress the 

activation of several strong p53 targets such as p21 and PUMA, but not others that are weakly 

induced (Shi et al 2007). Lysine 370 is methylated by the methyltransferase Smyd2 and 

causes repression of p53 transcriptional activity, although lysine 370 methylation itself is 

inhibited by Set9 methylation of lysine 372 (Huang et al 2006). However, as previously 

mentioned, di-methylation of lysine 370 increases p53 activity by promoting the interaction 

with 53BP1. LSD1, a lysine demethylase, can reverse lysine 370 di-methylation, thereby 

inhibiting this interaction (Huang et al 2007a). The functional roles of p53 lysine 

modifications are further complicated by the crosstalk that exists between methylation and 

acetylation. Specifically, methylation of lysine 372 by Set7/9 is induced by DNA damage and 

correlates with increased acetylation of C-terminal lysines including lysine 382 resulting in 

stabilisation of the p53 protein (Ivanov et al 2007). More recently, a new p53 modification 

was discovered, arginine methylation. The protein arginine methyltransferase 5 (PRMT5) was 

reported to be involved in methylating arginines 333, 335 and 337 within the oligomerisation 

domain and this influences p53 promoter selectivity (Jansson et al 2008). Depletion of 

PRMT5 leads to loss of p21, as well as a modest increase in pro-apoptotic proteins PUMA 

and NOXA, resulting in increased apoptosis. 

1.4.7 p53-binding proteins that modulate p53 activity 

A final mechanism of modulating p53 transcriptional activity is via binding to other 

intracellular proteins, which act as cofactors. These cofactors can affect p53 function by either 

cooperating directly with p53 or indirectly with p53 by regulating proteins that are directly 

involved in influencing its transcriptional activity such as CBP and p300. Many of these 

cofactors influence promoter selectivity by p53 and therefore the cellular outcome of the p53 

response. 

1.4.7.1  Cofactors that directly bind to p53 

The best studied p53 interactors are its negative regulators, HDM2 and HDMX, which 

regulate p53 at multiple levels, affecting localisation, stability and transcriptional activity. In 

addition, the transcriptional co-activators, CBP and p300 have also been shown to be 

multifunctional regulators of p53, affecting the stability and transcriptional activity of p53 by 
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their polyubiquitin (E4) ligase and acetylase activities. In contrast to these cofactors which do 

not show a preference for either pro- or anti-apoptotic p53 target genes, several cofactors have 

been identified that specifically promote either apoptosis or cell cycle arrest. 

The first example of this group of proteins is the ASPP (apoptosis stimulating protein of p53) 

family of proteins, which specifically affects the apoptotic response, but not the cell cycle 

arrest function of p53. ASPP1 and ASPP2 bind to the DNA binding domain (DBD) of p53 

and enhance the pro-apoptotic function of p53 by selectively promoting the interaction of p53 

to pro-apoptotic gene targets such as BAX, PUMA and PIG3 (Samuels-Lev et al 2001). 

Conversely, the anti-apoptotic family member iASPP (inhibitor ASPP) binds to p53 and 

prevents the transactivation of pro-apoptotic genes, thereby inhibiting p53-mediated apoptosis 

(Bergamaschi et al 2003). Phosphorylation of p53 at serine 46 has been reported to facilitate 

the dissociation of iASPP from p53 in a Pin1-dependent manner, thereby enabling p53 to 

promote apoptosis (Mantovani et al 2007). 

Another example of a protein that binds to p53 and directs cellular outcomes is the p38-

regulated and DNA damage-inducible protein 18 (p18/Hamlet). Through associating with p53 

p18/Hamlet was shown to increase both p53-mediated apoptosis and activation of some p53 

target gene promoters such as NOXA, but not others such as BAX, p21 and PUMA (Cuadrado 

et al 2007). The Brn3 family of transcription factors also modulates p53 target gene selection. 

Brn3A promotes cell survival by diminishing the ability of p53 to induce BAX and NOXA 

expression, while stimulating p21 expression (Hudson et al 2005). In contrast, Brn3b 

functions in the opposite manner as Brn3A by assisting p53 to activate BAX expression, but 

not p21 (Budhram-Mahadeo et al 2006).  

An interesting regulator of p53 is the p52 subunit of the transcription factor NF- B, which 

inhibits p21 expression, but acts in concert with p53 to increase PUMA, DR5 and GADD45 

expression (Schumm et al 2006). The transmembrane protein, MUC1 has been found to 

activate p21 in a p53-dependent manner, while at the same time repressing BAX in a p53-

independent manner (Wei et al 2005). Similarly, Hzf, a zinc finger protein that is itself a 

transcriptional target of p53, promotes p53 binding and transactivation of p21 and 14-3-3, but 

not pro-apoptotic genes such as BAX and PUMA (Das et al 2007). The Y-box binding protein 

YB1 also has a similar impact on p53. YB1 associates with p53 and blocks its activation of 

BAX expression, but does not affect p53 induction of p21 (Homer et al 2005). BRCA1 has 
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also been shown to interact with the C-terminal region of p53 where it can selectively direct 

p53 to activate cell cycle arrest and DNA repair instead of apoptotic genes (MacLachlan et al 

2002, Zhang et al 1998). APAK, a KRAB-type zinc finger protein has been shown to bind to 

p53 unstressed cells and prevents transactivation of pro-apoptotic target genes, thereby 

negatively regulating p53-dependent apoptosis (Tian et al 2009).  

1.4.7.2  Cofactors that indirectly influence p53 

Several proteins have been identified that affect p53 transcriptional activities and therefore the 

outcome of the p53 response without directly interacting with p53. The transcriptional 

repressor Slug, which is a p53 target gene itself, binds to PUMA and represses both gene 

expression and IR-induced apoptosis in hematopoietic cells (Wu et al 2005). Another 

transcriptional repressor, ZBT4 represses p53-mediated p21 induction and cell cycle arrest by 

forming a heterotetrameric complex with the Sin3 co-repressor and the transcription factor, 

MIZ1 (Weber et al 2008). The chromatin remodelling complex, human cellular apoptosis 

susceptibility protein (CAS/CSE1L) can also bind to a subset of p53 target genes 

independently of p53 including PIG3 and AIP1, but not p21 or PUMA (Tanaka et al 2007b). 

Even though CAS only binds to a subset of pro-apoptotic genes, this is sufficient to enhance 

apoptosis.  

Interestingly, it has been demonstrated that certain p300 cofactors can influence the p53 

response. Through interacting with p300, junction-mediating and regulatory protein (JMY) 

can augment p53-dependent transcription of BAX, but not p21 resulting in apoptosis (Shikama 

et al 1999). Another p300 cofactor, Strap has been shown to increase p53-dependent 

apoptosis by facilitating the interaction between JMY and p53 and also stabilising p53 by 

preventing HDM2-mediated down-regulation of p53 levels (Demonacos et al 2001). In 

contrast, Skp2 suppresses p53 transactivation and apoptosis by blocking the interaction 

between p300 and p53 (Kitagawa et al 2008). 

1.5 NF- B 

Nuclear factor B (NF- B) is a family of transcription factors with a highly diverse spectrum 

of modulating stimuli and an ever expanding array of responsive genes. The transcriptional 

regulation of these genes enables NF- B to control a wide variety of cellular processes 

including cell proliferation, cell survival, differentiation, inflammation and apoptosis.  
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In mammalian cells, there are five members, p65 (also known as RELA), RELB, c-REL, p50 

and p52 that are capable of forming homodimers, as well as heterodimers with one another. 

p50 and p52 are derived from larger precursor proteins, p105 and p100 respectively through 

ubiquitin-dependent proteolytic processing. All these proteins are defined by an N-terminal 

300 amino acid highly conserved Rel homology domain (RHD) which mediates DNA 

binding, dimerisation, nuclear localisation and binding to the inhibitor of NF- B proteins 

(I Bs). In addition, c-REL, RELB and p65 proteins contain a C-terminal TAD enabling them 

to induce gene expression from DNA sequences, known as B elements within the 

promoters/enhancers of target genes. In contrast, p50 and p52 lack the TAD, but p50 and p52 

homodimers can still bind to the B elements in the DNA and therefore can function as 

transcriptional repressors (Hayden and Ghosh 2008).  

1.5.1 NF- B activation 

There are several distinct NF- B activation pathways, with the two most well established 

pathways being the canonical and the non-canonical pathways (Figure 1.9). p65 or c-Rel 

containing homo- and heterodimers are predominantly activated by the canonical pathway 

while the non-canonical pathway mainly activates the p52-RelB heterodimer (Perkins 2007). 

The canonical pathway is induced in response to a variety of inflammatory stimuli including 

the pro-inflammatory cytokines tumour necrosis factor-  (TNF ) and interleukin-1 (IL-1), 

exposure to bacterial products such as lipopolysaccharide (LPS) and engagement of antigen 

on the TCR. In addition to inflammatory stimuli, the canonical pathway can be activated by 

DSBs induced by genotoxic agents such as IR and chemotherapeutic drugs including 

etoposide and camptothecin, as well as by replication stress inducers such as HU and 

aphidicolin. The non-canonical pathway is activated by a smaller set of inducers including 

CD40 ligand, lymphotoxin- , B-cell-activating factor of TNF family (BAFF), LPS and latent 

membrane protein-1 (LMP1). In this section, I will discuss the function and regulation of the 

p65-p50 heterodimer, which is the predominant NF- B complex in many cell types. 

1.5.1.1  Canonical pathway 

In most unstimulated mammalian cells, NF- B is found predominantly in the cytoplasm 

bound to a member of the I B family, of which the most common are I B , I B  and I B . 

These function by masking the conserved nuclear localisation signal (NLS) that is found in  
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Figure 1.9 Pathways leading to NF- B activation. Induction of the canonical pathway by 

a variety of stimuli such as TNF-  results in activation of the IKK complex, which in turn 

phosphorylates I B  and targets it for ubiquitylation. Ubiquitylated I B  is degraded by the 

26S proteasome allowing NF- B to translocate into the nucleus and activate gene 

transcription. The non-canonical NF- B pathway results in the activation of IKK  by the NF-

B-inducing kinase (NIK), followed by phosphorylation of p100 by IKK . Subsequently, p100 

is ubiquitylated and targeted for proteasomal processing to p52. p52 forms a complex with 

RelB, which enters the nucleus and activates gene transcription. 
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the RHD of p65 and p50. For I B , the major member of the I B family of proteins, only the 

NLS of p65 is masked enabling the NF- B-I B  complexes to shuttle into the nucleus even 

in the absence of stimulation (Birbach et al 2002, Huxford et al 1998). However, I B  also 

contains a nuclear export signal (NES), which causes rapid export of such complexes back to 

the cytoplasm (Johnson et al 1999). As the export process is more efficient than the import 

process, nuclear localisation of NF- B-I B  complexes can only be detected when nuclear 

export is blocked by the inhibitor, Leptomycin B (Huang et al 2000). 

Engagement of these activating stimuli with their distinct cell receptors and the formation of 

DSBs leads to activation of a variety of signalling pathways that all converge on the I B 

kinase (IKK) complex, which is composed of  the catalytic subunits IKK  and IKK  and the 

regulatory subunit called NF- B essential modifier (NEMO, also known as IKK ). The 

activated IKK complex phosphorylates I B  at serine 32 and serine 36 (DiDonato et al 1997, 

Mercurio et al 1997). Analysis of IKK  and IKK  deficient cells has shown that IKK  is the 

predominant kinase in canonical NF- B activation, although IKK  can induce I B  

phosphorylation in IKK  deficient cells indicating they can function redundantly (Gerondakis 

et al 1999, Li et al 2000, Li et al 1999). NEMO appears to be essential for canonical NF- B 

activation as NEMO-deficient cells fail to activate NF- B in response to TNF , LPS and IL-

1  (Makris et al 2000, Rudolph et al 2000, Schmidt-Supprian et al 2000, Yamaoka et al 

1998). Phosphorylated I B  is recognised by the SCF
TrCP

 E3 ubiquitin ligase complex, 

which catalyses the formation of K48-linked polyubiquitin chains at lysine 21 and lysine 22 

(DiDonato et al 1996, Scherer et al 1995, Winston et al 1999). Polyubiquitylated I B  is then 

targeted for degradation by the 26S proteasome, thereby releasing NF- B from its inhibitory 

effects and allowing it to translocate to the nucleus where it can activate its target genes 

including I B  (Figure 1.9). Following its resynthesis, I B  can bind to NF- B and export it 

back to the cytoplasm, thereby terminating the NF- B response. 

1.5.1.2  TNFR1 signalling pathways 

Stimulation of TNFR1 by TNF  leads to receptor trimerisation and the formation of two 

sequential protein complexes, namely complex I and complex II. Recruitment of the adaptor 

protein TNF receptor associated protein with a death domain (TRADD) initiates the formation 

of complex I. TRADD acts as a scaffold, facilitating the recruitment of the other components 
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of complex I to the receptor, these include the protein kinase receptor interacting protein 

(RIP1) and the E3 ubiquitin ligases TNF receptor associated factors (TRAF) 2 and 5 and the 

cellular inhibitor of apoptosis proteins (cIAP) 1 and 2.   

Whilst the kinase activity of RIP1 is not required for signalling to NF- B, RIP1 itself and the 

covalent attachment of K63-linked polyubiquitin chains to RIP1 have been shown to be 

essential (Li et al 2006). Initially it was proposed that TRAF2 together with the heterodimeric 

E2 conjugating enzyme complex UBC13/UBC-like protein (UEV1A) catalysed the 

polyubiquitylation of RIP1 at lysine 377. However, several studies have disputed this model. 

Knockdown of UBC13 was shown not impair activation of NF- B by TNF  (Habelhah et al 

2004). Consistent with this, cells from conditional UBC13 knockout mice showed a similar 

effect (Yamamoto et al 2006). Furthermore, although TRAF2 is required for TNF -mediated 

NF- B activation, its RING domain and therefore its E3 ubiquitin ligase activity has recently 

been shown to be dispensable (Vince et al 2009). In addition, structural studies have indicated 

that it is unlikely that TRAF2 binds to UBC13 or other related E2s (Yin et al 2009). These 

results suggest that TRAF2 and UBC13 are not the E3 or E2 for RIP1 polyubiquitylation. 

Instead, it seems that TRAF2 acts as an adaptor protein for cIAPs and that these serve as the 

E3 ubiquitin ligases for TNF -induced NF- B activation. TRAF2 mutants that cannot bind 

cIAPs failed to reconstitute TRAF2/5 double knockout cells, whilst a TRAF2 mutant that can 

still bind to cIAPs, but has no E3 ligase activity rescued TNF -mediated activation of NF- B 

in these cells (Haas et al 2009, Vince et al 2009). cIAPs are critical for TNF  signalling, as 

demonstrated by the fact that loss of cIAPs completely abrogates K63-linked 

polyubiquitylation of RIP1 and NF- B activation even though recruitment of TRAF2 to 

complex I is normal (Bertrand et al 2008, Mahoney et al 2008, Varfolomeev et al 2008).  

K63-linked polyubiquitylation of RIP1 serves as a scaffold to recruit and activate two 

downstream complexes, the IKK complex and the TAK1 (transforming growth factor  

activated kinase 1) complex. Polyubiquitylated RIP1 recruits the IKK complex through the 

interaction between the ubiquitin binding motif of NEMO and the K63-linked polyubiquitin 

chains (Ea et al 2006, Wu et al 2006a). Similarly, the TAB (TAK1 binding protein) 2 and 3 

regulatory proteins of the TAK1 protein kinase complex also contain ubiquitin binding motifs 

that bind to the K63-linked polyubiquitin chains on RIP1, thereby facilitating the recruitment 

of the TAK1 complex to the TNFR1 (Kanayama et al 2004). Once recruited, TAK1 is 
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activated by autophosphorylation enabling it to phosphorylate IKK  on serine 177 and serine 

181, resulting in activation of the IKK complex and ultimately NF- B (Wang et al 2001a) 

(Figure 1.10). 

Unlike the formation of complex I, the mechanisms regulating the formation of complex II are 

poorly understood. Furthermore, rather than activating NF- B, which predominantly leads to 

inflammation and cell survival through the expression of pro-inflammatory and anti-apoptotic 

proteins respectively, complex II promotes apoptosis. Following formation of complex I, the 

receptor is internalised by endocytosis (Schneider-Brachert et al 2004). RIP1, TRADD and 

TRAF2 then dissociate from the TNFR1 during endocytosis, allowing RIP1 and TRADD to 

recruit the adaptor protein Fas-associated death domain (FADD), which in turn recruits 

caspase 8 and 10 (Micheau and Tschopp 2003). The newly formed cytosolic complex II 

containing TRADD, FADD, RIP1 and procaspase 8/10 promotes activation of these caspases, 

which then cleave and activate caspase 3, triggering apoptosis. More recently, it has been 

demonstrated that two distinct caspase 8 activating complexes are formed in response to 

TNF  (Wang et al 2008). Complex IIA comprises of TRADD, FADD and caspase 8 and is 

controlled by the level of the anti-apoptotic protein, c-FLIP. In contrast, complex IIB consists 

of non-ubiquitylated RIP1, FADD and caspase 8 and is negatively regulated by cIAPs. 

Apoptosis can be promoted by the E3 ubiquitin ligase ITCH and the IAP antagonist Smac, 

which target c-FLIP and cIAPs respectively for ubiquitin-mediated proteasomal degradation 

(Chang et al 2006, Vince et al 2007). However, in most cells, TNF -induced apoptosis is 

prevented since rapid activation of NF- B by complex I induces the synthesis of several anti-

apoptotic proteins including c-FLIP, cIAP1 and cIAP2, which inhibit caspase 8 activation. 

Several studies demonstrated that TNF -induced apoptosis can only occur if either NF- B 

activation or new protein synthesis is blocked (Beg and Baltimore 1996, Van Antwerp et al 

1996, Wang et al 1996) (Figure 1.10).  

TNF  also promotes apoptosis through activation of the JNK (c-jun N-terminal kinase) 

signalling pathway (Papa et al 2006). Prolonged activation of JNK enhances TNF -induced 

apoptosis in part by phosphorylating and activating ITCH, which in turn leads to 

ubiquitylation and degradation of c-FLIP (Chang et al 2006). However, NF- B activation by 
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Figure 1.10 TNFR1 signalling pathways. Engagement of TNF with its cognate receptor 

TNFR1 results in the formation of a proximal signalling complex composed of TRADD, 

TRAF2, cIAP1 and RIP1. RIP1 recruits the TAK1/TAB2/3 complex thereby promoting 

activation of the IKK complex. Activated IKK phosphorylates I B  at serine 32 and 36 

leading to ubiquitylation by the SCF
TrCP

 E3 ligase and subsequent degradation by the 26S 

proteasome. NF- B is released and enters the nucleus where it can activate its target genes 

following various post-translational modifications. I B  is resynthesised, dissociates NF- B 

from the DNA and exports NF- B back to the cytoplasm. TNFR1 activates p38 (not shown) 

and JNK kinases via recruitment of MKK3/6 and MKK4/7 respectively. These kinases can 

activate transcription factors such as AP-1 and ATF2. TNFR1 can also initiate events that 

lead to apoptosis by forming another complex containing FADD and either RIP1or TRADD.  

This activates caspase 8, which activate effector caspases triggering apoptosis. 
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TNF  suppresses prolonged JNK activation through the up-regulation of its target genes, 

XIAP (X-linked IAP) and GADD45 , the latter of which is an inhibitor of the JNK upstream 

kinase MKK7 (De Smaele et al 2001, Papa et al 2004, Tang et al 2001). Furthermore, 

activation of JNK by TNF  requires the generation of ROS, a process that can be 

counteracted by NF- B through the induction of genes that encode antioxidant proteins such 

as manganese-superoxide dismutase (MnSOD) and ferritin heavy chain (FHC) (Kamata et al 

2005). 

1.5.1.3  Toll-like receptor and IL-1 receptor signalling pathways 

IL-1 and LPS activate NF- B in a similar manner because of homology between the 

cytoplasmic signalling domains in their receptors, known as the Toll-IL-1 receptor (TIR) 

domain. Binding of IL-1 and LPS to the interleukin 1 receptor (IL-1R) and Toll-like receptor 

(TLR) respectively leads to the recruitment of the TIR containing adaptor protein, myeloid 

differentiation primary gene 88 (MYD88). MYD88 in turn recruits two IL-1 receptor-

associated kinases, IRAK4 and IRAK1. On recruitment to the receptor complex, IRAK1 is 

autophosphorylated and associates with E3 ubiquitin ligase TRAF6. These proteins then 

function together with the E2 conjugating enzyme complex UBC13/UEV1A to catalyse K63-

linked polyubiquitylation resulting in recruitment of the TAK1 complex and IKK complex 

through TAB2/3 and NEMO respectively. TRAF6-mediated K63-linked polyubiquitylation of 

IRAK1 has been shown to be involved in IKK recruitment and activation (Conze et al 2008, 

Windheim et al 2008). Interestingly, a recent study has revealed that free K63-linked 

polyubiquitin chains, which are not conjugated to any target protein, can directly activate the 

TAK1 complex (Xia et al 2009). These free polyubiquitin chains, which are synthesised by 

TRAF6 and UBC13/UEV1A associate with TAB2 (and possibly TAB3) promoting activation 

TAK1, which subsequently activates IKK complex leading to activation of NF- B.  

1.5.1.4  T-cell receptor pathway 

Activation of NF- B in T cells requires engagement of TCRs with antigens presented by host 

major histocompatibility complex (MHC) molecules on the surface of antigen presenting cells 

(APC) as well as activation of the co-stimulatory receptor, CD28 (Weil and Israel 2006). In 

response to stimulation, TCRs initiates a tyrosine phosphorylation cascade that leads to 

activation of the serine/threonine protein kinase PKC  and the subsequent recruitment of the 
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CBM protein complex consisting of the CARD domain proteins CARMA1, BCL10 and a 

caspase-like protein MALT1. Through MALT1, the CBM complex can recruit TRAF6, which 

together with UBC13/UEV1A activates TAK1 and IKK complexes (Sun et al 2004). In 

addition, BCL10 and MALT1 have been shown to be polyubiquitylated by TRAF6, which 

facilitates the recruitment and activation of the IKK complex through the NEMO subunit 

(Oeckinghaus et al 2007, Wu and Ashwell 2008).  

1.5.1.5  NF- B activation by genotoxic stress 

Unlike cell surface receptor initiated signalling pathways, the signalling pathways induced by 

genotoxic agents that result in NF- B activation are poorly characterised.  With the exception 

of a few genotoxic agents such as UV and hydrogen peroxide (H2O2), which can activate NF-

B via IKK-independent pathways, the majority of genotoxic agents activate the IKK-

dependent canonical NF- B pathway (Janssens and Tschopp 2006, Perkins 2007). Several 

studies have demonstrated that ATM is required for NF- B activation in response to DSB 

inducers including IR, the topoisomerase inhibitor camptothecin and the topoisomerase II 

inhibitors etoposide and doxorubicin (Huang et al 2003, Li et al 2001, Piret et al 1999, Wu et 

al 2006b). In addition to ATM, NEMO which is not bound to IKK  or IKK  has also been 

shown to play a key role in transducing the nuclear DNA damage signal to the cytoplasmic 

IKK complex (Huang et al 2003).  

In response to DSBs, IKK unbound NEMO translocates to the nucleus where it is conjugated 

by SUMO-1 at lysine 277 and lysine 309. Nuclear translocation of NEMO was found to be 

prevented when NEMO was bound to the IKKs (Huang et al 2003). Sumoylation of NEMO is 

mediated by the SUMO E3 ligase PIAS  together with the E2 conjugating enzyme UBC9 

(Mabb et al 2006). Furthermore, it was found that p53-induced protein with death domain 

(PIDD) and RIP1 were required to promote NEMO sumoylation (Janssens et al 2005). More 

recently, Stilmann et al (2009) revealed that poly (ADP-ribose) polymerase 1 (PARP1) can 

also promote NEMO sumoylation by acting as a scaffold protein for the assembly of PARP-1, 

PIAS , ATM and NEMO into a multi-protein complex (Stilmann et al 2009). In response to 

DNA damage, PARP1 catalyses poly-ADP-ribosylation (PAR) of numerous substrates, as 

well as itself. NEMO is recruited to this complex by interacting with PARP-1 while PIAS  

and ATM are recruited to PAR modified PARP-1 through PAR binding motifs (PARBM). 
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Subsequently, PIAS  induces sumoylation of NEMO. Notably, neither PIDD or RIP1 were 

identified in this PARP1 signalling complex, therefore it is currently unknown what the 

precise roles are for PIDD and RIP1 in DNA damage-induced NF- B activation. Following 

DNA damage-induced activation, ATM phosphorylates NEMO at serine 85 (Wu et al 2006b). 

Phosphorylation of NEMO is a prerequisite for its monoubiquitylation at lysine 277 and 

lysine 309 by cIAP1, which displaces the SUMO-1 attachment at these residues on NEMO. 

(Huang et al 2003, Jin et al 2009). Ubiquitylation of NEMO facilitates the nuclear export of 

the ATM-NEMO complex. This complex stimulates K63-linked polyubiquitylation of the 

adaptor protein ELKS by the E3 ubiquitin ligase XIAP and UBC13 leading to recruitment of 

the TAK1 complex through the ubiquitin binding proteins TAB2/3 and subsequent activation 

of the IKK complex (Wu et al 2010). In addition to ATM promoting XIAP-dependent ELKS 

polyubiquitylation in the cytoplasm, ATM has also been shown to be required for inducing 

UBC13-mediated K63-linked polyubiquitylation of TRAF6 (Hinz et al 2010). Synthesis of 

K63-linked polyubiquitin chains triggers the recruitment and activation of the TAK1 and IKK 

complexes as described previously. In this pathway nuclear export of ATM is independent of 

NEMO, PARP-1 and PIAS  and occurs before NEMO sumoylation indicating that ATM has a 

dual function in activation of NF- B. Interestingly, in order for the IKK complex to be 

activated, NEMO is required to be monoubiquitylated at lysine 85, which is mediated by 

either cIAP1 or TRAF6 (Hinz et al 2010). In the absence of NEMO monoubiquitylation, 

active TAK1 is unable to phosphorylate IKK . Furthermore, monoubiquitylation of NEMO at 

lysine 285 does not appear to be specific to genotoxic stress, but rather appears to be a 

common modification since it is also required for TNF , LPS and IL-1 induced IKK 

activation (Abbott et al 2007, Hinz et al 2010, Walsh et al 2008) (Figure 1.11). 

Recently, it has been demonstrated that replication stress inducers such as HU and aphidicolin 

can also activate NF- B in an ATM and NEMO-dependent manner similar to DSB inducers 

(Wu and Miyamoto 2008). Surprisingly, in contrast to activation of NF- B by DSB inducers, 

which generally promote cell survival through the expression of anti-apoptotic proteins, NF-

B activation by replication stress promotes apoptosis through induction of pro-apoptotic 

genes such as FAS and repression of anti-apoptotic genes such as Bcl-Xl (Wu and Miyamoto 

2007, Wu and Miyamoto 2008). This is similar to previous studies that demonstrated that NF-

B can repress anti-apoptotic genes in response to DNA damaging agents including UV and  
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Figure 1.11 Activation of NF-κB by DNA damage. DNA damage induces the activation of 

ATM and sumoylation of NEMO via the SUMO ligase, PIAS . ATM then phosphorylates 

NEMO, which in turn promotes monoubiquitylation of NEMO by cIAP1. Subsequently, ATM 

and NEMO are exported to the cytoplasm where they stimulate K63-linked polyubiquitylation 

of ELKs by XIAP leading to activation of TAK1 and IKK. Activated IKK phosphorylates 

I B , which results in the ubiquitylation and proteasomal degradation of I B . NF- B is 

released and translocates to the nucleus where it activates its target genes (Adapted from Wu 

et al 2010). 
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cisplatin, thereby promoting its pro-apoptotic function (Campbell et al 2004, Campbell et al 

2006). Together these studies demonstrate that the functional consequences of genotoxic 

stress-induced NF- B activation can differ depending on the genotoxic agent. 

1.5.1.6  Negative regulation of NF- B signalling pathways 

Activation of IKK is negatively regulated by a variety of mechanisms, one of which is 

deubiquitylation. CYLD and A20 are two deubiquitylating enzymes that are important for 

suppressing NF- B upstream of the IKK complex by cleaving K63-polyubiquitin chains or 

preventing polyubiquitin chain synthesis. 

CYLD was originally identified as a tumour suppressor gene since mutations in the CYLD 

gene predispose individuals to familial cylindromatosis, a rare autosomal recessive disease 

characterised by numerous benign tumours of the skin appendages (Bignell et al 2000).  The 

cancer-associated mutations in CYLD are frequently found in the C-terminal region, which 

contains a ubiquitin C-terminal hydrolase (UCH) domain. Several studies later showed that 

through this domain CYLD could negatively regulate NF- B signalling. Over-expression of 

CYLD but not mutants defective in DUB activity reduced IKK and NF- B activation whereas 

siRNA against CYLD enhanced IKK and NF- B activation (Brummelkamp et al 2003, 

Kovalenko et al 2003, Trompouki et al 2003). CYLD inhibits IKK activation by cleaving 

K63-linked polyubiquitin chains on several proteins including TRAF2, TRAF6, RIP1 and 

NEMO (Brummelkamp et al 2003, Kovalenko et al 2003, Trompouki et al 2003, Wright et al 

2007) (Figure 1.10). 

A20 is a well known NF- B target gene that inhibits NF- B in a negative feedback loop 

(Jaattela et al 1996, Opipari et al 1992). A20 deficient mice develop severe inflammatory 

diseases in multiple organs partly due to enhanced and prolonged activation of IKK by pro-

inflammatory stimuli including LPS and TNF  (Lee et al 2000). Interestingly, A20 contains 

an ovarian tumour (OTU) type DUB domain that catalyses deubiquitylation of K63-linked 

polyubiquitin chains on RIP1, as well as seven zinc finger domains that promote K48-linked 

polyubiquitylation and proteasomal degradation of RIP1 (Wertz et al 2004). Together with 

the ubiquitin binding protein, Tax1 binding protein 1 (TAX1BP1) and the E3 ubiquitin 

ligases, immune modulating protein ITCH and RNF11, A20 forms a ubiquitin editing 

complex that suppresses IKK activation in a two step sequential process. A20 first removes 
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K63-linked polyubiquitin chains from RIP1 and then catalyses the formation of K48-linked 

polyubiquitin chains onto RIP1, targeting RIP1 for proteasomal-mediated degradation (Iha et 

al 2008, Shembade et al 2007, Shembade et al 2008, Shembade et al 2009). A20 has also 

been shown to disassemble K63-linked polyubiquitin chains from TRAF6, thereby 

suppressing NF- B responses elicited by LPS stimulation (Boone et al 2004). However, the 

mechanism by which A20 inhibits TRAF6 activation in the TLR/IL-1R pathways has been 

shown to be different to the mechanism used by A20 to inhibit RIP1 (Shembade et al 2010). 

A20 inhibits the E3 ubiquitin ligase activity of TRAF6 by antagonising the interaction with its 

E2 ubiquitin conjugating enzyme UBC13. UBC13 is subsequently targeted for ubiquitin-

mediated proteasomal degradation by A20 together with its regulatory protein TAX1BP1. 

Furthermore, this study also showed that this mechanism was not restricted to the TLR/IL-1R 

pathways, but also functioned in the TNFR1 pathway since A20 can disrupt the interaction 

between TRAF2 and cIAP1 with their E2 enzymes UBC13 and UBCH5C respectively 

(Figure 1.10).  

1.5.2 Regulation of NF- B transcriptional activity 

Following activation, NF- B induces the expression of over 150 target genes, which are 

involved in a wide variety of cellular processes (http://people.bu.edu/gilmore/nf-

kb/index.html, (Pahl 1999)). The majority of proteins encoded by these genes play a role in 

immune and inflammatory responses including cytokines and chemokines such as TNF, IL-1. 

IL-6, CXCL8, RANTES and CXCL 11, as well as receptors required for immune recognition 

such as CD80, CCR5 and MHC molecules. Cell survival is another key cellular process that 

NF- B promotes through the expression of genes encoding anti-apoptotic proteins including 

members of the Bcl-2 family such as Bcl-Xl, Bcl-2, NR13 and BFL1, which function at the 

mitochondria level and prevent release of cytochrome c, AIF and Smac/DIABLO and cIAP1, 

cIAP2, XIAP and c-FLIP, which prevent caspase activation. In addition to its anti-apoptotic 

role, NF- B also induces cell proliferation and cell cycle progression by regulating the 

expression of target genes including growth factors such as IL-2 and granulocyte-macrophage 

colony stimulating factor (GM-CSF) and cell cycle regulators such as c-myc and cyclin D1. In 

addition, NF- B regulates genes involved in cell adhesion such as ICAM, cell migration such 

as MMP9, angiogenesis such as VEGF and the stress response such as COX-2. Interestingly, 

although NF- B is generally considered anti-apoptotic, under certain circumstances, NF- B 

http://people.bu.edu/gilmore/nf-kb/index.html
http://people.bu.edu/gilmore/nf-kb/index.html
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can up-regulate its pro-apoptotic target genes such as the death receptors FAS (CD95), DR4 

and DR5, the death-inducing ligands Fas ligand (FASL) and TRAIL and also the pro-

apoptotic Bcl-2 family member BAX, thereby promoting apoptosis (Dutta et al 2006).   

Due its role in regulating cell survival, cell proliferation, angiogenesis, cell migration and 

inflammation, it is not surprising that constitutive activation of NF- B is often associated with 

many types of cancer including Hodgkin’s lymphoma (HL), chronic myeloid leukemia 

(CML), multiple myeloma (MM), breast cancer and colorectal cancer, as well as 

inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease and asthma 

(Courtois and Gilmore 2006, Karin 2006, Li and Verma 2002). Consequently, NF- B 

transcriptional activity is tightly regulated through multiple post-translational modifications as 

well as by resynthesis of its inhibitor I B .  

1.5.3 Post-translational modifications 

Phosphorylation and acetylation are the two key modifications that control the transcriptional 

activity and target gene specificity of NF- B. These modifications are stimulus specific and 

are also likely to be cell type specific. 

1.5.3.1  Phosphorylation 

The p65 subunit is the principal target for phosphorylation by various kinases. These p65 

phosphorylation events occur in the cytoplasm or in the nucleus and are stimuli specific and 

probably cell-type specific.  

The catalytic subunit of protein kinase PKA (PKAc) is maintained in an inactive form by 

binding to the I B -NF- B complex. Following stimulus-induced I B  degradation by LPS, 

activated PKAc phosphorylates p65 on serine 276, which is located within the RHD of p65 

(Zhong et al 1997). Phosphorylation of this site promotes the interaction of p65 with CBP and 

p300 (Zhong et al 1998), and displaces transcriptionally repressive HDAC complexes, 

specifically p50-HDAC1 complexes, that are frequently bound to the B enhancers of target 

genes under unstimulated conditions (Zhong et al 2002). However, phosphorylation of serine 

276 is not exclusively mediated through PKAc. In response to TNF  stimulation, serine 276 

is phosphorylated by the mitogen and stress activated kinases (MSK) 1 and 2, which enhances 

NF- B transcriptional activity (Vermeulen et al 2003). Interestingly, PKAc phosphorylates 
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p65 in the cytoplasm whereas MSK1 and MSK2 function in the nucleus. In addition, serine 

276 phosphorylation is also important for determining whether p65 forms homodimers or 

heterodimers. Serine 311 is another residue within the N-terminal RHD that is targeted for 

phosphorylation by protein kinase C (PKC)  in TNF  stimulated cells (Duran et al 2003). 

Similar to the mechanism described for PKAc, PKC -mediated phosphorylation of p65 

enhances its interaction with CBP.  

