
©
Det här verket är upphovrättskyddat enligt Lagen (1960:729) om upphovsrätt till litterära och 
konstnärliga verk. Det har digitaliserats med stöd av Kap. 1, 16 § första stycket p 1, för forsk-
ningsändamål, och får inte spridas vidare till allmänheten utan upphovsrättsinehavarens
medgivande. 

Alla tryckta texter är OCR-tolkade till maskinläsbar text. Det betyder att du kan söka och kopie-
ra texten från dokumentet. Vissa äldre dokument med dåligt tryck kan vara svåra att OCR-tolka 
korrekt vilket medför att den OCR-tolkade texten kan innehålla fel och därför bör man visuellt 
jämföra med verkets bilder för att avgöra vad som är riktigt.

Th is work is protected by Swedish Copyright Law (Lagen (1960:729) om upphovsrätt till litterära 
och konstnärliga verk). It has been digitized with support of Kap. 1, 16 § första stycket p 1, for 
scientifi c purpose, and may no be dissiminated to the public without consent of the copyright 
holder.  

All printed texts have been OCR-processed and converted to machine readable text. Th is means 
that you can search and copy text from the document. Some early printed books are hard to 
OCR-process correctly and the text may contain errors, so one should always visually compare it 
with the images to determine what is correct.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20������������������������������������������������
21

22
23

24
25

26
27

28
29

C
M



då W. Ié>3 
Department of Medical Physics 

Göteborg University 

STIMULUS-SECRETION COUPLING 

IN PANCREATIC ß-CELLS 

A patch-clamp study using caged compounds. 

Carina Ämmälä 

Göteborg, Sweden 1994 



OTEßCty 

Biomedicinska biblioteket 



STIMULUS-SECRETION COUPLING 
IN PANCREATIC ß-CELLS 

A PATCH-CLAMP STUDY USING CAGED COMPOUNDS. 

AKADEMISK AVHANDLING 

som för avläggande av medicine doktorsexamen 
vid Göteborgs Universitet 

kommer att offentligen försvaras i 
Fysiologiska institutionens föreläsningssal 

tisdagen den 10 maj 1994, kl. 9.00 

av 

Carina Ämmälä 
civ. ing. 

Avhandlingen baseras på följande arbeten: 

I. ÄMMÄLÄ C, BERGGREN PO, BOKVIST K & RORSMAN P (1992) Inhibition of L-type 
calcium channels by internal GTP[tS] in mouse pancreatic ß cells. Pflügers Archiv 
420:72-77. 

n. ÄMMÄLÄ C, LARSSON O, BERGGREN PO, BOKVIST K, JUNTTI-BERGGREN L, KINDMARK H 

& RORSMAN P (1991) Inositol trisphosphate-dependent periodic activation of a Ca2+-
activated K+ conductance in glucose-stimulated pancreatic ß-cells. Nature 
353:849-852. 

m. ÄMMÄLÄ C, BOKVIST K, LARSSON O, BERGGREN PO & RORSMAN P (1993) 
Demonstration of a novel apamin-insensitive calcium-activated K+ channel in 
mouse pancreatic B cells. Pflügers Archiv 422:443-448. 

IV. ÄMMÄLÄ C, ELIAS SON L, BOKVIST K, LARSSON O, ASHCROFT FM & RORSMAN P (1993) 
Exocytosis elicited by action potentials and voltage-clamp calcium currents in 
individual mouse pancreatic B-cells. Journal of Physiology 472:665-688. 

V. AMMALÄ C, ASHCROFT FM & RORSMAN p (1993) Calcium-independent potentiation of 
insulin release by cyclic AMP in single ß-cells. Nature 363:356-358. 

Göteborg, Sweden, 1994 



ABSTRACT 

STIMULUS-SECRETION COUPLING IN PANCREATIC ß-CELLS: 
A patch-clamp study using caged compounds. 

CARINA AMMÄLÄ, Department of Medical Physics, Göteborg University, 
Medicinaregatan 11, S-413 90 Göteborg, Sweden. 

The regulation of the stimulus-secretion coupling in single mouse pancreatic ß-cells 
was investigated using the patch-clamp technique in combination with microfluorimetry to 
record changes in the intracellular Ca2+-concentration ([Ca2*];), capacitance measurements to 
monitor exocytosis and flash photolysis of caged compounds to produce step increases in the 
concentration of the substances. 

Activation of G-proteins by intracellular application of GTPyS produced a slowly 
developing inhibition of L-type Ca2+-currents manifested as a slowed time course of activation 
and a reduction of the peak amplitude. Inclusion of cAMP in the pipette solution failed to 
counteract the GTPyS-induced inhibition excluding protein kinase A (PKA) as a mediator of 
the effects. The interaction between the activated G-protein and the Ca2+-channel involves the 
entry of the Ca2+-channel into distinct closed state from which the channel opens with a 
slower time-course than in the absence of GTPyS. A fraction of the channels exists in the 
modified closed state even in the absence of GTPyS as suggested by the finding that 
pretreatment with pertussis toxin increased the current amplitude under basal conditions. 

Rapid membrane potential oscillations, similar to those observed in cells within intact 
islets, could be recorded from large clusters and were then associated with a transient 
oscillating outward current. In single ß-cell, such rapid oscillations were usually not observed 
but could be evoked by extracellular application of carbamylcholine (CCh) or dibutyryl-cAMP 
(db-cAMP), compounds functionally related to hormones and neurotransmitters normally present 
in the intact islet, or by intracellular infusion with GTPyS. The oscillatory conductance is 
selective to K+ and activated by an increase in [Ca2+]j. Tetraethylammonium, charybdotoxin, 
apamin and tolbutamide, blockers of K+-channels previously known to be present in the ß-
cell, had no effect on the current suggesting it flows through a novel type of K+-channel. The 
estimated single-channel conductance is 0.1 pS under physiological conditions. The properties 
of the K+-channel makes it a possible candidate for a channel involved in the generation of 
membrane potential oscillations. 

The Ca2+-dependent action potentials are associated with a rise in [Ca2+];. Although 
lns(l,4,5)P3 elicited a [Ca2+]rtransient 20-30 times larger than the average [Ca2+]rtransients 
evoked by voltage-clamp depolarizations, the rate of exocytosis produced by the different 
maneuvers were the same. This suggests that exocytosis, in response to membrane 
depolarization, requires much higher concentrations than suggested by microfluorimetry and 
implies the existence of steep Ca2+-gradients within the ß-cell. The coupling between an 
elevation in [Ca2+]j and the stimulation of the secretion involves activation of Ca27calmodulin-
dependent protein kinase II and inhibitors of this enzyme suppress exocytosis. In addition, 
secretion is markedly potentiated by cAMP through activation of PKA. A minor part (20%) of 
this effect is mediated by an increase in Ca2+-influx through L-type voltage-dependent Ca2+-
channels. The major (80%) potentiating effect results from a direct interaction with the 
secretory machinery, possibly exerted by increasing the Ca2+-sensitivity of the secretory 
machinery, thus extending the distance from the Ca2+channel over which granules can be 
recruited for release. 

Keywords: ß-cells, insulin, exocytosis, calcium, inositol trisphospahte, cyclic AMP 
ISBN 91-628-1207-6 
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INTRODUCTION 

Electrical signalling 

It has been known for more than two centuries that animal cells can generate electrical 

signals (GALVANI, 1791). During the 19th century the discovery of electrical activity in nerve cells 

was made and it was shown that electricity provides the means of carrying signals within and 

between nerve cells (DU BOIS-REYMOND, IMS; VON HELM HOLTZ, ISSO). Propagation of the signals was 

proposed to be an electrical self-stimulation of the axon by inward currents spreading 

passively along the length of the nerve cell (HERMANN, 1905). This hypothesis was later proved 

to be right by HODGKIN (1937a; b) , who showed that action potentials propagate electrically. The 

first recordings of action potentials in axons with intracellular electrodes were made by 

HODGKIN & HUXLEY (I939.1945) and CURTIS & COLE (i94o, 1942). The underlying ionic components were 

identified as a K+- and a Na+-current (HODGKIN & HUXLEY, 1952a; b ; c). Although Na+- and K+-fluxes 

across the plasma membrane constitute the action potential, neither of these is sufficient to 

maintain transmitter release. By selectively blocking the Na+- and K+-conductances, KATZ & 

MILEDI (1967A; b) found a remaining current carried by Ca2+-ions that is essential for 

neurotransmitter release. 

Electrical excitability was long believed to be restricted to neurones and muscle cells. 

However, many endocrine cells have subsequently been shown to share this ability. Electrical 

activity in endocrine cells was first reported by DEAN & MATTHEWS (I%S), who demonstrated that 

pancreatic ß-cells generate Ca2+-dependent action potentials under conditions associated with 

insulin release. Later it have been demonstrated that other hormone-producing cells, such as 

chromaffin and pituitary cells, are also able to produce action potentials (KIDOKORO « ai., i982; 

TARASKEVICH & DOUGLAS, 1977). 

By the development of the patch-clamp technique it became possible to study the ionic 

currents flowing through various channels in the plasma membrane of single cells (HAMILL « ai., 

i98i). The application of this technique to the pancreatic islet cells has led to the 

characterization of many of the of ion channel participating in the generation of the ß-cell 

electrical activity (reviews: ASHCROFT & RORSMAN, I989; DUNNE & PETERSEN, I99I ;HENQUIN& MEISSNER; 1984). A 

current model for the electrical activity in ß-cells suggests that membrane potential is 

governed by the activity of the ATP-dependent K+-channel (KATP-channel). Once this channel 
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is closed, the reduced K+-permeability leads to membrane depolarization. The depolarization 

opens voltage-gated Ca2+-channels and the resulting increase in cytoplasmic free Ca2+-

concentration triggers release of insulin to the extracellular environment. Even though the 

channels underlying electrical activity have been characterized in detail, little is s till known 

about the mechanisms involved in the coupling of electrical activity to insulin release. 

Stimulus-secretion coupling 

The term "stimulus-secretion coupling" was coined by DOUGLAS (I96S ) who demonstrated 

that the release of catecholamines from adrenal chromaffin cells stimulated with acetylcholine 

(ACh) was caused by an enhancement of Ca2+-uptake into the chromaffin cell (DOUGLAS & POISNER. 

