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Lithium organic reagents find enormous use in organic synthesis; however, little is still known 
about the structures and reaction mechanisms concerning these supramolecular reagents. This 
thesis deals with chiral lithium amides; their structures, dynamics, mechanisms, and use in 
asymmetric synthesis. The reactions studied include the base induced enantioselective 
rearrangement of meso-epoxides to chiral allylic alcohols, an accompanying solvent induced 
isomerization reaction, and the asymmetric addition of alkyllithium reagents to prochiral 
aldehydes. Synthesis, theoretical calculations (semi empirical, ab initio, and DFT), and NMR 
spectroscopy (ID and 2D multinuclear experiments) have been used to investigate the 
supramolecular aggregates and the origin of stereoselectivity. The main results are 
summarized below. 

A detailed computational study of the activated complexes in the 
enantioselective rearrangement of cyclohexene oxide to (S)-2-cyclohexen-l-ol by 
the chiral lithium amide Li-11, revealed that the observed stereoselectivity is a 
result of better solvation and less non-bonded interactions in one of the two 
diastereomeric activated complexes. The calculated enantioselectivity (88% ee) 
was close to that experimentally observed (80% ee). 
Some preliminary mechanistic studies on a solvent induced isomerization 
reaction, accompanying the enantioselective rearrangement reaction, are also 
presented. 

X-Ray, computational, and quantitative 6Li,'H-HOESY studies on the 
chiral lithium amide Li-21 revealed a THF solvated dimeric structure, i.e. 
(Li-21)2-THF, in the solid state, in the solution state, and in the gas phase 
(computationally optimized). Use of Li-21 in the enantioselective 
rearrangement of cyclohexene oxide gave (R)-2-cyclohexen-l-ol in 47% ee. 
Redesign of Li-21, based on the detailed structural studies, resulted in the 
preparation of Li-26; use of Li-26 in the above reaction increased the 
stereoselectivity to 74% ee. 

Mixed 1:1 complexes between Li-21 and alkyllithium reagents are useful 
reagents for the asymmetric alkylation of prochiral aldehydes. NMR 
spectroscopic studies of various chiral lithium amides revealed the factors 
important for mixed complex formation and high stereoselectivity in the 
asymmetric addition of n-butylli thium (n-BuLi) to benzaldehyde. A new 
chiral lithium amide, Li-22, was designed based on the obtained results; 
Li-22/n-BuLi gave high enantioselectivity (up to 99% ee) when used for 
n-BuLi addition to prochiral aliphatic aldehydes. 

Novel types of diamine chelates, e.g. (Li-ll)2/ll, are formed between Li-11 
and diamines, e.g. TMEDA or the amine 11. The barriers for several dynamic 
processes, i.e. dissociative diamine exchange, intraaggregate diamine-lithium 
amide interconversion, and intraaggregate lithium-lithium exchange, were 
determined by dynamic NMR spectroscopy and 6Li,6Li-EXSY spectroscopy. 
Chelates of this kind are expected to be present, and influence the reactivity, 
in enolizations, deprotonations, and other lithiation reactions. 

A novel type of mixed tetrameric aggregate, i.e. Li-11/(n-BuLi)3, is formed 
when 11 is added to a DEE solution of n-BuLi. Analogous to pure 
alkyllithium tetramers, the Li-11/(n-BuLi)3 aggregate show fluxional lithium 
and carbanion exchange. The rates for fluxional lithium and carbanion 
exchanges were determined from quantitative EXSY spectroscopy, and a 
novel two-site mechanism for intraaggregate exchange in tetramers was 
proposed. 
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Lithium organic reagents find enormous use in organic synthesis; however, little is still known about 
the structures and reaction mechanisms concerning these supramolecular reagents. This thesis deals 
with chiral lithium amides; their structures, dynamics, mechanisms, and use in asymmetric 
synthesis. The reactions studied include the base induced enantioselective rearrangement of meso-
epoxides to chiral allylic alcohols, an accompanying solvent induced isomerization reaction, and the 
asymmetric addition of alkyllithium reagents to prochiral aldehydes. Synthesis, theoretical 
calculations (semi empirical, ab initio, and DFT), and NMR spectroscopy (ID and 2D multinuclear 
experiments) have been used to investigate the supramolecular aggregates and the origin of 
stereoselectivity. The main results are summarized below. 

A detailed computational study of the activated complexes in the 
enantioselective rearrangement of cyclohexene oxide to (S)-2-cyclohexen-l-ol by 
the chiral lithium amide Li-11, revealed that the observed stereoselectivity is a 
result of better solvation and less non-bonded interactions in one of the two L 
diastereomeric activated complexes. The calculated enantioselectivity (88% ee) 
was close to that experimentally observed (80% ee). 
Some preliminary mechanistic studies on a solvent induced isomerization reaction, 
accompanying the enantioselective rearrangement reaction, are also presented. 

X-Ray, computational, and quantitative 6Li,'H-HOESY studies on the chiral 
lithium amide Li-21 revealed a THF solvated dimeric structure, i.e. 
(Li-21)2THF, in the solid state, in the solution state, and in the gas phase 
(computationally optimized). Use of Li-21 in the enantioselective 
rearrangement of cyclohexene oxide gave (R)-2-cyclohexen-l-ol in 47% ee. 
Redesign of Li-21, based on the detailed structural studies, resulted in the 
preparation of Li-26; use of Li-26 in the above reaction increased the 
stereoselectivity to 74% ee. 

Mixed 1:1 complexes between Li-21 and alkyllithium reagents are useful 
reagents for the asymmetric alkylation of prochiral aldehydes. NMR 
spectroscopic studies of various chiral lithium amides revealed the factors 
important for mixed complex formation and high stereoselectivity in the 
asymmetric addition of n-butyllithium (n-BuLi) to benzaldehyde. A new 
chiral lithium amide, Li-22, was designed based on the obtained results; 
Li-22/n-BuLi gave high enantioselectivity (up to 99% ee) when used for 
n-BuLi addition to prochiral aliphatic aldehydes. 

Novel types of diamine chelates, e.g. (Li-ll)2/ll, are formed between Li-11 
and diamines, e.g. TMEDA or the amine 11. The barriers for several dynamic 
processes, i.e. dissociative diamine exchange, intraaggregate diamine-lithium 
amide interconversion, and intraaggregate lithium-lithium exchange, were 
determined by dynamic NMR spectroscopy and 6Li,6Li-EXSY spectroscopy. 
Chelates of this kind are expected to be present, and influence the reactivity, in 
enolizations, deprotonations, and other lithiation reactions. 

A novel type of mixed tetrameric aggregate, i.e. Li-ll/(n-BuLi)3, is formed 
when 11 is added to a DEE solution of n-BuLi. Analogous to pure alkyllithium 
tetramers, the Li-11/(rc-BuLi)3 aggregate show fluxional lithium and carbanion 
exchange. The rates for fluxional lithium and carbanion exchanges were 
determined from quantitative EXSY spectroscopy, and a novel two-site 
mechanism for intraaggregate exchange in tetramers was proposed. 
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Introduction 

•Lithium organic reagents are among the most 

widely used reagents in contemporary organic 

chemistry. 

•Preparation of en antiomerically pure chemicals is 

one of the most important objectives in organic 

chemistry today. 

Given these facts, it seems natural to employ lithium organic reagents for the 

preparation of enantiomerically pure chemicals, i.e. for asymmetric synthesis. 

However, despite the enormous utility of lithium organic reagents in synthesis, 

successful applications of these reagents in asymmetric processes were only 

recently reported. The meager use of lithium organic reagents in asymmetric 

synthesis is probably due to an insufficient understanding of the reaction 

mechanisms involved. Mechanistic detail in this field is itself hampered by 

incomplete insight into the solution state structures and dynamics of lithium 

organic reagents. Organolithium chemistry is very complex, with highly reactive 

compounds present as supramolecular aggregates in solution. 

This thesis deals with chiral lithium amides; their structures, dynamics, 

mechanisms, and use in asymmetric synthesis. The reactions studied in this work 

include the enantioselective rearrangement of cyclic meso-epoxides to chiral allylic 

alcohols, and the enantioselective alkylation of a ldehydes to yield chiral secondary 

alcohols. During these studies, a solvent induced 1,3-proton transfer reaction was 

observed. This reaction allows stereospecific conversion of cyclic allylic alcohols to 

their homoallylic counterparts. Spectroscopic, computational, and synthetic 

methods have been used to characterize the supramolecular aggregates involved, 

and for searching the origin of ste reoselectivity in lithium organic chemistry. 



2 CHAPTER 1 

The impact work of this kind might have on organic chemistry has been 

eloquently expressed by P. G. Williard:"1 

"The material presented may provide fundamental information for 

the conduct, planning and strategy of organic synthesis. The origin of 

stereoselectivity in many organic reactions can be put on a more 

rational basis as more intimate structural details about the 

intermediates involved in these reactions are discovered. The long 

term goal and ultimate significance of this structural information is to 

provide a m ore thorough basis for accurate prediction and control of 

stereochemistry in organic reactions." 

This thesis is divided in two parts. Part I is comprised of three chapters. Chapter 

2 provides the reader with an essential introduction to lithium organic chemistry. 

Chapter 3 presents important asymmetric reactions, where chiral lithium amide 

bases are used as reagents. Chapter 4 gives a short account on the experimental and 

theoretical methods used. Part II covers five chapters, and is based on the papers I-

XII collected at the end of this thesis. Chapter 5 concerns the base mediated 

enantioselective rearrangement of meso-epoxides to chiral allylic alcohols. Chapter 

6 describes the solvent induced 1,3-proton transfer reaction that transforms cyclic 

allylic alcohols into their homoallylic counterparts. Asymmetric alkylation of 

prochiral aldehydes by mixed alkyllithium/lithium amide complexes is outlined 

in Chapter 7. General work related to the solution state structure of organolithium 

reagents is collected in Chapter 8. Finally, some suggestions for interesting areas for 

future research will be presented in Chapter 9. 



Parti 
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Lithium Organic Reagents - Background 

2.1 GENERAL 

Organolithium chemistry dates back to 1917 when Schlenk and Holtz reported 

the preparation of the first alkyllithium compounds, i.e. methyllithium, 
[2] 

ethyllithium and phenyllithium. However, it was not until the pioneering work 

by Wittig,135' Gilman,'69' and Ziegler1'1' that the large synthetic potential of these 

reagents was realized. 

During time, the definition of the term "organolithium" has broadened. 

Organolithium now refers to all organic compounds containing lithium linkages, 

not only compounds with C-Li bonds. Other frequently encountered 

organolithiums include lithium amides (R2NLi), lithium alkoxides (ROLi), and 

lithium enolates (RC(=CH2)OLi). 

There is still widespread representation, especially in organic chemistry 

textbooks, of organolithium compounds as carbanions (R ) or other organoanions 

(RO", R2N", etc.) with the lithium ion as a passive bystander. This is a severe 

misconception! Lithium organic compounds are present as solvated aggregates of 

ion pairs in solution. Monomers are rare species! In order to understand the 

nature and reactivity of these reagents, knowledge about the structure and degree 

of aggregation is essential.1"'121 

2.2 STRUCTURE AND DYNAMICS 

The nature of the carbon-lithium bond has been a matter of controversy for 
[13] 

many years. However, it is now generally accepted that the carbon-lithium and 

other organo-lithium bonds are mainly ionic."4181 Natural population analysis 

(NPA) of CH 3Li and NH2Li ascribe 89% ionic character to the C-Li and 90% ionic 

character to the N-Li bond.1'9 211 
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In spite of the high number of known X-ray crystal structures containing 

lithium, there is still little predictability of the coordination number for lithium.1221  

Coordination numbers ranging from two through seven, and all values in 
[23] 

between, can be found for Li+. There are also examples of Li-7t coo rdination of 

aryl anions and conjugated linear anions.'24 271 The coordination geometry of 

organolithium compounds is primarily governed by the steric requirements of t he 

ligands, i.e. the anion and coordinating Lewis basic molecules/groups. Fortunately, 

the majority of known structures can be built from a few simple structural 
[1, 28] 

patterns. 

2.2.1 Aggregation 

The basic building block is a dimer with a nearly planar four-membered ring of 

two lithium cations and two anions (b. in Figure 2.1). The cation in such a dimer is 

normally coordinated with lone pairs of solvating ligands to make it 

tetracoordinated. However, exceptions are common. Tri-coordinated lithium 

centers are prevalent when the anions and/or ligands makes the environment 
[29 30] 

around the lithium center congested. 

Li —X <> 
Li 

b 

X — Li / s 
Us /X 

X — Li 

,Li-

l / X - b U  

Li— X 

. / 

Li-

-Li 

LU 
X| Li i 

.Li 
Li-

X= C, N, O 

^Li-—X — 
X -L\—f-X; 

- x - l - u - l -
Li: X Li: 

: Li-
Li 
7*-

' X -1 ~ Li - 
X  

Figure 2.1 Different types of a ggregates observed for l ithium organic reagents: a. 
monomer, b. dimer, c. trimer, d. tetram er, e. hex amer, f. inf inite ladder, g. inf inite 
stack. 
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From the dimer, additional aggregates can be constructed. Edge-to-edge 

combination of dimers gives rise to extended ladder structures (f. i n Figure 2.1). 

Face-to-face combination of two dimeric units yields a cubic aggregate, i.e. a 

tetramer (d. in Figure 2.1). The cation in such aggregates normally bears one 

coordinating ligand, again making the lithium atom tetracoordinated. Larger 

aggregates, e.g. g. in Figure 2.1, may form through further combination of the cubic 

and ladder motifs. Trimeric rings (c. in Figure 2.1) are another common building 

block. Stacking of two trimeric rings gives a hexameric aggregate (e. in Figure 2.1). 

Monomers  (a .  in  Figure  2 .1) ,  a re  only  observed under  sp ecia l  c i rcumstances  (v ide  

in f ra) .  

Additional structural motifs such as monocyclic tetramers and insoluble infinite 

polymers are known. 

2.2.2 Solvation 

The degree of aggregation is mainly determined by the solvent. Thus, solvation 

has a profound influence on the reactivity, stereochemistry, and regioselectivity of 

organolithium reagents.31371 Monomers are only observed when the lithium 

cation is solvated by very strong Lewis bases or multidentate ligands such as 

N,N,N',N'-tetramethylenediamine (TMDEA) or N,N,N',N",N"pentamethyl-
[38] 

diethylenetriamine (PMDTA), or have very large groups near the anion center. 

Dimers and tetramers are most prevalent in the presence of coordinating ligands, 

i.e. coordinating solvent molecules or internally coordinating groups.'39- 401 Trimers 

and hexamers are the most common states of aggregation in non-coordinating 
[41] 

solvents such as hydrocarbons. Smaller aggregates are generally favored in the 

presence of ligands with high Lewis basicity since these have large affinity for 

lithium. 

The aggregate size is also temperature dependent. Larger aggregates are favored 

at low temperature in non-coordinating solvents, while smaller aggregates are 

favored at low temperature in the presence of c oordinating ligands, Scheme 2.1. 

2 
L 

L 

L 

X 

L' 

Scheme 2.1 
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Control of the aggregate size is of importance since the reactivity of lithium 

organic reagents is highly dependent on the degree of a ggregation."' " 421 Addition 

of bidentate ligands e.g. TMEDA, increases the reactivity of alkyllithiums 

presumably through formation of smaller aggregates, i.e. dimers 

and monomers. 
[43-47] 

2.2.3 Dynamics 

The aggregated organolithiums show inter- and intraaggregate dynamic 

processes in solution.142' 481 Inversions at the carbanionic carbons are also 

observed. 
[49] 

Processes of this kind have mainly been studied for alkyllithium 
[50-52] 

reagents using NMR spectroscopy. Interaggregate exchange can proceed via an 

associative mechanism (A in Scheme 2.2) or via a dissociative mechanism (D in 

Scheme 2.2).1531 

/ 

Li : * R  

— Li — R 
*R 

R- Li-

./ i 

i / 

Scheme 2.2 

Fraenkel and co-workers have proposed an associative mechanism in which a 

dimeric aggregate collides with a face of a tetramer, giving a new tetramer and a 

dimer, possibly through a hexameric intermediate.'511 However, dissociation of a 
[521 

tetramer to dimers followed by recombination is another plausible mechanism. 

Intraaggregate exchange in tetrameric RLi aggregates have been extensively 

studied using 7(13C-6Li) coupling constants.1'1' 52' 54' The aggregate is termed 

fluxional when the carbanion carbons exhibit scalar coupling to all lithiums in the 

aggregate. Three mechanisms have been proposed for the intraaggregate lithium 

exchange in tetrameric aggregates, Scheme 2.3. 
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L_R 
R 

Li* 

R 
/ 

Li 

R 

a 

Scheme 2.3 Three proposed mechanis ms for the fluxional lit hium- and carbanion-
exchange in tetrameric aggregates; a. unfolding/refolding of the tetram er via an eight 
membered ring, b. concerted center-to-edge rotation, c . dissociation into dimers 
followed by re-association. 

The three mechanisms depicted in Scheme 2.3 are exchange via an eight-

membered ring'561 (a. in Scheme 2.3), a concerted center-to-edge rotation of three of 
[571 

the alkyl groups (b. in Scheme 2.3), and dissociation into dimers which 
[54] 

recombine (c. in Scheme 2.3). The concerted center-to-edge rotation mechanism 

was first proposed to explain inversion, observed at stereogenic carbanionic 

carbons in alkyllithium compounds. It has previously not been established 

whether it is lithium exchange, carbon exchange, or both carbon and lithium 

exchange that result in the fluxional lithium-carbon bond exchange. 

The dynamic properties of lithium organic compounds are highly dependent on 

solvent, ligands, and temperature. The static tetramers normally observed at low 
[54] 

temperatures are observed to be fluxional at higher temperatures. At even 

higher temperatures, interaggregate exchange processes begin to be fast. This 

illustrates the importance of variable temperature NMR spectroscopic 

measurements on such systems. 

2.3 UTILIZATION 

The broad usage of lithium organic reagents in organic synthesis makes it 

impossible to give a detailed account in a book of this size. Instead, only a short 

summary of the organolithium reagents encountered in this thesis is given below. 

Another important type of lithium organic reagents, not covered here, are sulfur-
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[58] 
stabilized carbanions. These reagents are intensively used for umpolung 

[59] 
reactions. 

2.3.1 Alkyllithiums 

Alkyllithium reagents are the cornerstones of lithium organic chemistry since 

most other organolithium reagents are prepared starting from them.'60' 

Alkyllithiums themselves are usually prepared by way of direct synthesis, i.e. 

reaction of lithium metal with the appropriate organohalide presumably through 

a radical mechanism, Scheme 2.4. 

•-> ^ i • / \ Pentane _ 
R — X + Li(s) R — Li + LiX 

Scheme 2.4 

The formed alkyllithium reagent can be used in the Wittig-Gilman reaction, in 

which the alkyllithium reagent reacts with an alkyl halide to produce a new 

alkyllithium via metal-halogen exchange. This reaction forms the basis for aryl 

and alkenyl alkylation reactions, e.g. Scheme 2.5. 

F 
Me Me Me 

/ n-BuLi / n-CflHi7l / =\ r=\ ~ r=\ 
Me Br Me Li Me n-CsHi7 

Scheme 2.5 

The carbanion center in alkyllithium reagents makes the less steric alkyllithium 

reagents highly potent as nucleophiles. Addition to aldehydes and ketones 

generates alcohols, while addition to carboxylic acid derivatives gives alcohols or 

ketones as products. An example of t he former reaction is given in Scheme 2.6. 

Me 

Me 

Scheme 2.6 

Addition reactions to epoxides and internal alkenes are other well-known 

reactions of alkyllithium reagents. Alkyllithium compounds are also widely used, 

as polymerization catalysts, in the industrial production of syn thetic rubbers.'6" 

1. PhCHO 
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The most well known characteristic of li thium organic reagents is perhaps their 

high basicity. Alkyllithium reagents deprotonate an acidic proton in another 

molecule if the conjugate acid of the organolithium is a weaker acid than its 

reactive partner. The product of su ch a reaction is a new organolithium; hence, the 

reaction is often entitled metallation reaction. The thermodynamic basicity of 

alkyllithium reagents increases with increased substitution at the a-carbon, i.e. 

t-BuLi > s-BuLi > n-BuLi. Despite the invincible thermodynamic base strength of 

alkyllithium reagents, lithium amide bases are the reagents of choice for 

deprotonation/lithiation reactions. 