Within the C-terminal TAD, serine 529 is phosphorylated by CK2 in the cytoplasm in 

response to TNF  and IL-1 treatment and phosphorylation at this site has been shown to 

potentiate NF- B activity (Wang et al 2000). Stimulation with TNF  and IL-1  results in 

phosphorylation of serine 468 by IKK  (Schwabe and Sakurai 2005), while IKK  

phosphorylates serine 468 in response to the genotoxic agent etoposide and following T-cell 

co-stimulation (Mattioli et al 2006, Renner et al 2010). Interestingly, phosphorylation of 

serine 468 by these kinases stimulates p65 transactivation whereas phosphorylation of this site 

in unstimulated cells by glycogen synthase kinase 3  (GSK3 ) inhibits the transcriptional 

activity of p65 (Buss et al 2004a). p65 is phosphorylated at serine 536, a site within the TAD, 

by a variety of kinases via various signalling pathways and in most cases phosphorylation at 

this site enhance the transactivation potential of p65. Similar to serine 276 phosphorylation, 

phosphorylation of serine 536 has also been shown to displace HDAC co-repressor 

complexes, in particular HDAC3-SMRT complexes enabling p65 to interact with CBP and 

p300 (Chen et al 2005, Hoberg et al 2006). Serine 536 phosphorylation induced by TNF , IL-

1 and T-cell co-stimulation is mediated by IKK , IKK , IKK  and NF- B activating kinase 

(NAK) (Buss et al 2004b, Mattioli et al 2004, Sakurai et al 1999, Sizemore et al 1999). 

Interestingly, it has been shown that IKK -dependent phosphorylation of p65 at serine 536 

requires the activity of AKT, a component of the PI3K/AKT signalling pathway (Madrid et al 

2001, Sizemore et al 1999). Furthermore, serine 536 can be phosphorylated by an IKK-

independent mechanism following treatment with etoposide and doxorubicin that involves 

activation of the ribosomal S6 kinase 1 (RSK1) by p53 and promotes nuclear translocation of 

NF- B (Bohuslav et al 2004).  

Serine 205, serine 281, threonine 435 and threonine 254 have all been shown to be targets for 

phosphorylation in response to TNF  and LPS treatment, although the kinases responsible 

have yet to be identified (Anrather et al 2005, O'Shea and Perkins 2010, Ryo et al 2003). 
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Phosphorylation at serine 205, serine 281 and threonine 435 influences NF- B promoter 

selectivity and phosphorylation at threonine 254 creates a binding site for the prolyl isomerise 

Pin1. The action of Pin1 disrupts the interaction between p65 and I B  and induces p65 

translocation to the nucleus (Ryo et al 2003). Furthermore, it also protects p65 from ubiquitin-

mediated proteasomal degradation, thereby increasing p65 stability.  

Phosphorylation of threonine 505 requires CHK1 and is induced by the ARF tumour 

suppressor or treatment with cisplatin. This phosphorylation event inhibits p65 transactivation 

by enhancing the association of p65 with HDAC1 (Campbell et al 2006, Rocha et al 2005). 

This results in repression of Bcl-Xl expression, thereby sensitising cells to apoptosis. p50 has 

also been shown to be phosphorylated by PKAc at serine 337 and this increases the DNA 

binding ability of p50 (Hou et al 2003). 

Phosphorylation of the NF- B subunits is a reversible process and consequently several 

phosphatases have been identified that dephosphorylate p65 thereby inhibiting NF- B 

transcriptional activity. These include protein phosphatase 2A (PP2A) and the type 2C protein 

phosphatise (PP2C) WIP1, which has recently been shown to specifically dephosphorylate 

serine 536 in response to TNF  (Chew et al 2009, Yang et al 2001a) 

1.5.3.2  Acetylation 

Numerous lysines in p65 are acetylated and these have been shown to modulate its activity. 

The HATs CBP and p300 can acetylate p65 at lysines 218, 221 and 310. Acetylation of lysine 

221 enhances the DNA binding activity of p65 and in conjunction with acetylation of lysine 

218 impairs the NF- B-I B  interaction, thereby preventing I B -dependent nuclear export 

of NF- B and prolonging the NF- B response. Deacetylation of these sites by HDAC3 

enhances the binding of NF- B to I B  promoting its nuclear export, which results in 

termination of the NF- B response. Lysine 310 acetylation has been shown to be important 

for stimulating NF- B transcriptional activity and is enhanced by serine 276 and serine 536 

phosphorylation of p65, which promotes the assembly of p65 with CBP and p300 (Chen et al 

2005). Lysine 310 deacetylation by the histone deacetylase SIRT1 or alternatively by the 

HDAC3-SMRT co-repressor complex inhibits p65 transcriptional activity (Hoberg et al 2006, 

Yeung et al 2004). Furthermore, it has been demonstrated that HDAC1-mediated 

deacetylation of p65 also reduces the transactivation potential of p65 (Ashburner et al 2001). 
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CBP, p300 and PCAF-mediated acetylation of lysine 122 and lysine 123 has also been 

described, although modifications at these sites have inhibitory effects on NF- B activity by 

reducing the ability of p65 bind to the B sites in its target genes and consequently 

suppressing the transactivation potential of NF- B (Kiernan et al 2003). 

The p50 subunit is also subject to stimulus-induced acetylation of lysine 431, lysine 440 and 

lysine 441 by CBP and p300. These modifications appear to enhance the DNA binding 

activity of p50 and increase the transcriptional activity of the NF- B complex (Deng et al 

2003, Furia et al 2002). 

1.5.4 Crosstalk between NF- B and p53 

p53 has long been implicated in regulating NF- B at multiple levels and vice versa. In 

response to inflammatory stimuli, NF- B induces anti-apoptotic genes that antagonise the 

pro-apoptotic function of p53. Moreover, the I B family member Bcl-3 or NF- B activation 

by IKK complex can induce the expression of HDM2, thereby enhancing ubiquitylation and 

degradation of p53 (Kashatus et al 2006, Tergaonkar et al 2002). Additional, antagonism 

comes from the competition between p53 and p65 for binding to CBP and p300 (Webster and 

Perkins 1999). 

In contrast to these observations, there is evidence that p53 and NF- B can cooperate with 

each other. For example, as previously mentioned, p53 can induce RSK1 activity resulting in 

serine 536 phosphorylation of p65 and nuclear localisation of NF- B (Bohuslav et al 2004). 

Furthermore, in some circumstances, p65 and p53 can cooperatively induce apoptosis, which 

can occur through induction of apoptotic target genes containing promoters with both p53 and 

NF- B response elements such as DR5 (Aleyasin et al 2004, Fujioka et al 2004, Ryan et al 

2000, Shetty et al 2005). 

Alternatively, modifications of NF- B can promote p53-induced apoptosis. Activation of 

ARF tumour suppressor by oncogenes, results in activation of p53 through binding to and 

inactivating HDM2 (Sherr 2006). Concomitantly, ARF expression induces ATR leading to 

activation of CHK1 and subsequent phosphorylation of p65 at threonine 505. This results in 

repression of Bcl-Xl and sensitises cells to TNF-induced apoptosis (Rocha et al 2005). 

Furthermore, the effect of this will also reduce the ability of p65 to oppose the pro-apoptotic 
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function of p53. Interestingly, ARF-induced ATR activity can also regulate p53, thereby ARF 

can coordinantly regulate and integrate NF- B and p53 function (Rocha et al 2003). In 

addition, NF- B transcriptional activity can also increase p53 expression, partly by directly 

inducing the TP53 gene (Fujioka et al 2004, Wu and Lozano 1994). 

1.5.5 Termination of NF- B activity 

Due to the detrimental effects caused by constitutive NF- B activation, it is critical that NF-

B activity is terminated following cellular stimulation. However, the mechanisms by which 

the activity of NF- B is terminated remain poorly understood. It is generally accepted that 

termination of NF- B activity mainly relies on the resynthesis of I B  by NF- B. Newly 

synthesised I B  associates with NF- B, displaces it from the DNA and exports its out of the 

nucleus, thereby creating a negative feedback loop (Arenzana-Seisdedos et al 1997). This 

model is supported by studies in I B
-/-

 deficient cells (Cheng et al 1998, Hoffmann et al 

2002). Furthermore, I B  and I B  have also been shown to regulate NF- B activity through 

a negative feedback loop, albeit with different kinetics (Hoffmann et al 2002, Kearns et al 

2006).  However, in order for I B  to bind to p65 efficiently, p65 needs to be de-modified 

(Chen and Greene 2003). Therefore, dephosphorylation and deacetylation of p65 by 

phosphatases and HDACs respectively plays a key role in suppressing NF- B-dependent 

transcription. 

Another mechanism by which NF- B transcriptional activity is terminated involves removal 

of NF- B from the promoters of some of its target genes by ubiquitin-mediated proteasomal 

degradation. In the absence of I B , this was shown to be the major termination mechanism. 

However, in cells containing I B , proteasomal degradation and resynthesised I B  were 

shown to act synergistically to efficiently terminate transcription of NF- B dependent genes. 

If proteasome activity is blocked, NF- B is not removed from some of its target genes despite 

I B  resynthesis and consequently NF- B transcriptional activity is sustained (Saccani et al 

2004).  Currently, two ubiquitin ligase complexes have been reported to be responsible for the 

degradation of nuclear NF- B. PDLIM2 is a nuclear ubiquitin ligase that has recently been 

shown to function in the negative regulation of NF- B. PDLIM2 polyubiquitylates p65 and 

transports it to proteasome enriched promyelocytic leukemia  (PML) nuclear bodies where it 
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is rapidly degraded, thereby terminating NF- B activity (Tanaka et al 2007a). The other is the 

suppressor of cytokine signalling-1 (SOCS1)-containing ECS ubiquitin ligase complex, which 

also contains Elongin B and Cullin 2 (Willems et al 2004). SOCS1 was demonstrated to 

interact with p65 and decrease its stability by ubiquitin-mediated proteasomal degradation 

(Ryo et al 2003, Strebovsky et al 2010). Recently, the COMMD1 (copper metabolism 

MURR1 domain containing protein 1) protein was shown to interact with the ECS complex 

and promote the associations between p65 and SOCS1 and between SOCS1 and Cullin 2, 

thereby facilitating the ubiquitylation of p65 by the ECS complex and its subsequent 

proteasomal degradation (Maine et al 2007). More recently, Mao et al (2009) have reported 

that the HAT, GCN5 associates with the COMMD1 containing ECS ubiquitin ligase 

promoting p65 ubiquitylation and repressing NF- B activity (Mao et al 2009). Under certain 

circumstances ECS-induced ubiquitylation and degradation of p65 can be inhibited by Pin1 

(Ryo et al 2003). Over-expression of Pin1 was shown to reverse the decrease in p65 stability 

that is observed following SOCS1 over-expression. 

1.6 CBP AND p300 

CBP and p300 are highly homologous non-DNA binding transcriptional co-activators that 

were originally identified by their interactions with cAMP-response element binding protein 

(CREB) and the adenoviral E1A protein respectively (Chrivia et al 1993, Eckner et al 1994). 

Subsequently, CBP and p300 have been found to interact with a wide variety of other 

intracellular proteins including numerous transcription factors such as nuclear hormone 

receptors (Chakravarti et al 1996), p53 (Lill et al 1997), p65 (Gerritsen et al 1997), c-Jun  

(Lee et al 1996a), c-fos (Janknecht and Nordheim 1996b) and the CCAAT box/enhancer-

binding protein (C/EBP)-  (Mink et al 1997), as well as components of the basal transcription 

machinery such as RNA polymerase II, TBP and TFIIB (Imhof et al 1997, Kee et al 1996, 

Nakajima et al 1997). Since so many proteins interact with CBP and p300, it is not surprising 

that many physiological processes including cell proliferation, differentiation, DNA repair, 

development and apoptosis are dependent on CBP and p300 (Goodman and Smolik 2000). 

Several lines of evidence highlight the importance of CBP and p300. Firstly, CBP and p300 

are required for embryonic development and viability, as demonstrated by the fact that CBP 

and p300 knockout mice are embryonic lethal (Yao et al 1998). Secondly, mutations in both 

CBP and p300 are associated with Rubinstein-Taybi syndrome (RTS), a developmental 
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disorder characterised by mental retardation, skeletal abnormalities and an increased 

predisposition to cancer (Miller and Rubinstein 1995, Petrij et al 1995, Roelfsema et al 2005). 

Finally, bi-allelic somatic mutations in p300 have been detected in a range of epithelial 

cancers such as gastric, colon, pancreatic and breast cancers (Gayther et al 2000) and frequent 

chromosomal translocations of CBP and p300 have been observed in haematological 

malignancies, particularly acute myeloid leukemia (AML) (Janknecht 2002).  

1.6.1 Structure 

CBP and p300 are large, modular proteins that contain several conserved functional domains 

including three zinc binding cysteine-histidine (CH) rich domains, a KIX domain, a HAT 

domain and a bromodomain. These regions of CBP and p300 share a high degree of sequence 

similarity (approximately 95%) and as a result the functions of these proteins, albeit with a 

few exceptions, are generally interchangeable (Goodman and Smolik 2000, Kasper et al 2006, 

Kawasaki et al 1998) (Figure 1.12). Therefore, CBP and p300 will subsequently be referred to 

as CBP/p300. The CH1 and CH3 domains (sometimes referred to as TAZ1 and TAZ2 

domains respectively) mediate interactions with the majority of CBP/p300 interacting proteins 

including p53, HDM2 and p65 (Goodman and Smolik 2000). Additional sites for protein-

protein interactions include the KIX domain and the glutamine rich C-terminus. The KIX 

domain is the region that binds to CREB, the archetypical CBP-binding transcription factor as 

well as several other transcription factors and transcriptional regulatory proteins including c-

jun and BRCA1 (Goodman and Smolik 2000). The glutamine rich region forms contacts with 

other transcriptional co-activators, most notably those involved in nuclear hormone receptor 

signalling including SRC-1 and p/CIP, which are members of the steroid receptor co-activator 

(SRC)/p160 family (Kamei et al 1996, Xu et al 1999a). CBP/p300 are HATs and the 

respective HAT domain resides in the central region of these proteins. This domain 

encompasses the CH2 domain and catalyses acetylation of all four core histones as well as 

several non-histone nuclear proteins (discussed below). The bromodomain that resides N-

terminal to the HAT domain is found in many chromatin associated proteins (Dhalluin et al 

1999) and  is capable of binding to acetylated lysines (Winston and Allis 1999). Via the 

bromodomain, CBP/p300 can not only bind to acetylated lysines, but also to acetylated 

transcription factors such as MyoD (Polesskaya et al 2001). Acetylation of MyoD was 

demonstrated to strengthen the interaction between MyoD and CBP/p300. In addition to  
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acetyltransferase activity, CBP/p300 possess transcriptional activity since the N- and C- 

terminus of CBP/p300 can act as transactivation domains (Bisotto et al 1996, Lee et al 1996b, 

Swope et al 1996, Yuan et al 1996). When fused to the DNA binding domain of the yeast 

transcription factor Gal4, these domains can potentially activate the transcription from Gal4 

DNA binding sites. This is likely to be because these regions are capable of interacting with 

the basal transcription machinery. More recently, it has been found that the N-terminal region 

of CBP/p300 harbours both E3 and E4 ubiquitin ligase activities (Grossman et al 2003, Shi et 

al 2009). Through their E3 activities, CBP/p300 are autoubiquitylated, whereas they promote 

polyubiquitylation of p53 via their E4 activities (discussed below). Interestingly, unlike their 

other intrinsic activities, the ubiquitin ligase activities of CBP/p300 were shown to be 

exclusively cytoplasmic. 

1.6.2 Transcriptional regulation by CBP/p300 

By acting as transcriptional co-activators, CBP/p300 play a central role in coordinating and 

integrating multiple signal transduction pathways with the transcriptional machinery, thereby 

regulating gene expression (Bedford et al 2010). Current evidence suggests that CBP/p300 

mediate transcriptional co-activation in several ways. Since CBP/p300 can interact with 

transcription factors and components of the basal transcription machinery, it has been 

proposed that CBP/p300 act as a molecular bridge to connect the DNA binding transcription 

factors with the basal transcriptional machinery, thereby stabilising the transcription complex 

(Chan and La Thangue 2001).  

Secondly, CBP/p300 may act as a scaffold for the formation of multi-subunit complexes 

containing transcription factors and cofactors. The size of CBP/p300 provides them with 

many different interaction surfaces, thereby enabling them to bind concurrently to various 

proteins. By serving as a scaffold for the assembly of transcription factors and transcriptional 

regulatory proteins, CBP/p300 can concentrate these factors into a local transcription 

environment (Chan and La Thangue 2001). This scaffolding function for CBP/p300 has been 

demonstrated to be important for the transcriptional regulation of the human interferon  

gene. CBP/p300 assembles the IFN  enhancesome by mediating the simultaneous recruitment 

of several transcription factors such as c-jun, NF- B and interferon regulatory factor 1 (IRF1) 

and architectural proteins including high mobility group (HMG) to the IFN  promoter (Kim 

et al 1998, Munshi et al 1998). By bringing together nuclear proteins and the basal 
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transcription machinery, CBP/p300 plays a crucial role in the transcriptional activation of the 

interferon  gene (Yie et al 1999b). Depletion of CBP/p300 from this complex decreases the 

rate of transcription (Yie et al 1999a).  

Finally, CBP/p300 are able to acetylate all four core histones through their histone 

acetyltransferase activity (Bannister and Kouzarides 1996, Ogryzko et al 1996). Two models 

regarding how acetylation disrupts the structure of the chromatin have been described. 

Acetylation of lysine residues within the histone tails can result in neutralisation of the 

positively charge associated with lysines, thereby decreasing the interaction between histones 

and the DNA molecule. As a consequence, the condensed chromatin is transformed into a 

more relaxed conformation, which enables the promoters to become more accessible to 

transcription factors and the basal transcription machinery. Conversely, histone deacetylation 

by HDACs is thought to prevent access by restoring the positive charge and strengthening the 

interaction between histones and DNA (Wolffe and Hayes 1999). In addition to this charge-

neutralisation model, it has been demonstrated that acetylation may de-stabilise higher order 

chromatin structure, thereby facilitating the binding of transcription factors to their target gene 

promoters (Tse et al 1998a, Tse et al 1998b). 

Studies by Gu and Roeder demonstrated that p53 could be acetylated by CBP/p300 (Gu and 

Roeder 1997). This provided the first example that CBP/p300 could acetylate non-histones 

proteins and since then a number of other proteins have been identified that are acetylated by 

CBP/p300 including several transcription factors such as NF-ATc2 (Garcia-Rodriguez and 

Rao 1998), p65 (Chen et al 2001), E2F-1, E2F-2 and E2F-3 (Martinez-Balbas et al 2000, 

Marzio et al 2000), c-Myb (Tomita et al 2000) and Sp3 (Braun et al 2001), as well as other 

co-activator proteins such as MAML-1 (Hansson et al 2009) and PC4 (Kumar et al 2001), 

components of basal transcription machinery including TFIIE  and TFIIF (Imhof et al 1997) 

and DNA repair proteins (see below).    

1.6.3 Non-transcriptional functions of CBP/p300 

Like transcription, proteins involved in DNA repair and DNA replication also require an open 

chromatin structure in order to access the DNA. Several studies have shown CBP/p300 are 

involved in these processes through their ability to modify histones and interact with proteins 

involved in DNA repair and DNA replication. PCNA, a vital component of DNA replication 
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and repair machinery, recruits p300 to the DNA where it acetylates histones in preparation for 

DNA replication or repair (Hasan et al 2001a). The ring shaped heterotrimeric PCNA 

encircles and slides along double stranded DNA tethering DNA polymerases to the DNA, 

thereby facilitating DNA synthesis. PCNA is acetylated by p300 and this modification 

increases PCNA binding efficiency for the DNA polymerases, Pol  and Pol  (Naryzhny and 

Lee 2004). In addition, flap endonuclease 1 (FEN1), which is involved in processing DNA 

ends during DNA replication and repair, is acetylated by p300 (Hasan et al 2001b). 

Acetylation reduces its DNA binding activity, as well as its exo- and endonuclease activities 

(Friedrich-Heineken et al 2003, Hasan et al 2001b). Recently, p300 has been shown to 

acetylate another DNA processing nuclease involved in DNA replication and repair, DNA2 

(Balakrishnan et al 2010). However, in contrast to FEN1, this modification stimulates the 

enzymatic activities of DNA2. p300 also binds and acetylates several other DNA repair 

proteins including DNA polymerase  and the DNA glycosylases, thymine DNA glycosylase 

(TDG) and 8-oxoguanine-DNA glycosylase (OGG1) (Bhakat et al 2006, Hasan et al 2002). 

Acetylation modifies the enzymatic functions of these proteins. Furthermore, CBP/p300 can 

interact with ATR and this is required for the DNA replication checkpoint since loss of 

CBP/p300 results in a defective DNA replication checkpoint (Stauffer et al 2007). More 

recently, p300 has been shown to interact and acetylate NBS1 which facilitates the 

stabilisation and recruitment of NBS1 to sites of DNA damage. A prerequisite for NBS1 

acetylation is ATM-dependent phosphorylation of p300 on serine 106 (Jang et al 2010, Jang 

et al 2011). 

CBP/p300 play a key role in regulation of p53 stability through their cytoplasmic E4 ubiquitin 

ligase activities and depletion of CBP/p300 in unstressed cells results in the stabilisation of 

p53 in the cytoplasm (Grossman et al 2003, Shi et al 2009). In the absence of stress, p53 can 

be both monoubiquitylated and polyubiquitylated by HDM2. Monoubiquitylation has been 

shown to enhance the nuclear export of p53, whereas polyubiquitylation results in its 

proteasomal degradation in the cytoplasm. In conjunction with HDM2, CBP/p300 have been 

shown to catalyse polyubiquitylation of p53, thereby regulating the turnover of p53 in 

unstressed cells. However, HDM2-mediated monoubiquitylation of p53 is required for 

CBP/p300-dependent polyubiquitylation of p53. In support of this, an HDM2 mutant that is 

defective in binding to p300, but can still bind to p53, can promote ubiquitylation, but not 

degradation of p53 (Zhu et al 2001). This demonstrates that CBP/p300 can regulate p53 
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differently depending on the cellular compartment. In the cytoplasm CBP/p300 can inhibit 

p53 whereas in the nucleus, CBP/p300 activate p53, presumably by acetylation. 

1.6.4 Regulation of CBP/p300 activity 

The intrinsic activities of CBP/p300 are regulated by multiple signalling pathways through 

post-translational modifications. Although, it is well known that phosphorylation of 

CBP/p300 is cell cycle dependent, relatively little is known about how phosphorylation 

regulates CBP/p300 function (Yaciuk and Moran 1991). CDK2-cyclin E complex was 

reported to phosphorylate CBP/p300 in the C-terminal. In the case of p300, this 

phosphorylation event negatively regulates its co-activator function. Since p21 gene requires 

p300 for its transcription, it was proposed that p21 relieves repression of p300 by CDK2-

cyclin E complex creating a positive feedback loop (Perkins et al 1997). In support of this, 

p21 was shown to increase p300-dependent transcription of NF- B. However, this is 

inconsistent with another report, which showed that CDK2-cyclin E stimulated the intrinsic 

HAT activity of CBP, promoting entry into S phase (Ait-Si-Ali et al 1998). An explanation 

for these distinct effects was found upon discovery of a domain within CBP and p300 termed 

cell cycle regulatory domain (CRD1). This domain is a strong transcriptional repression 

domain that functions independently of CBP/p300 HAT activity (Snowden et al 2000). This 

can be derepressed by expression of p21 in a promoter dependent manner demonstrating that 

p21 can have multiple effects on CBP/p300 function. Inhibition of the interaction between 

CDK2-cyclin E complex and CBP/p300 would inhibit HAT activity and therefore contribute 

to cell cycle arrest while derepression of CRD1 would selectively activate CBP/p300-

dependent transcription at specific promoters. 

The transactivation potential of CBP/p300 can be increased through phosphorylation PKA 

(Xu et al 1998), C/EBP  (Schwartz et al 2003), Ca2+/calmodulin-dependent protein kinase 

IV (CAMKIV) (Chawla et al 1998) and members of the MAP kinase (MAPK) signalling 

pathway including MEKK1 and ERK1/2 (Gusterson et al 2002, Janknecht and Nordheim 

1996a, Sang et al 2003, See et al 2001), although the phosphorylation sites on CBP/p300 

remain to be elucidated. In addition, AKT-mediated phosphorylation of p300 at serine 1834 

has been shown to enhance its HAT and transcriptional activities (Huang and Chen 2005). 

Furthermore, the transactivation activity of CBP is augmented through phosphorylation by 

IKK  on serine 1382 and serine 1386 (Huang et al 2007b). Interestingly, IKK -induced CBP 
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phosphorylation switches the binding preference of CBP from p53 to NF- B. Recently, ATM 

has been demonstrated to phosphorylate p300 on serine 106 resulting in activation of p300 

(Jang et al 2011). Conversely, phosphorylation of p300 at a conserved residue, serine 89 by 

PKC  and AMP-activated protein kinase reduces p300-dependent transactivation (Yang et al 

2001b, Yuan et al 2002).  

Methylation of the CBP/p300 by the CARM1 methyltransferase has been shown to both 

activate and repress the transcriptional activity of CBP/p300. Xu et al (2001) demonstrated 

that methylation of CBP/p300 at several arginine residues within the KIX domain blocked the 

interaction between CBP/p300 and CREB, resulting in inhibition of CREB-dependent 

transcription (Xu et al 2001b). In contrast, methylation of different arginine residues on 

CBP/p300 has been demonstrated to potentiate their transactivation activity, thereby 

facilitating activation of nuclear hormone receptors (Chevillard-Briet et al 2002). 

Furthermore, a recent report has shown that CARM1-mediated methylation of arginine 754 of 

p300 stimulated its co-activator activity leading to activation of BRCA1 and subsequently 

induction of p21 and GADD45 (Lee et al 2011). In addition, p300 has been shown to be 

sumoylated and modification of p300 by SUMO-1 provides a binding site for HDAC6 

resulting in repression of p300 transcriptional activity (Girdwood et al 2003). As well as post-

translational modifications, CBP/p300 intrinsic activities are modulated via interactions with 

other proteins. The transcriptional activities of CBP/p300 are enhanced through interacting 

with the p68 RNA helicase (Rossow and Janknecht 2003), as well as p21 through binding to 

the CRD1 domain (Snowden et al 2000). In contrast, Cyclin D1 was shown to repress p300 

transactivation in a CDK-independent manner through the recruitment of HDACs (Fu et al 

2005). As previously mentioned, several p300 cofactors have been identified that influence 

both the transcriptional activity of p53 and the expression of p53 target genes. In response to 

DNA damage, JMY and Strap form a complex with p300 and stimulate the transcriptional 

activity of p300 (Demonacos et al 2001, Shikama et al 1999), whereas Skp2 binds to p300 

and inhibits its transactivation activity (Kitagawa et al 2008). 

1.7 AIMS AND OBJECTIVES 

Although 53BP1 is best known for its involvement in the DNA damage response where its 

functions as a mediator protein that facilitates checkpoint activation and DNA repair, it was 
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initially proposed to function as a transcriptional regulator of p53 (Iwabuchi et al 1998). 

However, due to conflicting studies regarding the mechanism by which 53BP1 regulates the 

transactivation potential of p53, the function of 53BP1 in transcriptional regulation remains 

unclear. Despite this, other proteins involved in the cellular response to DNA damage such as 

BRCA1, MCPH1 and TOPBP1 have been shown to play a role in transcription indicating that 

DSB repair proteins can potentially also function as regulators of transcription. Furthermore, 

53BP1 is a chromatin-associated protein that via its Tudor domain interacts with H4K20me2 

and H3K79me2, which are found in regions of chromatin that are transcriptionally active 

(Botuyan et al 2006, Huyen et al 2004, Ng et al 2003). In addition, mass spectrometric 

analysis identified 53BP1 as a CBP/p300 interacting protein (GS Stewart, unpublished). 

Taken together these observations indicate that 53BP1, as well as being DNA damage 

responsive protein may also function as a transcriptional regulator. Therefore to investigate 

the role of 53BP1 as a transcriptional regulator, the main objectives were: 

 To perform gene expression profiling using a microarray approach to identify genes 

that are regulated by 53BP1, both in the presence and absence of overt DNA damage. 

 To characterise the interaction between 53BP1 and CBP/p300 and to assess if 53BP1 

functions as a transcriptional co-activator of p53 and CBP/p300.  
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CHAPTER 2 MATERIALS AND METHODS 

2.1 CHEMICALS 

TNF  was reconstituted according to the manufacturer’s instructions (Peprotech). Aliquots 

were stored at -20
o
C. Caffeine was dissolved in deionised water to make a 80mM stock 

solution, which was filter sterilised (Merck). Cells were treated with 8mM caffeine for 12-18 

hours at 37
o
C.  

2.2 CELL BIOLOGY TECHNIQUES 

2.2.1 Maintenance of cell lines 

Cell lines were maintained in McCoys 5A medium or Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 2mM glutamine and 10% fetal calf serum (FCS, Invitrogen). 

100units/ml penicillin (Invitrogen) was also added to the medium to prevent infection. All 

media was stored at 4
o
C and solutions were pre-warmed to 37

o
C before cell culture use.  Cells 

were incubated in a humidified atmosphere at 37
o
C with 5% CO2. To subculture cells, the 

medium was removed from the cell monolayer and the cells were washed with 1X PBS.  1X 

Trypsin-EDTA (Invitrogen) was added (2mls per 75cm
2 

flask) and incubated at 37
o
C for ~2 

minutes. Fresh medium was added to inactivate the trypsin and cells were seeded into a new 

75cm
2 

flask at the appropriate density. 

2.2.2 Cell lines 

Human osteosarcoma U2OS cells, human non-small cell lung carcinoma H1299 cells, and 

human small cell lung adenocarcinoma A549 cells were obtained from the American Tissue 

Culture Collection (ATCC). U2OS cells were routinely maintained in McCoys 5A medium 

whereas, H1299, HeLa and A549 cells were maintained in DMEM.  

2.2.3 Cryopreservation of cell lines 

Cells from a 70% confluent flask were trypsinised and centrifuged at 1200rpm for 5 minutes 

at room temperature. The supernatant was gently removed and discarded. Cells were 

resuspended in 1ml of medium containing 50% FCS, 40% medium and 10% 
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dimethylsulphoxide (DMSO) (Sigma). Cells were transferred into a 1.5ml cryovial and were 

placed at -80
o
C for 24 hours before being stored in liquid nitrogen.  

2.2.4 Recovery of cells from liquid nitrogen 

To recover cells from liquid nitrogen, the cells were thawed quickly in a 37
o
C waterbath and 

the contents were added drop wise to 10mls of pre-warmed medium. The cells were pelleted 

at 1200rpm for 5 minutes at room temperature, the supernatant gently removed and the cells 

resuspended in fresh medium before being placed in a 75cm
2 

flask. 

2.2.5 Testing cells for mycoplasma 

Before cells were used for experiments, they were tested for mycoplasma using the 

MycoAlert mycoplasma detection kit (Lonza) according to the manufacturer’s instructions. 

Briefly, 2mls of cells were centrifuged at 1500rpm for 5 minutes and 100 l of the supernatant 

was transferred to a white 96 well flat-bottomed plate (Nunc). 100 l of MycoAlert  reagent 

was added to the sample and after 5 minutes the luminescence was recorded on a Victor 1420 

multi-label plate reader (reading A). The plate was then removed and 100 l of MycoAlert  

substrate was added to the sample. Following a 10 minute incubation, the luminescence was 

recorded (reading B) and the ratio of reading B to reading A was calculated. Ratios of greater 

than 1 indicate that the cells are infected with mycoplasma. 

2.2.6 RNA interference 

The siRNA duplexes were 21 bases with a 2 base deoxynucleotide overhang (Table 2.1, 

Dharmacon Research). Oligofectamine reagent (Invitrogen) was used to deliver the siRNA 

duplexes into eukaryotic cells. 24 hours prior to transfection, cells were seeded into 6cm 

dishes, so they were 30-50% confluent the following day. 20 l of 20 M siRNA was diluted 

in 350 l Opti-MEM (Invitrogen) and 8 l oligofectamine was diluted in 22 l Opti-MEM.  

After 5-10 minutes at room temperature, the oligofectamine mix was added to the siRNA mix 

and incubated for 20 minutes at room temperature to allow the siRNA complexes to form. 

Cells were washed once with Opti-MEM before the addition of 1.6ml of Opti-MEM per 6cm 

dish. 400 l of siRNA complexes were added to the appropriate dish, left for 4 hours at 37
o
C, 

before 1ml of medium supplemented with 30% FCS was added. Cells were harvested either 

72 or 96 hours post transfection. 



Chapter 2 

79 

Target Protein Sense sequence 

Control CGUACGCGGAAUACUUCGAdTdT 

53BP1 GAACGAGGAGACGGUAAUAdTdT 

  Table 2.1  siRNA sequences used in this study. 

 

2.2.7 Transient transfections 

Transient expression of plasmids was achieved using Lipofectamine LTX with Plus reagent 

(Invitrogen). Plus reagent was used to enhance transfection efficiency. Cells were seeded into 

24 well plates, so they would be 50-80% confluent after 24 hours. 500ng DNA was diluted in 

100 l Opti-MEM and after the addition of 0.5 l Plus reagent, the DNA was left for 5 minutes 

at room temperature. Lipofectamine LTX was added at 1:2.5 or 1:4 DNA: Lipofectamine 

LTX ratio for H1299 and U2OS cells respectively. After 30 minutes at room temperature, 

100 l of the DNA-Lipofectamine LTX complexes were overlaid on to the cells. Cells were 

incubated for 4-6 hours at 37
o
C before the medium was replaced. Cells were harvested 24 or 

48 hours post-transfection.  

2.2.8 Luciferase reporter assay 

Luciferase expression was assayed using the Dual Luciferase Reporter Assay System 

(Promega) according to the manufacturer’s instructions. 500ng of the relevant constructs were 

transfected into cells in a 24 well plate in triplicate using Lipofectamine LTX and Plus reagent 

(Table 2.4). In each luciferase assay, a Renilla plasmid was co-transfected in as a control for 

transfection efficiency and the DNA amount was equalised using an empty vector, pcDNA 

3.1. 24 hours post transfection, medium was removed and cells washed in PBS. Cells were 

lysed in 100 l of 1X passive lysis buffer (PLB) per well for 15 minutes on a rocker at room 

temperature. Lysates were then transferred to autoclaved microfuge tubes and placed at -20
o
C 

until the luciferase assay was conducted. 

The assays for firefly luciferase activity and Renilla luciferase activity were performed 

sequentially in a white 96 well flat-bottomed plate (Nunc). 20 l of cell lysate was added per 

well, followed by the addition of 50 l of Luciferase Assay Reagent II (LAR II). 
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Luminescence was recorded on a Victor 1420 multi-label plate reader.  After quantifying the 

firefly luminescence, the plate was removed and 50 l of 1X Stop and Glo Reagent was added 

to quench the firefly luciferase reaction whilst simultaneously initiating the Renilla luciferase 

reaction. Subsequently, the Renilla luminescence was measured. 

Data was analysed and presented as relative luciferase units, which were calculated by 

dividing the firefly luciferase values with the Renilla luciferase values. Experiments were 

repeated 3-5 times to ensure reproducibility. 

2.3 PROTEIN CHEMISTRY TECHNIQUES 

2.3.1 Preparation of whole cell lysates 

Cells were centrifuged at 1200rpm for 5 minutes at 4
o
C in a universal tube, the cell pellet was 

resuspended in 10mls of ice cold PBS and then centrifuged at 1200rpm for 5 minutes at 4
o
C.  

The cell pellet was resuspended in a volume of UTB buffer (8M urea, 150mM -

mercaptoethanol, 50mM Tris pH7.5) and transferred to a microfuge tube. The samples were 

sonicated for 2 x 10 seconds using a Microson XL ultrasonic cell disruptor (Misonix) on 

setting 4 and then centrifuged at 16,000rpm for 20 minutes at 4
o
C. The supernatant was 

aliquoted, snap frozen in liquid nitrogen and stored at -80
o
C. 

2.3.2 Protein determination 

Protein concentrations were determined according to the Bradford method. Protein samples 

were diluted 1:10 with sterile distilled water and 10ul aliquoted in quadruplet into a 96 well 

flat bottom plate. A standard curve was generated using a range of bovine serum albumin 

(BSA, Sigma) concentrations made from 1mg/ml stock (0-500 g/ml). 10 l of each standard 

was added in triplicate to the same 96 well plate. The Bradford reagent (Bio-Rad) was diluted 

1:5 with water and 200 l was transferred to each well. The plate was incubated at room 

temperature for 5 minutes and then the absorbance was measured at 595nm using a plate 

reader. The protein concentrations were determined by comparing the sample absorbance with 

the BSA standard curve. 
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2.3.3 SDS-polyacrylamide gel electrophoresis 

Proteins were analysed by SDS-polyacrylamide electrophoresis and were made with varying 

amounts of acrylamide depending on the relative molecular weight of the protein of interest. 

