
UNIVERSITY OF BIRMINGHAM

Automatic Documents Summarization Using
Ontology based Methodologies

Abdullah Bawakid

Thesis submitted for the degree of
Doctor of Philosophy

School of Electronic, Electrical and Computer Engineering
College of Engineering and Physical Sciences
University of Birmingham

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third parties.
The intellectual property rights of the author or third parties in respect of this work
are as defined by The Copyright Designs and Patents Act 1988 or as modified by
any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission of
the copyright holder.

ii

ABSTRACT

Automatic summarization is the process of creating a condensed form of a document or several

documents. When humans summarize a document they usually read the text first, understand it

then attempt to write a summary. In essence, these processes require at least some basic level

of background knowledge by the reader. At the very least, the human would have to

understand the Natural Language that the text is written in. In this thesis, an attempt is made to

bridge the gap of machines’ understanding by proposing a framework backed with knowledge

repositories constructed by humans and containing real human concepts.

I use WordNet, a hierarchically-structured repository that was created by linguistic experts and

is rich in its explicitly defined lexical relations. With WordNet, algorithms for computing the

semantic similarity between terms are proposed and implemented. The relationship between

terms, and a composite of terms, is quantified and weighted through new algorithms allowing

for grouping the terms, phrases and sentences based on the semantic meaning they carry. These

algorithms are especially useful when applied to the application of Automatic Documents

Summarization as shown with the obtained evaluation results. Several novel methods are also

adapted to enhance the diversity and reduce redundancy in the generated summaries.

I also use Wikipedia, the largest encyclopaedia to date. Because of its openness and structure,

three problems had to be handled: Extracting knowledge and features from Wikipedia,

enriching the representation of text documents with the extracted features, and using them in

the application of Automatic Summarization. First, I show how the structure and content of

Wikipedia can be used to build vectors representing human concepts. Second, I illustrate how

these vectors can be mapped to text documents and how the semantic relatedness between text

fragments is computed. Third, I describe a summarizer I built which utilizes the extracted

features from Wikipedia and present its performance.

I demonstrate how the Wikipedia-extracted features can be adapted in applications other than

Automatic Summarization such as Word Sense Disambiguation and Automatic Classification.

A description for the implemented system and the algorithms used is provided in this thesis

along with an evaluation.

iii

DECLARATION

I confirm that this is my own work and that the use of all material from other sources has

been properly and fully acknowledged.

Abdullah Bawakid

iv

ACKNOWLEDGMENTS

I am extremely grateful to my supervisor Dr. Mourad Oussalah for investing so much time

with me and the guidance he afforded me during my research. He gave me plenty of

freedom to explore directions I was interested in. He has continued to be encouraging,

patient and insightful. I thank also my backup supervisor Dr. Chris Baber for his support

and commitment.

I have received partial support funds from the University of Birmingham. Thank you for

your generous support.

I am very grateful to my parents, wife and family for their faith, support and patience.

v

TABLE OF CONTENTS

Chapter 1 ... 1

Introduction... 1

1.1 Motivation ... 1

1.2 Aims and Contributions of the Thesis .. 10

1.3 Structure of the Document.. 14

Chapter 2 ... 19

Background and Related Work .. 19

2.1 Text Summarization.. 19

2.2 Automatic Documents Summarization Systems .. 22

2.3 Related Work .. 24

2.3.1 Surface-level Features... 24

2.3.1.1 Word Frequency.. 25

2.3.1.2 Position... 26

2.3.1.3 Cue words and phrases .. 26

2.3.1.4 Overlap with title or query... 27

2.3.2 Machine Learning Approaches ... 27

2.3.2.1 Naïve-Bayes Methods ... 27

2.3.2.2 Decision Trees .. 28

2.3.2.3 Hidden Markov Models... 28

2.3.2.4 Log-Linear Models.. 29

2.3.2.5 Neural Networks ... 29

2.3.3 Natural Language Analysis Methods .. 30

2.3.3.1 Entity Level .. 30

2.3.3.2 Discourse Level .. 32

2.3.4 Abstraction ... 33

2.3.5 Topic-driven Summarization .. 35

2.3.6 Graph-based Theories ... 36

2.3.7 LSA Methods ... 37

vi

2.3.8 Task-specific Approaches ... 37

2.4 Examples of Automatic Summarizers .. 40

2.4.1 MEAD.. 41

2.4.2 Newsblaster .. 41

2.4.3 QCS.. 42

2.4.4 MASC .. 42

2.4.5 Condensr .. 43

2.4.6 Open Text Summarizer ... 43

2.4.7 Commercial Summarizers... 43

2.5 Limitations of Current Approaches ... 44

2.6 Text Summaries Evaluation.. 47

2.6.1 Intrinsic Evaluations ... 47

2.6.2 Extrinsic Evaluations .. 50

2.7 Conclusion ... 51

Chapter 3 ... 53

Features Generation and Selection ... 53

3.1 Overview.. 53

3.2 The Need for a Suitable Repository.. 55

3.3 Using a Hierarchically Structured Repository... 59

3.3.1 WordNet... 59

3.3.2 Semantic Similarity .. 61

3.4 Using Open-World Knowledge ... 64

3.4.1 Wikipedia ... 65

3.4.2 Semantic Relatedness ... 67

3.5 Summary ... 69

Chapter 4 ... 71

Summarization Aided with WordNet ... 71

4.1 Overview.. 71

4.2 System Stages .. 75

4.2.1 Preprocessing ... 77

4.2.2 Analysis.. 80

vii

4.2.2.1 Summarization Features .. 80

4.2.2.2 Sentence-Sentence Similarity .. 81

4.2.2.3 Scoring the Sentences.. 95

4.2.2.4 Generating Summaries .. 96

4.3 Evaluation.. 97

4.3.1 Test Data and Metrics ... 98

4.3.2 Results.. 98

4.4 Enhancing Diversity and Reducing Redundancy... 104

4.4.1 The Baseline... 105

4.4.2 Redundancy-Syn... 106

4.4.3 Redundancy-Sim .. 106

4.4.4 Diversity-Ant.. 107

4.4.5 Diversity-Sim ... 107

4.4.6 Levenshtein Distance.. 107

4.4.7 Experiment ... 107

4.4.8 Test Data and Evaluation Results.. 108

4.5 Conclusion ... 122

Chapter 5 ... 125

Summarization Aided with Wikipedia ... 125

5.1 Overview.. 125

5.2 Wikipedia-based Framework ... 128

5.2.1 Preprocessing the Wikipedia Dump .. 129

5.2.2 Extracting the Features from Wikipedia .. 131

5.2.2.1 Term-Concepts Table.. 132

5.2.2.2 Concepts-Boosting .. 133

5.2.2.3 Wikipedia Links and Categories Structure... 137

5.2.2.4 The Rationale behind Choosing the Links and their Weights 141

5.3 Examples of Wikipedia-based Features Generation.................................... 143

5.4 Word Sense Disambiguation... 144

5.4.1 Preprocessing and Context Selection: ... 145

5.4.2 Term-Concepts Expansion .. 145

viii

5.4.3 Links Analysis and Sense Selection .. 146

5.4.3.1 Terms Vectors Intersection.. 146

5.4.3.2 Unweighted Strong Links.. 147

5.4.3.3 Weighted Strong Links.. 149

5.4.4 WSD Evaluation... 152

5.4.5 Conclusion ... 155

5.5 Summarization System ... 156

5.5.1 Preprocessing ... 158

5.5.2 Identifying the Concepts ... 158

5.5.3 Measuring the Relatedness between Concepts....................................... 159

5.5.4 Measuring the Relatedness between Sentences 160

5.5.5 Feature Selection .. 160

5.5.6 Sentences Scoring... 161

5.5.7 Evaluation .. 162

5.6 Conclusion ... 169

Chapter 6 ... 170

Sentences Simplification for Automatic Summarization ... 170

6.1 Overview.. 170

6.2 Sentences Simplification Module .. 173

6.2.1 Sentences Splitting ... 175

6.2.2 Sentences Compression .. 181

6.3 Summarization Methodology.. 188

6.4 Evaluation.. 190

6.5 Conclusion ... 192

Chapter 7 ... 193

Classification Aided with Wikipedia .. 193

7.1 System Overview ... 194

7.2 Using the Wikipedia-Extracted Features ... 196

7.2.1 Important Terms Extraction .. 196

7.2.2 Concepts Extraction.. 198

7.2.2.1 Expansion with Term-Concepts Table... 198

ix

7.2.2.2 Expansion with Strong Links... 199

7.2.3 Categories Mapping.. 200

7.3 Classifying a Test Document... 200

7.4 Experiments and Evaluation... 201

7.4.1 Dataset ... 201

7.4.2 Methods and Evaluation Setup.. 202

7.4.3 Results.. 204

7.5 Conclusion ... 206

Chapter 8 ... 207

Using SSM for Summarization ... 207

8.1 SSM for Simplifying Sentences... 207

8.2 Summarizing with SSM .. 214

8.3 Summary ... 219

Chapter 9 ... 220

Summaries and Conclusion... 220

9.1 Summary of Work... 220

9.2 Summary of the Evaluations Performed .. 223

9.2.1 WordNet-Related Evaluations... 223

9.2.2 Wikipedia-Related Evaluations... 225

9.3 Future Work.. 228

9.4 Conclusion ... 230

REFERENCES.. 231

APPENDICES ... 246

x

LIST OF FIGURES

Figure 1.1: Top 4 results for search query “Petroleum Extraction Brazil” as obtained from

Google .. 3

Figure 1.2: The first four sentences of the article ranked first in the search result for the

second query ... 4

Figure 1.3: The sentences extracted from the webpage titled “Petroleum: Extraction from

the underground reservoirs”... 4

Figure 1.4: The first four sentences of the article ranked fourth in the search result of the

first query.. 5

Figure 1.5: The Top 4 search result links for the search query “Oil Extraction Brazil” 5

Figure 1.6: The sentences contained within the Brazil Energy Data, Statistics and Analysis

webpage .. 6

Figure 1.7: The first four sentences contained within the Washington Post article.............. 7

Figure 1.8: The first four sentences extracted from the article ranked as third in the search

result ... 7

Figure 1.9: Relationships among thesis main parts and chapters 17

Figure 2.1: Summarization Systems Architecture .. 22

Figure 3.1: Overview of the Features Generator and its role in Summarization 55

Figure 3.2: An Example showing that Relatedness is a subset of Similarity 59

Figure 3.3: WordNet Hypernyms, Hyponyms and Troponyms... 61

Figure 3.4: the growth rate over time of the English Wikipedia 66

Figure 3.5: an Example for Wikipedia Features Generation ... 69

Figure 4.1: Architecture of the WordNet-Aided Summarization system........................... 72

Figure 4.2: GATE Graphical Interface (GGI)... 73

Figure 4.3: Stages of the WordNet-backed Summarizer... 76

Figure 4.4: Class diagram of the WordNet-based summarizer package 77

Figure 4.5: Class Diagram of the documentPreprocessor model in the WordNet-based

Summarizer ... 78

xi

Figure 4.6: Class diagram of the textProcessor model in the WordNet-based summarizer 78

Figure 4.7: Class diagram of the SentencesSimilarityMeasure model in the WordNet-based

summarizer.. 82

Figure 4.8: Class Diagram for JCn’s and Lin’s words similarity metrics 82

Figure 4.9: Pseudo code of the implemented function for converting adv/adj to nouns/verbs

.. 86

Figure 4.10: Computing the similarity score between sentences 1 and 2 with the aid of

WordNet ... 87

Figure 4.11: Pseudo code of the algorithm used for computing the similarity between

words based on the Syn_SimMeasure.. 88

Figure 4.12: Pseudo code of the algorithm used for applying the measure Ant_SimMeasure

on two Sentences A and B. .. 89

Figure 4.13: Pseudo code of the algorithm used for applying the measure

Ant_SemSimMeasure on two Sentences A and B. ... 91

Figure 4.14: Pseudo code of the algorithm used for applying the measure

EditDist_SimMeasure on two Sentences A and B. ... 92

Figure 4.15: Pseudo code of the algorithm used for applying the measure

EditDistEx_SimMeasure on two Sentences A and B.. 94

Figure 4.16: Psueduocode of the Basic Redundancy Reduction Algorithm in the WordNet-

based System... 97

Figure 4.17: ROUGE1 scores showing the performance for the different sentences

similarity measures in a column chart .. 102

Figure 4.18: ROUGE2 scores showing the performance for the different sentences

similarity measures.. 102

Figure 4.19: ROUGESU4 scores showing the performance for the different sentences

similarity measures.. 103

Figure 4.20: ROUGE1 scores showing the effects of redundancy and diversity checking

module in WordNet-based summarizer.. 110

xii

Figure 4.21: ROUGE2 scores showing the effects of redundancy and diversity checking

module in WordNet-based summarizer.. 110

Figure 4.22: ROUGESU4 scores showing the effects of redundancy and diversity checking

module in WordNet-based summarizer.. 110

Figure 4.23: Summary generated by the baseline for document set D0801A in the TAC08

documents collection... 112

Figure 4.24: Summary generated with the redundancy checking measure that expands

words with synonyms and applies simple words matching for document set D0801A.... 113

Figure 4.25: Summaries generated for document set D0802A before (A) and after (B)

applying the redundancy checking measure that computes the semantic similarity between

words .. 114

Figure 4.26: Summaries generated for document set D0811B before and after applying the

edit-distance-based redundancy checking measure .. 116

Figure 4.27: Summaries generated for document set D0810B before and after applying the

expanded edit-distance redundancy checking measure... 117

Figure 4.28: Summaries generated for document set D0835B before and after applying the

diversity checking measure.. 119

Figure 5.1: A document marked with associated Wikipedia concepts............................. 129

Figure 5.2: Class Diagram showing the main classes of the Wikipedia Features Extractor

package ... 131

Figure 5.3: an Overview for how the Concepts Matcher & Booster produces the Ranked

Concepts. Part A of the figure is performed only once while part B is an integral part of the

system that is repeated every time a new text fragment is processed. 133

Figure 5.4: the Pseudo Code for the Concepts-boosting Process and its Subroutines. 136

Figure 5.5: Link Types defined sorted based on their weights in descending order......... 139

Figure 5.6: an Overview of the WSD process .. 144

Figure 5.7: Effects of Strong Links Weight Change for w1 to w5 153

Figure 5.8: Effects of Strong Links Weight Change for w6 to w10 154

xiii

Figure 5.9: Effect of Context Size on the Accuracy in WSD with the Simple Link Analysis

method .. 155

Figure 5.10: Stages of the Wikipedia-backed Summarizer ... 157

Figure 5.11: Class diagram showing the main classes of the Wikipedia-assisted

Summarizer package.. 158

Figure 5.12: Adjusted Ranks Obtained as applied on all Topics in Set A with ROUGE2 167

Figure 5.13: Adjusted Ranks obtained for Topics in Set A with ROUGE-SU4............... 167

Figure 5.14: Adjusted Ranks for Topics in Set B with ROUGE-2 167

Figure 5.15: Adjusted Ranks for Topics in Set B with ROUGE-SU4 168

Figure 6.1: Overview of Sentences Simplification Module .. 174

Figure 6.2: An example of a complicated sentence with labelling of different clauses types

.. 174

Figure 6.3: Result of the simplification process when applied to a complicated sentence175

Figure 6.4: Parse Tree of the first Example for Splitting Sentences 176

Figure 6.5: Parse Tree of the Second Example for Sentences Splitting........................... 177

Figure 6.6: Parse Tree of the Third Example for Sentences Splitting.............................. 178

Figure 6.7: Parse Tree of the Fourth Example for Sentences Splitting............................ 179

Figure 6.8: Parse Tree of the Fifth Example for Sentences Splitting............................... 180

Figure 6.9: Parse Tree of the Sixth Example for Sentences Splitting 181

Figure 6.10: Keeping the leftmost S Root and removing its siblings 182

Figure 6.11: Removing Time Expressions for Sentences Compression 183

Figure 6.12: Removing Conjunctions for Sentences Compression 183

Figure 6.13: Removing Complements for Sentences Compression................................. 184

Figure 6.14: Removing Complements for Sentences Compression................................. 185

Figure 6.15: Removing PPs under SBARs for Sentences Compression........................... 186

Figure 6.16: Removing SBARs for Sentences Compression ... 187

Figure 6.17: Removing PPs for Sentences Compression.. 188

Figure 6.18: Architecture of the SSM-based Summarizer .. 190

Figure 6.19: Comparison of the ROUGE results obtained for the different systems 191

xiv

Figure 7.1: A general framework for Wikipedia-assisted Text Classification 195

Figure 7.2 Class diagram of the Wikipedia-based classifier package.............................. 196

Figure 7.3: A comparison of the classification accuracies obtained for the different runs on

the ODP dataset... 205

Figure 7.4A comparison of the classification accuracies obtained for the different evaluated

runs on the 20N dataset ... 206

Figure 8.1: Summary of the rules applied by SSM for simplifying sentences 207

Figure 8.2: Reference Summaries and System Summaries for docset D1003B from the

TAC10 documents collection .. 215

Figure 8.3: Reference Summaries and System Summaries for docset D1004A from the

TAC10 documents collection .. 216

xv

LIST OF TABLES

Table 2.1: Some of the public summarization systems available on the web and in common

applications ... 40

Table 4.1: The ROUGE Scores obtained by my system in the two runs I submitted in

TAC08 .. 99

Table 4.2: The automated scores (and ranks) obtained by my system compared with the

rest in TAC08.. 99

Table 4.3: Manual Evaluation Results in TAC08 ... 100

Table 4.4: ROUGE evaluation results for the different sentences similarity measures 102

Table 4.5: ROUGE Evaluation Results of the Different Variations of the WordNet-based

System .. 109

Table 4.6: ROUGE scores of my System and other participants in TAC 2008 121

Table 5.1: Boosting the Term-Concepts Vectors using Redirect Links........................... 136

Table 5.2: Weights assigned for the different links types ... 139

Table 5.3: Examples of Wikipedia-based Features Generation....................................... 143

Table 5.4: The accuracy of all implemented methods including (i) Term Vectors

Intersection, (ii) Unweighted Strong Links, and (iii) Weighted Strong Links methods. .. 155

Table 5.5: Evaluation results for the Summarization Task showing the scores and ranks of

the two submitted runs 14 and 19 relative to other peers .. 163

Table 5.6: Manual Evaluation Results for the submitted runs in TAC10 165

Table 5.7: Sample summary output for the two submitted runs on the document set

D1001A in TAC10 .. 166

Table 6.1: ROUGE results suggest a performance improvement with the SSM-based

summarizer.. 191

Table 7.1: Updated labels for the different categories in 20N... 204

Table 7.2: Accuracy results obtained for different variations of the system.................... 205

xvi

LIST OF ABBREVIATIONS

20N 20 Newsgroups
ADS Automatic Documents Summarization
ANNIE A Nearly New IE
BE Basic Elements
BLEU Bilingual Language Evaluation Understudy
BOW Bag of Words
CREOLE Collection of REusable Objects for Language Engineering
CT Context Terms
DM Data Mining
DUC Document Understanding Conference
EM Exact-Match Concepts
FG Features Generator
GATE General Architecture of Text Engineer
HTML Hyper Text Markup Language
IC Information Content
IDF Inverse Document Frequency
IR Information Retrieval
JCn Jiang similarity metric
LE Language Engineering
LSA Latent Semantic Analysis
NE Named Entity
NIST National Institute of Standards and Technology
ODP Open Directory Project
PJWSL Pure Java WordNet Similarity Library
POS Part-of-Speech
PR Processing Resource
ROUGE Recall Oriented Understudy for Gisting Evaluation
SSM Sentences Simplification Module
SCU Summaries Content Units
SVD Singular Value Decomposition
SVM Support Vector Machine
TAC Text Analysis Conference
TD Test Document
TDS Text Documents Summarization
TF Term Frequency
TFIDF Term Frequency , Inverse Document Frequency
TU Text Unit
WSD Word Sense Disambiguation
XML eXtensible Markup Language

1

Chapter 1

Introduction

Automatic summarization is the process of creating a condensed form of a document or

several documents. The documents can be text, video, speech, graphs, or any combination

of these types. A summary presents the most significant parts of the document. It can be

important facts or a shortened version of the details and descriptions present in the original

document. Also, a summary can be tailored to present the user’s specific requests and

needs.

In this thesis, I describe the work completed for automatic summarization targeting

documents of type text and taking into account the user’s specific queries and requests. I

explore variations of the system creating single and multi-documents summaries. I

examine the new summarization methods implemented that would take advantage of the

semantics present within the original documents and utilize external repositories for better

semantic analysis.

1.1 Motivation

Recent expansion of the World Wide Web and the continuous size increase of affordable

media storage devices have allowed for raw data to be available in very large quantities.

With the abundance of data, comes the challenge of smart analysis and filtering which has

to be applied to the data to reach the user’s specific needs. This is especially apparent

since no one is able to browse through all of the available data except for a small portion

covering his needs.

2

Data Mining (DM) and Information Retrieval (IR) are two fields which have focused on

the analysis of large amounts of data and extraction of high quality information relevant to

the user’s needs. With Data Mining, patterns and trends are typically detected within text

to help identify and form interesting and important information. The field of Information

Retrieval searches documents, data within documents and their metadata to help find

important and relevant information. An overlap between the two fields is apparent,

especially when looking at the sub areas which are covered by both. Among these areas

are searching, as performed by internet users with web search engines; Sentiment

Analysis, which attempts to determine the attitude of a person towards a subject; Text

Categorization, which labels documents using previously-defined categories; Topics

Extractions, which aims to extract the main topics mentioned in a document; Documents

Clustering, which groups documents into a list of meaningful categories; and Automatic

Documents Summarization, which targets the production of summaries meeting the user’s

needs.

Automatic Documents Summarization (ADS) is defined as the act of automatically

creating a summary that briefly and succinctly presents the important information existing

within the original documents. A summary can be generated for a single original

document or a group of documents. The first is called a single-document summary while

the later is a multi-document summary. Summaries can also be generic summaries or

query-specific summaries depending on the user needs. The documents to be summarized

can be of multimedia type, text, or both. Systems that focus on Text Documents

Summarization (TDS) often involve subtasks borrowed from the Natural Language

Processing field such as Text Parsing, Natural Language Understanding, Coreference

Resolution, and Anaphor Resolution. Thus, TDS can be viewed as a subfield of Natural

3

Language Processing, which also overlaps with DM and IR. The focus in this thesis is on

TDS.

To illustrate the need for a good TDS system, I start by giving an example. Suppose

somebody who is looking into countries with emerging markets to invest in is

investigating the economy of Brazil. In particular, he would like to learn more about its oil

industry and its latest developments and discoveries in the country. An easy way for

obtaining such info would be the use of a web search engine. Suppose that this person

used the keywords “Petroleum Extraction Brazil” in the commonly used search engine

Google. The result of this query could return the top four webpage links illustrated in

Figure 1.1. Along with each link, Google provides a snippet summary taken from the

original webpage.

Figure 1.1: Top 4 results for search query “Petroleum Extraction Brazil” as obtained
from Google

Assuming that the rank of a result indicates its importance in relation to the user query, I

examine the webpages of the results illustrated in the top four links. When examining each

link, I make use of the norm that important information in articles is usually presented first

Extraction of Crude Petroleum in Brazil - Overview
A profile of Extraction of Crude Petroleum in Brazil with directories of companies, people,
industry sectors, projects, facilities, news and events.
www.mbendi.com/indy/oilg/ogus/sa/br/p0005.htm - Cached

Companies & Organisations (» Extraction of Crude Petroleum) in Brazil
Companies & Organisations (» Extraction of Crude Petroleum) in Brazil.
www.mbendi.com/a_sndmsg/org_srch.asp?gloc=L101...C,P - Cached
Show more results from mbendi.com

petroleum :: Extraction from underground reservoirs -- Britannica ...
petroleum, Extraction from underground reservoirs, Britannica Online ... Belarus (in Belarus:
Resources and power); Brazil (in Brazil: Petroleum and natural ...
www.britannica.com/.../petroleum/.../Extraction-from-underground-reservoirs -Cached - Similar

Macae Campos Bay Petrobras Petroleum Extraction Exploration ...
Imoveis e terrenos a venda em Macae macaé campos bacia de campos no Rio de
JaneiroBrazil Avaliação patrimonial em Macae.
www.acesseimovel.com.br/macae-i.aspx - Cached

www.mbendi.com/indy/oilg/ogus/sa/br/p0005.htm
www.mbendi.com/a_sndmsg/org_srch.asp
www.britannica.com/
www.acesseimovel.com.br/macae-i.aspx

4

to the reader. Therefore, I pay particular attention to the first four sentences of every

webpage I examine. Starting with the first link, the sentences are displayed in Figure 1.2.

One can notice that the article provides an overview of the oil reserve and production in

Brazil.

Figure 1.2: The first four sentences of the article ranked first in the search result for
the second query

The second link points to a webpage containing merely a map showing the locations of

some of the major companies in Brazil. The page has multiple random appearances of the

keywords used in the query, and this may have affected its rank in the search results.

The third link points to a webpage giving a background about oil alternatives in the past

and how its use for illumination triggered the different methods of extraction in the

previous centuries. Figure 1.3 gives an overview of the top sentences in the article. It is

clear that the webpage does not discuss exactly what the query is asking for, even though

it has links to other pages discussing Petrobras; a major government-owned company for

extracting and refining petroleum in Brazil.

Figure 1.3: The sentences extracted from the webpage titled “Petroleum: Extraction
from the underground reservoirs”

Petroleum: Extraction from the underground reservoirs
 Until the beginning of the 19th century, illumination in the United States and in many other

countries was little improved over that known by the early Greeks and Romans.
 The need for better illumination that accompanied the increasing development of urban

centres made it necessary to search for new sources of oil, especially since whales, which
had long provided fuel for lamps, were becoming harder and harder to find.

 By the mid-19th century kerosene, or coal oil, derived from coal was in common use in both
North America and Europe

 The Industrial Revolution brought on an ever-growing demand for a cheaper and more
convenient source of lubricants as well as illuminating oil.

Extraction of Crude Petroleum in Brazil
 According to the 2010 BP Statistical Energy Survey, Brazil had proved oil reserves of

12.856 billion barrels at the end of 2009 or 0.96 % of the world's reserves.
 Brazil produced an average of 2029 thousand barrels of crude oil per day in 2009, 2.62% of

the world total and a change of 7.1 % compared to 2008.
 Brazil and Venezuela accounted for more than 60% of South America's oil production.
 Total oil production (including crude, natural gas liquids, ethanol and refinery gain) has

been rising steadily since the early 1990s, with an average of 1.88 mmbd in 2003.