1962). Stimulus-secretion coupling refers to all the events occurring in a cell exposed to a 

stimulus that eventually lead to the release of secretory products. From experiments using 

isolated chromaffin cells impaled with intracellular microelectrodes, Douglas and co-workers 

were able to record the membrane potential of isolated chromaffin cells and to demonstrate 

that they depolarize when exposed to ACh (DOUGLAS M ai., 1967). Omission of Ca2+-from the 

extracellular medium had no effect on the ACh-induced depolarization but abolished secretion 

(DOUGLAS & KANNO, I9«). These findings confirmed the hypothesis that entry of extracellular Ca2+ 

is a critical event in the stimulus-secretion coupling. 

Much of the evidence suggesting a role of electrical activity in the stimulus-secretion 

coupling of the pancreatic ß-cell has been derived from experiments using intracellular 

electrodes recording the membrane potential from cells within intact islets of Langerhans 

(HENQUIN & MEISSNER. 1984). It has been shown that the ß-cell is electrically silent, with a resting 

membrane potential of about -70 mV, at sub-stimulatory glucose concentrations. When glucose 

concentration is raised above the threshold (>6 mM) for insulin release, the ß-cell starts to 

generate slow oscillations in membrane potential on which bursts of Ca2+-dependent action 

potentials are superimposed (MATTHEWS & SAKAMOTO, 1975). With the development of Ca2+-sensitive 

fluorescent dyes it became possible to directly demonstrate that glucose stimulation of insulin 

release is associated with a rise in [Ca2+]; and that Ca2+ enters through voltage-activated Ca2+-

channels (ARKHAMMAR et al.. 1987; HELLMAN M al„ 1992; RORSMAN et a l.. 1984; WOLLHEIM & SHARP, 1984). 

Upon stimulation, the membrane-bound granules fuse with the plasma membrane and 

the secretory products are released into the extracellular space, a process named exocytosis 
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(DE DUVE, 1963). Exocytosis is the principal mode of physiological secretion from a wide variety 

of cells, excitable and non-excitable, including neurones, neuroendocrine cells, endocrine and 

exocrine cells, mast cells and blood platelet (RUBIN, 1982). In the pancreatic ß-cell, LACY (1961) wa s 

the first to suggest that insulin is released by exocytosis. Even though such diverse cell types 

discharge their different substances in response to a variety of stimuli, they share some 

common features in the molecular mechanism regulating exocytosis and it is well established 

that exocytosis is triggered by an increase in [Ca2+];. However, the processes involved in the 

actual fusion of the granules with the plasma membrane remain obscure. In neurones, 

numerous Ca2*-activated proteins, such as synapsin la and b, synapsin IIa and b and 

synaptotagmin, are associated with the synaptic vesicles, possibly participating in the docking 

of the vesicles to the plasma membrane (SÜDHOF & JAHN, 1991)- However, even though these 

proteins might well exist in the pancreatic ß-cell, there is no evidence that they are associated 

with the insulin-containing secretory granule. 

Insulin secretion 

Although the blood glucose concentration is subject to regulation by many hormonal 

factors, insulin is the only hormone that decreases the blood glucose concentration (MATTHEWS, 

1977). It is therefore essential that the secretory machinery of the ß-cells responds rapidly and 

with high sensitivity to changes in extracellular glucose concentrations. A defective secretory 

response has severe effects on glucose homeostasis and results in non-insulin dependent 

diabetes mellitus (NIDDM; EFENDIC a ai.. I9M). Detailed knowledge of the processes underlying the 

normal secretion of pancreatic hormones may therefore be central for understanding the 

pathogenesis of NIDDM. 

The primary initiator of insulin secretion is glucose (HEDESKOV, 1980) but secretion can 

also be initiated by various amino acids, ketone bodies and fatty acids. Glucose entering the 

ß-cell and is rapidly metabolized, resulting in the generation of intracellular metabolic signals 

(such as ATP) leading to the depolarization of the cell membrane and Ca2+-entry through 

voltage-dependent Ca2+-channels. The rise in the intracellular free Ca2+-concentration initiates 

exocytosis. Once initiated, insulin secretion can be modulated by a number of extracellular 

signals. The islet of Langerhans receives a rich innervation (WOODS & PORTE, 1974) and neural 

influences are therefore likely to play an important role in the regulation of insulin secretion 
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in vivo. Exocytosis is also influenced by many hormones reaching the ß-cell either by 

circulation or through a paracrine route. The potentiating effects of many of these substances 

on insulin secretion are chiefly mediated either by a Ca2*-independent activation of the PLC-

pathway or through activation of the cAMP-messenger system increasing the cAMP-

concentration resulting in the activation of protein kinase A. Activation of PLC, possibly 

mediated by GTP-binding proteins, results in the hydrolysis of membrane lipids, increasing 

the formation of two second messengers: InsP, and DAG. InsP3 acts to mobilize Ca2+ from 

intracellular stores whereas DAG may activate PKC and thereby produce protein 

phosphorylation (reviews: ASHCROFT 6& ASHCROFT, 1992; BERGGREN « <I. 1992; PRENTKI & MATSCHINSKY, 1987). 

AIMS 

The patch-clamp technique and a combination of flash photolysis of caged compounds, 

microfluorimetry and capacitance measurements were used to investigate the mechanisms 

involved in the stimulus-secretion coupling in pancreatic ß-cells in greater detail. The aims 

of the study were to: 

1) investigate the involvement of GTP-binding proteins in the regulation of voltage-

activated L-type Ca2+-channels; 

2) explore a mechanism underlying the bursting pattern of glucose stimulated electrical 

activity; 

3) characterize the biophysical and pharmacological properties of a novel oscillatory 

Ca2+-dependent K+-channel; 

4) examine the importance of Ca2+ for the initiation of insulin secretion in individual ß-

cells; and 

5) clarify the mechanisms by which cAMP potentiates Ca2+-induced insulin release. 
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METHODOLOGY 

Patch-clamp measurements 

The patch-clamp technique was employed to record whole-cell voltage-clamp currents, 

to control the membrane potential and to apply the sinusoidal command voltage used for 

analysis of changes in cell capacitance (described below). All experiments were conducted 

following the standard procedures described in HAMILL « ai. (I98I) which delineates four different 

recording configurations: cell-attached, whole-cell recording, outside-out patch and inside-out 

patch. 

ion channel « • 

antibiotic 0 

Fig. 1 The three patch-clamp configurations used in this study: A) The cell-attached, B) the whole-cell and C) the 
perforated-patch whole-cell configuration. 

Fig. 1 summarizes the three recording configurations used in this study and here the 

features of these modes, which are of particular importance for the present study, are 

considered in greater detail: 

Cell-attached: In this configuration (Fig. 1A), the plasma membrane is left intact after 

the formation of a high-resistance seal (>1 G£î, a "gigaseal") between the recording pipette and 

the plasma membrane. The high electrical resistance of the seal reduces the background noise, 

thus improving the resolution of current recordings. The high resolution permits recordings 

of the small currents arising from the opening of single ion channels. In this configuration it 

is also possible to monitor changes in cell capacitance resulting from the fusion of individual 

secretory granules with the patch of membrane enclosed by the glass electrode. It is important 

to emphasize that cell-attached is the only of the original recording modes in which the 

intracellular milieu remains undisturbed. 
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Whole-cell: After formation of a "gigaseal", the membrane enclosed by the pipette can 

be ruptured (by a pulse of negative pressure) to establish direct physical contact with the cell 

interior (Fig. IB). In small cells, this configuration yields perfect conditions for voltage-clamp 

recordings of ion currents flowing through channels in the plasma membrane (marty & neher, 

1983). The observed current represent the summed activity of all ion channels in the entire cell 

membrane. The intracellular milieu can be manipulated since the cytosol is dialyzed by the 

pipette solution and it is thus possible to add the substance(s) of interest simply by including 

the compound(s) in the pipette solution. One disadvantage inherent to this configuration is that 

it is impossible to study processes requiring rapid intracellular application of various 

substances. Due to diffusional mixing delays, exchange of the cytoplasm for the pipette 

solution is a slow process, requiring several minutes to be complete (pusch & neher, isss). One 

way to overcome this problem is to combine whole-cell recordings with the technique of flash 

photolysis of caged compounds (described below), where the substance can be preloaded into the 

cell as an inactive precursor and then converted into the active compound by a flash of uv-

light. Another drawback associated with this configuration is that dialysis of the cell interior 

may lead to the "wash-out" of important diffusible cytosolic factors. The latter include 

enzymes and second messengers, which are critical to cell function and as a consequence 

there may be, and often is, a concomitant rundown of ionic currents and other cellular events, 

such as exocytosis. This configuration is therefore unsuitable for the study of processes 

depending on intracellular metabolism and for experiments extending over long periods of 

time. 

Perforated-patch whole-cell: To overcome some of the problems associated with the 

standard whole-cell configuration, an improved version of the whole-cell configuration 

developed by horn & marty (isbs) ca n be used (Fig. ic). In this configuration electrical contact 

is established by adding a pore-forming antibiotic, for example nystatin or amphotericin B, 

to the pipette solution. Insertion of the antibiotics in the plasma membrane leads to the 

formation of pores with a diameter of about 8 Å, allowing monovalent cations and molecules 

with a molecular weight of <200 D to pass. Bulky substances with a molecular weight larger 

than 200 D, such as enzymes and regulatory, factors are retained within the cell and cellular 

metabolism is preserved. 
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Flash photolysis of caged compounds 

The technique of flash photolysis of caged compounds (KAPLAN & SOMLYO. 1989) is a useful 

tool for the study of biological mechanisms requiring fast application of substrates or 

messengers. Such studies are often difficult to perform with conventional techniques due to 

diffusional mixing delays of the active compound when applied to organized systems, such 

as a cell, that cannot be readily perifused. 

Caged compounds are molecules of physiological interest (for example ATP, cAMP, 

InsPj, GTP) that have been made biologically inactive by chemical modification (GURNEY & LESTER. 