Routinely a 6% acrylamide gel was used to detect proteins with a molecular weight of 

>80kDa, a 10% acrylamide gel was used to detect proteins with a molecular weight of 

>40kDa and a 12% acrylamide gel was used to detect proteins with a molecular weights of 

<40kDa. Polyacrylamide gels were made from 30% Acrylamide, 0.8% 

NN’methylenebisacrylamide solution (Biorad) diluted in sterile distilled water to give the 

desired final percentage. 0.1M Tris, 0.1M Bicine (N, N-bis[2-hydroxy-ethyl-glycine]) 

(pH8.3), 0.1% (w/v) SDS and 0.2% (v/v) TEMED were then added to give a final volume of 

39.88mls. After the addition of 200 l of freshly prepared 10% (w/v) ammonium persulphate, 

which initiates polymerisation, the gel was cast in the gel apparatus (Hoefer Scientific 

Instruments) and a well forming comb inserted.   

Following the gel setting, the wells were rinsed with running buffer (0.1M Tris, 0.1M Bicine, 

0.1% SDS (w/v) pH8.3). An equal volume of 2X sample buffer (0.125M Tris/HCl pH6.8, 4% 

(w/v) SDS, 20% Glycerol, 0.2M DTT, 0.02% Bromophenol blue) was added to each protein 

sample before it was boiled at 100
o
C for 5 minutes to denature the protein. Samples were 

loaded onto the gel alongside a pre-stained molecular weight marker (Amersham). 30-50 g of 

whole cell lysate was routinely used per lane. Electrophoresis was carried out at 25mA for 5 

hours or overnight at 8mA. 

2.3.4 Western blotting 

Following SDS-PAGE gel electrophoresis, the separated proteins were transferred onto a 

nitrocellulose membrane (GE Healthcare). A blotting cassette was set up containing the gel 

and nitrocellulose membrane sandwiched between two pieces of Whatmann 3MM filter paper 

and this by two sponge sheets. All components of the cassette were pre-soaked in transfer 

buffer (48mM Tris, 390mM glycine, 20% (v/v) methanol) before the cassette was constructed.  

The cassette was placed into the blotting tank (Hoefer transblot electroblotter) that was filled 

with transfer buffer with the nitrocellulose facing the positive electrode. Blotting was carried 

out overnight at 200mA for 18 hours. 
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After blotting the proteins were visualised on the nitrocellulose membrane by staining with 

Ponceau S stain (Sigma) for 1 minute. Excess stain was removed by rinsing with distilled 

water. The membrane was then washed in either phosphate-buffered saline with 0.1% Tween-

20 (PBS-T) or Tris-buffered saline (200mM Tris, 1.36M NaCl pH7.6) with 0.1% Tween-20 

(TBS-T) until the stain was completely removed. TBS-T was used if phosphorylated proteins 

were being analysed. The membrane was blocked at room temperature for 2 hours in milk 

(5% (w/v) skimmed milk powder in either PBS-T or TBS-T) to block any unoccupied binding 

sites on the membrane and to prevent non-specific binding of antibodies to the membrane. 

Following this, the nitrocellulose was incubated with the primary antibody diluted to the 

appropriate concentration in milk block with gentle rocking (Table 2.2). Excess primary 

antibody was removed by washing the membrane three times in PBS-T or TBS-T for 10 

minutes. The relevant horse-radish peroxidise-labelled, anti-species secondary antibody 

conjugate diluted in milk block was incubated at room temperature with the membrane for 1 

hour with gentle rocking (Table 2.3). The membrane was then washed three times in PBS-T 

or TBS-T for 10 minutes to remove any excess secondary antibody. The membrane was 

treated for 1 minute in equal volumes of the two reagents supplied with the enhanced 

chemiluminescence system (ECL) (GE Healthcare) and exposed to Hyperfilm
TM 

(GE 

Healthcare). 

2.3.5 Immunofluorescence 

Cells were grown to 70% confluency on either 12 well poly-L-lysine coated glass slides 

(Hendley) in 10cm dishes or on poly-L-lysine coverslips (BD Biosciences). Alternatively, 

50 l of cell suspension was added to one well on the slides or 100 l cell suspension was 

added to coverslip and the cells were left to adhere for at least 1 hour. Slides were fixed in ice 

cold paraformaldehyde (3.6% paraformaldehyde in PBS, pH 7.2) for 10 minutes and then 

placed into ice-cold extraction buffer (10mM PIPES, 300mM sucrose, 20mM NaCl, 3mM 

MgCl2, 0.5% triton X-100, pH6.8) for 7 minutes. Cells grown on coverslips were fixed and 

extracted in ice-cold methanol for 15 minutes at -20
o
C. Cells were washed in PBS (3 x 5 

minutes) before being blocked in filter sterilised 10% FCS in PBS for 1 hour at room 

temperature or overnight at 4
o
C. Cells were then washed for 3 x 5 minutes in PBS and 

incubated for 1 hour in primary antibody diluted to the appropriate concentration in 1% FCS 

in PBS (Table 2.2). Two ‘dip’ washes in PBS were performed to remove excess antibody, 
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followed by 3 x 5 minute washes in PBS. Cells were then incubated with secondary 

antibodies diluted to the appropriate concentration in 1% FCS in PBS for 1 hour in a dark 

moist box (Table 2.3). To remove the excess antibody two ‘dip’ washes in PBS were 

performed proceeded by 3 x 5 minute washes in PBS. Slides and coverslips were mounted 

with a drop of Vectashield Mounting Medium (Vector Laboratories) containing 4 , 6- 

diamidino-2-phenylindole (DAPI). Slides were protected with glass coverslips (Surgipath) 

and coverslips were mounted on glass slides (Surgipath). The edges were sealed with nail 

varnish and slides were stored at 4
o
C in the dark. Cells were visualised using Nikon Eclipse 

E600 microscope and images were recorded and analysed using the Hamamatsu C4742-95 

digital camera and image analysis software Velocity version 4. 

2.3.6 Immunoprecipitation 

Cell pellets were lysed for 30 minutes with rotation in lysis buffer containing 50mM Tris 

pH7.5, 150mM NaCl, 1% Nonidet P-40, supplemented with 2mM MgCl2, 90U/ml Benzonase 

(Novagen) and a EDTA-free protease inhibitor tablets (Roche). Cell lysates were centrifuged 

at 44000rpm for 30 minutes at 4
o
C to remove cell debris. To prevent any non-specific proteins 

that may bind to the beads, the cell lysates were pre-cleared by the addition of either Protein 

G-Sepharose (Sigma) or Protein A-Sepharose (GE Healthcare) beads depending on the 

antibody species to be used for 1 hour at 4
o
C with rotation. Protein A/G was removed by 

centrifugation at 16,000rpm for 5 minutes at 4
o
C. 10 g of antibody was added to cleared 

lysate and antigen-antibody complexes were left to form for 3 hours at 4
o
C on a vertical 

rotating wheel (Table 2.2). Non-specific species-matched IgG was used as an antibody 

control. Lysates were centrifuged at 44000rpm for 15 minutes at 4
o
C. Immune complexes 

were precipitated by rotating at 4
o
C for 2 hours with 25μl of protein A or protein G beads.  

Bead bound immunoprecipitates were washed three times in wash buffer (50mM Tris, pH 7.5, 

150mM NaCl, 0.5% Nonidet P-40) supplemented with a complete protease inhibitor tablet.  

Samples were boiled in 2X sample buffer for 5 minutes at 100
o
C in preparation for SDS-

PAGE and Western blotting. 
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Antigen Species Company Dilution Application Incubation 

Conditions for 

WB 

53BP1 Rabbit Novus 

Biologicals 

1:1000 

10 g per IP 

WB, IF 

IP 

2hr RT 

SMC1 Rabbit Bethyl 

Laboratories 

1:1000 WB 2hr RT 

Phospho-Ser966 

SMC1 

Rabbit Bethyl 

Laboratories 

1:1000 WB 2hr RT 

NBS1 Mouse Novus 

Biologicals 

1:10,000 WB 2hr RT 

Phospho-Ser343 

NBS1 

Rabbit SAB 1:500 WB O/N 4
o
C 

H2A Rabbit Millipore 1:5000 WB O/N 4
o
C 

Phospho-Ser139 

H2AX 

Mouse Millipore 1:1000 WB O/N 4
o
C 

p53 (DO-1) Mouse Donated by 

R.Grand 

1:1000 WB 2hr RT 

Phospho-Ser15 

p53 

Rabbit Cell Signalling 1:1000 WB O/N 4
o
C 

MDM2 (2A10) Mouse Donated by 

R.Grand 

1:10 WB O/N 4
o
C 

p21 Mouse Cell Signalling 1:1000 WB O/N 4
o
C 

PUMA Rabbit Abcam 1:500 WB O/N 4
o
C 

CBP Rabbit Bethyl 

Laboratories 

1:1000 

10 g per IP 

WB 

IP 

O/N 4
o
C 

p300 Rabbit Bethyl 

Laboratories 

1:5000 

10 g per IP 

WB 

IP 

O/N 4
o
C 

p300 Mouse Millipore 1:1000 WB O/N 4
o
C 

HA Mouse Sigma 1:1000 

1:200 

WB 

IF 

2hr RT 

p65 Rabbit Santa Cruz 1:1000 

1:50 

WB 

IF 

O/N 4
o
C 

p65 Mouse Santa Cruz 1:1000 

1:50 

10 g per IP 

WB 

IF 

IP 

O/N 4
o
C 

Phospho-Ser536 

p65 

Rabbit Cell Signalling 1:1000 WB O/N 4
o
C 

Phospho-Ser468 

p65 

Rabbit Cell Signalling 1:1000 WB O/N 4
o
C 

IκB  Rabbit Santa Cruz 1:1000 WB O/N 4
o
C 

IKK  Rabbit Santa Cruz 1:50 WB O/N 4
o
C 

IKK  Mouse Santa Cruz 1:200 WB O/N 4
o
C 



Chapter 2 

85 

NEMO Rabbit Santa Cruz 1:500 WB O/N 4
o
C 

p50 Rabbit Enzo Life 

Sciences 

1:1000 WB O/N 4
o
C 

G3BP2 Rabbit Bethyl 

Laboratories 

1:5000 WB O/N 4
o
C 

FADD Mouse BD 

Transduction 

1:1000 WB O/N 4
o
C 

BIRC4/XIAP Rabbit Cell Signalling 1:1000 WB O/N 4
o
C 

BAG4/SODD Rabbit Abcam 1:500 WB O/N 4
o
C 

IKIP Goat Abcam 1:500 WB O/N 4
o
C 

IgG Rabbit DAKO 10 g per IP IP  

-actin Mouse Sigma 1:50,000 WB 1hr RT 

Table 2.2 Primary antibodies used for Western blotting (WB), immunofluorescence 

(IF) and immunoprecipitation (IP). O/N denotes overnight and RT denotes room 

temperature.  

 

Antibody Company Dilution Application 

Polyclonal swine 

anti-rabbit IgG HRP 

DAKO 1:1000 WB 

Polyclonal goat anti-

mouse IgG HRP 

DAKO 1:3000 WB 

Alexa flour® 594 

goat anti-mouse IgG 

Invitrogen 1:1000 IF 

Alexa flour® 488 

goat anti-rabbit IgG 

Invitrogen 1:1000 IF 

Table 2.3 Secondary antibodies used for Western blotting (WB) and 

immunofluorescence (IF). 
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2.3.7 GST pull-down assay 

Glutathione S-transferase (GST) pull-down assays were carried out using GST-fusion proteins 

and [
35

S]-labelled proteins (Table 2.4). Typically, 20-30 g of GST-fusion protein was mixed 

with 10 l of [
35

S]-labelled protein for 1 hour at 4
o
C with rotation. Protein complexes were 

isolated by incubation with 35 l glutathione-agarose beads for 1 hour with rotation at 4
o
C. 

Beads were washed three times in GST lysis buffer (1% Triton-X100, 1mM EDTA in PBS) 

and twice in GST wash buffer (1mM EDTA in PBS). GST-protein complexes were eluted 

with 50 l of GST elution buffer (25mM glutathione, 50mM Tris, pH8.0) for 1 hour at 4
o
C 

with rotation. Samples were mixed with 4X sample buffer (250mM Tris pH6.8, 8% SDS, 

10% glycerol, 0.04% Bromophenol blue, 400mM DTT), boiled for 5 minutes at 100
o
C and 

loaded on to an SDS-PAGE gel. 

After gel electrophoresis, gels were stained in a solution containing 0.1% (w/v) Coomassie 

Brilliant Blue R-250 (Sigma), 10% glacial acetic acid and, 40% methanol on a shaker for 10 

minutes at room temperature. Subsequently, gels were placed in destaining solution 

containing 10% glacial acetic acid and 30% methanol until proteins were clearly visible. 

Destained gels were incubated in Amplify Fluorographic Reagent (Amersham Bioscience) for 

30 minutes on a shaker. Gels were dried under vacuum at 80
o
C for 2 hours and exposed for 

autoradiography at -20
o
C using Hyperfilm (GE Healthcare). 

2.3.8 Nuclear extract fractionation 

HeLa S3 nuclear extract was purchased from Cilbiotech (http://www.cilbiotech.be/index.htm) 

and was first subject to ion exchange chromatography to separate proteins based on their 

molecular charge. The extract was loaded on to a positively charged anion exchange column 

called a diethylaminoethyl (DEAE) cellulose column, which had been equilibrated with 

equilibration buffer (20mM Tris-HCl pH8, 100mM KCl, 0.5mM DTT). The protein fractions 

were eluted step wise in elution buffer containing 20mM Tris-HCl pH8.0, 0.5mM DTT and 

increasing salt concentrations 0.2M, 0.3M and 0.4M KCl. Fractions were collected and 

subject to SDS-PAGE on a 4-12% gradient gel (Biorad) and Western blotting. 

Peak fractions were then used for gel filtration chromatography to separate proteins by 

molecular weight. The Superose 6 column was equilibrated with 20mM HEPES (pH 7.5),  

http://www.cilbiotech.be/index.htm
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Gene Vector Tag Application Source 

53BP1 

(full length) 

pcDNA 3.1 Flag IVT, in vivo overexpression 

and luciferase assays 

Dr G Stewart 

53BP1 

(aa 1-356) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

53BP1 

(aa 333-759) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

53BP1 

(aa 722-1039) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

53BP1 

(aa 992-1331) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

53BP1 

(aa 1309-1620) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

53BP1 

(aa 1584-1972) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

CBP 

(full length) 

pcDNA3.1  IVT Dr A Turnell 

CBP 

(aa 1-451) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

CBP 

(aa 451-721) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

CBP 

(aa 721-1100) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

CBP 

(aa 1099-1460) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

CBP 

(aa1460-1891) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

CBP 

(aa 1892-2441) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

p300 pBS  IVT Dr A Turnell 

p300 

(aa 19-596) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

p300 

(aa 596-957) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

p300 

(aa 863-1382) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

p300 

(aa 1302-1756) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

p300 

(aa 1716-1961) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

p300 

(aa 1916-2414) 

PGEX 4T-1 GST GST pull down assays Dr G Stewart 

GST PGEX 4T-1  GST pull down assays Dr G Stewart 

Adenovirus E1a 

13S 

PGEX 4T-1 GST GST pull down assays Dr R Grand 

 pcDNA3.1  DNA transfections Dr Philip Byrd 

Renilla pRL-TK  luciferase reporter assays Dr John O’Neil 
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p53 luciferase 

reporter 

PG13-Luc  p53 luciferase reporter assay Dr Ester 

Hammond 

p53 wild type pBK-CMV  p53 luciferase reporter assay Dr Ester 

Hammond 

p53 mutant 

(R175H) 

pBK-CMV  p53 luciferase reporter assay Dr Ester 

Hammond 

p21 luciferase 

reporter 

p21-Luc/ 

WWP-Luc 

 p21 luciferase reporter assay Dr A Turnell 

Gal4 luciferase 

reporter 

pGL3-E1B  p300 luciferase reporter assay Dr Neil Perkins 

Gal4 DBD (aa 

1-147) 

pcDNA3 Gal4 

DBD 

p300 luciferase reporter assays Dr A Turnell 

Gal4 p300 

(full length) 

pVR1012 Gal4 

DBD 

p300 luciferase reporter assays Dr Neil Perkins 

 pGL2  NF- B luciferase reporter 

assays 

Dr John O’Neil 

 3enh- b-

ConA-Luc 

 NF- B luciferase reporter 

assays 

Dr John O’Neil 

53BP1 

(full length) 

pCMH6K HA luciferase reporter assays, 

DNA transfections 

Dr Michal 

Goldberg 

53BP1  

(aa 1-1710) 

pCMH6K HA luciferase reporter assays, 

DNA transfections 

Dr Michal 

Goldberg 

53BP1 

(aa 1-1052) 

pCMH6K HA DNA transfections Dr Michal 

Goldberg 

53BP1 

(aa 1052-1972) 

pCMH6K HA luciferase reporter assays, 

DNA transfections 

Dr Michal 

Goldberg 

53BP1 

(aa 1483-1972) 

pCMH6K HA luciferase reporter assays, 

DNA transfections 

Dr Michal 

Goldberg 

53BP1 

(aa 1052-1710) 

pCMH6K HA luciferase reporter assays, 

DNA transfections 

Dr Michal 

Goldberg 

53BP1 

( 1235-1616) 

pCMH6K HA luciferase reporter assays, 

DNA transfections 

Dr Sagar 

Sengupta 

Table 2.4 Gene expression constructs used in this study. 
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0.2M KCl and 0.5mM DTT and the fraction applied to the column. The fractions were 

collected and an equal volume was loaded on to a 4-12% SDS polyacrylamide gel 

(Invitrogen) and Western blotting carried out. 

2.4 MOLECULAR GENETICS TECHNIQUES 

2.4.1 Preparation of media and agar plates 

All bacterial cultures were grown in Luria broth (LB) (Sigma), which was prepared by 

dissolving 25g of LB in 1L of distilled water and sterilised by autoclaving at 121
o
C, 15psi for 

30 minutes. 

LB-agar was made by supplementing LB with 1.2% agar and sterilised by autoclaving.  

Following boiling, the LB-agar was allowed to cool to approximately 50
o
C before 

supplemented with antibiotics. 25mls of liquid LB-agar was dispensed into a sterile 9cm 

diameter Petri dish. Plates were then allowed to set at room temperature and stored at 4
o
C 

until used for bacterial transformations. Before use, the plates were dried in a fume hood for 1 

hour. 

2.4.2 Antibiotics 

Ampicillin and kanamycin were made up as stock solution of 100mg/ml in sterile distilled 

water stored at -20
o
C. Ampicillin and kanamycin were and used at a final concentration of 

50 g/ml and 25 g/ml respectively. 

2.4.3 Transformation of bacteria 

Bacterial transformations were carried out in competent Escherichia coli cells. MAX 

efficiency DH5  competent cells and MAX efficiency Stbl2 competent cells (Invitrogen) 

were used for plasmid production, whereas BL21-Gold competent cells were used to generate 

recombinant proteins. For each transformation, 50 l aliquot of competent cells was thawed on 

ice before addition of up to 100ng DNA. Cells were incubated on ice for 30 minutes, before 

being heat shocked at 42
o
C for either 30 seconds for DH5  cells, 25 seconds for Stbl2 cells or 

20 seconds for BL21 cells. Cells were placed back on ice for 2 minutes before the addition of 

450 l preheated (42
o
C) super optimal catabolite (SOC) medium (Invitrogen). Transformation 
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reactions were placed in an incubator at either 30
o
C for 90 minutes (Stbl2 cells) or 37

o
C for 1 

hour for DH5  and BL21 cells with shaking at 225rpm. The transformation reaction was 

spread on to the LB-agar plates and incubated overnight at 37
o
C. 

2.4.4 Growth of overnight cultures from colonies 

Single colonies of competent cells were picked using a sterile tip and grown in 150 l of LB 

medium in a 96 well flat-bottomed plate at 37
o
C for 2 hours. Plates were sealed and placed at 

4
o
C until required. 

2.4.5 Mini-preparation of DNA 

Mini-preparations of plasmid DNA were prepared using the GenElute
TM

 plasmid miniprep kit 

(Sigma) according to the manufacturer’s instructions. Initially, 5mls of LB broth 

supplemented with the appropriate antibiotic was inoculated with 10 l of culture grown in the 

96 well plate, and grown overnight at 37
o
C with shaking. The overnight culture (3-5mls) was 

pelleted by centrifugation at 12,000 x g for 1 minute. Bacterial cell pellets were resuspended 

in 200 l of resuspension solution; following this the cells were lysed in 200 l alkaline lysis 

buffer by gentle inversion (6-8 times). The alkaline lysis of the bacterial cells was halted by 

the addition of 350 l of neutralisation solution. The lysed samples were then centrifuged at 

12,000 x g for 10 minutes in order to pellet the cell debris. The column was equilibrated with 

column preparation solution before the supernatant was applied. The column was washed in a 

solution containing ethanol and the plasmid DNA was then eluted in 100 l of elution 

solution. The quality of the DNA was analysed by agarose gel electrophoresis and the DNA 

was stored at -20
o
C. 

2.4.6 Polymerase chain reaction (PCR) 

PCR amplification was performed using Taq Expand Long Template (Roche) and primers 

from Sigma (Table 2.5). Reaction mixtures were made up in thin-walled PCR tubes in a 50 l 

volume containing 5 l of 10X PCR buffer, 0.5 l-1 l DNA, 2 l (250ng) forward primer, 2 l 

(250ng) reverse primer, 1.5 l dNTP mix (10mM each dNTP) (Roche) and sterile distilled 

water. 0.75 l of Taq polymerase (2.5U/ l) was added last. The tubes were placed in the PCR 

machine (Veriti 96 well thermal cycler, Applied Biosystems) and the following PCR  
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Table 2.5 PCR and sequencing primers used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

Primer Name Sequence 

Human 53BP1 1 Forward: 5’-TCTGGAAGGCTGCGCAGTATTGG-3’ 

Reverse: 5’-GGTGCTGAAGATACTGCCTCATC-3’ 

Human 53BP1 2 Forward: 5’-ATCAGTCAGGTCATTGAGCAG-3’ 

Reverse: 5’-CTGCAGATTCAGAAGTCACCAGA-3’ 

Human 53BP1 3 Forward: 5’-CTGCAAGGTCAGAGGACATGC-3’ 

Reverse: 5’-GTTGATGCTTTCTACAAGTGA-3’ 

Human 53BP1 4 Forward: 5’-GTCTGGAAGAACAATCAAATG-3’ 

Reverse: 5’-CAGGGTCTGAGGTGGAAGAAAT-3’ 

Human 53BP1 5 Forward: 5’-GTCACCAGCTACTCGATCTGAG-3’ 

Reverse: 5’-GTGAGAGCAGATGATCCTTTAAG-3’ 

Human 53BP1 6 Forward: 5’-TAGAACCATGTGCTGAGAATAG-3’ 

Reverse: 5’-CTACTGCTGTTGCTGAGTCTGT-3’ 

Human 53BP1 7 Forward: 5’-GTCATGTCTGAAAGCATGGTGGAG-3’ 

Reverse: 5’-GTGGTGAGAAACCAGTCAGTGCT-3’ 

Human 53BP1 8 Forward: 5’-CATAGGAATCCAAACCATGGAGTG-3’ 

Reverse: 5’-CAGTGTGTGAGGAGGATGGTGAT-3’ 

Human 53BP1 9 Forward: 5’-ACAAGTCTCTCAGCTATGCACAG-3’ 

Reverse: 5’-GATGATGGGTACGAATGTGATGT-3’ 

Human 53BP1 10 Forward: 5’-AATAGCTTTGTAGGGCTCCGTG-3’ 

Reverse: 5’-GAGGTCGCAAGTCTGCCACAGTA-3’ 

Human 53BP1 11 Forward: 5’-TCCAGTAGCAGCAGCACAACC-3’ 

Reverse: 5’-GTATCAGACCAACAGCAGACAT-3’ 

Human 53BP1 12 Forward: 5’-TGGGTCCATGATAGTTGCCATGC-3’ 

Reverse: 5’-GTGTCTTGTGTGTAACTGGATTCCTT-3’ 

Human 53BP1 13 Forward: 5’-ATGGACCTCACTGGAAGTCAGTTG-3’ 

Reverse: 5’-GAGAATGAGGCTCGAAGTGAGGAT-3’ 

pcDNA3.1 Forward: 5’-ACTCACTATAGGGAGACCCAAGC-3’ 

Reverse: 5’-GCAACTAGAAGGCACAGTCGAGG-3’ 
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conditions were applied: 1 cycle of 95
o
C for 2 minutes; 30 cycles of 95

o
C for 20 seconds, 

60
o
C for 30 seconds, 72

o
C for 1 minute/Kb of plasmid DNA length followed by a final 10 

minute extension at 72
o
C. The resulting DNA products were resolved by agarose gel 

electrophoresis and purified using an Invitrogen purification kit. 

2.4.7 Purification of PCR products 

Before the DNA was used for other applications such as sequencing and restriction digestion, 

any impurities such as primers, dNTPs, enzymes and salts were removed from the PCR 

product using the PureLink PCR Purification kit (Invitrogen). Briefly, 4 volumes of Binding 

buffer were added to 1 volume of PCR reaction and mixed well to enable the double stranded 

DNA (dsDNA) to bind to the column. The sample was transferred to a PureLink Spin 

Column, centrifuged for 1 minute at 10,000 x g and the flow through was discarded. 

Impurities were removed by washing the column with 650 l of wash buffer supplemented 

with ethanol and centrifuging at 10,000 x g for 1 minute. Again the flow through was 

discarded and the column transferred to fresh tubes. The DNA was eluted in 50 l of low salt 

elution buffer (10mM Tris-HCl, pH8.5) and the purity of the DNA was analysed by agarose 

gel electrophoresis. DNA was stored at -20
o
C until further use. 

2.4.8 Agarose gel electrophoresis 

Analysis of DNA was performed on agarose gels, which were prepared by dissolving agarose 

(Sigma) in 1X TBE buffer (89mM Tris, 89mM Boric acid, 2mM EDTA) to a final 

concentration of 0.8-4% (w/v). The agarose was dissolved by heating the mixture to boiling 

point. It was then allowed to cool before the addition of 1 l of Syber Safe DNA gel stain 

(Invitrogen) per 100ml. 5 l of miniprep or 1 l of PCR product was diluted with 6X loading 

buffer (0.25% Bromophenol blue, 30% glycerol in a 10mM Tris, 1mM EDTA, pH8.0 

solution) and then loaded. To ensure the DNA was the correct size, a DNA Molecular Weight 

Marker (Roche) was run alongside the samples. Gel electrophoresis was performed in 1X 

TBE at 120V for up to 1 hour and the DNA was visualised with a Safe Imager blue-light 

transilluminator. 
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2.4.9 DNA sequencing 

Sequencing was performed to validate the DNA sequence of coding regions generated by 

PCR and to ensure any mutant plasmid DNA contained the correct mutations. Each reaction 

was carried out using the Big Dye® Terminator v3.1 Cycle Sequencing kit (Applied 

Biosystems) and consisted of 7 l 2.5x sequencing buffer provided in the kit, 1 l purified PCR 

product, 1 l (125ng) of primer, 1 l of BigDye® Terminator v3.1 Ready Reaction mix 

provided in the kit and sterile distilled water up to total volume of 20 l. Reactions were 

placed in a thermal cycler for the sequencing reaction and run for 30 cycles using the 

following conditions: 95
o
C for 10 seconds, 50

o
C for 5 seconds and 60

o
C for 4 minutes.  

The PCR products were then precipitated with 50 l absolute ethanol and 2 l 3M sodium 

acetate (pH4.6) for 15 minutes at room temperature.  Samples were centrifuged at 13,000rpm 

for 20 minutes, the supernatant removed and the pellet washed with 250 l of 70% (v/v) 

ethanol before being centrifuged for a further 5 minutes. The supernatant was removed and 

any residual ethanol was removed by air drying for at least 1 hour. Following addition of 10 l 

of ‘Hi-Dye’ (Applied Biosystems) to dissolve the DNA pellet, the samples were denatured at 

95
o
C for 5 minutes and then put on ice immediately to prevent reduplexing. 

Samples were loaded into the appropriate 96 well plates and sequencing was performed using 

the Applied Biosystems 3100 ABI prism capillary sequencer. Following the run, the data files 

were extracted from the 3100 data collection software version 1.0 and analysed using the 

software programme FinchTV version 1.4.0 (Geospiza Inc). 

2.4.10   Maxi-preparation of plasmid DNA 

Large amounts of DNA were purified from bacterial cultures using the PureLink
TM

 HiPure 

Plasmid Filter Purification kit (Invitrogen) according to the manufacturer’s instructions.  

Initially, 10mls of LB containing either 50 g/ml of ampicillin or 25 g/ml kanamycin was 

inoculated with 10 l of bacterial culture from the 96 well plate and grown overnight at 37
o
C 

at 225rpm in a shaking incubator. 250 l of this culture was then used to inoculate 200mls of 

LB containing the appropriate antibiotic, which was grown overnight. The following day, a 

HiPure Filter Maxi Column containing a filtration cartridge was equilibrated with 30mls of 

equilibration buffer and the solution allowed to drain by gravity flow. Meanwhile, the cells 

were harvested by centrifugation at 4,000 x g for 10 minutes at 4
o
C and resuspended in 10mls 
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of resuspension solution. Cells were lysed in 10mls alkaline lysis buffer and incubated at 

room temperature for 5 minutes. The reaction was halted by addition of 10mls of precipitation 

buffer. The precipitated lysate was transferred into the equilibrated column and allowed to run 

through the filter by gravity flow. Immediately after the column stopped dripping, the 

filtration cartridge was removed and the lysate washed with 50mls wash buffer containing 

ethanol.  DNA was collected in a 50ml falcon tube by the addition of 15mls of elution buffer 

to the column. To precipitate and desalt the DNA, isopropanol was added to the eluted DNA, 

mixed well and centrifuged at 5,000 x g for 1 hour at 4
o
C. The supernatant was removed and 

the pellet washed with 5mls of 70% (v/v) ethanol before being centrifuged again at 5,000 x g 

for 1 hour at 4
o
C. The supernatant was discarded, the pellet air dried, resuspended in 100-

500 l sterile distilled water and stored at -20
o
C.   

2.4.11   Determination of DNA purity and concentration 

The nanodrop spectrophotometer was used to determine DNA concentration and DNA purity.  

The ratio of absorbance at 260nm and 280nm is used to assess DNA purity and a ratio of 1.8 

indicates the DNA is pure and free from protein contamination. The DNA concentration was 

quantified by measuring the absorbance at OD260nm and calculated against 1 OD260nm unit 

being an equivalent of 50 g of DNA in 1ml. 

2.4.12   In vitro transcription/translation (IVT) 

[
35

S] methionine-labelled proteins were produced in vitro using a TNT® Coupled T7 

Reticulocyte Lysate System (Promega) according to the manufacturer’s instructions. Briefly, 

the reaction mixture consisted of 25 l TNT® rabbit reticulocyte lysate, 2 l TNT® reaction 

buffer, 1 l TNT® T7 RNA polymerase, 1 l amino acid mixture minus methionine, 2 l [
35

S]-

labelled methionine (1000Ci/mmol at 10mCi/ml; MP Biomedicals), 1 l RNasin® 

ribonuclease inhibitor (40U/ l) (Promega), 2 l DNA template (0.5 g/ l) and nuclease free 

water to a final volume of 50 l. The reaction was incubated at 30
o
C for 90 minutes, 

centrifuged and stored at -80
o
C. To verify the presence of in vitro translated protein, 5 l of 

the sample was loaded on to an SDS-PAGE gel. Following electrophoresis, the gel was 

stained with Coomassie blue, destained overnight, incubated in Amplify and dried under 

vacuum. [
35

S] methionine-labelled proteins were visualised by exposure of the dried gel to 

Hyperfilm at -20
 o
C. 
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2.4.13   Production and purification of recombinant proteins 

Plasmids encoding GST upstream of the coding sequence of interest were transformed into 

BL21 competent cells. Colonies from successful transformations were picked and grown up 

as described in section 2.4.4. 10ml of LB containing 50 g/ml ampicillin was inoculated with 

10 l of culture and incubated overnight at 37
o
C with shaking.  

The following day, a mini induction was conducted to test the expression of the protein. The 

10ml culture was diluted 1:10 and two cultures were grown for each protein at 37
o
C in a 

shaking incubator. After 1 hour, one of the cultures was induced with 0.4mM isopropyl -D-

1-thiogalactopyranoside (IPTG) (Sigma) and both the non-induced and induced cultures were 

incubated for a further 3-4 hours at 30
o
C with shaking. Cultures were pelleted at 13,000rpm 

for 5 minutes, the supernatant removed and samples boiled at 100
o
C for 7 minutes in 50 l 2X 

loading buffer. 15 l of the samples were loaded on to an SDS-PAGE gel and electrophoresis 

carried out. The gel was stained with Coomassie blue, destained overnight and dried on to 

3MM Whatman filter paper. Positive colonies that induced the GST-fusion protein of interest 

were selected and then 10mls inoculated into 1L of LB containing 50 g/ml ampicillin. 

Bacterial cultures were grown in a shaking incubator at 37
o
C for 4 hours or until the optical 

density of the cultures had reached A600 = ~0.6. Fusion proteins were induced by the addition 

of 1mM IPTG and cultures were incubated for a further 5 hours at 30
o
C. The bacterial 

cultures were then pelleted at 8,000 x g for 15 minutes at 4
o
C, snap frozen in liquid nitrogen 

and stored at -80
o
C until the next stage of the purification. 

To purify the GST-fusion proteins, the bacterial cell pellet was thawed and lysed in 25mls ice-

cold GST lysis buffer (1% Triton X-100, 1mM EDTA pH8 in 1X PBS) supplemented with a 

complete protease inhibitor tablet (Roche). Lysates were sonicated five times on ice for 30 

seconds at 2 minute intervals and pelleted at 20,000rpm for 10 minutes at 4
o
C to remove any 

insoluble material. The supernatant was transferred to a fresh tube and centrifuged again. 2mls 

of washed glutathione agarose beads was mixed with the resulting supernatant and rotated at 

4
o
C for 2 hours. Beads were centrifuged at 2000rpm for 30 seconds at 4

o
C, washed three 

times in lysis buffer and twice in GST wash buffer (1mM EDTA pH8.0 in 1X PBS). GST-

fusion proteins were eluted by incubating the glutathione agarose beads in 4mls of elution 

buffer (25mM glutathione, 50mM Tris, pH8) for 1 hour at 4
o
C with rotation. Following 

centrifugation at 2000rpm for 30 seconds at 4
o
C, the supernatant was removed and set aside.  
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To ensure all the GST-fusion proteins had been released, the elution process was repeated. 

The supernatants from the two elutions, which contain the GST-fusion proteins, were 

transferred to dialysis tubing. Prior to this, the tubing was hydrated by heating the tubing up in 

a solution of 2mM EDTA pH8.0 and 3% NaHCO3, left to cool for 5 minutes and then rinsed 

in distilled water. The GST-fusion proteins were dialysed overnight at 4
o
C in 5L of 50mM 

Tris pH7.5, 10% (v/v) glycerol and 1mM dithiothreitol (DTT) (Sigma). The following day, 

GST-fusion proteins were collected, aliquoted and the protein concentration determined by 

Bradford assay.  The purified proteins were visualised by SDS- PAGE gel electrophoresis and 

Coomassie blue staining. Purified proteins were stored at -80
o
C. 

2.4.14   RNA extraction 

Cells were harvested, centrifuged at 1200rpm for 5 minutes at 4
o
C and the pellet was 

disrupted by flicking the tube. The sample was homogenised in 5mls Trizol (Invitrogen) by 

pipetting up and down several times. The homogenised sample was incubated at room 

temperature for 5 minutes to allow for the complete dissociation of nucleoprotein complexes.  

1ml of chloroform was added and the sample tubes were vigorously shaken by hand for 1 

minute, followed by incubation at room temperature for 3 minutes. Samples were centrifuged 

at 12,000 x g for 15 minutes at 4
o
C, which resulted in the mixture being separated into a lower 

red, phenol-chloroform phase containing DNA and protein, and a colourless upper aqueous 

phase, which contains the RNA. The aqueous phase was transferred to a fresh tube and the 

RNA precipitated by incubating the sample with isopropanol (2.5mls) at -20
o
C overnight.  