5

The fourth link in the search result points to a webpage promoting for a Brazilian city

called Macae. The city contains many facilities owned by the oil company Petrobras. The

first four sentences are shown in Figure 1.4.

Figure 1.4: The first four sentences of the article ranked fourth in the search result of
the first query

Now, assume that another search query was made by replacing the word petroleum with

oil rendering the new query “Oil Extraction Brazil”. Since oil Extraction and Petroleum

Extraction effectively refer to the same process, the results should still meet the user’s

needs. The top four results obtained for the new query from Google are illustrated in

Figure 1.5.

Figure 1.5: The Top 4 search result links for the search query “Oil Extraction
Brazil”

Brazil Energy Data, Statistics and Analysis - Oil, Gas ...
According to the Oil and Gas Journal (OGJ), Brazil had 12.6 billion barrels of ... Most ofBrazil's
crude oil production is offshore in very deep water and ...
www.eia.doe.gov › International › Country Analysis Briefs - Cached

Brazil girds for massive offshore oil extraction

6 Dec 2009
Everything about the shipyard here is colossal -- the 4000-man workforce, the billions sunk into it in capital costs, the
half-finished 10-story-high ...
www.washingtonpost.com/wp-dyn/content/article/2009/12/06/AR2009120602442.html?wprss=rss_business- Related
videos

Brazil-Arab News Agency - Brazilian oil and gas production broke ...
27 Dec 2010 ... São Paulo – Brazilian oil and natural gas production reached a record in
November, according to figures disclosed this Monday (27th) by the ...
www2.anba.com.br/noticia_petroleoegas.kmf?cod=11199044...0 - Cached

Brazil Oil - production - Economy
Facts and statistics about the Oil - production of Brazil. Updated as of 2010.
www.indexmundi.com › Brazil › Economy - Cached - Similar

1.

Macae Campos Bay Petrobras Petroleum Extraction Exploration
 Macae has a rapidly growing population of 170,000 inhabitants and is located 110 miles

North East of Rio de Janeiro.
 It is the main operational base for exploration, drilling and extraction of more than 80% of all

offshore oil in Brazil.
 It is also home to the Petrobras Campos Basin business unit and over 3,500 oil-related

businesses.
 Due to helicopter traffic to and from the oil rigs, Macaé has the second-busiest airport in

Brazil, after Rio and São Paulo.

www.eia.doe.gov
www.washingtonpost.com/wp-dyn/content/article/2009/12/06/AR2009120602442.html
www.indexmundi.com

6

The first link now points to a webpage giving background about Brazil’s oil production

and oil reserves. The first four sentences are displayed in Figure 1.6. When comparing the

top result of this query with the top result of the previous query, one can notice that more

detailed information is presented in this article. The first sentence in Figure 1.2 mentions

that the proved oil reserves in Brazil represent 0.96% of the world’s reserves. Also, it can

be noted that some information provided in both articles is repeated. For example, the

essence of sentences 1 and 2 from the first query’s top ranked summary is contained

within sentence 1 of the second query’s summary. In sentence 1 of the second query’s

summary, it is mentioned that Brazil produced 12.6 billion barrels of proven oil reserves in

2009. Also mentioned is that Brazil is the second-largest oil producer in South America

after Venezuela. This merge of information into one sentence allows for summary 2 to

display more information in the subsequent sentences than summary 1.

Figure 1.6: The sentences contained within the Brazil Energy Data, Statistics and
Analysis webpage

The second link points to an article from the Washington Post titled “Brazil girds for

massive offshore oil extraction”. Figure 1.7 displays the first four sentences extracted from

the article. It can be noted that more than half of the first sentence is not relevant to the

main queried subject. The second sentence talks about the discovery of new offshore oil

reserves and its expected effects on the country. Third and fourth sentences are about the

Brazil Energy Data, Statistics, and Analysis
 According to the Oil and Gas Journal (OGJ), Brazil had 12.6 billion barrels of proven oil

reserves in 2009, second-largest in South America after Venezuela.
 The offshore Campos and Santos Basins, located on the country’s southeast coast, contain

the vast majority of Brazil’s proven reserves.
 In 2008, Brazil produced 2.4 million barrels per day (bbl/d) of oil, of which 76 percent was

crude oil.
 Brazil’s oil production has risen steadily in recent years, with the country’s oil production in

2008 about 150,000 bbl/d (6 percent) higher than 2007.

7

difficulties faced with extracting oil from the offshore reserves and the efforts made to

overcome these difficulties.

The third link in the search result points to the translation of a short article written by a

Brazilian author. The first 4 extracted sentences are shown in Figure 1.8. In this summary,

I note that different information is presented than what was presented in the first two

articles. Daily and monthly statistics are also shown in this article.

The fourth link in the search result points to a webpage displaying charts and graphs about

the average oil production per year in Brazil without much text in its contents.

Figure 1.7: The first four sentences contained within the Washington Post article

Figure 1.8: The first four sentences extracted from the article ranked as third in the
search result

A careful examination to the above summaries reveals the diversity of information

presented in each and the differences and similarities among them. Although the main

Brazil grids for massive offshore oil extraction | The Washington Post
 Everything about the shipyard here is colossal -- the 4,000-man workforce, the billions sunk into

it in capital costs, the half-finished 10-story-high production platforms.
 But then, so is the challenge facing Brazil's state-controlled energy company, Petrobras:

developing a group of newly discovered deep-sea oil fields that energy analysts say will
catapult this country into the ranks of the world's petro-powers.

 The oil pools are 200 miles out in the Atlantic and more than four miles down, under freezing
seas, rock and a heavy cap of salt.

 Petrobras, which until recently was little known outside oil circles, has launched a five-year,
$174 billion project to provide platforms, rigs, support vessels and drilling systems to develop
tens of billions of barrels of oil.

Brazilian Oil and Gas Production Broke Record in November
 Brazilian oil and natural gas production reached a record in November, according to figures

disclosed this Monday (27th) by the National Petroleum, Natural Gas and Biofuel Agency
(ANP).

 Daily oil extraction reached 2.089 million barrels, and daily gas extraction reached 66.2 million
cubic metres.

 Oil production grew by 5.2% compared with November 2009 and by 4.6% compared with
October this year, according to the ANP

 In the case of gas, there was growth of 12% over November last year, and 2% over October
2010.

8

themes of most of the summaries do partially address the user’s two queries, it can be

noted that the focus of the articles differ in many cases. This may be reasonable to expect

since each article was originally written by a human author with a preset focus or goal

meant to be primarily addressed in the article. Now, addressing the user’s specific query

by browsing through the differently-focused articles with their authors’ diverse interests

may be recognized as one of the challenges of Text Summarization. To properly identify

the main theme of each article and extract the most useful parts to the reader according to

his/her query, an understanding of the articles’ contents and the user’s query is needed.

A sentence may contain phrases of different interests to the user. An example for this is

the sentence mentioned above in Figure 1.7 which carries important and relevant data in

part, while in another part of the same sentence irrelevant information is presented. To

save the user’s time and reduce the summary’s length, optimal summaries would present

only the important and relevant parts of a sentence to the user. I present in this thesis how

a Sentence Simplification Module (SSM) can be integrated with the summarization

framework I propose to further help in condensing summaries and improving the overall

performance of framework.

The example of using the different queries Oil Extraction Brazil and Petroleum Extraction

Brazil emphasizes the need for a proper understanding of the query. When looking at the

terms Oil and Petroleum individually, the definition of each may vary according to the

background and culture of the reader, and the context they are placed in. By examining the

definitions given in the Oxford Dictionary1 for each, the meaning of Petroleum is a liquid

mixture of hydrocarbons extracted from earth which can be refined to produce petrol,

diesel and other types of fuel. The definition of the term Oil is any viscous liquid which

are insoluble in water. From the given definitions, it can be noted that Petroleum refers to

1 http://oxforddictionaries.com

9

crude oil extracted from earth while oil is a broader term that can cover engine, cooking,

vegetable and other types of oils. However, in normal everyday usage, the two can refer to

crude oil especially when coupled with certain terms such as “discovery” or “extraction”.

In WordNet, one of the senses of the word Oil is Petroleum. In Wikipedia, “Oil

extraction” and “Petroleum extraction” both refer to the article titled “Extraction of

Petroleum”. In the two queries supplied to Google above, the results of the queries

containing the two phrases differed in each case even though Oil Extraction and

Petroleum Extraction both refer to the same process. In addition, it was found that the top

four results for the former query were much more direct in answering the query than the

latter.

A significant part of this thesis describes several new algorithms and methods used for

better machine understanding of human text, or in other words handling the semantics of

text documents and users’ queries. Just like in the previously mentioned example when

replacing one query with another required background knowledge from the user to know

that both are effectively referring to the same process, machines do need a way to learn or

know that. For this, I show the use of different knowledge repositories in my algorithms

and the implemented system that perform Semantics Analysis.

From the previously-mentioned example, it is evident that there are at least two generic

problems at hand: (1) is finding the most relevant documents to the user’s needs, which is

usually addressed by search engines, and (2) is extracting the most useful and important

information from within the found documents. Researchers in the field of Text

Summarization have focused on addressing the second problem in their work since at least

the 1950s [1]. Starting with Luhn’s work [1] with IBM until very recently, as described in

chapter 2, statistical measures have been commonly used without reliance on external

knowledge for semantic analysis.

http://oxforddictionaries.com

10

In this thesis, I describe a framework addressing the summarization problem with different

and new approaches utilizing external knowledge to enhance the machines understanding

of human languages and text. Semantic Analysis and Inferential Interpretation (words

grouping according to the inferred meaning and context) are steps of the processes

implemented in the framework to aid in this task. The methodologies implemented are

also extended and applied to several related fields such as Documents Classification and

Word-Sense Disambiguation.

The techniques implemented in my framework rely on the detection of direct and indirect

semantic representation of terms, sentences and documents. This allows for the discovery

of the main topics within a document and subsequently shifting the focus of the

summarization according to the user’s query, if provided, or the main theme of the

document. A summary is thus generated by extracting the sentences containing the most

important concepts and ignoring on the other hand the unimportant ones.

1.2 Aims and Contributions of the Thesis

The main questions being addressed by this thesis are: is it possible for summarization

systems to effectively generate a summary that captures the essence of the documents it

represents and reflects the user’s specific goals as indicated in his/her query? To what

extent can a system utilize external repositories to aid in Natural Language Processing-

related applications, and specifically Automatic Documents Summarization? Is it possible

to capture the semantic knowledge present in the external knowledge repositories and

connect them to textual documents?

This thesis examines the use of different features extracted from within text documents

and the enhancement process of these features by employing external repositories

11

represented by WordNet and Wikipedia. The main contributions of this thesis are the

following:

 The relationship between terms, and a composite of terms, is quantified and

weighted through new algorithms allowing for grouping the terms, phrases and

sentences based on the semantic meaning they carry.

 A framework is proposed to generate and extract features from text documents

using external knowledge repositories such as WordNet and Wikipedia. This

allows for embedding terms relations and human knowledge in the implemented

system. Such features are not usually present in statistical-based systems and Bag-

of-Words (BOW)2 which do not rely on external knowledge repositories.

 The use of the framework in Automatic Text Documents Summarization allows for

improvements of the performance and accuracy of the system when evaluated

against many other systems.

 The use of Wikipedia in the process of generating features for text fragments

allowed for the introduction of human knowledge Concepts. Quantifying the

relationship between the detected concepts with the methods I propose allow for a

better Automatic Semantic Interpretation of Text.

 The adaptation of several novel methods to enhance the diversity and reduce

redundancy in the generated summaries. As illustrated in the evaluations

performed, the results obtained suggest a better performance of the summarization

system when compared against others that do not employ the implemented

redundancy-diversity methods.

2 Bag-of-Words (BOW) models treat text as an unordered collection of terms without taking into consideration their
grammatical structure or their order of appearance within the documents they belong to.

12

 Extending the implemented summarization framework to apply the basic

methodologies to other related fields such as Word-Sense Disambiguation and

Documents Classification. Evaluations are also performed and the results suggest a

competitive performance against other systems.

 The ability to detect main topics mentioned within free text and anticipating the

relatedness of the detected topic to the main theme of the text and to what extent

they are of interest to the reader.

 The introduction of a Sentences Simplification Module (SSM) and its integration

into the Wikipedia-based summarization framework. Sentence splitting,

compression and candidate selection are among the main tasks that were

implemented into the summarizer.

 Participation in the Text Analysis Conference (TAC)3 summarization task in two

years: a WordNet-based system was used in 2008 while a Wikipedia-based system

was used in 2010. The evaluation results obtained indicate competitive

performance for both systems, with the Wikipedia-based having a higher rank than

the WordNet-based system.

The following publications have been published while working on this thesis. They are

mentioned here to provide a reference to the different sections covered in this thesis and

the experiments that were conducted. They also give details about any ideas that may have

been included briefly within this thesis.

3 Text Analysis Conference (TAC) is a series of evaluations and workshops organized by National Institute
of Standards and Technology (NIST) to encourage research in the field of Natural Language Processing by
providing large test collections and common evaluation procedures. Summarization is among the tracks
covered by TAC. It includes diagnostic and component evaluations situated within the context of end-user
tasks. http://www.nist.gov/tac/

13

 A. Bawakid, M. Oussalah, Sentences Simplification for Automatic Summarization

In Proceedings of the 10th IEEE International Conference on Cybernetic Intelligent

Systems 2011, Sept 2011, London, UK

This paper provides details on the implementation of the SSM module and rules I

applied for simplifying sentences. It overlaps significantly with chapter 6.

 A. Bawakid, M. Oussalah . Summarizing with Wikipedia. Proceedings of the Third Text

Analysis Conference (TAC 2010) Feb 2011, Gaithersburg, Maryland, USA

This paper gives an overview of the Wikipedia-based summarizer I used to

participate in TAC 2010 and the obtained results in comparison with the rest of the

participants. A full description of the system, its implementation and the results

gained is provided in Chapter 5.

 A. Bawakid, M. Oussalah, Using Features Extracted from Wikipedia for the Task of Word

Sense Disambiguation In Proceedings of the 9th IEEE International Conference on

Cybernetic Intelligent Systems 2010, Reading, UK

This paper details how the Wikipedia-extracted features are used in the task of

Word Sense Disambiguation (WSD) to disambiguate topics mentioned within text

documents and how it was evaluated. The findings of this paper are expanded in

Chapter 5 with more details on how the features weights were chosen and

improved.

 A. Bawakid, M. Oussalah Centroid-based Classification Enhanced with Wikipedia In.

Proceedings of The Ninth International Conference on Machine Learning and

Applications (ICMLA 2010), Fairfax, USA

http://www.nist.gov/tac/

14

This paper outlines the main evaluations that were performed to test the

effectiveness of the features constructed from Wikipedia. A description of the

relevant parts of the system and evaluations are provided in Chapter 7.

 A. Bawakid, M. Oussalah A Semantic-Based Classification System. Proceedings of the

8th IEEE International Conference on Cybernetic Intelligent Systems 2009, Birmingham,

UK

This paper describes the WordNet-based similarity measures given in Chapter 4

and applies them to the application of documents classification.

 A. Bawakid, M. Oussalah A Semantic Summarization System: University of Birmingham

at TAC 2008. Proceedings of the First Text Analysis Conference (TAC 2008),

Gaithersburg, Maryland, USA

This paper details a relevant study in which linguistic qualifiers were used with the

WordNet-based summarizer to summarize systems. Some aspects of the

implemented system are detailed in Chapter 4.

1.3 Structure of the Document

The structure of the thesis can be segmented into five different parts. The first part for the

introduction, overviews related research work and describes features construction. The

second and third parts contain the thesis main contributions regarding how external

repositories, namely WordNet and Wikipedia, can help in the task of summarization. The

fourth part describes several related applications that utilize the developed methodologies

and can either help with summarization or test the usability of the extracted features. The

fifth part draws the conclusions of this thesis. These five parts have been structured into

chapters as follows:

15

 Part I: Introduction, Background and Context

 Chapter1: Introduction

 Chapter 2: Background and Related Work. This provides background about

related research work and state of the art in Summarization and

summarization evaluations.

 Chapter 3: Features Generation and Selection. This chapter describes the

need for features generation and selection when using external ontologies

for automatic summarization. An overview about the stages involved and

how semantic distance is derived from WordNet and Wikipedia are also

given.

 Part II: Using WordNet for Summarization

 Chapter 4: Summarization Aided with WordNet. This chapter describes

several metrics for computing the similarity between sentences with the aid

of WordNet. The implementation of the built summarizer, evaluations

performed and improvements added via redundancy checking and diversity

enhancement are also given.

 Part III: Using Wikipedia for Summarization

 Chapter 5: Summarization Aided with Wikipedia. This chapter provides an

overview on how features are extracted and built for Wikipedia for use in

different applications. The extracted features are used in the built

summarizer and the evaluation results of its performance are also reported.

 Chapter 6: Sentence Simplification for Automatic Summarization. This

chapter extends the previous chapter by introducing SSM to further

condense the summaries and allow for inclusion of more information.

16

 Chapter 8: Using SSM for Summarization. This illustrates the effects of

applying SSM to several sample sentences and its usability in the

application of summarization.

 Part IV: Related Applications

 Chapter 5. The built features from Wikipedia were used in the task of WSD

for two reasons: to get a better view of the effectiveness of the extracted

features and to also aid in the task of automatic summarization. In many

cases when analyzing documents for summarization, ambiguous words are

encountered and a module that effectively handles these types of terms

would positively affect the overall performance of the summarizer.

 Chapter 7: Classification Aided with Wikipedia. To test the effectiveness of

the built features from Wikipedia, text classification was used as the first

application to explore. I used the constructed features to build a classifier

and evaluated its performance.

 Part V: Conclusions and Future Work

 Chapter 9: Conclusions. This chapter draws the conclusions for this thesis

and potential future work.

The relationships among the parts and the chapters are displayed in Figure 1.9. These

relationships and links serve the purpose of highlighting the flow of reading required. For

example, if a person is interested in learning only about how WordNet was used for

summarization in this thesis, then Parts I, II and IV need to be read in that order.

17

Figure 1.9: Relationships among thesis main parts and chapters

In this thesis, I chose WordNet and Wikipedia as the main ontologies due to the

abundance of human concepts available in both. The human knowledge that exists in both

ontologies is made available to machines through the framework and algorithms I describe

in this thesis. The superior inferring capability of humans is counter measured by

introducing the abundant human knowledge to machines all at the same time through the

proposed algorithms and methods.

18

I use WordNet, a hierarchically-structured repository that was created by linguistic experts

and is rich in its explicitly defined lexical relations. With WordNet, algorithms for

computing the semantic similarity between terms are proposed and implemented. The

relationship between terms, and a composite of terms, is quantified and weighted through

new algorithms allowing for grouping the terms, phrases and sentences based on the

semantic meaning they carry. These algorithms are especially useful when applied to the

application of Automatic Documents Summarization as shown with the obtained

evaluation results. Several novel methods are also adapted to enhance the diversity and

reduce redundancy in the generated summaries.

I also use Wikipedia, the largest encyclopaedia to date. Because of its openness and

structure, three problems had to be handled: Extracting knowledge and features from

Wikipedia, enriching the representation of text documents with the extracted features, and

using them in the application of Automatic Summarization. First, I show how the structure

and content of Wikipedia can be used to build vectors representing human concepts.

Second, I illustrate how these vectors can be mapped to text documents and how the

semantic relatedness between text fragments is computed. Third, I describe a summarizer I

built which utilizes the extracted features from Wikipedia and present its performance.

I apply the methodologies proposed in this thesis to the application of automatic

documents summarization. To evaluate the effectiveness of the different variations of the

implemented summarizer, I participated in the TAC 2008 and TAC 2010 summarization

tasks with runs from the WordNet-based and the Wikipedia-based summarizers. I report in

this thesis the results of the evaluations performed and compare them against several

baselines and the results of the other TAC participants.

19

Chapter 2

Background and Related Work

This chapter presents an overview on Text Summarization and the stages it involves in

general. It then reports the main Automatic Summarization Systems which have been

developed so far and outlines the major techniques being used. Afterwards, the major

summarization evaluation methods are described. The challenges being faced by

Automatic Text Summarization are then introduced and those that are addressed by this

thesis are highlighted.

2.1 Text Summarization

For a person to manually generate a summary, s/he has to read and understand the

original document first. Based on the understood events, facts or situations within the

document, the important aspects are specified to meet the purpose of the summary. The

summary would not contain all of the information present within the original document,

but only those deemed to be important. This is obvious since the goal of the summary is to

reduce the amount of information present in the original documents. After specifying the

important aspects within a document, the summary is then produced in a suitable output

format.

The generic stages of summarization mentioned above have been addressed in the

previous work of Luhn [2] in which the author claims that summarization involves three

aspects in general: input, analysis and output. For the input aspect, humans usually

require an understanding of the natural language the text document is written in. Analysis

would require determining the purpose of the summary and the target audience.

20

Synthesizing a suitable output form for the summary would then be the last step before it

is presented to the user.

For each of the mentioned summarization aspects, there are many factors to consider

regardless of whether the summarizer is a human or a machine. For the input aspect:

Depending on how the document is structured, the summarizer would have to decide how

to approach reading the document. For instance, the headers of chapters or labels of

Figures and Tables may contain information which is useful in the analysis stage.

Metadata of some documents such as the keywords of HTML webpages may be

beneficial, too. If the document was classified and the class or domain it belongs to is

accessible by the summarizer, it may be possible to utilize knowledge restricted to that

domain to aid in the analysis and output stages. The language of the text documents may

also have an effect on the summarizer. Human summarizers would usually require an

understanding of the language the document was written in. Machines on the other hand,

lack the full and deep natural language understanding which humans normally possess. In

addition, human summarizers usually have background information and common sense

knowledge about the world and possibly the subjects in the document allowing them to

infer between sentences. Take the following two sentences as an example: “Adam ordered

a delivery pizza. He liked its taste very much”. It can be inferred that the pizza was

prepared, cooked, delivered to Adam and then that Adam ate the pizza. This inferring

capability requires common sense knowledge and it is something that machines lack as

was noted by Lenat in [3].

In the analysis stage, the summarizer would evaluate and select the important parts from a

document. The purpose of the summary would have an effect on how it is analyzed. For

example, user specific summaries would normally be tailored to match the user’s interests,

profile or background. Generic background summaries assume a poor user background

21

about the subject and hence an overview of the subject or the content of the document is

included in the summary. An update summary for a news event on the other hand, would

include only new key updates with the assumption that the user has read previous older

articles. The user goal may also affect how the document is analyzed. When a user

searches for specific information, the summarizer would focus the summary to mostly

related information to what the user has searched for. The number of documents to be

summarized is another aspect affecting how analysis is performed. With single-document

summaries, the structure of the document may give greater impact on the final generated

summary than of the multi-document summary. This is especially evident if the structures

of the different documents vary greatly.

The shape and output of the summary can take different forms. The summary can be in the

form of extracts containing unaltered pieces from the original text such as full sentences or

paragraphs. It can also be in the form of abstracts, where new phrases or sentences are

created. The length of the summaries also varies based on the intended purpose and the

compression rate desired. The shape of the summary can be in the form of complete

sentences, or simply phrases as in news headlines. Summaries can be presented in the

form of simply Text, or Text and other contextual information such as hyperlinks or

related sentences depending on the user interface being used.

In the work performed for this thesis, the focus is mainly on generating extract-based

single-document or multi-document summaries. The extracts are in the form of sentences

taken from the original text. The use of the Sentences Simplification Module (SSM)

allows me to adapt the system and generate abstractive summaries as described in chapter

six. The summaries generated are domain-independent. Due to the repositories used being

in English, the developed framework is currently restricted to only the English language.

22

No prior knowledge is assumed about the users and the summaries are only influenced by

the text documents contents and the user query if supplied.

2.2 Automatic Documents Summarization Systems
As described in section 2.1, three stages are being shared between all summarizers

regardless of whether they are machines or humans: inputting documents and task-specific

data, analysis and outputting the summary. With Automatic Documents Summarization

systems, it is possible to rephrase these steps and draw them as illustrated in Figure 2.1.

The shown steps are shared and adapted by all of the available summarization systems.

The details of the implementation of these steps are what make a system different from

another. The figure illustrates that there are three main components: Parser, Analyzer and

Synthesizer. The first stage may sometimes be referred to as the Preprocessing stage while

the later is often called post processing.

Figure 2.1: Summarization Systems Architecture

The parser is first fed with the documents to be summarized. Task-specific data such as

user’s queries and compression rate may also be fed into the system. The parser then

parses the fed data and prepares the documents in a suitable format acceptable by the

analyzer. If there are unnecessary data included in the fed documents which are not

handled by the system, they are removed at this stage. Usually, the parser applies a

sentence boundary detection module to the fed documents to segment the sentences.

However, in some Bag-of-Words (BOW) systems the sentence boundary detection module

23

is not needed. After segmenting the sentences, additional information may be tagged to

each sentence such as its order of appearance within the document and/or the paragraph if

several exist. If the system requires additional data as part of its input in the analysis stage,

tagging is usually performed within the parsing module. After tokenizing the terms within

each sentence, tags such as the terms Part-of-Speech Named Entities (Locations,

Organizations and Persons) may be applied.

The generated data are then fed to the analyzer where the core algorithms of the system

are applied. A weight is usually attributed to each of the features detected or generated for

each sentence. A score is then assigned to each sentence representing its importance. A

sentence score is usually the sum of the weighted features scores. For some systems which

produce abstractive summaries, sentences simplification, splitting, trimming or

compression may be applied in this stage, too. In cases where the system is using external

corpora or knowledge repositories to aid in summarization, external corpora are usually

employed in this stage. Scored candidates of clauses, phrases or sentences are the result of

the analyzer.

The role of the synthesizer is to organize the scored candidates and present them in a form

suitable to the user’s needs. If a compression rate or words/sentences limit is specified, the

synthesizer ensures that the output meets the given conditions. For single-document

summaries, producing the summary is usually straightforward and is accomplished by

choosing the highest ranked sentences according to their scores. For multi-document

summaries, the process is usually more complex as it involves checking for redundancy,

diversity and relevance to the user’s specific needs.

24

2.3 Related Work

A fairly large number of automatic summarization systems can be found in the literature.