1987). The most common way to achieve "inactivity" is to add a photochemically removable 

2-nitrophenylethyl group to the substance of interest. Upon exposure to ultraviolet light (uv-

light), the labile chemical group is cleaved off, releasing the active compound. Desired 

properties of caged molecules are that the caged precursor is biologically inactive (or at least 

several orders of magnitude less active than the photolysis product; NICHOLS « »i.. 1990; ÄMMÄLÄ M ai., 

1991) and that the by-products of photolysis are biologically harmless. Finally the rate and 

efficiency of photolysis should be high and occur at wavelengths >300 nm to ascertain that 

the illumination as such does not damage the cell. 

Fig. 2 The experimental set up for flash photolysis of caged compounds. The equipment is described in detail in 
the text. 

When applied in combination with the standard whole-cell patch-clamp configuration, 

the technique of flash photolysis of caged compounds provides the means to study rapidly 

activated/inactivated processes in single cells (GOLDMAN « ai., m4. WALKER ET ai., 1987). The caged 

precursor is added to the pipette solution and, after establishing contact with the cytosol, the 

cell is left a few minutes to equilibrate with the pipette solution before illumination by a brief 
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flash (<1 s) of uv-light releases the active substance. Since recordings of several parameters, 

for example membrane currents and cell capacitance, can be made before and after alteration 

of the intracellular milieu, this technique permits the use of each cell as its own control, thus 

facilitating statistical analysis of the results. 

Fig. 2 summarizes the experimental equipment used for flash photolysis of caged 

compounds in this study (ämmälä a «1., 1991). Photorelease of the active compound was achieved 

by a brief pulse of UV-light from a 200 W me rcury lamp (2A). The light was focused on the 

tip of a UV-transmitting optical fibre guide (0=100 Mm; 2E) using a quartz glass biconvex lens 

(2B). To obtain light within the range of interest, the light was transmitted through a glass 

band pass filter (2C) selective to wave-lengths between 250 and 500 nm. One end of the light 

guide was mounted on a XYZ-translational stage (2G) to place it in the focus of the lens and 

the other end was placed in the close vicinity of the cell. A mechanical shutter (2D) was used 

to control the time of exposure. All equipment was mounted on a profile beam (2F). 

ATP 

ATP 

3s 

ATP 

0 s 

[XL Ju I 
Fig. 3 HPLC-chromatograms of released ATP: A) no illumination, B) afier 1 s and C) after 3 s of UV-illumination. 
Not the different scale bars (arbitrary units) in A compared to B and C. 

To estimate the efficiency of photolysis, a droplet containing 1 mM caged ATP was 

placed on a coverslip in the focus of the biconvex lens and irradiated for various times. The 

liberated ATP was measured using high performance liquid chromatography (HPLC). Fig. 3 

shows the HPLC-chromatograms of the released nucleotide after 0 s, 1 s and 3 s of UV-

irradiation. Liberation after 1 s and 3 s amounted to 75% and >95% respectively. In the 

subsequent studies, the efficiency of photolysis was assumed to be the same for all caged 

compound used. This seems as an acceptable approximation since they were all rendered 

inactive by similar chemical modification. 
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Fluorescence measurements 

The intracellular concentration of Ca2+ ([Ca2+],) in s ingle ß-cells was estimated using 

dual-emission microfluorimetry with indo-1 or a combination of fluo-3 and fura red as Ca2+-

indicator(s). The indicators were added to the cytoplasm by inclusion in the pipette solution. 

A Xenon arc-lamp was used to excite the Ca2+-indicators and the emitted light was then 

collected by two photomultipliers at two different wavelengths (GRYNKIEWICZ « ai., 1985). One 

advantage of dual-emission is that the ratio of the intensities at the different wavelengths, 

representing the Ca2+-concentration, is not dependent on the concentration of indicator used. 

It should be emphasized that the method reports an average of the entire cell and that no 

information regarding the spatial distribution of [Ca2+]j can be obtained. It is therefore 

probable, as discussed below, that local Ca2+-transients within the cell exceed the average 

Ca2+-concentration reported by microfluorimetry. 

Capacitance measurements 

The method of capacitance measurement is a high-resolution patch-clamp technique 

for time-resolved measurements of exo- and endocytosis in single cells (NEHER& MARTY, 1982). The 

technique is based on the fact that all biological membranes have a specific capacitance of 

about 1 (iF/cm2 (HILLE, 1992). Fusion of secretory granules with the plasma membrane and 

incorporation of the granular membrane leads to an increase in the surface area of the cell 

(Fig. 4A). By using circuit-analysis techniques, this change in surface area can be detected as 

an increase in cell capacitance. In a similar fashion, retrieval of membrane by endocytosis, 

can be detected as a decrease in membrane capacitance. 

The method used for measuring capacitance in this study was a software-based two-

phase lock-in amplifier (JOSHI & FERNANDEZ, 1988; LINDAU & NEHER, \m) in conjunction with the patch-

clamp technique. After formation of a "gigaseal", the conductive current transients, resulting 

from stray capacitances across the pipette wall (CJ(„ see Fig. 4B), are first removed using the 

compensation circuitry of the patch-clamp amplifier. After establishment of the whole-cell 

configuration (either standard or perforated patch), the capacitive and conductive current-

transients arising from the initial cell surface area and the access conductance of the patch-

pipette are compensated for in the same way. A s inusoidal voltage (V) is then added to the 
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command voltage and the resulting sinusoidal varying current (/) is measured. / has the same 

frequency (to=27t/) but is phase-shifted with.respect to v. Changes in current amplitude will 

reflect changes in admittance (Y) since l=v*Y(u>), which in turn reflects changes in the circuit 

parameters of the recording configuration (i.e. the cell in series with the recording pipette). 

If the passive electrical properties of the recording mode were described by the cell alone 

with a resistance (Rm=l/Gm) in parallel with a capacitance (Cj, the resistive current component 

would be in-phase and the capacitive component phase-shifted 90° with respect to the 

command voltage {Y=Gm+jaCm). The patch-clamp electrode, however, introduces an additional 

resistance (R=l/G,) in series with the RmC„-net of the cell (Fig. 4B), and so produces an 

additional phase-shift. The appropriate phase-angle (e) is therefore different from 90° and, 

as the circuit parameters differ from cell to cell, has to be determined for each cell separately. 

Fig. 4 A) The cell membrane and a secretory granule before (top) and after (bottom) exocytosis. The area of the 
plasma membrane increases due to incorporation of the granular membrane. B) The experimental design of the 
capacitance measurements. To the left is the electrical equivalent of the cell in series with the recording pipette. The 
command voltage (VCCJ controls the sinusoidal membrane potential and the resulting current is recorded and fed into 
the computer by the patch-clamp amplifier. By choosing the correct phase-angle (8) the changes in current signal 
at the two orthogonal vectors, representing the cell capacitance (AlcJ and the conductance (A/Cl and AIaJ, can be 
monitored by the computer software. 

The shunt capacitance (C„) is compensated for at the start of an experiment and 

remains constant throughout the experiment unless the level of the interface between the air 

and the bath solution changes. For practical purposes this can be neglected and the admittance 

of the equivalent circuit of Fig. 4B can be expressed as 

When the changes in circuit parameters are small, the corresponding changes in current may 

be calculated by linearizing the system as follows 

A B Patch-clamp Computer 
amplifier 

Pipette 

V„„=A*sin(cDt+8) 

Eq. 1 
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Alr = V — AG_ = VB2 AG 
c. dG^ m m 

Mr = v — AC = y<j) ra2 AC 
c - d C  

M = V — AG = ( — + ra2 AG. 
3G. G. G. 

Eq. 2a 

Eq. 2b 

Eq. 2c 

Where 

B = 1 + —-
Gm ^ J"Cm 

6 = arg (A/c) = 2 arctan 
co C 

arctan 
lG» + °s, 

Eq. 3a 

Eq. 3b 

The total change in current, AI, is the sum of AJa„, AIa, and AlCm. In Fig. 4B the complex 

representation (i.e. as vectors with a real and an imaginary portion) of the three components 

and 0 are shown. From Eq. 2a-c, it can be seen that AlCm i s orthogonal (90°) to AlCm and almost 

antiparallel (-180°) to Ala,. C hanges in the real component of AI reflects changes in current 

that are in-phase with the applied voltage, while the imaginary component measures changes 

that are 90° out-of-phase with respect to the command voltage. The change in current 

amplitude can be measured at arbitrary phase-angles with respect to the command voltage 

and, by choosing the correct phase-angle (6), it is possible to monitor the two orthogonal 

current components, one reflecting changes in capacitance and another reflecting changes in 

conductance. 

The current evoked by the sinusoidal command voltage is sampled and stored in a 

computer. The sampled response is then analyzed (on-line) by two orthogonal software 

detectors simply by multiplying the resulting sampled response with a sine- and cosine-

function. The angle 6 is determined empirically by making small changes in the compensation 

of G, (on the patch-clamp amplifier) and adjusting 0 until no change is seen in the current 

trace representing C„. Calibration of the two signals is then provided by making changes of 

a known magnitude (i.e. AG,=10-30 nS a nd AC„=200-500 fF) in the compensation for C„ and G,. 

It may be objected that the method of capacitance measurements merely reports 

changes in an electrical property of the cell which may, or may not, be associated with 

exocytosis. The cell capacitance (C) is given by the equation: 
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where A is the surface area of the cell, e the dielectric constant of the membrane and d the 

thickness of the membrane. It is clear from the equation that an increase in cel l capacitance 

could theoretically result from a thinning of the membrane; for example as a consequence of 

Ca2+-induced swelling of the cell with a resultant distension of the membrane. 

20 s 

Fig. 5 A) The changes in capacitance induced by Ca1*-currents (not shown) elicited by a train of voltage-clamp 
depolarization (200 ms, 1 Hi) and B) concomitant decrease in quinacrine fluorescence. At (*), the capacitance trace 
is interrupted to permit calibration of the capacitance signal. 