The next day the sample was centrifuged at 12,000 x g at 4
o
C for 10 minutes, the supernatant 

removed and the pellet washed in 5mls of 70% ethanol (v/v). Samples were then mixed by 

vortexing before further centrifugation at 7,500 x g for 5 minutes at 4
o
C. The pellet was 

resuspended in 100 l RNase free water and stored at -80
o
C. 

2.4.15   RNA purification 

A Qiagen RNeasy Mini Kit was used to purify the RNA. To create conditions that promote 

selective binding of RNA to membrane in the RNeasy mini column, 350 l of buffer RLT 

(without -mercaptoethanol) was added to the RNA and thoroughly mixed. 250 l of absolute 

ethanol was then added, mixed, and the sample transferred to an RNeasy mini column placed 

in a 2ml collection tube. Columns were centrifuged for 15 seconds at 8,000 x g, the flow 
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through discarded and 500 l of Buffer RPE was added to the RNeasy column to wash the 

spin column membrane. Columns were centrifuged again at 8,000 x g for 15 seconds, the flow 

through discarded and the columns washed again in 500 l of 80% (v/v) ethanol, followed by 

centrifugation at 8,000 x g for 2 minutes. The flow through was discarded and the tubes spun 

again for an additional 5 minutes at 12,000 x g to remove any residual ethanol. The RNeasy 

column was transferred to a new 1.5ml collection tube and the RNA was eluted by the 

addition of 25 l of RNase-free water pipetted directly onto the spin column membrane 

followed by centrifuging at 8,000 x g for 1 minute.   

The RNA was then treated with TURBO DNase free kit (Ambion) to remove any 

contaminating DNA.  2.5 l of 10X TURBO DNase buffer and 1 l TURBO DNase was added 

to the RNA, mixed gently and incubated at 37
o
C for 30 minutes. The DNase was inactivated 

by adding 2.5 l of DNase Inactivation Reagent and incubated for 2 minutes at room 

temperature with occasional mixing to redisperse the DNase Inactivation Reagent. Treated 

RNA was spun at 10,000 x g for 2 minutes and the supernatant, which contains the RNA was 

transferred to a fresh tube and stored at -80
o
C. 

2.4.16   Determination of RNA integrity and concentration 

The concentration of the RNA extracted was determined by measuring the optical density 

(OD) at A260nm using a nanodrop spectrophotometer, with 1 A260nm unit being an equivalent of 

40 g of RNA in 1ml distilled water. The integrity of the total RNA extract was determined by 

agarose gel electrophoresis on a 0.8% agarose gel, visualised using the Safe Imager blue-light 

transilluminator.  Intact RNA exhibits clear 28S and 18S rRNA bands, with the intensity of 

the 28S band being approximately twice that of the 18S (Figure 2.1). RNA purity was 

determined by measuring the A260/A280nm ratio.  Readings of 1.9-2.1 demonstrated that the 

RNA was pure and protein free (lower than 1.6 indicates protein contamination). 

2.5 QUANTITATIVE RT-PCR (qRT-PCR) 

2.5.1 Reverse transcription 

To synthesise cDNA, the Reverse Transcription System (Promega) was used.  The reaction 

mixture was made up as follows: 4 l MgCl2, 2 l 10X Reverse Transcription Buffer, 2 l  
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Figure 2.1 Assessment of RNA samples on a 0.8% agarose gel. 2 l of RNA was run on a 

0.8% agarose gel to confirm the integrity of the RNA. M denotes DNA molecular weight 

marker. 
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dNTP mixture (10mM each dNTP), 0.5 l Recombinant RNasin® Ribonuclease Inhibitor, 

0.7 l (15U) AMV Reverse Transcriptase (High Concentration), 1 l (0.5 g) Random primers,  

1 l of RNA, which had previously been incubated at 70°C for 10minutes, spun briefly and 

placed on ice and RNase-free water to a total volume of 20 l. The reaction was incubated at 

room temperature for 10 minutes to allow extension of the primers, then incubated for 15 

minutes at 42
o
C, followed by heating at 95

o
C for 5 minutes and cooling at 0-5

o
C for 5 minutes 

to inactivate the AMV Reverse Transcriptase and prevent it from binding to the cDNA.   

cDNA was stored at -20
o
C. 

2.5.2 Primer design 

Primers were designed using the guidelines outlined by Applied Biosystems, which are: 

 Primers can be designed as close as possible to each other provided that they do not 

overlap (amplicons of 50-200bp are strongly recommended). 

 Keep the GC (guanine-cytosine) content in the 20 to 80% range. 

 Avoid runs of an identical nucleotide. This is especially true for guanine, where runs 

of four or more Gs should be avoided. 

 The melting temperature should be 58-60
o
C 

 The five nucleotides at the 3´ end should have no more than two G and/or C bases. 

A list of primers used is contained in Table 2.6. All primers were ordered from Thermo 

Electron (Thermo Fisher Scientific), and resuspended at a concentration of 200 M and stored 

at -20
o
C.  Stocks were diluted to 20 M for use. 

2.5.3 Primer optimisation 

RT-PCR was carried out using the dsDNA binding dye SYBR Green 1, which is incorporated 

into the amplicon during the PCR. Primers were optimised to determine the minimum primer 

concentrations giving maximum specific product and minimum non-specific product. This is 

achieved by independently varying the primer concentrations. 0.1 M, 0.05 M and 0.025 M 

were tested over a temperature range of 50-66
o
C. cDNA from U2OS cells was used for primer 

optimisation. Following the PCR reaction, 14 l of the PCR product was run on a 4% agarose 

gel and analysed to determine the optimal primer conditions (Figure 2.2, Table 2.6). 
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2.5.4 qRT-PCR reactions 

Reactions were performed using SYBR Green 1 Master Mix (Applied Biosystems), which is 

supplied in 2X concentration and contains SYBR Green 1 dye, AmpliTaq Gold® DNA 

polymerase, dNTPs with dUTP, passive reference dye and optimised buffer components. 

Gene specific primers (at the optimal concentration) were added to the SYBR Green 1 master 

mix and water added to bring the volume of each reaction to 25 l (Table 2.6). This was added 

to 2.5 l cDNA, which had been dispensed into a 96 well optical plates (Applied Biosystems) 

(Figure 2.3). Reactions were made up as shown in Table 2.7. These were run on the ABI7500 

Real Time PCR machine under the following conditions: 1 cycle of 94
o
C for 10 minutes, 40 

cycles of 94
o
C for 1 minute, 50-66

o
C for 1 minute (optimal temperature determined was 

used), 72
o
C for 1 minute and 1 cycle of 72

o
C for 5 minutes.  

After completion of the PCR reaction, dissociation curve analysis was carried out, which is 

independent of the PCR. Dissociation curves allow the purity of the product to be assessed 

and are useful for determining the presence of multiple species in the samples, which are 

normally primer-dimer artefacts or co-amplified alleles (Figure 2.2). The results were 

analysed using the Applied Biosystems Sequence Detection Software version 1.3.1. Relative 

quantitation was performed using the relative standard curve method, in which quantity is 

expressed relative to a control sample, which was untreated U2OS cells. The standard curve 

was generated by using serial dilutions of RNA from U2OS cells (control sample). To 

generate relative gene expression levels, the threshold cycle (cycle number at which 

logarithmic PCR plots cross a calculated threshold line, Ct, with Ct values decreasing as 

template concentration increases) values between the gene of interest and the 18S ribosomal 

RNA subunit were normalised. 18S ribosomal RNA subunit was used as an endogenous 

control and each experiment was carried out in triplicate. 
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Primer Name Sequence Concentration 

(μM) 

Annealing 

Temperature 

(
o
C) 

BAG4 Forward 

BAG4 Reverse 

5’-GCTTCTCCTGGTGCTTATGG-3’ 
5’-CTGATGGACACTGCAAGGAA-3’ 

0.1 58 

TNFRSF9 

Forward 

TNFRSF9 

Reverse 

5’-AAACGGGGCAGAAAGAAACT-3’ 

 

5’-GGGGGAATCCTGGGTATTAT-3’ 

0.1 58 

FADD Forward 

FADD Reverse 

5’-CCGATGTCATGGAACTCAGA-3’ 

5’-GCGGGAGAGGCATTAATAAAC-3’ 
0.05 60 

IKIP 1 Forward 

IKIP 1 reverse 

5’-TGCAAAGGTGGAAAACCAAT-3’ 

5’-CTGCTCAAACTGGGTCATCA-3’ 
0.05 60 

IKIP 2 Forward 

IKIP 2 Reverse 

5’-TGCAAAGGTGGAAAACCAAT-3’ 

5’-AAAGCGTCGTCAGACTGTTG-3’ 
0.1 60 

IKIP 3.1 Forward 

IKIP 3.1 Reverse 

5’GCAGAAATCTGAAGCTATCATGG

-3’ 
5’-TCTTGAGAAAGCGTCGTCAG-3’ 

0.05 62 

G3BP2 Forward 

G3BP2 Reverse 

5’-GGAAACGTTGTGGAACTTCG-3’ 

5’-GCCTAATATCCCTGCGATCA-3’ 

0.025 60 

LMNB1 Forward 

LMNB1 Reverse 

5’-TGGGCGTCAAATTGAGTATG-3’ 

5’-CGGCTTTCCATCAGTTCTTC-3’ 
0.05 60 

UBE2W Forward 

UBE2W Reverse 

5’-AAGAGACGACCACCGGATAA-3’ 

5’-CCCAGAATGCACACGAGTAA-3’ 

0.05 60 

RAD23B 

Forward 

RAD23B Reverse 

5’-AACACCTCAGGAAAAAGAAGC-3’ 

 

5’-CCCAAGTCATCCCAGACAAT-3’ 

0.1 62 

SH3MD2 

Forward 

SH3MD2 

Reverse 

5’-CCTGGGTCCTGTCTTGAATG-3’ 

 

5’-TTTGAACCAGCCATCCTCTC-3’ 

0.025 60 

ESCO2 Forward 

ESCO2 Reverse 

5’-TCCAGAATCCCCAAGCTCTA-3’ 

5’-GGGGTGTTGCAGTACTTGGT-3’ 

0.05 64 

SUMO3 Forward 

SUMO3 Reverse 

5’-GGCAGCCAATCAATGAAACT-3’ 

5’-TCATCGTGGTGAATGTCCTC-3’ 

0.05 60 

BIRC4 Forward 

BIRC4 Reverse 

5’-GGGGTTCAGTTTCAAGGACA-3’ 

5’-CGCCTTAGCTGCTCTTCAGT-3’ 
0.05 60 

XRCC4 Forward 

XRCC4 Reverse 

5’-GAGCAGGACCAGCTGATGTA-3’ 

5’- TTCTGCAATGGTGTCCAAG-3’ 

0.05 60 

TP53INP1 

Forward 

TP53INP1 

Reverse 

5’-CCTCCAACCAAGAACCAGAA-3’ 
 

5’-TCAGCCAAGCACTCAAGAGA-3’ 

0.025 62 
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GAS6 Forward 

GAS6 Reverse 

5’-TTGACTTCCGGACCTTTGAC-3’ 

5’-GCATCCCTGTTGACCTTGAT-3’ 

0.025 62 

CDKN1B 

Forward 

CDKN1B 

Reverse 

5’-AAGAAGCCTGGCCTCAGAAG-3’ 

 

5’-ACAGGATGTCCATTCCATGA-3’ 

0.05 60 

STAT3 Forward 

STAT3 Reverse 

5’-GCTGGTCAAATTCCCTGAGT-3’ 

5’-CCGTTGTTGGATTCTTCCAT-3’ 
0.05 60 

REV3L Forward 

REV3L Reverse 

5’-ACAGGCCATATGGGAAGATG-3’ 
5’-CTGGGATCCATCGCTGTAGT-3’ 

0.025 60 

CHES1 Forward 

CHES1 Reverse 

5’-CTGGGTGGAAAAACTCAGTG-3’ 

5’-ATTGAACACGTGTGGGTGTG-3’ 

0.05 60 

XPA Forward 

XPA Reverse 

5’-ATGCGAAGAATGTGGGAAAG-3’ 

5’-CCCATTGTGAATGATGTGGA-3’ 

0.05 60 

18S Forward 

18S Reverse 

5’-AGGAATTCCCAGTAAGTGCG-3’ 

5’-GCCTCACTAAACCATCCAA-3’ 

0.1 58-64 

Table 2.6 Sequences of the RT-PCR primers used in this study. All primers were 

designed following the guidelines provided from Applied Biosystems. 

 

 

Table 2.7 Components used to make up the reaction mix for RT-PCR. 

 

 

 

 

 

 

Component Volume per reaction Final Concentration 

2X SYBR Green PCR Master Mix 12.5 l 1X 

Forward primer Variable 0.025-0.1 M 

Reverse primer Variable 0.025-0.1 M 

cDNA 2.5 l 2.5 g 

Water 7.5-11.25 l - 

Total 25 l - 
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Figure 2.2 RT-PCR optimisation. Each set of primers was optimised to see which 

temperature and concentration resulted in the greatest amount of product in complete 

absence of any primer dimers. Dissociation curves were then checked on the RT-PCR 

machine to verify specificity. 
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Figure 2.3 RT-PCR plate layout.  Each experiment was carried out in triplicate and 

serial dilutions of RNA from untreated U2OS cells were used for relative quantification.  
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2.6 MICROARRAY TECHNIQUES 

The microarray study was conducted in collaboration with Dr Mike Hubank at the Institute of 

Child Health Microarray Facility, University College London.  

All the microarray techniques were conducted according to the Gene Chip Expression 

Analysis Technical Manual from Affymetrix (http://www.affymetrix.com/support/index.affx). 

An overview of the microarray procedure is given in Figure 2.4 

2.6.1 First and second cDNA synthesis 

5 g of RNA was reverse transcribed using the T7-Oligo (dT) promoter primer in the first 

strand synthesis reaction to produce single stranded cDNA. This cDNA then underwent 

second strand synthesis using E. coli RNase H and DNA pol I. The RNase H activity is used 

to create short RNA fragments in the RNA:DNA heteroduplex that function as primers for 

second strand cDNA synthesis by E. coli DNA pol I. The addition of bacteriophage T4 DNA 

polymerase to the reaction creates blunt double-stranded DNA. The cDNA was then purified 

and the integrity was checked by running a sample on an agarose gel before proceeding to the 

generation of cRNA. 

2.6.2 In vitro transcription-cRNA labelling reaction 

Biotin-labelled cRNA was synthesised by transcribing in vitro the double-stranded cDNA 

using biotin-labelled ribonucleotides and the T7 RNA polymerase, which binds to its 

promoter in the double stranded cDNA. The cRNA was purified to remove any enzymes or 

unincorporated ribonucleotides. The optical density of biotinylated cRNA was measured to 

determine concentration and confirm purity (260/280 ratio = 1.9-2.1) before it was 

fragmented for hybridisation. 

2.6.3 cRNA fragmentation and hybridisation 

Typically, 15 g of cRNA was fragmented into 50-200 base fragments and then hybridised to 

the probe array for 16 hours. The Affymetrix U133 Plus 2.0 GeneChip oligonucleotide 

microarray was used, which contains 54,120 probe sets, corresponding to around 38,500 

genes.  The probe arrays were washed with a series of stringent and non-stringent buffers and 

then stained using Streptavidin Phycoeruthrin (SAPE), which binds tightly to biotin. 

http://www.affymetrix.com/support/index.affx
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Figure 2.4 Schematic representation of microarray procedure. Following extraction, 

RNA was subjected to first and second strand cDNA synthesis using T7 (dT) primer and 

dNTPs. The double stranded cDNA was cleaned up, which involved ETOH precipitation. 

Biotin labelled cRNA was synthesised from the double stranded cDNA by in vitro 

transcription (IVT) using biotinylated ribonucleotides and subsequently underwent a further 

ETOH cleanup step. After determination of the purity and concentration, the biotinylated 

cRNA was fragmented at 94
o
C followed by hybridisation on to U133 plus 2.0 Affymetrix chip. 

The hybridised probe array was stained with streptavidin phycoerythrin conjugate and 

scanned by the GeneChip® Scanner 3000. The amount of fluorescent light emitted is 

proportional to the abundance of RNA at each location on the probe array.  Data analysis 

was then carried out, which comprised of normalisation, filtration and statistical tests. 
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2.6.4 Probe array scan 

After the wash protocol, the probe arrays were scanned using an Affymetrix GeneChip 

Scanner 3000, which is controlled by the Affymetrix Microarray Suite (MAS) 5.0 program. 

The laser scanner determines the amount of bound biotinylated cRNA indirectly through the 

streptavidin-conjugated phycoerythrin fluorescence at each feature within a probe set.  The 

Affymetrix MAS 5.0 programme analyses the data and computes a single intensity value for 

each probe set.  The software then applies a statistical expression algorithm to determine the 

expression levels of each gene. Further details of the algorithm applied by the Affymetrix 

MAS 5.0 software can be found in the GeneChip® Operating Software Manual that can be 

obtained from www.affymetrix.com. This software also provides indicators of sample 

integrity, assay execution and hybridisation performance through the assessment of control 

hybridisations.  

2.6.5 Data analysis using GeneSpring-GX software 

With the help of Dr Eliot Marston, detailed analysis of microarray data was performed using 

the GeneSpring-GX software, version 7.3.1 (Agilent Technologies). An overview of the 

microarray data analysis is given in Figure 2.5. 

2.6.5.1  Normalisation 

The raw data from MAS 5.0 was exported to GeneSpring and normalisation carried out to 

allow microarray experiments from different samples and different arrays to be compared. 

(Brazma et al 2001, Quackenbush 2002, Bolstad et al 2003, Leung and Cavalieri 2003). First, 

the data was duplicated to allow normalisation to be performed in two separate ways. The 

results for one of the datasets were normalised to the 50
th

 percentile of total expression value 

data for each chip, so that the genes at the median level of each array had a value of 1. Per-

chip normalisations control for chip-wide variations caused by experimental artefacts. The 

data was also normalised to the median for each genes across the arrays to enable relative 

expression values to be assigned per gene per array. This allowed the data to be examined in 

terms of relative expression levels before and after IR between the control and 53BP1 siRNA 

treated samples. In contrast, the other dataset was similarly normalised to the 50
th

 percentile 

of total expression value for each chip, but each gene post-IR was normalised to its pre-IR 

equivalent. This gave expression values of 1 for each gene pre-IR and fold change values for 

http://www.affymetrix.com/
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Figure 2.5 Schematic diagram illustrating how the microarray data was analysed. 

Following scanning of the GeneChips, the data from the MAS 5.0 program was exported to 

GeneSpring for normalisation and analysed by either univariate (single genes) or 

multivariate (biological pathways). GeneSpring was used to perform univariate analysis, in 

which the normalised data was filtered based on p-value and fold change before it was 

subjected to statistical tests to determine significance. The genes that passed the strict criteria 

were clustered and visualised on a heat map generated using TreeView. To analyse data by 

multivariate analysis, the data was first exported and filtered in Excel before being analysed 

and visualised using GSEA.  
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each gene post-IR. This enabled identification of those changes in gene expression levels that 

occurred solely in response to IR. 

2.6.5.2  Filtration 

Following normalisation, the results were filtered in two main ways to reduce the number of 

genes. Firstly, using the detection p-value assigned to each transcript by the MAS 5.0 

software. MAS 5.0 evaluates the abundance of each transcript represented and labels it as 

either present, marginal or absent. The p-value indicates the statistical significance of the 

presence of each transcript. The p-value cutoff assigned by MAS 5.0 programme is 0.05, 

however, on recommendation by Dr Mike Hubank only those genes with a p-value of less 

than 0.1 were retained for analysis. This is because the MAS algorithm is overly-stringent for 

calculating p-values. Genes that were either not expressed at all or were expressed at very low 

levels were excluded. Secondly, the data was filtered using fold changes in gene expression 

levels, so that any gene with less than a 2 fold change before IR or a 1.5 fold change in 

response to IR between control and 53BP1 siRNA treated samples were omitted from the 

analysis.  

2.6.5.3  Statistical tests 

To identify which of the genes selected from the filtering process were significantly 

differentially expressed, the data was analysed using a paired t-test (‘Welch’ t-test) and 

multiple testing corrections (MTC). MTC is very stringent and adjusts the p-values from 

multiple statistical tests to correct for the occurrence of false positives (i.e. genes that were 

falsely called differentially expressed when they were not) (Noble 2009). For analysis of pre-

IR transcriptional differences, a paired t-test along with MTC was conducted between the 

unirradiated control and 53BP1 siRNA treated samples. Genes which were over- or under-

expressed in the control siRNA treated samples in comparison to the 53BP1 siRNA treated 

samples were identified. In contrast, to analyse the response to IR, a paired t-test with MTC 

was conducted between the pre-IR and post-IR expression levels to determine which genes 

were significant. Following this, the genes were separated into those that were up-regulated or 

down-regulated in response to IR in the control siRNA treated samples compared to the 

53BP1 siRNA treated samples.  
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2.6.5.4  Clustering 

Again with the assistance of Dr Eliot Marston, clustering was performed on the microarray 

data using the Cluster 3.0 program and the results were visualised using the TreeView 

software (http://rana.lbl.gov/EisenSoftware.htm, (Eisen et al 1998)). Data was exported from 

GeneSpring and loaded into the Cluster 3.0 program where complete linkage clustering was 

performed. Clustered data was then displayed as heat maps generated using TreeView. This 

allowed visualisation of gene expression patterns between control and 53BP1 siRNA treated 

samples before IR and in response to IR. 

2.6.5.5  Gene Set Enrichment Analysis 

Gene Set Enrichment Analysis (GSEA) (Subramanian et al 2005) was performed on the 

microarray data with the help of Dr Carmel McConville.  GSEA is designed to test whether 

differentially expressed genes
 
belong to specific functionally related gene sets (e.g. genes

 

belonging to common pathways or responding to specific stimuli) and is freely available at 

http://www.broadinstitute.org/gsea/. To decrease the complexity of the data, normalised 

expression values for 54,614 probe sets were reduced by approximately 35% to 35,462 probe 

sets by excluding genes with expression values less than 1.5 fold. In addition, multiple probe 

sets for a given
 
gene were replaced by the probe set with the maximum expression

 
value to 

prevent inflating the enrichment score for any particular gene. This further reduced the dataset 

to 15,803 genes.  GSEA analysis was then conducted to ascertain the enrichment score for all 

the functional gene sets in the Molecular Signatures Database (MsigDB) 1.0 geneset database, 

which had a minimum of 15 genes and maximum of 500 genes 

(http://www.broadinstitute.org/gsea/msigdb/index.jsp). This resulted in a total of 247 out of a 

possible 522 gene sets being used for the analysis. Significance values (p-values) were 

calculated and a false discovery rate (FDR) score produced using adjustment multiple 

hypothesis testing as described (Subramanian et al 2005). FDR score was used as an indicator 

of the probability that an observed result represents a false positive finding. Significance was 

determined using a cutoff FDR value of less than 0.25, which means that there is less than a 

25% chance of a particular gene set being a false positive result. 

http://rana.lbl.gov/EisenSoftware.htm
http://www.broadinstitute.org/gsea/
http://www.broadinstitute.org/gsea/msigdb/index.jsp
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CHAPTER 3 53BP1 STIMULATES THE 

TRANSCRIPTIONAL ACTIVITY OF p53 AND p300 

3.1  INTRODUCTION 

The tumour suppressor protein p53 plays a crucial role in preventing genomic instability. In 

the absence of cellular stress, p53 forms a ternary complex with HDM2 and HDMX, which 

together with CBP/p300 promotes p53 degradation via the ubiquitin-dependent proteasomal 

system (Espinosa et al 2003, Ferreon et al 2009, Grossman et al 2003). Upon activation by 

DNA damage, p53 coordinates a complex cellular response, which can lead to cell-cycle 

arrest at the G1/S or G2/M transition stages, DNA repair, senescence or apoptosis (Sengupta 

and Harris 2005, Vousden and Prives 2009). Cell cycle arrest is achieved primarily through 

transactivation of p53 target genes such as p21, GADD45 and 14-3-3σ (Bartek and Lukas 

2001, Taylor and Stark 2001), whereas induction of pro-apoptotic genes including PUMA, 

NOXA, FAS and BAX results in apoptosis (Pietsch et al 2008).  

Due to the involvement of p53 in coordinating a plethora of cellular processes, it is not 

surprising that its activity is regulated by a complex series of interconnected mechanisms. Of 

these, the most well studied is modifying the function of p53 via altering patterns of post-

translational modifications such as phosphorylation, acetylation, ubiquitylation and 

sumoylation (Kruse and Gu 2009). Whilst post-translational modifications play an important 

role in p53 regulation, an increasing array of cofactors are being identified that influence p53 

activity and confer specificity to the p53 response by selectively controlling the expression of 

certain p53 responsive genes. Under conditions of repairable DNA damage, p53 has been 

shown to interact with cofactors that strongly promote cell cycle arrest such as iASPP, which 

antagonises the expression of apoptotic genes (Bergamaschi et al 2003). p53 also interacts 

with MUC1, which facilitates p21 expression but represses BAX expression (Wei et al 2005), 

Hzf, which has been shown to preferentially transactivate cell cycle arrest rather than 

apoptotic genes (Das et al 2007) and YB1, which blocks BAX expression (Homer et al 2005). 

In the presence of irreparable DNA damage, there are also cofactors that associate with p53 

and promote transactivation of pro-apoptotic genes and the repression of cell cycle genes. 

These include ASPP1 and 2 (Samuels-Lev et al 2001) and Pin1, which has been shown to 
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dissociate p53 from iASPP, thereby promoting apoptosis (Mantovani et al 2007). 

Furthermore, both p18/Hamlet and the p52 subunit of NF- B have been reported to be 

recruited to the promoters of a subset of pro-apoptotic target genes resulting in induction of 

their transcription (Cuadrado et al 2007, Schumm et al 2006).   

Two well known p53 transcriptional co-activators are CBP /p300 (Grossman 2001), which are 

highly homologous proteins that possess acetyltransferase activity (Arany et al 1994, Ogryzko 

et al 1996). However, CBP/p300 have also been shown to interact with a wide array of other 

transcription factors such as the signal transducers and activators of transcription (STAT) 

family (Horvath 2000), NF- B (Gerritsen et al 1997), the E2F family (Marzio et al 2000) and 

the AP-1 family (Bannister and Kouzarides 1995, Lee et al 1996b), as well as components of 

the basal transcription machinery including TFIIB and TAT-binding protein (Imhof et al 

1997, Kee et al 1996, Nakajima et al 1997). CBP/p300 are important regulators of many 

cellular processes such as proliferation, apoptosis, differentiation and angiogenesis and are 

involved in preventing the development of cancer (Goodman and Smolik 2000, Iyer et al 

2004). The ability of CBP/p300 to interact with multiple transcription factors and the basal 

transcription machinery has led to the proposal that these co-activators function as signal 

integrators by coordinating complex signal transduction events at the transcriptional level 

(Kamei et al 1996).  

CBP/p300 are large modular proteins that share several conserved regions, which constitute 

most of the known functional domains in these proteins (Arany et al 1994, Dyson and Wright 

2005). Along with the KIX domain, the CH1 domain and CH3 regions serve as binding sites 

for the majority of the transcription factors that interact with CBP/p300 (Goodman and 

Smolik 2000). However, due to the intracellular levels of CBP and p300 being limited and 

several transcription factors binding to the same domains, it has been shown that there is 

competition between transcription factors for CBP/p300 and this impacts on the 

transcriptional response (Horvai et al 1997, Kamei et al 1996, Webster and Perkins 1999). 

CBP/p300 also contain two transactivation domains at the N- and C-terminus, which function 

to potentiate the activity of transcription factors by interacting simultaneously with the basal 

transcription machinery and the transcription factor (Bisotto et al 1996, Lee et al 1996b, 

Swope et al 1996, Yuan et al 1996). The ability of CBP/p300 to modulate the activity of 

transcription factors is controlled post-translationally by multiple signalling pathways that 
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regulate their sumoylation (Girdwood et al 2003), methylation (Xu et al 2001b), acetylation 

(Hansson et al 2009, Thompson et al 2004) and phosphorylation (Vo and Goodman 2001). 

The intrinsic activity of CBP/p300 is also regulated via interactions with other proteins. The 

p68 RNA helicase and the CDK inhibitor, p21 have been shown to enhance CBP/p300 

transcriptional activity (Rossow and Janknecht 2003, Snowden et al 2000), whereas in 

contrast, cyclin D1 has been demonstrated to repress p300 transactivation through recruitment 

of HDACs (Fu et al 2005). The p300 cofactors, JMY and Strap form a complex with p300 

and increase its transcriptional activity specifically in response to DNA damage. This results 

in an increase in p53 acetylation and p53-dependent apoptosis (Demonacos et al 2001, 

Shikama et al 1999). More recently, Skp2 was identified as a p300 cofactor and was shown to 

antagonise the interaction between p300 and p53 by binding to p300, thereby preventing the 

acetylation of p53 and suppressing its ability to induce apoptosis (Kitagawa et al 2008). This 

mode of regulation of CBP/p300 activity adds additional complexity and specificity to the 

transcriptional response, as it demonstrates that modulating the interaction of CBP/p300 with 

transcription factors can also influence promoter selectivity.   

53BP1 was initially proposed to function as a transcriptional co-activator for p53, based on its 

ability to bind to p53 and enhance its transcriptional activity (Iwabuchi et al 1998). The 

53BP1-p53 interaction was found to be mediated by the DBD of p53 and the C-terminal 

region of 53BP1, which contains tandem BRCT domains (Iwabuchi et al 1994, Thukral et al 

1994). Subsequently, when the crystal structure of the 53BP1-p53 interaction was resolved, it 

showed that the central DNA binding region of p53 bound to the N-terminal BRCT domain 

and the linker region of 53BP1, which is the region between the two BRCT domains 

(Derbyshire et al 2002, Joo et al 2002). Importantly, structural analysis also revealed that the 

same p53 residues were involved in binding to both 53BP1 and DNA. This caused 

controversy within the field because it provided evidence that it was sterically impossible for 

p53 to bind to 53BP1 and DNA simultaneously. More recently, data from two reports showed 

that the Tudor domain of 53BP1 can recognise di-methylated lysines on in the C-terminus of 

p53, in particular lysine 370 and lysine 382 (Huang et al 2007a, Kachirskaia et al 2008). Di-

methylation of both these lysines has been shown to increase the association of p53 with 

53BP1. Interestingly, in the case of di-methylated lysine 370, 53BP1 was shown to be 

required for p53 transactivation of its target genes, whereas no effect was seen on p53 

transactivation when 53BP1 was bound to di-methylated lysine 382. This identifies an 
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alternative way in which 53BP1 can interact and regulate p53, although it remains to be 

determined how the recognition of different methylation sites on p53 by 53BP1 can result in 

alternative physiological outcomes. Despite these recent findings, the role of 53BP1 as a 

transcriptional co-activator of p53 has yet to be firmly established. 

Interestingly, 53BP1 was identified as a CBP and p300 interacting protein by mass 

spectrometric analysis (GS Stewart, unpublished) along with several other novel CBP and 

p300 interacting proteins. Furthermore, for p300 these included proteins involved in the DNA 

damage response and DNA repair such as all three components of the MRN complex 

(Lamarche et al 2010), Msh6 (Jiricny 2006) and XAB2 (Hanawalt and Spivak 2008). Only 

the DNA damage response mediator proteins, 53BP1 and MDC1 (Stewart et al 2003, Wang et 

al 2002) were identified as associating with both proteins, although the interaction with CBP 

was much weaker than with p300 (Figure 3.1). These data suggest that 53BP1 is interacts 

with CBP and p300 in vivo. 

The aims of this study were to: 

(i) Determine if 53BP1 exists in a complex with CBP and p300 and map the sites 

of interaction. 

(ii)  Ascertain if 53BP1 could act as a transcriptional co-activator of p300 and p53. 

3.2 RESULTS 

3.2.1 53BP1 interacts with CBP and p300 in vivo  

To confirm the mass spectrometric analysis, reciprocal co-immunoprecipitation assays were 

performed. Endogenous CBP and p300 was immunoprecipitated from whole cell extracts 

prepared from HeLa cells using anti-p300 and anti-CBP antibodies that were different to those 

originally used in the immunoprecipitation/mass spectrometric analysis and Western blot 

analysis was used to determine whether CBP and p300 could associate with 53BP1 in vivo. 

Indeed, the co-immunoprecipitation data revealed that 53BP1 interacts with both CBP and 

p300 (Figure 3.2). To strengthen this observation, the reciprocal experiment was performed in 

which endogenous 53BP1 was immunoprecipitated using an anti-53BP1 antibody and co-

precipitation of CBP and p300 was assessed by Western blot analysis using anti-CBP and  
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Figure 3.1 Identification of CBP and p300 immunocomplexes. CBP and p300 

immunocomplexes were isolated from HeLa total cell extract using anti-p300 and anti-CBP 

antibodies, resolved on a 4-20% SDS-PAGE gel and stained with Coomassie blue. Protein 

bands were excised and digested with modified trypsin prior to analysis by mass 

spectrometry. The proteins identified are labelled. M denotes molecular weight marker. 

(Figure provided by Dr GS Stewart). 
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Figure 3.2 Transcriptional co-activators CBP/p300 interact with 53BP1 in vivo. 53BP1 

and CBP/p300 were immunoprecipitated from HeLa whole cell extract and Western blotting 

was used to assess the binding of CBP/p300 and 53BP1 respectively. IgG denotes 

immunoprecipitates performed using a non-specific IgG antibody as a control. IP and IB are 

abbreviations for immunoprecipitation and immunoblot respectively. 
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anti-p300 antibodies. As shown in Figure 3.2, CBP and p300 were found in 53BP1 

immunocomplexes demonstrating that endogenous 53BP1 physically associates with CBP 

and p300 in vivo, thus confirming the mass spectrometric analysis.  

The co-immunprecipitation data suggests that 53BP1, CBP and p300 may reside in the same 

protein complex. Therefore, to confirm this and to estimate the size of the complex, nuclear 

extract was subjected to a two step fractionation process. Initially, the nuclear extract was 

fractionated by ion exchange chromatography and then, the bound proteins were eluted in 

fractions from the DEAE column by gradually increasing the ionic strength of the elution 

buffer by increasing the concentration of NaCl. The levels of 53BP1, p300 and CBP in each 

fraction were detected with SDS-PAGE and Western blot analysis. Initial analysis indicated 

that all three proteins co-eluted in the same fractions (Figure 3.3). The peak fraction (fraction 

7) containing all three proteins was further fractionated by size using a Superose 6 gel 

filtration column. Again the fractions were analysed by Western blot analysis and 53BP1, 

CBP and p300 could be shown to co-elute in the same fractions. The majority of 53BP1, CBP 

and p300 co-fractionated in the void volume (>2 MDa) indicating that these proteins exist in 

very high molecular weight complexes. However, it is unclear from these data if 53BP1, CBP 

and p300 exist in the same complex since the complex could not be resolved by the gel 

filtration column (Figure 3.3). 

3.2.2 Mapping interaction sites on 53BP1, CBP and p300 

In order to investigate the biological interaction between 53BP1 and CBP /p300, the domains 

required for the interaction were mapped on each respective protein using GST pull-down 

assays. GST-fused overlapping fragments covering the entire open reading frames of 53BP1, 

CBP and p300 were mixed with the corresponding binding protein, which had been in vitro 

translated and labelled with [
35

S] L- -methionine. CBP and p300 were found to bind to 

fragments 5 and 6 of 53BP1, which encompasses the C-terminal end of 53BP1 (Figure 3.4).  