Many of these systems address the summarization problem depending on the desired type

of summaries. In general, the systems can be classified into two categories: Extractive and

Abstractive summarizer. Extractive-based methods focus more on producing the best

content for the summary. Abstractive methods emphasize the need for having restructured

text and usually require an advanced level of language-dependent operations. It is also

possible to classify the different summarization approaches into other different categories

based on the specific characteristics of each approach as outlined in [4], [5], [6] or [7]. I

provide here a sketch of the major summarization approaches that pioneered the field and

the systems that employed these methods using a classification similar to the one

presented in [7]. Summarization methods can be classified as those using mainly surface

level features, machine learning approaches, natural language analysis methods,

abstraction, topic driven, graph-based, and LSA-based methods. I also include a

subsection for other methods which adopt a combination of these methods depending on

the details of summarization task at hand. I follow by presenting the limitations of the

approaches most related to my work and highlight the main differences between what I

apply in this thesis and what was previously presented.

2.3.1 Surface-level Features

Approaches that tend to rely on surface level features extracted from the test documents

are among the first that were applied in the text summarization field and date back to the

1950s with Luhn’s work [1] at IBM premiering them all. These approaches are generally

extractive and utilize features such as the position of sentences, words frequencies, the

presence of cue words and overlap with document title or query. In the following

25

subsections, I describe these features and their use in the early work of the summarization

field.

2.3.1.1 Word Frequency

The assumption made by approaches relying on words frequencies is that important parts

of text would likely contain words occurring with high frequency. The first summarization

approach proposed by Luhn in [1] at IBM implements this method. The algorithm he

devised relies on the idea that frequently occurring terms reflect the main theme of the

document. Commonly used terms in the English language, which are previously prepared

in what is called Stop Words List, are removed from text. Sentences are assigned scores

reflecting the frequency of the terms they contain. After ranking all sentences based on

their scores, a summary is formed by selecting the top ranking sentences. In the work of

[8], a threshold was introduced giving words with frequencies above the threshold a higher

weight than the rest. In [9], the assigned term frequency weights were affected by their

positions within the document. In [10] , they used terms frequencies to define what they

called Thematic Words. A small number of thematic words are selected and each sentence

score is affected by the number of thematic words it contains. In [11], groups of Topic

Signatures were used where each topic signature consists of a topic and related terms. For

example, the topic “restaurant visit” has the related words “table”, “menu”, “order”, etc.

When analyzing a document, words are replaced with their topics based on the topic

signature groups. These groups are built by considering the frequencies of the different

terms within the previously classified documents.

Later on in the 1980s, it was observed by Salton [12] that common terms within a domain,

or within a collection of documents to be evaluated, may affect the performance of the

terms frequencies method proposed in Luhn’s work. It was suggested in an added feature

26

that the relevancy of a term to a document is inversely proportional to the number of

documents in the corpus containing that term. This is when the Inverse Document

Frequency (IDF) measure was introduced to the field. And so, the Term Frequency (TF)

formula was revised to include IDF by changing it to TF x IDF. Thus, a sentence score is

computed by summing the scores of its individual terms and a summary would then be

generated by simply aggregating the highest-scoring sentences.

2.3.1.2 Position

Another feature exploited by many summarization systems is the location of sentences

within a document. The structure of the document is usually taken into account while

scoring sentences. For some methods, sentences appearing at the beginning of a document

are assumed to be more important than the rest. This goes along with the results of the

study described in [8] in which 200 paragraph were examined. It was found that the topic

sentence came as the first one in 85% of the examined paragraphs and as the last sentence

in 7%. Also in [13], it was found that topic sentences tend to appear very early or late in

the documents. Variants of this feature were used in several other summarization systems

including [9], [14] and [15].

2.3.1.3 Cue words and phrases

The presence of certain words or phrases in a sentence may indicate the importance or

irrelevance of a sentence. In the work of [13], bonus and stigma words were defined. The

existence of bonus words such as “significant” or “important” in a sentence indicates its

importance. Stigma words such as “hardly” or “impossible” indicate the irrelevance of a

sentence giving it a higher chance for being excluded from the summary. The work of [16]

proposed a system called ADAM for excluding sentences from summaries based on the

existence of certain phrases. In [15], lists of cue phrases have been built manually to

27

indicate the significance of a sentence. Then in [17], the process of building lists of cue

words and phrases was automated in a trainable features combiner that learns from

summary examples. Other systems which used this feature include [18], [19] and [20].

2.3.1.4 Overlap with title or query

With this method, words or clauses appearing in the document title or user query are

determined. Sentences having words in common with the title or user query, if provided,

are given higher weight than others. Systems that employ this feature include among

others [21] and [11].

2.3.2 Machine Learning Approaches

In many extractive summarization systems, several algorithms have been adopted which

employ machine learning and statistical techniques. Some employ Naïve-Bayes methods

which assume the independence between the features used while others do not make the

same assumption. Some use other techniques such as Decision Trees, Hidden Markov

Models, Log-Linear models and Neural Networks. I give an overview on these techniques

next.

2.3.2.1 Naïve-Bayes Methods

A Bayesian classifier was employed in [10] to compute the probability of whether a

sentence in the source document should be included in the summary. The classifier was

trained with technical documents which were prepared in the form of 188 document-

summary pairs. Every sentence was assigned a score based on the probability computed

with a set of features that include the structure of phrases within a sentence, sentence

length, position and presence of uppercase and cue words. Only the top ranked sentences

are chosen to form the summary. In the results of their analysis, it was found that the use

28

of only the sentence position, cue words and sentence length features produced the best

results. In [22], another Bayesian summarization system was developed which applied

several syntactic-based rules to trim chosen sentences and reduce their length. It was

found in several studies such as [23] and [24] that the use of purely syntactical features in

Bayesian classifiers may slightly improve the precision in the low recall end, but not in the

high recall end.

2.3.2.2 Decision Trees

In a step moving away from the assumption that features are independent from each other,

summarization systems have emerged that use decision trees instead of Bayesian

classifiers. With decision trees, tree like models of decisions or graphs are created as

support tools. In [25], a decision trees-based system extracted sentences from source

documents which were matched against reference human summaries for evaluation. The

system introduced new features affecting the score computed for each sentence. These

features include the existence of numerical data, weekday or month, pronoun or adjective,

overlap with a user query or corpus most salient terms. The author performed evaluations

against several baselines that include the combination of some of the mentioned features.

The overall results he obtained indicate the prevalence of the used decision-tree method.

Other variations of the tree-based method were also used in [26] and [27].

2.3.2.3 Hidden Markov Models

To capture the dependencies between sentences within a document, several systems have

explored the use of Hidden Markov Models (HMM) creating a sequential feature-based

system with unobserved or hidden states each having a probability distribution over all

possible outputs. The OnTopic system described in [28] uses HMM for assigning topics to

document and classifying broadcast news. In [21], a summarization system was described

29

which employs three features: sentence position, sentence length and the likelihood of

having the sentence terms in the summary given the source document terms. Training

corpus was required for that system with pairs of original document-summaries clearly

labelled. Also in [29], [30] and [31] other variations of HMM-based summarizers were

used. In [32], HMM-Hedge was proposed which uses distinct language models of news

stories and headlines but does not requires manual pairing of stories and summaries in the

provided corpus. Other syntactic systems such as CLASSY [33] rely on the statistical

Hidden Markov Model (HMM) in sentences selection. Also, it uses a simple rule-based

sentences compression module by removing non-important phrases from sentences based

on the existence of cue-words.

2.3.2.4 Log-Linear Models

The use of log-linear models in summarizers also emerged as a deviation from the

assumption that features are independent. It usually works by transforming a system of

equations through finding logs of all variables and approximating the results with linear

equations. It has been used in the summarizer of [34] where the authors claimed that the

results they obtained outperformed those obtained with Naïve-Bayes methods. In [35], a

log-linear model was used in an iterative process to automatically select the input features

that increase the predictive capability of their system. The results they obtained showed a

remarkable increase in the performance of their system when compared against other

similar summarizers which do not utilize the log-linear models. In [36], log-linear

modelling was used to aid in generating sentiment summaries.

2.3.2.5 Neural Networks

Neural networks are non-linear statistical data models used to model complex

relationships between inputs and outputs and detect patterns within text. The structure of

30

the networks usually changes based on the information processed during the training stage.

In DUC 2007, a summarizer called NetSum [37] using neural networks-based algorithm

has demonstrated a performance significantly exceeding those of the provided baselines.

The algorithm used a pair-based sentences ranker called RankNet [38] for ranking all

sentences in the source documents based on their importance. Training is performed using

a modified version of the back propagation algorithm [39] which is based on the gradient

descend method described in [37]. Other summarization systems that also employ neural

networks in their algorithms include [40] and [41].

2.3.3 Natural Language Analysis Methods

I describe here a set of methods that involve complex language analysis without the need

for machines training and learning. The analysis performed can be classified as entity-

level analysis and discourse level analysis. Entity level analysis is usually performed by

building an internal representation of text through the use of text entities and modelling

the relationships between them. Discourse level analysis on the other hand models the

overall structure of the text and its relation to the goal of the summary [42]. I give an

overview next on each of the mentioned analysis types.

2.3.3.1 Entity Level

With entity level analysis, text is represented with entities and the relationships between

these entities are identified. Entities can be in different forms including simple terms, n-

gram words and Named Entities (NE). The relationships between the entities can be in the

form of similarity, co occurrence relatedness, logical relations or co reference relatedness

[42]. In [43], the semantic similarity between the title or query and the rest of the

documents is computed to score sentences and form the summary. Similarity between

31

entities was initially performed through the detection of words overlaps as was

implemented in [11]. The words overlap method applies its analysis on the explicitly

mentioned terms within the original documents. If a document contains the terms

“household”, “house” and “home”, each word would be treated separately from the rest. In

[11], the authors attempted to address this problem by using WordNet [44] and the

synonyms it contains. A similar approach was made by [45] and [46] where words were

regarded important if they are deemed related to most words in a document with the help

of WordNet. WordNet based semantic similarity measures were introduced in [47] and

[48] and used in several other summarizers as in [49], [35] and [50].

In the work of [51], external thesauruses were employed to form lists of synonyms and

hyponyms and use these lists to find the relationships between entities. Entities can be

formed with n-grams spanning short or long distances of text. The relationships between

these entities can be any of the mentioned forms or a combination of them as illustrated in

[52]. In [46], important entities are detected through the analysis of syntactic and

grammatical structure of sentences.

Words co occurrence is another method used for defining relationships between entities. In

[53], it was implemented by examining the similarity between the contexts of the target

entities. The larger the number of overlapping terms between the compared contexts, the

more similar the target entities are. Co reference relations between entities were exploited

to quantify the relationships between the phrases or sentences containing the referred

entities. This was implemented in the query-based summarizer described in [54].

The use of logical relations as another form for detecting the relationship between entities

has been explored in the literature in [42]. Agreements, contradictions and entailments are

examples of logical relations. A system built by [55] uses logical relations to summarize

documents. Textual Entailment (TE) is another form of relationships that can be defined

32

between entities. It is said that text T entails H if the truth of H can be inferred from T. In

[56], the use of TE was proposed and implemented in an algorithm for text summarization.

2.3.3.2 Discourse Level

Discourse-level analysis methods focus on studying naturally occurred language use and

not custom made examples. They examine the relationships between texts fragments

beyond the sentences boundaries and have two distinctive properties in common: cohesion

and coherence. Cohesion accounts for the relationships between text fragments while

coherence is represented in the form of relations between text fragments such as

elaborations, causes and explanations as explained in more details in [57]. The first

reported discourse level approach modelled text relations based on story grammars in [58].

In [59], a computational model of discourse for Japanese writings was proposed for

extracting the discourse rhetorical structure and forming binary trees to represent the

relations between texts.

The Rhetorical Structure Theory [60] was then used in subsequent summarization systems.

In [61], the author devised a heuristic-based summarizer employing the RST theory and

using basic features similar to what have been used previously for summarization in the

literature. The author formed Rhetorical Structure Trees which represent relations between

two non-overlapping text fragments: Nucleus and Satellite. The main difference between

the two is that the Nucleus expresses what is more essential to the text’s writer and that the

Nucleus of a rhetorical relation is comprehensively independent of the Satellite but not

vice versa [62]. The extractive summaries produced by that system were meant to be

coherent and contain only salient information.

In the summarizer of [63], discourse markers were used to integrate aspects of coherence

and cohesion in the same summarizer adding argumentative structure information to

33

lexical chains. The performance achieved by that summarizer when compared with other

baselines was not encouraging. In [64], this work was expanded by a hybrid summarizer

that combines statistics criteria with linguistics and produces better results.

2.3.4 Abstraction

Producing extracts for summaries is the most common approach for summarization due to

its simplicity when compared with abstraction. Abstraction differs mainly from extractive

approaches by providing summaries having some degree of inference about background

knowledge not necessarily present in the original document and presented in a different

structure and format. Thus, abstractive summaries are usually shorter and more condense

than extractive summaries as they are not restricted to the information present in the

original source documents to reproduce summaries from. It has been reported in [42] that

building an open-domain abstractive summarizer would require a very large knowledge

base that would make it impractical to apply automatic abstraction on a large scale. This

led to having most of the built abstractive summarizer being applied in a small scale to

domain specific applications.

The first recorded automatic summarizer was extractive [1] and it was not until the

SUMMONS system [65] emerged that an automatic abstractive summarizer came to

existence [7]. The summarizer tackles a specific type of documents in a specific domain,

namely news articles about terrorism. It works by using a previously built database with a

template-based message understanding system, and does not directly handle raw text. The

template used was manually prepared for that specific domain. The summarizer produces

briefings by using connective phrases to merge relevant information about each event.

In [46], an analytical programme [66] was used to study a corpus of simplified sentences

written by human professionals. The idea was to analyze the differences between

34

summarized phrases and their long complete versions and compute the likelihood of

having a syntactic part of a sentence being removed without affecting the meaning and

grammatical structure of a sentence negatively. Other systems which relied more heavily

on sentences compressions include [67] in which a rule-based compression system was

introduced to help blind-readers browse quickly through text with the aid of a text-to-

speech programme.

The work of [68] discusses different methods for abstractions. One of these methods is

Pretty Printing which uses texts from templates to produces portions of summaries and

makes them more user friendly. Graphical output was another abstraction method which

provides users with outputs in the form of graphs and charts.

A discussion for how Natural Language Generation (NLG) can be performed and how it

serves to produce summaries is provided in [69]. The STREAK and PLANDOC [70]

summarizers have employed NLG for creating summaries for baseball games and

telephone network planning activity. In [71], an abstractive summarizer was introduced by

applying compression rules and a Maximum Entropy (ME) [72] classifier to generate

meeting summaries. The results they obtained suggest that compressing sentences can lead

to improvements in ROUGE scores. However, the best performance they obtained with

their system is still quite low. Another study in [73] compared an extractive summarizer

with an NLG-based abstractive summarizer by applying controversial measures and using

controversial corpora. The results they obtained indicate that extractive summarization can

give better results if the controversiality of opinions in a corpus is low. They suggest a mix

of abstraction and extraction in summaries when the controversiality is high.

35

2.3.5 Topic-driven Summarization

Documents are usually prepared and written in such a way to cover individual topics or

subtopics in separate sections. The documents are broken up either explicitly or implicitly

into segments where each segment focuses on a separate theme or topic. Thus, it is

intuitive to think that optimal summaries would cover as much of the topics that are of

interest to the user as possible. The Maximal Marginal Relevance (MMR) metric proposed

in [74] aimed to employ this feature. It works by clustering documents passages based on

their topics and chooses passages of large coverage to extract sentences from while

keeping redundancy low. It proposes to reward relevant sentences while penalizing

redundant ones through the use of a linear combination of two similarity measures. MMR-

based summarizers such as [75] account for a number of criteria for sentence selection

such as content words, chronological order and similarity with document topic or query.

They use BOW models such as Vector Space Model (VSM) or Latent Semantic Analysis

(LSA) to represent documents and compute similarity between the source documents

sentences and the query or documents titles using the cosine similarity measure. The

sentences chosen to be included in the summary are usually highly similar to the query or

document main topics. When a sentence is added to the summary, the redundancy is

usually implicitly checked to ensure it is kept to a minimum level in the summary. The

length of the generated summary can be controlled with a user supplied threshold.

In the work of [76], a modified version of MMR is used for multi document update

summarization relying on a double maximization criterion. A rule based linguistic post

processing stage is also applied to reduce the length of sentences and ensure cohesion. A

study [77] which applied an MMR-based summarizer on Portuguese documents and

compared it with an LSA-based summarizer found after evaluating both systems that

36

MMR produce better summaries than LSA when compared with human made summaries.

Another modified version of MMR called Video-MMR was proposed in another study

[78] in which the author extended the classical MMR algorithm for text summarization to

videos by forming video summaries through rewarding relevant keyframes and penalizing

redundant keyframes.

2.3.6 Graph-based Theories

With graph-based theories, text entities and the relations between them are represented in

the form of undirected graphs. Each entity is viewed as a node in the graph. An edge

between two nodes is drawn if a relation exists between these two nodes. The relation can

be a cosine similarity above a threshold, relatedness, sharing a common term or any other

type of relationships according to the implemented algorithm. In addition, it is possible to

have different types of edges if more than one relation is used to connect edges. After

drawing a graph, it is possible to view the sub graphs of connected nodes as clusters of

topics. A generic summary would then be formed by selecting pertinent sentences from

each sub graph for best coverage. Another aspect of the formed graphs is the number of

edges for each node. The larger the number of edges for a node, the more central the node

is and hence the more important is its associated text. When having more than one

document represented in the graph, inter-document and inner documents relations may be

viewable, too. The TextRank algorithm presented in [79] provides an example

implementation for a graph-based technique in the field of Natural Language Processing.

PageRank [80] is another example of a graph-based algorithm. The work of [81] and [82]

applied graph-based techniques in their summarization systems.

37

2.3.7 LSA Methods

Latent Semantic Analysis (LSA) is a technique for capturing hidden relationships between

documents and text fragments on the basis of their contextual use. It was introduced in the

early 1990s in the work of [83] and has since been used in many NLP applications

including documents clustering [84] and classification [85]. It was also used in several

summarization systems as in [86] and [87]. In the LSA-based system described in [88], the

interrelationship among terms and a set of documents are analyzed and captured to aid in

forming summaries and compressing sentences. Anaphora resolution is also employed in

another LSA-based summarizer [87] to revise the incorrect references before compressing

the sentences.

Originally, LSA was introduced as a measure to overcome the words synonymy problem

in documents and queries representations. It was found to be useful at reducing the

problem of words synonymy through a better representation of descriptive features.

However, due to not capturing discriminative features [89], it may not be best suitable for

handling diversity and redundancy in summarization tasks especially for short documents.

2.3.8 Task-specific Approaches

In addition to the above mentioned summarization techniques, it is possible to classify

summarization into other classes from other perspectives according to the generated output

type (complete sentences, headlines, videos, graphs, etc.), targeted language (one

language, cross-lingual or multi-lingual), documents types (text, speech, video, etc.),

number of documents (single vs. multi document summarization) or whether summaries

are for specific application with specific supplied parameters (query, thresholds, etc.).

These other types of summarization methods may involve some of the methods described

38

above or combine them with others. Below is an overview on different aspects of some of

these types of summarizers.

Headlines: In [90], a system was built to generate headlines by applying a hybrid model

merging a unigram language model for scoring sentences with a Bayesian classifier on

features such as cue words and length. It parses all the sentences in the sources documents

and aims to extract the most salient Noun Phrase (NP) using the hybrid model as the

representative headline. In [91], the summarizer constructed summaries in a form similar

to the news headlines by aggregating and trimming sentences containing topic terms. A

similar approach was implemented in [24] and then extended in [92] by combining topic

terms with sentences compressions. In [93], extractives summaries are formed through the

detection of key topic terms within the text phrases.

Question Answering (QA): Some summarizers have been designed for tasks requiring

answers to specific given questions. In most cases, query-based summarizers can be

adapted to handle QA, too. In [94], a summarizer is proposed which applies a multi-stage

question decomposition into simpler ones as a first step. The decomposition involves

syntactic and semantic interpretations of the question which are passed to a summarizer to

produce a summary for each simplified form of the question. Finally, a textual entailment

system is applied to rank the summaries and choose the best as a representative for the

complex question.

Graphs/Video/Speech: Many types of data can be modelled as graphs such as social

networks and network traffics with attributes associated to each node and relationships

defined for linking nodes. Most of the existing graph summarization systems use simple

statistical methods for interpreting and summarizing graphs as illustrated in [95] and [96].

Some other summarizers attempt to detect frequent patterns to interpret the graphs and

eventually produce summaries as in [97]. Other summarizers have also been proposed to

39

summarize video as in the work of [78] in which a custom MMR algorithm is applied. For

speech summarization, systems relied on Automatic Speech Recognition techniques for

converting speech to text and then applying any text summarization approach desired.

Speech summarization is naturally a more difficult task than text summarization since the

text-speech conversion is almost always prone to errors. In addition, the conversion may

not always include custom language markers such as commas, punctuations and questions

marks making the preprocessing stage in most summarization system even more difficult.

A study and analysis on these issues has been covered in [98], [99] and [100].

Language Dependency: Some summarization systems are designed to work with only

one language and have the input documents and the summaries generated in the same

language. These types of summarizers are common in the literature. Other summarizers

are multilingual. They cover more than one language but the summaries generated are

always of the same language as the input documents. Statistical and Machine Learning

approaches are mostly followed for multi-lingual summarization. The SUMMARIST

system [11] is an example of a multi lingual summarizer. Some other systems are cross

lingual accepting input documents of language and producing summaries in another.

These types of summarizers usually involve aspects from the Machine Translation

domain. An example for an implementation of a cross lingual system is illustrated in

[101].

Ill-formed Input: Informal spoken and written texts are not always similar in style and

format to formal texts used and processed by many summarization systems. Documents

such as emails, mobile phone text messages and transcribed speech are not always

complete or grammatically correct. Some summarization systems have attempted to focus

on this problem by transforming ill-formed texts into a more concise and formal format.

Information retrieval metrics and syntax checking and transformation techniques are

40

among the approaches used for tackling this problem. An example for a summarization

system that makes assumptions to deal with ill-formed input is presented in [100].

2.4 Examples of Automatic Summarizers

I present here some of the most common commercial and academic summarization

systems and give a brief description about each. I also highlight the targeted application

for each of these systems and the languages they can handle. Table 2.1 presents a

summary of the main public automatic summarizers and highlights their features.

MEAD Multi document multi
lingual

Downloadable from
http://www.clsp.jhu.edu/ws2001/groups/asmd/

NewsInEssence Online news
summarization version of
MEAD – English only

Online version
http://www.newsinessence.com/

Newsblaster Multi source multi lingual Online version
http://newsblaster.cs.columbia.edu/

Condensr Multi source – English
Only- Restaurants
Reviews Summarization
and Sentiment Analysis

Online Version
http://www.condensr.com

Open Text
Summarizer

Multi document – Multi
lingual

Downloadable from
http://libots.sourceforge.net/

Copernic’s
Summarizer

Multi document – Multi
lingual – Commercial

Trial version available at
http://www.copernic.com/en/products/summarizer/index.html

Intellexor’s
Summarizer

Multi document – Multi
lingual – Commercial

Trial version available at
http://summarizer.intellexer.com/

Essential Summarizer Multi document – Multi
lingual – Commercial

Trial version available at
https://essential-mining.com/es/produits.jsp?ui.lang=en

SSSearch Multi document – Multi
lingual – Commercial

Trial version available at
http://www.kryltech.com/summarizer.htm

Microsoft Word Auto
Summarize

Multi lingual – single
document summarizer

Available as a function in the Word application

Centrifuser Domain and genre-
specific multi document
summarizer

Available from
http://www1.cs.columbia.edu/nlp/tools.cgi

QCS Query, Cluster and
Summarize
Multi-document

Online demo with limited access
http://stiefel.cs.umd.edu:8080/qcs/index.html

Table 2.1: Some of the public summarization systems available on the web and in
common applications

http://www.clsp.jhu.edu/ws2001/groups/asmd/
http://www.newsinessence.com/
http://newsblaster.cs.columbia.edu/
http://www.condensr.com
http://libots.sourceforge.net/
http://www.copernic.com/en/products/summarizer/index.html
http://summarizer.intellexer.com/
http://www.kryltech.com/summarizer.htm
http://www1.cs.columbia.edu/nlp/tools.cgi
http://stiefel.cs.umd.edu:8080/qcs/index.html

41

2.4.1 MEAD

MEAD [102] is a multi document extractive summarizer that scores sentences according

to a linear combination of features including centroid, position and first sentence overlap.

These scores are then refined to consider cross-sentence dependencies, chronological order

and user supplied parameters. Initially, documents are segmented into clusters with a

distinctive theme covering each cluster. Then, all input documents are represented with

TFIDF vectors. Other features are also factored in at subsequent stages to help assign a

score to each sentence. The overall score Si of a sentence i is computed as the weighted

sum of the considered features as follows:

Si = w1 * Ci + w2 * Fi + w3 * Li 2.1

Where Ci is the similarity scores between sentence i and the cluster theme it belongs to, Fi

is similarity score between i and the first sentence in the document it belongs to and Li is

the position score for sentence i. w1, w2 and w3 are the weights assigned to each feature.

After initially computing Si, the sentence i is further re scored to take into account the

redundancy in the summary. Because all documents are modelled as BOW, the

summarizer is multi lingual and domain independent. Further details about the summarizer

and its implementation can be found in [102], [103] and [104]. It should be noted here

though at least two of its features give higher weight to sentences at the beginning of

document. This makes the summarizer most suitable for news articles where authors tend

to include most important sentences at the beginning.

2.4.2 Newsblaster

Newsblaster is a multi-source multi lingual summarization system [105]. It has an online

demo which helps users finds the news they are most interested in. It crawls the web to

42

read news articles from different sources, clusters and categorizes these articles and

provides an update for each cluster. It uses different types of summarizers on the collected

articles clusters depending on the detected articles types. For example, single-event

articles are summarized by integrating machine learning and statistical techniques to

identify similar sentences across the processed articles [106]. It also uses a cut and paste

method for extracting important phrases from sentences and adding them to the summary

[105].

2.4.3 QCS

Given a query, the Query, Cluster and Summarize (QCS) system [107] separates the

retrieved documents into topic clusters and creates a summary for each cluster. LSA is

used for documents retrieval, spherical k-means for clustering and a HMM-based module

for extractive summarization. The system has an online demo with limited access to only

the DUC collection dataset and MEDLINE documents.