2.3.2 Lithium amides 

Lithium amides are prepared from alkyllithium reagents through an ordinary 

acid/base reaction, Scheme 2.7. 

R2N-H + R'-Li R2N-Li + R'-H 

Scheme 2.7 

Lithium amides have larger kinetic basicity and lower nucleophilicity compared 
(28] 

to alkyllithium reagents. These properties make them the most widely used 

lithium organic reagents. Lithium amide bases are preferably used for 

deprotonation/metallation reactions, analogously to the reaction depicted in 

Scheme 2.5. Since deprotonation is favored over addition to unsaturated groups in 

the substrate, lithium amides find a particularly important application in the 

preparation of lithium enolates. 

2.3.3 Lithium enolates 

The chemistry of en olate anions is of profound importance in organic synthesis 

since it allows carbon-carbon bond formation. Consequently, much work has been 

done in this field.162'631 

Lithium enolates are prepared through a-deprotonation of a carbonyl 

compound, preferably by a lithium amide base. The formed enolate may then react 

further with a suitable electrophilic center, Scheme 2.8. 
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o 

b. R3CHO 

c. R3CH=CHCOR^ 

R2 

Scheme 2.8 Formation and reaction of lithium enolates: a. a-alkylation, b. aldol 
condensation, and c. Michael addition. 

Depending on the electrophile, the addition may be any of the well-known 

reactions: a. a-alkylation, b. aldol condensation, or c. Michael addition (Scheme 

2.8). The factors controlling regio- and stereoselectivity in enolate formations are 

largely influenced by the substrate structure and the base used. The degree of 

aggregation of the resulting enolate is determined by the enolate structure, the 

base, solvent, and possible additives.'64 651 Knowledge about the aggregate structure 

and size is important since the further reaction with electrophiles is influenced by 

the overall supramolecular nature of t he aggregate. 

2.3.4 Lithium alkoxides 

Lithium alkoxides are medium strong bases often used for deprotonation of 

more acidic hydrogens, e.g. C-H moieties with attached electron withdrawing 

substituents.'661 Furthermore, alkali metal alkoxides are used in conjunction with 

alkyllithium and lithium amide reagents to form so called "superbases".'67 691  

Despite the popularity of s uch mixed metal—mixed anion superbasic concoctions, 

their true nature remains to be utterly established. Even the pure lithium 
[70-72] 

alkoxides call for a more thorough exploration. Very little is still known about 

the solution state structure and degree of aggregation among lithium 
[73-75] 

alkoxides. 
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Chiral Lithium Amides in Asymmetric Synthesis 

The ubiquitous use of l ithium amides in organic synthesis suggests a multitude 
[76-79] 

of applications for their chiral counterparts. Chiral lithium amide base 

chemistry offers some unique entries to optically active materials that are highly 

complementary to other synthetic methods. As chiral base methodology has 

developed, total syntheses incorporating chiral base mediated steps have become 

more prevalent.180"1 A short account on the use of chiral lithium amides in 

asymmetric synthesis is given below. 

Most asymmetric reactions that make use of ch iral lithium amide bases can be 

divided in two categories: a) the chiral lithium amide acts as a chiral base, i.e. it 

directly abstracts one enantiotopic proton; b) the chiral lithium amide, or the 

corresponding chiral amine, acts as a non-covalently bound chiral auxiliary, 

thereby yielding a stereoselective reagent. 

3.1 ASYMMETRIC DEPROTONATIONS 

As might be anticipated, most enantioselective transformations employ the 

chiral lithium amide as a chiral base. The use of chiral lithium amide bases in 

enantioselective deprotonation reactions can be divided in three categories: 

i) deprotonation of c onformationally locked prochiral cyclic keton es; ii) aromatic 

and benzylic functionalization of tricarbonyl (r]6-arene)chromium complexes; iii) 

rearrangement of ep oxides to allylic alcohols. 

3.1.1 Enantioselective deprotonation of ketones 

The most widely used bases for asymmetric deprotonation of cyclic keton es are 

shown in Figure 3.1. 
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Ph^N^Ph 
Li 

Ph^N^ Naphtyl^N^Naphtyl 
Li Li 

Li-1 Li-2 Li-3 

Ph N CF3 
Li 

Li-4 

Li 
1 V H / 

Li-5 

Ph Ph 

v _  ̂ ^  /-N. N—; NL o h / • . . . . <  *  
rn Ph Li Li Ph 

Li-6 

A Pr 
f-Bu 
CH2-f-Bu 
CH2-CF3 

Ph. 

, NLi 
CH2 
NMe 

Li-7 

Figure 3.1 Chiral lithium amide bases successfully applied for enantioselective 

deprotonation of cyclic ketones and tricarbonyl (r|6-arene)chromium complexes. 

Pioneering work by the research groups of S impkins,'9" 931 and Koga'7' 94 %l have 

lead to widespread use of chiral lithium amide bases in enantioselective 

deprotonation of prochiral cyclic ketones, Scheme 3.1. 

OSiMe3 

1.Chiral Base 
t-Bu-—c- 2. Me3SiCI 

H 
f-Bu 

Scheme 3.1 

In these systems, there are a stereoelectronic preference to remove the axial 

a-protons. The chiral base discriminates between the two axial protons to 

preferentially yield one enantiomer of the enolate, usually trapped as the silyl enol 
[97] 

ether. It has been shown that in situ quench (ISQ i.e. premixing the chiral base 

with Me3SiCl prior to addition of the ketone substrate) in contrast to the more 

traditional method of external quench (EQ i.e. enolization followed by reaction 

with an electrophile) is needed in order for good enantioselectivities to be 

obtained."6' The reason for the increased enantioselectivity under ISQ conditions 

has been shown to be due to liberation of LiCl as the enolization proceeds.'98' 

Addition of lithium chloride to reactions conducted under EQ conditions give 
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comparable enantioselectivities.184 98 1011 This salt effect is believed to be caused by 

mixed aggregate formation between the lithium amide and the lithium 

halide.1'02 1041 Some typical results in terms of enantiomeric excess (ee) are 

summarized in Scheme 3.2.1105' 

J-
OSiMe3 

(R,R)-Li-1 
~PH 

Me3Si-X, THF, -78 °C 

f-Bu f-Bu 

X Quench Additive (equiv.) ee (%) 

CI ISQ . 90 

Br ISQ - 65 

I ISQ - 31 

CI EQ - 44 

CI EQ LiCI (0.5) 87 

CI EQ LiCI (1.0) 88 

CI EQ LiCI (3.0) 88 

Scheme 3.2 

The scope of this chemistry has extended beyond reactions of carbonyl 

compounds. Asymmetric deprotonation reactions of this type are also possible 
, . . , 1106,107] . . . , [108] 

with other substrates, e.g. cyclic thiane oxides and îmides. 

A catalytic modification of the enantioselective ketone deprotonation reaction 

has recently been developed by Koga, Scheme 3.3.Im n°' The catalytic cycle is set up 

with a non-chiral lithium amide Li-9 as the stoichiometric base, and the chiral 

lithium amide (R)-Li-8 as the chiral base. The two coordinating nitrogen groups in 

Li-9 makes this ligand less reactive in the ketone deprotonation; however, it still 

deprotonates the corresponding amine of (R)-Li-8 to regenerate the reactive chiral 

lithium amide. 

1. 0.3 equiv. of (R)-Li-8, 2.4 equiv. of Li-9 
2.4 equiv. HMPA, 1.5 equiv. DABCO 
THF, -78 °C 

2. Me3SiCI 

f-Bu f-Bu 
83%; 79% ee 

Scheme 3.3 

PH 

OSiMe3 F3C- NLi Q 
(R)-U-8 

O B o 
Li-9 
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Although, the optimum conditions require the use of excess 1,4-diazabicyclo-

[2.2.2]octane (DABCO) and hexamethylphosphoramide (HMPA) as additives, and 

that the enantiomeric excess of the product was slightly lower than for the 

corresponding stoichiometric reaction, this result clearly demonstrates the success 

of a catalytic asymmetric variation of this important reaction. 

3 .1 .2  Asym metr ic  deprotonat ion  o f  t r i carbo ny l  (ri6-arene)chromium complexes 

Tricarbonyl (r)6-arene)chromium complexes, e.g. 10, are useful intermediates in 
. [nu 

organic synthesis. 

10 
Cr(CO)3 

Enantiomerically enriched chromium complexes can be prepared using the 

chiral li thium amide bases Li-1 to Li-7 depicted in Figure 3.1 above. The ortho-

protons in chromium complexes with orf/io-directing groups are activated to 

metallation. Thus, direct asymmetric metallation using a chiral base can be used 

for aromatic functionalization of prochiral chromium complexes,1"2 "41 e.g. 

Scheme 3.4.11151 

Ph^N^Ph  
Li (fl.fl)-1 

Vj Me3SiCI, THF, -78 °C 

XCr(CO)3 

SiMe3 

Cr(CO)3 

83%; 84% ee 

Scheme 3.4 

Chiral lithium amide bases can also be used for benzylic functionalization of 

An example of this reaction can be found in Scheme chromium complexes. 

3.5.11191 

[116-118] 
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Cr(CO)3 

Ph Ph 

1 V-N. N—\ 
'• Ph Li Li ph 

LM5  
THF, LiCI, -78 °C 

2. R2-X Cr(CO)3 

ri r2 Yield (%) ee (%) 

Me SPh 86 97 

Me Me 96 97 

Bn SPh 95 99 

Bn Me 89 99 

Scheme 3.5 

Other organometallic compounds with planar chirality, e.g. substituted 

ferrocenes, may also be prepared through enantioselective orf/io-lithiation 
[120] 

reactions. 

3.1.3 Enantioselective rearrangement of epoxides to allylic alcohols 

Chiral lithium amide base chemistry has found widespread use for the 

enantioselective rearrangement of epoxides to yield enantiomerically enriched 

secondary allylic alcohols.'77' ?9' 12'1241 The rearrangement of cyclohexene oxide, 

Scheme 3.6, represent the archetype of this transformation. Cyclohexene oxide is 

the substrate most frequently studied when new bases are evaluated; although, 

other substrates usually give higher enantioselectivities. 

H 

1 .Chiral Base , 
2. H30+ 

H 

Scheme 3.6 

Whitesell and Felman were the first to report the asymmetric version of this 

reacti o n  i n  1 98 0 1 1 2 5 '  u s i n g  t h e  b a s e  L i - 1  i n  F i g u r e  3 . 1 .  T h e y  o b t a i n e d  t h e  p r o d u c t  ( R ) -

2-cyclohexen-l-ol in moderate enantiomeric excess (ca. 36% based on optical 

rotation). However, this was the first example of an enantioselective 

deprotonation by a chiral lithium amide base. 

.OH 
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Since then, a number of research groups, including our own, have developed 

the reaction and the bases used further. The chiral lithium amide bases currently 
., , . „. [82, 122, 126-135] 

in wide use are shown in Figure 3.2. 

* Ph 

^—C 
HNLi OLi 0 

R= Ph L i-13 
Li-11 Li-12 R=/-Pr Li-14 

Li 

r/^V>NvCH2CH2OMe 
H 

'"Q O I J .CH2CH2OMe 
N 
Li H B '"Q O 

Li-15 Li-16 Li-17 

Figure 3.2 The chiral lit hium amide bases most widely used fo r enantioselective 
rearrangement of epoxides to chiral allylic alcohols. 

The most successful bases for this reaction incorporate a coordinating nitrogen 

atom or alkoxide functionality. The base Li-11, developed by Asami in 1984,11361401  

was for long the most utilized base, even so much that it became a commercial 
[141-144] 

product. However, new and highly effective synthetic routes to both 
[126-128] 

enantiomers of base Li-13 are making this base the preferred choice for the 

enantioselective rearrangement reaction. A recent example from the work of 
[82 122] 

O'Brien et. al. is shown in Scheme 3.7 below. 

TBSQr>0 ^NU(fl)-u-" tbsoy^i 
TBSO^^ THF. 0 °C —» rt TBSO^-^OH 

38%; 92% ee 

Scheme 3.7 

Recent results from the laboratory of Asami have employed the chiral lithium 

amide Li-16 for catalytic asymmetric rearrangement of epoxides to allylic alcohols. 

Using lithium diisopropylamide (LDA) as the stoichiometric base and 0.2-0.05 

equiv. of the chiral base Li-16 produced the product (S)-2-cyclohexen-l-ol in up to 

94% ee, Scheme 3.8.'1451 
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OS-NA 
H B ky 

(S)-Li-16 
LDA, THF 

.OH 
(S) 

Equiv. 16 Equiv. LDA Temp (°C) Time (h) Yield (%) ee (%) 

0.2 1.8 rt 6 96 88 

0.05 1.95 rt 12 9G 85 

0.2 1.8 0 20 89 94 

Scheme 3.8 

[130] 
The base Li-17, ve ry recently reported by Andersson and co-worker, is also 

highly effective in the catalytic asymmetric rearrangement reaction when additives 

like l,8-diazabicyclo[5.4.0]undec-7-ene (DBU) are employed. The catalytic conditions 

feasible with these bases represent a significant advance in chiral base chemistry. 

The new chiral bases Li-16 and Li-17 also work well in the rearrangement of acyclic 

meso-epoxides, known to be poor substrates for asymmetric rearrangement 

reactions. 

3.2 NON-COVALENTLYBOUND CHIRAL AUXILIARIES 

Chiral lithium amide bases may also be used for direct asymmetric carbon-

carbon bond formation. In this case, the chiral lithium amide, or the 

corresponding chiral amine, influences the stereochemical outcome of a reaction 

by acting as a non-covalently bound chiral auxiliary. 

3.2.1 Enantioselective alkylation and aldol reactions with lithium enolates 

In contrast to the previously described enantioselective deprotonation of 

ketones, where the chiral bases were used to prepare chiral silyl enol ethers, the 

generation of a prochiral enolate via deprotonation using a chiral base followed by 

subsequent reaction with an electrophile can also produce enantiomerically 

enriched products. In this case, the enantioselectivity arises because the resulting 

chiral amine is complexed to the lithium enolate as a non-covalently bound chiral 

auxiliary.162' 11 ' 146 1481 The bases most successfully applied for enantioselective 

alkylation and aldol reactions with prochiral lithium enolates are shown in Figure 

3.3.1149'1501 
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Li-18 Li-19 Li-20 

Figure 3.3 Chiral lithium amide bases successfully applied for enantioselective 
enolate alkylations and aldol condensations. 

Koga have used the base Li-18 for asymmetric alkylation of cyclic ketones and 

asymmetric aldol reactions'15'1531 as illustrated in Scheme 3.911"9' and Scheme 

3.10,11541 respectively. 

§ P\ /v. 
1. Chiral base (fl)-Li-18 iL V"—N 

Toluene, LiBr, -78 °C Nr rtl | | 

2. PhCH2l 

e'LiBf'-78°c , f r" NU L J 
:Br, -45 °C, 18 h I J ( 

.OMe 

63%; 92% ee 

Scheme 3.9 

o 

(R)-Li-18 

Ph 
n 1. 1.1 equiv. LDA, THF,-78 °C QAc O ?— 

2. Chiral base (R)-Li-18 : Il fgLi I I 

,OMe 

v^iuidi ud&e IO . M J 

3. PhCHO Ph^^f^Oï-Bu ( 
ur-bu 4. Et3N, DMAP, AC20 | 

80%; 94% ee 
0 

(fi)-Li-18 

Scheme 3.10 

As shown in Scheme 3.9 and Scheme 3.10, it is possible to carry out highly 

enantioselective alkylations and aldol reactions with prochiral lithium enolates 

using chiral lithium amide bases. Furthermore, Koga later used base Li-19 for the 

reaction in Scheme 3.9 using only a catalytic amount of the chiral base without 

much loss of e nantioselectivity (52%; 90% ee).11551 (DMAP in Scheme 3.10 means 

4-dimethylaminopyridine) 

3.2.2 Asymmetric alkylations with alkyllithium reagents 

Enantioselective addition of alkyllithium reagents to aldehydes and imines 

yields chiral alcohols and amines, respectively.1156 1581 Many chiral ligands'1591611 
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have been applied to this reaction, thus also chiral lithium amides. The most 

successful bases for this reaction are shown in Figure 3.4.1162 1671 

A 
Li-22 

A Ph 

Z^N^-Ph 

Y " U  

Ph 

Li-23 

Figure 3.4 Chiral li thium amide bases successfully applied as ch iral auxi liaries in 
the enantioselective alkyllithium alkylation of aldehydes. 

As will be shown in Chapter 7, the chiral lithium amide works as a chiral 

auxiliary in these reactions by forming a one-to-one complex with the alkyllithium 
[165, 168, 169] 

reagent. 

3.3 OTHER REACTIONS 

Another reaction employing chiral bases, closely related to chiral lithium amide 

base chemistry, needs to be noted here. Mixed complexes between an alkyllithium 

reagent and a chiral diamine ligand can be used for asymmetric 

deprotonation/lithiation reactions. The most studied reagent is composed of 

s-BuLi and the naturally occurring alkaloid (-)-sparteine 24. 

(-)-sparteine 
24 

T-. • .1 1 1 <• TT [170-175] , , [176-181] , ... , . 
Primarily, the research groups of Hoppe, and Beak have utilized the 

s-BuLi/(-)-sparteine complex for asymmetric transformations. The asymmetric 

induction can occur through an asymmetric deprotonation where the reagent acts 

as a chiral base, or through an asymmetric substitution where the chiral ligand acts 

as an auxiliary, Scheme 3.11.11821 
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Asymmetric ., . . . » 
Deprotonation |  

RLi/L" AXB 
Diastereoenriched 

H H H E 

A B A B 

H i_j Asymmetric 
RLi Substitution 

AAB 1. L' 
2. E 

L*= Chirai ligand Racemic 

Scheme 3.11 Asymmetric synthesis using a mixed alkyllithium/chiral ligand 
complex i.e. .s-BuLi/(-)-sparteine. The asymmetric induction may occur through an 
asymmetric deprotonation or through an asymmetric substitution. 

An illustrative example of the high utility of this reaction for the preparation of 
[181 183] 

(S,S)-2/5-dimethylpyrrolidine is given in Scheme 3.12. 

C y 1. s-BuLi/24 . C > 1. s-BuLi/24 . .. 
N 2,Me2S04 * N CH3 2. Me2S04 " CH3^XN CH3  
i i i 
Boc Boc Boc 

88% 75% 
94% ee 80% de 

>99%ee 

Scheme 3.12 

There are many other applications of chirai lithium amides not covered here 

and new applications are continuously being developed. Some of these include 

base-induced ring opening of a za- and thiaoxabicycles,184' asymmetric synthesis of 

ß-amino acids through Michael addition of chirai metal amides,'185' synthesis of 

enantiomerically pure phospholanes,'186' and asymmetric anionic polymerization 
[187] 

reactions. 



Experimental & Theoretical Methods 

4.1 ENANTIOSELECTIVE GAS CHROMATOGRAPHY 

Enantioselective gas chromatography has played a considerable role in this 

work. When we entered the field of chiral lithium amide mediated asymmetric 

synthesis, no one used reliable methods for determining the products optical 

purity. Most stereochemical analyses were made using optical rotation, a method 

known to have severe limitations.'188'1891 Perhaps the largest disadvantage is that a 

large amount of highly purified material is needed for analysis. This is an obvious 

obstacle, which prohibits repeated measurements on a reaction mixture, e.g. 

kinetics, to be made. The requirement for large amounts of pure product also 

consume a lot of the chiral ligands used in the reactions. Chromatography on 

chiral stationary phase is perhaps the most reliable method for enantiomer 

separation, and hence accurate ee determinations, known today.'190' Capillary gas 

chromatography on functionalized cyclodextrin phases was found to be the 

method that best suited our needs for fast, accurate, and reproducible separation of 

enantiomers and positional isomers.' 91' The sensitivity of the method also made it 

possible to scale down the experiments considerable. 

Cyclodextrins (CDs) are cyclic, chiral, torus-shaped macromolecules composed of 

6 (a-CD), 7 (ß-CD), 8 (y-CD), or more D-(+)-glucose residues bonded through 1,4-

glycoside linkages. The phases used for gas chromatography are modified at the 

secondary hydroxyl groups located on top of the torus. The separation is 

presumably a result of f ormation of reversible inclusion complexes of the eluting 

enantiomers and the functionalized cavity of the CDs; however, other 

intramolecular interactions are also believed to play important roles. 