How can one ascertain that an increase in cell capacitance does indeed reflect 

exocytosis? To this end we have combined capacitance measurements with microfluorimetric 

recordings to monitor exocytosis by two independent methods. To label the secretory 

granules, we have used the indicator quinacrine (LUNDQUIST « «T., I98S; PRALONG « «I„ 1990). This 

indicator is a weak membrane-permeant base. Once inside the cell, it accumulates in acidic 

compartments such as the secretory granules (HUTTON « »I, 1982; ABRAHAMSSON & GYLFE, I98I). 

Stimulation of th e ß-cell (by a train of voltage-clamp depolarizations), with resultant fusion 

of secretory granules, will consequently be expected to produce a decrease in quinacrine 

fluorescence, whilst increasing the cell capacitance. As shown in Fig. 5, this is exactly what 

is observed. The train of depolarizations produce an increase in cell capacitance of about 

350 fF. From the diameter of the secretory granule (230 nm; D EAN. 1973), it can be predicted that 

the fusion of a single granule with the plasma membrane will produce a capacitance increase 

of 1.7 fF. Events of this size have indeed been reported (IV). It can thus be estimated that the 

increase capacitance corresponds to fusion of about 200 secretory granules with the plasma 

membrane. This increase in cell capacitance was coincident with a 4% decrease in quinacrine 

fluorescence and it can thus be estimated, assuming that quinacrine is confined to the 
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secretory granules (cf. LUNDQUIST a ai., i98s), that this ß-cell contained 5000 secretory granules. 

In a series of ten experiments, an average granule content of 11000±2000 was obtained 

(unpublished observation). The latter value is in reasonable agreement with the 13000 reported in 

ultrastructural studies (DEAN, 1973). We therefore feel that it may be concluded that changes in 

cell capacitance do indeed reflect exocytosis of insulin-containing granules. 

RESULTS AN DISCUSSION 

G-protein modulation of voltage-activated Ca2+-currents (I). 

In non-neuronal cells, two families of voltage-activated Ca2+-channel, with properties 

resembling those previously described for two types of Ca2+-channel in neurones (NOWYCKY « 

ai., 1985), have been characterized: 1) The T-type (Transient) Ca2+-channel, which activates at 

negative membrane potentials and displays voltage-dependent inactivation; and 2) the L-type 

(lasting) Ca2+-channel that activates at more positive voltages with little voltage-dependent 

inactivation. Available evidence suggests that mouse pancreatic ß-cell contains exclusively 

L-type Ca2+-channels (PLANT, 1988; RORSMAN M ai., 1988; SMITH « ai., 1989). By contrast, studies on rat ß-cells 

have revealed the presence of both L- and T-type Ca2+-channels in these cells (ASHCROFT « ai., 1990; 

HIRIART & MATTEsoN, 1988). Glucose-stimulated insulin release is mediated by a marked increase in 

the cytoplasmic free Ca2+-concentration ([Ca2+];) due to Ca2+-entry t hrough voltage-activated 

Ca2+-channels (GRAPENGIESSER a ai„ i989; HELLMAN & GYLFE, i9 86; RORSMAN « ai., 1984). It seems likely, that 

even in rat ß-cells, this Ca2+ enters the cell through L-type Ca 2+-channels since the T-type 

current is almost fully inactivated at the depolarized membrane potential (-40 mV) from which 

the action potentials originate. 

The modulation of L-type Ca2+-channels in mouse ß-cells by hormones and 

neurotransmitters is largely unknown. Substances such as adrenaline, somatostatin and galanin 

have been shown to suppress electrical activity, hyperpolarizing the membrane potential and 

to inhibit insulin secretion (DREW S « «i„ 1990; HSU a ai., 1991; NILSSON « ai.. 1988; I989; WÄHLANDER ET ai., 1991). The 

effects of these substances are sensitive to pretreatment with pertussis toxin (PTX), suggesting 

the involvement of an inhibitory GTP-binding protein (G-protein; DOLPHIN. 1990). In mouse 

pancreatic ß-cells, the inhibition of electrical activity can largely be accounted for by the 
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activation of small conductance K+-channels (RORSMAN et ai., 1991)- In addition to this effect, 

hormones and neurotransmitters also control insulin release at some distal step in the 

exocytotic machinery (NILSSON et ai., 198S; 1989; ULLRICH & WOLLHEIM. 1989). In clonal insulin-secreting HIT 

cells, adrenalin and somatostatin have been shown to inhibit voltage-dependent Ca2+-currents 

(Hsuciai., 1991; KEAHEY et ai., 1989). This suggests that modulation of Ca2+-channels might be a third 

mode of action by which hormones and neurotransmitters control insulin secretion. The 

situation in non-tumoural cells is less clear and no such inhibitory action of galanin (AHRÉN « 

ai., 1986; 1989) or adrenalin (BOKVIST « ai., 1991 ) has been observed in tissue-cultured mouse ß-cells. 

In (I) we address the possibility that modulation of the Ca2+-current by G-proteins is 

a mechanism by which hormones and neurotransmitters can exert their action on insulin 

release. We used GTPyS, a non-hydrolyzable GTP-analogue to produce general activation of 

the G-proteins (DOLPHIN & SCOTT, 1987). Intracellular application of GTPyS was achieved by 

photorelease from a caged precursor. Although this produces an instant elevation of GTPyS 

(see METHODOLOGY above), the inhibitory action on the Ca2+-current developed gradually 

requiring 2 minutes to reach maximum. By analogy with what has been proposed for neurones 

(DOLPHIN, 1991), we attribute the delayed inhibition of the Ca2+-current by GTPyS t o the slow 

dissociation of GDP from the guanine-binding site of the G-protein. Activation results from an 

exchange of GDP for GTP bound to the a-subunit of the G-protein; a reaction which is 

accelerated by the binding of the neurotransmitter to the extracellular receptor. Somewhat 

surprisingly, the GTPyS-induced inhibition could not be prevented by inclusion of the non-

hydrolyzable GDP-analogue GDPßS in the pipette solution. At present we have no explanation 

to this observation. 

Activation of G-proteins is known to inhibit adenylate cyclase (HILDEBRANDT ET ai., i983; JAKOBS 

et ai., 1984) and can therefore be expected to reduce the intracellular concentration of cAMP. As 

Ca2+-channels are under the control of PKA in many tissues (HILLE. 1992) including the ß-cell (v), 

this might be a reason for the effect of GTPyS. To test this hypothesis, we included CAMP in 

the pipette solution. However, even when added at a high concentration, cAMP failed to 

counteract the inhibitory effect of GTPyS on the Ca2+-current amplitude, suggesting that 

inhibition of adenylate cyclase is not the mechanism by which GTPyS blocks the Ca2+-current 

in mouse ß-cells. 

Apart from reducing the peak amplitude, GTPyS had at least two other actions on the 

Ca2+-current. First, in some cells the time course of activation was slowed. Secondly, it 
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consistently reduced the inactivation of the Ca2+-current. These effects could theoretically 

result from GTPyS se lectively blocking a sub-class of Ca2+-channels (i.e. T-type). To exclude 

this possibility we investigated the effects of GTPyS on barium (Ba2+-)currents through 

voltage-gated Ca2+-channels. Consistent with earlier reports, and in keeping with the idea that 

mouse ß-cells contain only L-type Ca2*-channels, substitution of Ca2+ for Ba2+ removed 

inactivation. If T-type Ca2t-currents had been present, inactivation of would have persisted 

(PLANT, 1988) as the inactivation of these channels is voltage-dependent rather than Ca2+-

dependent (SATIN & COOK, 1989). However, even when inactivation was abolished, GTPyS in hibited 

the Ca2+-current. Thus, we can dissociate the inactivation of the Ca2+-current from the 

inhibition and conclude that the effect is due to GTPyS interfering with the L-type Ca2+-

channels. 

PTX prevents the coupling of inhibitory G-proteins to activated receptors by ADP-

ribosylation of the receptor-binding site on the a-subunit (SCHULTZ « «1., 1990 ). However, 

pretreatment with PTX did not alter the response to application of GTPyS. T his feature of the 

effect of GTPyS is not readily reconcilable with the concept that G-proteins regulate the ß-cell 

Ca2+-current but it is not entirely without precedent (HESCHELER « «1.. I988. SCHULTZ « »I., 1 990). PTX is 

believed to prevent the interaction between the receptor and the G-protein, but not GTPyS-

induced activation and this might account for the lack of effect on the Ca2+-current. Hence, 

we feel that the most likely explanation for the effects of GTPyS on Ca2+-currents is an 

interaction between the channels and the activated G-proteins. 

Further support for this idea comes from the observation that GTPyS-induced activation 

of G-proteins, as already pointed out, slowed the time course of current activation. Similar 

observations have been made in neurones and were then attributed to the slow recovery from 

a modified closed (GrPySot/C) state resulting from a voltage-dependent interaction between 

the activated G-protein and the Ca2+-channel (DOLPHIN, 1991). SCOTT & DOLPHIN (1990) have proposed 

the following reaction scheme to explain the voltage-dependence of the GTPyS-effect: 

GTPySa'0C ** C ** O 

a.t(V) p.,(K) 

The interaction between the Ca2+-channel and the G-protein is a slow process with 

ajv)<ßJV). This would explain the slow onset of the GTPyS-effect. After interaction with 

GTPyS, the Ca2+-channels exists in the kinetic state GTPySaa'C. Upon depolarization, the Ca2+-
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channels open (entry into state o)  with a slower time course than in the absence of GTPyS 

because more transitions are involved. To test this kinetic model, we applied a two-pulse 

protocol (cf. GRASSI & LUX, 1989; SCOTT & DOLPHIN. I9«)) consisting of a brief pre-pulse to a large 

depolarizing potential followed by the standard test pulse. The large depolarization shifts the 

equilibrium towards the open state (O). After stepping back to the holding potential, the 

channels rapidly (ßJV)) enters the ordinary, activatable, closed state (C). The return of the 

channels into the modified closed state (GTPySa/C) induced by interaction with G-proteins 

is a slow process (ajv>) a s discussed above. After the large depolarization, many of the 

channels that were formerly in GTPySa0'C will therefore remain in C and a second pulse 

applied shortly after the prepulse will consequently activate a larger current than without the 

prepulse. An increase in current amplitude, although smaller, was also obtained in the absence 

of GTPyS. This finding suggests that the Ca2+-current is subject to a partial tonic inhibition in 

the intact ß-cell. This is also indicated by the observation that pretreatment with PTX increased 

the Ca2+-current amplitude recorded from ß-cells under control conditions (i.e. without internal 

GTPyS). 