This region contains the tandem BRCT domains, which have been shown to act as protein-

protein interaction moieties (Manke et al 2003) and the Tudor domain, which has been 

demonstrated to bind to proteins containing methylated lysines and arginine residues (Cote 

and Richard 2005, Kim et al 2006). In the reciprocal experiment, 53BP1 bound to fragments 1 

and 2 of both CBP and p300, which corresponds to the N-terminal region. In addition, 53BP1 

also bound to fragment 5 and 6 of CBP, as well as fragments 4 and 5 of p300 (Figure 3.5,  
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Figure 3.4 CBP and p300 bind to the C-terminal region of 53BP1. (A) Diagrammatic 

representation of 53BP1 with the regions encompassed by the six GST-fusion proteins 

indicated. (B) 30 g GST fused overlapping fragments covering the entire open reading frame 

of 53BP1 were mixed with either CBP or p300, which had been in vitro translated and 

labelled with [
35

S] L- -methionine. Protein complexes were isolated using Glutathione-

Sepharose beads and separated by SDS-PAGE. Radiolabelled proteins were visualised by 

fluorography and autoradiography. Coomassie blue stained version of the gel is shown in the 

top panel. GST and Adenovirus type 5 E1A proteins were used as a negative and positive 

control respectively. 
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Figure 3.5 53BP1 binds to multiple regions of p300. (A) p300 protein is represented 

diagrammatically, and the regions encompassed by the six GST-fusion proteins are indicated. 

(B) 30 g GST fused overlapping fragments covering the entire open reading frame of p300 

were purified and mixed with [35S] methionine-labelled in vitro translated 53BP1. GST-

bound proteins were purified with Glutathione-Sepharose beads and separated by SDS-

PAGE. Binding was assessed using fluorography and autoradiography. Coomassie blue 

stained gel is shown in the top panel. GST was used as a negative control. 
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Figure 3.6 53BP1 binds to the N- and C-terminals of CBP. (A) Diagrammatic 

representation of CBP with the six GST-fusion proteins indicated. (B) [
35

S] methionine-

labelled 53BP1 was incubated with 30 g GST-fused overlapping fragments covering the 

entire open reading frame of CBP. Complexes were isolated with Glutathione-Sepharose 

beads and fractionated by SDS-PAGE. Radiolabelled proteins were identified by 

fluorography and autoradiography. Coomassie stained version of the gel is shown in the top 

panel. GST was used as a negative control. 
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3.6). Despite the observation that 53BP1 bound to different fragments of CBP and p300, it 

should be noted that these fragments encompass the same functional domains. These binding 

regions contain the KIX domain and the CH1 and CH3 binding domains, which are important 

for mediating protein-protein interactions (Goodman and Smolik 2000, Ponting et al 1996, 

Radhakrishnan et al 1997), the HAT domain that catalyses acetylation of both histones and 

non-histone proteins (Ogryzko et al 1996, Yuan and Giordano 2002) and the glutamine rich 

region at the C-terminal end, which is implicated in forming contacts with other co-activators, 

most notably those involved in nuclear hormone receptor signalling (Xu et al 1999a). 

Interestingly, these binding regions of CBP and p300 identified that mediate an interaction 

with 53BP1 have been shown to function as transactivation domains and are able to activate 

transcription, suggestive of a possible role of 53BP1 in modulating CBP and p300-dependent 

transcription (Lee et al 1996b, Swope et al 1996). 

3.2.3 53BP1 transactivates p300 

Given that CBP and p300 share extensive homology, it is not surprising that they have been 

shown to play similar roles, particularly being able to co-activate the same transcription 

factors (Chan and La Thangue 2001). In light of this and the fact that 53BP1 binds to the 

same functional domains on each protein, a functional link between 53BP1 and p300 was 

investigated further. Since 53BP1 bound to the regions of p300 that contain the two 

transactivation domains, luciferase reporter assays were performed to determine if 53BP1 

could regulate the transcriptional activity of p300. Given that p300 cannot bind DNA itself 

and can only be recruited to promoters indirectly by its ability to bind to various transcription 

factors. To analyse the effect of 53BP1 on p300 activity, a construct was used in which full 

length p300 had been fused to the DBD of the yeast Gal4 transcription factor (Snowden et al 

2000). Co-transfection of this Gal4-p300 fusion construct in conjunction with a reporter 

construct containing 5 Gal4 DNA binding sites upstream of the E1B TATA box and firefly 

luciferase gene directly allows the transcriptional regulatory function of p300 to be 

determined via the Gal4 portion of the molecule mediating DNA binding to the promoter 

element of the reporter plasmid. Co-transfection of cells with the construct containing the 

Gal4 DBD alone does not induce any transcriptional activity indicating that the gene 

expression is mediated by the p300 component of the hybrid Gal4-p300 transcription factor 

(Figure 3.7). Therefore, this system allows the effect of 53BP1 on the ability of p300 to 
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activate transcription to be studied without complications arising from the recruitment of p300 

to DNA via interaction with a separate DNA-bound transcription factor, which may itself be 

modulated by 53BP1 or other proteins. As expected, co-transfection of Gal4-p300 and the 

Gal4-E1B luciferase reporter construct into p53 proficient U2OS cells stimulated luciferase 

activity (Figure 3.8a). Interestingly, when increasing amounts of 53BP1 were additionally co-

transfected into the cells, an increase in p300 transcriptional activity was observed as shown 

by the increase in luciferase expression. This was not seen in the cells transfected with Gal4 

alone and indicates that 53BP1 can promote p300-dependent transactivation. Figure 3.8b 

demonstrates that the increase in p300 transcriptional activity was not due to an increase in 

Gal4-p300 protein levels. 

To ensure that the stimulation of p300 by 53BP1 was not cell type specific, the luciferase 

reporter assay was also conducted in H1299 cells. Co-transfection of increasing amounts of 

53BP1 together with Gal4-p300 resulted in an increase in p300 transactivation, whilst 

transfection of Gal4 alone was unable to stimulate p300 transcriptional activity (Figure 3.9a). 

This is consistent with the effect observed in U2OS cells and suggests that 53BP1 can 

modulate p300 transcriptional activity. Again, the increase in p300 transcriptional activity 

seen was not due to an increase in Gal4-p300 protein levels as shown in figure 3.9b.  

3.2.4 BRCT domains of 53BP1 are important for the interaction with p300 

The GST pull-down assays revealed that p300 and CBP could interact with 53BP1 via its C-

terminal region, so to identify if this region of 53BP1 was required for p300 transcriptional 

activity, various 53BP1 deletion mutants were used in the p300 luciferase reporter assay 

(Figure 3.10). 53BP1 is a nuclear protein (Schultz et al 2000), so before the luciferase assay 

was conducted, the localisation of each of the 53BP1 deletion constructs was ascertained by 

immunofluorescence microscopy to ensure that each construct localised to the nucleus. As 

shown in figure 3.11, all the deletion constructs localised to the nucleus except for construct 

7, which was found to be cytoplasmic. This construct has the C-terminal half of 53BP1 

deleted, which contains the nuclear localisation signal. Despite the nuclear localisation signal 

being moved to the beginning of the 53BP1 protein, it does not appear to function correctly, 

so this construct was not used in any further experiments. All the other 53BP1 deletion 

mutants were transfected into U2OS cells along with either Gal4 alone or Gal4-p300 and the 

Gal4 E1B luciferase reporter construct (Figure 3.12a). As previously shown increasing the  
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Figure 3.7 p300 luciferase assay. Schematic representation of how the Gal4 luciferase 

assay functions. 
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Figure 3.8 53BP1 stimulates p300 transcriptional activity in U2OS cells. (A) Cells were 

transfected with 300ng Gal4 E1B luciferase reporter construct, 50ng Renilla, 30ng Gal4-

p300 or Gal4 alone and 20, 50, 75, 100 and 120ng 53BP1. Luciferase activity was 

normalised to Renilla activity. Data from three independent experiments is presented  

standard deviations. Significant differences in relative luciferase units in samples with ectopic 

expression of 53BP1 compared to samples with endogenous expression of 53BP1 ** p< 0.01, 

*** p<0.001. (B) U2OS cells were transfected as in A, whole cell extracts were resolved by 

SDS-PAGE and the protein levels of 53BP1 and p300 were analysed by Western blot. 
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Figure 3.9 53BP1 stimulates p300 transcriptional activity in H1299 cells. (A) Cells were 

transfected with 300ng Gal4 E1B luciferase reporter construct, 50ng Renilla, 30ng Gal- p300 

or Gal4 alone and 20, 50, 75, 100 and 120ng 53BP1. Luciferase activity was normalised to 

Renilla activity. Data from three independent experiments is presented  standard deviations. 

Significant differences in relative luciferase units in samples with ectopic expression of 

53BP1 compared to samples with endogenous expression of 53BP1 * p< 0.05, ** p< 0.01, 

*** p<0.001. (B) H1299 cells were transfected as in A, whole cell lysates were prepared, 

resolved by SDS-PAGE and immunoblotted with anti-53BP1 and anti-p300 antibodies. SMC1 

was used as a loading control. 

0

10

20

30

40

50

60

70

80

R
e
la

ti
v
e

 L
u

c
if
e

ra
s
e

 U
n
it
s

Gal4 alone

Gal4 p300

53BP1

**

**
***

***

*

 

0 20 50 75 100120 0 20 50 75 100120

53BP1

p300

Loading control

HA-53BP1 (ng)

Gal4 alone Gal4 p300

 

A 

B 



Chapter 3 

128 

amounts of full length 53BP1 (construct 1) resulted in an increase in luciferase expression 

indicating an increase in p300 transcriptional activity. In accordance with the observation that 

p300 binds to the C-terminal region of 53BP1 (Figure 3.4), deleting residues 1710-1972 

(construct 2), which contains the BRCT domains, had a profound effect on p300 

transactivation when compared to wild type. Surprisingly, deleting the N-terminal residues 1-

1052 or 1-1710 (construct 5 and 6) also caused a similar reduction in luciferase expression 

demonstrating that these mutants can only weakly stimulate p300 transcriptional activity. 

However, the mutant in which residues 1235-1616 were deleted (construct 3) only mildly 

compromised p300 transcriptional activity when compared to the other 53BP1 mutants 

indicating that the GAR domain and Tudor domains are not essential for the 53BP1 mediated 

stimulation of p300 transactivation. Interestingly, deletion of residues 1-1052 in addition to 

1710-1972 (construct 4) stimulated luciferase expression at a similar level to that of Gal4-

p300 alone, again highlighting that residues 1235-1616 are not crucial for transactivation of 

p300. Overall these data suggest that the N-terminal region (residues 1-1052) and the BRCT 

domains of 53BP1 are required for p300 transcriptional activity. Western blot analysis shows 

the protein expression levels for each of the mutants used in the luciferase assay (Figure 

3.12b). 

 To substantiate the luciferase data and the interaction data, a co-immunprecipitation was 

conducted to determine if deleting the BRCT domains altered the interaction between 53BP1 

and p300. H1299 cells were transfected with either HA-tagged wild type (construct 1) or the 

BRCT mutant (construct 2), p300 was immunoprecipitated and co-precipitation of HA-

53BP1 was analysed by Western blot analysis. Figure 3.13 revealed that deleting the BRCT 

domains of 53BP1 reduced the interaction between 53BP1 and p300. The deletion mutant 

studies demonstrate that the BRCT domains of 53BP1 are important for binding and 

regulating the transcriptional activity of p300. 

3.2.5 53BP1 modulates p53-mediated transcriptional activity 

Taken together these data suggest that 53BP1 is acting as a cofactor for p300 because 53BP1 

can interact and regulate p300 transcriptional activity. However, 53BP1 was originally 

identified as a p53 binding protein and despite Iwabuchi et al (1994) showing that 53BP1 can 

activate p53 transcriptional activity, there is still controversy in the field about whether 53BP1  
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Figure 3.10 Schematic representation of 53BP1 and its derivatives fused to a HA tag. The 

constructs are numbered 1-7. 
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Figure 3.11 Localisation of 53BP1 and its deletion constructs. U2OS cells were 

transfected with 100ng of each construct and 24 hours later cells were fixed and the 

localisation of each construct was analysed by immunofluorescence using the indicated 

antibodies.  
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Figure 3.12 The N-terminal and BRCT domains of 53BP1 are important for p300 

transcriptional activity. (A) U2OS cells were transfected with 300ng Gal E1B luciferase 

reporter construct, 50ng Renilla, 30ng Gal4-p300 and varying amounts of HA-53BP1 

constructs as indicated in (B). For the control experiments, 300ng Gal4 E1B luciferase 

reporter construct was transfected with 50ng Renilla, 30ng Gal4 alone and either 150ng 

construct 1, 150ng construct 2, 120ng construct 3, 50ng construct 4, 50ng construct 5 or  

50ng construct 6. Luciferase activity was normalised to Renilla activity. Data from four 

independent experiments is presented  standard deviations. (B) U2OS cells were transfected 

with the indicated amounts of HA-53BP1 fusions, whole cell extracts were subjected to SDS-

PAGE and immunoblotted with indicated antibodies. 
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Figure 3.13 BRCT domains of 53BP1 are important for binding to p300. p300 was 

immunoprecipitated from H1299 whole cell extracts transfected with 1μg of construct 1 and 2 

for 24 hours, separated by SDS-PAGE and the binding of p300 to HA-53BP1 was assessed by 

Western blotting. 
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regulates p53 transcriptional activity (Adams and Carpenter 2006, Mochan et al 2004). 

Therefore, to establish if 53BP1 could regulate p53 transcriptional activity, a p53 luciferase 

reporter assay was performed. The luciferase gene under the control of 13 consensus p53 

DNA binding sites was transfected into the p53 null H1299 cell line together with either wild 

type p53 or mutant p53 (R175H) and increasing amounts of 53BP1. The p53-R175H mutant 

is a structural mutant that destabilises the tertiary structure of the p53 DNA binding domain, 

therefore preventing p53 from binding to DNA (Bullock et al 2000). In the presence of wild 

type p53, luciferase expression increased in a dose dependent manner with increasing 

amounts of 53BP1 indicating that 53BP1 can stimulate p53 transcriptional activity. In 

contrast, p53 transcriptional activity was not stimulated in the presence of mutant p53 (Figure 

3.14a). This result is consistent with previous observations suggesting that 53BP1 can 

transactivate p53 in a dose dependent manner in the absence of DNA damage (Iwabuchi et al, 

1998) and that this transactivation is dependent on p53 being transcriptionally competent. 

Western blot analysis showed that the observed co-activation of p53 by 53BP1 was not due to 

ectopic expression of 53BP1 affecting p53 protein levels (Figure 3.14b). 

The CDK inhibitor, p21 is an important transcriptional target of p53 because it is the main 

effector of p53-mediated cell cycle arrest (el-Deiry et al 1993, Waldman et al 1995). 

Therefore to examine if 53BP1 could stimulate p53-dependent transcriptional activity from a 

more biologically relevant promoter element, H1299 cells were transfected with a plasmid 

containing the luciferase gene under the control of the p53 responsive p21 promoter along 

with wild type p53 and increasing amounts of 53BP1. Surprisingly, ectopic expression of 

53BP1 significantly repressed p21 transcriptional activity in a concentration dependent 

manner in the presence of p53 when compared with induction of p21 by p53 alone (Figure 

3.15a). This repression is dependent on p53 because in the absence of p53, 53BP1 was unable 

to repress p21 expression. Western blot analysis demonstrated that increasing the amounts of 

53BP1 had no significant effect on protein levels of p53 (Figure 3.15b). These data suggests 

that 53BP1 can suppress p53-mediated transactivation of p21 in the absence of DNA damage.    

To probe the functional role of 53BP1 in p53 regulation in a physiological context, wild type 

p53 U2OS cells were depleted of 53BP1 using siRNA and either mock irradiated or exposed 

to 3 Grays of IR. The protein expression levels of p53 and its target genes HDM2, PUMA and 

p21 were analysed by Western blot analysis (Figure 3.16). Following DNA damage, the levels 

of HDM2 and PUMA were reduced in 53BP1 depleted cells compared to control cells  
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Figure 3.14 53BP1 stimulates p53 transcriptional activity. (A) H1299 cells were 

transfected with 150ng of the PG13 luciferase reporter construct, 50ng Renilla, 5ng wild type 

(WT) or mutant p53 expression constructs and 50, 100, 200, 295ng of an expression plasmid 

encoding 53BP1. Luciferase activity was normalised to Renilla activity. Data from three 

independent experiments is presented  standard deviations. Significant differences in relative 

luciferase units in samples with ectopic expression of 53BP1 compared to samples with 

endogenous expression of 53BP1 *** p<0.001. (B) H1299 cells were transfected as in A, 

whole cell lysates were prepared, resolved by SDS-PAGE and immunoblotted with anti-

53BP1 and anti-p53 antibodies. SMC1 was used as a loading control. 
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Figure 3.15 53BP1 represses p53-dependent p21 transcriptional activity. (A) H1299 cells 

were transfected with 200ng of the WWP (p21) luciferase reporter construct, 50ng Renilla, 

5ng wild type (WT) or mutant p53 expression constructs and 50, 100, 200, 245ng of an 

expression plasmid encoding 53BP1. Luciferase activity was normalised to Renilla activity. 

Data from three independent experiments is presented  standard deviations. Significant 

differences in relative luciferase units in samples with ectopic expression of 53BP1 compared 

to samples with endogenous expression of 53BP1* p<0.05, ** p< 0.01, *** p<0.001. (B) 

H1299 cells were transfected as in A, whole cell lysates were prepared, resolved by SDS-

PAGE and protein levels of 53BP1 and p53 were assessed by immunoblotting. 
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Figure 3.16 53BP1 differentially regulates p53 target genes. U2OS cells were transfected 

with either control or 53BP1 siRNA, 72 hours later the cells were either mock irradiated or 

irradiated with a 3 Gray dose and harvested at the times indicated. Whole cell extracts were 

separated by SDS-PAGE and immunoblotting used to analyse the protein levels of 53BP1, 

p53, serine 15 phosphorylation of p53 and p53 target genes, HDM2, PUMA and p21. SMC1 

was used as a loading control. 
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whereas the levels of p21 were increased in the absence of 53BP1. However, in contrast 

53BP1 depletion did not affect IR-induced p53 stabilisation or serine 15 phosphorylation of 

p53. Therefore, these data indicate that 53BP1 may be differentially regulating the expression 

of p53 responsive genes and as a result provide specificity to the p53 response.  

To determine if the increase in p21 protein expression observed in unstimulated cells was due 

to loss of 53BP1 enhancing p53-dependent p21 transcriptional activity, 53BP1 depleted cells 

were transfected with p53-reponsive p21 luciferase reporter construct together with wild type 

p53. As shown in figure 3.17, p21 transcriptional activity was significantly increased in a 

p53-dependent manner in cells lacking 53BP1, despite Western blot analysis showing that 

p53 protein levels were lower in the 53BP1 depleted cells when compared to control siRNA 

treated cells. Interestingly, a small increase in p21 transcriptional activity was also observed 

in the absence of p53 indicating that loss of 53BP1 could be affecting other proteins that 

regulate p21 transactivation. These findings reveal that the depletion of 53BP1 results in 

activation of p21 in a p53-dependent and possibly a p53-independent manner in the absence 

of overt DNA damage.   

Taken together, these data indicate that that the ability of 53BP1 to modulate p53 target gene 

expression is complex, with the promoter sequence, surrounding chromatin, type of cellular 

stress and presence of additional regulatory proteins likely influencing whether 53BP1 had a 

positive or negative effect on the ability of p53 to activate or repress gene transcription.  

3.3 DISCUSSION 

Many signal transduction pathways converge at the level of transcriptional co-activators, 

which serve as signal integrators that process cellular signals and regulate gene expression 

(Naar et al 2001). CBP/p300 are two of the most extensively studied transcriptional co-

activators, which interact with a wide variety of proteins, including many transcription factors 

and participate in a broad spectrum of biological activities (Goodman and Smolik 2000). The 

data reported here indicates that 53BP1 may function as a cofactor for CBP/p300. 

Co-immunoprecipitation studies revealed that 53BP1, CBP and p300 interact with each other 

(Figure 3.2). This is consistent with the mass spectrometry data, which originally identified 

the interaction between 53BP1 and CBP/p300 (Figure 3.1). Interestingly, almost all the CBP 

and p300 interacting proteins that were identified by mass spectrometry were different  
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Figure 3.17 Depletion of 53BP1 enhances p53-dependent p21 transactivation. (A) H1299 

cells were either mock treated or treated with 53BP1 siRNA, 48 hours later cells were 

transfected with 200ng WWP (p21) luciferase reporter construct, 50ng Renilla and 5ng wild 

type (WT) p53. Luciferase activity was normalised to Renilla activity. Data from three 

experiments is presented ± standard deviations. Significant differences in relative luciferase 

units in samples depleted of 53BP1 compared to control samples with and without p53* 

p<0.05, ** p< 0.01. (B) H1299 cells were transfected as in A, whole cell lysates were 

prepared, resolved by SDS-PAGE and protein levels of 53BP1 and p53 were assessed by 

immunoblotting.  
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(Figure 3.1). This suggests that despite CBP and p300 being highly homologous, they may 

perform different functions, particularly in the DDR since the majority of proteins identified 

are involved in the DDR. When the interaction sites were mapped, CBP and p300 were found 

to bind to the C-terminal region of 53BP1 (residues 1309-1972) (Figure 3.4). This section of 

53BP1 encompasses all the domains of 53BP1 including the tandem BRCT domains and the 

Tudor domain. Deletion of the BRCT domains of 53BP1 dramatically reduced the interaction 

between 53BP1 and p300, although the interaction was not completely abolished indicating 

that other regions N-terminal to the BRCT domains are also likely to be involved (Figure 

3.12). Furthermore, the identification of two 53BP1 binding regions on CBP and p300 

indicates that potentially multiple 53BP1 molecules may bind to a single p300 or CBP 

molecule at different sites (Figure 3.5 and 3.6). Alternatively, a single 53BP1 molecule maybe 

able to bind to both regions on CBP and p300, although this will depend on the structural 

conformation of CBP and p300. Another possibility is that like p53 (Grossman 2001), the 

functional significance of the two interaction sites on CBP and p300 is different and therefore, 

53BP1 may influence CBP and p300 activity differentially depending on where 53BP1 binds.  

Since, the regions on CBP and p300 that 53BP1 binds to encompass the transactivation 

domains of CBP/p300, luciferase reporter assays were performed. These demonstrated that 

53BP1 can enhance transcription mediated by p300 when fused to the Gal4 DNA binding 

domain (Figure 3.8 and 3.9). This was abolished when residues 1-1052 and/or 1710-1972 of 

53BP1 were deleted indicating that these two areas are necessary for the ability of 53BP1 to 

stimulate p300 transcriptional activity (Figure 3.12 and 3.13). This highlights the possibility 

that the BRCT domains of 53BP1 are not only important for 53BP1 to interact with p300, but 

also for the ability of p300 to stimulate transcription. Interestingly, since BRCT domains are 

phospho-protein binding domains, it is possible that the ability of 53BP1 to bind p300 may be 

modulated by phosphorylation (Manke et al 2003, Yu et al 2003). However, to address this 

directly, a point mutation in the BRCT domains of 53BP1 that ablates the phospho-peptide 

binding would have to be constructed and then the ability of 53BP1 to bind to p300 and 

potentiate its transactivation capability determined. Conceivably, it is also possible that 

regions of the 53BP1 fragment shown to bind to p300 that are outside the BRCT domains 

could also be mediating this interaction. For example, the Tudor domain of 53BP1 binds to 

methylated lysines and arginines, therefore methylation of p300 could also facilitate 53BP1 

binding to p300 (Cote and Richard 2005, Kim et al 2006). Interestingly, BRCA1 has recently 



Chapter 3 

140 

been shown to interact with p300 via its BRCT domains and this interaction is mediated by 

CARM1-dependent methylation of arginine 754 in p300 (Lee et al 2011). This demonstrates 

that as well as binding to phosphorylated residues, BRCT domains can also interact with 

methylated arginine residues. Therefore, similar to BRCA1, the interaction between 53BP1 

and CBP/p300 may be mediated by the BRCT domains of 53BP1 binding to methylated p300. 

Interestingly, these data demonstrate that different regions of 53BP1 are important for binding 

to p300 and for regulating p300 transcriptional activity. Exactly how the N-terminal portion 

of 53BP1 is involved in mediating p300 transactivation is unclear since it does not contain 

any known functional domains. However, this region does contain several biological relevant 

amino acid motifs. Firstly, this region contains numerous potential phosphorylation target 

sites for PIKK family members such as ATM and ATR, which could play a role in regulating 

the ability of 53BP1 to potentiate p300-dependent transcription following DNA damage but 

would be unlikely to contribute to this activity in unstressed cells (Jowsey et al 2007, Traven 

and Heierhorst 2005, Ward et al 2006). Secondly, residues 54-60 and 85-91 of this region are 

two potential KEN boxes, which are sequences recognised by the APC/C activators, Cdc20 

and Cdh1 (Peters 2006, Thornton and Toczyski 2006). Whilst there is currently no evidence 

that links 53BP1 with Cdc20 and/or Cdh1, Lergerski and colleagues have demonstrated that 

53BP1 can interact with the Cdc27 subunit of the APC/C (Akhter et al 2004). Interestingly, 

CBP/p300 have also been shown to interact with components of the APC/C that can 

potentiate the transcriptional activity of both CBP and p300 (Turnell et al 2005). Therefore, it 

is also possible that the ability of 53BP1 to activate p300-mediated transcription may involve 

other proteins such as the APC/C that could interact with the N-terminus of 53BP1. To 

address this directly, N-terminal deletion mutants would need to be used to define the precise 

region required for p300-mediated transactivation, which could then be utilised for mass 

spectrometry to aid identification of any potential interacting proteins that could be involved 

in regulating p300-dependent transcriptional activity. However, taken together, these data 

suggest that 53BP1 can interact with CBP and p300 both in vitro and in vivo and stimulate 

p300-mediated transcription in the absence of DNA damage.  

Since CBP/p300 both function as transcriptional co-activators for numerous transcription 

factors, it would be of interest to ascertain if 53BP1 was important for facilitating CBP/p300-

mediated co-activation of any of these transcription factors. One approach to potentially 

identify these transcription factors would be to use protein-DNA array technology, which 
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allows activity profiling of multiple transcription factors simultaneously (Panomics). 

Subsequently, those transcription factors that were identified by the array and whose activity 

was also known to be potentiated by CBP/p300 would be investigated further to try to 

elucidate the role of 53BP1s ability to bind CBP/p300 in regulating the activity of these 

transcription factors and also how this influences the expression of their target genes. 

Due to 53BP1 only possessing protein-protein interaction domains, it is considered to 

function as a scaffold protein during the DNA damage response and recently, it has been 

reported that 53BP1 is required for the recruitment of the checkpoint protein Rif1 and the 

chromatin remodelling protein EXPAND1 to the sites of DNA damage (Huen et al 2010a, 

Silverman et al 2004). Consequently, it is plausible to hypothesise that 53BP1 could be 

providing a scaffold with which to recruit CBP/p300 to the gene promoters/enhancers or 

stabilise them on the DNA once bound, where they can enhance transcription by acetylating 

histones in the vicinity of these genes. This would allow CBP/p300 to connect transcription 

factors bound to their response elements with the basal transcriptional machinery situated on 

gene core promoter sequences simultaneously and further augment transcription by 

acetylating the transcription factors. 

Alternatively, in many cases, transcription factors bind to response elements, which can be 

some distance away from the core promoters where the general transcriptional machinery is 

bound (Bulger and Groudine 2010). To facilitate activation of gene expression the 

enhancers/transcription factor binding sites and core promoter sequences of genes need to be 

brought in close proximity to each other, which would involve the formation of a DNA loop 

(Miele and Dekker 2008). Recently, the Mediator co-activator complex and cohesin have 

been shown to be important for connecting the enhancers and core promoters of active genes 

in murine embryonic stem cells by promoting DNA loop formation and stabilisation (Kagey 

et al 2010). Interestingly, it has been reported that 53BP1 facilitates the joining of distant 

damaged DNA ends by its ability to increase the mobility of the local chromatin to bring 

together the two DNA ends (Difilippantonio et al 2008, Dimitrova et al 2008). Therefore, in 

addition to the Mediator co-activator complex and cohesin, 53BP1 could also be involved in 

bringing regulatory sequences bound by the transcription factor and its co-activators 

CBP/p300 and promoter elements into close proximity by altering the chromatin structure. 
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Before 53BP1 was identified as a DNA damage response protein, it was proposed to function 

as a transcriptional co-activator of p53 by Stanley Fields and colleagues (Iwabuchi et al 

1998). Recent data from Shelley Berger and colleagues supports this function for 53BP1 and 

potentially resolves the controversy surrounding the ability of p53 to bind to DNA and 53BP1 

simultaneously by suggesting that the interaction between 53BP1 and p53 is mediated by 

post-translational modifications of p53 (Huang et al 2007a). In contrast, when Chen and 

colleagues investigated the mRNA expression levels of p53 target genes in 53BP1 deficient 

murine thymocytes, they demonstrated that 53BP1 was not required for p53 transactivation. 

Moreover, they observed that loss of 53BP1 increased expression of p21 suggesting that 

53BP1 was functioning as a co-repressor rather than a co-activator of p53 (Ward et al 2005). 

One hypothesis that accounts for both sets of conflicting data is the possibility that in fact 

53BP1 may not strictly be a co-activator or co-repressor of p53, but rather a modulator of p53 

that can differentially regulate p53 responsive genes. Consistent with this, the data presented 

here indicates that 53BP1 can both potentiate the transcriptional activity of p53, possibly to 

induce HDM2 and PUMA expression following DNA damage (Figure 3.14 and 3.16), and 

also repress it, in the p21 expression in unstressed cells (Figure 3.15 and 3.17). This apparent 

schizophrenic behaviour of 53BP1 as a regulator of transcription is not unusual and is very 

similar to that of the p52 NF- B subunit and the Tip60/p400 co-activator proteins. In the case 

of Tip60 and p400 these proteins have been shown to repress p21 expression in unstimulated 

cells, but cooperate with p53 to induce apoptosis in response to UV DNA damage (Tyteca et 

al 2006). The NF- B subunit, p52 has also been shown to be antagonistic to p53 by 

suppressing p21 expression in unstimulated U2OS cells, but again cooperating with p53 at 

other promoters such as PUMA, GADD45  and DR5 and succeeding UV damage (Schumm 

et al 2006). Therefore, 53BP1 is unlikely to be functioning as a strict co-activator or co-

repressor of p53, as previously reported, but rather behave as a modulator of p53 function 

indicating that in some situations 53BP1 may influence p53 target gene selectivity and as a 

consequence the p53-dependent transcriptional response. To understand precisely the 

involvement of 53BP1 in modulating p53 function, the expression of other p53 target genes 

would need to be analysed to obtain a global view on which aspect of the p53-dependent 

transcriptional profile requires 53BP1 and whether this is influenced by specific cellular 

stresses. Furthermore, it would be of interest to determine whether 53BP1 binds directly to the 

promoters of specific p53-regulated genes or whether other indirect mechanisms are involved 
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to ascertain whether this differential regulation of p53 by 53BP1 was occurring at the sites of 

transcription or not. Since, it appears that 53BP1 regulates p21 and PUMA differently, the 

biological significance of these data would need to be investigated to establish the effect of 

53BP1 on cell cycle progression and apoptosis. 

 In light of the fact that 53BP1 regulates the transactivation potential of p300 (Figure 3.8 and 

3.9) and p53 (Figure 3.14), it would be interesting to determine if the increase in p53 

transcriptional activity observed was dependent on the ability of 53BP1 to potentiate p300-

dependent increases in gene expression or whether these two events are mutually exclusive. 

Interestingly, it has been shown that the p300 cofactors, JMY and Strap can increase p53 

acetylation and consequently activate p53 pro-apoptotic target genes through interacting and 

enhancing p300 transcriptional activity (Demonacos et al 2001, Shikama et al 1999). 

Collectively, these data have shown that 53BP1 plays a role in the regulation of p53 target 

gene expression, although the precise mechanism remains unclear. 
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CHAPTER 4 USE OF GLOBAL GENE EXPRESSION 

PROFILING TO IDENTIFY 53BP1 REGULATED GENES 

4.1 INTRODUCTION 

53BP1 was originally identified in a yeast two-hybrid screen looking for novel p53 interacting 

proteins that could potentially modulate p53 transcriptional activity (Iwabuchi et al 1994, 

Iwabuchi et al 1998). Up until recently the ability of 53BP1 to bind to p53 and alter its 

transcriptional activity was unclear due to contradictory studies demonstrating that p53 could 

not bind to 53BP1 and DNA simultaneously (Derbyshire et al 2002, Joo et al 2002). 

However, data from Berger and colleagues showed that 53BP1 can recognise and bind to di-

methylated lysine 370 of p53 and enhance p53 transactivation supporting a role for 53BP1 as 

a transcriptional regulator (Huang et al 2007a). Consistent with this notion, in addition to p53, 

53BP1 can function as a positive transcriptional regulator of BRCA1 gene expression by 

binding to a novel palinodromic DNA sequence in the BRCA1 promoter (Rauch et al 2005). 

Moreover, the murine homologue of 53BP1 has been shown to bind and inhibit the activity of 

the transcriptional regulator, p202 (Datta et al 1996).  

Interestingly, the di-methylated lysine 20 of histone H4 and the di-methylated lysine 79 of 

histone H3 that have been shown to directly bind to 53BP1 via its Tudor domain are found in 

regions of chromatin that are transcriptionally active suggesting that 53BP1 can be localised 

to regions of high transcriptional activity (Botuyan et al 2006, Huyen et al 2004, Ng et al 

2003). Furthermore, data presented in the previous chapter reveals that 53BP1 can interact 

and regulate the transactivation function of the transcriptional co-activator p300. Taken 

together, these observations suggest that 53BP1, as well as being a DSB repair protein, may 

also function as a transcriptional regulator. To address this hypothesis directly, a microarray 

approach was utilised to study the gene expression patterns in cells treated with and without 

53BP1 siRNA, before and after IR to identify genes whose expression was dependent on 

53BP1 and whether their expression was affected by genotoxic stress.  

 

 



  Chapter 4 

146 

The aims of this study were to: 

(i) Identify any differences in the transcriptional profiles of cells treated with 

control and 53BP1 siRNA. 

(ii) Determine any specific differences in transcriptional responses between 

control and 53BP1 siRNA treated cells following IR-induced DNA damage. 

(iii) Identify any cellular pathways that are different between unirradiated control 

and 53BP1 siRNA treated cells. 

(iv)   Ascertain any pathways that are different between control and 53BP1 siRNA 

treated cells in response to IR. 

To accomplish this, two different analysis methods were used, single gene analysis 

(‘univariate’ analysis) and biological pathway analysis (‘multivariate’ analysis). 

4.2 RESULTS 

4.2.1 Gene expression profiling identified a link between 53BP1 and TNFR1 

signalling, independent of DNA damage  

In response to DNA damage, p53 becomes stabilised and activated, subsequently the 

expression of p53 target genes are altered. To determine the optimal time point to analyse the 

transcriptional differences between control and 53BP1 depleted samples following irradiation, 

the kinetics of p53 induction needed to be established. U2OS cells were exposed to 3 Grays of 

IR and the protein levels of p53, HDM2 and p21 were analysed by Western blot. As shown in 

figure 4.1 the induction of p53 peaked at 4 hours post-IR, which also coincided with maximal 

induction of the p53 responsive genes, p21 and HDM2. This demonstrates that p53-dependent 

transcription reaches a maximum at 4 hours post-IR and therefore, 4 hours was chosen as the 

time following the induction of DNA damage that the transcriptional profile was analysed by 

microarray. 

To investigate the potential role of 53BP1 in regulating cellular transcription, U2OS cells 

were transfected with either control or 53BP1 specific siRNA and exposed to 3 Grays of IR, 

72 hours after transfection. At 0 and 4 hours post-IR, cells were harvested for both RNA and 

protein. The RNA quality was checked by agarose gel analysis and the protein levels of 

53BP1 were assessed by Western blot analysis to ensure 53BP1 had been efficiently knocked  
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Figure 4.1 p53 transcriptional activity occurs at 4 hours post-IR. U2OS cells were 

irradiated and harvested at 0, 1, 2, 4, 6, 8 and 24 hours. Whole cell lysates were prepared, 

resolved by SDS-PAGE and the protein expression levels of p53, HDM2 and p21 were 

analysed by immunoblotting. 
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Figure 4.2 RNA hybridised to the Affymetrix GeneChips was good quality. U2OS cells 

were treated with either control or 53BP1 siRNA, 72 hours later cells were either exposed to 

3 Grays of IR or left untreated. RNA was extracted from whole cell extract and 2μl of each 

sample was run on a 0.8% agarose gel to check the quality of the RNA. Data from the three 

independent experiments is shown. 
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Figure 4.3 53BP1 was efficiently depleted using siRNA. U2OS cells were transfected 

with either control or 53BP1 siRNA. 72 hours later, cells were exposed to 3 Grays of IR and 

harvested at 0 and 4 hours post-IR. Whole cell lysates were lysed, separated on an SDS-

PAGE and immunoblotted with the indicated antibodies. SMC1 was used as a loading 

control. Data from the three independent experiments is shown. 
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down (Figure 4.2 and 4.3). The RNA from each time point was hybridised to an Affymetrix 

U133 Plus 2.0 GeneChip for gene expression profiling. To ensure the validity of any changes 

in gene expression, three independent experiments were carried out (Allison et al 2006).  