2.4.4 MASC

MASC [108] is a multi-document summarizer that generates Multiple Alternative

Sentences Compressions (MASC), instead of unaltered source sentences, as candidate

summary components. It uses weighted features of the candidates to select candidates and

construct summaries. MASC differs from MEAD and many other summarizers in that

multiple variants of a single source sentence are available to the sentence selector to

choose for inclusion in the summary. The system for this summarizer was built on top of

two other variants which used different techniques for compressing sentences. One is

called HMM Hedge [32] which uses a noisy channel model with language models of

newspaper stories and headlines to generate the most probable compression for a source

43

sentence. The second is called Trimmer [24] and uses syntactic rules to compress

sentences. The summarizer is mono lingual and can only be applied to one language,

English, due to the syntactic rules it applies and the language-dependent models built for

compressing sentences.

2.4.5 Condensr

This system provides extractive multi-document summaries and sentiment analysis [109].

It leverages the documents structure along with cue words and phrases and contextual

information to build an HMM-based model that also aids with summarization. It is

designed to primarily handle reviews and has an online demo for summarizing restaurants

reviews and viewing the reviewers’ sentiments.

2.4.6 Open Text Summarizer

 The Open Text Summarizer is an open-source tool that analyzes texts in various

languages and tries to present the most important parts of the text and present them in a

summary. It works by first removing stop words from the text and stemming all terms.

Then, a weight is assigned to each word based on its frequency and sentences with highest

weighted terms are chosen for the summary. It has a downloadable version in addition to

an online one. In addition, it ships with several Linux distributions such as Ubuntu and

Fedora.

2.4.7 Commercial Summarizers

Copernic’s summarization software is multi lingual and available commercially on the

company’s website. It claims to use statistical and linguistic algorithms to provide

extracts-based summaries. Intellexor’s Summarizer is another commercial application. It

44

claims to create theme-oriented, structure-oriented and concept-oriented summaries.

Microsoft’s Auto Summarize feature in its common Word application provides a multi-

lingual single document summarization. The Essential Summarizer provided by Mining

Essential is a cross-lingual multi-document summarizer. It covers 20 languages and is able

to provide translated summaries in a language different from the input documents

language. The summaries provided by the system have sentences with varying degrees of

font size to illustrate the importance of its sentences. Sentences with bigger font size are

more essential and important than others with smaller font sizes. Subject Search

Summarizer (SSSearch) is yet another multi-lingual and multi-document commercial

summarizer.

2.5 Limitations of Current Approaches

Many of the summarization systems developed in previous work and mentioned above

primarily rely on the words present in the documents text. Unless a background repository

is being used, the system is always limited to the words explicitly mentioned within the

provided text. In BOW-based systems where training takes place, other limitations appear.

One limitation is ignoring the words that appear in the testing documents but not in the

training documents. Due to the design of such systems, they simply lack the ability to

analyze such words. In some cases, these words appear in abundance in the training set,

but very infrequently in the testing documents. This also gives a similar effect and the

system treats these words as unimportant.

Another limitation in the BOW approaches is the lack of detection for the implicit

relationships between words in a document, or the training set. Without the ability to find

the similarity and relatedness between terms such as “Petroleum” and “Oil”, the systems

would treat these terms as two separate unrelated entities and this may affect the judgment

45

of the their importance in a document. The ability to detect such implicit relationships

between terms within a document requires an external knowledge and an analysis module

to learn the relationships between the different terms. BOW systems also are affected by a

similar limitation in the detection of concepts. For example, with the appearance of

phrases such as “oil extraction”, “oil production”, “petroleum production” and “oil

exploitation” within a document, the system should be able to tell that these phrases refer

to one single concept. The relatedness between detected concepts is not explored in BOW

systems. Entities such as “Hiroshima”, “Nagasaki” and “Atomic Bombing” should be

found to be related if all appeared within a document or a set of documents.

In Bayesian-based summarizers such as the one developed by [22], probabilistic measures

are applied to link words within a document with each other. This however, still does not

make use of new information outside what’s already available in the training and testing

documents. Trained and semi-supervised systems such as [110] and [111] employ the co-

occurrence and correlation of information within the training documents and those in the

test data. Again, no new information outside what is already available in the test

documents is utilized.

Different Latent Semantic Analysis (LSA) [112] models were employed in previous

systems. With LSA, large corpora were analyzed to extract the main concepts using

Singular Value Decomposition (SVD). The extracted concepts were used to help embed

new features in the summarization system. The new features were then used in addition to

those extracted from the test documents as in the work of [113]. It was found in earlier

work that LSA helped in various applications such as Text Classification [114] and

Summarization [88] especially when the training data is scarce. However, it was noted in

subsequent work [115] that the use of the virtual concepts introduced by LSA can degrade

46

the performance of the system it is employed in. The repositories I employ in the work of

this thesis contain real concepts which have been chosen and defined by humans.

As described in the previous sections, when human beings summarize a document they

usually read the text first, understand it and then attempt to write a summary. In essence,

these processes require at least some basic level of background knowledge by the reader.

At the very least, the human would have to understand the Natural Language that the text

is written in. This should allow the reader to understand the words of the documents

according to the text they are placed in. In this thesis, an attempt is made to bridge the gap

of machines understanding by providing a system with knowledge repositories constructed

by humans and containing real human concepts. The usage of knowledge repositories

which have reasonably wide coverage should allow the system to be applied to documents

from a wide range of areas that other summarizers can not be effectively applied to. The

framework implemented and described in this thesis is generally unsupervised and does

not require training once the required features from the knowledge repositories are

constructed and built, giving it an edge over other supervised systems that require training.

Most of the summarization systems described in the previous sections are extractive. They

select sentences for the summaries from only what exists in the input documents or

possibly a single compressed version of them. In essence, this leads to inefficiencies when

dealing with summary sentences redundancy, diversity and coverage. This is especially

evident when noting that no compression tool that produces only a single compressed

version of sentences can provide the best sentence for every context. When adding an

extracted sentence to a summary, the redundant information in the sentence that already

exists in the summary should aid with the sentence compression decision. In this thesis, I

adopt a Sentence Simplification Module (SSM) that produces multiple compressed

47

versions of each candidate sentence. Before adding a sentence to the summary, only the

best and least redundant version of a relevant and important sentence is added.

2.6 Text Summaries Evaluation

When designing and updating a summarization system, it is necessary to have a tool or

method to track the performance of the system and the changes being made. For

summarization, there are two main types of evaluations: Intrinsic and Extrinsic. Intrinsic

evaluations are used for evaluating the quality of summaries. They may help in answering

questions about a summary such as its coherence, grammar and whether it suggests

incorrect information deductions from the original text, or redundant information within

the summary itself. Extrinsic evaluation on the other hand helps in answering whether a

summary meets the purpose it is generated for. For instance, it can help determine whether

a summary is a good replacement of the original documents and conveys the most

important information within it.

2.6.1 Intrinsic Evaluations

Intrinsic evaluations base their judgments on the output of the summaries. Human intrinsic

evaluations measure the clarity, cohesion and informativeness of a summary [116].

Automatic intrinsic evaluations compare systems summaries with other reference

summaries generated by humans. Among the main intrinsic tools used are

Precision/Recall, BLEU, ROUGE and Pyramid. The Pyramid requires manual annotation

of systems summaries and reference summaries before they can be automatically

compared. Precision/Recall, BLEU and ROUGE on the other hand are fully automated

and only require reference summaries.

48

Precision, Recall and F-Measure are among the simplest evaluation approaches available

that measure the relevance of a summary by the relevance of the sentences it contains.

Precision (P) is the number of sentences appearing in both the system summary and the

reference summary divided by the number of sentences in system summary. Recall (R) is

the number of sentences occurring in both system and reference summaries divided by the

number of sentences in the reference summary. F-Score is a composite combining both P

and R [12]. The F-Score can be computed with the following formula:

RP

PR
F





2

2)1(




2.2

Where β is a weighting variable that is adjustable to affect precision and recall.

The Precision/Recall measure is not without its limitations. Suppose that two persons were

asked to choose the top two most important sentences from a document to represent as a

summary. It is possible that the human judges could choose two different sentences that

carry the same meanings. I can name these summaries A and B. If one of the two human

summaries, say A, was used as a reference summary, a system summary producing

sentences that exist in summary A and not B would rank highest. If another system

produced a summary containing sentences from summary B, the first system would still

rank higher.

Bilingual Language Evaluation Understudy (BLEU) [117] is an n-gram precision based

system originally developed for machine translation. It works by finding the number of n-

grams in the system summary that matches those in a reference summary. BLEU is a

precision-based evaluation giving higher scores to system summaries with content that

appear the most in reference summaries. Because of this, it rewards systems that rarely

49

include incorrect sentences in their summaries. On the other hand, it does not penalize

systems that do not include the right sentences in their summaries.

As a response to address the limitations of the BLEU system mentioned earlier, the Recall

Oriented Understudy for Gisting Evaluation (ROUGE) was proposed in 2003 [118] at the

Information Science Institute. It is roughly based on BLEU but focuses on recall instead.

Also, it measures words overlaps in sequences and was found to correlate better with

human evaluations than many other systems.

Several variants of ROUGE have been proposed [119]:

 ROUGE-N: counts contiguos n-gram. N ranges from 1 to 4.

 ROUGE-L: Longest Common Subsequence (LCS) based metric

 ROUGE-W: Weighted LCS favouring sequential LCS

 ROUGE-S: uses skip-bigram: words pairs in sentence order, ignoring gaps

 ROUGE-SU: uses skip-bigram and unigram.

In the Documents Understanding Conference (DUC) and Text Analysis Conference

(TAC), ROUGE-SU and ROUGE-2 have been the standard metrics for summaries

evaluation. With ROUGE-SU, sentences such as “The truck was bought by the company”

and “The company bought the truck” are found to be a match since the order of the terms

is not relevant as long as they are within the same sentence. With ROUGE-S, they would

not be a match.

In contrast to ROUGE and BLEU, the Pyramid method [120] requires humans marking

and grouping items within summaries. It attempts to address the issue that summaries

generated by summarization systems may include information which are related to the

topic but not necessarily included in the reference summary. Every reference summary is

first annotated with Semantic Content Units (SCU) which are facts or important events at

the clause level. The SCUs are then given weight based on their occurrence frequencies

50

within all the reference summaries and are organized in a Pyramid based on their weights.

SCUs appearing near the top of the pyramid are of higher weights and appear more

frequently in the reference summaries than SCUs near the bottom. The SCUs that appear

in all the reference summaries will be in the top of the pyramid while those appearing in

single reference summaries are in the bottom of the pyramid.

The advantage of using the Pyramid method is that, unlike n-gram based methods, it is

based on the semantic content of the summaries. However, due to it being labour and time

intensive, it is not being used frequently with many systems especially when the

summarization system is in a continuous update stage incurring many changes at different

stages in time.

For evaluating multi-lingual summaries, a framework that relies on similarity measures

was suggested in [121] to evaluate English and Chinese summaries. The framework is

capable of evaluating single, multi-document, abstractive and extractive summaries. As for

speech summarization, custom measures such as the Summary Accuracy in [122] were

proposed. Other measures such as precision, recall and ROUGE were also used in other

systems for speech summarization.

2.6.2 Extrinsic Evaluations

Extrinsic evaluations [123] help show how well a summarization system performed in a

specific task. They can help measure the relevancy of a summary to a topic or indicate a

category for a document. When choosing and implementing a specific task, it is important

that the task is clear enough for any person to attempt and answer with high level of

confidence. If a task is not clear enough and persons can not agree on the answer, it is not

possible to use the task and its implementations to evaluate systems summaries. Question

answering, Information Retrieval and relevance judgment are examples of tasks that can

51

be used to test systems and evaluate their performance. An example for this is what was

performed in the TIPSTER SUMMAC Text Summarization Evaluation [4] in which 16

systems participated. One of the main goals of the evaluation was to judge the usefulness

and relevancy of the information presented in the participants summaries.

2.7 Conclusion

The purpose of this chapter is to give an overview on Text Summarization and a review of

previous work in the field and how they relate to what is provided in this thesis. Sections

2.1 and 2.2 provided some basic notions on Text Summarization and Automatic Text

Summarization. Related work and State of the Art summarizers were given in section 2.3.

Section 2.4 illustrated examples of online and public commercial and academic

summarizers. Then, I presented the limitations of current approaches in section 2.5 . In

section 2.6, I described how evaluation is performed in the literature for different

summarization tasks.

Due to the interdisciplinary nature of the task of summarization, several disciplines are

involved including Philosophy, Psychology and Logic. Special emphasis was given in this

chapter on Artificial Intelligence and NLP-related methods and summarizers. While the

methods and techniques described in the related work section are not exhaustive, they still

provide the main themes of the NLP-based summarizers used in the literature and the main

limitations of the current approaches. Among the main limitations mentioned is the

dependency on methods that solely rely on the explicitly mentioned terms within the

training and test documents. In my work, I use external repositories containing human

knowledge to aid with the summarization task and help infer the hidden relationships

between the different concepts in a document. Before using the repositories, it is necessary

to define what features will be used from the repository, how to extract and build these

52

features, and then how they can be used in the summarization task at hand. In the next

chapter I give an overview on these processes and how they are applied with the two

repositories I employ, namely WordNet and Wikipedia.

53

Chapter 3

Features Generation and Selection

In the previous chapter, different methodologies have been discussed and their limitations

have been highlighted. In this chapter, I describe how the developed methods in this thesis

select and generate features from external knowledge repositories which address the

mentioned limitations.

3.1 Overview

Feature Generation is the process of building and constructing new features from those

available in a given text [124]. Generating features can be especially useful when the

supplied information with text documents is limited or reasoning is required. The methods

used in this thesis utilize external repositories to aid in generating and selecting features

from text. The generated and extracted features can be in different forms such as Named

Entities (NE), Time Expressions (TE), Part-of-Speech (POS) tags and Concepts. In a

preprocessing step, these features are specified, prepared and built in what I call the

Features Generator (FG). During the analysis of text documents, the FG is used to

augment or replace the extracted bags of words. After assigning a weight to each feature,

filtering takes place to determine the most influential parts to be applied to the application

at hand, whether it is Text Summarization, Word Sense Disambiguation or Text

Classification.

To illustrate the need for features generation and construction, take the example of video

recording where a frame is captured by a camera typically every few milliseconds. Each

frame is represented by a features vector for a single view and can not alone create a

video. Collectively at the macro-level, all frames can form a higher and richer view in the

54

form of a video when combined. The case with features extraction and construction for

text processing is very similar. I use external knowledge repositories to construct unique

and rich text representative features vectors that when combined in a specific task at the

macro level can lead to better representation and performance of the system.

An overview of the FG and its role in Automatic Summarization is shown in Figure 3.1. It

can be noted that the figure is split into two segments, namely A and B. Segment A shows

the processes being performed and applied on the information repository at hand.

Depending on the repository type and the algorithms applied to extract features, the

processes are usually performed once offline and the results are stored for subsequent use,

and are called Generated Features. Processes in segment A do not require an interaction

with testing documents or training data. In contrast, segment B modules are fed with the

Test documents to be summarized and produce the output summary. If the system relies on

training documents, they are also fed to the parser. The Generated Features from segment

A may be used to aid in parsing the documents in some systems depending on the methods

employed and the algorithms applied. This optional data flow is represented with the

dotted arrow line in Figure 3.1. The generated features are, however, part of the inputs

required for the analyzer and are given weights and filtered within that module as will be

described in the next two chapters.

55

Figure 3.1: Overview of the Features Generator and its role in Summarization

3.2 The Need for a Suitable Repository

One of the main goals for using external repositories and generating new features is to be

able to apply some reasoning on a text document. Reasoning, after all, about the different

concepts in a natural language is a common human task. As described in the previous

chapter, researchers have been working for decades to supply machines with similar

capability. In my thesis, an attempt is made in a similar direction. I use external

repositories to generate features that enable machines to apply reasoning by measuring

semantic distance between different human concepts.

Semantic Distance is a generic measure used to define how close or distant two units of

text are in terms of their meanings [125]. The units of text can be words, groups of words,

sentences or paragraphs. The text units may sometimes be referred to as concepts. As an

example for two units which are close in their meanings are Apple and Watermelon. They

are both fruits containing seeds and edible. However, the word Apple in a sentence such as

“Apple released the latest Mac last June” carries a different meaning since it refers to the

company Apple and the not the fruit. Thus, it can be concluded that a term meaning varies

56

based on the context it is placed in. The same can be said about semantic distance between

different units of text.

It is therefore possible to outline a set of rules that should be met in the repositories

utilized for FG. First of all, the repository should contain Text Units (TU) or Concepts

defined by humans. Each TU or concept should have a corresponding meaning understood

by humans when placed in a specific context. Secondly, each TU should have its different

meanings clearly defined and distinguished from the rest based on the context it appears

in. As shown in the previous example, the word Apple may refer to the company or the

fruit. Third, it should be possible to induce the semantic distance between the different TU

and their different meanings. For example, it should be possible to quantify the relation

between the fruits Apple and Watermelon and say they are more related than Apple and the

animal Lion.

The above-described rules do not have to be directly mentioned or explicitly existent

within the repository. As long as a method exists to adapt or induce the missing

information, the repository may still be suitable for the tasks at hand. After choosing the

right repository, a mapping algorithm is applied within the parser and/or analyzer to match

the extracted TUs and Concepts to the test documents at hand.

Several repositories exist which meet the mentioned requirements. Some of them are

domain-specific while others are more generic. Some were prepared by human experts in

different fields (closed repositories) while others were the result of a joint effort by the

web community (open repositories). Among the common closed repositories is WordNet

which has been used to enrich text documents for different types of applications including

classification, summarization and categorization. Another example for one of these

repositories is the general-purpose Ontological Semantic (OntoSem) [126] repository. It

was built mainly by human acquirers using interactive tools. The ACM Computing

57

Classification System (CCS) [127] ontology is another example of a closed ontology built

and maintained by experts. It undergoes periodic updates and redesigns but always seems

to be out of date as a classification of computer science concepts. It has gone through six

revisions with the first version being published in 1964, and then it was revised in

subsequent versions in 1982, 1983, 1987, 1991 and the latest in 1998. The Medical

Subject Headings (MeSH) is yet another domain-specific ontology defining over 18,000

categories and is linked to scientific articles. A shortcoming shared by all closed

ontologies is the costly task, in time, labour and other resources, of designing and building

it at first. After being built, the ontology would need to be continuously maintained and

updated to reflect the addition and evolution of concepts. CYC [128] for example, which

has been under continuous development and maintenance by experts for almost two

decades, still suffers from incompleteness and incomprehensiveness. Its aim is to contain

all common sense knowledge which an average adult person should already know, but it is

not intended to cover people’s general information needs. It has been estimated by its

author that it would take 350 man-years of effort to complete the CYC project [129]. It has

a smaller open-source version called OpenCYC4.

The open ontologies on the other hand which are usually created and maintained by the

web community, have the advantage of being more up to date. Wikipedia is an example of

such large-scale knowledge repositories. It has been developed and maintained by the web

community and has considerably good accuracy surpassing some of the experts-made

ontologies [130]. The Open Directory Project (ODP) and Wiktionary are other open

ontologies. While the breadth of the open ontologies exceeds that of the closed ones in

most cases, their format and structure are not as easy to handle. This is due to them being

4 http://opencyc.org/

58

developed from the start to be browsed by web surfers and without the intent of being used

in NLP applications.

With the different types of available ontologies, the NLP community always had to deal

with several issues. First, it had to choose the most suitable ontology for the task at hand

depending on the scope and the domain of the ontology and the targeted application.

Second, an understanding of how the concepts within the ontologies are defined, what they

mean or represent and how they are used by humans is important. For those concepts

which overlap in their meanings with others or share the lexicons, it may be important to

differentiate between them or define a degree of relevancy among the concepts. Third, it is

necessary to decide how to map the concepts or entries existing within the chosen

ontologies to text documents. Optimally, the degree of relevancy would be declared during

the mapping process.

In my work, the methodologies that have been developed rely on two repositories: the first

is the hierarchically-structured repository that was created by linguistic experts and is rich

in its explicitly defined lexical relations: WordNet. The second is the open-World

knowledge ontology Wikipedia. In the next section, I give an overview on each repository

and highlight how the semantic distance is being computed with the features extracted

from each. Also, I describe how the mentioned issues are being addressed by my use of

the chosen repositories.

It should be noted that with WordNet, I use the terminology Semantic Similarity to

describe how close in meaning two TUs or concepts are while Semantic Relatedness is

being used with Wikipedia. Both are two types of Semantic Distance and may have been

used in the literature interchangeably in certain contexts [125]. However, the former is in

fact a subset of the later. To illustrate this, I give the example shown in Figure 3.2. Apples

http://opencyc.org/

59

and Oranges are similar while Apples and Seeds are related. On the other hand, Apples and

Lions are unrelated and not similar.

Figure 3.2: An Example showing that Relatedness is a subset of Similarity

3.3 Using a Hierarchically Structured Repository

WordNet is the product of the research project that was conducted at Princeton University

to create a model of a native speaker lexical knowledge and store it in a machine-readable

dictionary [131]. It contains open-class words of type nouns, verbs, adjectives and

adverbs. Other closed-class words of type pronouns, prepositions and conjunctions are

excluded. In the next subsections, I give an overview on WordNet first describing its main

aspects and structure. I follow by outlining how semantic similarity has been computed in

the literature using WordNet.

3.3.1 WordNet

Words in WordNet are organized in synonymous group sets called synsets and they form

the basic structure of WordNet. A single word may carry more than one meaning and each

meaning is given an entry in WordNet called a word sense. For example, the word plane

may refer to aircrafts with wings or the unbounded two dimensional shape in

Mathematics. A synset contains synonymous word senses to help describe a word. For

example, the former meaning of the word plane is represented with the synset {airplane,

aeroplane, plane}. Each synset may have a gloss describing the meaning of the word. For

60

example, the gloss for the synset {airplane, aeroplane, plane} is “an aircraft that has a

fixed wing and is powered by propellers or jets”. Many synsets come with associated

usage examples such as “the flight was delayed due to trouble with the airplane” for the

mentioned synset.

Senses in WordNet are ordered according to their usage frequencies with the most

common sense being in the top of a senses list. The usage frequency is determined based

on the number of times a sense is tagged as used in various semantic concordance texts5

[132]. If some senses are not tagged, they follow the tagged senses in their order. If all

senses of a word are not tagged, the appearance order is random. WordNet words are

usually represented in a specific format with each word tagged with its Part-of-Speech

(POS) and sense number. Four letters are used to represent the four available POS types in

WordNet: n for nouns, v for verbs, a for adjectives and r for adverbs. For example, the

first sense of the word plane is represented as plane#n#1.

Version 3.0 of WordNet contains 155,287 words and 117,659 synsets. The number of

Word-Sense pairs is 206,941. The majority of the words are nouns with a count of

117,798. The number of verbs is 11529, while adjectives and adverbs are 21,479 and

4,481 respectively.

Words senses and synsets are connected via a variety of relations. The relations

connecting words senses are called Semantic Relations while those connecting synsets are

Lexical Relations. For example, nouns have the following semantic relations:

 Hyponym/Hypernym (IS-A , HAS A)

 Meronym/Holonym (Member-of, Has-member)

 Meronym/Holonym (Part-of, Has-Part)

5 A semantic concordance corpus is a textual corpus and a lexicon so combined that every word in the text is
linked to its appropriate sense in the lexicon.

61

 Meronym/Holonym (Substance-of, Has-Substance)

In Figure 3.3, a fragment of WordNet hypernyms/hyponyms is shown. It can be noted that

{land, dry land} is the hypernym of {island}. In the same time, {island} is a hyponym of

{land, dry land}. For verbs, other relation types exist such as troponyms and its inverse

hypernyms. {travel, go} is a troponym of {fly} and {fly} is a hypernym of {travel, go}.

These relations form taxonomies with tree-like structure. All nouns and verbs synsets

belong to taxonomies. Some synsets belong to a single taxonomy while others belong to

more.

Figure 3.3: WordNet Hypernyms, Hyponyms and Troponyms

There also exists other lexical relations such as antonyms and derived-from. Lexical

relations are between word senses and not necessarily synsets. For example, the sense

dark#n#4 belongs to the synset {night#n#1 , nighttime#n#1 , dark#n#4}. The sense

night#n#1 has an antonym relation with day#n#4 while the sense dark#n#4 does not even

though night#n#1 and dark#n#4 both belong to the same synset.

3.3.2 Semantic Similarity

Several measures have been defined to quantify the Semantic Similarity between any two

senses. Some utilize only the taxonomies within WordNet and the relations defined

62

between its units while others are driven by data derived from different types of analysis

on external text corpora. Some others try to merge the two in their methods. In [133], the

authors define the distance between two concepts in an IS-A semantic network as the

length of the shortest Path connecting two nodes. The distance can then be used to find the

semantic similarity between any two synsets s1 and s2 by applying the formula:

),(

1
),(

21
21 ssdist

ssSimPath  3.1

For domain specific applications with highly constrained taxonomies, this Path-based

method produced acceptable results [134]. It is, however, not suitable when the links

density in a taxonomy is not uniform. In WordNet, different parts of the network hierarchy

have higher densities than others. For example, some nodes in the plant/flora segment of

WordNet may have several hundred child nodes. This great density of links within that

segment may suggest closer distances between its nodes [135]. Also, the Path method

does not utilize other relations that exist within WordNet such as antonyms and holonyms.

In [136], Resnik proposed a measure in an IS-A taxonomy utilizing Information Content

(IC) to compute the semantic similarity. IC is the information content of a synset S

calculated from some corpus and is computed as:

))(log()(SPSIC  3.2

where P(S) is the probability of S in the used corpus. In Resnik, the semantic similarity

between two concepts depends on the amount of information shared between the two.

Formally, this is computed with:

)(max),(
),(

21
21

CICssSim
ssSC

res 
 3.3

63

Where S(s1,s2) is the set of concepts that subsume both s1 and s2, and C is a concept

subsuming both s1 and s2. Jiang and Conrath in [47] pointed out that using both IC and the

taxonomy structure is superior to using either. Thus, they proposed the following formula:

),(2))()((),(212121 ssSimsICsICssSim resjcn  3.4

Lin in [48] extended Resnik’s measure by also utilizing the information theory and

produced a measure expressed by:

))()((
),(2

),(
21

21
21 sICsIC

ssSim
ssSim res

Lin 


 3.5

All of the methods mentioned above have one thing in common: they all utilize the IS-A

hierarchy within WordNet. Some use other external data such as IC, too.