A novel oscillating Ca2+-activated K+-conductance (II & III). 

Electrical activity in pancreatic ß-cells 

When stimulated with insulin-releasing glucose-concentrations, mouse pancreatic ß-

cells start generating action potentials. At intermediate glucose-concentrations (10-15 mM), the 

ß-cell electrical activity consists of a characteristic pattern of slow oscillations in membrane 

potential between depolarized plateaus, on which the action potentials are superimposed, and 

repolarized silent intervals (HENQUINÄ MEISSNER. 1984). By contrast, single mouse ß-cells maintained 

in tissue culture do not display this type of electrical activity and in these cells, electrical 

activity consists of either continuous spiking or of very long bursts lasting several minutes 

(Fig. 6A and SMITH « ai.. 1990). It has been argued that the failure of the individual ß-cell to 

generate the bursting pattern of electrical activity is simply due to different experimental 

conditions. Patch-clamp experiments are traditionally performed at subnormal temperatures 

(30-34°C rather than 37°C as the membrane otherwise becomes labile) and with HEPES-

buffered media instead of b icarbonate-buffered media (to facilitate seal formation). However, 

as shown in Fig. 6B, ß-cells are indeed capable of generating oscillatory electrical activity 
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under precisely these experimental conditions provided that the recording is made from a cell 

within an intact, freshly isolated, islet. This electrical activity is strikingly similar to that 

which has been previously recorded with conventional intracellular electrodes (COOK & IKEUCHI. 

1989; HENQUIN & MEISSNER, 1984). It may therefore be concluded that the observed differences in 

electrical activity do not result from the experimental conditions. How then do the differences 

arise? One possibility we have considered is that the atypical electrical behaviour of cultured 

ß-cells results from the loss of paracrine and neuronal regulation present in the intact 

pancreatic islet. The intact islet is a highly organized structure with a central core of ß-cells 

surrounded by a mantle of other endocrine cell types (PIPELEERS « «1.. 199 2), such as a-cells 

(glucagon-secreting), 6-cells (somatostatin-secreting) and pp-cells (pancreatic polypeptide-

secreting cells). Although only a small portion of the ß-cells are in contact with these cells, 

their secretory products may influence the ß-cell activity via paracrine mechanisms. The islets 

are also innervated by cholinergic, adrenergic and peptidergic nerves that release their 

neurotransmitters within the islet. Obviously this provides the background for a complex 

interplay between the ß-cell and its environment. 

A 10 mM Glucose 
V(mV)  

-30 P 

-50 -

-70 -

B V(mV)  

J AAAAXA. 
I I 

60s 

Fig. 6 Electrical activity recorded from A) a pancreatic ß-cell maintained in tissue-culture and B) a cell within 
a freshly isolated intact islet. When stimulated with glucose, the cultured cell produces very long bursts (lasting 
>2 min) whereas the cell within the intact islet produces short lasting bursts (15-20 s) similar to those previously 
reported with conventional intracellular electrode. 

Oscillatory electrical activity 

Consistent with a role of interactions between cells within the intact islet in the 

generation of ß-cell electric activity, spontaneous fast oscillations in membrane potential were 

observed in a small fraction of cells (5-10%) when the recordings were made from large 

clusters, but were never seen in individual cells. In the cells exhibiting rapid membrane 

potential oscillations, a transient spontaneously activating and oscillating outward current was 
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observed when the cells were subsequently voltage-clamped at -20 mV. As already pointed 

out, however, the vast majority of ß-cells generated continuous electrical or very long bursts 

even when sitting in large clusters (Fig. 6). It is of interest that in such non-bursting ß-cells, 

rapid oscillations in membrane potential could be induced by application of carbamylcholine 

(CCh) or dibutyryl-cAMP (db-cAMP), compounds functionally related to hormones and 

neurotransmitters normally present within the intact islet, such as acetylcholine (ACh), 

glucagon and glucagon-like peptide-1 (GLP-l; RASMUSSEN « ai.. 1990). Although it remains 

unestablished that these oscillations can be equated to those seen in the intact islet, we felt 

it was important to characterize the molecular mechanisms underlying these oscillations. 

These studies were facilitated by the observation that in the standard whole-cell configuration, 

oscillations similar to those evoked by CCh and/or db-cAMP could be induced by intracellular 

infusion with GTPyS. The frequency of the GTPyS-induced oscillations could be modulated by 

extracellular application of low concentrations of CCh a nd they were reversibly abolished by 

application of a high concentration of CCh, suggesting that CCh and GTPyS act by the same 

molecular mechanism(s). 

Microfluorimetric measurements of Ca2+ revealed that the oscillations in membrane 

potential evoked by CCh and the oscillations in membrane current evoked by GTPyS were 

paralleled by oscillations in [Ca2+]j. Both the CCh- and GTPyS-evoked membrane current were 

independent of extracellular Ca2+, suggesting that the elevation of [Ca2+], results from 

mobilization of Ca2+ from intracellular stores. 

Activation of phospholipase C (PLC) initiates the hydrolysis of membrane-bound 

inositol lipids (phosphatidyl inositol bisphosphate, PIP,), leading to the formation of 

diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (lns(i,4,5)P3). DAG ac ts by stimulating 

protein kinase C (PKC; NISHIZUKA, i98g), whereas lns(i,4,5)P3 r eleases Ca2+ from intracellular stores 

(BERRIDGE, 1987). PLC is known to be regulated by G-proteins (BERRIDGE & IRVINE. 19&»; 1 989) and it is 

therefore conceivable that GTPyS o perates by activating this enzyme and promoting Ca2+-

release through the lns(l,4,5)P3-pathway. In support of this idea, membrane current oscillations 

similar to those obtained by infusion of GTPyS could be induced by photorelease of lns(l,4,5)P, 

from a caged precursor. Ins(l,4,5)P3 was, however, not able to initiate the repetitive pattern and 

only one large oscillation was evoked subsequent to flash photolysis of caged ins(l,4,5)P3. 

Furthermore, infusion of the non-hydrolyzable InsP3-analogue inositol 2,4,5-trisphosphate did 

not initiate large oscillations but evoked small and rapid fluctuations in membrane 
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conductance. This raises the interesting possibility that fluctuations in the lns(i,4,5)P3-

concentration are important for the oscillations in K+-current (cf. HAROOTUNIAN « AI, 1991). 

Application of lns(i,4,5)P3 had different effects on the membrane conductance depending 

on whether it was released before or after a GTPyS-induced oscillation. When applied at the 

end of a GTPyS-induced oscillation, lns(i,4,5)P3 had no effect on the membrane current, whereas 

a large current could be evoked when it was liberated just before an oscillation. Furthermore, 

lns(l,4,5)P3 was also able to reset the periodicity of the oscillations. These findings constitute 

strong evidence that GTPyS ac ts by an ins(l,4,5)P3-dependent mechanism. 

Pharmacological properties 

The pharmacological and biophysical properties of the Ca2+-activated K+-conductance 

were also investigated. At a membrane potential of 0 mV, a major part of the GTPyS-induced 

current is carried by large-conductance Ca2+-activated (KçJ channels, as evidenced by the high 

sensitivity to low concentrations of tetraethylammonium (TEA; BOKVIST « ai., 1990; FATHERAZI & COOK, 

1991) and the more selective blocker charybdotoxin (CTX; MILLER M «1.. I98S). At the more 

physiological membrane potential of -40 mV (i.e. the plateau potential of the ß-cell), neither 

TEA nor CTX had any effect on the current. This is in keeping with the steep voltage 

dependence of the K^-channel gating in the ß-cell (COOK « ai., 1984). Clearly, the TEA- and CTX-

resistant current flows through a K+-conductance distinct from the K^-channels. In order to 

identify this channel, we explored the effects of other K+-channel blockers. However, the 

current remained unaffected by tolbutamide, a blocker of the KATP-channel (TRÜBEMAI., I986) and 

apamin, a blocker of small-conductance Ca2+-activated K+-channels (BLATZ & MAGLEBY, 1986) 

whether applied at 0 or -40 mV. The channel is highly selective for K+ as evidenced by the 

observation that the changes in reversal potential induced by varying the extracellular K+-

concentration ([K+]0) are in excellent agreement with those predicted by the Nernst equation 

for a perfectly K+-selective channel. These observations suggest that the oscillations reflects 

the activation of a K+-channel with pharmacological properties distinct from those reported 

for any other K+-channel previously documented in the ß-cell. 

Biophysical properties 

We next proceeded to investigate the biophysical properties of this channel. The 

single-channel conductance is a useful "fingerprint" of an ion channel. As already pointed out 
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in M ETHODOLOGY, the cell-attached configuration is the only single-channel recording mode 

where the cell interior is left intact. This configuration also facilitates the detection of small 

single-channel events. This is because the noise produced by the patch membrane decreases 

with increasing resistance and decreasing capacitance. In the cell-attached configuration, the 

area of the membrane enclosed by the pipette is small and consequently the patch resistance 

is high and the patch capacitance low. The resolution is therefore principally limited by the 

noise originating from the current measurement circuitry (LEVIS & RAE. 1992). Characterization of 

the single-channel properties is also favoured by the rather trivial fact that there are fewer 

channels in a small patch of membrane than in the whole cell. However, although current 

oscillations similar to those observed in the whole-cell experiments could be elicited by 

extracellular application of CCh, it was not possible to detect any unitary events. Nevertheless, 

the fact that CCh could initiate oscillations, even when it was absent from the pipette solution, 

suggests that the effect is mediated by some diffusible intracellular factor, presumably Ca2+. 

As we were unable to record the individual channel openings, the single-channel 

conductance had to be estimated by stationary fluctuation analysis (see box and HILLE. 1992) of 

the excess noise associated with the development of the current oscillations induced by GTPyS. 

The estimated amplitude at -70 mV was determined as 35 fA (fA=1015 Ampere) in the presence 

of high [fC]0. With a reversal at 0 mV, as indicated by the current-voltage (i-V-)relationship, 

this corresponds to a single-channel conductance of 0.5 pS and to 0.1 pS with physiological 

ionic gradients. 