4.2.1.1  Univariate analysis of results 

Univariate analysis of microarray data examines the expression of individual genes between 

two conditions and identifies the genes that have the greatest differential expression.  

Therefore, univariate analysis was used to identify those genes whose expression profiles had 

differed between the control and 53BP1 siRNA treated samples, and also to determine 

whether there was any effect of IR exposure. 

4.2.1.1.1 Examination of pre-IR transcriptional differences 

The baseline transcriptional differences between the control and 53BP1 depleted samples 

were examined to identify genes that were dependent on 53BP1, but independent of exposure 

to IR. After the data had been filtered and statistical analysis conducted, the expression 

profiles of 779 transcripts (674 genes) were found to differ significantly, 505 of these 

transcripts (435 genes) were differentially down-regulated (Figure 4.4) and 274 transcripts 

(239 genes) were up-regulated (Figure 4.5) in the 53BP1 depleted samples compared to the 

control samples. Analysis of the identified differentially regulated genes using GeneSpring 

highlighted a diverse array of cellular functions that did not specifically localise to any one 

biological process. 

Many of the genes that were down-regulated in the 53BP1 siRNA treated samples functioned 

in metabolism including ALDH2, GK, IDS, ME1 and PGK1, several genes had roles in 

transcription such as ATF1, MED18, ZNF589 and SP4 and other genes included those 

involved in ubiquitylation and sumoylation (SH3MD2, UCHL5, UBE2W, and SUMO3), DNA 

repair (RAD23B), cell cycle (ESCO2), and apoptosis (TNFRSF9 and AMID).  Genes that were 

found to be up-regulated in the 53BP1 siRNA treated cells also encode proteins involved in 

DNA repair such as XPA, REV3L and XRCC4, cell cycle progression including CHES1, 

STAG2, CDKN1B, and LATS2, transcription such as SAP30, NR0B1, TC4 and WWTR1, as 

well as proteins involved in ubiquitylation and sumoylation (PIAS3, SENP3, USP24) and the 

apoptotic and antioxidant protein TP53INP1.  

Interestingly, a subset of the genes that were differentially regulated in the 53BP1 depleted  
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Figure 4.4 Heatmaps of genes down-regulated in 53BP1 siRNA treated samples before 

IR. Hierarchical clustering of genes was performed using Cluster 3.0 program and heatmaps 

were generated using Treeview. Columns represent individual samples and rows correspond 

to genes. Colour changes within a row indicate expression levels. Red indicates up-

regulation, green indicates down-regulation  
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Figure 4.5 Heatmaps of genes up-regulated in 53BP1 siRNA treated samples before IR. 

Hierarchical clustering of genes was performed using Cluster 3.0 program and heatmaps 

were generated using Treeview. Columns represent individual samples and rows correspond 

to genes. Colour changes within a row indicate expression levels. Red indicates up-

regulation, green indicates down-regulation. 
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samples compared to control samples encode proteins that have roles in TNFR1 signalling 

pathways. The expression of SH3MD2, G3BP2, EDN1, IKIP, FADD, MMP9, BAG4/SODD 

and PLAU were reduced in cells lacking 53BP1 when compared to cells treated with control 

siRNA, whereas in contrast, the expression of PI3KCA, PI3KR2, GAS6, BIRC4/XIAP, AKT2, 

PIAS3, PAK1, SMAD7, STAT3 and RPS6KAI/RSK1 were increased (Figure 4.6). Activation of 

TNFR1 has been demonstrated to occur after a wide variety of stimuli including pro-

inflammatory cytokines and genotoxic stress, which induces the activation of the NF- B, JNK 

and p38 pathways to promote either an inflammatory response and/or survival depending on 

the stimuli. Under some circumstances, stimulation of TNFR1 can also induce apoptosis. 

However, this is not usually observed since the activation of NF- B induces expression of its 

anti-apoptotic genes (Chen and Goeddel 2002, Karin and Lin 2002, Van Antwerp et al 1996). 

The majority of the proteins encoded by this subset of genes identified by the microarray 

analysis that were differentially expressed in 53BP1 knockdown cells were either involved in 

the NF- B pathway or in pathways that integrated into the NF- B pathway, suggesting that 

53BP1 may be modulating certain NF- B-dependent transcriptional responses (Figure 4.7, 

Table 4.1 and 4.2).  

In summary, examination of pre-IR transcriptional differences between control and 53BP1 

depleted samples identified a wide variety of genes that were dependent on 53BP1 for their 

expression. These genes were involved in a broad range of cellular processes, but a significant 

number of these were involved in metabolism and transcription. However, a small selection of 

the differentially expressed genes either functioned in signalling pathways that influenced the 

activity of NF- B or were NF- B target genes. 

4.2.1.1.2 Analysis of differential responses to DNA damage at 4 hours post-IR  

In order to compare the relative expression values between the irradiated samples, the post-IR 

samples were normalised to the pre-IR equivalent before comparison. This excluded any 

baseline differences and ensured that only those genes whose expression altered in response to 

IR were identified. From the analyses, significant differences in the expression of 285 genes 

were identified between cells treated with control and 53BP1 siRNA. The expression levels of 

147 genes were identified as down-regulated and 138 genes were found to be up-regulated in 

the 53BP1 siRNA treated cells compared to the control siRNA treated cells (Figure 4.8). The  
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Figure 4.6 Subset of genes differentially expressed before IR involved in TNFR1 

signalling pathways. Heat map showing the 8 genes that were significantly down-regulated 

and the 10 genes significantly up-regulated in the 53BP1 depleted samples compared to 

control samples. Columns represent individual samples and rows correspond to genes. 

Colour changes within a row indicate expression levels. Red indicates up-regulation, green 

indicates down-regulation. 
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Figure 4.7 The involvement of the 18 genes in TNFR1 signalling pathways. Engagement 

of TNF with its cognate receptor TNFR1 results in the release of SODD and formation of a 

proximal signalling complex composed of TRADD, TRAF2 and RIP1. RIP1 recruits the 

TAK1/TAB2/3 complex thereby promoting activation of the IKK complex. Activated IKK 

phosphorylates I B  at serine 32 and 36 leading to ubiquitylation by the SCF
TrCP

 E3 ligase 

and subsequent degradation by the 26S proteasome. NF- B is released and enters the nucleus 

where it can activate its target genes following various post-translational modifications. I B  

is resynthesised, dissociates NF- B from the DNA and exports NF- B back to the cytoplasm. 

TNFR1 activate JNK kinase via recruitment of MKK4/7, which activates transcription factors 

such as AP-1 and ATF2. TNFR1 can also initiate events that lead to apoptosis by forming 

another complex containing FADD and either RIP1 or TRADD. This activates caspase 8/10, 

which activates effector caspases triggering apoptosis. The genes highlighted in red are up-

regulated whereas the genes in green are down-regulated in the 53BP depleted samples 

compared to control samples. 
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Gene  Role  in TNFR1 signalling pathways Reference  

BAG4/SODD Inhibitor of TNFR1. Binds to the intracellular 

domains of TNFR1 preventing TNFR1 from 

being constitutively activated. 

(Jiang et al 1999) 

FADD Involved in TNFR1-mediated apoptosis. 

FADD is an adaptor protein that binds to the 

death domain in TRADD via its death domain 

resulting in recruitment and activation of 

procaspase 8/10. 

(Micheau and 

Tschopp 2003) 

SH3MD2 E3 ubiquitin ligase that acts as a scaffold 

protein in the JNK pathway 

(Xu et al 2003) 

PLAU NF- B target gene that is important for cell 

migration as it degrades the extracellular 

matrix 

(Smith and Marshall 

2010, Wang et al 

2000) 

MMP9 NF- B target gene that is important for cell 

migration as it degrades the extracellular 

matrix 

(Gum et al 1996) 

EDN1 NF- B target gene that functions in vascular 

homeostasis 

(Quehenberger et al 

2000) 

IKIP Identified in a yeast-two hybrid screen using 

IKK  as bait. Function in NF- B signalling is 

unknown, however it was found to promote 

p53-dependent apoptosis suggesting that it 

may have an inhibitory role in NF- B because 

NF- B and p53 can antagonise each other. 

(Ak and Levine 

2010,  

Hofer-Warbinek et 

al 2004) 

G3BP2 Cytoplasmic protein that interacts with I B  

and I B /NF- B complexes through its 

ability to recognise the cytoplasmic retention 

sequence in I B . Therefore, retains NF- B 

in the cytoplasm 

(Prigent et al 2000) 

Table 4.1 Genes differentially down-regulated in 53BP1 siRNA treated samples 

involved in TNFR1 signalling pathways. Table explains the involvement of the proteins 

encoded by these genes in the TNFR1 signalling pathways. 
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Gene  Role in TNFR1 signalling pathways  Reference  

BIRC4/XIAP Anti-apoptotic protein that is not only an NF- B target gene, 

but also interacts and activates TAK1 resulting in activation 

of IKK complex and therefore NF- B. 

(Hofer-Warbinek et al 

2000, Stehlik et al 

1998) 

SMAD7 Inhibitory SMAD of transforming growth factor beta (TGF-

). Recently, been shown to function as negative regulator of 

NF- B by binding to TAB2/3 and preventing TAK1 

activation. 

In addition, SMAD7 can inhibit the expression of anti-

apoptotic NF- B target genes and therefore sensitise cells to 

TNF-induced apoptosis  

(Hong et al 2007a, 

Hong et al 2007b) 

PI3KCA, 

PI3KR2 and 

AKT2 

PI3KCA (also known as p110 ) and PI3KR2  (also known as 

p85  ) are the catalytic and regulatory subunits of  PI3K 

respectively. Activation of PI3K by receptor tyrosine kinases 

results in recruitment and subsequent activation of AKT. 

AKT can stimulate NF- B transcriptional activity, although 

this has been reported to occur by different mechanisms. 

One mechanism involves the stimulation of the 

transactivation potential of p65 via activation of IKK . 

In contrast, other reports have shown that AKT activates NF-

B through activation of  IKK  rather than IKK   

(Vanhaesebroeck et al 

2010, Vivanco and 

Sawyers 2002, 

Madrid et al 2001, 

Sizemore et al 1999, 

Ozes et al 1999, 

Romashkova and 

Makarov 1999) 

GAS6 Anti-apoptotic protein. Activates NF- B via the PI3K 

pathway. 

(Demarchi et al 2001) 

PAK1 PAK1 is a serine/threonine protein kinase activated by 

multiple signalling pathways. Activates NF- B through 

IKK . 

(Foryst-Ludwig and 

Naumann 2000, Frost 

et al 2000) 

RPS6KA1/RSK1 Serine/threonine protein kinase that can stimulate NF- B 

activity by phosphorylating I B  on Ser32 and inducing its 

degradation. 

In response to DNA damage RSK1 is phosphorylated by p53 

resulting in activation of pro-apoptotic NF- B response via 

an IKK and I B  independent mechanism. 

(Ghoda et al 1997, 

Schouten et al 1997, 

Bohuslav et al 2004) 

STAT3 Interacts with NF- B at several levels in response to 

inflammation. 

Can inhibit IKK activity and thereby reduce NF- B 

inflammatory response. 

In tumours, STAT3 directly interacts with p65 preventing 

nuclear export of NF- B and contributing to constitutive NF-

B activation. 

Several NF- B target gens such as interleukin 6 are important 

activators of STAT3 

(Welte et al 2003, Lee 

et al 2009, Yu et al 

2009) 

PIAS3 Represses NF- B activity by interacting with the N-terminal 

region of p65 and preventing CBP and p300 from binding to 

p65. 

(Jang et al 2004) 

Table 4.2 Genes differentially up-regulated in 53BP1 siRNA treated samples involved 

in TNFR1 signalling pathways. Table explains the involvement of the proteins encoded by 

these genes in the TNFR1 signalling pathways. 
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Figure 4.8 Heatmaps of genes differentially expressed in response to IR. Hierarchical 

clustering of genes was performed using Cluster 3.0 program and heatmaps were generated 

using Treeview. (A) Genes significantly down-regulated in 53BP1 siRNA treated samples 

compared to control siRNA treated samples post-IR. (B) Genes significantly up-regulated in 

53BP1 siRNA treated samples compared to control siRNA treated samples post-IR. Columns 

represent individual samples and rows correspond to genes. Colour changes within a row 

indicate expression levels. Red indicates up-regulation, green indicates down-regulation. 
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function of these genes again varied with many of them being involved in metabolism such as 

GPX2, PGK1, PKM2 and ECGF1, transcriptional regulation including C/EBP , CUX1,  

FOXP1 and ELF1 and also cell cycle regulation, for example AURKB, CCNB1, PLK1 and 

CROCC. 

In conclusion, there were a large variety of genes whose expression was affected in response 

to IR and these were mainly involved in metabolism and transcription, although several of the 

genes that were up-regulated in the 53BP1 depleted samples were involved in cell cycle 

progression suggesting that the cell cycle could be affected in response to IR when 53BP1 is 

depleted. Surprisingly, despite IR being a potent trigger of p53 transcriptional activity and 

data presented in chapter 3 indicating that 53BP1 could be regulating p53 target gene 

expression in response to DNA damage, no p53 responsive genes were found to be 

differentially regulated by 53BP1 following IR exposure. This suggests that 53BP1 may not 

be playing a role in modulating the expression of p53 target genes induced 4 hours after DNA 

damage. However, it is possible that 53BP1 may regulate the expression of p53 target genes 

activated at other times following DNA damage.  

4.2.1.2  Multivariate analysis of results 

Multivariate analysis is designed to assess the impact that multiple gene expression changes 

may have on single biological pathways and processes by taking into account interactions 

between functionally related genes, since small coordinated changes in gene expression 

within a pathway can have a major biological effect even if these changes are not significant 

for any individual gene. This method of analysis was used to identify any biological pathways 

that may be affected by depletion of 53BP1 before and after exposure to IR.  

Gene Set Enrichment Analysis (GSEA) (Subramanian et al 2005) is an analytical method that 

focuses on expression changes within ‘gene sets’ rather than on individual genes. The gene 

sets used in this study are groups of genes that share a similar biological function i.e. those 

that function in, or act on, the same cellular signalling pathways. The GSEA software 

compares samples from two distinct classes (in this analysis these were control siRNA treated 

samples and 53BP1 siRNA treated samples) using genome wide expression profiles and ranks 

the genes within each gene set according to the differences in expression between the two 

classes. An enrichment score is then calculated, which reflects the level at which a gene set is 

over-represented at the top or bottom of the ranked gene list. Results are considered 
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significant on the basis of a false discovery rate (FDR) of less than 0.25, or on a p-value lower 

than 0.05. The FDR is slightly more stringent, so was used as the main gauge of significance 

in this analysis. An FDR indicates the likelihood that pathways identified have been chosen 

by chance with an FDR score of <0.25 meaning that less than one in four pathways is a false 

positive result. 

4.2.1.2.1 GSEA analysis of differentially expressed pathways before IR. 

247 gene sets were used for the analysis, 128 of which were found to be up-regulated in the 

control samples compared to the 53BP1 depleted samples. Based on the FDR score, 8 of these 

pathways were significantly up-regulated in the control siRNA treated samples compared to 

the 53BP1 siRNA treated samples. These pathways were involved in metabolism, highlighted 

in blue in the table and TNF/NF- B signalling highlighted in yellow in the table (Table 4.3). 

In addition, several pathways had significant p-values but not FDR scores and some of these 

pathways were linked to the pathways that had significant FDR values (Table 4.3). In 

comparison, 119 genes sets were identified as being up-regulated in the 53BP1 siRNA treated 

samples compared to control samples, although none of the gene sets were found to have an 

FDR score of <0.25. However, 18 gene sets had significant p-values <0.05 and were 

predominantly involved in cell cycle progression and DNA damage response as shown in red 

in the table, transcription as highlighted in green and PI3K signalling shown in purple in the 

table (Table 4.4).  

Consistent with the univariate analysis, the multivariate analysis highlighted that the TNFR1 

signalling pathways were being affected before IR. In contrast to this, some of the pathways 

up-regulated in the absence of 53BP1 were linked to the cell cycle and DNA damage response 

suggesting that loss of 53BP1 is affecting the expression of genes involved in the DNA 

damage response and cell cycle arrest. 

4.2.1.2.2 GSEA analysis of differentially expressed pathways at 4 hours post IR 

As with the univariate analysis, the post-IR samples were normalised to their pre-IR 

equivalents to identify those pathways, which were differentially regulated between control 

and 53BP1 depleted cells in response to IR. This makes the expression values relative to 1 

and therefore, any pathways identified are due to responses to IR and not due to pre-IR 

expression levels. 
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 GS Size NOM 

p-val 

FDR 

q-val 

1 MAP00620_PYRUVATE_METABOLISM 18 0.002 0.148 

2 VALINE_LEUCINE_AND_ISOLEUCINE_ 

DEGRADATION 

17 0.000 0.138 

3 NFKB_INDUCED 89 0.002 0.189 

4 BUTANOATE_METABOLISM 15 0.003 0.189 

5 ELECTRON_TRANSPORTER_ACTIVITY 88 0.001 0.143 

6 STARCH_AND_SUCROSE_METABOLISM 17 0.016 0.139 

7 TNFR1PATHWAY 21 0.01 0.209 

8 ANDROGEN_AND_ESTROGEN_METABOLISM 15 0.011 0.198 

9 GLYCOLYSIS_GLUCONEOGENESIS 34 0.015 0.285 

10 CELL_SURFACE_RECEPTOR_LINKED_SIGNAL_ 

TRANSDUCTION 

118 0.002 0.258 

11 BILE_ACID_BIOSYNTHESIS 17 0.027 0.310 

12 NFKBPATHWAY 17 0.037 0.311 

13 TUMOUR_NECROSIS_FACTOR_PATHWAY 22 0.035 0.301 

14 IL17PATHWAY 15 0.056 0.287 

15 FASPATHWAY 21 0.048 0.346 

16 EMT_UP 43 0.047 0.326 

17 FATTY_ACID_METABOLISM 36 0.046 0.322 

18 VIPPATHWAY 21 0.058 0.317 

19 COMPPATHWAY 16 0.073 0.331 

20 INFLAMMATORY-RESPONSE-PATHWAY 24 0.048 0.323 

21 NFKB_REDUCED 18 0.078 0.373 

22 TRYTOPHAN_METABOLISM 39 0.054 0.395 

23 CSKPATHWAY 21 0.096 0.436 

24 AMIPATHWAY 21 0.104 0.453 

25 NITROGEN_METABOLISM 18 0.102 0.442 

Table 4.3 GSEA analysis shows TNFR1 signalling pathways were differentially up-

regulated in control compared to 53BP1 depleted cells. Analysis of the pathways before IR 

revealed that multiple pathways related to metabolism (highlighted in blue) were significantly 

over-expressesd in control cells along with 4 pathways associated with TNFR1 and the 

transcription factor NF-kB (highlighted in yellow). NF-kB INDUCED and TNFR1 PATHWAY 

were significant at FDR <25%, whereas NF-kB PATHWAY and TUMOUR NECROSIS 

FACTOR PATHWAY had significant p-values (<0.05). The pathways have been ranked in 

order of their normalised enrichment score.  
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 GS Size NOM 

p-val 

FDR 

q-val 

1 CELL_CYCLE 55 0.003 0.922 

2 G2PATHWAY 15 0.013 0.505 

3 MEF2DPATHWAY 15 0.020 0.462 

4 EIF4PATHWAY 23 0.022 0.474 

5 HDACPATHWAY 26 0.029 0.503 

6 RAC1PATHWAY 15 0.041 0.548 

7 PGC1APATHWAY 18 0.044 0.472 

8 CARM-ERPATHWAY 20 0.049 0.433 

9 PPARAPATHWAY 45 0.025 0.385 

10 HTERT_DOWN 49 0.028 0.426 

11 MTORPATHWAY 20 0.048 0.406 

12 CR_CELL_CYCLE 63 0.022 0.395 

13 ST_DIFFERENTIATION_PATHWAY_IN_PC12_CELLS 39 0.028 0.409 

14 G1PATHWAY 25 0.051 0.429 

15 ERKPATHWAY 26 0.064 0.407 

16 GLUT_DOWN 162 0.012 0.384 

17 DNA_DAMAGE_SIGNALLING 63 0.023 0.384 

18 GSK3PATHWAY 19 0.083 0.370 

19 ECMPATHWAY 19 0.083 0.399 

20 LEU_DOWN 93 0.019 0.395 

21 RACCYCDPATHWAY 20 0.108 0.410 

22 SIG_PIP3SIGINCARDIACMYOCTES 50 0.033 0.401 

23 PAR1PATHWAY 19 0.069 0.397 

24 INSULIN_SIGNALLING 79 0.033 0.414 

25 SIG_INSULINRECEPTORPATHWAYINCARDIOMYOCTES 40 0.080 0.413 

Table 4.4 GSEA pathways up-regulated in 53BP1 siRNA treated cells compared to 

control siRNA treated cells. Analysis of pathways before IR revealed up-regulation of cell 

cycle and DNA damage response pathways (highlighted in red) in the absence of 53BP1, as 

well as PI3K signalling pathways (highlighted in purple) and transcriptional regulation 

pathways (highlighted in green). Although, none of the pathways were significant at FDR 

<25%, they all had significant p-values (<0.05). The pathways have been ranked in order of 

their normalised enrichment score.  
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Following exposure to IR, 113 out of the 247 gene sets used in this analysis were found to be 

up-regulated in the control cells compared to 53BP1 depleted cells. However, none of the 

gene sets had significant FDR scores of <0.25 and only 1 gene set had a significant p-value 

(<0.05), which was the GSK3 pathway, which is highlighted in blue in the table (Table 4.5). 

134 out of 247 gene sets were up-regulated in the 53BP1 depleted cells compared to control 

cells in response to IR. Again there were no pathways that had a significant FDR value, but 

there were 6 pathways that had significant p-values of <0.05. The majority of these were 

metabolism pathways highlighted in orange in the table, although the PI3K pathway was 

amongst these, as shown in green in the table (Table 4.6). Overall in response to IR, there 

were only a few pathways that were significantly differentially regulated between the control 

and 53BP1 siRNA treated samples. 

4.2.1.3  DNA damage response was activated by IR 

Due to the lack of genes involved in the DNA damage and p53 responses being identified by 

the microarray analysis following IR, the irradiated control and 53BP1 depleted samples were 

compared with their unirradiated equivalents (i.e. the control 4 hours IR samples were 

compared with control 0 hours IR samples and the same comparison was conducted for the 

53BP1 knockdown samples) to ensure that a DNA damage response had been activated in 

response to IR. Identification of any genes that were known to be involved in the DNA 

damage response or were p53 responsive genes, as well as any pathways that were related to 

the DNA damage response or p53 signalling would confirm that a DNA damage response had 

occurred following IR. 

Univariate analysis identified several DNA damage response associated changes in gene 

expression in both control and 53BP1 deficient cells with p53 dependent genes such as 

CDKN1A, BTG2, FAS, MDM2, ATF3 and SESN1 being up-regulated in both wild type and 

53BP1 depleted cells in response to IR. Multivariate analysis of the irradiated and 

unirradiated control samples revealed that 171 of the 247 gene sets used for this analysis were 

up-regulated in response to IR. Out of these, DNA damage response and p53 pathways 

highlighted in blue were significantly up-regulated based on an FDR score <0.25. An 

additional p53 pathway that was not significant by FDR score, but had a significant p-value 

was also up-regulated following IR exposure (Table 4.7). Analysis of the 53BP1 depleted 

unirradiated and irradiated samples showed that out of the 247 gene sets used for this analysis,  
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 GS Size NOM 

p-val 

FDR 

q-val 

1 GSK3PATHWAY 19 0.034 1.000 

2 CHREBPATHWAY 18 0.051 1.000 

3 NKTPATHWAY 24 0.062 1.000 

4 TUMOR_SUPPRESSOR 18 0.075 1.000 

5 PGC1PATHWAY 18 0.097 1.000 

6 WNT_SIGNALING 49 0.063 1.000 

7 GLUCOSE_UP 31 0.078 1.000 

8 ELECTRON_TRANSPORT_CHAIN 48 0.053 1.000 

9 ANDROGEN_UP_GENES 46 0.116 1.000 

10 WNTPATHWAY 22 0.135 1.000 

11 AR_MOUSE_PLUS_TESTO_FROM_NETAFFIX 50 0.124 1.000 

12 HTERT_UP 70 0.123 1.000 

13 SIG_CHEMOTAXIS 33 0.179 1.000 

14 GLUT_DOWN 162 0.081 1.000 

15 ST_WNT_BETA_CATENIN_PATHWAY 25 0.188 1.000 

16 LEU_UP 87 0.109 1.000 

17 FETAL_LIVER_HS_ENRICHED_TF_JP 60 0.149 1.000 

18 NKCELLSPATHWAY 15 0.217 1.000 

19 CELL_GROWTH_AND_OR_MAINTENANCE 53 0.190 1.000 

20 INFLAMPATHWAY 27 0.205 1.000 

21 FRUCTOSE_AND_MANNOSE_METABOLISM 16 0.225 1.000 

22 LEU_DOWN 93 0.149 1.000 

23 MTORPATHWAY 20 0.244 1.000 

24 RAC1PATHWAY 15 0.263 1.000 

25 ELECTRON_TRANSPORTER_ACTIVITY 88 0.224 1.000 

Table 4.5 GSEA pathways up-regulated in control cells compared to 53BP1 depleted 

cells in response to IR. Analysis of pathways post-IR revealed significant up-regulation of 

GSK3 PATHWAY in presence of 53BP1 (highlighted in blue). Although, none of the pathways 

were significant at FDR <25%, this pathway had a significant p-value (<0.05).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Chapter 4 

165 

 GS Size NOM 

p-val 

FDR 

q-val 

1 PYRUVATE_METABOLISM 18 0.014 0.796 

2 CERAMIDEPATHWAY 18 0.004 0.589 

3 GLYCOLYSIS_GLUCONEOGENESIS 34 0.006 0.801 

4 ST_G_ALPHA_I_PATHWAY 30 0.030 0.861 

5 ST_PHOSPHOINOSITIDE_3_KINASE_PATHWAY 25 0.028 0.712 

6 NO1PATHWAY 23 0.042 0.650 

7 BCL2FAMILY_AND_REG_NETWORK 16 0.084 1.000 

8 ANDROGEN_AND_ESTROGEN_METABOLISM 15 0.099 1.000 

9 SHH_LISA 16 0.110 1.000 

10 GPCRS_CLASS_A_RHODOPSIN-LIKE 129 0.054 1.000 

11 CELL_CYCLE_ARREST 25 0.112 1.000 

12 CHEMICALPATHWAY 15 0.147 1.000 

13 P53_SIGNALING 74 0.070 1.000 

14 PURINE_METABOLISM 60 0.098 1.000 

15 BILE_ACID_BIOSTNTHESIS 17 0.165 1.000 

16 S1P_SIGNALING 18 0.122 1.000 

17 FATTY_ACID_METABOLISM 36 0.134 1.000 

18 ST_GA12_PATHWAY 19 0.157 1.000 

19 SPRYPATHWAY 17 0.195 1.000 

20 ECMPATHWAY 19 0.171 1.000 

21 INTEGRINPATHWAY 27 0.176 1.000 

22 ARGININE_AND_PROLINE_METABOLISM 25 0.179 0.967 

23 NITROGEN_METABOLISM 18 0.197 0.946 

24 STARCH_AND_SUCROSE_METABOLISM 17 0.192 0.907 

25 SIG_IL4RECEPTOR_IN_B_LYPHOCYTES 21 0.211 0.944 

Table 4.6 GSEA pathways up-regulated in 53BP1 siRNA treated cells compared to 

control siRNA treated cells in response to IR. Analysis of pathways post-IR revealed 

significant up-regulation of metabolism pathways (highlighted in orange) and the PI3K 

pathway (highlighted in green) in the absence of 53BP1. Although, none of the pathways were 

significant at FDR <25%, they had significant p-values (<0.05).  
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 GS Size NOM 

p-val 

FDR 

q-val 

1 P53_UP 30 0.000 0.004 

2 DNA-DAMAGE-SIGNALLING 63 0.001 0.125 

3 IL1RPATHWAY 23 0.011 0.438 

4 NKTPATHWAY 24 0.013 0.424 

5 ST_GA13_PATHWAY 27 0.012 0.390 

6 P53_SIGNALLING 74 0.001 0.363 

7 MRNA_SPLICING 24 0.027 0.690 

8 GSK3PATHWAY 19 0.038 0.672 

9 SIG_CHEMOTAXIS 33 0.021 0.599 

10 WNTPATHWAY 22 0.039 0.550 

11 CR_DNA_MET_AND_MOD 18 0.047 0.537 

12 TOLLPATHWAY 26 0.068 0.751 

13 IL12PATHWAY 18 0.082 0.718 

14 INFLAMPATHWAY 27 0.058 0.679 

15 KREBS-TCA_CYCLE 17 0.054 0.690 

16 CHREBPPATHWAY 18 0.089 0.700 

17 GATA1_WEISS 18 0.091 0.744 

18 P38MAPKPATHWAY 32 0.078 0.704 

19 HTERT_UP 70 0.051 0.699 

20 ST_GAQ_PATHWAY 20 0.101 0.686 

21 CR_IMMUNE_FUNCTION 46 0.065 0.701 

22 DEATHPATHWAY 26 0.106 0.675 

23 NTHIPATHWAY 18 0.113 0.649 

24 CR_CAM 86 0.051 0.640 

25 ST_WNT_BETA_CATENIN_PATHWAY 25 0.117 0.665 

Table 4.7 GSEA pathways up-regulated in control siRNA treated cells in response to 

IR. Analysis of pathways between unirradiated and irradiated control samples revealed 

significant up-regulation of DNA damage response pathways in response to IR (highlighted in 

blue). p53 UP  and  DNA DAMAGE SIGNALLING pathways were significant at FDR <0.25, 

whereas p53 SIGNALLING pathway had a significant p-value (<0.05).  
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 GS Size NOM 

p-val 

FDR 

q-val 

1 P53_UP 30 0.000 0.001 

2 P53_SIGNALLING 74 0.000 0.002 

3 DNA-DAMAGE-SIGNALLING 63 0.000 0.049 

4 ARAPPATHWAY 18 0.006 0.208 

5 ST_GA13_PATHWAY 27 0.013 0.320 

6 ELECTRON_TRANSPORT 61 0.004 0.377 

7 ANDROGEN_AND_ESTROGEN_METABOLISM 15 0.037 0.658 

8 CELL_PROLIFERATION 170 0.002 0.592 

9 RADIATION_SENSITIVITY 22 0.031 0.527 

10 ANDROGEN_GENES_FROM_NETAFFIX 48 0.018 0.499 

11 DRUG_RESISTANCE_AND_METABOLISM 78 0.013 0.497 

12 GLYCEROLIPID_METABOLISM 35 0.035 0.556 

13 CR_DNA_MET_AND_MOD 18 0.044 0.532 

14 TRYPTOPHAN_METABOLISM 39 0.032 0.532 

15 INSULIN_2F_DOWN 29 0.041 0.563 

16 NTHIPATHWAY 18 0.061 0.553 

17 KERATINOCYTEPATHWAY 35 0.051 0.564 

18 STARCH_AND_SUCROSE_METABOLISM 17 0.060 0.540 

19 HISTIDINE_METABOLISM 15 0.092 0.579 

20 BCL2FAMILY_AND_REG_NETWORK 16 0.076 0.556 

21 NO1PATHWAY 23 0.072 0.530 

22 GO_0005739 100 0.032 0.586 

23 NFKB_INDUCED 89 0.046 0.563 

24 SIG_PIP3_SIGNALING_IN_B_LYMPHOCYTES 27 0.086 0.541 

25 ST_PHOSPHOINOSITIDE_3_KINASE_PATHWAY 25 0.091 0.570 

Table 4.8 GSEA pathways up-regulated in 53BP1 siRNA treated cells in response to 

IR. Analysis of pathways between unirradiated and irradiated 53BP1 depleted samples 

revealed significant up-regulation of p53 and DNA damage response pathways in response to 

IR (highlighted in purple). p53 UP  and p53 SIGNALLING pathways were significant at FDR 

<0.25, whereas DNA DAMAGE SIGNALLING, CELL PROLIFERATION AND RADIATION 

SENSITIVITY pathways had  significant p-values (<0.05). 
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169 were up-regulated in response to IR. Consistent with the control samples, p53 and DNA 

damage response were found to be significantly up-regulated in response to IR in cells lacking 

53BP1 as highlighted in purple in Table 4.8. 

Taken together the univariate and multivariate analyses both demonstrate that a DNA damage 

response was activated by IR in the control samples and in the 53BP1 depleted samples. 

4.2.1.4  Gene expression profiling data was validated by qRT-PCR and Western blot 

analysis 

Univariate analysis indicated a large number of genes that were differentially expressed 

between control and 53BP1 siRNA treated cells both before and after IR. To confirm the 

differences identified by the univariate analysis, 20 genes were selected to be verified at the 

mRNA level by qRT-PCR. These genes were chosen because they had a relative fold change 

in expression of >2 and they were of functional interest. Genes that were functionally 

interesting were those involved in TNFR1 signalling pathways, cell cycle, apoptosis, DNA 

damage response and/or ubiquitylation (Table 4.9 and 4.10). To ensure the responses 

identified by the microarray were real, RNA that had not being used for the microarray was 

used for qRT-PCR. Figure 4.9 demonstrates that the qRT-PCR data confirmed the microarray 

data at the mRNA level, as the alterations in mRNA levels for each gene correlated with the 

differences in gene expression identified by the microarray analysis, although the differences 

for some genes identified by the univariate analysis as being more than 2 fold between control 

and 53BP1 depleted cells were found to be lower than expected such as ESCO2 and GAS6.  

To determine if the transcriptional changes could be translated into altered protein levels, five 

genes were chosen from the qRT-PCR results to be verified at the protein level. These genes 

were FADD, BAG4/SODD, IKIP1, G3BP2 and BIRC4/XIAP, which have all been shown to be 

involved in the TNFR1 signalling pathways (Figure 4.7). U2OS cells were treated with either 

control or 53BP1 siRNA, exposed to 3 Grays of IR and then the protein levels of the above 

genes were assessed by Western blot analysis. The levels of FADD, BAG4/SODD, IKIP1 and 

G3BP1 protein were decreased in the 53BP1 depleted cells compared to control whereas 

BIRC4/XIAP protein levels were increased in 53BP1 siRNA treated cells compared to control 

prior to IR. The levels of all 5 proteins were unaffected following IR exposure (Figure 4.10). 

These data are in agreement with the qRT-PCR data and demonstrate that the changes in 

protein expression for each gene correlated with the changes in gene expression identified 
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Table 4.9 Candidate genes chosen for validation by qRT-PCR. These genes were 

significantly down-regulated in the 53BP1 depleted samples compared to control samples. 

The fold differences highlighted were from the univariate analysis.  