The chiral phases used in this work were CP-Chirasil-DEX CB available from 

Chrompack (Middelburg, The Netherlands) and heptakis (6-0-methyl-2,3-di-0-
(192] 

pentyl)-ß-cyclodextrin obtained from Prof. W. König (Hamburg, Germany). 
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4.2 BIOCATALYSIS IN ASYMMETRIC SYNTHESIS 

Biocatalysis, i.e. use of isolated enzymes or whole cells, is a powerful 
[193] 

complementary synthetic tool for the transformation of organic compounds. 

Examples of reactions where biocatalysis have been successfully applied include 
[194] 

hydrolysis, reduction, oxidation, and carbon-carbon bond formation. Enzyme 

catalysts often show remarkable regio- and/or stereoselectivity, also for non-

natural substrates. The special technique of biocatalysis in non-aqueous media is 

becoming an increasingly important method for the preparation of enantiopure 

organic substances."9 ' Most such transformations are mediated by lipases. Lipases 

can accommodate a variety of synthetic substrates, while still showing regio-

and/or enantioselectivity.11961 Lipases remain folded even in non-aqueous solvents. 

This allows the normal ester hydrolysis to be reversed into ester synthesis or 

interesterification. Thus, lipases are ideal reagents for kinetic resolution of racemic 

alcohols. The enantiopreference of lipases on secondary alcohols have been 
[197] 

rationalized by Kazlauskas, Scheme 4.1. 

OH H OAc H 
JUH + JU0H Lipase enzyme „ I ,\H + JU0H 

Rr/X Rm^RL AcyMonor RM^RL RM^RL 

Scheme 4.1 

The preferred enantiomer for acylation is the one having the larger group RL to 

the right, when drawn as in Scheme 4.1. This means that if R L has priority over RM, 

i.e. the (R)-enantiomer is preferably acylated. This model, known as Kazlauskas' 

rule, is also supported by crystallographic evidence.11981 

The enzyme employed in this work was immobilized Candida Antarctica, 
[199] 

preparation SP435, available from Novo Nordisk A/S, Denmark. 

4.3 X-RAY DIFFRACTION 

Single crystal structure analysis is the classical method for elucidation of the 

three dimensional structure of solid matter.1200' Consequently, cryoscopic single 

crystal structure analysis is a prevalent technique in the study of organolithium 

reagents. X-Ray diffraction (X-ray) is the only method available for obtaining a 

precise view of molecular arrangements. Even reactive intermediates have been 

characterized using X-ray.'2011 Thus, the results obtained using X-ray have had an 

enormous impact on structural and mechanistic aspects of lithium organic 
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lithium organic chemistry. However, it is not certain that solid state structures 
[202] 

actually relate to the structures present in solution. Since reactions are usually 

performed in solution, it would be preferred to obtain structural information from 

solution state nuclear magnetic resonance (NMR) spectroscopy. However, accurate 

determinations of solution state structures based solely on NMR spectroscopic 

studies are not always straightforward. In this case, solid state NMR may be used to 

close the experimental gap between solid state and solution state structures. 

The X-ray diffraction analyses in this work were performed by Docent 

M. Håkansson at the Department of Inorganic Chemistry, Chalmers University of 

Technology using a Rigaku AFC6R diffractometer. The structures were solved 

using SHELXS and SHELXL P°3' 

4.4 NMR SPECTROSCOPY 

[204] 
Nuclear magnetic resonance (NMR) spectroscopy is undoubtedly the most 

powerful method for structure elucidation in the liquid state. The entire arsenal of 

one- (ID) and two- (2D) dimensional 'H and 13C NMR spectroscopic techniques 

available for structure elucidation can also be successfully applied to the study of 

lithium organic reagents.1'05' ~°61 Moreover, the nuclear properties of both stable 

lithium isotopes 6Li and 7Li allow additional NMR spectroscopic techniques to be 

introduced. The properties of 6Li and 7Li, as well as the other nuclei used in this 

work, are summarized in Table 4.1. 

Table 4.1 Properties of NMR active nuclei relevant to this work. 

Nuclei Natural Spin Magnetic Quadropole Relative Resonance 
abundance moment moment receptivity" frequency 

N (%) I H(HN) Q/10'2s(m2) Rc v at B0=11.72T 
(MHz) 

'H 99.9 1 / 2  4.837 - 5.71 x 103 500 

13C 1.1 1 / 2  1.217 - 1.0 125.5 

15N 0.37 1 / 2  -0.490 - 3.80 x 102 50.7 

6Li 7.4 1 1.163 -8.2 x 104 3.64 73.6 

7Li 92.6 3 / 2  4.204 4^
 

Ö
 

X
 

•—
1 

O
 

1.55 x 103 194.3 

'Receptivity relative to 13C.'2°7' 
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Both of the naturally occurring lithium isotopes have nuclear spin I >1, and 

thus possess quadropole moments. However, the 6Li isotope has the smallest 

quadropole moment known, and has been termed an "honorary spin-1/2 

nucleus".'2 ' The spin lattice relaxation of 6Li i s dominated by factors other than 

quadropole relaxation. Especially the 6Li,'H dipole relaxation mechanism is of 

important practical utility, since it allows 6Li,'H- nuclear Overhauser effect (NOE) 

studies to be performed. This, together with the more confined line width of 6Li, 

are the prime reasons why most NMR spectroscopic investigations in lithium 

organic chemistry are done using 6Li enriched material. 

Structure assignment based on chemical shift arguments is common for other 

nuclei, but is difficult for lithium shifts. The reason is the very narrow chemical 

shift range, ca. 12 ppm, of 6,7Li. Chemical shifts of organolithium compounds are 

also very sensitive to solvent effects, viscosity, temperature, and concentration. 

The effect of these factors, on the chemical shift, is of the same magnitude as the 

purely structural effects. 

The complex dynamic behavior of o rganolithium reagents, with many species 

undergoing exchange processes, requires that NMR spectroscopic studies are done 

in the slow exchange limit, usually well below -50°C. Characterization and 

structure determination of the supramolecular aggregates involved, require 

sophisticated ID and 2D homo- and heteronuclear NMR experiments. A number 

of reviews regarding NMR spectroscopy of organolithiums have been 
[55, 209-213] 

published. The experiments used in this work are briefly described below. 

4.4.1 Methods based on coherent magnetization transfer by scalar spin-spin 
coupling 

Homo- and heteronuclear scalar spin-spin couplings to 6,7Li are of great 

importance for structural investigations and yields information about chemical 

bonding between lithium and other elements. Scalar spin-spin coupling is often 

taken as experimental proof for covalent bonding between the nuclei of interest. 

Streitwieser, however, has pointed out that coupling between 6-7Li and e.g. 13C may 

be based on polarization transfer through space.1214' A recent theoretical study 

indicates that the 6,7Li,13C coupling derive from a small covalent component of t he 

carbon-lithium bond.1201 13C,6Li coupling constants have been widely used for 

determination of aggregate size and for studies of intra- and interaggregate 

dynamics.'26' 51, 52-541 Two dimensional shift correlated experiments are often needed 

to resolve complicated spectra and/or small couplings. 
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4.4.1.1 Homonuclear spin-spin coupling: 6Li,6Li-COSYand 6Li,6Li-INADEQUATE 

.[215, 216] 
The homonuclear shift correlation experiments COSY''' and 

[217-219] 
INADEQUATE have been implemented for lithium by Günther and co-

[220] 
workers. The weak spin-spin coupling between nonequivalent lithium atoms 

are not resolved in the ordinary ID 6Li spectrum and consequently require indirect 

methods for detection. These experiments make it possible to distinguish between 
6Li resonances belonging to nonequivalent lithiums in one complex from those 

resonances resulting from nonequivalent lithiums in another complex. 

90 

•  A  » J «  A  

FID (I;) 

Eq. 4.1 

The original 6Li,6Li-COSY-90 experiment, shown in Eq. 4.1, are sometimes 

modified with a 45° read pulse to reduce the diagonal intensity. However, this does 

not always help in reducing signal overlap when there is small chemical shift 

difference between the signals. In such difficult cases, the phase sensitive 6Li,6Li-

INADEQUATE experiment'2211 (Eq. 4.2) 

90. 

M H-
135' FID (»J 

Eq. 4.2 

can be employed since no diagonal peaks arise in this experiment. 

4.4.12 Heteronuclear spin-spin coupling: 6Li,13C-HMQCand 6Li,15N-HMQC 

Heteronuclear two-dimensional shift correlations can be obtained using two 

different methods, either through the standard heteronuclear correlation 

experiment (HETCOR) based on polarization transfer from the sensitive (S) to the 
[222, 223] 

insensitive (I) nucleus ' (Eq. 4.3), 

180, 

1 
w, 

iu 
FID (f2) 

Eq. 4.3 
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or through the heteronuclear multiple quantum correlation experiment (HMQC) 
[224, 225] 

(Eq. 4.4). 

90; 180° FID (r2) 

s M I ^ 
*>; 90 

1 1 
The 15N,6Li-HMQC experiment introduced by Collum'"61 allows a wealth of 

information to be gained about lithiated organonitrogen compounds; however, 

both 15N and 6Li labeling are required.1381 Notably, the method discriminates 

between symmetric cyclic dimers and higher oligomers of lithium amides, 

through homonuclear 1SN zero quantum coherence selection.1'24'22?' 2281 

4.4.2 Methods based on incoherent magnetization transfer 

Dipolar interactions between 6Li and neighboring nuclei are favored by the 

inefficient quadropolar relaxation of 6Li. Wehrli was the first to report the 

appreciable 6Li,'H nuclear Overhauser effect'2"'"301 (NOE).'231"32' The 6Li,'H NOE in 

n-BuLi in hexane amounts to r|=1.19, which can be compared to the theoretically 

value ti=y(1H)/2y(6Li)=3.40. Similar effects for 7Li are seldom found, because of the 

larger degree of quadropolar relaxation for this nucleus. The great importance of 

the 6Li,'H NOE for structural research was recognized independently by two groups 
[233] 

in 1984. Avent et. al. reported ID NOE difference experiments while Bauer et. al. 

introduced the 6Li,'H-HOESY experiment'234'. 

4.4.11 6Li/H-HOESY 

The pulse sequence for heteronuclear Overhauser effect spectroscopy (HOESY) 

(Eq. 4.5) was first proposed in 1983 by Rinaldi,'235' and Yu and Levy,'236' fo r 13C,'El­

and ^P/H-spin pairs, but never found widespread use. 
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90, 90, 

I— i BB-decoupling 

180* 90] FID (t2) 

Eq. 4.5 

However, since the development of the 6Li,1H-HOESY experiment by Bauer et. 
[212, 237-239] 

al. this has been a valuable tool for detecting short Li-H distances. The 

results obtained provide invaluable information about the 3-dimensional 

structure of the aggregate under study, including coordinating ligands. Moreover, 

quantitative information about 'Li-'H distances can be attained through NOE 
[233, 238, 240, 241] 

buildup rates. ' ' 6Li,'H-HOESY has also been applied to solution studies of 
[242] 

ion pairs. 

4.422 6Li,6Li-EXSY 

The dynamic nature of most organolithium compounds in solution forms the 
[42, 52, 54, 243, 244] 

basis for broad applications of dynamic NMR (DNMR) in this field. 

Full line shape analysis, the standard techniques available for DNMR 

investigations,'245' is today supplemented by 2D exchange experiments (EXSY)'246' *47' 

(Eq. 4.6). 

90° 90; FID (FJ) 

Eq. 4.6 

Despite the small homonuclear 6Li,6Li NOE, there are wide utilization of 2D 
,T . fr. . T,,,,,,, , PIO. 248-250] 
Li, Li-EXSY experiments for systems undergoing slow exchange. I he 

cross-peaks in a 2D EXSY spectra show all exchange processes. Furthermore, 

quantitative comparison between the cross-peak and the diagonal-peak intensities 
i i f i • i 1 t246' 251-253] 

provide accurate determination of rate constants in the region 1-60 s . 
7Li,7Li EXSY has also been used for quantitative determinations of exchange 

[254] 
rates. 

All low temperature NMR spectroscopic studies presented in this work were 

performed using a Varian Unity 500 spectrometer equipped with three channels. 

Triple- ('H, 13C and 6Li) or quad- ('H, 13C, 6Li and 1SN) resonance probes, custom-

built by Nalorac, were used in all low temperature experiments. Some spectra, 
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obtained at ambient temperatures, were recorded at the Swedish NMR Center at 

Göteborg University using a Varian INOVA 600 spectrometer. 

4.5 COMPUTATIONAL CHEMISTRY 

Computational chemistry is a very broad term, covering almost every aspect on 

the use of computers in chemistry.'255 2571 In this work, computational chemistry 

refers to the use of co mputational methods to solve quantum chemical problems. 

Computational chemistry is becoming a tool of profound importance to the 

experimental chemist. The increased power and lower cost of computers, the 

modernized program interfaces and computational methods, together with 

developments in quantum chemistry are some of the factors that have contributed 

to this. There are numerous applications of co mputational chemistry. Today there 

are accurate computational methods available to obtain good gas phase geometries 

to complement those derived from X-ray diffraction and NMR spectroscopy. 

Theoretical calculations also allow the study of transition states and short-lived 

intermediates. Such species are normally difficult or impossible to study 

experimentally. Furthermore, molecular modeling on the computer, as compared 

to the traditional use of molecular models, provides a multitude of additional 

information, helping the chemist to proof or disproof experimental findings. 

The computational methods used in this work are based on molecular orbital 

calculations.'258'The theoretical foundation for such calculations is the Schrödinger 
[259] 

equation. The solution of the Schrödinger equation for a molecular system, i.e. 

the wave function, gives a complete description of the system.'2601 However, the 

Schrödinger equation has only been solved exactly for the hydrogen atom. For all 

other systems approximations have to be made. 

There are three main methods available for molecular orbital calculations. They 

differ in the approach used to solve the Schrödinger equation. A short summary, 

with emphasize on the methods used in this work, will be given below. For a 

more detailed account, the reader is referred to the many good books written on 
. . [258, 260-263] 

the subject. 

4.5.1 ab Initio methods 

The ab initio methods solve the Schrödinger equation without any empirical 

factors, only universal constants are used in the equations. The miscellaneous ab 

initio methods available differ in the approximations used to obtain the wave 

function. Most methods approximate the wave function into a product of one-
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electron wave functions.'2M] Such one-electron wave functions are called atomic-

or molecular- orbitals. These orbitals can be expanded using a basis set in order to 

transform the differential equations to a matrix problem and thereby simplify the 

calculations.'2651 The basis sets most frequently used today are comprised of 

Gaussian type functions (GTF),12661 and are often of s plit valence type.'258' The latter 

means that the outer electrons, involved in the chemistry, are described by more 

GTFs than the core electrons. 

[267 268] 
The Hartree-Fock (HF) method was the first ab initio method. This 

method assumes that each electron moves independently of the others in a field 

created by the fixed nuclei (Born-Oppenheimer approx.)'269' and the mean-field of 

the other electrons. HF is the starting point of a hierarchy of models with the 

objective of g etting as accurate solutions to the Schrödinger equation as possible. 

With larger basis sets, the HF method yields results closer to the real solution. 

However, due to the approximations used the exact result is never reached. The 

lowest energy attainable with HF is called the Hartree-Fock limit. The most serious 

deficiency of the HF method is an inadequate treatment of c orrelation between the 

moving electrons of opposite spin. Furthermore, the HF method does not consider 

relativistic effects. The electronic correlation energy is the difference between the 

limiting Hartree-Fock energy and the systems true total energy. The correlation 

energy error results because the HF method only describes one electron's 

interaction with all other electrons; i.e. it does not take direct electron-electron 

correlation into account. 

There are different methods for considering the electron-electron correlation. 

Some of the most widely used methods include the M0ller-Plesset perturbation 

methods'2701 (MP2-MP6), the coupled cluster'2711 (CC) methods, and the 
[272] 

configuration interaction (CI) methods. Density functional theory, described 

below, is an alternative method for taking electron-electron correlation into 

account. 

The different concepts described above can be summarized in so called 
[273] 

theoretical model chemistries, outlined in Figure 4.1. 
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Electron Correlation  

HF MP - CC - Full CI 

Minimal 
STO-3G 

Split valence 
3-21G 

Polarized 
6-31 G(d) 

Diffuse 
6-31+G(d,p) 

High ang. mom. 
6-311+G(2d,p) 

HF Schrödinger 
00 limit Equation 

Figure 4.1 Chart showing various model chemistries definable via traditional ab 
inito methods and standard basis sets. 

In Figure 4.1, one can see that going to larger basis sets increases the accuracy. 

However, the use of a la rger basis set also rapidly increases the computational cost. 

The time requirement for the calculation formally increases with the fourth power 

of the number of ba sis functions. Use of correlated methods is also seen to increase 

the accuracy; however, again at the expense of rapidly increasing computational 

cost. For these reasons, it is common to do the geometry optimization at a lower 

level of theory and use this geometry for a single point calculation at a higher level 

of theory, e.g. MP2/6-31+G(d,p)//HF/6-31G(d). This example demonstrates the 

terminology used for model chemistries. The model to the left of the double slash 

shows which model was used to calculate the energy while the model to the right 

of the double slash shows which model was used for the molecular geometry 

optimization. 

Depending on the actual problem, one always has to choose a suitable 

theoretical model chemistry for the problem and computer resources at hand. 

4.5.2 Semi empirical methods 

The computationally most time consuming steps in the ab initio calculations 

described above are the integral calculations. The matrix elements are composed of 

integrals over the basis functions describing the different energy components such 

as: the kinetic energy, the nuclear attraction energy, and the electron-electron 

repulsion energy. Especially, the many (in the order of 10 6-109) electron repulsion 

integrals are time consuming to calculate. Semi empirical methods simplify the 

calculations involving the electron repulsion integrals through neglect of 

differential overlap between atomic centers far apart in the structure. Further 

approximations and parameterization are normally added to counteract the 
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omissions. The parameterization is obtained from experiments or from high level 

ab initio studies on smaller systems. This means that the parameterization 

incorporates correlation effects, but not in a well defined way. 

One often-used semi empirical method is MNDO1274' based on experimental 
[275] 

parameterization. The two most recent parameterizations of MNDO, called 
[276] [277] 

AMI and PM3, often give qualitatively adequate results. Much larger errors 

occur when calculations are done on systems different from those used in 

developing the parameterization. 

Anders recently added lithium parameterization'278' to the PM3 method. Since 

then, this has been the method of c hoice for semi empirical calculations in lithium 

organic chemistry.'279 2831 This method reproduces geometries of lithium organic 

molecules well; however, the energies obtained are often unsatisfactory. To 

overcome this problem single point calculations can be done at a higher level of 

theory. 

4.5.3 Density functional theory 
[284-286] 

Density functional theory (DFT) is based on a fundamentally different 
[287 288] 

approach to quantum mechanics suggested by Thomas and Fermi in 1926. 

The Thomas-Fermi (TF) approximation does not consider the wave function; 

instead, the electron density p(r) is used to express the energy E[p]. K ohn later 

proved the theoretical foundation of this inhomogeneous electron gas 
[289 290] 

approach. ' However, it took more than twenty years before a functional 

suitable for molecular systems was obtained. 

The functionals employed today partition the electronic energy in several 
[284, 291-293] 

terms. ' One of these terms, the exchange-correlation term, can be further 

divided into the exchange and the correlation parts. These parts can be of two 

distinct types: local functionals, which depend only on the electron density, and 

gradient-corrected functionals, which also depend on the gradient of the density. 

The most widely used functionals in computational chemistry today are of a third 

kind, called hybrid functionals. The hybrid functionals define the exchange-

correlation term as a linear combination of Hartree-Fock, local, and gradient-

corrected exchange terms. This exchange functional is then combined with a local 

and/or gradient-corrected correlation functional. The best known of these hybrid 

functionals is probably Becke's three-parameter hybrid functional using the Lee-

Yang-Parr correlation B3LYP.'294'2951 
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DFT m ethods constitute a quite new tool for computational chemistry. DFT 

methods were not incorporated into the well-known Gaussian program until 1992; 

however, subsequently they have revolutionized the application of quantum 

chemistry. The best DFT methods available today achieve accuracy comparable to 

MP2, at a significantly lower computational cost for medium and large systems. 