In my work, the focus was on using Jiang and Conrath (JCn) when computing the

semantic similarity between any two concepts. This measure was found to correlate best

with human judgements when compared against the rest of the common semantic

similarity measures [137]. The feature generator described in the previous section

represents concepts or Text Units as vectors and each is labelled by its most distinguishing

words, or attributes. Mapping pieces of text to their corresponding concepts is the main

task that would result in the generated features. When using WordNet as the backend

repository, the concepts are viewed as the different words senses in WordNet.

Determining the right sense will depend on the context of the text and is described in more

details the next chapter.

The methodologies described in the previous section that rely on WordNet are not without

their limitations. This is in part due to the taxonomy structure of WordNet being limited.

For example, coverage for the relations between physical entities and abstract concepts is

not at the same depth level as desired. The semantic similarity between Nose and Smell for

64

instance is much less than that of Nose and Foot because Nose and Foot are both

hyponyms of Entity while Nose and Smell are hyponyms of Abstraction. In the next

section, I describe Wikipedia, the second repository I used, and how the Features

Generator interacts with it.

3.4 Using Open-World Knowledge

When humans summarize a document, they usually attempt to understand it first. This

requires an understanding of the language the document is written in. Also, it may require

that the summarizer has background knowledge about the concepts mentioned within the

document. When machines face a similar task, it is necessary to take the mentioned human

factors into account. Machines need to be supplied with background knowledge, and the

best suitable source for this is an encyclopaedia. This is supported by the breadth

hypothesis proposed by Lenat in [138] in which he says “to behave intelligently in

unexpected situations, an agent must be capable of falling back on increasingly general

knowledge”. However, the use of encyclopaedia presents yet another set of challenges.

First, using the textual data available in encyclopaedia requires natural language

understanding. In addition, common sense may also be required for understanding text

documents, especially for humans [3]. In an attempt to address part of the problem, Lenat

started the CYC project to create a repository of common sense knowledge of human

beings. The aim of the CYC project is to create a repository containing all common sense

knowledge an adult person would have. It is not its purpose to resolve people’s

information needs. As mentioned earlier, the author estimates that 350 man-years are

required to complete building the repository. A smaller version of the repository exists in

an open-source form and is called OpenCYC but it still suffers from the same limitations.

65

In this thesis, I attempt to use the largest encyclopaedia known to date [139], Wikipedia, in

the task of Automatic Documents Summarization.

3.4.1 Wikipedia

Wikipedia is known to be the largest available, fastest growing, and most recent

encyclopaedia. It is hosted and funded by the Wikimedia Foundation 6 , a non-profit

organization which hosts some other related projects such as Wikibooks and Wikinews. Its

articles, over 15 million, are written, revised, updated and maintained by over 153,000

volunteer editors and it spans over 240 languages. Its nearest competitor, the Britannica

Encyclopaedia, has been in development since the 1700s and has approximately 120

thousand articles7, which is orders of magnitude less than that of Wikipedia.

The articles in each language vary in quantity ranging from few pages to 3,289,927 pages

for the English version8. An article can be seen as the basic unit in Wikipedia describing a

single topic thoroughly while being constantly revised and updated causing its depth and

breadth to increase with time. The continuous updates and revisions to articles give

Wikipedia a unique adaptability feature allowing it to reflect the most recent major events

or concepts.

The issue of Wikipedia’s accuracy has captured the interest of Media and many

researchers. In a study [140] that conducted an experiment to compare some Wikipedia

articles against their Britannica counterparts by academics, it was found that subtle errors

exist in both such as omissions and misleading statements. However, the study concluded

that Wikipedia approaches the accuracy of Britannica. In [141], some chosen Wikipedia

articles were compared against their equivalents in the Medscape Drug Reference and

6 http://en.wikipedia.org/wiki/Wikimedia
7 http://en.wikipedia.org/wiki/Wikipedia:Size_comparisons
8

As of writing this on January 2011

http://en.wikipedia.org/wiki/Wikimedia
http://en.wikipedia.org/wiki/Wikipedia:Size_comparisons

66

found no factual errors. However, it was noted that Wikipedia found only 40% of the

addressed questions while their experts-made counterpart found 83% which hints that

Wikipedia has an omission problem. However, as mentioned in the more recent study in

[142], Wikipedia was still found to compare favourably against all other sources which

people would turn to if Wikipedia did not exist and the strengths it has outweigh its

weaknesses.

Figure 3.4: the growth rate over time of the English Wikipedia9

Each article in Wikipedia contains text describing the topic of the article along with links

(internal and external) to other relevant topics. The aim of the links is to provide the

readers with insight and additional information about other relevant topics. In addition to

the text describing the article, each article is uniquely labelled with a set of terms forming

a title. When two or more articles discuss a topic with a word carrying more than one

meaning, the title is usually augmented with a descriptive term to differentiate between the

two articles. For example, the term bar carries more than one meaning and each meaning

has an associated article with a unique title describing that meaning as in Bar

(establishment), Bar (unit), and Bar (music). Augmenting a title with keywords to

9 From http://en.wikipedia.org/wiki/History_of_Wikipedia

67

differentiate the different senses of a term is not always the case as evident for the topics

titled Tree, and Tree (data structure) where the former refers to the tree plant while the

later refers to the computer data structure. This can be viewed as an inconsistency within

Wikipedia caused by the participation of large number of editors carrying different

opinions.

Another aspect worth mentioning in Wikipedia is the disambiguation pages which have

been created for ambiguous terms carrying more than one meaning. The disambiguation

pages provide links to different articles each describing one meaning of the term. The title

Rice (disambiguation) for instance is the title of the disambiguation page for the term Rice

listing links to different articles providing different meanings for the word. There also

exist redirect links which simply provide alternative terms describing the same topics as

the one existing within Wikipedia. The purpose of forming the alternative names in the

redirect links is to highlight alternative names, abbreviations, shortcuts, alternative

spellings, or likely misspellings. For example, the article titled United Kingdom has the

redirect link UK pointing to it.

One more aspect in Wikipedia is the categories and their overlapping trees structure.

Every article is assigned to one or more categories which it belongs to. Every category

belongs to one or more parent categories and can contain subcategories. There is one top-

level category named Contents which only have subcategories but no parents. All other

categories are below this parent category. The whole structure of the articles and their

categories in Wikipedia can be viewed as a directed acyclic graph.

3.4.2 Semantic Relatedness

In Wikipedia, just like other encyclopaedias, articles exist describing a variety of topics.

Each article can be viewed as a concept and is attached to a body of text (the article

http://en.wikipedia.org/wiki/History_of_Wikipedia

68

content) describing the article’s main topic. The articles and their content are in the same

form as the documents to be summarized since they are all text. The use of a devised

semantic similarity measure allows for augmenting text documents with the features

extracted from Wikipedia and its large amount of world knowledge. In effect, this replaces

the need for understanding the actual content of text documents and allows bypassing the

difficulties highlighted above. Take the concept “Lion” as an example. One way to

describe it is by the definition “large gregarious predatory feline of Africa and India

having a tawny coat with a shaggy mane in the male” as given in WordNet. Another way

is to say that it is strongly related to “Big Cat”, “Scavenger”, “Felidae” and “Mammal”

and is less strongly related to “Tiger” and “Leopard”.

The goal of the Wikipedia Feature Generator is to enrich the representation of a text

document by augmenting it with features extracted from Wikipedia. The features include

the detected concepts and the relevancy between them within a document and others

within the same document set (in multi-document summarization tasks for example). Each

detected concept is represented with an attribute vector whose elements are all the other

concepts and the degree of relatedness between each and the main concept. In the vector

list, concepts with weak association or rather small relevancy degree are removed from the

list. To compute the relevancy degree between all concepts, I use the features extracted

from Wikipedia for the task including the articles titles, redirect links, articles content,

articles categories, and articles links. Figure 3.5 gives an overview of Features Generation

for a Wikipedia article titled “Mouse”. More details about the methods used and the

implementation details are presented in chapter 5.

69

Figure 3.5: an Example for Wikipedia Features Generation

It should be noted that filtering and preprocessing is first applied to the used Wikipedia

dump. Although there are 3.5 million content pages in the English version of Wikipedia,

they are not all with the same importance. Some of the articles are too short, while others

contain only statistical data and tables or dates. The developed filtering module applies a

set of rules to ensure that all concepts used in any task are attached with rich text contents.

3.5 Summary

Different methodologies and techniques have been mentioned in the previous chapter. The

methods proposed in this thesis rely on the use of external repositories containing human

knowledge. These repositories can not be used as is in automatic summarizers especially

when given the fact that the repositories data are to be processed by machines, not

humans. Hence, a process I call features extraction and generation has to be applied to the

used repositories. The generated features are meant to be in a format usable by the

automatic summarizers.

In this chapter I discussed the need for performing the features generation task, what

repositories are used and how the extracted features will help with computing the semantic

distance between concepts. Details of how the extracted features from WordNet are used

70

with the summarization framework I built is presented in the next chapter. In the following

chapter, I describe how the Wikipedia-assisted summarization framework was built, the

details of its features generations process and how the summarizer functions.

71

Chapter 4

Summarization Aided with WordNet

In the previous chapter, I highlighted the need for a suitable repository for machines to

better handle single or multi-documents summarization. In this chapter, I describe how

WordNet was used for this task and give more details about the implementations and

system design. I also report the evaluations that were performed on the system and the

results obtained.

4.1 Overview

Figure 4.1 illustrates the architecture of the system and the major tools used to complete

the summarization process. It can be noted a server/client model has been adopted during

the implementation of the system. The user makes a request that gets passed to the system

core. The request can be the documents to be summarized in addition to a query if desired.

The documents and the query are preprocessed first, then analyzed and synthesized before

the result, which is the summary, is generated. External tools have been used to aid in

several tasks during the preprocessing and analysis stages namely, The General

Architecture for Text Engineering (GATE) and the Pure Java WordNet Similarity Library

(PJWSL). Detailed explanation about summarization process and its stages is given in the

following sections. However, it maybe suitable to give a brief overview first on the major

external tools that were used during the implementation of the system.

72

Figure 4.1: Architecture of the WordNet-Aided Summarization system

GATE

GATE is an infrastructure popular in the NLP field and is used for the development and

deployment of components that process human languages. It was developed in 1996 at the

University of Sheffield. Among the main factors that contributed to its creation are

enabling the collaboration and reuse of components, comparing and evaluating them in

different tasks, and ensuring the robustness and efficiency of NLP-related systems [143].

It comes with a set of essential tools which are useful for the development of Natural

language systems. Such tools include a parser, tokenizer, gazetteer, POS tagger and NE

Recognizer. GATE is composed of primarily three subsystems [144]:

 Gate Database Manager (GDM) is a database for storing lexicons, corpora,

documents and text in general. It is a hub that all communication of other

components goes through.

 Gate Graphical Interface (GGI) is a tool used to view and access the services

provided by the GATE components. It can be used to create documents, which are

73

stored in GDM, view and edit them, and display the results of components

executions. Figure 4.2 shows an example GGI.

Figure 4.2: GATE Graphical Interface (GGI)

 Collection of REusable Objects for Language Engineering (CREOLE) is a set of

Language Engineering (LE) modules that performs the analysis work and

discovers information within any fed document. A CREOLE component can also

be a wrapper for a set of other modules such as parsers, tokenizers and POS

taggers.

GATE also comes with an Information Extraction component called ANNIE (A Nearly

New IE). It is designed to be flexible and usable in many different applications handling

different types of text documents for different purposes [145]. It consists of the following

modules: tokenizer, sentences splitter, POS tagger, gazetteer, finite state transducer,

orthomatcher, and coreference resolution. In my work, I use the following modules of

ANNIE in the preprocessing stage: tokenizer, sentences splitter and POS tagger. In

74

addition, GATE is used to help parse different types of documents with different formats.

Custom versions of GATE and ANNIE were created as java library classes and embedded

in my system.

PJWSL

The PJWSL library was developed by Ted Pedersen as a pure Java alternative to the

popular WordNet::Similarity [146] Perl library. It also contains an implementation of the

JCn [47] and Lin [48] semantic similarity measures in pure Java. To interact with

WordNet, access its contents and have access to JCn’s and Lin’s semantic similarity

measures, the PJWSL [147] library was integrated in my system in a pre-processing step.

The library was used to build two matrices containing the semantic similarity score

between all nouns and all verbs in WordNet by employing the JCn similarity measure.

The system described in this chapter advocates a trade-off methodology between

extractive and query-based summarization and is aided with an experts-made repository.

The former is due to the fact that the developed methodology uses a scoring function

which employs WordNet taxonomy to generate sentence-sentence semantic similarity as

well as a set of features to quantify the relevance of each sentence. This yields a summary

formed by the highest-ranked sentences. On the other hand, it is also query-based due to

the explicit accounting of the topic-sentence semantic similarity in the overall

methodology as detailed in the next sections.

My system assigns a score to each sentence in the source documents based on a set of

static and dynamic features. Static features include sentence’s locations and the number of

Named Entities (NEs) in each sentence. Dynamic features on the other hand are those that

change based on the document sets chosen. The score given for the similarity between a

75

sentence, and the rest of the sentences in the documents set is an example of a dynamic

feature employed in my system.

WordNet, the repository that aids the system, organizes nouns and verbs into hierarchies

of “IS-A” relations. While WordNet includes adjectives and adverbs, they are not

organized into “IS-A” hierarchies, and so similarity measures can not be directly applied.

In an attempt to expand the process of measuring the semantic similarity between

sentences, a novel approach is suggested and implemented to utilize adjectives and

adverbs by exploiting the inferred relationships from words attributes in WordNet. In

effect, adjectives and adverbs are eventually transformed to nouns/verbs and employed in

the semantic relatedness computing process.

4.2 System Stages

As mentioned in the previous chapter, there are three major stages involved in

summarization: Parsing and Preprocessing the source documents, Analyzing the

documents and their Features, and synthesizing the summaries. Figure 4.3 shows the

major stages and their subcomponents as implemented in my system. The summarizer

accepts as input: the documents to be summarized and optional parameters supplied by the

user. The parameters include: redundancy threshold, summary limit, weight given to

title/query, and the sentences similarity threshold. Each of these parameters is explained in

their corresponding modules in the processing and post-processing stages.

76

Figure 4.3: Stages of the WordNet-backed Summarizer

Figure 4.4 shows a UML class diagram10 illustrating the main classes in the implemented

summarization module. The classes DocumentSet, Document, Sentence, Word and

NamedEntity are self-explanatory and represent the document sets, documents, sentences,

words and detected Named Entities, respectively. GATEBroker is used to establish a

connection with GATE’s ANNIE resources which are employed by the classes

textProcessor and documentPreprocessor to help preprocess documents and tag them with

useful features for subsequent processing as will be described in the following sections.

The class WordNetBroker is used for managing a connection with WordNet and the

retrieval of relevant data as needed in the processing and post-processing stages. It is also

used in conjunction with the classes SentencesRanker and SimilarityMeasure to score

sentences based on the chosen similarity measure in the algorithm implemented.

10 This is a simplified class diagram and contains only the main segments of the total class

information. Much of the details have been omitted to focus on most important and relevant
features to this thesis.

77

Summarizer

+preprocess()
+getAllMentions()

documentPreprocessor

+getSimilarity()

-MeasureType
-Threshold
-weight

SentencesSimilarityMeasure

+getDocs()
+addDoc()
+removDoc()
+getSummary()

-Name
-Path
-headLine

DocumentSet

+getText()
+getTitle()
+getSummary()

-Name
-Path
-Title
-Text
+PreprocessedText
-docID
-HeadLines

Document

+getOrder()
+getScore()
+assignScore()

+Text
-Position
-Score

Sentence

+Text
+stem
+POS
-Freq

Word

+SentenceWeighter()

+similarityMeasureType
-betaThreshold
-simThreshold
-positionPerc
-positionScore

SentencesRanker

+getInstance()
+getSynsets()
+getRelations()

-path
WordNetBroker

+ConnectToGate()
+getNTags()
+getVTags()
+getAdjTags()
+getAdvTags()
+getInstance()

-GATEPath
-GATEPOSTags

GATEBroker

*

1

* 1

*

1

*
1

*1

+getType()

+Text
-type
-Matches

NamedEntity

* 1

1 1

*1

1

1

1

1

1 1

+process()

textProcessor

+getSimilarity()
+getIC()

+MeasureType
-ICData

WordsSimilarityMetric

Figure 4.4: Class diagram of the WordNet-based summarizer package

The following sections give an overview on the main subcomponents involved in each

stage and highlight the additions made to improve the system.

4.2.1 Preprocessing

The preprocessing stage involves cleaning the source documents, splitting, annotating and

tokenizing the sentences, and extracting the features. The preprocessing tasks are handled

by the classes documentPreprocessor and textProcessor and their associated models as

illustrated in Figure 4.5 and Figure 4.6.

Cleaning: First, the format of the document is detected and handled by the model

documentPreprocessr shown in Figure 4.5. Then, unnecessary information and tags are

removed from the source documents such as the HTML/XML mark-up tags, news

agencies names appearing at the beginning of documents and tables containing numbers.

Afterwards, key parts from the documents are extracted such as the publication dates, the

78

documents IDs, and the headlines/titles if exist in the documents. The document ID and

publication date along with the document name are used to identify each document during

the different processing stages.

Figure 4.5: Class Diagram of the documentPreprocessor model in the WordNet-based
Summarizer

+process()

textTagger

+process()
-cleanPuncs

cleaner

+process()
-stopWordsFilePath
stopWordsRemover

+process()

stemmer

+process()

sentencesSplitter

+process()
+getAllMentions()

textProcessor

+process()

CorefRes

Figure 4.6: Class diagram of the textProcessor model in the WordNet-based
summarizer

Tokenizer and Sentences Splitter: Sentences and word boundaries are then detected and

different features are extracted with the help of GATE from the source sentences and the

provided user query. The splitter uses a gazetteer of abbreviations to help distinguish

sentence-marking full stops from other kinds. The splitter is also enhanced with RegEx-

based rules that improve the execution time and robustness of the system. The system uses

custom version of GATE ANNIE for achieving sentences splitting in which it also tries to

79

resolve some of the scenarios not handled well with GATE ANNIE splitter such as not

allowing sentences to start with numbers.

POS and NE Tagger: tokenized words are annotated with POS tags which are used in

subsequent stages. Finding the Named Entities mentioned in text such as Locations,

Organizations and Persons is also performed at this stage. ANNIE is used for both POS

and NE tagging.

Stemming: While tokenizing the documents, a “stem” feature is applied to every token

with the word stem as its value. A Processing Resource (PR) in GATE is used to perform

the stemming by applying the Porter Stemmer Algorithm [148].

Coreference Resolution: As for co reference resolution, three GATE modules are used:

Orthomatcher, Pronominal Coreferencer, and Nominal Corerferencer. Orthomatcher uses

a lookup table of aliases that stores non-matching strings representing the same entity: e.g.

“Coca-Cola” and “Coke”. The Pronominal Coreferencer module performs anaphora

resolution using the JAPE grammar rules. For each pronoun, the coreference module

generates an annotation of type “Coreferences” containing two features: the antecedent

offset, and matches. During the preprocessing stage, each entity is replaced with its

longest alternative “match”, if it’s not found to be the longest. For example, the sentences:

 Barak Obama was born in Hawaii.

 Mr. Obama was elected to the Illinois Senate in 1996.

 He was re elected to the Illinois Senate again in 1998.

In the above three sentences, the longest alternative to “Mr. Obama” and “He” is “Barak

Obama”, and thus the sentences are rewritten as follows:

 Barak Obama was born in Hawaii.

 Barak Obama was elected to the Illinois Senate in 1996.

 Barak Obama was re elected to the Illinois Senate again in 1998.

80

Since the used modules were designed to be applied on single documents, cross-document

coreference resolution was not achievable. When dealing with multi-documents datasets,

the Coreference resolution module is applied to the documents individually in the pre-

processing stage before moving on to the following stages.

4.2.2 Analysis

After preprocessing the documents and queries, the processing stage begins scoring

sentences based on the computed/extracted set of features. I discuss the chosen features

first, and then I describe how the similarity between sentences and text fragments is

computed.

4.2.2.1 Summarization Features

Each sentence is given a score implying its significance in relation with the rest of the

sentences. The scores are the results of linear combination of the weights given to each

feature. The features taken into account during the Analysis stage as follows:

Sentences Location

The position of the sentences in the document can play a significant factor in finding the

sentences that are most related to the topic of the document [149]. Therefore, the position

of sentences was taken into account when computing a score for each sentence. A score of

1 is given to the first and last sentences in the document. The rest of the document

sentences were given equally 0.5.

Named Entities (NE)

In a study conducted in [150], it was found that 73-87% of all web queries contain Named

Entities. This finding demonstrates that a high percentage of all web queries recognizably

target entities. The system developed here is a query-based summarizer. Thus, it was

81

important to conduct an analysis on the NEs in the processed documents, and the queries.

The system uses ANNIE to recognize NEs (Locations, Organizations, and Persons) and relate

them with their references.

Title / Query

The evaluated similarity of each sentence on one hand, and title and/or query on the other

hand is taken into account when scoring sentences. All the preprocessing stages are

applied to both the query and title. If many documents are passed to the system at a time

and a generic “Topic” is provided for the fed documents, the “Topic” is treated just as if it

were a user’s query in the algorithm described next. Documents titles are usually

embedded at the beginning of the source document, and are extracted and identified at the

preprocessing stage.

4.2.2.2 Sentence-Sentence Similarity

I define here several Sentences Similarity measures implemented in the built

summarization framework. These measures are illustrated in the classes generalized by the

SentencesSimilarityMeasure model in Figure 4.7. The WordNetBroker class provides an

interface to WordNet and allow for retrieving its synsets and relations.

WordsSimilarityMetric gives access to the implementation of JCn’s and Lin’s words

similarity metrics. JCn’s was implemented as the default IC metric in the framework, with

an option to switch to Lin’s if needed. Figure 4.8 shows the class diagram for JCn’s and

Lin’s metrics. In the following subsections I give an overview on each of the implemented

sentences similarity measures.

82

Figure 4.7: Class diagram of the SentencesSimilarityMeasure model in the WordNet-
based summarizer

Figure 4.8: Class Diagram for JCn’s and Lin’s words similarity metrics

A- Sentences Semantic Similarity Measure (SemSimMeasure)

To compute the semantic similarity between any two sentences, this measure considers

only the explicitly mentioned nouns and verbs in each sentence. It works by computing the

semantic similarity between nouns from the first sentence with nouns from the second and

verbs from the first sentence with verbs from the second. The following formula is used

for finding the similarity:

83

erPairsCount

WordVWordVSimWordNWordNSim
SentSentSim ww)2,1()2,1(

)2,1(


 4.1

 Where:

 WordN1 and WordN2 are the nouns taken from sentence1 and sentence2

respectively.

 WordV1 and WordV2 are the verbs taken from sentence1 and sentence2

respectively.

 PairsCounter is the total number of word pairs chosen from the two sentences.

Following is an example illustrating this with two sentences: T1 and T2. The nouns from

the first sentence are compared with all the nouns from the second while verbs in the first

are compared with verbs from the second. For noun or verb from the first sentence, I

compare its similarity with all of the nouns/verbs in the second sentence and choose the

highest similarity score for each pair. In the given example, the noun hurricane gets its

highest similarity score with the term storm, while town is paired best with village. The

verb destroyed is paired with the only verb in the second sentence, ruined.

As for computing the similarity between words in Simw, two semantic metrics were

considered, namely Lin's [48] and JCn's [47] with the default being the latter.

B- Transforming Adjective/Adverbs to Nouns/Verbs (arTonv_SemSimMeasure)

In most of the implemented summarization systems that use WordNet-based semantic

similarity measures, the semantic similarity between sentences rely heavily on the

nouns/verbs existing in each sentence. This is mainly due to the way WordNet was

designed. In WordNet, IS-A relations are defined for only nouns and verbs. They also do

84

not cross part-of-speech boundaries. In other words, nouns can be semantically compared

with only nouns, and verbs with verbs. At first, a basic analysis was performed on

adjectives/adverbs by using descriptors and expanding adjectives/adverbs with their

synonyms. However, this approach can provide counterintuitive results for some sentences

as it lacks a deep analysis on adjectives/adverbs that might have corresponding

nouns/verbs in other similar sentences. The following sentences provide an example for

the mentioned problem, with key adjectives/adverbs in Italic style:

1. A careful examination of the warehouse dangerous tools occurred yesterday.

2. The warehouse rusty tools were examined yesterday.

3. The hazardousness of the tools in the warehouse was evaluated yesterday.

A basic analysis based on only synonyms-expansion which extracts nouns/verbs from

each sentence indicates that sentences 1 and 2 are more similar than sentences 1 and 3.

This is mainly due to the lack of analysis for the adjective “dangerous” (which is related

to “hazardousness”) and the adjective “rusty” in sentence 2. Intuitively, sentences 1 and 3

are more related and similar than sentences 1 and 2. To overcome this problem, a deeper

analysis has to be applied on the incurred adjectives and adverbs.

In an attempt to overcome the mentioned problem, the summarizer aims to extract implicit

knowledge from WordNet and utilize it to transform adjectives/adverbs to corresponding

nouns/verbs. This is achieved by taking advantage of the additional non-hierarchical

relations appearing in WordNet’s adjectives/adverbs synsets.

In WordNet 3, every synset is connected to other synsets via a number of relations. These

relations vary based on the type of the word. Hypernyms and hyponyms only exist for

nouns and verbs. The attempt made here is to stretch WordNet by utilizing its words

attributes for adjectives and adverbs and substitute their lack of hyponyms by transforming

them to their corresponding nouns or verbs. Pertainym relations, derivational links,

85

synonyms, and root adjectives are the attributes used for this purpose. Not all attributes are

defined for every adjective and adverb in WordNet. It is only necessary for some of them

to be found to get a corresponding noun/verb to the targeted adjective/adverb. The

function written for this task chooses the first encountered noun representing the adjective

(and verb if found for adverbs). For example, the adjective “American” has two senses in

WordNet and both have “America” as the noun referred to by the derivational links. The

adverb “definitely” has a pertainym relation with the adjectives “decided”,

“unquestionable” and “emphatic”. The two adjectives “unquestionable” and “emphatic”

are derivationally related to the nouns: “unquestionableness”, “unquestionability” and

“emphasis”. The pseudo code of the implemented function is shown in Figure 4.9 where

“word” is the passed adjective/adverb to the function.

After transforming adjectives/adverbs to their corresponding nouns/verbs using the above

described function, Formula 4.1 is used to compute the similarity between two sentences.