The high turnover rate of ion channels is regarded as an important diagnostic criterion 

when distinguishing between ion transport through channels and that mediated by other 

processes such as pumps and carrier (HILLE. 1992). As the estimated single-channel conductance 

of this channel is much lower than that of most ion channels, one might wonder whether the 

current reflects ion flux through ion channels. An indication that the current does indeed flow 

through ion channels comes from the following considerations: If this channel is responsible 

for repolarizing the membrane from the depolarized plateau of -40 mV to about -70 mV, the 

single-channel conductance (0.1 pS) predicts a single-channel amplitude at the plateau 

potential of 4 fA. This corresponds to a rate of transport through the channel of approximately 

104 ions per second. This is still more than 10-100 times faster than pumps and carrier which 

typically operate at a rate of 100-1000 ions per second (HILLE, 1992). 
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i = single-channel amplitude 

/ = whole-cell current = Nip 

Stationary fluctuation analysis 
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G2  = current noise = Ni2 ,  PI 

A) Four idealized current traces representing single openings of ion channels. B) A segment of the whole-current 
resulting from the summed activity of all channels present in the cell. The current shown is an expansion of the falling 
(encircled) paît of a GTPyS-induced current oscillation shown in total to the right. C) High-pass filtering, 2 Hz, 
removes the slow current component, the remaining current fluctuations represent the noise associated with the whole-
cell current (a). The trace displayed is an enlargement of trace shown to the right D) A schematic relationship 
between the whole-cell current (/) and the variance (a2). The assumption that p is small (and N is large) is valid if 
the correlation is linear. The single-channel amplitude can be estimated from Eq. 5 and is identical to the slope 
coefficient of the c^-Z-curve. 

• _ u 

/(I -P) 

Abbreviations used: 
N = total number of channels p = open probability (< 1) q = closed probability = (1-p) 

Functional significance 

The electrophysiological mechanisms regulating the membrane potential oscillations 

are not known but several hypotheses have been proposed. One model that has been 

implicated in the process involves the accumulation of Ca2+ entering the ß-cell during the 

action potentials with the subsequent activation of K^-channels (ATWATER « «T.. I983; COOK « A.. 1984). 

The recent evidence that electrical activity is unaffected by C TX (KUKUUAN « ai., 1991), a specific 

inhibitor of ^-channels, suggests that this hypothesis is incorrect. 
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A second possibility originates from the observation that inactivation of the whole-cell 

Ca2+-current consists of a rapid and a slow component where the slow inactivation occurs over 

a time scale similar to the burst duration. The plateau is believed to result from persistent 

activation of the voltage-dependent Ca2+-channels (ashcroft & rorsman, i989; cook et a i., 1991). When 

this depolarizing Ca2*-current becomes too small to balance the backg round hyperpolarizing 

K+-current, the ß-cells starts to repolarize. This model provides an explanation to the 

observation that current injected into the cells resets the periodicity of the bursts (cook«ai.. 1991). 

One major difficulty with this model is to understand why cultured mouse ß-cells, even 

though they show slow inactivation of the Ca2+-current, do not exhibit the characteristic 

pattern of electrical activity. 

The third hypothesis involves cyclic variations in the activ ity of KATP-channels. When 

[Ca2+], is elevated, ATP in the vicinity of the membrane is consumed as a consequence of the 

activation of the Ca2+-ATPase that extrudes Ca2+ from the cell. The associated decrease in 

ATP/ADP-ratio has been proposed to be sufficient to activate KATP-channels and thereby 

repolarize the membrane (cook & ikeucm, i989. henquin. 1988.1990). This idea would be consistent with 

the finding that tolbutamide, a blocker of KATP-channels, converts oscillatory electrical activity 

to continuous spiking, but is difficult to reconcile with the observation that low concentrations 

of the sulphonylurea evoke membrane potential oscillations similar to those of glucose, as 

tolbutamide is unlikely to produce an variable block of KATP-channels. 

Fig. 7 Oscillations in membrane conductance evoked by intracellular application of thimerosal. The whole-cell 
configuration was established -20 s before the beginning of the recording. 

Based on the experiments presented in n & m, we propose that activation of low-

conductance Ca2+-activated K+-channels (KLCa-channels) underlies the bursting behaviour of 

the ß-cell. Although activation of this current by Ca2+ derived by mo bilization from internal 

stores is clearly one mechanism that evokes membrane potential oscillations (and indeed the 

only one that has so far been shown to do so experimentally), it remai n possible that in the 

freshly isolated intact islet, Ca2+-influx through voltage-gated Ca2+-channels triggers openings 

50 (iM Thimerosal 

2 min 
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of such channels. Such a concept would account for the finding that the frequency can be 

reset by current injection. 

Another possibility we have considered is that the Ca2+-influx associated with the 

bursts of action potentials leads to a localized increase in [Ca2+]i. When the Ca2+-concentration 

in this region of the ß-cell rises above a certain threshold it triggers a further elevation of 

[Ca2+]J by activation of Ca2+-induced Ca2+-release (CICR). ISLAM and co-workers (1992) have 

provided some evidence for the existence of CICR in insulin-releasing cells using the thiol 

reagent thimerosal, activating CICR (SWANN, 1991). Furthermore, as shown in Fig. 7, thimerosal 

elicits repetitive oscillations in membrane current similar to those obtained with GTPYS. 

Fig. 8 presents a model for oscillatory electrical activity in the ß-cell involving the 

novel Ca2+-activated K+-conductance. When exposed to glucose, the enhanced metabolism 

leads to an increased intracellular ATP-concentration of the cell which promotes the closure 

of the KATP-channels. The cell membrane then depolarizes, the voltage-activated Ca2+-channels 

open (/) and electrical activity is initiated. A burst of action potentials produce an increase 

in [Ca2+], which in itself, subsequent to the release of Ca2+ by CICR (ii) or by Ca2+-induced 

activation of PLC that leads to the generation of lns(l,4,5)P3 and mobilization of Ca2+ from 

intracellular stores (/ii), opens the KL Ca-channels. The increased K+-permeability repolarizes 

the cell membrane, and the voltage-activated Ca2+-channels are closed. 

Depolarization Repolarization 

Glucose 

KATP ^LCa 

Fig. 8 A model for the regulation of the membrane potential involving the novel low-conductance K*-channel ( KLCa-
channel). The model is described in the text. 

It is clear that the mechanisms involved in the generation of the bursting pattern 

remain unestablished. However, many of the properties of the KLCa-channel makes it an 
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attractive candidate for a channel involved in the regulation of the bursting activity. The role 

of Ins(l,4,5)P3-induced oscillations in the control of the ß-cell electrical activity remains 

controversial. It is possible that in the intact islet, activation of KL Ca-channels by Carpentering 

the cell during action potentials and/or mobilized from intracellular stores, inactivation of 

Ca2+-current and Ca2+-induced oscillations in the intracellular ATP/ADP-ratio all contribute to 

the generation of the membrane potential oscillations. 

Ca2+-dependence of insulin secretion (rv). 

As discussed above (II & m), glucose-stimulated insulin secretion is associated with 

electrical activity consisting of Ca2+-dependent actions potentials resulting in an elevation of 

[Ca2+]j (RORSMAN « ai.. 1992; SANTOS « ai., 1991; THELER ET ai., 1992). The changes in [Ca2+]J are of importance 

for insulin secretion and a direct correlation between elevation of [Ca2+]; and exocytosis has 

been demonstrated (GILON « «1., 199 3; PRALONG « ai, 1990 ; ROSARIO « ai.. 1986). However, the underlying 

molecular and cellular processes have only been partially elucidated. The recently developed 

technique for capacitance measurements of exocytosis (JOSHI & FERNANDEZ, i 98g; LINDAU & NEHER, i98s) 

has opened possibilities to monitor secretion from single cells with a high temporal resolution. 

In (IV) we have combined the patch-clamp technique with microfluorimetry and capacitance 

measurements to explore the role of Ca2+ in the process of insulin secretion. 

Exocytosis and Ca2+-influx through voltage-activated Ca2+-channels 

Ca2+-currents elicited by voltage-clamp depolarizations were associated with step 

increases in cell capacitance reflecting the fusion of secretory granules with the plasma 

membrane. The peak Ca2+-current, associated rise in [Ca2+], and increase in cell capacitance 

displayed the same U-shaped voltage-dependence with maximum responses around +20 mV. 

When allowance is made for the fact that the gating of the Ca2+-current activation is shifted 

by =20 mV to more positive voltages under these experimental conditions relative that seen 

in the intact islet cells (RORSMAN & TRUBE, 1986; SMITH et ai., 1993), the observed relationship indicates 

that secretion is maximally activated within the voltage range of the ß-cell action potential 

(ASHCROFT & RO RSMAN, 1989; HENQUIN & MEISSNER. 1984). Depolarization per se is not sufficient to evoke 

exocytosis as application of cobalt (Co2"), a blocker of Ca2+-channels (RORSMAN & TRUBE. i9 86) 
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inhibited both the Ca2+-current and exocytosis. Exocytosis was initiated when the average 

[Ca2+]j exceeded a threshold of 0.5 |iM and was markedly increased above 0.7 pM. 

closed 

Fig. 9 Regulation of exocytosis by the local Co2*-concentration in the vicinity of the Ca2*-channel. A) When the 

channel opens, Ca2*immediately reaches a high concentration in the active zone and exocytosis is initiated. B) Upon 

closure of the channel, the local Ca2*-transient collapses and exocytosis stops although a fluorescent Ca2*-indicator 

may continue to report an elevated [Ca2*]i for some time. 

Ca2+-gradients within the ß-cell 

Experiments on the squid giant synapse have demonstrated that neurotransmitter 

release is resistant to injection of Ca2+-buffers, such as EGTA, to concentrations as high as 

80 mM and that the latency between the arrival of the electric impulse to the synapse and 

release is only 0.2 ms, m ost of which is required for the Ca2+-channels to open (ADLER « ai., 1991; 

AUGUSTINE « AI., I98S). These observations have led to the proposal that neurotransmitter release 

is determined by Ca2+ in the immediate vicinity of the Ca2+-channels and that the 

concentration there changes too rapidly and too much to be buffered by the chelator. 