Reliable treatment of organolithium compounds by DFT methods have been 

demonstrated by Pratt and Khan.12961 

All ab initio and density functional calculations presented in this work were 

done using the Gaussian 9412'71 or Gaussian 981298' program packages. Semiempirical 
[299] 

calculations were done using the Spartan program. The calculations were done 

on the departments own SGI computers (Indy, Power Indigo 2, 02, and Origin 200) 

or on the Cray C90 at the National Supercomputing Center at Linköping 

University. 
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Enantioselective Deprotonation of Cyclohexene oxide 

5.1 BACKGROUND 

Cope and Tiffany first demonstrated the base induced rearrangement of epoxides 

to allylic alcohols.'300 3°5' Later studies, mainly by the research groups of 

Crandall,'306 3n' and Rickborn,1312 3151 developed the reaction utilizing lithium amide 

bases into a synthetically useful and convenient route to allylic alcohols. 

Mechanistic studies by Thummel and Rickborn showed that the preferred 

mechanism for proton abstraction from cyclohexene oxide involves syn ß-

elimination of a pseudo-axial proton.I316'3171 The rearrangement is postulated to 

take place via a cyclic six-membered transition state, Scheme 5.1. Studies on other 

epoxides have also showed some degree of a-lithiation.1129'3181 The carbenoid thus 
[319-321] 

formed can yield an allylic alcohol, a bicyclic alcohol, or a ketone. 

R R V 

MTU H  

A + 
V ( 

-OLi 

Scheme 5.1 

As previously described, Whitesell and Felman demonstrated the first 

enantioselective form of this reaction in 1980."251 The chiral base Li-1 (see Figure 

3.1) was used to discriminate between the two enantiotopic protons of a prochiral 

epoxide, i.e. cyclohexene oxide, to yield (R)-2-cyclohexen-l-ol in 36% ee (see 

Scheme 3.6). The enantiotopic proton selection was explained by preferential 

reaction of the base with one of the rapidly equilibrating enantiomeric half-chair 

conformations of cyclohexene oxide, Scheme 5.2. 
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H A/\ . /\A H 

(fl) (S) 

Scheme 5.2 

Higher enantioselectivity was observed with the Proline derived chiral lithium 

amide lithium (S)-2-(l-pyrrolidinylmethyl)pyrrolidide Li-11 (Figure 3.1 and Figure 

5.1 below) introduced by Asami in 1984.1137'1401 Using Li-11 for the rearrangement of 

cyclohexene oxide produces (S)-2-cyclohexen-l-ol in about 80% ee. Asami 

rationalized the preferred reaction with one of the enantiomeric half-chair 

conformations in Scheme 5.2 by proposing that the deprotonation occurs 

preferentially through the transition state (TS) complex where the steric 

interactions between the cyclohexane ring and the amide are minimized; i.e. TS2, 

leading to (S)-alcohol, is preferred over structure TS1, Figure 5.1. 

Cr>o 
V / Li' 

/ * / I 

"v V-J ' 

TS1 TS2 

Figure 5.1 Transition state complexes for the enantioselective rearrangement of 
cyclohexene oxide by the chiral lithium amide Li-11, as proposed by Asami. 
TS1 leading to (/?)-2-cyclohexen-1 -ol is assumed to be disfavored, due to steric 
repulsions, compared to TS2 leading to (S)-2-cyclohexen-l-ol. 

No thorough experimental or theoretical study of the enantioselective epoxide 

opening mechanism, or on initial- and transition state structures, has been 

reported in the literature. Thus, improvements in the stereoselectivity and yield of 

this reaction have been guided by trial-and-error structural changes of the chiral 

amides used. Following the reasoning above, most reported modifications were 
[139] 

done by replacing the pyrrolidinyl ring with more congested groups. However, 

no increase in the product's enantiomeric excess was found by such changes. 

Instead, higher enantioselectivities were obtained using recently reported chiral 

amides modified at the pyrrolidide moiety.11451 
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5.2 THEORETICAL STUDIES ON THE ENANTIOSELECTIVE REARRANGEMENT 
(PAPER I) 

A computational study was undertaken in order to provide concrete 

information regarding the origin of stereoselectivity in the rearrangement of 

cyclohexene oxide by Li-11. Geometry optimizations were done using semi 

empirical (PM3)'277' 2781 and ab initio (HF/3-21G)'32"1 methods. Single point 

calculations on the optimized structures were done using a DFT method (B3LYP/ 
[294, 295, 323] 

6-31+G(d)). ' ' The study was limited to activated complexes between the 

epoxide and monomeric lithium amide; although, oligomers of the base may be 

part of the transition state composition. 

5.2.1 Pre-complexes 

The lithium amide Li-11 reacts with both enantiomers of the rapidly 

interconverting enantiomeric half-chair conformations of cyclohexene oxide and 

form pre-complexes (PCI and PC2) in which the deprotonation takes place. The 

pre-complexes are presumably rapidly interconverting. Thus, the transition states 

for (R)- and (S)-alkoxide, TSI and TS2, respectively, are in equilibrium according to 

the Curtin-Hammett principle.'3"4 3 5 1 This means that the stereoselectivity is 

determined by the difference in free energy (SAG1) b etween the transition states, 

while the energies of the pre-complexes conduce to the rates of the two routes'3261 

(Figure 5.2). 

SAG* 

r~ 
r 1 
/ * 
/ \ 
/ \ 

PI 

Figure 5.2 Free energy diagram for the enantioselective rearrangement of 
cyclohexene oxide to 2-cyclohexen-l-ol. The rapidly interconverting enantiomeric 
pre-complexes between the lithium amide and epoxide (PCI and PC2), forms 
enantiomeric products (PI and P2) via the two diastereotopic transition state 
structures (TSI and TS2). 
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5.2.2 Unsolvated transition state structures 

Three transition states leading to the (-R)-alkoxide (TSla-c) and three transition 

states leading to the (S)-alkoxide (TS2a-c) was located at the HF/3-21G level of 

theory, Figure 5.3. 

TSla 
HF/3-21G: 0 
B3LYP/6-31+G(d): 0 

TSlb 
HF/3-21G: 3.1 
B3LYP/6-31+G(d): 3.3 

TSlc 
HF/3-21G: 3.2 
B3LYP/6-31+G(d): 2.3 

TS2a 
HF/3-21G: -0.8 
B3LYP/6-31+G(d): -0.8 

X-^Li 

H,j QH2 

TS2b 
HF/3-21G: 3.1 
B3LYP/6-31+G(d): 2.9 

TS2c 
HF/3-21G: 2.3 
B3LYP/6-31+G(d): 0.1 

Figure 5.3 Optimized transition state structures at HF/3-21G level of theory for 
epoxide opening of cyclohexene oxide with Li-11 yielding (/?)-alkoxide ( TSla-c) 
and (S)-alkoxide (TS2a-c), respectively. The relative energies (kcal mol"1), 
calculated at HF/3-21G and B3LYP/6-31+G(d) levels of theory, respectively, are 
shown below each structure. 

The lithium amide is coordinated above the cyclohexene oxide ring in TSla-b 

and TS2c while the amide is positioned outside the cyclohexene oxide ring in 

TS2a-b and TSlc. All transition states have six-membered rings with the lithium 

atom coordinating to the epoxide oxygen. The epoxide opening is found to be 

concerted with the proton abstraction by the amide nitrogen (N2). Furthermore, 

the proton is found to be slightly more than half-transferred to the nitrogen. The 

higher energy of t he TSlb and TS2b transition states as compared to TSla and TS2a, 
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respectively, can be attributed to conformational differences in the cyclohexene 

ring. 

The TS yielding the (S)-alkoxide, i.e. TS2a, is 0.83 kcal mol"1 (B3LYP/6-31+G(d)) 

lower in energy than TSla yielding the R-alkoxide. After thermal and entropy 

corrections, the difference in free energy at 298 K is calculated to be 0.83 kcal mol"1  

at this level. This energy difference corresponds to an ee of 60% at 298 K. Such a 

small energy difference makes interpretation intricate; however, TS2a appears to 

have less steric interactions between the cyclohexene oxide ring and the lithium 

amide than TSla. Thus, non-bonded interactions seem to be one reason for the 

obtained enantioselectivity. 

5.2.3 Solvated transition state structures 

The role of solvation was studied by specific coordination of one THF molecule 

to the lithium cation, thus making it tetracoordinated. PM3 optimized solvated 

activated complexes for the epoxide openings are depicted in Figure 5.4. 

TSla+THF 
PM3: 0 
B3LYP: 0 

TSlb+THF 
PM3: 0.7 
B3LYP: 1.6 

TSlc+THF 
PM3: 2.5 
B3LYP: -03 

TS2a+THF 
PM3: -0-3 
B3LYP: -2.0 

TS2b+THF 
PM3: 0.8 
B3LYP: 0.7 

TS2c+THF 
PM3: 5.5 
B3LYP: 0.5 

Figure 5.4 PM3 optimized transition states including solvation for the epoxide 
opening of cyclohexene oxide with Li-11 yielding (/?)-alkoxide (TSla-c+THF) 
and (S)-alkoxide (TS2a-c+THF), respectively. Some hydrogens are omitted for 
clarity. The relative energies (kcal mol"1), calculated at PM 3 and B3LYP/6-31+G(d) 
levels of theory, respectively, are shown below each structure. 
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The structural changes, resulting from the added solvent molecule, are mainly 

found near the solvated lithium cation. The position of the transferred hydrogen 

is only slightly affected. A comparison of the lowest transition states yielding (S)-

and (R)-alkoxide indicates that solvation generally causes the energy differences to 

be larger, i.e. solvation is more effective in the TSs yielding the (S)-alkoxide than 

the (R)-alkoxide. Single-point calculations at B3LYP/6-31+G(d) level of theory on 

the PM3 optimized geometries yield an energy difference of 1.7 kcal mol"1 between 

the lowest TS yielding the (S)-alkoxide (TS2a+THF) and the lowest TS yielding the 

(R)-alkoxide (TSlc+THF). This energy difference corresponding to an ee of 88%, 

close to the experimental value of 80%. 

5.2.4 Summary 

The theoretical study of the base induced rearrangement of cyclohexene oxide to 

2-cyclohexen-l-ol described above has provided detailed information about the 

nature of the activated complexes involved. Furthermore, the origin of 

stereoselectivity observed when the chiral lithium amide Li-11 is used as base has 

been rationalized. In contrast to a previous proposal by Asami, suggesting that the 

stereoselectivity results from steric interactions between the cyclohexene ring and 

the pyrrolidinyl ring in Li-11, this study shows that the most important factor 

determining the stereoselectivity is better solvation of the TS yielding the (S)-

alkoxide as compared to the TS yielding the (R)-alkoxide. Some steric interactions 

between the cyclohexene ring and the lithium amide were noted in the transition 

state complex leading to (R)-alkoxide; however, these interactions originate from 

the pyrrolidide moiety in Li-11 and not the pyrrolidinyl moiety as previously 

proposed. This is in agreement with the higher selectivity obtained with the chiral 

base Li-16 (see section 3.1.1).1141 This base is similar to Li-11, except for the 

substitution in the pyrrolidide moiety. 

5.3 STRUCTURAL STUDIES AND USE OF LI-11 AND AN ANALOG (PAPERS II AND III) 

Studies of initial state (IS) structures in solution or in the solid state are essential 

for understanding the actual chemistry behind a reaction. The information gained 

may, for example, provide new insight into the nature of a reagent and form a 

basis for reaction mechanism elucidation. Furthermore, in the case of highly 

exothermic reactions the structure of the IS may well reflect the TS structure 
[327] 

according to the Hammond postulate. 

An NMR spectroscopic study was initiated to gain further insight into the 

structure and aggregation of the complex between cyclohexene oxide and Li-11. 

However, the task was complicated by: i) low solubility of Li-11 in DEE solution, 
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ii) broad and unresolved 6Li spectrum of Li-11 in THF at low temperature 

indicating fast dynamic processes between different aggregates, iii) difficulty with 

signal assignment due to severe signal overlap in the 'H and 13C NMR spectra. 

5.3.1 Use of crystalline Li-11 and the hydrochloride salt of the amine precursor 11 
for the rearrangement of cyclohexene oxide 

The low solubility of Li-11 in DEE tempted us to grow crystals of Li-11 suitable 

for X-ray diffraction studies. Unfortunately, despite repeated attempts, none of the 

crystals obtained was of sufficiently good quality to allow X-ray analysis. However, 

we figured that isolation of Li-11 in the crystalline form could be a method to 
[138 328 329] 

obtain highly purified Li-11. A controversy in the literature, * regarding the 

efficiency of Li-11 in the enantioselective rearrangement reaction, suggested that 

possible impurities in the amine precursor 11 could be the cause for the different 

results obtained. To attest this assumption we crystallized Li-11 from DEE and used 

these crystals for the enantioselective rearrangement of cyclohexene oxide. The 

product (S)-2-cyclohexen-l-ol was obtained in 81% ee which is comparable to the 

80% ee obtained when "regularly" prepared 11 was used. Thus, it can be concluded 

that about 80% ee might be the optimum selectivity obtainable with this particular 

ligand when cyclohexene oxide is used as substrate. 

During this study, we also prepared the HCl salt of the amine precursor 11. This 

salt is easy to purify through recrystallization, and storage of the amine in this 

form is advantageous; as compared to storing the amine in the form of an oil, 

which turns brownish upon prolonged storage. The direct use of this salt for the 

rearrangement of cyclohexene oxide by in situ generation of the lithium amide 

with two equiv. of n-BuLi yielded (S)-2-cyclohexen-l-ol in 74% ee. The 

enantioselectivity was higher (79% ee) in the beginning, but dropped during the 

course of reaction. This behavior was shown to be related to the presence of LiCl, 

generated by the in situ preparation of the reagent, in the reaction mixture. 

5.3.2 NMR spectroscopic studies of an analog of Li-11 

The downfield region of the 'H-NMR spectrum of Li-11 displays severe signal 

overlap. In order to simplify the spectrum we prepared an analog of Li-11, namely 

lithium (S)-2-[l-(3,3-dimethyl)pyrrolidinylmethyl]pyrrolidide Li-25. The two 

methyl groups introduced in the pyrrolidine moiety were hoped to simplify the 

spectra and form a suitable handle for further structure assignment; hopefully, 

without altering the selectivity in the epoxide rearrangement reaction. 



44 CHAPTER 5 

t 

Li 

Li-25 

Complete structure assignment of Li-25 i n THF-d8 at -10°C was done using 

routine 'H/H-DQFCOSY1 1 and 'H/H-NOESY'24'1 spectroscopy. Lowering the 

temperature (down to -70°C) resulted in broad unresolved 6Li spectra, preventing a 

thorough structural investigation. However, upon addition of cyclohexene oxide 

to the solution of Li-25 i n THF-d8 at -10°C, we were able to detect weak NOE 

correlations between protons in the cyclohexene ring and Li-25. I nterestingly, the 

strongest NOE correlations were found to the protons in the pyrrolidide moiety of 

Li-25. No correlations to the methyl-substituted pyrrolidinyl moiety were found. 

One needs to keep in mind that the observed NOEs only give an average picture of 

the complex between cyclohexene oxide and Li-25. However, the obtained results 

are in accordance with the computational finding of steri c interactions between the 

epoxide and the pyrrolidide ring. 

Use of Li-25 for the enantioselective deprotonation of cyc lohexene oxide yielded 

(S)-2-cyclohexen-l-ol in 78% ee. This is close to the 80% obtained with Li-11, 

attesting that the substitution with two methyl-groups had only minor implication 

on the ligands stereoselectivity. 
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5.4 RATIONAL DESIGN OF AN IMPROVED CHIRAL LITHIUM AMIDE FOR THE 
ENANTIOSELECTIVE REARRANGEMENT REACTION THROUGH SOLID STATE AND 
SOLUTION STATE STRUCTURES OF LL-21 (PAPER IV) 

The solution state structure of the chiral lithium amide lithium (2-methoxy-(R)-

l-phenylethyl)((S)-l-phenylethyl)amide Li-21 (Figure 3.4), used for the 

enantioselective addition of alkyllithiums to benzaldehyde, has been extensively 

studied by workers in our laboratory.1168' 3U 3321 Based on multinuclear and 

multidimensional NMR spectroscopic studies they showed that Li-21 forms a C2-

symmetric dimer, i.e. (Li-21)2-S=DEE in Scheme 5.3, in DEE-d10 solution. The dimer 

was shown solvated by one solvent molecule. Interestingly, the environment 

occupied by the solvating ligand resembles the binding pocket of a n enzyme. This 

"binding pocket" is capable of stereoselective solvation when a racemic solvent 
[333] 

mixture, i.e. 2-methyltetrahydrofuran, is added. 

Scheme 5.3 The chiral lith ium amide Li-21 is present as dimer (Li-21) 2 in DEE 
solution. In THF, both dimers (Li-21)2 and monomers Li-21 are present. The 
disolvated monomer is the major aggregate in THF. 

Addition of small amounts of THF to a DEE-d10 solution of (Li-21)2-S=DEE, 

results in replacement of the solvating DEE molecule by one molecule of THF. In 

pure THF-d8, Li-21 persists as an equilibrium between the dimer (Li-21)2-S=THF 

and the monomer Li-21-2S=THF. T he disolvated monomer is the major aggregate 

in THF. 

5.4.1 Complexes between Li-21 and cyclohexene oxide 

The 6Li NMR spectrum of Li-21 in DEE a t -90°C changed upon addition of 

cyclohexene oxide. The two lithium signals at S 2.90 and 3.10, originating from 

(Li-21)2-S=DEE, decreased in intensity and three new lithium signals appeared at 5 

2.72, 2.86, and 3.74 (Figure 5.5). 

(Li-21 )2S Li-21-2S 
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6U NMR 

Temp 

d -35°C 

c 

A. J VA_ 

b 

a 

Li-21 -2S=cyclohexene oxide 

3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 ppm 

Figure 5.5 'Li NMR spectra of Li-21 in DEE-d10 with added cyclo hexene oxide at 
-90°C (a). The equilibrium shifts towards the dimer (Li-21) 2-S=cyclohexene o xide, 
when the temperature is raised (b to d). 

The 6Li,1H-HOESY12341 and 6Li,6Li-EXSY1210' 2461 spectra as well as a variable 

temperature 6Li NMR study of Li-21 and cyclohexene oxide, revealed that the new 
6Li NMR signals emerged from two new cyclohexene oxide/lithium amide 

complexes. Traces of DEE complexed dimer, i.e. (Li-21)2S=DEE, appear at 8 2.90 and 

3.10. The new set of signals at 8 2.86 and 3.74 originate from the cyclohexene oxide 

complexed dimer, i.e. (Li-21)2-S=cyclohexene oxide; the large signal at 8 2.72 

emanates from cyclohexene oxide complexed monomer, i.e. Li-21-2S=cyclohexene 

oxide. Furthermore, the intensity of the signal at 8 2.72 increases upon lowering 

the temperature at the expense of the signals at 8 2.90 and 3.10, Figure 5.6. Thus, 

this temperature study shows a monomer/dimer equilibrium, where the smaller 

and more solvated aggregate dominates at low temperature due to the entropy 

A 6Li/FI-HOESY experiment showed correlations between the lithium signal at 

8 2.72 and cyclohexene oxide protons at 8 1.75, 1.92, and 3.04. Weak correlations 

were also observed between the lithium signal at 8 3.74 and cyclohexene oxide 

protons, while no correlations between the lithium signal at 8 2.86 and 

cyclohexene oxide could be detected, Figure 5.6. 

term 
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dR j 

-3 

1 

Figure 5.6 Two-dimensional phase-sensitive 6Li,'H-HOESY contour plot of Li-21 
in DEE-rf10 at -90°C with 2 equiv. of cyclohexene oxide/Li added. The 6Li,'H-
HOESY traces at S 2.72, 2.86, and 3.74 are also shown. 

Even though one has to be very careful in interpreting these heteronuclear 

NOEs, as they originates from an average initial state structure in solution that do 

not necessarily lead to a similar transition state structure, they show that the 

transition state for the enantioselective rearrangement reaction may contain a 

dimeric or a monomeric lithium amide base. Both the monomer and the dimer 

exhibit short distances between lithium and protons in the substrate. Interactions 

between lithiums and hydrogens are assumed to increase the acidity of carbon-
, , , . [238, 334, 335] 
hydrogen bonds. 