The process for computing the scores between sentences 1 and 2 is also illustrated in

Figure 4.10.

The effect of this is to get a score which takes into account every noun, verb, adjective,

and adverb in both sentences. Expression 4.1 is also used to determine the score attached

to the semantic similarity of the sentence to the query and the title, if they exist. For

example, in two sentences such as:

T1: The hazardousness of the tools in the warehouse was evaluated yesterday

T2: A careful examination of the warehouse dangerous tools occurred yesterday

86

Figure 4.9: Pseudo code of the implemented function for converting adv/adj to
nouns/verbs

Procedure getNV(word)

if (word  nounsList) OR (word  verbsList)
return word

rtn  GetDeriWord(word)
if (rtn is NOT empty){

return rtn
}

if still not found, get the word “valid forms” (i.e. shaved => shave, eaten =>eat)
(alternate spellings, conjugations, plural/singular forms, etc.)

ValidFormsN_V,ValidFormsAdv,ValidFormsAdj  getValidForms(word)

for each (VF  ValidFormsN_V){

if (VF  nounsList) OR (VF  verbsList)
return VF

}

for each (VF  ValidFormsAdj){

if (VF  adjsList)
Sims  getSimilarTo(VF) // using the “similar to” relation

for each (sim  Sims){
rtn  GetDeriWord(sim)

 if (rtn is NOT empty){
return rtn

}
}

Attrs  getAttr(VF) // using the “Attribute” relation
for each (atr  Attrs){
rtn  GetDeriWord(atr)

 if (rtn is NOT empty){
return rtn

}
}

}

}

for each (VF  ValidFormsAdv){

if (VF  advList)
Sims  getSimilarTo(VF) // using the “similar to” relation

for each (sim  Sims){
rtn  GetDeriWord(sim)

 if (rtn is NOT empty){
return rtn

 }
}

 Perts  getPert(VF) // using the “Pertainyms” relation
for each (Prt  Perts){
rtn  GetDeriWord(Prt)

 if (rtn is NOT empty){
return rtn

 }
}

Attrs  getAttr(VF) // using the “Attribute” relation
for each (atr  Attrs){
rtn  GetDeriWord(atr)

 if (rtn is NOT empty){
return rtn

 }
}

}
return word

}
Procedure GetDeriWord(word) {

Senses  Get_all_senses(word)

for each (sense  Senses){
deri  Get_derivation_link(sense)
if (deri is NOT empty){

return getFirstItem(deri)
}

}

87

Figure 4.10: Computing the similarity score between sentences 1 and 2 with the aid
of WordNet

The adjectives careful and dangerous are transformed to carefulness and danger,

respectively. When computing the similarity between T1 and T2, the following pairs are

considered:

(hazardousness, danger), (tools, tools), (warehouse, warehouse), (evaluated, occurred),

(yesterday,yesterday)

Where first term of each pair is taken from T1 while second term is taken from T2.

C- Expanding words with Synonyms (Syn_SimMeasure)

For this measure, the terms are expanded with their synonyms using WordNet first. This is

followed by a simple words-matching process that takes place between the tokens of each

pair of sentences. If a word in the first sentence is found to match a word (or its synonyms)

in the second, it is a hit. For example, the sentence “Harry has a grin” would be expanded

to “Harry grin smile”. The expanded sentence is then compared with the terms in the

second sentence and if there is a match, I have a hit. The average is taken by dividing the

total number of hits by the number of word-pairs compared between the two sentences.

88

Assume that there are two sentences A and B where the length of A is m while the length

of B is n. Each word in sentence A is accessed by i while words in sentence B are accessed

by j. This also means that the maximum value i would have is m while the maximum

value for j is n. For example, when referring to the second word in sentence B, I use B[2].

To show how to compute the similarity between A and B using this measure, I provide the

pseudo code of the implemented algorithm in Figure 4.11.

Figure 4.11: Pseudo code of the algorithm used for computing the similarity between
words based on the Syn_SimMeasure

For example, in two sentences such as:

T1: The student bought a book.

T2: The pupil purchased a book.

I have the terms pupil, purchased and book from the second sentence expanded as follows:

(student , pupil, educatee, scholar, scholarly person , bookman), (buy, purchase,

bribe, corrupt, grease one’s palm) , (book, volume, ledger, account book, book of

account, record, record book, script, playscript, rule book, Koran, Quran, Bible,

Christian Bible, Good Book Holy Scripture, Holy Writ, Word of God, Word)

Hits 0

MatchFunctionStart
ForEach A[i] in A
 ForEach B[j] in B
 If B[j] is not Matched and A[i] belongs to Syn(B[j])

Mark B[j] as a match for A[i]
Hits  Hits+1
Break

 EndIf
 EndForEach
EndForEach

MatchFunctionEnd

SimScore  Hits/(PairsCounter)

89

When the similarity between the two sentences is computed, the following pairs are

considered:

(Student,pupil), (bought, purchased), (book,book)

Where first term of each pair is taken from T1 while second term is taken from T2.

D- Replacing words with Antonyms (Ant_SimMeasure)

For this measure, I expand the words in the second sentence by replacing them with their

antonyms using WordNet’s relations. I then compare the original words in the first

sentence with the antonyms in the second. If there is a match, it is a hit. The average is

then taken by dividing the number of hits by the total number of word-pairs. In effect, this

measure is used to show how dissimilar or diverse two sentences are. Assuming that this

measure needs to be applied to two sentences A and B, I apply the pseudo code shown in

Figure 4.12. The definitions of the terms i, j, A[i] and B[j] in the figure are the same as

those given for the previous measure. The function Ant(X) generates a list of antonyms for

the word X.

Figure 4.12: Pseudo code of the algorithm used for applying the measure
Ant_SimMeasure on two Sentences A and B.

Hits 0

MatchFunctionStart
ForEach A[i] in A
 ForEach B[j] in B
 If B[j] is not Matched and A[i] belongs to Ant(B[j])

Mark B[j] as a match for A[i]
Hits  Hits+1
Break

 EndIf
 EndForEach
EndForEach

MatchFunctionEnd

SimScore  Hits/(PairsCounter)

90

Antonym word pairs carrying contraries meaning as in “soft-hard” and “large-small” can

implicitly carry different degrees of oppositions as in “so large” or “very soft”.

Contradictions on the other hand do not carry different degrees of oppositions as in the

pairs “left-right” or “empty-full”. In the built and implemented model, I try to capture all

types of antonyms regardless of the embedded differences in the antonym logical relations.

The results of applying the diversity metric on all types of antonym relations can lead to

the detection of sentences carrying different sentiments, different information, contraries

or contradictions as shown in the following examples.

Different sentiments:

The team is happy to be back.

The other team is sad for losing the match.

Different information

Iraq finally declared war and invaded Kuwait.

Peace treaty was announced between Kuwait and Iraq.

Contraries and contradictions:

The store was found to be empty when the police arrived.

The police reported that the store was full of counterfeit products.

For example, in two sentences such as:

T1:The team is happy for winning the match.

T2: The other team is sad for losing the match.

The antonyms generated for the terms in the second sentence are:

(Glad, joyful, good, happy, felicitous), (keep, win, find, regain, profit, hold on,

break even, acquire, gain)

91

When the diversity between the two sentences is computed, the following pairs are

considered:

(happy, sad) , (win, lose)

Where first term of each pair is taken from T1 while second term is taken from T2.

E- Replacing words with Antonyms and computing SemSimilarity (Ant_SemSimMeasure)

Just as was performed with the measure Ant_SimMeasure, I replace words in the second

sentence with their antonyms using the different synsets relations in WordNet. Instead of

performing simple words matching, I compute the semantic similarity between sentences

words using the JCn’s metric. Assuming that this measure needs to be applied on two

sentences A and B, I apply the pseudo code shown in Figure 4.13. The definitions of the

terms i, j, A[i] and B[j] in the figure are the same as those given for the above measure.

SemSim refers here to the semantic similarity between terms using the JCn metric.

Figure 4.13: Pseudo code of the algorithm used for applying the measure
Ant_SemSimMeasure on two Sentences A and B.

Again, as with Ant_SimMeasure, this measure is most suitable for computing the diversity

between sentences. For example, in two sentences such as:

T1: The new car is a delight to John.

T2: Leaving the car was a grief to John.

Hits 0

MatchFunctionStart
ForEach A[i] in A
 ForEach B[j] in B
 If B[j] is not Matched and SemSim(A[i], Ant(B[j]))>Threshold

Mark B[j] as a match for A[i]
Hits  Hits+1
Break

 EndIf
 EndForEach
EndForEach

MatchFunctionEnd

SimScore  Hits/(PairsCounter)

92

The antonyms generated for terms in the second sentence is

Joy

When the diversity between the two sentences is computed, the following pairs are

considered:

(delight, joy)

Where first term of each pair is taken from T1 while second term is taken from T2.

F- Edit Distance (EditDist_SimMeasure)

For this measure, I use the Levenshtein metric [151] to compute the edit distance between

every pair of sentences. The edit distance is defined as the minimum number of operations

required to transform one text to another using insertion, deletion or substitution

operations on single characters. Assuming that this measure needs to be applied on two

sentences A and B, I apply the pseudo code shown in Figure 4.14. The definitions of the

terms i, j, A[i] and B[j] in the figure are the same as those given for the above measure.

Figure 4.14: Pseudo code of the algorithm used for applying the measure
EditDist_SimMeasure on two Sentences A and B.

Hits 0

MatchFunctionStart
ForEach A[i] in A
 ForEach B[j] in B
 If B[j] is not Matched and LDSim(A[i], B[j])>Threshold
 Mark B[j] as a match for A[i]

Hits  Hits+1
 Break
 EndIf
 EndForEach
EndForEach

MatchFunctionEnd

SimScore  Hits/(PairsCounter)

93

To get the value of LDSim, I apply the following expression:

),(

),(
1),(

21

21
21 wwMaxLen

wwEditDist
wwLDSim  4.2

For example, LDSim(XYZ,WDT) would give a 0 while LDSim(XYZ,XDFM) results in

0.25. This measure helps in detecting the largest common sub sequences among sentences

and assigns weights based on their detection. In addition, it can help in weighing Named

Entities which are not necessarily detected by the external Named Entity recognizer used

in other parts of the summarization stage. For example, in two sentences such as:

T1: John lived in apartment3.

T2: John was found dead in apartment4.

The similarity between the two sentences is computed by considering the following pairs:

(John, John), (apartment3, apartment4), (lived, found)

Where first term of each pair is taken from T1 while second term is taken from T2.

G- Edit Distance with Synonyms Expansion (EditDistEx_SimMeasure)

Similar to EditDist_SimMeasure, this measure utilizes the Levenshtein metric for

computing the edit distance between sentences. However, for every sentences pair it

differs by expanding the words of the second sentence with their synonyms to provide a

semantic-based metric. When two words are compared, I expand the second word with its

synonyms and compute the edit distance between all words pairs including the synonyms.

Assuming that this measure needs to be applied on two sentences A and B, I apply the

pseudo code shown in Figure 4.15. The definitions of the terms i, j, A[i] and B[j] in the

figure are the same as those given for the above measure.

94

Figure 4.15: Pseudo code of the algorithm used for applying the measure
EditDistEx_SimMeasure on two Sentences A and B.

As in the previous variation, the syn() function refers to obtaining the synonyms for the

given word using WordNet. For example, in two sentences such as:

T1: John was discovered dead in apartment2

T2: John was found dead in a flat

An expansion of the terms in the second sentence takes place by finding their synonyms as

follows:

(find, happen, chance, bump, encounter, detect, observe, discover, gain, notice,

regain, determine, ascertain, feel, see, witness, receive, get, rule, recover,

retrieve), (dead, asleep, assassinated, bloodless, cold, d. o. a., deathlike, defunct,

doomed, executed, fallen, lifeless, murdered, nonviable, slain, extinct, barren,

non-living), (flat, apartment, plain, field, box, freight car, pneumatic tire,

pneumatic tyre, scenery, scene, housing, lodging, living accommodation)

The similarity between the two sentences is computed by considering the following pairs

after considering all synonyms:

 (John, John), (discovered, Syn(found)), (dead, dead), (apartment2, syn(flat))

Where first term of each pair is taken from T1 while second term is taken from T2.

Hits 0

MatchFunctionStart
ForEach A[i] in A
 ForEach B[j] in B
 If B[j] is not Matched and LCDSim(A[i], syn(B[j]))>Threshold
 Mark B[j] as a match for A[i]

Hits  Hits+1
 Break
 EndIf
 EndForEach
EndForEach

MatchFunctionEnd

SimScore  Hits/(PairsCounter)

95

4.2.2.3 Scoring the Sentences

Each sentence is given a score representing its importance. The score for each sentence,

(i), is simply the linear combination of the weights given for each feature. The highest

scoring sentences are selected as candidates to be part of the summary in the last stage.

The number of sentences displayed is controlled by the user according to the summary

limit threshold. The formula used for assigning a score to each sentence is:

)1(

)1((
Score(i)





NEN

sPsFsnQsSimsSim iiNEiii  4.3

Where:

 N = the total number of sentences

 n(si) = The number of sentences that have similarity score bigger than a pre-

defined threshold value

 P(s) = either 1 for sentences appearing at the top and end of the document, or 0.5

for the rest.

 Sim(si ,T) and Sim(si ,Q) are for the Similarity between the Title and the Query,

respectively, and the sentence si

 FNE (si) = the number of Named Entities contained in the sentence si

 NE: the number of Named Entities in the document.

The rationale behind the preceding is to allow the score assigned to the sentence i to be

very much dependent on the evaluation of the similarity of i to both the title and the query

using a combination of both entities. This output is weighted by n(si), which expresses, to

some extent, the frequency of the sentences in the document(s) that are similar to i up to

some threshold, as well as the number of Named Entities in the sentence and its position.

The positioning parameter is motivated by the observation that usually, the beginning and

end of documents contain more significant information regarding the context of the

96

underlying document(s) as authors attempt to provide concise overview at the beginning

and concluding remarks at the end. But, obviously this is very much context dependent.

The weighting parameter α is left open to the choice of the user depending on his/her prior

knowledge about the relevance of the title and/or query. In the absence of any further

evidence, the default value is 0.5, which is in agreement with the principle of indifference

in statistics.

4.2.2.4 Generating Summaries

After scoring the sentences, the synthesizer is fed with the highest scoring candidate

sentences in order to generate and produce the summary in the desired format. A basic

redundancy reduction module is implemented and is described along with the other

modules in the next few subsections.

Combining Sentences

Multi-document summaries are generated in a similar fashion to the single-document

summaries by computing sentences scores in each document separately and then choosing

the highest scoring sentences from all documents.

Redundancy Reduction

To reduce the redundancy between the highest scoring sentences, a redundancy threshold

is defined and can be passed by the user as a parameter. After adding the first highest

scoring sentence to the summary, only sentences that have a similarity score (with the

highest scoring sentence) less than the set threshold are added. The process is repeated

after adding any high scoring sentence to the summary. In effect, no sentences pair

included in the final summary has a similarity score greater than the redundancy threshold.

The pseudo code for this process is shown in Figure 4.16.

97

Figure 4.16: Psueduocode of the Basic Redundancy Reduction Algorithm in the
WordNet-based System

Ordering Sentences

A summary is generated by choosing the most important sentences in a document (or the

highest scoring) and arranging them in chronological order (in the same order they appear

in, in the original source documents) to ensure the readability of the generated summary.

4.3 Evaluation

To evaluate my system, I participated in the Update Summarization task of Text Analysis

Conference (TAC 2008). A maximum of two runs from each participant were accepted

and evaluated by the conference organizers. At the time, only the SemSimMeasure

measure was implemented and thus used by me to submit two separate runs. I report first

the results obtained with the submitted runs from the automatic evaluation performed by

NIST using ROUGE [119] and BE [152] evaluation metrics, and the manual

responsiveness evaluation measure.. Following that, I performed my own evaluation using

the same dataset to test the performance of the other developed measures that can aid in

computing the similarities between sentences.

Add highest-scoring sentence to SummarySentences
Remove added sentence from the highest scoring sentences pool

While words limit not reached and sentences list not exhausted
Find next highest scoring sentence with score >= zero
Foreach (Sent in SummarySentences){

If (similarity(Sent, foundSentence) >redundancy_limit){
 Remove foundSentence from highest-scoring sentences list

foundSentence = NULL
 break
}

}
If (foundSentence is NOT NULL){
If adding the sentence does not increase summary size beyond limit {

add the sentence
}

}
Else, remove the sentence from the list

Iterate through the rest of the sentences

98

4.3.1 Test Data and Metrics

For participating in the TAC 2008 update task, the SemSimMeasure measure was adopted

when computing the semantic similarity between words. Computing the similarity

between words was completed by using JCn’s metric. The provided test dataset comprised

48 topics. Each topic had a topic statement and 20 relevant documents which had been

divided equally into 2 sets: A and B. Documents in set A always chronologically precedes

the documents in set B. The provided test dataset was taken from the AQUAINT-2

collection of news articles11.

All of the submitted summaries were truncated to 100 words. NIST conducted manual

evaluation of summaries contents based on the Pyramid method. Four different NIST

assessors would create 100-word reference summaries for each document set that

addresses the information need expressed in the topic statement.

Each participant team was requested to submit up to 2 runs ranked by priority (1-2). My

team submitted two runs: one (run # 1) in which more weight was given to the topic

statement, and the other (run # 34) had more weight given to the headlines. In the scoring

formula, α was given a value of 0.75 for run 1, and 0.25 for run 34.

4.3.2 Results

In the update task of TAC 2008, 57 peer summaries were manually evaluated with the

Pyramid method, and 71 were evaluated using ROUGE and the Basic Elements evaluation

package [13].

Table 4.1 shows the average Recall, Precession and F-measure for the ROUGE-1,

ROUGE-2, and ROUGE-SU4 evaluations on the two submitted runs. It can be noted that

11 The AQUAINT-2 collection is distributed by the Linguistic Data Consortium (LDC) and comprises a
subset of the LCD English Gigaword Third Edition. It has approximately 907K text documents spanning the
period of 10-2004 to 03-2006. The documents are in English and come from different sources including New
York Times, the Associated Press and Xinhua News Agency.

99

in both runs, the system generally ranked higher in Recall than Precession. This suggests

that the system is better at finding relevant content than it is at removing irrelevant

content. Also, it can be noted that the run in which more weight was given to the topic

statement generally achieved better ROUGE scores than the other run with more weight

given to the headlines.

Run 1 Run 34

ROUGE Avg R Avg P Avg. F Avg R Avg P Avg F

1 0.34463 0.33866 0.34148 0.34022 0.33372 0.33680

2 0.08091 0.07933 0.08008 0.08080 0.07912 0.07991

SU4 0.11852 0.11634 0.11737 0.11706 0.11471 0.11583

Table 4.1: The ROUGE Scores obtained by my system in the two runs I submitted in
TAC08

Table 4.2 shows the automated evaluations average scores obtained by my submitted runs

(with their ranks) in comparison with the 71 peer summaries submitted by the rest of the

participants. The scores I obtained were above average for all runs.

Evaluation Run (1) Run (34) Best Worst

ROUGE2-R 0.08091 (25/71) 0.08080 (26/71) 0.10382 0.03343

ROUGESU4-R 0.11858 (23/71) 0.11713 (29/71) 0.13646 0.06517

BE 0.04964 (24/71) 0.04903 (28/71) 0.06462 0.01337

Table 4.2: The automated scores (and ranks) obtained by my system compared with
the rest in TAC08

The evaluation in TAC2008 included human judgments of linguistic quality. Table 4.3

shows the results and the rank of my system in respect with the rest in the manual

100

evaluation. The metrics shown in the table are: responsiveness which is how well the

summary addresses the user's information need; and linguistic quality. The linguistic

quality score is guided by consideration of the following factors:

1. Grammaticality

2. Non-redundancy

3. Referential clarity

4. Focus

5. Structure and Coherence

with the scores being between 1 (very poor) and 5 (very good). The results obtained for

the submitted runs were above average as shown in the table. This was expected since the

summarizer is extractive and no modifications were made to the sentences. Information

redundancy, diversity and coherence are the main factors affecting linguistic quality and

overall responsiveness. An attempt is made to address these factors in section 4.4.

Run (1) Run (34) Best Worst

Avg Linguistic Quality 2.719 (12/58) 2.76 (11/58) 3.073 1.312

Overall Responsiveness 2.427 (15/58) 2.385 (18/58) 2.667 1.198

Table 4.3: Manual Evaluation Results in TAC08

It is interesting to test the impact of using other sentences similarity measures in the built

summarization system and evaluate their performances. Ideally, it would be optimal to

repeat all of the evaluations performed by TAC08 organizers with different variations of

the system using different sentences similarity measures. However, it is a labour intensive

task to perform the manual evaluations they performed and is beyond my means.

Therefore, I use the ROUGE tool for this task which is widely accepted in the community

to provide acceptable evaluation results in comparison with human summaries evaluators.

101

It is also used by the TAC08 organizers and provides a good mean of reference against the

results I obtained from my participation.

After obtaining the official evaluation results from the TAC 08 organizers for the

submitted runs, I used the same dataset to evaluate other sentences similarity measures

using ROUGE with the same parameters as was used with Run1. Namely, I implemented

and evaluated the measures: SemSimMeasure, arTonvSemSimMeasure, Syn_SimMeasure,

EditDist_SimMeasure, and EditDistEx_SimMeasure which were all described in section

4.2.2.2. Because the measures involving the replacement of terms with their antonyms

reflect the dissimilarity and diversity between sentences, it was decided to implement

these measures for enhancing the overall diversity of sentences in the summary and

reducing redundancy as described and evaluated in section 4.4. The method I used for

participating in TAC08 was SemSimMeasure and it is chosen as the baseline during this

evaluation.

The results I obtained are illustrated in Table 4.4. It can be noted that

arTonv_SemSimMeasure gave the best performance for all ROUGE metrics with the

biggest increase over the baseline being for ROUGE1. The next best performing metric in

ROUGE1 was found to be EditDistEx_SimMeasure. This measure has boosted the

performance of the baseline by 2.9% and yielded better unigram matches between the

generated summaries and the reference summaries as can be noted from comparisons

shown in Figure 4.17. As for ROUGE2 and ROUGESU4, the next best performing

measure was found to be the baseline as demonstrated in Figure 4.18 and Figure 4.19.

102

Evaluation ROUGE1 ROUGE2 ROUGESU4

SemSimMeasure 0.34463 0.08091 0.11852

arTonv_SemSimMeasure 0.35801 0.08125 0.11979

Syn_SimMeasure 0.33823 0.07984 0.11487

EditDist_SimMeasure 0.34249 0.08011 0.11604

EditDistEx_SimMeasure 0.35357 0.08048 0.11828

Table 4.4: ROUGE evaluation results for the different sentences similarity measures

ROUGE1-R

0.325

0.33

0.335

0.34

0.345

0.35

0.355

0.36

SemSimMeasure arTonv_SemSimMeasure Syn_SimMeasure EditDist_SimMeasure EditDistEx_SimMeasure

Figure 4.17: ROUGE1 scores showing the performance for the different sentences
similarity measures in a column chart

ROUGE2-R

0.079

0.0795

0.08

0.0805

0.081

0.0815

SemSimMeasure arTonv_SemSimMeasure Syn_SimMeasure EditDist_SimMeasure EditDistEx_SimMeasure

Sc
or

e

Figure 4.18: ROUGE2 scores showing the performance for the different sentences
similarity measures

103

ROUGESU4-R

0.112

0.113

0.114

0.115

0.116

0.117

0.118

0.119

0.12

0.121

Sem Sim Measure arTonv_Sem Sim Measure Syn_Sim Measure EditDist_Sim Measure EditDistEx_Sim Measure

Sc
or

e

Figure 4.19: ROUGESU4 scores showing the performance for the different sentences
similarity measures

The obtained results in the shown column charts support the idea that introducing different

semantic-based measures can lead to performance improvement. For instance, the measure

Syn_SimMeasure successfully captures the similarity between the words “resolution” and

“settlement” in the two sentences: “The defendant reached a settlement with the plaintiff

by paying 20 million dollars” and “The defendant reached a resolution with the plaintiff

by paying 20 million dollars”. On the other hand, replacing one of the two words with

“agreement” would cause a failure in capturing the similarity between the words. Instead

of performing simply words matching, a more refined measure is used with

SemSimMeasure and arTonv_SemSimMeasure as they both utilize JCn’s metric when

computing the similarity between words. The obtained results of these two measures in the

column charts highlight this observation.

It was noted in the arTonv_SemSimMeasure that some adverbs are transformed to verbs,

while their corresponding words in other sentences are of type noun. Since the similarity

computation between words is performed only on the same POS due to the WordNet

limitations mentioned in the previous sections, the benefits gained from the

adjectives/adverbs transformation process is therefore dependent on the POS of the words

104

processed in different sentences. When computing the semantic distance between two

sentences, it would be best to devise a way for comparing every term from the first

sentence with every term in the second regardless of their POS. In part, this is reflected in

the performance of the EditDistEx_SimMeasure in ROUGE1 which obtained better results

than SemSimMeasure even though it implements simple words matching while the later

utilizes JCn’s metric but ignores adjectives/adverbs. In the next chapter, I propose a

Wikipedia-based semantic relatedness measure that takes into account every term from the

two compared sentences regardless of their POS.

When examining the summaries generated by the best performing summarizer, it can be

noted that the grammar of the sentences are acceptable. This is expected as the summarizer

is extractive. However, there seems to be an issue with the redundancy of some sentences

within some of the generated summaries. In an attempt to address this issue, I opted to

include a redundancy and diversity checking layer in the post-processing stage of the

summarizer. The next section provides more details about the theory behind this, the

implementation and evaluation results.

4.4 Enhancing Diversity and Reducing Redundancy

In this section, I argue that an effective summarization system should take into

consideration the following factors:

 Diversity: The summary should contain sentences which are as much diverse or

different from each other as possible. This should ensure that the summary would

contain the largest amount of diverse and important information.

 Redundancy: The summary should contain as few redundant sentences as

possible. This may have a similar effect to Diversity in some cases, but is

computed differently in my system as described in the next sections.

105

 Coverage: The summary should cover all the important and relevant points in the

original source document. In the built system, user queries are used to drive the

focus of the generated summaries and hence, the coverage is affected by what the

user chooses.