 

 

 

 

Gene Name Description Biological Function Fold 

Difference 

BAG4/SODD BCL2-associated 

athanogene 4 

Inhibitor of TNFR1. Apoptosis. 

anti-apoptosis 

2.05 

TNFRSF9/ 

CD137/4-

1BB 

tumour necrosis factor 

receptor superfamily, 

member 9 

Apoptosis, immune response 4.243, 2.584 

FADD Fas (TNFRSF6)-

associated via death 

domain 

cell surface receptor linked signal 

transduction, apoptosis via death 

domain receptors,  positive 

regulation of I-kappaB kinase/NF-

kappaB cascade  

3.175 

 

IKIP IKK interacting protein Apoptosis, regulation of NF- B 

cascade 

4.219, 3.076, 

2.33 

G3BP2 Ras-GTPase activating 

protein SH3 domain-

binding protein 2 

mRNA processing, mRNA export 

from nucleus, cytoplasmic 

sequestering of NF-kappaB, Ras 

protein signal transduction  

3.427,  

2.349 

 

 

LMNB1 lamin B1 Nuclear structure, mitosis, 

apoptosis 

2.632 

 

UBE2W ubiquitin-conjugating 

enzyme E2W (putative) 

regulation of transcription, 

ubiquitin cycle  

 

2.18 

 

RAD23B RAD23 homolog B (S. 

cerevisiae) 

nucleotide-excision repair , 

response to DNA damage 

stimulus  

2.119 

 

SH3MD2/ 

POSH 

SH3 multiple domains 2 protein ubiquitination, JNK 

signalling cascade 

2.462 

 

ESCO2 establishment of 

cohesion 1 homolog 2 

(S. cerevisiae) 

cell cycle  2.068 

 

UCHL5 ubiquitin carboxyl-

terminal hydrolase L5 

ubiquitin cycle  2.217 

 

SUMO3 SMT3 suppressor of mif 

two 3 homolog 3 (yeast) 

ubiquitin cycle  

 

2.503 
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Gene Name Description GO Biological Function Fold 

Difference 

BIRC4/XIAP baculoviral IAP repeat-

containing 4  

anti-apoptosis, protein 

ubiquitination,  

-2.806  

XRCC4 X-ray repair complementing 

defective repair in Chinese 

hamster cells 4  

DNA repair  -2.05  

CHES1 checkpoint suppressor 1  DNA damage checkpoint, G2 

phase of mitotic cell cycle  

-2.631,  

-2.013  

CDKN1B cyclin-dependent kinase 

inhibitor 1B (p27, Kip1)  

regulation of cyclin dependent 

protein kinase activity, cell cycle 

arrest  

-2.598  

GAS6 growth arrest-specific 6  regulation of cell growth  -2.367  

STAT3 signal transducer and 

activator of transcription 3 

(acute-phase response factor)  

negative regulation of 

transcription from RNA 

polymerase II promoter , cell 

motility, JAK-STAT cascade  

-2.093  

REV3L REV3-like, catalytic subunit 

of DNA polymerase zeta 

(yeast)  

DNA replication, DNA repair  -2.848  

TP53INP1 tumor protein p53 inducible 

nuclear protein 1  

apoptosis  -4.697  

XPA xeroderma pigmentosum, 

complementation group A  

nucleotide-excision repair  -2.014  

Table 4.10 Candidate genes chosen for validation by qRT-PCR. These genes were 

significantly up-regulated in the 53BP1 knockdown samples compared to control samples. 

The fold differences highlighted were from the univariate analysis.  
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Figure 4.10 Changes in gene expression were confirmed at the protein level by Western 

blotting. U2OS cells were transfected with either control or 53BP1 siRNA. 72 hours later, 

cells were either mock-irradiated or irradiated with 3 Grays of IR and harvested at 4 hours 

post-IR. Whole cell lysates were separated on an SDS-PAGE gel and Western blots were 

probed for 53BP1, FADD, G3BP2, IKIP1, BAG4/SODD and BIRC4/XIAP. SMC1 was used 

as a loading control.  
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by the microarray analysis.  

Together these data confirmed the results from the microarray analysis and also demonstrated 

that in the case of FADD, BAG4/SODD, IKIP, G3BP2 and BIRC4/XIAP, the changes in gene 

expression observed from the microarray could be translated into changes at the protein level. 

4.3 DISCUSSION 

In conclusion, the microarray data analysis revealed that there were significant differences in 

the expression of single genes and biological pathways between the control and 53BP1 

depleted samples before IR. Interestingly, both types of analysis showed that before DNA 

damage, TNFR1-induced intracellular signalling pathways, in particular the NF- B pathway, 

as well as pathways that are linked with NF- B such as the PI3K pathway were affected 

suggesting that 53BP1 may be involved in modulating NF- B signalling (Figure 4.6, 4.7 and 

Table 4.3). Currently there are no reports of 53BP1 playing a role in regulating NF- B 

activity. However, another DNA damage response protein, ATM has been shown to be 

important for activating NF- B in response to a variety of DNA damaging agents including 

IR, camptothecin, etoposide and doxorubicin (Wu et al 2006b). In addition to NF- B 

pathways, pathways induced by PI3K, were up-regulated in cells lacking 53BP1 (Table 4.4). 

Both NF- B and PI3K are pro-survival factors, therefore it is possible that 53BP1 may be 

influencing cell survival (Karin and Lin 2002, Kennedy et al 1997). Moreover, the univariate 

analysis identified four NF- B target genes, three of which were down-regulated in 53BP1 

depleted cells and one which was up-regulated suggesting that like with p53, 53BP1 could be 

differentially regulating the expression of NF- B target genes (Figures 4.6, 4.7 and 3.16).  

53BP1 is involved in the DNA damage response where it acts as a mediator protein that 

facilitates the recruitment of repair/checkpoint proteins to sites of damaged chromatin. 

However, analysis of the microarray data suggests that in the absence of damage 53BP1 may 

also be affecting the expression of genes involved in responding to genotoxic stress, although 

only the expression of a few genes involved in these processes were identified (Table 4.4). 

This suggests that 53BP1 could be repressing the expression of DNA damage-responsive 

genes under normal cellular conditions.  



  Chapter 4 

174 

In the response to IR, there were a large number of genes that were significantly differentially 

expressed, with the majority being involved in metabolism and transcription (Figure 4.8). 

Although, there were no significant differences in the expression of biological pathways by 

FDR, there were a few pathways that were significant by p-value, but these were mainly 

involved in metabolism apart from two pathways, which were pro-survival (Table 4.5 and 

4.6). These pro-survival pathways were the GSK3 pathway, which was up-regulated in 

control samples and the PI3K pathway, which was up-regulated in 53BP1 depleted samples. 

In light of the fact that both these pathways were up-regulated in response to IR, this suggests 

that the cell is promoting survival following DNA damage. Surprisingly, no genes or 

pathways that were linked to the DNA damage response or p53 response were identified when 

the control and 53BP1 depleted samples were compared, even though the microarray analysis 

indicated that these responses were occurring in control and 53BP1 depleted samples 

following IR (Figure 4.8, Table 4.5, 4.6, 4.7 and 4.8). This could be because some differences 

were observed in the expression of DNA damage response and cell cycle genes before IR in 

53BP1 depleted cells (Table 4.4). Therefore, any effects seen in response to IR were likely to 

have been removed by the normalisation process. Taken together these data indicate that 

53BP1 does not play a major role in regulating gene transcription induced by DNA damage.  

Interestingly, data presented in chapter 3 indicated that 53BP1 may be modulating p53 

function by differentially regulating a subset of its target genes before and after IR. However, 

no p53 responsive genes were identified between control and 53BP1 depleted samples in 

response to IR, despite a small selection of p53 inducible genes being differentially expressed 

following IR (Figure 4.8). An explanation for why this could be is that p53 responsive genes 

are expressed at different times following IR because p53 has different binding affinities for 

different promoters (Espinosa et al 2003). Initially, p53 transactivates genes involved in cell 

cycle arrest such as p21, GADD45 and 14-3-3σ, whereas pro-apoptotic genes including 

PUMA, FAS and BAX are induced at later stages of the p53 response (Zhao et al 2000). 

Therefore, it is likely that 4 hours may not have been sufficient to detect the expression of 

some of the p53 genes induced late in the response such as PUMA. In addition, the fold 

differences in the expression of some p53 responsive genes may have been <1.5 between the 

control and 53BP1 depleted samples at 4 hours post-IR, so consequently, these genes would 

have been removed by the filtration process. Furthermore, it is also plausible that there were 

p53 responsive genes that had >1.5 fold difference, however due to biological variations 
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between the three replicates they were not significant and therefore would have been removed 

by the rigorous statistical analysis that was conducted to reduce false positive results. To gain 

a better understanding of which p53 target genes are regulated by 53BP1 in response to DNA 

damage, a microarray experiment would need to be performed in control and 53BP1 depleted 

samples exposed to IR over a 24 hour period because this would alleviate the problems 

surrounding the differential expression of p53 target genes at certain times following IR 

exposure. Alternatively, qRT-PCR could be performed for a range of p53 target genes that are 

known to be activated in response to DNA damage in control and 53BP1 siRNA treated 

samples treated with IR over a period of 24 hours. In addition, this would also allow 

identification of those p53 responsive genes that may have been either excluded from the 

microarray analysis due to having <1.5 fold change or because they were not statistically 

significant. Consistent with the observation that 53BP1 can modulate p53 target gene 

expression in the absence of DNA damage, the p53 responsive genes, AMID and TP53INP1 

were shown to be differentially regulated by 53BP1 prior to IR (Riley et al 2008) (Figure 4.4). 

In contrast, previous data from chapter 3 indicated that 53BP1 was being antagonistic to p53 

by repressing p21 expression in the absence of DNA damage. Despite p21 not being 

identified by the univariate analysis as being differentially expressed, it was found in all the 

cell cycle and DNA damage response gene sets identified by the multivariate analysis in the 

unirradiated 53BP1 deficient cells (Table 4.4). This suggests that it had a fold change of >1.5, 

but that it was not statistically significant, therefore it would have been removed by the 

statistical analysis performed in the univariate analysis process. 

53BP1 has been shown to be a transcriptional regulator of BRCA1 in the absence of DNA 

damage. However, surprisingly BRCA1 was not identified as being significantly differentially 

expressed by 53BP1 in the unirradiated samples (Rauch et al 2005). Although, it is possible 

that there may have been a difference in BRCA1 expression, if the difference was only small 

or not statistically significant then it will have been excluded from the analysis. 

Both types of analysis suggest a role for 53BP1 in regulating metabolism because there were 

numerous metabolic genes and pathways that were differentially regulated by 53BP1 before 

and after DNA damage. At present there are no reports of 53BP1 being involved in 

metabolism. However, recently, ATM has been shown to play an important role in 

metabolism. Loss of ATM has been linked to the development of insulin resistance and 

cardiovascular disease, two contributing factors to the development of metabolic syndrome 
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(Armata et al 2010, Schneider et al 2006). Furthermore, ATM has been shown to be an 

important sensor of oxidative stress and activation of ATM promotes an anti-oxidant 

response. Consequently, loss of ATM results in an increase in ROS, which are a known 

contributory factor to metabolic syndrome development (Cosentino et al 2010, Guo et al 

2010, Roberts and Sindhu 2009). Therefore, it is also possible that 53BP1 may be playing a 

role in regulating the cellular response to oxidative stress and that cells lacking 53BP1 may 

exhibit metabolic deficiencies due to dysregulation of ROS resulting in increases/decreases of 

oxidative stress. 

Overall, the microarray analysis demonstrated that the expression of a wide variety of genes 

are dependent on 53BP1, before and after DNA damage. Interestingly, the analysis indicated 

potential novel roles for 53BP1 in metabolism and TNFR1 signalling. In addition, the 

expression of the genes chosen to be verified at the mRNA level and the protein level were 

found to be consistent with the microarray data, therefore validating the microarray data 

(Figures 4.9 and 4.10). 
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CHAPTER 5 53BP1 NEGATIVELY REGULATES NF- B 

SIGNALLING PATHWAY 

5.1 INTRODUCTION 

The pro-inflammatory cytokine, TNF  signals through two distinct cell surface receptors, 

TNFR1 and TNFR2. However, TNFR1 initiates the majority of TNF  biological activities. 

The binding of TNF  to TNFR1 triggers several intracellular signalling pathways including 

those controlled by I B kinase (IKK), JNK and p38, all of which ultimately result in the 

activation of two major transcription factors, NF- B and AP-1. TNF  has also been 

demonstrated to induce a caspase cascade leading to apoptosis. However, this is normally 

inhibited by the activation of NF- B-mediated anti-apoptotic signals (Chen and Goeddel 

2002, Wajant et al 2003). 

The transcription factor NF- B plays a vital role in inflammation, immunity, cell proliferation 

and apoptosis. In mammalian cells, NF- B is composed of 5 family members, p65 (RelA), 

RelB, c-Rel, p50/p105 and p52/p100, which form homo- and heterodimers. The most 

abundant form of NF- B is the heterodimer composed of p50 and p65. In most cell types, NF-

B exists in a latent state in the cytoplasm and is prevented from activating transcription by 

the I B proteins (Chen and Greene 2004). After stimulation of cells with a variety of stimuli 

such as TNF  or genotoxic stress, such as IR, the prototypical member of the I B proteins, 

I B , is phosphorylated by the IKK complex, ubiquitylated and degraded by the 26S 

proteasome. NF- B is subsequently released from its inhibitory restraints, whereby it 

translocates into the nucleus and binds to B sites within the promoter/enhancer of target 

genes (Hayden and Ghosh 2008). Dysregulation of NF- B expression is associated with a 

variety of diseases including chronic inflammation and cancer, therefore, NF- B activity is 

tightly regulated (Courtois and Gilmore 2006, Karin 2006). This is achieved not only by the 

induction of I B  re-synthesis by NF- B, ultimately leading to nuclear export of NF- B and 

termination of the NF- B response, but also by post-translational modifications of NF- B 

such as phosphorylation and acetylation (Arenzana-Seisdedos et al 1997, Perkins 2006). The 

full extent with which these different post-translational modifications of NF- B regulate its 
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activity and localisation remains unclear. The majority of published literature has focused on 

the p65 subunit. However, it is clear that these regulatory events also have a functional impact 

on the other less well studied, subunits of this dimeric transcription factor. 

p65 is phosphorylated at multiple sites by various kinases, which are induced by a wide range 

of different stimuli. Serine 276 is phosphorylated by PKAc and MSK1/2 (Vermeulen et al 

2003, Zhong et al 1998, Zhong et al 2002), PKC  phosphorylates serine 311 (Duran et al 

2003)
 
and serine 529 is phosphorylated by CK2 (Wang et al 2000) whereas, multiple kinases 

phosphorylate serine 536 including IKK , IKK , IKK , NAK and RSK1 (Buss et al 2004b, 

Jiang et al 2003, Sakurai et al 1999, Sizemore et al 2002). These post-translational 

modifications of NF- B enhance its transcriptional activity and affect the ability of NF- B to 

interact with the transcriptional co-activators, CBP/p300. By contrast, activation of CHK1 

either by ARF or in response to cisplatin results in phosphorylation at threonine 505, which 

inhibits p65 transactivation through increasing the association of p65 with HDAC1 (Campbell 

et al 2006, Rocha et al 2005). Furthermore, serine 468 is inducibly phosphorylated by IKK  

and IKK  in response to T-cell stimulation and treatment with TNF , IL-1  and the 

genotoxic agent etoposide resulting in stimulation of p65 transactivation, whereas in contrast, 

in unstimulated cells phosphorylation of this site by GSK3  inhibits the ability of p65 to 

transactivate gene expression (Buss et al 2004a, Mattioli et al 2006, Renner et al 2010, 

Schwabe and Sakurai 2005). In addition to kinases, several phosphatases have been identified 

that inhibit NF- B activity such as PP2A and more recently WIP1, which has been shown to 

dephosphorylate serine 536 of p65 (Chew et al 2009, Yang et al 2001a).  

p65 is also acetylated at lysines 218, 221 and 310 by CBP/p300. However, prior 

phosphorylation at serine 276 or serine 536 is required for lysine 310 to be acetylated by 

CBP/p300. Acetylation at lysine 221 has been shown to enhance the DNA binding activity of 

p65, which together with acetylated lysine 218, also functions to impair the assembly of p65 

with newly synthesised I B , thereby preventing I B -dependent nuclear export of NF- B 

complexes and prolonging the NF- B-dependent transcriptional responses. CBP/p300-

mediated acetylation of lysine 310 has been demonstrated to promote the transcriptional 

activity of NF- B without altering the binding of p65 to DNA or I B
 
(Chen et al 2002, 

Chen et al 2005).  
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In a similar manner to phosphorylation, p65 acetylation is reversible and has been shown to 

be important for regulating the duration of the NF- B response (Chen et al 2001, Kiernan et 

al 2003). p65 is deacetylated through the interaction with HDAC co-repressor proteins, 

resulting in repression of the NF- B response. HDAC3-mediated p65 deacetylation at lysine 

221 and lysine 218 is involved in terminating the NF- B response by promoting its 

interaction between I B  and subsequently its nuclear export (Chen et al 2002). Lysine 310 

can also be deacetylated by HDAC3 as part of the SMRT co-repressor complex or 

alternatively, by the histone deacetylase, SIRT1 again resulting in inhibition of NF- B 

transcriptional activity. As a result this leads to a sensitisation of cells to apoptosis (Hoberg et 

al 2006, Yeung et al 2004). Moreover, it has been demonstrated that p65 can be deacetylated 

by HDAC1, which can physically associate with p65 leading to loss of p65 transactivation 

potential (Ashburner et al 2001). Interestingly, in contrast, there are additional sites on p65 

known to be acetylated by CBP, p300 and PCAF, which have been proposed to have an 

inhibitory effect on NF- B activity by reducing the DNA binding affinity of NF- B and may 

be involved in terminating the NF- B response (Kiernan et al 2003). This data indicates that 

CBP/p300 play a critical role in the NF- B response and can both activate and repress the 

transcriptional capacity of NF- B depending on the type of stimulus and cell type. 

Interestingly, it has been found that ubiquitylation and proteasomal degradation of nuclear 

p65 is also required for efficient and prompt termination of NF- B dependent transcription 

and that this can occur independently of I B  (Saccani et al 2004). Recently, this has been 

shown to be triggered by the SOCS-1-containing ubiquitin ligase complex in association with 

the COMMD1 protein, as well as by the nuclear E3 ubiquitin ligase, PDLIM2. However, the 

lysine residues of p65 that are ubiquitylated have yet to be established (Maine et al 2007, Ryo 

et al 2003, Tanaka et al 2007a). 

Since loss of 53BP1 was shown to affect the transcriptional regulation of genes involved in 

the TNFR1 signalling pathway, this suggests 53BP1 may be functioning to regulate the 

activity of the NF- B transcription factor directly. Therefore the main aim of this study was to 

establish if 53BP1 was playing a role in the NF- B signalling pathway and if so how was this 

achieved. 
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5.2 RESULTS 

5.2.1 Depletion of 53BP1 increases NF- B transcriptional activity in 

response to TNF  

The best characterised inducers of NF- B are pro-inflammatory cytokines such as TNF  and 

IL-1. Therefore, in this study TNF  was predominantly used to stimulate NF- B activity. 

However, before any experiments were conducted, a TNF  dose response was performed in 

all the cell lines used in this study to determine the lowest dose of TNF  that stimulated p65 

phosphorylation. As shown in figure 5.1, 10ng/ml TNF  was sufficient to achieve this in each 

of the cell lines.  

 To investigate the involvement of 53BP1 in modulating the NF- B signalling pathway, p53 

proficient U2OS cells were depleted of 53BP1, stimulated with TNF  and the levels of the 

major NF- B signalling pathway components were assessed by Western blot analysis.  

Interestingly, cells lacking 53BP1 exhibited elevated levels of basal p65, as well as serine 536 

and serine 468 hyperphosphorylation, whereas the levels of the IKK complex, p50 and I B  

were unaffected (Figure 5.2). This data suggests that 53BP1 could be impacting on p65 

stability and affecting NF- B transcriptional activity. Interestingly, p65 phosphorylation was 

prolonged in the absence of 53BP1 indicating that 53BP1 may be affecting the termination of 

the NF- B response. This experiment was also repeated in another p53 proficient cell line, 

A549 to determine if the response observed is cell type specific. As figure 5.3 shows this does 

not appear to be the case because the response seen in A549 cells is the same as that seen in 

U2OS cells.  

It is known that there is significant crosstalk between p53 and NF- B. Despite p65 having 

antagonistic effects on p53, it can also induce p53 expression as well as cooperate with p53 

(Perkins 2007). Therefore, to assess whether p53 was involved in the NF- B signalling 

abnormalities caused by loss of 53BP1, p53 null H1299 cells were depleted of 53BP1 using 

siRNA, stimulated with TNF  and the protein levels of NF- B pathway components were 

assessed by Western blot analysis. The response observed in the H1299 cells was identical to 

that seen in the U2OS and A549 cells indicating that p53 is unlikely to be involved (Figure 

5.4). 
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Figure 5.1 10ng/ml TNF   stimulates NF- B response. (A) U2OS (B) H1299 and (C) 

A549 cells were stimulated with TNF  and the cells were harvested at the times indicated. 

Whole cell lysates were prepared, resolved by SDS-PAGE and the NF- B response was 

determined by Western blot analysis using antibodies to phospho-p65, I B   and p65. SMC1 

was used as a loading control. 
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Figure 5.2 Loss of 53BP1 induces hyperphosphorylation of p65 in U2OS cells. Cells 

were depleted of 53BP1 by siRNA, stimulated with TNF  and harvested at the times 

indicated. The protein levels of the major proteins in the NF- B signalling pathway were 

analysed by Western blotting. SMC1 was used as a loading control. 
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Figure 5.3 Loss of 53BP1 induces hyperphosphorylation of p65 in A549 cells. Cells 

were depleted of 53BP1 by siRNA, stimulated with TNF  and harvested at the times 

indicated. The protein levels of the major proteins in the NF- B signalling pathway were 

analysed by Western blotting. SMC1 was used as a loading control.  
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Figure 5.4 Loss of 53BP1 induces hyperphosphorylation of p65 independent of p53. 

H1299 cells were depleted of 53BP1 by siRNA, stimulated with TNF  and harvested at the 

times indicated. The protein levels of the major proteins in the NF- B signalling pathway 

were analysed by Western blotting. SMC1 was used as a loading control.  
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To test whether 53BP1 was involved in regulating the transcriptional activity of NF- B, 

U2OS cells depleted of 53BP1 were either transfected with the 3x B luciferase reporter 

construct, which contains 3 B response elements upstream of the luciferase gene or a control 

lacking B elements and then stimulated with TNF . Depletion of 53BP1 slightly increased 

the activity of the NF- B luciferase reporter prior to TNF  stimulation when compared to 

control cells and this was further augmented following TNF  stimulation (Figure 5.5). These 

effects were dependent upon the B elements present in this plasmid since the control reporter 

plasmid lacking the B elements was not stimulated following TNF  treatment demonstrating 

that this effect results from the activity of NF- B. Furthermore, a similar response was also 

observed in the p53 null H1299 cell line (Figure 5.6). Altogether, these data suggest that 

53BP1 is repressing NF- B transcriptional activity, independently of p53. This is consistent 

with the univariate analysis of the microarray data, which indicated that in the absence of 

overt DNA damage, depletion of 53BP1 could be activating NF- B activity (Figure 4.6). 

5.2.2 Localisation of p65 is not affected by 53BP1 

The inhibitor of NF- B, I B  plays a key role in the localisation of NF- B. In unstimulated 

cells, NF- B is mainly cytoplasmic. However, following stimulation I B  undergoes 

phosphorylation and subsequent ubiquitin-mediated proteasomal degradation, which allows 

NF- B to translocate to the nucleus and activate its target genes. As part of its regulatory 

negative feedback loop, NF- B upregulates the expression of I B , which dissociates NF- B 

from the DNA and exports it back to the cytoplasm, thus terminating its transcriptional 

response.  As observed in figures 5.2, 5.3 and 5.4, the degradation and resynthesis of I B  

induced by TNF  stimulation was unaffected by depletion of 53BP1 indicating that the 

increased phosphorylation of p65 was not due to defects in I B  resynthesis. To ascertain 

whether the sustained serine 536 and serine 468 phosphorylation of p65 observed in 53BP1 

depleted cells was due to a defect in the nuclear export of NF- B, the localisation of p65 was 

analysed by immunofluorescence in cells treated with control or 53BP1 siRNA. Prior to 

TNF  stimulation in the control siRNA treated cells, p65 is localised mainly in the cytoplasm. 

Following 15 minutes of TNF  stimulation, a large proportion of p65 could be seen localised 

within the nucleus, which 90 minutes after TNF  stimulation had translocated back into the 

cytoplasm (Figure 5.7). In comparison, the TNF -induced relocalisation of p65 in the 53BP1  
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Figure 5.5 53BP1 represses NF- B transcriptional activity. (A) U2OS cells were first 

transfected with either control or 53BP1 siRNA, 48 hours later cells were transfected with 

either 300ng of 3x kB concanavalin A NF- B luciferase reporter plasmid or PGL2, which 

lacks B sites and 50ng Renilla. 24 hours later cells were either unstimulated or stimulated 

for 4 hours with 10ng/ml TNF . Luciferase activity was normalised to Renilla activity. Data 

from three experiments is presented ± standard deviations. Significant differences in relative 

luciferase units in samples depleted of 53BP1 compared to control samples with and without 

TNF  stimulation * p<0.05, ** p< 0.01. (B) U2OS cells were transfected as in A, whole cell 

lysates were prepared, resolved by SDS-PAGE and immunoblotted with anti-53BP1 antibody. 

SMC1 was used as a loading control.  
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Figure 5.6 53BP1 represses NF- B transcriptional activity, independent of p53. (A) 

H1299 cells were first transfected with either control or 53BP1 siRNA, 48 hours later cells 

were transfected with either 300ng of 3x kB concanavalin A NF- B luciferase reporter 

plasmid or PGL2, which lacks B sites and 50ng Renilla. 24 hours later cells were either 

unstimulated or stimulated for 4 hours with 10ng/ml TNF . Luciferase activity was 

normalised to Renilla activity. Data from three experiments is presented ± standard 

deviations. Significant differences in relative luciferase units in samples depleted of 53BP1 

compared to control samples with and without TNF  stimulation * p<0.05, ** p< 0.01. (B) 

H1299 cells were transfected as in A, whole cell lysates were prepared, resolved by SDS-

PAGE and immunoblotted with anti-53BP1 antibody. SMC1 was used as a loading control.  
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depleted cells was identical to that observed in the control siRNA transfected cells indicating 

that the translocation of NF- B in and out of the nucleus is unaffected by loss of 53BP1 and 

suggests that the termination of NF- B activity by the I B proteins is functional. Therefore, it 

is likely that the sustained NF- B response observed when 53BP1 is depleted is due to 

alternative NF- B termination mechanisms that are independent of the I B proteins. 

5.2.3 53BP1 does not interact with p65 

To try and elucidate the mechanism with which 53BP1 is regulating NF- B transcriptional 

activity, the interaction between 53BP1 and p65 was investigated. Endogenous p65 was 

immunoprecipitated from whole cell extracts prepared from U2OS cells before and after 

stimulation with TNF  using an anti-p65 antibody and Western blot analysis was used to 

determine whether p65 associated with 53BP1 in vivo. The data shows that p65 does not 

interact with 53BP1 (Figure 5.8). In the reciprocal experiment, endogenous 53BP1 was 

immunoprecipitated with an anti-53BP1 antibody and co-precipitation of p65 was analysed by 

Western blot analysis using an anti-p65 antibody. As shown by figure 5.8, p65 was not found 

in 53BP1 immunocomplexes. Together these data demonstrate that 53BP1 does not physically 

associate with p65 indicating that 53BP1 is influencing NF-kB transcriptional activity via an 

indirect mechanism. 

5.2.4 TNF  does not induce a DNA damage response 

It is well established that DNA damage can activate the NF- B response, albeit via the 

atypical pathway, which can be either IKK-dependent or independent (Perkins 2007, Wu and 

Miyamoto 2007). Since 53BP1 plays a key role in the DNA damage response, it is 

conceivable that the increase in p65 basal and phosphorylation levels observed in TNF  

stimulated 53BP1 depleted cells may be due to ATM and ATR being activated and as a 

consequence, activating NF- B. To determine whether this was the case, U2OS cells were 

treated with either control or 53BP1 siRNA and then exposed to either caffeine to inhibit 

ATM and ATR function, and then stimulated with TNF . Notably, neither the loss of ATM or 

ATR function caused by the caffeine treatment inhibited serine 536 phosphorylation of p65 

following stimulation with TNF  (Figure 5.9). In addition, treatment with both caffeine and 

TNF  demonstrated that TNF  was not inducing a DNA damage response as illustrated by  
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Figure 5.7 Depletion of 53BP1 does not affect p65 localisation. A549 cells were 

transfected with either control or 53BP1 siRNA and 72 hours later, cells were stimulated with 

10ng/ml TNF  for 0mins, 15mins and 90mins. Subsequently, cells were fixed and processed 

for immunofluorescence using the indicated antibodies.  
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Figure 5.8 53BP1 does not interact with p65. p65 and 53BP1 were immunoprecipitated 

from U2OS whole cell extract and Western blotting was used to assess the binding of 53BP1 

and p65 respectively. IgG denotes immunoprecipitates performed using a non-specific IgG 

antibody as a control. IP and IB are abbreviations for immunoprecipitation and immunoblot 

respectively.  
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the lack of phosphorylation of DNA damage response proteins. The lack of SMC1, NBS1 and 

H2AX phosphorylation in cells depleted of 53BP1 indicates that the increase in NF- B 

transcriptional activity is unlikely to be caused by the loss of 53BP1 inducing DNA damage. 

Interestingly, despite ATM and ATR being inhibited, there is an increase in -H2AX and a 

slight increase in phosphorylation of SMC1 and NBS1 in the caffeine treated cells. However, 

this could be because endogenous DNA damage is activating the other PIKK family member, 

DNA-PK (An et al 2010, Stiff et al 2004). These data indicate that the DNA damage response 

is not activated in response to TNF  or following loss of 53BP1 function and therefore is 

unlikely to account for the increase in NF- B transcriptional activity observed in cells lacking 

53BP1.  

5.2.5 Depletion of 53BP1 increases NF-kB transcriptional activity in 

response to IR 

In addition to inflammatory cytokines, even though the signalling cascade leading to NF- B 

activation in response to DSBs has yet to be fully characterised, it has been established that 

the downstream events following IKK activation are identical to those elicited by TNF  (Wu 

and Miyamoto 2007). Despite the fact that the functional consequence of DNA damage 

induced NF- B activity can differ depending on the genotoxic agent used to generate the 

damage, treatment with IR has been shown to activate NF- B in a similar manner to TNF  

(Criswell et al 2003). To determine if the increase in NF- B transcriptional activity observed 

in TNF  stimulated 53BP1 deficient cells was specific to TNF , U2OS cells were treated 

with either control or 53BP1 siRNA, exposed to 10 Grays of IR and the protein levels and 

phosphorylation status of p65 were assessed by Western blot analysis along with components 

of the DNA damage response over a 24 hour period. 

Consistent with the response observed following TNF  stimulation, there was no difference 

in I B  protein levels between control and 53BP1 depleted cells whereas, p65 basal levels, as 

well as its phosphorylation on serine 536 were increased in cells lacking 53BP1 both prior to 

and in response to IR. In addition, p65 phosphorylation was also prolonged in the absence of 

53BP1 following IR (Figure 5.10). Phosphorylation of NBS1, SMC1 and H2AX 

demonstrated that the DNA damage response had been activated following exposure to IR. 

Moreover, the levels of phosphorylated NBS1 and SMC1 were unaffected in irradiated 53BP1  
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Figure 5.9 Depletion of 53BP1 does not activate the DDR. U2OS cells were transfected 

with either control or 53BP1 siRNA, 72 hours after transfection, cells were either mock-

treated, exposed to 8mM caffeine, stimulated with 10ng/ml TNF  or treated with both 

caffeine and TNF . Cells were harvested and the NF- B response was determined by 

Western blotting using antibodies to p65, phospho-p65 and I B . Phospho-SMC1, phospho-

NBS1 and phospho-H2AX antibodies were used as markers of the DNA damage response. -

actin was used as a loading control.  

53BP1

SMC1 S966-P

SMC1

0 150 60 15 60Time (mins) after 10ng/ml TNF

53BP1 siRNA +
_

+ + + + +
_ _ _ _ _

Con siRNA + + + + + +
_ _ _ _ _ _

p65 S536-P

p65

I B

H2A

-actin

Caffeine __
+

_ _ + ++
_ _

+ +

NBS1

NBS1 S343-P

-H2AX

 



Chapter 5 

194 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Depletion of 53BP1 induces hyperphosphorylation of p65 in response to IR. 

U2OS cells were transfected with either control or 53BP1 siRNA, 72 hours after transfection, 

cells were either mock-treated or irradiated with a 10 Gray dose and harvested at the times 

indicated. Whole cell extracts were prepared, separated by SDS-PAGE and subjected to 

immunoblotting using the antibodies indicated. -actin was used as a loading control.  
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depleted cells compared to control cells indicating that 53BP1 is not required for efficient 

activation of the ATM-dependent DNA damage response. However, at late time points after 

IR, H2AX phosphorylation was reduced in cells lacking 53BP1 suggesting that 53BP1 may 

be required to sustain phosphorylation of H2AX or that the damage is repaired quicker than 

when compared to control cells treated with the same dose of IR. These data suggest that 

53BP1 is impacting on p65 stability and is repressing NF- B transcriptional activity in 

response to IR in a similar manner to when cells were treated with TNF  (Figure 5.2).  

5.3  DISCUSSION 

This study demonstrates a novel function for 53BP1 as a negative regulator of NF- B 

transcriptional activity. Despite the fact that it is known that NF- B activity plays crucial 

roles in numerous cellular processes, relatively little is known about how the NF- B response 

is controlled. 

When activation of the NF- B pathway in response to TNF  was assessed in cells depleted of 

53BP1 alterations in both the stability and phosphorylation of p65 were observed (Figure 5.2 

and 5.3). Basal p65 levels were elevated in the absence of 53BP1 suggesting that 53BP1 

could be affecting the protein stability of p65 and/or the expression of p65. To investigate this 

further, the mRNA levels of the p65 NF- B subunit would have to be determined using q RT-

PCR. A functional knock on effect of stabilising p65 could account for the increased NF- B-

dependent transcription and phosphorylation of p65 on serine 536 and serine 468 observed in 

53BP1 deficient cells. However, the level of increased and sustained phosphorylation of p65 

following TNF  stimulation in cells with compromised expression of 53BP1 far exceeds the 

modest increase in basal levels of p65 observed in these cells suggesting that 53BP1 may be 

modulating the NF- B response by numerous mechanisms. Moreover, despite the well 

established biochemical links between p53 and NF- B, this role of 53BP1 in suppressing the 

phosphorylation of p65 occurs independently of p53 since similar effects of 53BP1 loss on 

p65 stability and phosphorylation were also observed in a p53 null cell line (Figures 5.2, 5.3, 

5.5 and 5.6). Interestingly, the increase in NF- B activity observed in 53BP1 depleted cells is 

not specific to TNF  because exposing these cells to 10 Grays of IR elicited a similar 

response (Figure 5.2 and 5.10). This is consistent with findings demonstrating that IR, like 

TNF , can activate NF- B (Criswell et al 2003). Together these data suggest that 53BP1 is 
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repressing NF- B transcriptional activity, independently of p53. However, this is likely to be 

via an indirect mechanism given that co-immunoprecipitation studies failed to detect an 

interaction between 53BP1 and p65 (Figure 5.8). It is conceivable that one possible way in 

which 53BP1 could be mediating repression of NF- B activity is that it is negatively 

regulating the interaction between p65 and its co-activator, CBP/p300. As a consequence, loss 

of 53BP1 allows CBP/p300 to acetylate p65 resulting in augmentation of NF- B 

transcriptional activity. This has been demonstrated to be the case with other negative 

regulators of NF- B such as the ARF tumour suppressor. ARF has been demonstrated to 

repress NF- B activity by enhancing the interaction of p65 with its known regulators, 

HDAC1 and TCEAL7. HDAC1 has been shown to directly deacetylate p65 whereas TCEAL7 

inhibits p300-mediated NF- B activity by interfering with the binding of p300 to p65 (Rattan 

et al 2010, Rocha et al 2003). To support this hypothesis, immunoprecipitation studies from 

cells with and without 53BP1 will have to be conducted to ascertain if 53BP1 is modulating 

the acetylation status of p65 and whether this is mediated by affecting its ability to interact 

with p300 and HDAC1. Furthermore, depletion of p300 in cells lacking 53BP1 will help to 

determine if the hyperphosphorylation of p65 that occurs in these cells is p300-dependent. 

Co-immunoprecipitation studies presented in this study have shown that 53BP1 can interact 

directly with both p300 and CBP (Figure 3.2). It is therefore possible that the presence of 

53BP1 may compete with p65 for its association with CBP/p300. However, it is also known 

that the acetylation of p65 is not always associated with stimulation of its ability to function 

as a transcription factor. p300-mediated acetylation of p65 on lysine 122 and lysine 123 have 

been shown to have an inhibitory effect, thus the function of 53BP1 to repress the activity of 

NF- B may be via its ability to promote acetylation on these regulatory lysine residues 

(Kiernan et al 2003). The derivation of antibodies specific for individual acetylated lysine 

residues of p65 will be required to directly determine whether 53BP1 suppresses the function 

of NF- B by preventing activatory acetylation or promoting inhibitory acetylation. 