5.4.2 Design of a dimer with a more congested "binding pocket" 

The favorable formation of a dimeric IS complex, i.e. (Li-21)2-S=cyclohexene 

oxide, at higher temperatures suggests that a dimeric TS might be involved. If a 

dimer of the lithium amide would be the reacting specie, our detailed structural 

studies on Li-21 imply that increased selectivity could result if one were to replace 

the two methyl groups in (Li-21)2 with more congested groups. The more 

congested "binding pocket" thus formed would be a prerequisite for higher 

OMe 

Trace at 8 2.72 OMe 

OMe 

T emp= -90°C 

7 6 5 4 3 2 1 ppm 
*= Cyclohexene oxide 

3 2 1 ppm 
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selectivity.13361 To attest this assumption the isopropyl analogue lithium N-(R)-2-

methoxy-l-phenyl-(R)-a-isopropylbenzylamide Li-26 was prepared. 

Me^^Me /0Me 

Li-26 

NMR spectroscopic studies in DEE-d10 showed that Li-26 forms a dimer with 

symmetric lithium coordination in this solvent, Scheme 5.4a. However, addition 

of THF, or other strong donor solvents e.g. epoxides, results in the formation of a 

C2-symmetric dimer like the one previously described for Li-21, i.e. b in Scheme 

5.4. At higher concentrations of strongly donating solvents, the equilibrium shifts 

towards monomers, c in Scheme 5.4. 

I b 

Me (Li-26)2 (Li-26)2 Li-26 

sym. coord. unsym. coord. 

a b c  

Scheme 5.4 The chiral lithium am ide Li-26 forms dimers with symmetric lithiu m 
coordination in non-coordinating solvents and DEE (a). Addit ion of solvents/ligand s 
with better coordination affinity towards lithium re sults in C 2-symmetric dimers (b) 
and monomers (c). 

During synthesis of the amine precursor 26, outlined in Scheme 5.5, a mixture 

of the two diastereomers (R,S)-26 and (R,R)-26 was formed in a one-to-two ratio. 

Resolution of the diastereomers by fractional crystallization of the amines 

hydrochloride salts gave exclusively the (R,R)-26 diastereomer. Unfortunately, 

attempts to retrieved the pure (S,R)-diastereomer from the mother-liquid were 

unsuccessful. 
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AT, TsOH 

NaH/Mel 

THF 

AT, TsOH 

(S.FL)-26: 26 
1  : 2  

Scheme 5.5 Synthetic route to the amine 26. The route used to prepare 21 (top) 
did not succeed for 26 due to formation of a very stable 1,3-oxazolidine. 
O-Methylation of (Ä)-phenylglycinol avoids oxazolidine formation and gives an 
imine that can be reduced using catalytic hydrogénation. 

The outcome of this fortuitous change of configuration at one chiral center, as 

compared to the original 21 having (S,-R)-stereochemistry, is that instead of a 

congested isopropyl substituents interacting with the cyclohexene ring, there is 

now an phenyl group at this position. However, this is not expected to be crucial 

since the bulkiness of a phenyl group is similar to that of an isopropyl group.'1"1 

5.4.3 Structure of dilithiated 21 

During studies on mixed complexes between n-butyllithium and Li-21 (vide  

infra)  we detected  an  in t ramolecular  or f /zo-l i th ia t ion  react ion.  One of  the  ortho-

protons at the phenyl ring bound to C(10) in Li-21 is regiospecifically abstracted 

when the mixed n-BuLi/Li-21 complex in DEE is kept at room temperature for 3-5 

hours. The dilithiated specie Li2-21 is thus formed. 

'H/H-NOESY, 6Li/H-HOESY, 6Li,6Li-INADEQUATE,12211 6Li NMR temperature 

dependence, titration studies, and T, measurements were used to assign the 

structure of Li2-21 in DEE-d10. The details for this structure assignment are outlined 

in paper IV at the end of this book. 
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Figure 5.7 The dimer 27 formed from two molecules of the dilithiated specie 
Li2-21. The dilithiated compound Li2-21 forms when a mixed n-BuLi/Li-21 
complex is kept at room temperature in DEE for 3-5 h. The structure have a tetrameric 
lithium core with one coordinating ligand at each lithium (not shown). 

The dilithiated compound Li2-21 was shown to form a dimer with a tetrameric 

lithium core, i.e. 27 in Figure 5.7. Each lithium is proposed to be tetra coordinated 

by coordinating to one solvent molecule, or by the oxygen atoms in the internal 

methoxy groups. 

5.4.4 Deprotonation of cyclohexene oxide 

The results obtained when compounds Li-21, Li-26, and Li2-21 were used for the 

enantioselective deprotonation of cyclohexene oxide are summarized in Table 5.1. 

Table 5.1 Results from the enantios elective rearrangement of cyclohexene oxide 
using the chiral lithium amides Li-21, Li-26, and Li2-21 in THF or DEE at 20.0°C. 

lithium ee configuration of 

amide solvent (%) 2-cyclohexen-l-ol 

Li-21 THF 47 R 

Li-21 DEE 47 R 

Li-26 THF 74 R 

Li-26 DEE 70 R 

Li2-21 DEE 41 S 

The enantioselectivity in the rearrangement reaction is modest (47% ee of (R)-2-

cyclohexen-l-ol) when base Li-21 is used. However, good enantioselectivity 

(>70% ee of (R)-2-cyclohexen-l-ol) is obtained when the modified base Li-26 is used. 

Thus, the rational re-design of the substrates "binding-pocket", attained using 

structural information of the IS complex in conjunction with computational 

molecular modeling, had the presumed effect of increasing the stereoselectivity. 
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Furthermore, the stereoselectivity shows no significant solvent dependence, 

indicating that the major reacting specie is the same in THF and DEE. 

The result obtained with the dilithiated specie Li2-21 is interesting. The reaction 

half time is shorter and the configuration of the major product is opposite, as 

compared to when monolithiated Li-21 was used. Furthermore, the products 

enantiomeric excess was at its peak at an early state of the reaction and decreased 

thereafter when Li2-21 was being used up. These results indicate that the 

deprotonation is initially made by the carbanionic carbon; (S)-2-cyclohexen-l-ol 

and the monolithiated amide Li-21 are thus formed. The formed Li-21 then reacts 

with cyclohexene oxide and forms (R)-2-cyclohexen-l-ol; consequently, the 

enantiomeric excess of t he (S)-alcohol is lowered. 

5.5 CONCLUSION 

A computational study on the enantioselective rearrangement of cyclohexene 

oxide by the monomeric chiral lithium amide Li-11 gave new insights into the 

factors controlling the stereoselectivity in this reaction. The main factors were 

found to be preferred solvation of on e of the competing transitions states and steric 

interactions between the epoxide ring and the pyrrolidide moiety in Li-11. Such 

interactions were also observed in an NMR spectroscopic study of the initial state 

complex between cyclohexene oxide and Li-25, a structural analogue of Li-11. 

Moreover, the theoretically calculated stereoselectivity was very close to that 

experimentally observed. This close agreement implies that the major reaction 

path could involve a monomeric lithium amide/substrate complex. 

On the other hand, the major pathway for epoxide opening with the chiral 

lithium amide Li-21 appears to involve a dimeric aggregated lithium amide, even 

though an equilibrium between dimers and monomers of the lithium amide are 

observed by NMR spectroscopy. Compound 26 was prepared as a result of rational 

re-design of th e "binding pocket" in the dimeric Li-21. Use of Li-26 in the epoxide 

opening reaction raised the enantiomeric excess of the product (R)-2-cyclohexen-l-

ol from 47% ee to 74% ee, consistent with a presumed major dimeric reaction path. 

Altogether, these opposing observations illustrate the large difficulty in 

understanding, and trying to control, stereoselectivity in this complicated 

chemistry. To gain further knowledge regarding the species actually reacting in this 

reaction, kinetic measurements are needed. However, the task is complicated by 

the delicate equilibrium between the many possible initial state complexes and the 

even higher number of imaginable transition state complexes. Each of these 

complexes may be further complexed to; for example, one or more solvent 
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molecules, the formed lithium alkoxide, the formed amine, or any other additive 

present in the reaction mixture. Consequently, there are numerous different 

reaction paths available. 

Most likely, the enantioselective rearrangement of epoxides to allylic alcohols by 

chiral lithium amide bases, proceeds via many competing routes. The 

enantiomeric excess obtained in the final product reflects the stereoselectivity in all 

these routes. The results presented in this chapter rationalize the observed 

stereoselectivity for the ligands studied. However, to use this knowledge to a priori 

design a new chiral base for this reaction is very difficult. Small structural changes 

in the molecule often lead to tremendous changes in the structure and degree of 

aggregation. The other species formed in the reaction, i.e. the chiral lithium 

alkoxide and the chiral amine, may also complicate the issue through formation of 

mixed aggregates. Thus, to attempt such an adventure, more knowledge regarding 

the factors controlling aggregate size and structure, and information regarding the 

exact composition of the transition state, including the number of solvent 

molecules and other species, are needed. However, armed with such knowledge, 

gained by NMR spectroscopic studies on IS structures, and kinetic and 

computational studies on TS structures, it may well be feasible! 
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Isomerization of Allylic- to Homoallylic Alcohol 

6.1 SOLVENT INDUCED IS OMERIZATION AC COMPANYING T HE EN ANTIOSELECTIVE 
DEPROTONATION OF EPOXIDES (PAPER V) 

During studies on the use of Li-11 i n the enantioselective rearrangement of 

cyclohexene oxide to the allylic alcohol 2-cyclohexen-l-ol 28, we observed a 

significant solvent effect. A mixture of 28 and the homoallylic alcohol 3-

cyclohexen-l-ol 29 was formed when solvents with low propensity to coordinate 

lithium, i.e. DEE o r 2,5-dimethyltetrahydrofuran (2,5-DMTHF), w ere used, Scheme 

6.1. 

in 2,5-DMTHF 

Scheme 6.1 

Compound 29 was shown to be formed from 28. It was also shown that neither 

n-BuLi, nor the lithium alkoxide of 28 i.e. Li-28, o r the amine 11, were able to 

induce isomerization on their own. Furthermore, the enantiomeric excess of (S)-28 

and (S)-29 decreased during the reaction. This observation made us propose a 

scheme where the homoallylic lithium alkoxide (S)-Li-29 is formed from the 

allylic lithium alkoxide (S)-Li-28. The lithium alkoxide (R)-Li-29 m ay be formed 

from the lithium alkoxide (_R)-Li-28, or from (S)-Li-29 via further isomerization. 

Thus, all lithium alkoxides are connected through reversible 1,3-proton transfer 

reactions, Scheme 6.2. 
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OLi OLi 

in 2,5-DMTHF 

(/?)-Li-28 (/?)-Li-29 

Scheme 6.2 

Formation of compound 29 in the rearrangement of c yclohexene oxide by non-

chiral lithium dialkylamide bases in DEE solution has previously been described by 

Kissel and Rickborn.13151 They showed that 29 is a secondary reaction product, 

formed from 28 by a reversible deprotonation/reprotonation route. The 

consecutive 1,3-proton transfers proposed in Scheme 6.2 could not be predicted 

using racemic alkoxides. Interestingly though, they found lithium pyrrolidide to be 

the most effective base for this isomerization. 

The isomerization of (S)-Li-29 to (_R)-Li-29 in Scheme 6.2, prevents isolation of 

the homoallylic alcohol (S)-29 in both high yield and enantiomeric excess. In order 

to explore the detailed mechanism and the preparative potential of this reaction, a 

method to inhibit this consecutive 1,3-proton transfer was sought. 

6.2 STEREOSPECIFICITY IN THE ISOMERIZATION REACTION (PAPER VI) 

3-Methyl-2-cylohexen-l-ol, 30, a compound also known as seudenol, is a sex 
[337 338] 

pheromone of the Douglas fire beetle. This compound was chosen as a 

substrate for the isomerization reaction since the stabilization of Li-30 an d Li-31 by 

their methyl groups was expected to make them thermodynamically more stable 

than their isomers, Li-32 and Li-33, respectively (Scheme 6.3). 

OLi OLi OLi OLi 

Li-30 Li-31 Li-32 Li-33 

Scheme 6.3 
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Enzymatic resolution of commercially available racemic 30 gave a mixture of 
[339-341] 

enantiomers with (S)-30 in 76% enantiomeric excess. Use of this 

enantiomerically enriched (S)-30 in the isomerization reaction with Li-11 in 2,5-

DMTHF produced, after work-up, a mixture containing 34% 30 and 66% 31. Gas 

chromatographic analysis using a chiral stationary phase column revealed that one 

of the enantiomers of 3l' 3421 was formed in 76% ee. Furthermore, the enantiomeric 

excess of both 30 and 31 remained constant within experimental error during the 

reaction; i.e. the isomerization reaction is found, within experimental error, to be 

100% stereospecific. Thus, it may be concluded that the racemization observed in 

the isomerization of 28 to 29 in Scheme 6.2 above is caused by consecutive 1,3-

proton transfer reactions. Furthermore, the methyl substitution inhibits the 

isomerization between the homoallylic enantiomers. 

The proposed mechanism implies that the configuration at the chiral center is 

unchanged during the reaction. However, if (S)-Li-31 is the product formed from 

(S)-Li-30, then the elution order on the chiral stationary phase column of the two 

enantiomers of 31 is opposite to that of the enantiomers of 30. To assign the 

absolute configuration of the major enantiomer of 31, we isomerized racemic Li-30 

with Li-11 in 2,5-DMTHF. To our surprise, both 30 and 31 remained racemic, 

within experimental error, during the reaction; i.e. there was no stereoselectivity 

in the isomerization reaction, although a chiral base was used. The isolated 

mixture of racemic 30 and 31 was then enzymatically resolved using the same 

enzyme as was used to resolve 30. According to the rules for lipase 

enantiospecificity,'197' this resolution gave a mixture enantiomerically enriched in 

(S)-30 and (S)-31, respectively. Analysis of this mixture proved the reversed elution 

order of the enantiomers of 31 on the chiral stationary phase as compared to the 

enantiomers of 30. Thus, it is clear that Li-30 isomerizes to Li-31 with retention of 

configuration at the chiral center. 

6.3 LlGAND ACCELERATION 

It was also found that the isomerization of Li-30 to Li-31 could be made using 

only a catalytic amount of Li-11; although, the reaction was considerable slower 

than when an equimolar amount of ba se was used. However, using excess (0.0-0.28 

M) of the amine 11 together with a catalytic amount (0.03 M) of Li-11 accelerated 

the isomerization of Li-30 (0.14 M) considerably. The reaction half-life decreased 

when the amount of fr ee amine was increased up to 0.14 M. Higher concentrations 

of the free amine again increased the reaction half-life. This ligand-accelerated 

reaction is about twice as fast as the equimolar reaction. 
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Later studies have shown that amines, preferably containing pyrrolidine rings, 

i.e. pyrrolidine or the amine 11, are able to isomerize Li-30 to Li-31 without the 

lithium amide Li-11. No isomerization of Li-30 takes place in the absence of amine 

ligands. Thus, amines or lithium amides make it possible for the lithium alkoxide 

Li-30 to isomerize to Li-31. The reason for this still remains unclear; thus, only 

speculative explanations may be offered. The amine, and the lithium amide, may 

increase the basicity of the alkoxide functionality, and/or lower the activation 

energy by stabilizing the transition state more than the initial state. It is also 

possible that the amine, and the lithium amide, deaggregate the original alkoxide 
[343, 344] 

aggregate to smaller, and more reactive aggregates. ' Combinations of these 

effects are also conceivable. 

6.4 PRELIMINARY MECHANISTIC STUDIES (PAPERS VI AND VU) 

6.4.1 A preliminary computational study 

The chemistry of lithium organic reagents is highly dependent on solvation and 
[29, 30, 32] 

coordination at the metal centers. ' ' However, the specific role of the solvent 
[31] 

and/or other ligands coordinating to the lithium atom is poorly understood. ' 

The strong solvent and ligand dependence on the isomerization reaction makes 

this reaction a useful probe for experimental and theoretical studies on solvation 

and coordination in lithium organic chemistry. 

In an initial theoretical study, we investigated a possible mechanism for the 1,3-

proton transfer reaction using the model system shown in Scheme 6.4. 

Scheme 6.4 Model system for the computational study of the isomerization of an 
allylic alkoxide into a homoallylic alkoxide catalyzed by a lithium amide. 

The model system consists of the lithium alkoxide of czs-2-buten-l-ol that is 

isomerized to the lithium alkoxide of czs-3-buten-l-ol, using lithiated ammonia 

(LiNH2) as catalyst. Geometry optimizations were made at the PM3, HF/6-31+G(d), 

and B3LYP/6-31+G(d) levels of theory. 

The calculated mechanism for a suprafacial 1,3-proton transfer occurring syn  to 

the alkoxide functionality is shown in Scheme 6.5. 

OLi OLi 
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Scheme 6.5 Calculated mechanism for suprafacial 1,3-proton transfer in the mo del 
system occurring syn to the alkoxide fu nctionality. The relative energies (kcal mol"1) 
and selected distances (Å) calculated at the B3LYP/6-31+G(d) level are also shown. 

The hetero dimeric product complex C5 is slightly more stable than the reactant 

complex Cl due a weak Li-rc interaction. Several intermediates and transition 

states were found on the potential energy surface. However, only the intermediate 

C3 was found to be on the reaction path leading to product. In the intermediate C3, 

the proton is completely transferred to the nitrogen atom in the amide base and a 

perturbed allylic anion is formed. The two lithiums have different roles; one is 

coordinating the ammonia, the oxy-anion, and the allylic anion at the former 

double bond while the other lithium coordinates the oxy-anion and the 

developing double bond at the C4 carbon. Intermediate C3 may be reached by two 

paths, directly via one TS, or indirectly via two intermediates. The energy barriers 

for the indirect path are lower than that of the direct path. Intermediate C3 

furnishes the product through the rate limiting transition state TS7. 

The calculated barriers for the isomerization are higher than those found 

experimentally. However, further calculations indicate that solvation is more 

effective in the transition states than in the initial state hetero dimer complex.1"4"' 

These studies also suggest that there may be two solvent molecules in the 

transition state, as compared to one solvent molecule in the initial state, when 2,5-

DMTHF is used as solvent. In contrast, when THF is used as solvent there are two 

solvent molecules both in the IS and in the TS. Thus, the lower activation barrier 

experimentally observed in 2,5-DMTHF may originate from a higher energy of the 

IS and a lower energy of the TS, as compared to when THF is used as solvent. 

Additional computational studies considering also antarafacial proton transfer 

and proton transfer anti to the alkoxide functionality are in progress. These studies 

will also include solvents and the amine ligands found to accelerate the 

isomerization. 
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6.4.2 Intramolecular proton transfer 

Ligand acceleration of the 1,3-proton transfer by a diamine, having one tertiary 

and one secondary nitrogen, suggests that the proton returned to the allylic anion 

intermediate may come from the coordinating amine, i.e. intermolecular proton 

transfer. To testify this we deprotonated O-deuterated 30, i.e. OD-30, using Li-11. 

The resulting alkoxide Li-30 was then isomerized by a sub-stoichiometric amount 

of Li-11 in the presence of the accelerating N-deuterated amine 11, i.e. ND-11, 

Scheme 6.6. 

2,5-DMTHF 2,5-DMTHF 

OD- 30 
0.7 eq 0.7 eq 0.7 eq 

Scheme 6.6 

1H- and 2H-NMR spectroscopic analysis on the isolated product mixture showed 

only traces of deuterium in the allylic- and homoallylic alcohol, respectively. This 

indicates that the prototropic rearrangement is close to 100% intramolecular. 

6.4.3 Suprafacial or antarafacial proton transfer? 

Preliminary NMR spectroscopic studies'3461 on compound C2D-31 obtained from 

isomerization of the substrate C2D-30 deuterated at C-2, show that the proton being 

transferred are returned to the opposite side of the hydroxyl group, Scheme 6.7. 

. / (A-— 
N r x v J  

Li Li-11 
in 2,5-DMTHF (30"^ 

ii. H30+ 

H 

C2D-31 C2D-30 

Scheme 6.7 

To be able to determine whether the proton transfer is antarafacial or 

suprafacial, a substance specifically deuterated at C-4 is needed. Efforts to prepare 

such a compound are in progress. 
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6.5 CONCLUSION 

The unexpected finding of almost racemic homoallylic alcohol 31, as one of the 

products in the enantioselective rearrangement of cyclohexene oxide by Li-11 

when solvents with little propensity to coordinate lithium were used, made us 

investigate this interesting reaction. The results obtained so far indicate that the 

1,3-proton transfer takes place within a lithium alkoxide aggregate. This aggregate 

probably also contains amine or lithium amide molecules. A solvent with little 

propensity for lithium coordination is necessary to induce isomerization. 