Different versions of the built summarizer were implemented with different changes made

mainly in the post-processing stages. The system variations were compared with each

other to test the effects of introducing new features to the system. The following sections

explain the different variations of the system and the main differences between them. To

show the effect of introducing each of the three factors: Redundancy, Diversity and

Coverage, I used the best run during the previous evaluation as the baseline, namely

arTonv_SemSimMeasure. The other variations of the summarizer add a

redundancy/diversity checking layer in the post processing stage. The layer utilizes the

previously defined sentences similarity measures that were described in section 4.2.2.2 for

this purpose. An evaluation performed at the end reports the difference performance

caused by the introduction of each measure.

4.4.1 The Baseline

The core of the baseline summarizer uses the same components developed in section 4.2.

Each sentence is given a score representing its importance based on the extracted features

as represented in Equation 4.2. No redundancy or diversity checking takes place with this

approach.

When computing the semantic similarity between two sentences (or a sentence and the

query/title), words of the same POS are compared with each other. In particular, the

system compares nouns from the first sentence with nouns from the second, and verbs

from the first with verbs from the second. If an adverb or an adjective is encountered, they

106

are converted to their corresponding nouns/verbs if possible with the help of WordNet

relations.

4.4.2 Redundancy-Syn

First, the scores of all sentences are computed as in the Baseline. Then, the document

terms are expanded with their synonyms using WordNet. After completing the processing

stage and forming a list of ranked candidate sentences to be added to the summary for the

first time, I add only the highest ranking sentence to the summary. Then, before adding

any of the next highest scoring sentences to the summary, I check the similarity between

the candidate sentence and the summary sentences using the Syn_SimMeasure metric

described in section 4.2.2.2. Only if the similarity scores are below a previously specified

threshold it is added to the summary. In effect, this additional process performs

redundancy checking to ensure that sentences added to the summary do not contain

redundant information to what is already in the summary.

4.4.3 Redundancy-Sim

After scoring all sentences in the processing stage using the baseline approach, I apply a

redundancy checking process using the previously described metric:

arTonv_SemSimMeasure. With this approach, the semantic similarity score is computed

between every two sentences nouns and verbs (nouns vs. nouns and verbs vs. verbs). For

computing the similarities between words, I adopt the semantic similarity measure

jcnSim [47] which was illustrated in Expression 3.4.

The redundancy checking is applied here in a post-processing stage in a similar fashion to

what is performed in the Redundancy-Syn approach. Only the top scoring sentence is

added to the summary first. Subsequently, Sentences are added to the summary only if the

107

similarity score between the candidate sentence and the summary sentences are below a

pre-determined threshold.

4.4.4 Diversity-Ant

As with the previous methods, all sentences are scored first using the baseline method.

The metric of the class Ant_SimMeasure described in section 4.2.2.2 is used for computing

the diversity of every candidate sentence against the sentences already in the summary.

After adding the top scoring sentence to the summary, only the candidate sentences with

diversity scores larger than a previously determined threshold are added to the summary.

The diversity scores are computed by applying expression 4.3 for each candidate sentence

against all the sentences that were already added to the summary.

4.4.5 Diversity-Sim

This approach is similar to Diversity-Ant but differs in using Ant_SemSimMeasure and

Expression 4.4 instead of Ant_SimMeasure and Expression 4.3.

4.4.6 Levenshtein Distance

The edit distance method that was described for the models EditDist_SimMeasure and

EditDistEx_SimMeasure are implemented to check the redundancy of sentences in the

post-processing stage.

4.4.7 Experiment

I implemented a summarizer with the above-mentioned variations. The setup of the system

is similar to the setup for my summarization system used to participate in TAC08 [43] and

described in section 4.2. After computing the semantic similarity score between any two

words, I compare that score with the predefined threshold. I set the semantic similarity

108

threshold to 0.7 which I found to be optimal in my previous experiments [153] for the

used dataset. To optimize the system’s running time, I had used a previously built matrix

containing the semantic similarity scores for all nouns extracted from WordNet. In all of

the system variations  was given the value of 0.75 to give more weight to the topic

statements of each data set than to the headlines. The topic of each dataset was used as the

user query.

4.4.8 Test Data and Evaluation Results

To evaluate the system, I ran the different system variations on the TAC08 datasets and

computed the ROUGE scores for each variation. For each run, three scores were

computed: ROUGE1, ROUGE2 and ROUGESU4. The ROUGE measure is widely used

for evaluating summaries in the NLP community. With it, the summary quality is

measured by counting the number of overlapping units (or word sequences) between a

predicted summary and the generated summary by the system.

A summary of the retrieved results is shown in Table 4.5 and comparisons between the

scores are shown in Figure 4.20, Figure 4.21, and Figure 4.22. Each row represents the

results of one run starting with the Baseline. Red-Syn refers to the run where the

redundancy between all sentences was computed after expanding their terms with their

synonyms. The rank of each sentence is affected by its redundancy score. For a high

ranking sentence A, right before it is added to the summary, if another sentence B already

exists in the summary and has a high redundancy score with sentence A, it is decided not

to add sentence A to the summary. This logic applies for the rest of the implemented

redundancy metrics. Red-Sim refers to Redundancy with Semantic Similarity computation.

As for Red-LevDist, it refers to Redundancy which takes into account the previously

109

described Levenshtein Distance, where Red-LevDist-Exp refers to its expanded version.

As for Div and Ant, they refer to Diversity and Antonyms respectively.

Evaluation ROUGE1 ROUGE2 ROUGESU4

Baseline 0.35801 0.08125 0.11979

Red-Syn 0.35840 0.08136 0.11991

Red-Sim 0.35956 0.08218 0.12038

Red-LevDist 0.35870 0.08176 0.11987

Red-LevDist-Exp 0.36022 0.08338 0.12075

Div-Ant 0.35788 0.08128 0.11982

Div-Sim 0.35876 0.08218 0.11990

Table 4.5: ROUGE Evaluation Results of the Different Variations of the WordNet-
based System

As shown in Table 4.5 and Figure 4.20, the obtained results suggest that introducing the

different metrics improved the overall performance of the system. The only exception is

for the run Div-Ant which gave an inferior performance when compared against the

Baseline in ROUGE1. By examining Figure 4.20, Figure 4.21 and Figure 4.22, one can

see that the run Red-LevDist-Exp gave the best performance. The next best run is Red-Sim

followed by Div-Sim which gave a comparable performance to the former in ROUGE2.

110

ROUGE1

0.3565

0.357

0.3575

0.358

0.3585

0.359

0.3595

0.36

0.3605

Baseline Red-Syn Red-Sim Red-LevDist Red-LevDist-
Exp

Div-Ant Div-Sim

Sc
or

e

Figure 4.20: ROUGE1 scores showing the effects of redundancy and diversity
checking module in WordNet-based summarizer

ROUGE2

0.08

0.0805

0.081

0.0815

0.082

0.0825

0.083

0.0835

0.084

Baseline Red-Syn Red-Sim Red-LevDist Red-LevDist-Exp Div-Ant Div-Sim

Sc
or

e

Figure 4.21: ROUGE2 scores showing the effects of redundancy and diversity
checking module in WordNet-based summarizer

ROUGESU4

0.1192

0.1194

0.1196

0.1198

0.12

0.1202

0.1204

0.1206

0.1208

0.121

Baseline Red-Syn Red-Sim Red-LevDist Red-LevDist-
Exp

Div-Ant Div-Sim

Sc
or

e

Figure 4.22: ROUGESU4 scores showing the effects of redundancy and diversity
checking module in WordNet-based summarizer

111

It can be noted from the obtained results that measures that employ JCn’s semantic

similarity exceed in performance their counterparts which simply check for words

overlaps and apply synonyms expansion. Also can be noted is the effect of introducing

Antonyms to the system in the runs labelled Div-Ant and Div-Sim. In the former, diversity

checking was enforced by strictly comparing whether the antonyms of the words in a

sentence match the words of another sentence. This comparison does not seem to be

always effective especially in cases when two words carry some degree of contrast

meaning but the antonyms of one do not yield a match for the other. On the other hand,

Div-Sim seems to be more flexible and captures strict antonyms in addition to those

showing some degree of contrast. An example for this is the words concealed and

expressed in the two sentences “The father concealed his illness from his family” and

“The father expressed his troubles to the doctor”. The two words are not antonyms in

WordNet but appear to have a high degree of contrast. Enforcing a diversity checking

measure allows for inclusion of new information and different sentiments in the summary.

In some cases, encountering auto antonyms may negatively affect how the diversity

detection module works. Take the word “overlook” as an example. Depending on the

context it is placed in, it can sometimes mean “to inspect” while in other instances mean

“fail to inspect”. Taking the antonym of the word without factoring in the context it is

placed in may lead to wrong conclusions. This issue is implicitly addressed in the

Wikipedia-based summarizer I describe in the following chapters. With Wikipedia, the

methods I rely on factor in indirectly the context of a term while computing the similarity

between sentences or text fragments as will be described in the following chapters.

To get a better idea on how the variations of the system, I examined sample summaries

generated by the different implemented methods. I start by a summary generated by the

baseline summarizer for document set D0801A taken from the TAC08 documents

112

collection. In Figure 4.23 I show the system summary in addition to several reference

summaries written by humans for the same document set.

Human Reference Summaries
(1) The European Airbus A380 flew its maiden test flight from France 10 years
after design development started. The A380 super-jumbo passenger jet surpasses
the Boeing 747 and breaks their monopoly. Airlines worldwide have placed orders
but airports may need modification to accommodate the weight and width of the
A380. U.S. airlines have not placed an order. Airbus has fallen behind in
production and a backlog of orders has developed. Airbus must sell at least 250
planes to break even financially. The A380 is overweight and modifications to
meet the weight requirements impacted the budget. Additional test flights are
planned.

(2) Emirate Airlines ordered the first passenger A380 five months before its
December 2000 launch. In January Federal Express ordered the first cargo A380.
Thirteen non-American airlines have placed 154 orders; China and Hong Kong have
options. Commercial deliveries begin first quarter 2006 to Singapore. A380s will
land at 25 airports worldwide, including New York, Los Angeles, San Francisco,
Miami, Chicago, Dulles, Memphis and Anchorage. In February 2001 Airbus's Hamburg
plant expanded. Toulouse production started in January 2002. In July 2003
Broughton, Wales got an Airbus plant. The first A380 arrived in January 2005,
taking its maiden flight April 27.

(3) The largest passenger airliner ever built, the Airbus 380(A380), took off on
its maiden four-hour flight on April 27, 2005 in France. The European company,
Airbus, is the newest competitor with the Boeing Company. The A380 is designed
to carry 555 passengers, but can be expanded to 800 seats. Airbus stresses the
plane's fuel efficiency. Its first test flight was successful. Orders for 149
aircraft from airlines and freight companies have been received. No US airline
has ordered the jet yet. First commercial deliveries to Singapore Airlines are
scheduled for 2006.

(4) In 1994 Airbus began engineering the A380, a superjumbo airliner larger than
Boeing's 747. Component production started in 2002 in Germany and France. A
Toulouse, France assembly line opened in 2004. Parts were pared down and new
materials introduced to keep the plane at target weight but sent the plane over
budget. The A380, carrying between 555 and 840 passengers, was unveiled in
January 2005 and test flown in April. Airports need to make design changes to
accommodate this overlarge plane that boards on two levels. The US objects to
government subsidies to Airbus and airport neighbors complain about noise.

System Summary
(1) The 787, which was launched a year ago, is scheduled to enter service in
2008. (2) European airplane maker Airbus "is likely to discuss before the end of
the year" a possible increase in production capacity of its new super-jumbo A380
aircraft, Airbus' production chief Gustav Humbert said in a magazine interview
released Tuesday. (3) The superjumbo Airbus A380, the world's largest commercial
airliner, took off Wednesday into cloudy skies over southwestern France for its
second test flight. (4) The Airbus flagship is due to enter service next year.
(5) If major airports are slow to support the new plane, airlines may hesitate
to buy.

Figure 4.23: Summary generated by the baseline for document set D0801A in the
TAC08 documents collection

As can be noted from the above summary, there appears to be some redundancy between

sentences 1 and 4 in the system summary. In an attempt to handle this redundancy, several

113

measures have been applied. With the redundancy and diversity checking measures

applied, the system checks the redundancy and diversity of the top candidate sentences

before adding them to the summary. With the first redundancy checking measure

implemented Red-Syn, the effect of this for document set D0801A is shown in Figure

4.24.

(1) The 787, which was launched a year ago, is scheduled to enter service in
2008. (2) European airplane maker Airbus "is likely to discuss before the end of
the year" a possible increase in production capacity of its new super-jumbo A380
aircraft, Airbus' production chief Gustav Humbert said in a magazine interview
released Tuesday. (3) The superjumbo Airbus A380, the world's largest commercial
airliner, took off Wednesday into cloudy skies over southwestern France for its
second test flight. (4) Airbus is hoping the 550-seat A380, the world's biggest
jet, will revolutionize air travel.

Figure 4.24: Summary generated with the redundancy checking measure that
expands words with synonyms and applies simple words matching for document set

D0801A

This measure is simple in the sense that it does not compute the semantic similarity

between compared words but only checks the lexical form of the different terms after

expanding them with their synonyms.

Another redundancy checking measure I applied is Red-Sim which computes the semantic

similarity between words when performing the checking. An example for a summary

generated after applying this measure is shown in Figure 4.25 where summary A

represents the generated summary before redundancy handling while summary B is

generated after checking for redundancy.

114

Reference Summaries
(1) Ice continues to melt at an alarming rate in both the Arctic and Antarctic.
Higher temperatures have shrunk the Arctic ice area 10% and its thickness 42% in
30 years. The permafrost is shrinking, endangering infrastructure. These changes
are threatening the culture and economy of the indigenous Artic population. Ice
shelves in the Antarctic are collapsing. The melting of the West Antarctic Ice
Sheet could raise ocean levels worldwide approximately 15 feet. Increased
tourism in the Antarctic is having an environmental impact. Researchers are
debating whether greenhouse gases or natural climate cycles are the biggest
cause of the melting.

(2) Collapse of coastal Antarctic ice shelves accelerated eight-fold the seaward
flow of inland glaciers, raising sea levels: Larsen A (1995), Wilkins (1998),
Larsen B (2002), Larsen C (this century). Currents undermine the Ross and Ronne
ice shelves, enabling ice flows from deep within the West Antarctic ice sheet.
Arctic permafrost thawed; glaciers and sea ice retreated. In 30 years the Arctic
ice cap's area shrank by 10%, its thickness by 42%, opening shorter maritime
routes when Arctic sea ice disappears in future summers. Siberian lakes
disappeared. Indigenous cultures and glacier tourism suffered. Bird migrations
shifted. Northern Hemisphere weather will worsen.

(3) In Antarctica and the Artic, ice melts are causing complex questions about
the impact of global warming. In Antarctica huge glaciers are thinning and ice
shelves are either disintegrating or retreating. These findings are possible
indications of global warming. Information gathered about Antarctica coincides
with a recent report on accelerating climate changes in the Arctic. A Chinese
scientist predicted that the Artic icecap would melt by 2080. The Arctic's
indigenous people (about 4 million) are fighting global warming because it will
be a threat to their societies, economies and culture.

(4) The thinning of glaciers and ice shelves, as well as the softening of the
permafrost, has accelerated greatly in recent years. While it is not certain
that the man-made greenhouse effect is entirely to blame, it is clear that man
must take steps now to address the problem. Global warming affects everything:
oil-platforms, the society of peoples who are indiginous to the polar regions,
polar animals, migratory birds, lakes (which are drying up as the permafrost
melts), and even tourism. As melting cold fresh water enters the salty sea, it
will affect ocean currents and therefore world climate.

System Summaries
A
(1) The collapse of a huge ice shelf in Antarctica in 2002 has no precedent in
the past 11,000 years, according to a study to be published on Thursday that
points the finger at global warming. (2) Zhang Zhanhai, director of Polar
Research Institute of China, said that the melting rate of Arctic ice is
alarming. (3) Zhang said, the cold front that affects China mainly comes from
Siberia, but the source of the cold front is Arctic. (4) The melting of Arctic
ice will not only be a sign of threat, it is also a good news, Zhang said.

B
(1) The collapse of a huge ice shelf in Antarctica in 2002 has no precedent in
the past 11,000 years, according to a study to be published on Thursday that
points the finger at global warming. (2) Zhang Zhanhai, director of Polar
Research Institute of China, said that the melting rate of Arctic ice is
alarming. (3) Zhang said, the cold front that affects China mainly comes from
Siberia, but the source of the cold front is Arctic. (4) They reported in the
journal Science last September that a half-dozen glaciers there are now thinning
and accelerating.

Figure 4.25: Summaries generated for document set D0802A before (A) and after
(B) applying the redundancy checking measure that computes the semantic similarity

between words

115

When examining sentences 2 and 4 of summary A, it can be noted that terms such as

threat and alarming are not synonyms and would not be handled by the measure applying

only synonyms expansion. When considering the semantic similarity between the terms in

the redundancy checking stage, I obtain the summary B which has sentence 4 from

summary A replaced by another sentence..

The edit distance measures I applied are especially useful when encountering terms that do

not exist in WordNet or recognized as a NE. It is also useful for detecting acronyms and

new words in specific domains. When encountering terms such as house3 and house1, it is

able to correlate between the two. An example reflecting the effect of introducing this

measure is presented in Figure 4.26 where summary A is generated before applying the

redundancy checking while summary B is generated after.

Reference Summaries
1
After 18 months the International Astronomical Union has still not determined
the criteria for planethood. Pluto's eventual status will also define new space
objects. However the data from the Pluto space probe in 2015 will come too late
to settle this argument. Recent discovery of two additional moons around Pluto
complicate the issue. The diameter of Pluto and UB313 is about 1,380 and 1,800
miles respectively and both have methane ice on their surfaces. Proposed
definitions based on size or gravitational pull either include or exclude Pluto
and UB313. The scientific deadlock at the Union will not be resolved quickly.

2
A committee of the International Astronomical Union (IAU) is considering the
question of planethood of Pluto and 2003 UB313 (Xena). Both might be called
"minor planets" or could be considered KBOs. NASA's Hubble Space telescope
strengthened Pluto's claim to planethood by finding its second and perhaps third
moon. On Jan 20, 2006 NASA launched its New Horizon spacecraft to explore Pluto
and the Kuiper Belt which it is scheduled to reach in July 2015. Meanwhile
German astronomers determined that the diameter of 2003 UB313 is 1800 miles
compared to Pluto's 1380. The IAU committee continues to deliberate.

3
Debate continues over what constitutes a planet. Some astronomers say a planet
should have a diameter greater than 2,000 kilometers (both Pluto and UB313 do).
Another suggestion is roundness: this would include these two and likely several
others yet unknown. Another possible definition is that a planet must
gravitationally dominate its surroundings, which would exclude Pluto and UB313.
Pluto became more interesting when the Hubble telescope discoverd that Pluto had
not just one but three moons. Scientific interest in Pluto and Kuiper Belt
objects led to the New Horizons spacecraft mission: a nine year trip to Pluto
and beyond.

116

4
Scientists debate redefining "planet" or retiring the term. KBO 2003 UB313,
discovered by Michael E. Brown, was confirmed by surface heat emanations to be
30 percent larger than Pluto. Both have surface methane ice. If Pluto is a
planet, 2003 UB313 should be too. The Hubble Space Telescope showed two more
small moons orbiting Pluto, 30-100 miles in diameter. Pluto and its large moon
Charon, close physically and in size, may be a binary planet system orbiting a
center mass between them. At least four KBOs have known moons. Pluto would be
the first KBO to have multiple satellites.

System Summaries
A
(1) Pluto, the smallest and most distant planet of the solar system, may have
three moons instead of just one, according to images NASA said were taken by the
orbiting Hubble Space Telescope. (2) The discovery of 2003 ub313 has intensified
a debate over the definition of a planet, which has swirled about Pluto since
the late 1990s. (3) The jury is still out on the impact additional moons will
have on the ongoing debate over whether Pluto is actually a planet. (4) The
debate intensified this summer with discovery of a Kuiper Belt object, UB313,
that is larger than Pluto.

B
(1) Pluto, the smallest and most distant planet of the solar system, may have
three moons instead of just one, according to images NASA said were taken by the
orbiting Hubble Space Telescope. (2) The discovery of 2003 ub313 has intensified
a debate over the definition of a planet, which has swirled about Pluto since
the late 1990s. (3) The jury is still out on the impact additional moons will
have on the ongoing debate over whether Pluto is actually a planet. (4)
Possessing a moon is a not a criteria of planethood since Mercury and Venus are
moonless planets.

Figure 4.26: Summaries generated for document set D0811B before and after
applying the edit-distance-based redundancy checking measure

It can be noted that the original summary A contains the term UB313 in sentences 2 and 4.

The term does not exist in WordNet and is not recognized as a NE and is thus handled by

Red-Lev-Dist measure. This results in generating summary B in which sentence 4 is

replaced with another sentence. Note that the term planethood in the new sentence does

not exist in WordNet too and would be handled by Red-Lev-Dist if a redundancy is

detected. Another example showing the effectiveness of the edit distance measure is when

encountering misspellings or typos in text. An example illustrating this is shown in Figure

4.27.

Reference Summaries
1
The directors of Fannie met on Dec. 19 to decide Raines' fate, but the meeting
concluded without any announcement of a decision. On Dec. 21 Raines resigned
with his departure structured as an early retirement. The directors' decision in
favor of Raines' retirement rather than dismissal would reap him $8.7 million in
deferred payments and an annual pension of more than $1 million. On Jan. 21,
2005, however, Fannie announced that Raines would be denied the cash bonus that
he would have received for 2004.

117

2
By October 12, 2004 the U.S. Attorney's Office in Washington was investigating
Fannie Mae CEO Franklin Raines, who denied wrongdoing, after a caustic September
22 Office of Federal Housing Enterprise Oversight report vetted by the SEC,
charged that Fannie Mae violated Financial Accounting Standard 133 and FAS-91,
inflating Fannie Mae's reported net earnings by $9 billion, so that Raines and
other top executives received maximum bonuses of $27.1 million vice no bonuses,
and got higher, allegedly manipulated, prices for their own sales of Fannie Mae
stock. The Justice Department told Fannie Mae to preserve documents related to
OFHEO's report.

3
Raines testified to Congress that he expected to be held accountable if his
interpretation of the accounting rules was not accepted. The chief accountant of
the SEC ruled that Fannie Mae violated accounting standards overstating its
profits by 38 percent since January 2001. Raines is seeking a vote of confidence
from the directors as he struggles to survive criminal investigation. Raines
retired under pressure from federal regulators. Raines will be denied bonuses
for 2004 as Fannie Mae eliminated bonuses for top executives.

4
The SEC ruled that Fannie Mae had overstated its profits by 38 per cent in the
years 2001-2004. The OFHEO held Raines responsible the company's emphasisis on
earnings over accuracy and demanded significant changes in senior management. On
21 December, Raines took early retirement with millions of dollars in benefits
and stock, plus an annual pension of over one million dollars. The company still
faced a Justice Department criminal investigation, an SEC civil investigation,
further OFHEO examination of its accounting, and several class-action lawsuits.
As of 21 January, Fannie Mae was withholding millions in bonuses for top
executives.

System Summaries
A
(1) Mortgage giant Fannie Mae is now the target of a formal inquiry by the
Securities and Exchange Commission over its accounting practices. (2) The
company remains under investigaton by the SEC, the Justice Department and OFHEO,
which is examining additional accounting issues. (3) Chairman and chief
executive Franklin Raines and chief financial officer Timothy Howard said Fannie
Mae did nothing wrong in its accounting and insisted that the regulators'
allegations represent an arguable interpretation of complex rules. (4) In its
filing with the SEC, the company said it would cooperate fully with the probe.

B
(1) Mortgage giant Fannie Mae is now the target of a formal inquiry by the
Securities and Exchange Commission over its accounting practices. (2) The
company remains under investigaton by the SEC, the Justice Department and OFHEO,
which is examining additional accounting issues. (3) Chairman and chief
executive Franklin Raines and chief financial officer Timothy Howard said Fannie
Mae did nothing wrong in its accounting and insisted that the regulators'
allegations represent an arguable interpretation of complex rules. (4) For
Raines and Howard, the stakes go beyond keeping their jobs.

Figure 4.27: Summaries generated for document set D0810B before and after
applying the expanded edit-distance redundancy checking measure

In the given example above, I have the word OFHO which is not handled by WordNet or

recognized as a NE. I also have the misspelled word investigaton appearing in sentence 2

of summary A. In sentence 4, the word probe is one of the synonyms of investigation.

118

After enforcing the expanded edit-distance redundancy checking measure, I have the

summary B generated.

Diversity checking was another aspect that was implemented in the system. For checking

the diversity between sentences, antonyms contained within each sentence are considered.

An example for this is shown in Figure 4.28.

Reference Summaries
1
Congressional hearings and an undercover probe investigating illegal steroid use
in Major League Baseball and other sports continues. Baseball Commissioner Bud
Selig admitted the League's policy is not strong enough and has proposed much
stricter penalties. They include a 50-game suspension for the first offense and
a lifetime ban for the third one. These penalties would apply to minor-league
players next year. Selig also requested amphetamines be added to the banned
substances. Congress has threatened to implement a testing system unless the
League strengthened its policy. The Players Association has not responded to the
proposed penalties.

2
Under pressure from Congress, Major League Baseball's players association
toughened drug testing rules and penalties again for the 2006 season.
Suspensions will be increased to 50 games for a first offense, 100 for a second,
and a lifetime ban for the third. Congress launched an undercover probe into
illegal steroid use in Major League Baseball. News of the probe surprised MLB
officials. Rafael Palmeiro was suspended 10 days for a positive steroid test. He
denied intentionally taking the drug. Other players with 10-day steroid test
suspensions were Felix Heredia and Carlos Almanzar. New doping allegations
surfaced about Barry Bonds.

3
Congress has launched an undercover probe into illegal steroid use in major
league baseball. To highlight the problem, baseball heavy hitters Mark McGuire,
Raphael Palmeiro and Sammy Sosa testified before the responsible congressional
committee. In a letter to the players' union, Selig proposes a 50-game
suspension for first offenders instead of the current 10-game suspension. A
second offense would result in a 100-day suspension and a third, a lifetime ban.
The players' union has concerns since several steroid agents stay in the blood
stream for a long period. A one-time user who swore off could show positive in
future testing.