Neurotransmitter release can therefore be expected to mirror Ca2+-channel activity with the 

release being coincident with the opening of the Ca2+-channel. Our observation that exocytosis 

stops immediately upon repolarization would be consistent with a similar arrangement in the 

ß-cells. During Ca2+-channel openings, the Ca2+-concentration in the vicinity of the Ca2+-

channels (=active zones) rises to very high concentrations and exocytosis is initiated (Fig. 9A). 

When the channel closes, the local Ca2+-transient that controls exocytosis, collapses and 

exocytosis ends (Fig. 9B). It is only during repetitive stimulation, when high Ca2+-

concentrations have been attained throughout the cytoplasm, that exocytosis proceeds in the 

intervals between the pulses but then only at a much lower rate than during the pulses 

(AUGUSTINE & NEHER, 1992; NEHER & AUGUSTINE, 1992). 
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It appears, however, that although ß-cell exocytosis is determined by the Ca2+-

concentration in the vicinity of the Ca2+-channel(s), some diffusion of Ca2+ is necessary. This 

is suggested by our observation that exocytosis in the ß-cell was abolished by millimolar 

concentration of EGT A. Increasing the Ca2+-buffering of the cytoplasm had no effect on the 

inactivation of the Ca2+-channel (another Ca2+-dependent process; PLANT. i98s). This observation 

suggests that the diffusion path required to initiate exocytosis is longer than that involved in 

the inactivation of the Ca2+-channel. During its diffusion from the Ca2+-channel to the site 

where exocytosis is initiated, the Ca2+-ion can be chelated by EGT A (Fig. 10). 

Fig. 10 A )  In the absence of chelator (EGTA) Ca2*-influx through the open channel both inactivates the Ca2*-
channel and initiates exocytosis. B) In the presence of EGTA, Ca2* still inactivates the channel but, due to a longer 
diffusion path, the Ca2*-ion can be chelated before it reaches the secretory site and exocytosis is abolished. 

Facilitation and depression 

An increase in [Ca2+]j initiates the release of the secretory granules. The number of 

granules released during stimulation (for example by a Ca2+-current elicited by a voltage-

clamp depolarization) is influenced by the previous stimulation. For example, during repetitive 

high-frequency stimulation, a second or a third depolarization often produce a larger response 

than the first pulse (Fig. 11, left part). Using the terminology developed to describe 

neuromuscular transmission, we refer to this as facilitation (KATZ, I966). Facilitation can be 

explained in terms of the interval between two successive depolarizations being insufficient 

for [Ca2+], to return to the prestimulatory level, and the individual Ca2+-transients therefore 

summate to generate a higher [Ca2+],. As exocytosis is steeply Ca2+-dependent, the second 

depolarization therefore produces a larger exocytotic response than the first. 

When subject to repetitive high-frequency stimulation, the exocytotic capacity of the 

cell usually declines (Fig. 11, to the right), a behaviour similar to depression seen in neurones. 

This we interpret as the depletion of the readily releasable pool of secretory granules. In order 
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for the secretion to proceed, the releasable pool must be replenished; a process which may 

require several minutes (GILLIS & MISLER, 1992). 

ji n n n n n n n n n. 

Depression 

Facilitation 

Fig. 11 Schematic illustration of facilitation and depression of the exocytotic response. Voltage-clamp depolarizations 
(AV) give rise to Ca2*-currents (not shown) and thus stimulating exocytosis. As a consequence of the fusion of 
secretory granules with the plasma membrane, secretion can be monitored as a change in cell capacitance (ACm) 
reflecting changes in the total cell area. Facilitation can be explained as the summation of two [Ca2*]transients and 
I Ca2*]j rises to exocytotic levels in a larger part of the cell than in response to a single depolarization and more 
granules can consequently be recruited for release. Depression we explain as depletion of the releasable pool of 
granules. 

Regulation of exocytosis by CaJ+-domains 

If exocytosis is regulated by the local Ca2+-concentration in the vicinity of the Ca2+-

channels, it follows that exocytosis should be dependent on (but not initiated by) changes in 

membrane potential since the L-type Ca2+-channel amplitude (and thus the number of Cat­

ions entering the cell through the channel) is dependent on the voltage. The whole-cell Ca2+-

current is the product of the single-channel amplitude (/) and the channel activity (Np\ N=total 

number of channels available for activation, p=open probability). Both i and the product Np show voltage 

dependence, illustrated schematically in Fig. 12A (upper and middle panel). Because of the inwardly 

rectifying properties of the Ca2+-channel (sMrra et ai., 1993), the single-channel amplitude 

decreases, whereas the channel activity increases with depolarization. The whole-cell Ca2+-

current therefore displays a U-shaped 1-V-relationship (Fig 12A, lower panel). At negative 

membrane potentials, fewer channels are open, but the current flowing through the individual 

channel is larger than that at more positive voltages. If exocytosis is determined by the local 

rather than the global Ca2+-concentration, the domain theory of Ca2+-entry (CHAD & ECKERT. 1984), 

illustrated in Fig. 12B, would predict that [Ca2+]; is more effective as an initiator of exocytosis 

at negative than at positive potentials. This is indeed, what we observed, and despite average 
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Ca2+-transients of the same magnitude, a depolarization to 0 mV was more effective at evoking 

exocytosis than a pulse to +40 mV (Fig. 5 in IV). 

Fig. 12 A) The voltage-dependence of the single-channel amplitude (top), the channel activity (middle) and the 
whole-cell Cef*-current ( bottom). B) At negative membrane potentials ( top) fewer channels, but with larger amplitude, 
are activated than at more positive voltages (bottom). The number of Ca2*-ions en tering the cell per channe l is 
therefore larger at the more negative membrane potential and the [Co2*]rtransient can thus be envisaged to extend 
deeper into the cell (shaded areas) thus promoting the release of more secretory granules. 

Estimation of the local Ca2+-concentration at the exocytotic site 

As outlined above, much evidence indicates that exocytosis is regulated by the local 

Ca2+-concentration in the vicinity of the Ca2+-channels and that [Ca2+], there is much higher 

than that suggested by the microfluorimetric recordings, which report the average 

concentration of the entire cell. In an attempt to estimate the true Ca2+-concentration within 

the active zones, we tried to induce a global rather than a localized increase of Ca2+ by 

release from intracellular stores using caged Ins(l,4,5)P3. 

As shown in Fig. 13, photorelease of Ins(l,4,5)Pj (15 pM) from a caged precursor evoked 

a Ca2+-transient which was considerably larger (>10 times) than that elicited by a 500 ms 

voltage-clamp depolarization to 0 mV. ins(l,4,5)P3 also evoked large exocytotic responses. 

Interestingly, the rates of the capacitance increase (dC/dt; dotted lines in Fig. 13) were roughly the 

same whether exocytosis was elicited by lns(l,4,5)P, or by voltage-clamp depolarization, 

although measured [Ca2+],-levels were vastly different. The simplest explanation to account 

for this observation is that the Ca2+-concentration at the release site, that controls exocytosis, 

is the same under both experimental conditions. This implies that the local [Ca2+]| in the 
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vicinity of the Ca2+-channels is as high as 10-20 nM, i.e. 20-30 times higher than that actually 

measured by microfluorimetry. The reason why the microfluorimetric measurements 

underestimate the true [Ca2+]rtransients at the secretory site is that only a fraction of the 

indicator is located in the active zone. 
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Fig. 13 The Ca2*-transients (top panel) and capacitance changes (bottom) associated with a voltage-clamp 
depolarization and photorelease of Ins( 1,4,5)P} (15 pM) from a caged precursor. Although giving rise to a 
substantially larger Ca2*-transient, the rate of exocytosis (dotted lines) induced by lns(l„4,5)P3 is the same as that 
elicited by the voltage-clamp depolarization. The decrease in capacitance following the Ins( l,4,5)P3-induced increase 
probably reflects retrieval of secreted membrane by endocytosis. 

The cell shown in Fig. 13 also exhibited a rapid decrease in cell capacitance following 

the lns(l,4,5)Pj-induced capacitance increase. We interpret this decrease in capacitance as 

retrieval of secreted membrane (NEHER & ZUCKER. 1993) suggesting that Ca2+ might also be involved 

in the regulation of endocytosis. 

Recent experiments utilizing digital imaging of fluorescence from fura-2 have indeed 

revealed the existence of localized increases in [Ca2+], in response to voltage-clamp 

depolarization. Fig. 14A shows the Ca2+-current elicited by a 200 ms voltage-clamp pulse and 

the associated increase in cell capacitance. Images of the spatial distribution of Ca2+ at various 

times after the onset of the depolarization are shown in Fig. 14B. It is clear that [Ca2+], varies 

substantially within the cell. The increase in Ca2+-dependent fluorescence is particularly 

pronounced in a region close to the plasma membrane. It is also of interest, that the increase 

is restricted to the left part of the cell with other parts being relatively unaffected. This 

indicates an uneven distribution of Ca2+-channels in the plasma membrane and it is tempting 

to speculate that these regions might correspond to "hot spots" of exocytosis. 
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Fig. 14 A) The Con current (top) elicited by a voltage-clamp depolarization from -70 to 0 mV and the resulting 
increase in capacitance (bottom). B) Digital images of the Ca2*-distribution at four different times: before (i), in the 

beginning (ii), in t he middle (iii) and at the end of a Ca2*-current (iv). 