However, presence of small amounts (up to about 1 equiv.) of secondary amines, 

preferably containing a pyrrolidine moiety, accelerates the reaction. Attempts to 

accelerate the reaction using other diamine ligands with high affinity for lithium, 

e.g. (-)-sparteine or TMEDA, have so far been unfruitful. The question whether a 

secondary amine is necessary, or if a tertiary amine will do equally well, still 

remains open. Nevertheless, there appears to be a very delicate balance regarding 

the solvation at the lithium cation in this reaction. The results obtained so far 

suggest that large aggregates of the alkoxide, e.g. ladders, could exist in solvents 
[344, 347] 

with low ability to coordinate the lithium atom. ' Addition of amines, or 

lithium amides, likely breaks up these large aggregates into e.g. tetramers, trimers, 

or dimers.13431 The isomerization could then take place inside such an amine, or 

lithium amide, coordinated lithium alkoxide aggregate due to an increased 

reactivity. A sequence of this type also accounts for the decreased reaction rate at 

high amine concentration, and the lack of ligand acceleration when TMEDA or 

(-)-sparteine were used, since these conditions would form monomeric lithium 

alkoxides incapable of isomerization. 

Although there are still many unanswered questions regarding this reaction, it 

appears to be a general preparative procedure for transforming cyclic allylic 

alcohols to their homoallylic counterparts. The intriguing solvent dependence on 

this reaction makes it a good model for theoretical and experimental studies on the 

role of solvent and solvation in lithium organic chemistry. Work to address the 

questions raised and gain knowledge about the intrinsic reaction mechanism for 

this 1,3-proton transfer reaction are currently being performed in our laboratory. 
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Asymmetric Alkylation of A ldehydes 

7.1 BACKGROUND 

Nucleophilic addition of organometallic reagents to carbonyl substrates 

constitutes one of the most fundamental operations in organic synthesis, mainly 

because a new carbon-carbon bond is formed.1159' 161 3481 Moreover, through 

modification of the organometallic compounds by a chiral auxiliary a general 
[349] 

method to synthesize optically active alcohols emerges. The use of a lkyllithium 

reagents as nucleophiles in such asymmetric additions has so far been limited.'350' 

One reason for this is the limited number of ch iral auxiliaries available. The chiral 

auxiliaries used in conjunction with alkyllithium reagents contain amine, ether, 

lithium alkoxide, or lithium amide functionalities.'326' Unfortunately, most of the 

chiral auxiliaries reported to date are of limited synthetic application since their 

preparations often require substantial synthetic efforts. Furthermore, only a few of 

these chiral auxiliaries give products with enantiomeric excess higher 

than 60%.'162' 351' 3521 Use of alkyllithium reagents as nucleophiles are also 

complicated by their high reactivity and propensity to assemble in aggregates. For 

example, it has been suggested that the products may form mixed aggregates with 

the reagent, and thereby change the reaction conditions."46 353 3551 However, the 

property of alkyllithium reagents to aggregate does not necessarily have to be a 

disadvantage. Instead, formation of a mixed aggregate between the alkyllithium 

reagent and a chiral additive may be used to introduce a chiral environment at the 

nucleophilic center.'356' An example was shown in 1984 by Hogeveen and Eleveld, 

who added w-BuLi to benzaldehyde in the presence of the chiral lithium amide 

Li-21 at -116°C.'162' They isolated the product (S)-l-phenyl-l-pentanol in 74% ee 

when DEE was used as solvent. A 1:1 solvent mixture of diethyl ether and 

dimethoxymethane (DMM) was reported to give an enantiomeric excess of 90% in 

the same reaction. The optimum ratio between benzaldehyde, n-BuLi, and 21 was 

found to be 1: 6.7: 4. 
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In this section, it will be shown that alkyllithium reagents and chiral lithium 

amides form one-to-one complexes in solution. Such mixed complexes may be 

highly stereoselective when used for alkylation of aldehydes.1'64 1671 Using n-BuLi, 

in the form of a mixed n-BuLi /chiral lithium amide complex, for the 

enantioselective butylation of prochiral aldehydes gives the product in up to 99% 

enantiomeric excess. NMR spectroscopy, in conjunction with studies of the 

stereoselectivity in the alkylation reactions, was used to rationalize the factors 

important for high enantioselectivity. 

7.2 NMR SPECTROSCOPIC STUDIES OF MIXED LITHIUM AMIDE/ALKYLLITHIUM 

COMPLEXES (PAPER Vlll) 

Earlier NMR spectroscopic studies by Hilmersson and Davidsson on mixtures of 

n-BuLi and the chiral lithium amide Li-21 (see also Chapter 5) have showed that 

n-BuLi is present in both homo aggregated tetramers and in a mixed one-to-one 

aggregate with the chiral lithium amide Li-21, i.e. Li-21/n-Bu Li.'168' Based on these 

results it was suggested that the mixed Li-21/n-BuLi complex is the reactive specie 

in the asymmetric alkylation reaction reported by Hogeveen and Eleveld. The 

solvent dependent stereoselectivity reported, might be explained by a solvent 

dependent equilibrium between homo aggregated Li-21, homo aggregated n-BuLi, 

and the mixed aggregate Li-21/n-BuLi. 

To understand and control the reactivity and selectivity of mixed complexes of 

this type, insight into the solution state structures and dynamics of these mixed 

complexes are essential. Thus, to gain knowledge about the structure, dynamics, 

reactivity, and selectivity of mixed dimers we initiated a systematic investigation 

of the mixed dimers formed from the chiral lithium amides in Figure 7.1 and 

alkyllithium reagents. 

.OMe .OMe 
Me 

Me. 
Me. 

Li-26 Li-13 Li-14 Li-21 

.OMe .OMe .OMe Me 

00 Me. ro 
Li-33 Li-22 Li-32 

Figure 7.1 The chi ral lith ium am ides whose mix ed com plexes with alky llithium 
reagents were investigated in this work. 
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7.2.1 Structure of mixed lithium amide/alkyllithium complexes in solution 

NMR spectroscopic studies of the chiral lithium amides in Figure 7.1 shows that 

all these amides are dimeric in DEE-d10 solution. Addition of n-BuLi to the 

respective lithium amide dimer results in formation of new species, as shown by 

'H, 6Li, and 13C NMR spectroscopy. In addition to the signals from the chiral 

lithium amide dimers, the 6Li NMR spectrum shows three signals. One signal at 
[355, 357] 

8 1.9 derive from tetrameric n-BuLi while the other two signals (present in a 

one-to-one ratio) originate from the mixed complex between rc-BuLi and the chiral 

lithium amide. The 13C NMR spectrum displays two sets of resonances for the 

chiral lithium amide and two sets of resonances for n-BuLi. The signals from the 

cc-carbons of the n-BuLi molecules in the mixed complexes are all quintets due to 

13C-6Li couplings (1/(13C,6Li)=8 Hz).155' The overall results show that the mixed 

complexes are dimers, consisting of one molecule of the chiral lithium amide and 

one molecule of n-BuLi.I2°2! 

7.2.2 Complexation ability of lithium amides towards n-BuLi 

As shown above, an equilibrium between homo dimeric lithium amides, 

tetrameric n-BuLi, and the mixed lithium amide/n-BuLi complex exist in 

solution. The equilibrium constants between the lithium amide homo dimers, 

(n-BuLi)4, and lithium amide/n-BuLi mixed dimers were estimated from 

intensities in the 6Li NMR spectra at -90°C and the known concentrations of added 

n-BuLi and chiral amine, Table 7.1. 

Table 7.1 Equilibrium constants for the format ion of mixed lithium amide/n-B uLi 
complexes for four representative lithium amides. The equilibrium constants, 
determined from intens ities in the 6Li NMR spectra, are defined as the equilibrium 
constant between n-BuLi tetramers, lithium amide dimers, and mixed dimers. 

Equilibrium K 

(n-BuLi)4 + 2(Li-21)2 . K - 4 (Li-21)/n-BuLi 4 M 

K 
(n-BuLi)4 + 2 (Li-26)2 - 4 (Li-26)/n-BuLi 10 000 M 

(n-BuLi)4 + 2 (Li-22)z . K - 4 (Li-22)/n-BuLi 800 M 

K 
(n-BuLi)4 + 2(Li-33)2 . - 4 (Li-33)/n-BuLi 0.14 M 
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As seen in Table 7.1, there is large variance in the ability of different chiral 

lithium amides to complex n-BuLi. This might be explained by differences in steric 

interactions and solvation within the lithium amide/n-BuLi complexes, as 

compared to the corresponding lithium amide homo dimers. Compound (Li-33)2 

with intramolecular pyrrolidine coordination shows only a weak tendency to 

coordinate n-BuLi. 

7.2.3 Complexation ability of different alkyllithium reagents towards Li-21 

To testify if t he size of the alkyl group in the alkyllithium reagent is important 

for formation of mixed lithium amide/alkyllithium complexes, we investigated 

the tendency of Li-21 to form mixed complexes with alkyllithiums of different 

congestion. The equilibrium constants, determined from intensities in the 6Li 

NMR spectra at -80°C in DEE-d10, for formation of mixed complexes between Li-21 

and MeLi, n-BuLi, s-BuLi, and f-BuLi are shown in Table 7.2. 

Table 7.2 Equilibrium constants for the form ation of mixed comp lexes with Li-21 
for different alkyllithium reagents. The equilibrium constants, determined from 
intensities in the Li NMR spectra, are d efined as the equilibriu m constant between 
homo aggregated alkyllithium (R-Li)x, (Li-21)2, and the mixed dimers R-Li/Li-21. 

Equilibrium K AG193K 

(MeLi)4 + 2 (Li-21 >2 - 4 (Li-21 )/MeLi 0.001 ± 0.009 M llkJmol"1  

K 
(n-BuLi)4 + 2 (Li-21 )2 ~ 4 (Li-21 )/n-BuLi 1.22 ±0.41 M -0.32 kJ mol"1 

(s-BuLi)4 + 2 (Li-21 >2 . K - 4 (Li-21 )/s-BuLi 150 ±70 M -8.0 kJ mol1 

K 
(f-BuLi)2 + (Li-21 )2 - 2 (Li-21 )/f-BuLi 0.4 ±0.3 1.5 kJ mot1 

The homo aggregates of MeLi, w-BuLi, and s-BuLi are all tetrameric in DEE 

solution at -80°C; f-BuLi, on the other hand, is dimeric under these conditions.13581  

From the equilibrium constants in Table 7.2, it is clear that s-BuLi is superior over 

the other alkyllithium reagents in the formation of mixed dimers with the chiral 

lithium amide Li-21. The equilibrium constant between homo and hetero 

complexes is dependent on the steric requirements of the substituents on the cx-

carbon. The branching at the carbanion carbon in s-BuLi yields crowding at the 

carbanions close to the lithiums. This disfavors s-BuLi homo tetramers compared 

to the Li-21/s-BuLi mixed dimers. In contrast, f-BuLi is only sparingly found as 
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mixed complexes with Li-21. Since f-BuLi is homo dimeric in DEE a homo 

dimer—mixed dimer equilibrium results; comparisons of the equilibrium 

constants are therefore complex. 

7.2.4 Solvent dependence upon mixed complex formation 

Addition of THF to a DEE solution of the mixed complex Li-21 /n-BuLi shows 

that the equilibrium between homo and hetero complexes is solvent dependent, 

Scheme 7.1. 

Scheme 7.1 The equilibrium between homo aggregated Li-21, homo aggregated 
n-BuLi, and mixed Li-21/n-BuLi complexes is affected by THF. 

The 6Li NMR spectra in Figure 7.2 shows the effect of THF addition to a mixture 

of (Li-21)2/ Li-21/n-BuLi, and (n-BuLi)„ in DEE. In agreement with previous 

solvated (Li-21)2 (8 2.72 and 3.14), while the THF solvated (Li-21)2 (5 2.70 and 3.16) 

is formed together with the THF solvated monomer (8 2.28). The signals for 

Li-21/n-BuLi at 8 2.40 and 3.68 were also affected by THF. At first, the most 

downfield 6Li NMR signal at 8 3.68 shifted slightly downfield, possibly due to 

replacement of one DEE mo lecule by one THF molecule in the solvated mixed 

Li-21/n-BuLi complex. At THF concentrations above 8%, the 6Li signals from the 

THF solvated Li-21/n-BuLi shift upfield towards that of Li-21/rc-BuLi i n pure THF, 

Figure 7.2b. 

(n-BuLi)^ 4DEE + + (n-BuLi)4* 4THF 

[3311 
observations, addition of THF rapidly lowers the concentration of the DEE 
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Li-21/n-BuLi Li NMR 

Li-21 -2S=THF 

5% THF 
T= -70°C 

55% THF 
T= -70°C 

55% THF 
T= -110°C 

3.5 3.1 2.7 2.3 ppm 

Figure 7.2 Part of 6Li NMR spectra of the mixture of dimeric and monomelic 
Li-21 as well as the mixed Li-21/n-BuLi complex in DEE-rf10 with (a) 5% added 
THF and (b) 55% THF. The large temperatu re dependence on the marked (*) signal 
are also shown (c). 

At 55% THF in DEE the most downfield 6Li resonance from Li-21/n-BuLi 

(originally at 8 3.68) was observed about 0.6 ppm upfield (now at 8 3.04). These 

chemical shift changes are likely the effect of an increased coordination number 

for one of the lithiums in Li-21/n-BuLi. 

The shift of this signal also showed large temperature dependence in the 6Li 

NMR spectra. Upon lowering the temperature from -70°C to -110°C, the 6Li NMR 

signal at ô 3.04 shifts upfield to 8 2.42. Interestingly, the chemical shift for this 6Li 

NMR signal seems to merge the 6Li NMR chemical shift of the tetra-coordinated 

lithium in Li-21. The second 6Li NMR signal from Li-21/n-BuLi in DEE, originally 

at 8 2.40, showed only small chemical shift changes upon THF addition. This 

indicates a preserved coordination around this lithium. Presumably, this lithium 

is solvated by the oxygen in the methoxy group; this coordination persists also in 

THF. 

Addition of TMEDA to a DEE solution of Li-21 / n-BuLi, Li-21 dimers, and 

(n-BuLi)4 resulted in a large fraction of TMEDA-solvated monomers of Li-21, i.e. 

Li-21/TMEDA and TMEDA solvated rc-BuLi dimers. No TMEDA solvated mixed 
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Li-21/n-BuLi complexes were observed. Similar results were obtained upon 

addition of THF or TMEDA, respectively, to the other mixed dimer complexes in 

DEE. 

The overall results demonstrate a preference for coordination at one lithium 

center in Li-21/n-BuLi; the lithium center originally found at 5 3.68 in the 6Li 

NMR spectrum. Structurally this implies that the internal coordination by the 
[359] 

methoxy group is very strong, as it persists even in the presence of a strong 

polar solvent such as THF. Tentatively, this implies that solvents as well as 

substrates initially coordinate to the non-methoxy coordinated lithium cation. A 

further consequence of the strong internal methoxy coordination is that the 

substituents at the methylene carbons between the amide nitrogen and the 

methoxy group will be locked in a "well defined" spatial arrangement. Thus, an 

incoming substrate will be regioselectively directed to one of the lithium atoms 

and, once there, forced to adopt a geometry that minimizes the steric interactions 

with the lithium amide moiety (vide infra) . 

Since the stereoselectivity for the asymmetric alkylation of benzaldehyde was 

reported to improve in a 1:1 solvent mixture of DEE and DMM, as compared to 

pure DEE, we investigated the effect of DMM on the above equilibrium. However, 

no changes were observed in the 6Li NMR spectra for Li-21/w-BuLi or Li-22/n-BuLi 

upon addition of 50% (v/v) DMM to the DEE solution. This indicates that DMM 

only has marginal effect on the above equilibriums and structures. 

7.3 EVALUATION OF CHIRAL LITHIUM AMIDES FOR ASYMMETRIC ALKYLATION 
REACTIONS 

To acquire a relationship between the structure of the mixed lithium 

amide/alkyllithium complex and the selectivity obtained in the asymmetric 

alkylation of aldehydes, we performed the asymmetric addition of n-BuLi to 

benzaldehyde. DEE was used as solvent in these reactions; although, a 1:1 mixture 

of DEE and DMM has been reported to give higher stereoselectivity. The use of 

DEE allows a direct comparison with the NMR spectroscopic results. The results 

obtained using the mixed complexes between rc-BuLi and the chiral lithium 

amides in Figure 7.1 are shown in Table 7.3. 
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Table 7.3 Results for the asymmetric 
alkylation of benzaldehyde in presence of the 
chiral lithium amides in Figure 7.1. The 
following molar ratios were used: lithium amide 
(1 equiv.), «-BuLi (0.45 equiv.), and 
benzaldehyde (0.25 equiv.). All reactions were 
carried out at -116°C in DEE. The substituents 
R,, R2and X are shown in structure 34. 

amide RI R 2  X ee % (GC) 

Li-21 
Me 

Ph OMe 72(5) 

Li-26 c?* Ph OMe 75 (5) 

Li2-21 
Me 

CO* Ph OMe 8(5) 

Li-13 Me Ph O 7 CR) 

Li-14 Me ('-Pr O 7 0?) 

Li-22 i-Pr Ph OMe 82 (5) 

Li-32 Me Ph OMe 2(5) 

Li-33 i-Pr Ph O 26 (5) 

From the results in Table 7.3 it is possible to identify some structural features in 

the lithium amide that are important for controlling the enantioselectivity in the 

alkylation reactions. The steric requirement of t he Rj substituent is crucial for the 

reaction, i.e. h igh stereoselectivity is dependent on a large group at R^ a methyl 

group is too small (see the entries with compounds Li-13, Li-14, and Li-32 in Table 

7.3). Congested Rj-groups, like those in Li-21, Li-26, and Li-22 gave high 

enantioselectivities. Furthermore, compound Li-22, in which one of the chiral 

centers of Li-21 has been removed, did not result in a drop in stereoselectivity; 

instead, the product ee increased to 82%. This observation shows that R, does not 

have to be chiral and indicates that the asymmetric induction is controlled by the 

chiral center between the R2 substituent and the chelating group. 

The configuration of the product 1-phenyl-l-pentanol was reversed, considering 

the absolute configuration of the lithium amide, when the amides Li-13, Li-14, and 
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Li-33 were used. Furthermore, the enantioselectivity was low when these ligands 

were used. Obviously, the pyrrolidine group forces the benzaldehyde into a 

different transition state geometry. Two important factors can be noticed when 

Li-33 is used. The isopropyl group in R, would imply a high selectivity for (S)-

alcohol; however, this effect is biased by the large pyrrolidine group that favors a 

transition state yielding the (R)-alcohol. 

Hogeveen and Eleveld reported an enantiomeric excess of 90% for (S)-l-phenyl-

1-pentanol when a 1:1 mixture of DEE and DMM was used as solvent.116'1 However, 

despite repeated attempts, we only obtained (S)-l-phenyl-l-pentanol in 72% ee 

using Li-21 in this solvent mixture. The observed difference may be connected to 

the way the optical purity of the product was determined. Hogeveen and Eleveld 

determined the ee from the optical rotation, whereas we used GC on chiral 

stationary phase. Surprisingly, the addition of DMM to the reaction performed 

with Li-22 as chiral inducer resulted in a large increase in stereoselectivity. (S)-l-

phenyl-l-pentanol was now formed in 91% ee. The reason for this improved 

stereoselectivity is not unambiguously determined; it is likely an effect of increased 

solvation in the transition state with DMM. 

7.4 ASYMMETRIC ALKYLATION OF PROCHIRAL ALDEHYDES BY MIXED LITHIUM 
AMIDE/ALKYLLITHIUM COMPLEXES (PAPER IX) 

Aliphatic aldehydes have traditionally been poor substrates for enantioselective 

alkylation reactions using organolithium reagents. However, encouraged by the 

high stereoselectivity obtained using Li-21 and the new chiral ligand11531 Li-22 we 

studied the enantioselective addition of n-BuLi to the various aldehydes shown in 

Figure 7.3. 

34 35 36 37 38 

Figure 7.3 Aldehydes used as substrates for the enantioselective addition of n-BuLi 
using the chiral lithium amides Li-21 and Li-22 as chiral auxiliaries. 