The activation of NF- B in response to different stimuli has both cytoplasmic and nuclear 

aspects to its regulation. The findings presented here demonstrating that a loss of 53BP1 does 

not affect degradation of I B  and the nuclear translocation of p65 as well as 53BP1 only 

being present in the nucleus indicates that it is unlikely that the cytoplasmic component of this 

signalling cascade is subjected to regulation by 53BP1 (Schultz et al 2000) (Figures 5.2, 5.7 
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and 5.10). However, cellular fractionation would have to be carried out in unstimulated and 

stimulated cells with and without 53BP1 to determine whether hyper-phosphorylated form of 

p65 observed in cells lacking 53BP1 was present in the nuclear or cytoplasmic compartment 

of the cell. 

Due to the involvement of 53BP1 in the DNA damage response and that NF- B is activated 

in response to DNA damage, it is possible that the increase in p65 basal levels and NF- B 

transcriptional activity observed in TNF  stimulated 53BP1 deficient cells was due to 

elevated levels of DNA damage in these cells. However, the fact that inhibiting the activity of 

ATM and ATR by the incubation of cells with caffeine failed to return the phosphorylation of 

p65 on serine 536 in cells depleted of 53BP1 and stimulated TNF  back to normal levels 

indicates that this abnormal regulation of NF- B is unlikely to arise due to an activated DNA 

damage response (Figure 5.9). Furthermore, absence of detectable increases in the levels of -

H2AX, phospho-NBS1 or phospho-SMC1 in unstimulated cells lacking 53BP1 compared 

with control siRNA treated cells supports this notion.  

The sustained NF- B response observed in 53BP1 depleted cells in response to IR and TNFα 

indicates that the NF- B response is not being terminated correctly in cells lacking 53BP1 

(Figure 5.2 and 5.10). Therefore, one could hypothesise that perhaps 53BP1 is involved in 

regulating the termination of the NF- B response. However, in a similar manner to its 

activation, termination of the NF- B response is a complex process involving many post-

translational mechanisms as well as both a cytoplasmic and nuclear component. One of the 

best studied mechanisms is the degradation and resynthesis of I B proteins, which control the 

translocation of NF- B in and out of the nucleus. Since, 53BP1 did not affect I B  

degradation and resynthesis following TNF  stimulation nor did it inhibit translocation of 

NF- B in and out the nucleus, this suggests that 53BP1 is regulating NF- B via an I B-

independent mechanism (Figure 5.2, 5.3, 5.4 and 5.7). Recently, it has been shown that 

ubiquitylation and degradation of promoter bound p65 by the proteasome is required for 

efficient termination of nuclear NF- B activity (Saccani et al 2004) Ubiquitylation of p65 is 

controlled by a variety of E3 ubiquitin ligases including SOCS1, which is a component of the 

ECS-ubiquitin ligase complex and COMMD1, which interacts with this complex. 

Interestingly, the elevated levels of basal p65 and increase in NF- B activity in 53BP1 

depleted cells mirror those observed when either SOCS1 or COMMD1 expression is 
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compromised indicating that 53BP1 may functionally regulate the turnover of NF- B through 

the activity of this ubiquitin ligase complex (Maine et al 2007, Ryo et al 2003). However, 

only a small fraction of p65 is turned over using this mechanism indicating defects in this 

pathway are unlikely to significantly contribute to the sustained NF- B response observed in 

cells depleted of 53BP1.  

Whilst regulating the turnover of NF- B represents a major aspect of its regulation, post-

translational modifications of components of this pathway also play a critical role in its 

activation and termination. In this respect it is important that NF- B is de-modified in order 

for the I B  negative feedback loop to work because modified NF- B does not bind to I B   

very efficiently (Chen and Greene 2003). The observation that p65 is not being 

dephosphorylated efficiently in 53BP1 deficient cells following TNF  stimulation indicates 

that 53BP1 may also be regulating the phosphatase, WIP1, which has been recently 

demonstrated to target serine 536 (Chew et al 2009). Whilst the levels of WIP1 were 

unaffected by loss of 53BP1 (data not shown) it is possible that loss of 53BP1 affects the 

ability of WIP1 to bind to and dephosphorylate p65. To implicate abnormal regulation of 

WIP1 as a contributory factor in the elevated and sustained levels of phosphorylated p65 in 

53BP1 depleted cells, assessment of whether forced over-expression of WIP1 in these cells 

can correct the p65 hyperphosphorylation phenotype may support a role of 53BP1 in 

regulating NF- B activity by affecting the function of a known phosphate. 

Given that the phosphorylation status of p65 is intimately linked with its ability to bind p300 

and therefore its level of acetylation, it is quite possible that inability of p65 to be 

dephosphorylated in cells lacking 53BP1 may be linked to abnormalities in its ability to be 

acetylated/deacetylated properly. Again, assessment of the levels and kinetics of p65 

acetylation in these cells may shed some light on this.  

One important question that needs to be addressed is what is the physiological consequence of 

53BP1-mediated inhibition of NF- B activity? NF- B plays a crucial role in cell survival, so 

it would be interesting to ascertain whether like ARF and TCEAL7, 53BP1 is promoting 

apoptosis by repressing anti-apoptotic NF- B target genes and consequently, loss of 53BP1 is 

causing an increase in cell survival by inducing the expression of anti-apoptotic genes. 

Interestingly, the microarray data does indicate that this may be occurring because in 53BP1 

depleted cells, the expression of FADD, which is involved in apoptosis, was decreased 
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whereas the anti-apoptotic protein XIAP and components of the PI3K pathway, another 

important cell survival pathway, were increased (Figure 4.5 and 4.6). 

Collectively, these data suggest an additional biological role for 53BP1 as a negative 

transcriptional regulator of NF- B activity. However, the mechanism and biological 

consequence remains unclear. 
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CHAPTER 6 FINAL DISCUSSION 

6.1 A ROLE FOR 53BP1 AS A TRANSCRIPTIONAL REGULATOR 

The role of 53BP1 as a regulator of gene transcription has been a subject of debate due to 

contradictory studies. Data presented here supports a role for 53BP1 in transcriptional 

regulation.  

Data in chapter 3 shows that 53BP1 can interact with the transcriptional co-activators CBP 

and p300 and enhance their transcriptional activities indicating that 53BP1 acts as a cofactor 

for CBP/p300. Moreover, the capability of 53BP1 to function as a CBP/p300 cofactor was 

dependent on its BRCT domains since depletion of these domains dramatically reduced the 

interaction between CBP/p300 and 53BP1, as well as the ability of 53BP1 to potentiate the 

transactivation activities of CBP/p300. In addition, 53BP1 was shown to modulate p53 

transcriptional activity as illustrated by the fact that 53BP1 can differentially regulate a subset 

of p53 target genes including p21 and PUMA. These data are consistent with several reports 

indicating that 53BP1 can regulate the transcriptional activity of p53. However, unlike these 

reports, these data suggest that 53BP1 does not function as a strict co-activator or co-repressor 

of p53, but rather acts as a modulator of p53 transcriptional activity.  

Microarray analysis revealed that 53BP1 could differentially regulate a diverse array of genes 

both before and after DNA damage. These genes were involved in a wide range of cellular 

processes such as transcription, metabolism, cell cycle regulation and DNA repair. 

Intriguingly, despite the observations in chapter 3 implying that 53BP1 modulated the 

expression of a subset of p53 responsive genes, no p53 responsive genes were identified as 

being differentially regulated in response to DNA damage. However, microarrays are 

designed to take a snapshot of gene expression at the specific time point at which the RNA is 

isolated. Furthermore, it has been reported that in response to DNA damage p53 regulates the 

expression of its target genes in a temporal manner, with cell cycle arrest genes being 

expressed first and pro-apoptotic genes being expressed at later stages of the p53 response  

(Zhao et al 2000). As a result, it is possible that major differences in the expression of some 

IR-inducible p53 target genes may have been missed due to the time point chosen. 

Alternatively, the fold differences in the expression of some p53 target genes may have been 
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small and/or statistically insignificant. Therefore, these genes would have been removed by 

the statistical analysis and the filtration process. In addition, MTC is very stringent in order to 

ensure the rate of false positives is low. However, as a consequence, the rate of false negatives 

is high, therefore some p53 target genes may have been classed as false negatives.   

Interestingly, both the univariate and multivariate analyses implied that 53BP1 was involved 

in regulating the TNFR1 signalling pathways before IR, in particular the NF- B pathway. 

Several genes encoding proteins involved in TNFR1 signalling, as well as pathways linked to 

TNFR1 were found to be differentially regulated by 53BP1. Further investigation of a 

possible role for 53BP1 in TNFR1 signalling revealed that 53BP1 regulated NF- B 

transcriptional activity. Depletion of 53BP1 resulted in an increase in NF- B transcriptional 

activity in response to both TNF  and IR indicating that 53BP1 is repressing NF- B 

transcriptional activity. However, the underlying mechanism remains unclear since it was 

observed that 53BP1 and p65 do not associate with each other directly. 

6.2 53BP1 MAY LINK TRANSCRIPTION FACTOR COMPLEXES TO 

THE CHROMATIN 

It is possible that the ability of 53BP1 to function as a transcriptional regulator is due to its 

ability to interact with chromatin and proteins that are involved in chromatin remodelling. 

53BP1 can interact with chromatin through its Tudor domain, which has been shown to be a 

methyl-histone binding domain (Kim et al 2006). In particular, it has been demonstrated that 

the Tudor domain of 53BP1 interacts with di-methylated histones including H4K20 and 

possibly H3K79 (Botuyan et al 2006, Huyen et al 2004). However, in undamaged chromatin 

these histone marks are buried within the nucleosome, therefore conformational changes in 

the chromatin are required to expose these marks and enable 53BP1 to access the chromatin. 

In response to DNA damage, it has been proposed that exposure of these histone marks is 

facilitated by post-translational modifications of histones surrounding the DSB, which 

promote relaxation of the chromatin, thereby allowing 53BP1 to be recruited to sites of DSBs 

(van Attikum and Gasser 2009). Interestingly, it has been shown that 53BP1 can interact 

transiently with chromatin in the absence of DNA damage (Bekker-Jensen et al 2005, Santos 

et al 2010). This is likely to be a result of the dynamic conformational changes that occur in 
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nucleosomes, which allow proteins access, even to buried regions of chromatin (Li and 

Widom 2004, Li et al 2005). 

To facilitate cellular processes that involve DNA such as transcription, DNA replication and 

DNA repair, the structure of the chromatin needs to be altered to allow the transcription 

machinery and DNA repair proteins access to the DNA. This is achieved by both 

modifications of the tails of histones as well as by chromatin remodelling via proteins that 

alter the interaction between histones and the DNA. In addition to chromatin, 53BP1 interacts 

with several chromatin remodelling proteins. In response to DNA damage, 53BP1 has 

recently been shown to interact and recruit the chromatin-associated protein EXPAND1 to 

sites of DSBs. EXPAND1 binds to chromatin through its histone binding PWWP domain and 

triggers chromatin relaxation, thereby facilitating DNA repair and cell survival by increasing 

the accessibility of the chromatin to DNA repair proteins (Huen et al 2010a). Currently it is 

unclear whether the chromatin remodelling activities of EXPAND1 and/or the interaction 

with 53BP1 are required for transcriptional activation, as well as DNA repair. However, 

EXPAND1 inactivation resulted in chromatin condensation in unperturbed cells indicating 

that it is likely that it functions in other cellular processes besides the DDR. As demonstrated 

in this thesis, 53BP1 also interacts with the transcriptional co-activators CBP/p300 via its C-

terminal region (see chapter 3). These proteins possess histone acetyltransferase activities 

enabling them to acetylate histones, thereby promoting chromatin decondensation. Relaxation 

of the chromatin results in transcriptional activation since it allows gene promoters/enhancers 

to become accessible to transcription factors and the basal transcription machinery. 

Furthermore, 53BP1 has been shown to interact with HDACs, specifically HDAC4 following 

DNA damage (Kao et al 2003). In contrast to HATs, HDACs induce chromatin compaction 

by deacetylating histones, which in turn results in transcriptional repression. In response to 

IR, HDAC4 has been shown to be important for maintaining the G2/M checkpoint since this 

checkpoint was abrogated in HDAC4-deficient cells (Kao et al 2003). It has been suggested 

that HDAC4 functions to repress the promoters of genes involved in the G2/M transition of 

the cell cycle including CDC25C, CDK1 and Cyclin B2 (Basile et al 2006).  

These observations indicate that 53BP1 functions in transcriptional regulation at the 

chromatin level. Furthermore, through its ability to bind to chromatin as well as chromatin 

modifying proteins, it is likely that 53BP1 regulates transcription by acting as a molecular 

bridge to connect transcription factor complexes with the chromatin (Figure 6.1).  
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Figure 6.1 A model for the role of 53BP1 in gene transcription. 53BP1 connects 

transcription factor complexes with the chromatin by acting as a molecular bridge. 
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Interestingly, a similar model has been suggested for the ability of BRCA1 to function as a 

transcriptional co-regulator (discussed below). This model provides a plausible explanation as 

to how 53BP1 is able to regulate NF- B transcriptional activity without directly interacting 

with p65. Moreover, it also indicates how 53BP1 is able to regulate the expression of the 

diverse array of genes that were identified by the microarray analysis since CBP/p300 can 

interact with a wide variety of transcription factors. Due to 53BP1 serving as a scaffold 

protein, it is possible that 53BP1 may interact with other transcriptional co-activators such as 

PCAF and hGCN5 and co-repressors such as HDAC1 and HDAC2, as well as other 

chromatin remodelling proteins/complexes such as the SWI/SNF complex, and facilitate their 

recruitment to the chromatin. 

6.3 MEDIATOR PROTEINS FUNCTION IN DNA REPAIR AND 

TRANSCRIPTION 

Together the data presented in this thesis indicates that 53BP1 can function both in 

transcription and DSB repair.  53BP1 is a member of a small family of mediator proteins that 

also includes MDC1, PTIP, BRCA1, TOPBP1, Claspin and MCPH1. Interestingly, there is 

evidence that many of these mediator proteins also play a role in transcriptional regulation, as 

well as DNA repair. 

The C-terminal region of BRCA1, which contains the BRCT domains (residues 1560-1863) 

was shown to activate transcription when fused to the DNA binding domain of the yeast 

transcription factor, Gal4. This provided the first evidence that BRCA1 was involved in 

transcription (Monteiro et al 1996) and since then a substantial amount of data has been 

generated supporting a role for BRCA1 in transcriptional regulation. BRCA1 has been shown 

to associate with RNA polymerase II holoenzyme, a component of the core transcriptional 

machinery (Scully et al 1997a). Furthermore, it can bind to several DNA binding transcription 

factors and regulate their transactivation activities by acting as a transcriptional co-activator 

or co-repressor. BRCA1 has been shown to stimulate the transcriptional activities of p53 

(Zhang et al 1998), STAT1 (Ouchi et al 2000), ATF1 (Houvras et al 2000), NF- B (Benezra 

et al 2003), Oct-1 (Fan et al 2002, Saha et al 2010) and the androgen receptor (Park et al 

2000, Yeh et al 2000). Conversely, BRCA1 represses the transactivation activities of the c-

Myc oncoprotein (Wang et al 1998) and the estrogen receptor (Fan et al 2001). Several genes 
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have been identified that are regulated by BRCA1 including genes involved in DNA repair 

such as DDB2 and XPC and cell cycle arrest such as p21, GADD45 and p27 (Harkin et al 

1999, Hartman and Ford 2002, MacLachlan et al 2002, Somasundaram et al 1997, 

Williamson et al 2002). BRCA1 has also been shown to associate with several proteins that 

modify the chromatin structure including the HATs CBP/p300 and hGCN5/TRRAP (Oishi et 

al 2006, Pao et al 2000), the histone deacetylases HDAC1 and HDAC2 (Yarden and Brody 

1999) and components of the SWI/SNF chromatin remodelling complexes including BRG1 

and BRD7 (Bochar et al 2000, Harte et al 2010). Since BRCA1 can interact with RNA 

polymerase II and various chromatin modifying proteins, it has been proposed that BRCA1 

regulates transcription by linking transcription factor complexes with the basal transcription 

machinery.  

TOPBP1 has also been shown to function as a transcriptional regulator and this is important 

for its role in promoting cell growth and survival. Through interacting with the SWI/SNF 

complex via BRG1, TOPBP1 has been shown to repress the pro-apoptotic activity of the 

E2F1 transcription factor both during the G1/S transition of the cell cycle and in response to 

DNA damage (Liu et al 2004). Also, in complex with the transcription factor Miz-1, TOPBP1 

inhibits the ability of Miz-1 to activate its target genes p21 and p15INK4B (Herold et al 

2002). TOPBP1 also represses the expression of the proto-oncogene c-Abl by recruiting 

HDAC1 to the c-Abl promoter (Zeng et al 2005). More recently, it has been demonstrated that 

TOPBP1 can interact with p53 and repress its transcriptional activity, as illustrated by the fact 

that depletion of TOPBP1 resulted in an increase in the expression of several p53 target genes 

involved in cell cycle arrest and apoptosis including p21, NOXA, GADD45 and BAX (Liu et 

al 2009). As well as functioning as a transcriptional co-repressor, TOPBP1 can enhance Ets-1 

transcriptional activity by associating with the ePHD protein, SPBP (Sjottem et al 2007). 

MCPH1 was initially identified as a transcriptional repressor of hTERT (human telomerase 

reverse transcriptase) (Lin and Elledge 2003). Subsequently, MCPH1 was shown to positively 

regulate the expression of CHK1 and BRCA1 through interacting with E2F1 (Lin et al 2005, 

Yang et al 2008b). Furthermore, MCPH1 also induces the expression of several other E2F1 

responsive genes involved in cell cycle checkpoint activation, DNA repair and apoptosis 

including RAD51, DDB2, TOPBP1 and caspase 3 (Yang et al 2008b). MCPH1 has also been 

shown to interact with the SWI/SNF complex via its core subunits BAF170 and BAF155 

(Peng et al 2009). Recruitment of the SWI/SNF complex to the chromatin by MCPH1 results 
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in relaxation of the chromatin. Loss of MCPH1 caused impaired chromatin relaxation as a 

result of the decreased association of SWI/SNF with the chromatin. Since MCPH1-mediated 

chromatin remodelling was shown to be important for recruitment of DNA repair proteins to 

the sites of DNA damage and therefore efficient DNA repair, it is possible that this is how 

MCPH1 regulates E2F1 transcriptional activity. 

PTIP was identified in a yeast-two hybrid screen looking for novel interacting proteins that 

could potentially modulate PAX2 transcriptional activity (Lechner et al 2000). PAX2 is a 

member of the PAX family of transcription factors that are essential for organ and tissue 

development (Lang et al 2007). In Xenopus development, the PTIP homolog was shown to 

function as a transcriptional co-activator of SMAD2 in a TGF -dependent manner (Shimizu 

et al 2001). PTIP functions as a transcriptional regulator by stably associating with the 

MLL3/4 methyltransferase complex (Cho et al 2007, Patel et al 2007). By recruiting this 

complex to transcriptions factors including PAX2 and PAX5, PTIP promotes methylation of 

histone H3 on lysine 4 (H3K4) and subsequently transcriptional activation (Patel et al 2007, 

Schwab et al 2011). PTIP-mediated H3K4me has been shown to be important for immune 

system development since loss of PTIP significantly attenuated CSR in B cells (Daniel et al 

2010, Schwab et al 2011). This defect in switching is due to transcriptional repression of the 

IgH locus caused by impaired H3K4me. 

Interestingly, 53BP1, BRCA1, MCPH1, PTIP and TOPBP1 have all been shown to interact 

with chromatin modifying proteins suggesting that the mechanism by which mediator proteins 

function in transcriptional regulation is likely to be through modulating the chromatin 

structure. This would allow the DNA to become accessible to transcription factors and the 

core transcriptional machinery. Currently, it is unknown if MDC1 and Claspin also play a role 

in transcription. However, considering the majority of mediator proteins function in both 

DNA repair and transcription, it is conceivable that these proteins may also function in 

transcriptional regulation. Indeed this does appear to be the case for MDC1 since the mass 

spectrometric analysis identified both 53BP1 and MDC1 as a CBP/p300 interacting proteins 

(Figure 3.1).  
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6.4 MEDIATOR PROTEINS AND CANCER 

The DDR has been suggested to act as a barrier to tumour progression by promoting cellular 

senescence or apoptosis of tumour cells and thereby delaying or preventing tumourigenesis 

(Bartek et al 2007). Consequently, inactivating mutations in many DDR proteins are selected 

for during the development of cancer including the mediator proteins BRCA1, 53BP1 and 

MCPH1. This allows tumour cells to overcome this barrier and progress towards malignancy. 

BRCA1 plays a crucial role in suppressing tumourigenesis as demonstrated by the fact that 

heterozygous BRCA1 inactivating mutations are associated with an increased risk to develop 

breast and ovarian cancer. Typically women carrying germline mutations in BRCA1 have a 

50-85% lifetime risk of developing breast cancer and a 20-40% lifetime risk of developing 

ovarian cancer (Fackenthal and Olopade 2007, King et al 2003). Breast cancers that arise in 

BRCA1 mutation carriers are mostly early onset, high grade and invasive cancers that do not 

express the estrogen receptor, the progesterone receptor and do not have amplification of 

HER2, a phenotype that is termed as the ‘triple negative’ phenotype (Johannsson et al 1997). 

BRCA1 plays a key role in DNA repair and activation of cell cycle checkpoints including the 

G2/M checkpoint in response to DNA damage. Consistent with these functional roles, cells 

and tumours deficient for BRCA1 exhibit severe genomic instability, characterised by 

aneuploidy, centrosomal amplification and chromosome aberrations such as translocations, 

deletions and chromosome breaks (Venkitaraman 2002). However, the genomic instability 

caused by BRCA1 deficiency triggers the DDR, which inhibits proliferation and induces 

apoptosis. Therefore, cells must acquire additional mutations to allow proliferation and 

tumourigenesis. Accordingly, BRCA1-mutated breast tumours have a high frequency of 

mutations in p53 and PTEN (Holstege et al 2009, Manie et al 2009, Saal et al 2008). In 

addition to its DDR functions, the ability of BRCA1 to regulate transcription has been 

observed to contribute towards its tumour suppressor activity. Cancer-associated mutations of 

the C-terminal region of BRCA1 abrogated the transactivation activity of BRCA1. 

Furthermore, cancer-associated transactivation deficient mutants of BRCA1 failed to induce 

p21 expression and inhibit cell cycle progression indicating that BRCA1-dependent induction 

of p21 contributes to the growth suppressive effects of BRCA1 (Somasundaram et al 1997). 

The link between BRCA1 in transcription and tumour suppression was demonstrated further 

by the fact that cancer predisposing mutations of BRCA1 were found to disrupt the interaction 
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between RNA polymerase II and the hGCN5/TRRAP HAT complex (Oishi et al 2006, Scully 

et al 1997a). Furthermore, the oncoprotein c-MYC is frequently over-expressed in BRCA1-

linked breast cancer, which may be due to the ability of BRCA1 to suppress the oncogenic 

potential of c-Myc by repressing its transcriptional activity (Grushko et al 2004, Wang et al 

1998). Moreover, BRCA1 mutations confer an increased risk for several types of steroid 

hormone-responsive cancers such as breast, endometrial, cervical and prostate. The latter is 

androgen responsive, whereas the other tumour types are estrogen responsive (Rosen et al 

2005). This epidemiologic data correlates with the role of BRCA1 in regulating estrogen and 

androgen receptor activity. 

MCPH1 has also been shown to be important for protecting against genomic instability and 

tumourigenesis. Loss of MCPH1 has been associated with breast, ovarian and prostate cancers 

(Rai et al 2006). Similar to BRCA1, loss of MCPH1 resulted in an increase in chromosomal 

aberrations and centrosomal abnormalities (Rai et al 2006). The genomic instability caused by 

loss of MCPH1 is due to the involvement of MCPH1 in DNA repair and cell cycle checkpoint 

control.  Furthermore, the transcriptional function of MCPH1 is also likely to contribute to 

genomic instability since MCPH1 activates genes involved in genome maintenance by 

functioning as a transcriptional co-activator of E2F1 (Yang et al 2008b). In addition to 

genomic instability, another hallmark of cancer is the ability to proliferate indefinitely 

(Negrini et al 2010). The majority of tumour cells achieve this by enhancing the activity of 

telomerase by up-regulating the expression of the catalytic subunit hTERT (Shay and 

Bacchetti 1997). Therefore, this may be another way loss of MCPH1 causes tumourigenesis 

since MCPH1 acts as a repressor of hTERT transcriptional activity (Lin and Elledge 2003). 

Loss of 53BP1 has been observed in a wide range of carcinomas including lung, gastric, 

laryngeal and renal as well as melanoma (Gorgoulis et al 2005, Nuciforo et al 2007). 

Furthermore, progression from precancerous lesions to carcinomas was associated with loss 

of 53BP1 in some tumours (Gorgoulis et al 2005). More recently, loss of 53BP1 has been 

associated with triple-negative breast cancer and familial breast cancer caused by BRCA1/2 

mutations (Bouwman et al 2010). Furthermore, loss of 53BP1 in triple-negative breast 

tumours correlated with a greater likelihood of metastasis and decreased survival. This 

suggests that mutations in 53BP1 might confer a survival advantage in the absence of BRCA1 

and BRCA2. This is probably due to partial restoration of HR in BRCA1-deficient cells 

(Bunting et al 2010). However, constitutive activation of NF- B is frequently observed in 
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breast cancer, in particular triple-negative breast cancer (Yamaguchi et al 2009). Therefore, 

since loss of 53BP1 resulted in an increase in NF- B activity, it is possible that this may also 

be a mechanism by which loss of 53BP1 contributes to the development of breast cancer. 

Furthermore, constitutive NF- B activation is also associated with many other cancers 

including those that were found to have lost 53BP1 indicating that inactivation of 53BP1 may 

be selected for during tumourigenesis as it contributes to dysregulation of NF- B activity, 

thereby allowing tumour cells to survive (Prasad et al 2010). 

In contrast to BRCA1, MCPH1 and 53BP1, TOPBP1 was found to be frequently over-

expressed in breast cancer and this correlated with poor survival (Liu et al 2009).  It has been 

suggested that this is likely to be due to the ability of TOPBP1 to promote cell survival by 

inhibiting p53-dependent and E2F1-dependent apoptosis, as well as G1/S cell cycle arrest.   

Taken together these studies demonstrate that both the DNA repair and transcription functions 

of the mediator proteins are important for preventing tumourigenesis. Currently, there have 

been no reports linking MDC1, PTIP and Claspin to tumourigenesis. However, given that 

these proteins have been shown to be important for maintaining the integrity of the genome, it 

is likely that mutations in these genes do exist in tumours. 

 

In conclusion, the data presented in this thesis suggest that 53BP1 functions in transcriptional 

regulation, as well as DNA repair by acting as a scaffold protein to provide structural support 

for DNA repair and transcription in the context of chromatin.  
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CHAPTER 7 FUTURE WORK 

7.1 VALIDATION OF 53BP1 SIRNA PHENOTYPE 

siRNA induces specific gene silencing through RNA interference and is widely used to study 

the functions of genes. Initially, siRNA was thought to be very specific and only targeted the 

gene of interest. However, it is now recognised that siRNA can induce off-target effects, 

which occur when the siRNA down-regulates other genes besides the gene of interest 

(Jackson and Linsley 2010). Data presented in chapter 5 demonstrated that siRNA-mediated 

depletion of 53BP1 caused an increase in NF- B activity in response to TNF  and IR. 

Therefore, to prove that this phenotype is due to reduced 53BP1 expression and not due to 

off-target effects, a rescue experiment needs to be performed to determine if this phenotype 

can be reversed through expression of a siRNA-resistant 53BP1 plasmid. Initial 

complementation experiments using transient transfection of a siRNA-resistant 53BP1 

expression construct into 53BP1 siRNA depleted cells failed due to low transfection 

efficiency of the 53BP1 plasmid. The reason for this is likely to be due to the large size of the 

expression construct, which is known to reduce transfection efficiency. To counteract this 

problem, a siRNA resistant retroviral 53BP1 expression construct will have to be constructed 

and cell lines stably expressing endogenous levels of 53BP1 generated. The use of a retrovirus 

will prevent loss of 53BP1 expression that occurs in stable cell lines over time of prolonged in 

vitro culturing, which still retain the antibiotic selection marker (GS Stewart, unpublished).  

7.2 DOES LOSS OF 53BP1 PROMOTE NF- B-MEDIATED CELL 

SURVIVAL? 

NF- B plays a crucial role in cell survival as illustrated by the fact that it is constitutively 

activated in a variety of diseases including several types of cancer (Courtois and Gilmore 

2006, Karin 2006).  Moreover, loss of 53BP1 has been shown to be associated with cancer 

such as BRCA1-deficient breast cancer (Bouwman et al 2010). Since an increase in NF- B 

activity was observed in 53BP1 deficient cells following treatment with TNF  and IR, it 

would be of interest to ascertain if loss of 53BP1 is promoting cell survival in an NF- B-

dependent manner. To establish if this is the case, cell viability, survival and apoptosis assays 
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such as an MTS/trypan blue dye exclusion assay, clonogenic survival and Annexin V staining 

measured by FACS or analysing caspase 3 cleavage respectively would be performed in cells 

transfected with control and 53BP1 siRNA. Furthermore, these experiments could also be 

conducted in the presence and absence of NF- B inhibitors to determine if any effects 

observed are dependent on NF- B activity. In addition, the mRNA expression levels of anti- 

and pro-apoptotic NF- B responsive genes could be measured by qRT-PCR in control and 

53BP1 depleted cells to determine if 53BP1 is differentially regulating these genes and 

therefore influencing the final outcome of the NF- B response. Together these studies would 

help to elucidate the physiological consequence of 53BP1-mediated repression of NF- B 

activity and may indicate why 53BP1 is inactivated in tumours. 

7.3 MECHANISM OF 53BP1-MEDIATED REGULATION OF p53 

AND NF- B 

In most instances HATs and HDACs function as transcriptional co-activators and co-

repressors respectively through regulating the acetylation status of both histones and 

transcription factors such as NF-κB and p53. The findings presented in chapter 5 indicate that 

53BP1 is negatively regulating NF-κB transcriptional activity and that this is likely to be via 

an indirect mechanism given that no interaction was observed between 53BP1 and p65. 

Therefore, since 53BP1 can interact with the HATs CBP/p300, as demonstrated in chapter 3, 

it is possible that 53BP1 may be modulating the acetylation status of NF-κB through 

regulating the interaction between p65 and CBP/p300. Therefore, a co-immunoprecipitation 

could be performed in the presence and absence of 53BP1 to ascertain if the interaction 

between CBP/p300 and p65 is enhanced in cells lacking 53BP1. The acetylation status of p65 

could also be assessed by immunoprecipitation to determine if loss of 53BP1 affects the 

CBP/p300-mediated acetylation of p65. Furthermore, to establish if the increase in NF- B 

transcriptional activity is CBP/p300-dependent, cells could be depleted of both 53BP1 and 

CBP/p300 and the transcriptional activity of NF- B analysed by luciferase assay. In addition, 

since 53BP1 can interact with HDAC4 (Kao et al 2003), it would be of interest to investigate 

whether, in a manner similar to ARF, 53BP1 is repressing the transactivation potential of NF-

B through promoting the association of p65 with HDACs (Rocha et al 2003). To address 

this, control and 53BP1 depleted cells could be treated with trichostatin A to determine if 
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inhibiting HDAC activity abolishes 53BP1-mediated repression of NF- B activity. In 

addition, a co-immunoprecipitation could be conducted to establish if the interaction between 

p65 and HDACs is enhanced in the presence of 53BP1.  

It is well established that 53BP1 can associate with chromatin, therefore to determine if 

53BP1 is modulating NF- B transcriptional activity through regulating the recruitment of 

CBP/p300 and HDACs to the promoters of NF- B responsive genes, chromatin 

immunoprecipitation (ChIP) assays could be utilised. However, initially NF- B responsive 

genes whose expression is regulated by 53BP1 would need to be identified using either qRT-

PCR or a microarray approach. Once identified, ChIP could be performed in wild type and 

53BP1 deficient cells to determine whether 53BP1 binds to the promoters of these genes. 

Subsequently, ChIP could be utilised to establish whether CBP/p300 or HDACs are present 

on the promoters of these genes and whether depletion of 53BP1 affects the recruitment of 

these co-activators and co-repressors to the gene promoters. In addition, cells could be 

depleted of 53BP1 and either CBP/p300 or HDACs to ascertain if the expression of these 

53BP1-regulated genes is altered by loss of CBP/p300 or HDACs. 

As well as an increase in NF- B transcriptional activity, depletion of 53BP1 in response to IR 

and TNF  resulted in a sustained NF- B response suggesting a role for 53BP1 in regulating 

the termination of the NF- B response. NF- B transcriptional activity can be terminated 

through post-translational mechanisms such as deacetylation and dephosphorylation. 

Recently, the phosphatase WIP1 has been demonstrated to dephosphorylate p65 (Chew et al 

2009).  Since phosphorylation of p65 is sustained in the absence of 53BP1, it is possible that 

loss of 53BP1 affects the ability of WIP1 to dephosphorylate p65. To address this, WIP1 

could be over-expressed in control and 53BP1 siRNA treated cells to see if this corrected the 

phenotype. Alternatively, the inability of p65 to be dephosphorylated in cells lacking 53BP1 

may be due to p65 not being efficiently deacetylated. The studies highlighted above may shed 

some light on whether the acetylation status of p65 is contributing to the sustained 

phosphorylation of NF- B. 

The ubiquitin-mediated proteasomal degradation of p65 has been described as a termination 

mechanism. Interestingly, depletion of 53BP1 resulted in elevated p65 basal levels, as well as 

an increase in NF- B transcriptional activity. To ascertain if 53BP1 is affecting the 

expression of p65 at the transcriptional or post-transcriptional level, the mRNA level of p65 
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could be assessed by qRT-PCR in control and 53BP1 deficient cells. In addition, these cells 

could be treated with either transcription inhibitors such as actinomycin D or protein synthesis 

inhibitors such as cycloheximide and the half-life of p65 assessed to determine if 53BP1 is 

regulating p65 mRNA or protein stability respectively. Furthermore, to establish if 53BP1 is 

promoting the ubiquitin-mediated proteasomal degradation of p65, control and 53BP1 

deficient cells would be treated with the proteasome inhibitor, MG132 and the protein levels 

of p65 assessed by Western blot analysis. However, the substantial increases in p65 

phosphorylation observed in 53BP1 depleted cells are unlikely to be solely caused by the 

modest increase in basal p65 levels indicating that 53BP1 may regulate NF- B transcriptional 

activity by several mechanisms. 

Data presented in chapter 3 indicates that 53BP1 can differentially regulate p53 target genes 

through acting as a modulator of p53 transcriptional activity. However, this work only 

focused on p21, PUMA and HDM2, therefore to understand precisely the role of 53BP1 in 

regulating p53 function, other p53 target genes would need to be identified whose expression 

was regulated by 53BP1. Since p53 target genes are differentially expressed in response to IR 

(Zhao et al 2000) and no p53 target genes were identified by the microarray study following 4 

hours of IR, a time course could be performed over a 24 hour period in cells treated with 

control and 53BP1 siRNA to identify 53BP1-regulated p53 responsive genes. Once these 

genes have been identified either by using qRT-PCR or a microarray approach, ChIP 

experiments similar to those suggested for NF- B could be conducted to try and establish if 

53BP1 is modulating p53 transcriptional activity at the promoter level through regulating the 

recruitment of co-activators and co-repressors to the promoters of those genes that were 

identified as being differentially expressed by 53BP1. In addition, acetylation of p53 by 

CBP/p300 enhances the transactivation potential of p53, therefore it would also be interesting 

to address if 53BP1 is affecting the acetylation status of p53 through influencing the 

interaction of p53 with CBP/p300.  

Taken together these studies could potentially elucidate the mechanism(s) by which 53BP1 

regulates the transcriptional activities of p53 and NF- B.  
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