Regulation of exocytosis by CaM-kinase II 

The Ca27calmodulin-dependent protein kinase II (CaM-kinase n) has been shown to play 

an essential role in the regulation of neurotransmitter release in the squid giant synapse (LLINÀS 

« ai. i99i). This enzyme has been proposed to act by phosphorylating the synaptic vesicle-

protein synapsin I. This results in the release of the synaptic vesicles from the cytoskeleton, 

thus facilitating the transport to the membrane and/or docking with the release sites. CaM-

kinase n has been identified in the ß-cell, but little is known about its physiological role 

(HARRISON & ASHCROFT, 1982). In this context, it is of particular interest that inhibitors of the kinase 

reduce nutrient-stimulated insulin secretion and block the potentiating effect of forskolin 

(HARRISON et »i., 1 986; LI a ai., 1992). Pretreatment of the cells with KN-62, an inhibitor of CaM-kinase n 

(TOKUMITSU et »I.. i99o), reduced depolarization-induced exocytosis and Ca2+-current by 50% 

compared to control. The latter effect complicates the interpretation of the data as the 

inhibition may simply result from the reduced Ca2+-influx. However, inclusion of the 

calmodulin-binding domain of CaM-kinase n, a specific inhibitor of the kinase (PAYNE et ai.. i98s) 

was also able to reduce exocytosis whilst not affecting the Ca2+-current. This suggests that 

activation of CaM-kinase n is indeed involved in the cascade of events that links the elevation 

of Ca2+ to the initiation of exocytosis but the substrate(s) of this enzyme in the ß-cell 

remain(s) to be identified. It is unlikely to be synapsin /, however, as this protein is neurone-

specific and there is no evidence for its association with the insulin containing secretory 

granule. 
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cAMP dependent potentiation of Ca2+-induced insulin release (V). 

Insulin secretion is potentiated by hormones such as glucagon (PIPELEERS a ai. i982; i98s) and 

GLP-i (HOLST«ai.. 1987; Mojsov « ai., 1987), which act by elevating the intracellular concentration of 

cAMP (RASMUSSEN ET AI, i99o), but t he mechanisms involved are not completely clear. For example, 

from experiments on intact islet or suspensions of ß-cells, it is not even possible to 

distinguish between the possibility that cAMP acts by recruitment of previously non-secreting 

cells or whether it potentiates secretion in every cell. It is well established that insulin-

secretion depends on a rise in [Ca2+], (PRENTKI & MATSCHINSKY, 1987). The simplest explanation to 

account for cAMP-dependent potentiation of secretion is therefore that these substances 

potentiate secretion by elevation of [Ca2+];. However, there is evidence that agents which 

increase cAMP hav e little (or any) effect on [Ca2+]J (RORSMAN & ABRAHAMSSON. 1985). Furthermore, 

studies in permeabilized cells have demonstrated that cAMP is able to potentiate exocytosis 

even when the Ca2+-concentration is held constant (JONES«ai.. i989; 1992). In (V) we have attempted 

to clarify the mechanism of cAMP-induced potentiation of exocytosis by using the patch-clamp 

technique in combination with microfluorimetry and capacitance measurements. 

When recorded in the perforated-patch configuration under basal conditions, Ca2+-

currents elicited by voltage-clamp depolarizations, evoked relatively small increases in cell 

capacitance. However, extracellular application of either the membrane permeable cAMP-

analogue 8-bromo-cAMP or forskolin, an activator of adenylate cyclase, markedly potentiated 

the exocytotic response. The Ca2+-current increased by 50% and 70% and exocytosis was 

potentiated by 360% and 580% after exposure to 8-bromo-cAMP or forskolin, respectively. The 

effects of forskolin were mediated by activation of protein kinase A (PKA) and both the 

augmentation of the Ca2+-current and stimulation of capacitance could be abolished by 

Rp-cAMPS, a specific inhibitor of PKA (DE WIT ET ai . 1984). 

Since exocytosis is a Ca2+-dependent process and cAMP increased the Ca2+-currents, the 

simplest explanation to account for the effects of exocytosis is that it results from the 

enhancement of Ca2+-influx. To investigate this possibility we used the dihydropyridine 

BAY K86 44 t o promote Ca2+-influx. This compound increases the Ca2+-current by increasing 

the open-time of individual L-type Ca2+-channels (HESS EI ai., i984. RORSMAN ET ai., ms). At the 

concentration used (1 pM), BAY K8 644 doubled the Ca2+-current and potentiated exocytosis to 

the same extent. Subsequent inclusion of forskolin in the continued presence of BAY K8644 
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produced a further 3-fold enhancement of exocytosis with no further action on the Ca2+-

current. Comparison of the effects of BAY K8644 and forskolin on the Ca2+-current and 

exocytosis, indicates that only about 20% of the potentiation of secretion can be accounted 

for by the enhancement of Ca2+-influx. It was therefore concluded that the major effect of 

cAMP is exerted at some step(s) distal to the elevation of Ca2+. 

B 
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Fig. 15 Stimulation of exocytosis by photorelease ofcAMP (80 fiM) from a caged precursor. The cells were infused 
with Ca1*-EGTA mixtures yielding free Ca2*-concentrations of: A) 0, B) 60 nM and C) 2 ßM Ca 1*. 

To investigate the nature of such a distal step we next performed experiments using 

the standard whole-cell configuration. In this recording mode, application of cAMP by 

photorelease from a caged precursor during a train of depolarization-evoked Ca2+-currents 

(0.1 Hz), dramatically and rapidly (<1 s) increased the exocytotic response (+200%) with only 

a small effect on the amplitude of the Ca2+-transient (+20%). From the relationship between 

Ca2+ and exocytosis, we estimate that the rise in [Ca2+]; produced by cAMP would only 

stimulate exocytosis by 20%. This was only about 10 % of that actually observed suggesting 

that the main action of cAMP was exerted at steps distal to the elevation of [Ca2+],. Further 

evidence for such a direct effect of cAMP comes from experiments where mixtures of Ca2" and 

EGTA, to clamp [Ca2+], at fixed concentrations and to abolish influence by the cell's own Ca2+-

homeostasis, were infused into the cell. As shown in Fig. 15, photorelease of cAMP (80 (iM) in 

cells dialyzed with a high concentration of Ca2+ (2 nM; Fig. 15C) and voltage-clamped, to 

-70 mV to preclude activation of voltage-activated Ca2+-channels, resulted in a marked 

acceleration of exocytosis. Interestingly, cAMP failed to stimulate exocytosis in the complete 

absence of Ca2+ (Fig. 15A). These observations supports the concept that cAMP is a potentiator 

rather than an initiator of exocytosis, and acts by sensitizing the secretory machinery to Ca2+ 

38 



(HUGHES CI ai.. 1989). Indeed, at a sub-stimulatory Ca2+-concentration (0.06 nM), application of cAMP 

was able to initiate exocytosis (Fig. 15B). The concept that cAMP acts by increasing the 

sensitivity of the secretory machinery might also provide an explanation to the observation 

that photorelease of CAMP re-initiated exocytosis in a cell were secretion had been exhausted 

by repetitive stimulation. By increasing the Ca2+-sensitivity of the secretory machinery, the 

distance from the Ca2+-channel over which secretory granules can be recruited for release is 

substantially extended in the presence of cAMP (Fig. 16). 

no cAMP cAMP 

Fig. 16 Stimulation of exocytosis by cAMP increases the distance from the Ca2*-channel over which the secretory 
granules can be recruited for release by sensitizing the secretory machinery to Ca2*. The dark sector indicates the 
zone in which Ca2* is sufficient to evoke exocytosis in the absence of cAMP. The lighter area indicates the zone in 
which secretory granules can be recruited for release in the presence of cAMP. 

The molecular processes by which cAMP control exocytosis remain largely unknown. 

Activation of PKA produces phosphorylation of several ß-cell proteins (JONES «ai., i9ss) but which 

of these regulates exocytosis has not been determined. In this context, it is of interest that 

recent experiments have indicated that the exocytotic response is also dramatically increased 

by activation of PKC or inhibition of protein phosphatases. These effects also occurred without 

any enhancement of Ca2+-influx (ÄMMÄLÄ ET ai., 1994). This suggests that Ca2+-independent 

processes also mediate the action of potentiators of exocytosis acting via these pathways. An 

interesting observation is that although large Ca2+-currents could be evoked under basal 

conditions (i.e. absence of kinase activators or phosphatase inhibitors), the exocytotic 

responses were almost invariably small. These findings suggests that although Ca2+ is certainly 

required to initiate exocytosis, its role may be permissive rather than decisive. 

Phosphorylation and dephosphorylation of certain regulatory proteins by protein kinases and 

39 



phosphatases might be of much greater quantitative importance in the modulation of 

exocytosis 

PERSPECTIVES 

Although much information is now available regarding the ionic channels in the 

pancreatic ß-cells and the way they co-operate to produce electrical activity, little is known 

about the molecular processes involved in exocytosis. An important future area of research 

will be the identification and characterization of the proteins involved in exocytosis and the 

mechanisms linking Ca2+ to the release of the insulin-containing granules. 
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CONCLUSIONS 

1. Voltage-gated L-type Ca2+-channels are modulated by GTP-binding proteins and can be 

inhibited by GTPyS v ia a pertussis toxin-insensitive mechanism. The inhibitory effect of GTPyS 

is not mediated by adenylate cyclase. 

2. Activation of an oscillatory Ca2+-dependent K+-conductance, either by extracellular 

application of carbamylcholine or intracellular infusion of GTPyS, produces a transient 

membrane repolarization sufficient to interrupt action potential firing. The effect is mediated 

by mobilization of Ca2+ from lns(i,4,5)P3-sensitive intracellular Ca2+-stores. 

3. The oscillating membrane current induced by GTPyS is highly selective to K+. The 

single-channel conductance is 0.5 pS when recorded at nonphysiological ionic gradients and 

estimated to 0.1 pS at physiological ionic gradients. This novel K+-conductance is insensitive 

to tetraethylammonium, charybdotoxin, apamin and tolbutamide. 

4. Exocytosis is dependent on a rise in [Ca2+], and is initiated when the average 

concentration exceeds 0.5 nM. Ho wever, the concentration at the secretory site is likely to be 

much higher and estimated to exceed 10 nM. Ca 27calmodulin-dependent protein kinase II is 

involved in the coupling between elevation of [Ca2+]| and the activation of the secretory 

machinery. 

5. In single pancreatic ß-cells, cAMP potentiates insulin release by activation of protein 

kinase A. A small fraction (20%) of the cAMP-dependent potentiation is accounted for by an 

increase in Ca2+-influx through voltage-activated Ca2+-channels. The major effect (80%) is due 

to a direct interaction with the secretory machinery, possibly exerted by increasing the Ca2+-

sensitivity of the secretory machinery. 
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