The results obtained when the prochiral aldehydes in Figure 7.3 were butylated 

with the mixed complexes Li-21/n-BuLi and Li-22/n-BuLi, respectively, are 

summarized in Table 7.4. 
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Table 7.4 Enantioselective addition of n-BuLi (0.45 equiv.) to prochiral aldehydes 
(0.25 equiv.) in the presence of the chiral lithium amides Li-21 or Li-22 (1 equiv.) in 
(50/50 v/v) DEE/DMM solution at -116°C. 

Entry Lithium amide Aldehyde Product ee (%) 

1 Li-21 34 1-phenyl-l -pentanol 72 

2 Li-22 34 1-phenyl-l -pentanol 91 

3 Li-21 35 1-cyclohexyl-l-pentanol 91 

4 Li-22 35 1-cyclohexyl-l-pentanol >98.5 

5 Li-21 36 3-ethyl-4-octanol 90" 

6 Li-22 36 3-ethyl-4-octanol 65" 

7 Li-21 37 2-methyl-3-heptanol 96 

8 Li-22 37 2-methyl-3-heptanol >98.5 

9 Li-21 38 2,2-dimethyl-3-heptanol 58 

10 Li-22 38 2,2-dimethyl-3-heptanol 11 

a) The peaks were not fully resolved; reported values are estimates of enantiomeric excess. 

As described in the preceding section, the asymmetric butylation of aldehydes is 

likely to proceed through an activated complex in which the aldehyde is 

coordinated to one of the two stereogenic lithium atoms in the mixed lithium 

amide /rc-BuLi dimer. The spatial complementary of the aldehyde to this mixed 

dimer is important for the asymmetric induction. The aldehydes in Table 7.3 differ 

in their steric requirements at the a- and ß-carbons. 1-Cyclohexyl carboxaldehyde 35 

is more congested than benzaldehyde 34. This difference is reflected in an increased 

enantiomeric excess of the product 1-cyclohexyl-l-pentanol. 2-Ethyl-butyraldehyde 

36 is even more congested; a low enantiomeric excess of the product 3-ethyl-4-

octanol was obtained when Li-22 was used as chiral ligand. f-Butyraldehyde 37 is a 

small aldehyde, and the enantiomeric excess of the product 2-methyl-3-heptanol is 

again high, >98.5% using Li-22 and 96% with Li-21. Both Li-21 and Li-22 are 

efficient in discriminating between the Re- and Si-faces of the carbonyl group in 

the above aldehydes. However, when the very congested pivalaldehyde 38 was 

used, the enantiomeric excess of the resulting 2,2-dimethyl-3-heptanol dropped 

significantly. Similar results were also observed in an attempt to butylate 

acetophenone in the presence of Li-22. The resulting product 2-phenyl-2-hexanol 

was obtained in only 10% ee. Thus, it is clear that the enantioselectivity in the 

addition reaction is extremely sensitive to the steric requirement of the R-group 

attached to the carbonyl carbon. 
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7.4.1 Ligand accelerated alkylation and an attempt to catalytic turnover 

The reactivity of organolithium reagents is known to increase upon 

deaggregation, i.e. dimers of n-BuLi are more reactive than their tetrameric 
[31 355] 

analogues. ' Thus, it seems likely that n-BuLi within the hetero dimers 

Li-22/n-BuLi would be more reactive than n-BuLi present as dimeric and 

tetrameric aggregates. To test this hypothesis, we estimated the reaction rates at 

-116°C for the butylation of 35 and 37 from the observed half-life of the aldehydes, 

in the absence and presence of Li-22. The rate of butylation using the mixed 

complex Li-22 /«-BuLi was found to be too fast to be determined with the method 

used, i.e. reaction quenching followed by GC analysis. However, the butylation of 

35 and 37 without added Li-22, i.e. with dimeric and/or tetrameric n-BuLi, was 

much slower (T1/2 > 10 m in). 

The increased reactivity of the Li-22/n-BuLi complex, as compared to tetrameric 

M-BuLi, encouraged us to attempt the butylation reaction using only a catalytic 

amount of the chiral lithium amide. The product alcohol was isolated in high 

enantiomeric excess but in low chemical yield. Prolonging the reaction time 

increased the chemical yield; however, at expense of the stereoselectivity. These 

observations were caused by two factors, Scheme 7.2. 

(w-BuLi)4 

racemic alcohol chiral alcohol 

Scheme 7.2 The chiral lithium amide Li-22 dissociates the tetramers of n-BuLi into 
hetero dimers Li-22/n-BuLi, whic h are m ore reactive towards the aldehyde than the 
n-BuLi tetramers. The formation of Li-22/w-BuLi is slower than the reaction betw een 
the aldehyde and Li -22/n-BuLi. The lit hium amide, present as (Li-22) 2, undergoes 
1,2-addition to the aldehyde in absence of n-BuLi. 

The rate of formation of the mixed complex Li-22/n-BuLi from the lithium 

amide dimer and tetrameric n-BuLi was found slower than the reaction between 

Li-22/n-BuLi and the aldehyde. Furthermore, there appears to be a loss of the 
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chiral amide due to a 1,2-addition to the aldehyde"64' 166' 360 3621 in the absence of 

n-BuLi. Thus, catalytic turnover is hampered in a one-pot synthesis. However, 

turnover for the asymmetric butylation could be demonstrated by a repetitive cycle 

comprised of: 1) formation of the mixed complex Li-22/n-BuLi at room 

temperature (by the addition of 0.5 equiv. n-BuLi to Li-22), 2) cooling down to 

-116°C followed by addition of 35 (0.5 equiv.). This cycle was repeated 5 times to 

yield 1-cyclohexyl-l-pentanol in quantitative chemical yield (GC) and 82% ee using 

a sub-stoichiometric amount of Li-22. Since the chemical yield and 

enantioselectivity was found high, there does not seem to be any interference from 

the product. 

7.5 PROPOSED ACTIVATED COMPLEXES 

The NMR spectroscopic study suggested that solvents as well as the aldehyde 

substrate initially binds to the non-methoxy coordinated lithium atom in the 

mixed Li-21/ n-BuLi complex. Thus, the aldehyde is likely to form a pre-complex 

with the mixed Li-21/n-BuLi complex; addition of the n-BuLi moiety in 

Li-21/n-BuLi to the aldehyde then occurs within this pre-complex. Based on this 

reasoning, we initiated a computational study on possible transition states for the 

nucleophilic addition of ethyllithium to benzaldehyde in the presence of the chiral 

lithium amide Li-26. Initial calculations at the semi empirical PM3 level located 

the two diastereomeric transition states shown in Figure 7.4. 

Li-26 

Li-26 

Ethyllithium 

Ethyllithium 

Si-face 

« Re-face 

Benzaldehyde 

TS-(S) TS-(fl) 

Figure 7.4 PM3 optimized transition states for the nucleophilic addition of 
ethyllithium, present as a mixed aggregate with Li-26, to benzaldehyde. 
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The transition state leading to (S)-l-phenyl-l-pentanol, i.e. attack by the 

ethyllithium to the Si-face of the aldehyde, was found to be favored when single 

point DFT calculations were performed on the PM3 geometry (2.9 kcal mol"1  

p-BP86/DN*, 0.2 kcal mol"1 B3LYP). As seen in Figure 7.4, the transition state 

leading to the (R)-alcohol has unfavorable non-bonded interactions between the 

phenyl-ring in Li-26 and the phenyl-ring in benzaldehyde. Although, these 

calculations correctly predict the stereochemical outcome of the addition reaction, 

no solvation was included in this initial study. Based on the experimental results, 

coordinating solvent molecules are expected to have a large effect on the relative 

energies of the transition states. A more detailed study, also including solvent 

molecules, is in progress. 

7.6 CONCLUSION 

NMR spectroscopic studies have showed that mixed complexes between chiral 

lithium amides and alkyllithium reagents are formed in solution. These mixed 

complexes are composed of one molecule of the chiral lithium amide and one 

molecule of the alkyllithium reagent. The equilibrium constants for formation of 

mixed complexes reveal large differences among structurally related lithium 

amides in their ability to form mixed complexes. Lithium amides having a 

methoxy-group as internally coordinating ligand form more stable mixed 

complexes than lithium amides containing a pyrrolidine moiety. There are also 

large differences among various alkyllithium reagents to form mixed complexes. 

Homo aggregates of congested alkyllithium reagents are disfavored for steric 

reasons; this leads to favorable mixed complex formation. 

The mixed complexes of chiral lithium amides and alkyllithium reagents can be 

used for asymmetric carbon-carbon bond formation. Nucleophilic addition of the 

complexed alkyllithium reagent to prochiral aldehydes produces chiral secondary 

a l c o h o l s  i n  h i g h  y i e l d s  a n d  e n a n t i o m e r i c  e x c e s s e s .  E n a n t i o s e l e c t i v e  a d d i t i o n  o f  n -

BuLi to benzaldehyde in the presence of various chiral lithium amides indicated 

the structural features of the lithium amide that control stereoselectivity. Based on 

these findings we designed a new chiral lithium amide, giving higher 

stereoselectivity in alkylation reactions than the parent lithium amide. 

Furthermore, this new ligand can be prepared through a short and efficient 

synthetic route. Comparing the equilibrium constants for mixed complex 

formation for some lithium amides demonstrate that a high tendency to form 

mixed complexes does not necessarily imply a high stereoselectivity in the 

alkylation reaction. However, it was found that the alkyllithium reagent in the 

mixed complex is more reactive than the homo aggregated reagent. Thus, the 
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prerequisite for catalytic asymmetric alkylation exists. Unfortunately, catalytic 

turnover in the alkylation reaction is hampered by a retarded mixed complex 

formation. Furthermore, the lithium amide accumulating in the reaction mixture 

is lost through reaction with the aldehyde. However, enantioselective addition 

using only catalytic amounts of the chiral ligand was demonstrated through a 

sequential addition of alkyllithium reagent and aldehyde followed by a short 

temperature jump to allow formation of the mixed complex. 



8 

Solution State Studies on Lithium Organic Reagents 

The previous sections of this thesis have described reactions where the chiral 

lithium amide base acts as a reagent or is used as a chiral auxiliary. Most of the 

structural studies presented have dealt with the ligand itself or initial state 

complexes between the ligand and a substrate. However, no molecular structure is 

static, there are always various intramolecular motions taking place. In 

supramolecular structures, like aggregates of lithium organic reagents, additional 

dynamic processes are possible. Examples of such processes include exchange 

between different aggregates;1363'3641 i.e. interaggregate exchange, and exchange of 

solvents, lithiums, anions, and other ligands within the same aggregate, i.e. 
[53] 

intraaggregate exchange. This section will focus on structural and dynamic 

properties of the aggregates themselves. 

8.1 SOLUTION STATE STRUCTURE THROUGH THE COMBINATION OF X-RAY 
DIFFRACTION, COMPUTATIONAL, AN D NMR SPECTROSCOPIC STUDIES (PAPER X) 

8.1.1 Background 

Quantitative structural studies in lithium organic chemistry have traditionally 

relied almost exclusively on X-ray di ffraction.'1 1 1 However, it can be difficult to 

obtain single crystals suitable for X-ray diffraction analysis. Furthermore, the 

obtained structure does not necessarily reflect the actual solution state structure. 

Today, computational methods may also be used to gain structural information, 

even for large systems including coordinated solvent molecules and other ligands. 

The obvious obstacle with this approach is that an initial guess of possible 

structures is needed before geometry optimizations are initiated. Again, there is no 

guarantee that the optimized structure of lowest energy actually represents the 

solution state structure. 
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The average solution state structure may be quantitatively determined from 

NMR spectroscopy using transient NOE experiments.[365] However, this approach 

requires a reference distance. This distance may be obtained from an X-ray 

diffraction study or, as will be shown here, through a computational geometry 

optimization. In order to evaluate how good solid-state and gas-phase geometries 

model solution state structures, and to compare geometries obtained using 

different methods and aggregation states, we undertook a quantitative 6Li,'H-

HOESY study of th e dimeric lithium amide (Li-21)2-S=THF, previously discussed in 

Scheme 5.3. 

8.1.2 Solid state structure of Li-21 

A single-crystal X-ray diffraction study revealed that the solid state structure of 

Li-21, crystallized from a hexane-THF solution is dimeric, i.e. (Li-21) 2 S=THF. The 

dimer, having one three-coordinated and one tetra-coordinated lithium center 

with an almost planar Li2N2 core is found to be close to C2-symmetric as previously 

proposed from the NMR spectroscopic studies, see Figure 5.5. 

Figure 8.1 ORTEP drawing showing the crystallographic numbering of 
(Li-21)2 S=THF crystallized from a hexane-THF solution. 

Comparison of the solid state structure of (Li-21)2-S=THF with other 

structures,'3661 containing Li-N and Li-O bonds, found in the Cambridge Structural 
[23] 

Database (CSD) revealed that the obtained structure is representative for lithium 

amides in general. Using the solid state structure (Li-21)2-S=THF as a reference for 

distance calculations is thus feasible. 

8.1.3 Gas phase (computationally optimized) structure 

Computational studies on a smaller dimeric model system revealed that 

B3LYP/6-31+G(d) and HF/6-31(d) are the methods that structurally best describe 
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system of this kind, i.e. show largest structural similarity with the X-ray structure. 

However, very close structural agreement is also obtained using the 

computationally less demanding semi empirical PM3 method. The accuracy of the 

PM3 method for geometry optimizations in lithium organic chemistry has also 

recently been supported by Schleyer et. al.13671 

Geometry optimizations of the full (Li-21)2-S=THF system were done at the PM3, 

MNDO, HF/STO-3G, and HF/6-31G(d) levels of theory. Reasonable agreements 

with the solid state structure were noted for the geometries obtained using the ab 

initio and PM3 methods. The MNDO-calculated geometry, on the other hand, 

showed large deviations. As might be expected for gas-phase geometries, the 

calculated Li-H distances were generally found to be somewhat longer (0-0.4 Å) 

than those measured in the solid state structure. 

8.1.4 Solution state structure 

As in the determination of homonuclear 'H-'H distances through 'H/H-NOESY 

experiments, internuclear 'Li-1?! distances may be derived from 6Li,1H-HOESY 
[233 240 241] 

spectra. ' ' The initial buildup rates,/, of transient heteronuclear NOEs are 

related to the corresponding distances r through Eq. 8.1.13651 

{f(6Li-HA)//(6Li-Hx))1/6 = r(6Li-Hx)/r(6Li-HA) Eq. 8.1 

Here, HA denotes a proton of known distance from the lithium nucleus, 

whereas Hx is a proton of unknown lithium separation. The known reference 

distance may be taken from X-ray diffraction measurements or, as will be shown 

below, from computational studies. Thus, all Li-H distances of an organolithium 

compound in solution can be determined from the 6Li,'H NOE buildup rates and a 

known reference distance. 

The NOE buildup curves of (Li-21)2-S=THF in toluene-d8 at -85°C were 

determined through a series of 2D 6Li,'H-HOESY experiments with varying mixing 

times (0-4 s). The buildup rates for the transient heteronuclear NOEs were 

determined from linear fits of the NOE cross-peak intensities to the mixing times 

(initial buildup range 0-0.5 s). Consequently, all Li-H distances in (Li-21)2-S=THF 

could be determined using the buildup rates and Eq. 8.1. In the analysis, we 

separately used all Li-H distances shorter than 5Å in the geometries obtained from 

X-ray, PM3, and HF/6-31G(d) as reference distances. A list of values for one 

particular distance is thus produced. The distances shown in Table 8.1 represent 

the mean average of this list of values. 
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Table 8.1 Solution state Li-H distances in (Li-21)2-S=THF obtained using 
heteronuclear buildup rate correla tions are shown together with reference distances 
taken from the X-ray-, PM3-, and HF/6-31G(d)-geometries, respectively. 

measured distances' calculated distances from 
NOE buildup ratesd 

proton X-ray PM3 HF/ 
6-31G(d) 

X-ray PM3 HF/ 
6-31G(d) 

methyl-CH3 3.03a 3.ir 3.15a 3.05" 3.01a 2.97a 

C(18,35) 3.82" 3.91" 3.97" 3.65" 3.79b 3.58b 

methoxy-OCH3 5.25" 5.63* 5.48a 4.58a 4.47a 4.57a 

C(34,17) 3.35" 3.32b 3.45" 3.34b 3.70b 3.30b 

C(9,26) 4.49a 4.80a 3.88a 4.14a 4.14a 4.03a C(9,26) 
3.57" 3.78b 3.23" 3.34b 3.67" 3.38" 

THF(a) 3.22a 3.14" 3.34a 3.46a 3.45a 3.37a 

C(36,39) 5.45b 5.48" 5.50b 5.08" 4.67" 4.96b 

THF(ß) 4.74" 4.99a 4.79" 4.16a 3.95a 3.82a 

C(38,37) 7.19b 7.20b 7.17b 5.26b 4.97" 5.37b 

"For Li(2) at 8 3.16 (THF-coordinated lithium). bFor L i(l) at 8 2.70 (methoxy coordinated 
lithium). 'Distances measured in respective geometries. dThe distances in each row calculated 
with eq 8.1 are average distances (the slopes of th e initial NOE build-up curves obtained from 
the HOESY experiments were used together with several X-ray or calculated distances). 

Most of the data in Table 8.1 indicate a similar structure in the solid state, in 

solution state, and in the gas phase (calculated). Furthermore, for distances less 

than 4 Å, there are only small differences of less than 0.2 Å between the distances 

obtained using X-ray diffraction, computational geometry optimizations, and 

heteronuclear NOE buildup rates from 'Li/H-HOESY experiments. However, 

distances longer than 4 Å are measured less accurately. The prime reasons for this 

are problems with small NOEs and spin diffusion. 

8.1.5 Conclusion 

Heteronuclear NOE buildup rates, obtained from 6Li,1H-HOESY experiments, in 

conjunction with a reference distance may be used to quantitatively measure Li-H 

distances in aggregated lithium organic compounds in solution. This study has 

shown that the necessary reference distance may be taken from X-ray diffraction 

studies or from a computationally optimized geometry. In the field of lithium 

organic chemistry, the HF/6-31G(d) and PM3 levels of theory provide sufficiently 

accurate geometries to be used in structural studies of this kind. Thus, solution 

state geometries of l arge aggregated lithium organic compounds may be obtained, 

without access to crystals suitable for single X-ray diffraction measurement, using 

the computationally very cheap PM3 method. 
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8.2 NEW INSIGHTS INTO THE COORDINATION CHEMISTRY OF CHIRAL LITHIUM 
AMIDES (PAPER XI) 

8.2.1 Background 

Lithium amide bases are mainly used for deprotonation/lithiation reactions. 

Thus, an amine is inevitably formed from the corresponding lithium amide in 

these reactions. Since amines are known to be strong ligands for lithium cations, 
[29 36 38 368] 

they are likely to interact with the aggregates present in solution. ' ' ' The 

amine-coordinated aggregates thus formed may successively influence the 

reactivity and selectivity of the original reagent. Consequently, much effort has 

been made to understand the influence of a mines in these reactions.162'1461 

In this section, characterization of a novel type of complex, consisting of a 

dimeric chiral lithium amide chelated by the parent diamine, is described. This 

complex allowed us to illustrate how an amine ligand may effect the structure of a 

reagent and gain insight into the dynamic processes involved. 

8.2.2 Amine chelates of Li-11 

The difficulties associated with NMR spectroscopic investigations of Li-11, i n 

terms of low solubility in DEE and rapid dynamic processes in THF, was outlined 

in Chapter 5. Addition of n-BuLi to a DEE-d10 solution of the amine 11 (0.1 M) 

immediately results in precipitation of Li -11. However, addition of 0.5 equiv. of t he 

amine 11 to the precipitate results in complete dissolution of the solid material. 

The 'H, 13C, and 6Li NMR spectra all display sharp resonances. Nine carbon signals 

were observed for each of 11 and Li-11. Thus, rotation of the pyrrolidine rings in 

both Li-11 and 11 are slow on the NMR time scale (-90°C) indicating a 

complexation between the two. The intensities of the 13C signals suggest that Li-11 

and 11 form a 2:1 chelate, i.e. (Li-ll)2/ll. Two resonances of equal intensity and 

line shape are observed in the 6Li NMR spectrum of (Li-ll)2/ll. The line shapes of 

the signals suggest that both lithiums are tetracoordinated. The overall results 

indicate that Li-11 is a dimer, with one of the lithium atoms coordinated by the 

two pyrrolidine nitrogens in the amide ligands. The other lithium atom is 

chelated by the nitrogens in 11, Figure 8.2a. 
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c: 

a. b. 

Figure 8.2 Proposed structure of the chelate (Li-ll)2/ll (a) and 
(Li-ll)2/TMEDA (b). 

Similarly, the widely used lithium-chelating diamine TMEDA is found to 

dissolve Li-11 in DEE, p resumably by formation of the complex (Li-ll)2/TMEDA 

shown in Figure 8.2. However, TMEDA needs to be in excess relative to Li-11 to 

fully dissolve the crystals. No monomers were observed even at high TMEDA 

concentrations. 

As previously noted the 6Li, 1H, and 13C NMR spectra of Li-11 in THF-d8 at low 

temperatures are characterized by broad and unresolved signals. However, 

addition of one equiv. of 11 to a THF solution of Li-11 gives a spectrum very 

similar to that of (Li-ll)2/ll in the DEE mixture above. In the 13C spectrum at 

-105°C both uncoordinated and coordinated 11 are observed. Thus, it is concluded 

that 11 is competing effectively with the bulk solvent THF for (Li-ll)2. 

8.2.3 Computational studies 

The large stability of the (Li-ll)2/ll chelate was also demonstrated in a 

computational study. The complexation energy for dimethylether (used instead of 

DEE due to lower computational cost), TMEDA, and 11 are shown in Table 8.2. 

Table 8.2 PM3 and B3LYP/6-31+G(d) complexation energies" for the dimer 
(Li-ll)2with different ligands L. 

(Li-ll)2 + L (Li-ll)2/L 

L 
B3LYP/ 

PM3 6-31+G(d)//PM3 

Me20 -9.891 -8.253 

TMEDA -15.55 -13.94 

11 -19.60 -18.15 

"'Energies in kcal mol"1 
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In agreement with the NMR spectroscopic results, the coordination of a mine 11 

yields the most stable complex. The PM3-optimized structure of (Li-ll)2/ll is 

shown in Figure 8.3. 

Figure 8.3 Structure of the PM3 optimized geometry of (Li-ll)2/ll. Hydrogens 
are omitted for clarity. 

The two amides form a "C2-symmetric" dimer with a nearly planar (Li-N)2 

arrangement. This plane is almost perpendicular to the plane defined by one 

lithium atom and the two nitrogen atoms in the solvating diamine. The bond 

lengths and angles are typical for lithium amide dimers, Figure 8.3.128' 

8.2.4 Ligand exchange in (Li-ll)2/ll 

The 13C NMR resonances for the complexed 11 in (Li-ll)2/ll appear shifted 

relative to the signals for uncomplexed 11 in DEE at -105°C. The signals for 11 in 

(Li-ll)2/ll broaden upon addition of 11 indicating slow ligand exchange on the 

NMR time scale. At -98°C coa lescence results, corresponding to AG*175K= 7.8 kcal 

mol"1 for the ligand exchange.p45' The rate constant for exchange is concentration-

independent in the interval 10 mM to 500 mM of uncomplexed diamine. This 
[53] 

shows that the ligand exchange follows a dissociative mechanism. 

8.2.5 Diamine-lithium amide interconversion in (Li-ll)2/ll 

At ambient temperatures, only one set of 13C NMR resonances for 11 and Li-11 is 

observed, indicating rapid interconversion of diamine and lithium amide. The 

interconversion is due to the degenerate lithiation of the diamine 11 by Li-11. The 

coalescence temperature for signals from Li-11 and coordinated 11 is approximately 

268 K, corresponding to a free energy of a ctivation of 10.9 kcal mol"1. Furthermore, 

the rate constant for diamine-lithium amide interconversion was found 

Lil-Nl-Hl 105.5° 

N1-LÎ1-N3 116.9° 
N2-Ü1-N4 116.3° 
Lil-N3-Li2 86.5° 

Lil-N4-Li2 87.1° 
N3-LÎ2-N5 132.9° 
N3-LÎ2-N6 86.9° 

N4-LÎ2-N5 88.9° 
N4-LÎ2-N6 126.6° 

H1-N1-LÜ-N3 -106.8° 

Nl-Lil-N3-Li2 120.4° 
N2-Lil-N4-Li2 144.2° 
Lil-N3-Li2-N4 6.4° 

N5-Li2-N3-Li 1 -86.2° 
N6-Li2-N4-Lil -95.8° 
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independent of the concentration of 11, thus indicating that the interconversion 

proceeds within the chelate (Li-ll)2/ll. A possible pathway for this degenerate 

rearrangement via diamine-lithium amide interconversion is shown in Scheme 

8.1. 

d jK» i. L..Sb°  ̂
t-Xff-'-ti; <L( — N-,-Li *Li.. *Li N  ̂ LC *Lk-; r N̂  

(Li-11 )2/11 (Li-11 )2/11 

Scheme 8.1 Proposed mechanism for lithium exchange via diamine-lithium amide 
interconversion. 

8.2.6 Li-Li-exchange in (Li-ll)2/ll 

Quantitative 6Li,6Li-EXSY measurements were used to estimate the rate 
[252] 

constants for the lithium exchange at -91°C kexchl82K= 0.5 s"1 and at -66°C 

kexch207K= 22 s"1. This corresponds to AG*182K= 10.7 kcal mol"1 and AGt
207K= 10.7 kcal 

mol4, respectively. Coalescence of the two 6Li resonances occurred at -48°C 

corresponding to a AG*225K of 10.6 kcal mol"1. This temperature independence 

suggests that the entropy of activation is close to zero for this process. Moreover, 

the exchange rate constant is independent of the concentration of [11]^ showing 

that the major pathway for the lithium exchange does not involve free amine. The 

exchange rate constant is also independent of [(Li-ll)2/ll], consistent with an 

intramolecular lithium exchange mechanism. The similarity of the barrier for 

Li-Li exchange (AG*182K= 10.7 kcal mol"1) and the diamine-amide interconversion 

(AGt
268K= 10.9 kcal mol"1) is striking and suggests that these processes are coupled, as 

suggested in Scheme 8.1. 

8.2.7 Conclusion 

A chelate, in which the parent chiral amine chelates a dimer of the chiral 

lithium amide, i.e. (Li-ll)2/ll, has been structurally characterized for the first time. 

Complexes of this type are expected to be present and influence the reactivity in the 

reaction mixtures from asymmetric enolizations, deprotonations, and other 

lithiation reactions. Furthermore, there are a number of inter- and intraaggregate 

processes taking place in a chelate of this type. These include lithium-lithium 

exchange, diamine ligand exchange, and degenerate diamine-lithium amide 

interconversion. 
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8.3 ON THE MECHANISM OF INTRAAGGREGATE (FLUXIONAL) LITHIUM AND 
CARBANION EXCHANGE IN TETRAMERS (PAPER XLL) 

8.3.1 Background 

Alkyllithium compounds, and mixed aggregates containing alkyllithiums, are 

known to undergo both interaggregate and intraaggregate (fluxional)'3691 exchange 
[42] 

in solution (see section 2.2.2). A thorough understanding of the structures 

involved, as well as the rates and mechanisms of the exchange processes, are 

fundamental for realizing and controlling reactivity of alkyllithium compounds. 

Studies of dynamic intraaggregate processes, primarily performed in the research 

groups of Fraenkel,1511 Seebach,'52' and Thomas,1541 have all relied on studies of 

'/(13C-6Li) couplings constants by variable temperature NMR. Further 

investigations of the fluxional lithium exchange processes in alkyllithiums have 

not been possible, due to the high symmetry of the aggregates. 

The unexpected formation of a mixed tetrameric complex between one chiral 

lithium amide molecule and three molecules of n-butyllithium, produces an 

asymmetric tetrameric aggregate that serves as a probe for kinetic measurements 

on intraaggregate lithium- and carbon-exchange. 

8.3.2 Structure of Li-ll/(«-BuLi)3 

Addition of the amine 11 to a DEE-c?10 solution containing n-BuLi results in the 

formation of a mixed complex containing four non-equivalent lithium centers. 

The 6Li NMR spectrum of the resulting solution at -90°C contains four singlets 

with equal integrals at 5 2.30, 2.12, 1.64, and 1.32 in addition to the signal from 
[355, 357] 

excess tetrameric n-BuLi at S 1.87, ' Figure 8.4a. 
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b 

11.8 11.4 11.0 10.6 10.2 9.8 ppm 

Li (2) 
Li(3) 

Li(4) Li(1)  

2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 ppm 

Figure 8 .4 a) 6Li NMR spectrum at -90°C of a mixture of Li-ll/(«-BuLi)3 and 
(n-BuLi)4. b) Upfield part of a 13C NMR spectrum of L i-ll/(n-BuLi)3 showing four 
different a-carbons of n-BuLi (complexed and uncomplexed) at -90°C. c) Same as in 
b but with resolution enhancement. 

The t3C NMR spectrum at -90°C shows three non-equivalent a-carbon signals 

from n-BuLi in the complex Li-11/(n-BuLi)3 in addition to the a-carbon signal 

(septet) from the excess tetrameric n-BuLi at S 10.90, Figure 8.4b.1551 The two signals 

at 8 9.87 and 11.2 are septets (J=5.0 to 5.5 Hz), indicating that each carbon is coupled 

to three lithium atoms (1=1), Figure 8.4c. The complex pattern of the third signal is 

likely caused by different coupling constants between this carbanion and the three 

non-equivalent lithium nuclei. 

The solution state structure of the mixed Li-11/(n-BuLi)3 complex was assigned 

using ^/H-TOCSY,1370,3711 'H/H-DQFCOSY, H'H-NOESY, 6Li,6Li-COSY and 6Li,]H-

HOESY experiments. The PM3 optimized structure of Li-11 /(rc-BuLi)3 is shown in 

Figure 8.5. 
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Figure 8.5 PM3 optimized structure of Li-ll/(n-BuLi)3; coordinating solvent 
molecules are omitted for clarity. 

The calculated structure of Li-ll/(n-BuLi)3 contains a distorted cubic tetramer 

core. Similar core arrangements have also been observed for alkyllithium 

tetramers in the solid state.1391 

8.3.3 Rate of exchange in Li-ll/(n-BuLi)3 

At ambient temperature, inter aggregate exchange is observed for both 

carbanions and lithiums in Li-ll/(n-BuLi)3. However, by lowering the temperature 

it is possible to study the intraaggregate exchange independently of the 

interaggregate exchange. The only method available for simultaneous 

determination of multiple site to site rate constants is quantitative 2D NMR 

exchange spectroscopy (EXSY).12461 The cross-peaks in an EXSY spectrum give a 

g r aph i ca l  d i sp l a y  o f  a l l  t h e  ex ch an ge  p roces s e s .  Fur th e r mor e ,  t h e  r a t e  c ons t a n t ,  k ,  

for an exchange process can be obtained from the ratio between cross-peak and 

diagonal-peak intensities.12521 

To map out the exchange pathways in Li-ll/(n-BuLi)3 several quantitative 
6Li,6Li-EXSY exp eriments, with mixing times ranging from 0.025 s to 0.450 s, were 

performed at -76°C and -81 °C, respectively. The 6Li,6Li-EXSY spectrum with mixing 

time 0.450 s is shown in Figure 8.6. No interaggregate exchange between lithium 

atoms in Li-ll/(n-BuLi)3 and lithium atoms in (n-BuLi)4 was observed at these 

temperatures. 
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Figure 8.6 The 6Li,6Li-EXSY spectrum (xm=0.450 s) of Li-ll/(n-BuLi)3 at -81°C 
in DEE-d10. 

Our data suggest that Li-ll/(n-BuLi)3 undergoes intraaggregate degenerate 

rearrangements by which the four different lithium nuclei exchange. The 6Li,6Li-

EXSY spectrum indicates that the intraaggregate degeneracy of the complex is a 

result of two-site exchanges. There are six different two-site exchanges with the rate 

constants ku, k13, ku, k23/ k24 and /c34, respectively. Analysis of the 6Li,6Li-EXSY data 

using the matrix formalism developed by Perrin and Gipe,12511 either manually or 
[3721 

with the program D2DNMR (by Abel et. al.), provided the rate constants for 

direct two-site exchanges as shown in Table 8.3. 

Table 8.3 Rate constants for the intraaggregate degenerate Li exchange within 

complex Li-ll/(n-BuLi)3; determined from a 6Li,6Li-EXSY spectrum (x =0.450 s) at 
-81°C in DEE-dl0. 

Two-site 
exchange 

Rate constant"/s"1 

fc12 0.37± 0.08 

^13 0.50+ 0.08 

ku 2.96+ 0.19 

^23 0.75± 0.01 

fc24 0.24+ 0.06 

^34 0.07± 0.12 

"Error analysis was performed using D2DNMR that 
only estimates errors in rate constants based on errors 
in peak intensities. 
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Similarly, through a 13C,13C-EXSY e xperiment at -81°C we could ascertain that 

the carbon exchange in Li-ll/(n-BuLi)3 proceeds through an intraaggregate 

pathway. The rate constant for this intraaggregate carbon exchange was estimated 

to 2 ± 1 s"1. 

8.3.4 Proposed mechanism 

The three exchange mechanisms previously proposed in the literature were 

shown in Scheme 2.3 of this thesis. These involve rearrangement of the tetrameric 

cube through an eight-membered ring/561 concerted center to edge rotation of the 
[57] [54] 

carbanions, and dissociation into dimers followed by recombination. It has not 

been established whether lithium exchange, carbanion exchange, or both, result in 

the fluxional lithium-carbon bond exchange. 

However, none of the previously proposed mechanisms is in accordance with 

the kinetics observed in this study. The lack of cross-peaks between signals from 

Li-ll/(n-BuLi)3 and (n-BuLi)4 clearly excludes mechanism in which the tetramer 

dissociates into free dimers. Furthermore, the difference in rate constants for the 

direct two-site lithium exchanges also exclude mechanisms with coupled two-site 

exchanges such as the 8-membered ring mechanism. 

A mechanism consistent with the observations is presented below. A possible 

mechanism for the well-known dissociation of a mixed tetramer (A) to dimers (D) 

via a ladder intermediate (B) is shown in Scheme 8.2. It involves reversible 

stepwise breaking of core bonds. Expected accompanying solvation changes are not 

shown in Scheme 8.2. 

0-, Ck Q-, 
^ U ( 4 , - B U ( 0 )  B U ( C , : l , < 4 ) > 0  )KÀ)yO B U < C > : l , ( 4 ) > 0  

N j~Li(1) I / Li(1) ^ Bu!b)-...^Bu(c)-UM^ Li<1) 

Bu(b) —Li(3) „"W- / + 
I /U|J' Bu(b)^ _Bu(a) Li 2) I 

Li(2)—Bu(a) Li(2) "Bu(a) -Ll<3>-w Bu(b) Bu(a) 
U ( 2 ) '  

A B  C  D  

Scheme 8.2 Proposed intermediates (B) and (C) on the pathway from tetramers (A) 
to dimers (D). The mechanism for the fluxional exchange in tetram ers is proposed to 
proceed via key structure (B) and (C). Only one of two possible ladder structures (B) 
is shown. Solvation is excluded for clarity. 

Breaking a core bond in the ladder structure yields an intermediate in which a 

mixed dimer is bound to a homo dimer by a single bond (C). Other C-type 

structures can be obtained by breaking a different triple of core bonds in the 
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tetramer in Scheme 8.2. Such intermediates may undergo degenerate 

rearrangements via rotation around the bond connecting the two dimers. Rotation 

of the mixed dimer unit around the single bond connecting the two dimers, 

followed by a change of pyrrolidine coordination from Li(4) to Li(l), and return to 

the mixed tetramer, yields a tetramer structure in which only two lithium sites 

have exchanged, i.e. Li(l) and Li(4). On the other hand, rotation of the homo dimer 

unit around the single bond connecting the two dimers in C, followed by return to 

a tetramer, yields a mixed tetramer in which only the butyl anions a and b have 

exchanged. The processes described above results in non-coupled two-site 

exchanges and account for all the observed two-site exchanges. This process 

resembles the dissociative mechanism c in Scheme 2.3, however, without 

complete dissociation into free dimers. 

The observed rate of car bon exchange, within the mixed tetramer, is comparable 

to the rates for the lithium exchanges. It is interesting to note that the pathway in 

Scheme 8.2 also predicts inversion of t he carbanionic carbons. This explains why 

racemization is observed for e.g. lithium organic compounds containing 
[49, 50] 

stereogenic carbanionic carbons. 

8.3.5 Conclusion 

The processes responsible for lithium- and carbanion-exchange in 

Li-ll/(n-BuLi)3 are probably similar to those in pure alkyllithium tetramers. The 

characterization of this mixed lithium amide/alkyllithium tetramer made direct 

observation of the fluxional lithium- and carbanion-exchange possible for the first 

time. Furthermore, the rate constants for all site to site exchanges could be 

determined from quantitative 6Li,6Li- a nd 13C,13C-EXSY spe ctroscopy. The results 

thus obtained show that none of the previously proposed mechanisms, for 

lithium and carbanion exchanges in alkyllithium tetramers, is sufficient to explain 

the present findings. A mechanism that accounts for all the observed exchanges, as 

well as the previous reported racemization at carbanionic carbons, has been 

outlined. 
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Interesting Areas for Future Research 

The Holy Grail in lithium organic chemistry embraces the knowledge of h ow to 

form aggregates with pre-defined structure, solvation, and reactivity. Knowledge of 

this kind will allow us to use simple building blocks like alkyllithiums, lithium 

amides, lithium alkoxides, solvents, and other additives to assemble tailor-made 

reagents for a particular application. With full control of aggregate stability and 

dynamics, one may also imagine putting together a sequence of reactions where 

the product of one step moves on to a new aggregate, where another reaction takes 

place, and so forth. Lithium organic reagents wide utility and high propensity to 

aggregate would make them destined for such "multiple transformation 

reactions". However, much work remains to be done until we are able to predict 

what a structural modification might do to the aggregates size, solvation, and 

reactivity. Studies directed to answer such questions are of prime importance for 

future developments in this field. 

Intervention by the product in the reagent aggregate is also an exciting topic, 

since it is a prerequisite for autocatalysis.'373 3771 There has been one example in 

lithium organic chemistry where the product alkoxide in an asymmetric aldehyde 

alkylation influence the formation of it's own formation, i.e. asymmetric 
[353] 

autocatalysis. Lithium organic reagents high propensity to aggregate merits 

further studies on asymmetric autocatalysis with these reagents in the future. 

Another topic closely related to asymmetric autocatalysis is the subject of 

nonlinear effects, i.e. a nonlinear relationship between the reagents ee and the 

products ee 
[378 3801 Nonlinear effects may be used as a complement to ordinary 

[381-383] 
kinetic methods in mechanistic studies. Studies of nonlinear effects in 

lithium organic chemistry would make it possible to investigate the relative 

stability and reactivity of dif ferent complexes present in solution. 

The meager exploration of l ithium alkoxides has previously been noted in this 

thesis. Further detailed studies on the structure, reactivity, and use of lithium 
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alkoxides are of int erest. Studies of mixed complexes containing lithium alkoxides 

are also of importance, since this will bring about a better understanding of the 
, . . r u [67,68,73-75] 

chemistry of superbases. 

Related to this is the still largely unexplored chemistry of mixed-metal 
[384] 

chemistry. Aggregates containing a combination of d ifferent alkali metals, or a 

combination of alkali and other metals, are of considerable interest since these 

reagents have unique chemical behavior compared to their single-metal 

components. New and exciting chemistry is expected to evolve from increased 

studies on mixed-metal systems. 

A more direct extension of the work presented in this work involves use of the 

mixed lithium amide/alky llithium reagents for enantioselective alkylation of 

imines to form chiral secondary amines.1157'1581 Application of a polymer supported 

ligand, for easy recycling and catalytic turnover, would be another interesting 

extension of this work. 

The topics outlined above represent only a few suggestions for future research 

in this field. However, knowledge how to control structure, dynamic, reactivity, 

and selectivity are of fu ndamental importance for all research in this area. The way 

to gain knowledge in this field, is the same as in all fields of chemistry. Using 

irrational methods, such as trial-and-error synthesis and combinatorial 

approaches, we will be able to explore chemistry and find new reactions. However, 

to be able to control and thereby improve chemistry, understanding is required. 

Such detailed understanding can only be obtained by solid physical organic studies. 

Thus, let me finally end this with the initial citation: "The truth is out there!" 

— However, it remains for us to ask the right questions! 
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