4
Congressional investigators chided Major League Baseball leaders for being
uncooperative regarding steroid use and urged star players to take public
responsibility for their actions. Congress also launched an undercover probe.
Players proposed strengthening the collective bargaining steroid proposal. Bud
Selig proposed a 50-game suspension for first offenders, 100-game suspension for
second, and lifetime ban for third. 2003 tests showed 104 steroid users. Eleven
players were suspended for steroids in 2005. Felix Heredia, Carlos Almanzar and
Rafael Palmeiro tested positive. BALCO's Victor Conte and James Valente, Bonds
trainer Greg Anderson, and chemist Patrick Arnold were charged or sentenced
concerning steroid distribution.

119

System Summaries
A
(1) The Government Reform Committee was hearing from six subpoenaed players,
including Mark McGwire and Sammy Sosa, along with commissioner Bud Selig and
other baseball executives, medical experts and the parents of two amateur
athletes who committed suicide after taking steroids. (2) Baseball's revised
steroid testing program has suspended four players in two months. (3) In a
letter to the players' union, baseball commissioner Bud Selig has admitted that
the newly revised steroid policy is not enough. (4) Last week, Selig wouldn't
commit to investigating. (5) The 40-year-old Palmeiro is hitting. (6) Steroids
users cheat the game.

B
(1) The U.S. government has stepped in to investigate steroid use among
professional baseball players use because it felt the sport wasn't doing enough
to enforce its own policies. (2) Baseball's revised steroid testing program has
suspended four players in two months. (3) In a letter to the players' union,
baseball commissioner Bud Selig has admitted that the newly revised steroid
policy is not enough. (4) The Government Reform Committee was hearing from six
subpoenaed players, including Mark McGwire and Sammy Sosa, along with
commissioner Bud Selig and other baseball executives, medical experts and the
parents of two amateur athletes who committed suicide after taking steroids.

Figure 4.28: Summaries generated for document set D0835B before and after
applying the diversity checking measure

In the given example above, it can be noted that summary A contains the term Amateur in

sentence 1. The term Amateur has the antonyms professional and pro. After applying the

diversity checking measure, the last three sentences of summary A are replaced with a

sentence containing the term professional. Applying this method is not always error-free.

When examining some other documents such as D0821DA, it can be noted that some

terms which exist in that document carry more than one meaning such as the term feet. It

can correspond to the unit of length or the part of the leg of human beings (plural of foot).

The context the term appeared in is “70 feet down”. The summarizer interpreted this

incorrectly and considered the word head as its antonym during the diversity checking

stage.

To get even a better view of the performance of my summarizer, I examined the

performance of other summarizers built by other TAC08 participants. I found that three

other participants had algorithms relying on WordNet for summarization. The

performance results of these systems are illustrated in Table 4.6. I used ROUGE2 and

120

ROUGESU4 since they have the strongest correlation with content responsiveness score

which is assigned by human judges and measures the information coverage of the

summaries. In addition, the averages of these scores were provided to all participants for

reference and they are practically ready to be compared against my best performing

system.

Table 4.6 shows the scores for my system, the best system and worst system of the 71

participants in TAC08. In addition, the average scores of all participants are shown in the

table. The systems abbreviated with NG Graph, SMUST and NESS all rely on WordNet for

summarization. The system labelled NG Graph used WordNet for query expansion

looking up all query words in WordNet and appending the “overview of senses” results to

the query [154]. The algorithm of the system represents texts by using n-grams positioned

within a context-indicate graph, hence the name n-gram graphs. Important sentences are

judged by comparing the graph representation of each sentence with the graph

representation of the expanded query. The system authors claim that the poor performance

obtained by their system is due to “noise” or non important/relevant terms appended to the

query during the query expansion process.

The system labelled SMUST [155] used the TextRank [79] algorithm to extract topic

terms from the source documents and assign a score to each topic. Features such as

detected topics, sentence position and overlap with topic terms were detected and assigned

scores in each sentence. The Path similarity measure was used to determine the similarity

between terms in different sentences and the topic terms. A linear combination of the

scores was used to generate a score for each sentence.

121

Scores Ranks
Evaluation

ROUGE2 ROUGESU4 ROUGE2 ROUGESU4

NG Graphs 0.03484 0.07657 71 71

SMUST 0.06203 0.09974 56 57

NESS 0.08200 0.11881 23 22

AUEB 0.09621 0.13434 4 4

My Summarizer 0.08338 0.12075 20 19

Average 0.07293 0.11075

Worst System 0.03343 0.06517

Best System 0.10382 0.13646

Variance 0.00022 0.00023

Standard Deviation 0.01477 0.01520

Table 4.6: ROUGE scores of my System and other participants in TAC 2008

The summary is finally formed by choosing the highest scoring sentences. The system

labelled NESS [156] selects sentences based on linguistic metrics such as TFIDF scores

that measure the relevance of sentences to the source documents topics. It uses WordNet

to conduct topic-expansion by extracting the synonyms of each noun in the topic from

WordNet and append them to the topic. Just like the other systems, each sentence is given

a score based on its weighted features and the summary is generated by choosing the

highest ranking sentences.

The implementation of my system is similar to the mentioned above in that each sentence

is assigned a score based on the combination of its weighted features. However, it differs

in some of the chosen features such as the inclusion of Named Entities and similarity of a

sentence against the rest of sentences in a document. In addition, I rely on JCn’s metric for

122

computing the semantic similarity between words and devised my own measures for

computing the similarity between sentences. Redundancy and diversity checking are

additional stages implemented in my system. The most comparable system to mine

performance-wise is NESS. However, it applies a complex level of syntactical processing

through their FIPS [157] parser. My system does not rely on the analysis of syntactical

structures of sentences and is much simpler than theirs. As for the other two systems, my

system performance appears to be more competitive than theirs as shown in the table.

The AUEB’s summarizer [158] uses a Support Vector Regression (SVR) model [159] to

rank the summary’s candidate sentences. For training the SVR, DUC 2006 documents

were used to construct training vectors for each sentence. The features used are sentences

position, number of Named Entities, Levenshtein distance between sentence and query,

word overlap with query and content words frequencies. Even though this summarizer

relied on basic features, the results it achieved are among the best for the update

summarization task. The summarizer I built uses all of the features this system relies on,

and does not require any training. Due to the limited scope of WordNet, it is possible that

some of the important content terms that define relations between different sentences do

not exist in WordNet and thus are ignored in my system. As for AUEB’s summarizer, it is

expected that its performance will suffer if used with other types of datasets without any

further training.

4.5 Conclusion

In this chapter, I described the structure of my WordNet-based summarizer and its main

components. I defined several measures for computing the similarity between sentences

and highlighted how WordNet was used to expand these measures. I participated in the

TAC2008 update summarization task with two runs utilizing one of the implemented

123

similarity measures and reported the obtained results. In an experiment, I used these

defined measures in the built summarizer to test their effects on the performance of the

system. After observing the performance improvements, I attempted to enhance the

performance even further by introducing a module for reducing redundancy and enhancing

diversity within the generated summaries. The results of the evaluations performed reflect

varying levels of improvements to the system caused by the addition of the module.

While it does seem from the results above that the introduction of WordNet-based

semantic similarity features gave a positive effect to the performance of the system, some

work on the base system and subsequently the rest still needs to be revised for a better

improvement. Even though WordNet gave competitive results in the performed

experiments and in others’ too [160], using it as the main backend source to summarize

documents may not always be the most optimal solution. WordNet was manually built and

covers a limited number of concepts that may not include some aspects in many domains.

It is therefore useful to consider using other thesaurus such as Wikipedia which is

constantly being updated and is the world largest encyclopaedia. Some slang words and

domain specific terms may not be exist in WordNet and documents containing such terms

may not be suitable to be used with the developed system. Another aspect that should be

noted is the limitation of applying the above described methods and algorithms to only

English documents. This is mainly due to having Wordnet as monolingual. While other

projects such as EuroWordNet have attempted to expand the WordNet database to include

several other languages, the work completed is still very limited and span a relatively

small number of languages. Human experts, time and additional resources would be

required to extend such work and produce high-quality databases for tens of other

languages. And then even if created, updating the databases with new entries would still

124

be costly and likely to be time lagging between the current state of the language and the

how it is represented in the database.

In an attempt to address the above limitations, I used another repository, namely

Wikipedia, which is orders of magnitude larger than WordNet. For the sake of

comparison, note the number of articles it has which is over 3 million, which each can be

treated as a concept, against 117,659 synsets contained in WordNet. Wikipedia is run by a

large number of volunteers, reducing the running cost in comparison with other

repositories such as WordNet. Updating Wikipedia to include new events and concepts is

usually performed in a short period of time after the event occurs. However, one of the

main advantages of WordNet over Wikipedia is in its design making it easy to read and

process by machines. In the next chapter, I propose a set of algorithms to allow me to use

Wikipedia and exploit its content in a competitively-performing summarization system.

125

Chapter 5

Summarization Aided with Wikipedia

In this chapter, I describe how I generate features from Wikipedia and then use them in a

Wikipedia-based summarization system. Also, I present the evaluation results of my

participation in the Text Analysis Conference 2010 (TAC10) Guided Summarization task

with the Wikipedia-based Summarization system.

5.1 Overview

An increasing amount of work has been recently applied to enriching text representations

for different applications including classification, clustering, information retrieval and

clusters labelling. Different kinds of knowledge bases have been used too for the different

applications. In [161], WordNet was used to enhance the Classification of text documents

by improving the Rocchio algorithm. Rocchio is an algorithm traditionally used in IR and

assigns the same importance to training for each class even if it has very few training

instances. Their method was supervised and required manual annotations of terms vectors.

In [162], WordNet was used for the task of documents clustering. They used WordNet

synsets to enrich the representation of documents but without word sense disambiguation.

The results they obtained did not show improvements with the use of synsets. In the

previous chapter, I reported several methods for using WordNet to aid in summarization

by exploiting its relations for improving how semantic similarity is generated.

In this chapter, I describe a methodology for extracting features from Wikipedia and using

them in applications such as Automatic Text Summarization and Word Sense

Disambiguation. To illustrate the importance of using a large encyclopaedia such as

126

Wikipedia, I will present a simple example. Suppose that one of the documents to be

summarized contains sentences with explicit mention of Hyperthymesia (meaning superior

memory). For a summarizer employing a BOW method or enriched with low-breadth

ontology, a user query such as Abnormal Psychology would not be properly processed by

the system. The same case applies to humans since an understanding of the meaning of the

word Hyperthymesia is required to establish a link between it and the Abnormal

Psychology parts in a document. In WordNet, such a word does not exist and thus

WordNet-based systems would not be able to handle it, too. Also, consider the case when

two consecutive words such as “Cat Fish” provide a new meaning different from the two

separate words. With only traditional BOW methods, multi-word concepts are usually

misinterpreted or simply omitted. Hence, the use of external knowledge to enrich

summarization methods should help address similar scenarios where semantic

understanding of the content of the documents and the relationship between its contents

and the different queries is needed. In addition, this semantic analysis is especially

important when a large number of documents to be summarized are short in length

providing less information for training with BOW methods.

Wikipedia was exploited in different Information Extraction and Data Mining

applications, but with very limited work being applied in the application of

Summarization. In [163], Wikipedia was used to build a thesaurus for use in specific

domains. The focus was on using Wikipedia’s internal and redirects links for this task with

small emphasis on the rich relations and hierarchy available in Wikipedia. In [139] and

[164], a method was proposed and evaluated that uses Wikipedia and Open Directory

Project (ODP) to obtain representative concepts vectors for documents in the task of text

classification. Their idea is similar to mine when building the term-concepts table but

without applying the boosting algorithm. In my work, I attempt to leverage the abundant

127

information present in Wikipedia by extracting other features such as strong links and

categories structure and integrating them in my system to obtain even better performance.

In [165], a methodology was used for detecting the explicitly-mentioned Wikipedia

concepts within documents. The authors applied that methodology in the task of

documents clustering. With the method I propose, I also consider the related concepts to

those explicitly mentioned in the text documents.

In this thesis, I describe a novel framework that utilizes Wikipedia as its underlying

knowledge base. The large number of concepts and diverse domains covered in Wikipedia

makes it most suitable for the task. Instead of mapping the documents text to a concept or

a small group of concepts as done in most of the previous work, I map it to all of the

previously-processed Wikipedia concepts. This is achieved by first processing all

Wikipedia articles and extracting the relationship between each of its terms and all the

concepts existing within Wikipedia. In essence, this forms what I call a term-concepts

table. Then, I extract the categories structure within Wikipedia and analyze its links. The

result of all the mentioned steps (Concepts, Categories and Text) is then combined to form

vectors for each group of documents in the preprocessing stage. In the processing stage,

the formed vectors are used to decide what the summary candidate sentences are. My

experimental results on the TAC10 dataset shows that the system provides competitive

results against many others. In addition, the methodologies used are applied to two other

applications: Word Sense Disambiguation (WSD) and Documents Classification. I also

present the evaluation results for each of these applications.

The rest of the chapter is organized as follows: Section 5.3 describes the main elements of

the Wikipedia-based framework. In section 5.4 I show how the extracted features are used

in the different implemented heuristics. I follow in section 5.5 by presenting the evaluation

128

results and discuss my findings. Finally, in sections 5.6 I present the usage of the

implemented methods in the application of Word Sense Disambiguation.

5.2 Wikipedia-based Framework

My approach relies on the use of the vast and highly organized human knowledge existing

within Wikipedia giving it a major advantage over other approaches using smaller

thesauruses such as WordNet or Open Directory Project (ODP). Due to its openness and

structure, Wikipedia is not suitable for being used directly as is by machines and its

content needs to be analyzed first with semantic processing tools. In my semantics-

extraction system, I treat each Wikipedia article as a unique Concept and use its title as a

label. The content of the article is used to help build a relationship vector between the

article terms and its title. The formed term-concepts vector along with the Categories

structure existing within Wikipedia and its links are analyzed to aid in computing the

relatedness score between any two text fragments. An example for how the extracted

features can be used is illustrated in Figure 5.1 where the detected Wikipedia concepts are

highlighted. With the strong links method, which will be described in the next subsections,

hidden concepts such as “Disaster”, “Nuclear Weapon”, and “Prefectures of Japan” may

be detected as well to help identify the most dominant concepts and themes within the

document. It is also possible to quantify the relatedness between different documents,

sentences or text fragments using the relatedness metrics that will be described in this

chapter.

129

Figure 5.1: A document marked with associated Wikipedia concepts

There are a number of stages the framework system has to go through before generating

the Wikipedia-based vectors. First, I preprocess the available Wikipedia data to retain its

articles text, titles, links and categories structure and remove non-relevant information

such as the edit history, image descriptions, and articles authors. Afterwards, I apply some

filtering metrics to extract the important concepts and redirect links along with their

categories. I then analyze the extracted information and form term-concepts, concepts and

categories vectors. The class diagram shown in Figure 5.2 illustrates the main components

performing these stages. The following sections further describe these stages and

elements.

5.2.1 Preprocessing the Wikipedia Dump

I used a snapshot of Wikipedia that was formed in 16-03-2010. The data was provided in

an XML file prepared in different packages (different languages, containing only page

titles, edit history, etc.). I chose the English package named pages-articles.xml and

performed several operations to prepare it for the next stage before it is analyzed.

130

 First I removed the non-relevant fields in each article such as edit history. I also

removed all non-English terms contained within each Article.

 Then, I parsed the Wikipedia [Templates] format and resolved the links. I counted

the number of links existing within each article.

 Afterwards, the text of each article was segmented into words.

 Articles that are too short containing less than 100 words or fewer than 5 links are

removed. Articles that are too short or incomplete are called stubs in Wikipedia. In

this step it is ensured that they are removed in addition to any others having high

likelihood of being stubs. This was mainly to increase the reliability of the system

by removing articles which are deemed too short to provide encyclopaedic

coverage of a subject. Also, if the title of an article contains only one term which

happens to be in the stop word list, I remove that article.

 Articles that belong to categories related to chronology such as Years and

Centuries are removed.

The total number pages in the original dump before processing is 3,289,927. After

applying the above-mentioned rules, I had a total of 1,504,748 articles where each article

represents a unique concept. The total number of categories I had was 126,709. Parsing the

main XML file that stored Wikipedia’s contents was performed by the class

WikiXMLParser shown in Figure 5.2. The class WikiPageIterator iterates through all the

pages stored which are parsed individually by WikiPageParser, filtered as needed by if

belonging to the excluded Categories types, and cleaned by ArticleCleaner to remove non

important tags, non English characters, non relevant data such as tables and Infoboxes and

extra spaces that may appear in the titles. Each parsed page is represented by the class

WikiPage which stores all of the page data in different variables after applying some

analysis to its contents through its member functions. Categories and links are also

131

represented by the classes Category and link, respectively. More details about the rest of

the classes are presented within the description of their corresponding stages in the next

subsections.

Wikipedia Features Extractor

+stripNonValidMarkups()
+removeMultiSpacesFromTitles()
+removeNonRelevantData()

ArticleCleaner

+getInputFile()
+parse()

-wikiFileName
-pageIterator
-pageList
+excludeCatTypes
+minLinksNumberInDoc
+minDocLength
+LangFilter

WikiXMLParser

+isRedirect()
+isCategory()
+isDisambig()
+isStub()
+parseLinks()
+parseCats()
+getParentCats()

+title
+pageId
+plainText
+wikiText
+firstParagraph
+innerText
+seeAlsoText
+pageCats
+pageLinks
+fParagraphLinks
+seeAlsoLinks
+innerLinks
+redirects

WikiPage

+parsePage()

WikiPageParser

+TFIndex()
+IDFIndex()
+FindDocL2()
+sortScoresForAllTerms()

-TermsVector
TFIDFIndexer

+connect()
+disconnect()
+close()

-URI
-username
-password
-database

MySQLBroker

+ScoreLinks()

-LinkTypesToDetect
-WeightConditions

LinkWeighter

-termId
-text
-stem
-conceptsWeights

Term

+linkType
+Text
+fromConcept
+toConcept
-contextTerms

link

+getParentCategories()

-catId
-text
-parentsIDs

Category

+parsePage()

-currentPage
-reset

WikiPageIterator

+saveTermConceptsVector()
+saveLinksWeights()
+saveLinks()

FeaturesStorage

Figure 5.2: Class Diagram showing the main classes of the Wikipedia Features
Extractor package

5.2.2 Extracting the Features from Wikipedia

The preprocessed version of Wikipedia is analyzed to leverage the articles contents, their

titles, redirect links and the categories structure. First, I removed all stop-words from the

articles content. The remainder terms were used to serve the purpose of representing all of

Wikipedia Concepts. This was achieved by examining the terms distributions within each

article and computing the weight for each word in the form of TFIDF which is one of the

most common weighting methods used to describe documents in the vector space model.

TFIDF factors two aspects for each term: its frequency within each document (represented

as TF) where the higher the TF in a document the more chance that it is important within

132

that document. The second factor is the Inverse Document Frequency IDF where a word is

deemed more important in a document if it doesn’t appear in many of the test collection

documents as was described in section 2.3.1.1.

5.2.2.1 Term-Concepts Table

In essence, I map all the terms existing within each article to all the Wikipedia Concepts

creating a vector for each term whose elements are the l2-normalized term weights within

each Concept. These weights resemble how much the terms contribute to each Concept

they are attached to. I rank the concepts each term belongs to based on the formed weights

in a decreasing order to form the Term-Concepts table. The top concepts in the list are the

most relevant ones to the term. For example, the term Birmingham has the following

associated concepts history of Birmingham, Birmingham (the English City), Birmingham Alabama

(the American City), Arts in Birmingham, Timeline of Birmingham History, Birmingham City

University, Barry Vincent Jackson, B Postcode Area, Birmingham Local Elections, Economy of

Birmingham, Birmingham Business Journal, etc.. One can notice that the covered range of

different Concepts varies from city name (in UK and USA), to events that occurred in one

of the two cities, to a person name who owned a theatre in the English Birmingham.

As mentioned above, I rely on terms distributions within each Wikipedia article to

determine the weight of each term in relation to each concept. One can view the resulted

structure in the form of a non-negative weight table or a sparse matrix where rows

correspond to terms and columns correspond to concepts. The weights are computed by

using the common TFIDF metric as follows:

)
)(

log(),(),('

tdf

n
cttfctWeight  5.1

Where tf(t,c) is the term frequency of the term t in the article (or concept) c, n is the total

number of articles in the evaluation set, and df(t) is the number of articles containing the

133

term t. The weight is then l2-normalized to account for the different lengths in Wikipedia

articles by applying the following:

2),('

),('
),(

ctWeight

ctWeight
ctWeight


 5.2

The TFIDFIndexer class shown in Figure 5.2 is responsible for building the Term-

Concepts table in the implemented system. After building the table, I perform a two-level

update to it through a series of iterations focusing on boosting the weight scores for some

terms based on their appearances within the titles and redirects links. This is explained

further in the following section.

Figure 5.3: an Overview for how the Concepts Matcher & Booster produces the
Ranked Concepts. Part A of the figure is performed only once while part B is an

integral part of the system that is repeated every time a new text fragment is
processed.

5.2.2.2 Concepts-Boosting

In the Birmingham term example mentioned above, I notice the occurrence of the term

Birmingham in many of the Concepts titles or the text of the articles they belong to. This is

not always the case for some other generated concepts. Take the word Unhappy as an

example. Some of the concepts the word is related to do not have any occurrence of the

134

word Unhappy in their titles or even the Wikipedia article text they represent. For

example, the concept Depression (mood) does not have any reference to the word unhappy

in its text or its title, yet it is related to it. With the sole help of the Term-Concept table

previously built, the Concept Depression (mood) would not appear in the list of related

concepts for the term Unhappy because the TF for that term in the concept’s article text is

zero. In a similar way, some concepts titles may contain the keyword Unhappy in their

titles which should give them a higher tendency to be more related to the term than many

other concepts. For instance, the concepts Unhappy Consciousness, Unhappy Triad and

Unhappy Happiness are assumed to be more related to the term Unhappy due to them all

sharing the key term Unhappy.

To tackle the above-mentioned issues, I thereby apply a two-level Boosting process as a

following step after generating the concepts vector using the term-concepts table for any

given term. In essence, I make use of the large number of Redirect links existing within

the Wikipedia structure by analyzing the keywords of the title of each Redirect link in

addition to the titles of the articles they link to. In the first boosting level for a term or a

group of terms w, I hypothesize that a redirect link r containing only w in its title should

link to a concept c that is highly related to w regardless of whether c has w in its article

content. In other words, w and c should have a high relatedness score which is achieved

through the boosting performed in my algorithm by assigning a score to c based on the

value of a variable I call FirstLevelBoost that was previously determined. In a similar way,

I apply the same idea to the Concepts Title ct and word w to generate a relatedness score

for c using the same variable FirstLevelBoost. To generate a value for the

FirstBoostLevelw of a term w after the above-mentioned conditions are met, I apply the

following formula.

135

BoostFirstLevelcMaxBoostFirstLevel s
Cc

w
s




)(5.3

Where C is the set of concepts found related to the term w, cs is a concept score as

computed in the term-concepts table and FirstLevelBoost designates how much boost is

applied. The optimal value I found for this based on my expirments is 1 which effectivelys

renders the matched concepts in the top of the term-concepts list.

In the second boosting level, I examine the occurrence of the term or group of terms w in

the Concept Title ct or the redirect link r that points to it. If ct or r contains w in addition to

some other terms, I increment the relatedness score of c by a value based on the previously

chosen variable SecondLevelBoost. The resulted relatedness score from the second level

boost will always be less than the first level boost. Also, as the number of terms appearing

within the title or redirect link increases, the amount of boost being applied inversely

decreases. This is reflected in the following formula being applied to generate a value for

the SecondLevelBoost of the term w.

)1)1(( lBoostAdjSecondLeve
w lBoostSecondLevelBoostSecondLeve 5.4

The value of SecondLevelBoostAdj in the above formula is computed as follows:

N

c
lBoostAdjSecondLeve t 5.5

Where | ct | is the number of terms that exist within the concept title (or the redirect link),

and N is the number of times the term w appears within the concept title.

The algorithm I apply for both boosting levels is illustrated in Figure 5.4 where W refers to

the set of words that I require the most related concepts to, C is the set (ct , cs) for the

concepts that resulted from applying the Term-Concept table method to W, allC is all the

Concepts within Wikipedia and allR is all the redirect links. The result of applying both

136

boost levels on the two terms Unhappy and Jobless is shown on Table 5.1 while the

pseudo code for the concepts boosting algorithm is illustrated in Figure 5.4.

Unhappy Unhappy (Boosted) Jobless Jobless (Boosted)
1 Implications of Divorce Depression (mood) Growth Recession Unemployment

2 Unhappy Consciousness Unhappy
Consciousness When Work Disappears Jobless Recovery

3 The Better Half (play) Happy Number Pôle Emploi James Renshaw
Cox

4 The Human Contract Unhappy Triad James Renshaw Cox Growth Recession

5 Kurumi Enomoto Fan the Flame (part 1) Joe Ma Wai-ho When Work
Disappears

6 Pamela Springsteen Unhappy Happiness Vetti Pôle Emploi
7 Tristan Davies Implications of Divorce Volksgrenadier Joe Ma Wai-ho
8 Fan the Flame (part 1) the Better Half (play) shadowstats.com Vetti
9 Notes & Rhymes the Human Contract Jobless Recovery Volksgrenadier

10 Ballad of a Teenage
Queen Kurumi Enomoto Imperfect Competition shadowstats.com

Table 5.1: Boosting the Term-Concepts Vectors using Redirect Links

Figure 5.4: the Pseudo Code for the Concepts-boosting Process and its Subroutines.

137

5.2.2.3 Wikipedia Links and Categories Structure

Wikipedia can be viewed as a semi-structured encyclopaedic resource. It is not as well

structured as a database for example. It has pages containing text segments of varying size

and format. However, it also has semi-structured pages for ambiguous terms listing their

possible meanings with links to the articles describing them. It has structured categories

attached to each article. The categories have parents and children relationships defined

among them. Articles belonging to the same category have generally similar outline and

structure. In addition, over 86 million links exist within it linking articles with each other.

These links are of different types and can be a representative for some form of relationship

between articles with each other. The categories too with their hierarchy can help better

enhance the definition of the semantic relationship between the articles.

In this section, I focus on using the links and categories structure in Wikipedia to enhance

the features I previously extracted. Wikipedia contains different types of links. There are

interlanguage links linking to versions of the article in different languages. There are

internal links linking to other pages within the same Wikipedia language. There are

interwiki links pointing to other pages within the projects hosted by Wikimedia but not

necessarily to Wikipedia articles. There are also external links to pages outside the

Wikimedia-operated projects. Many other types of links exist too within the articles such

as section links, date links, and template links. My focus here is on the internal hyperlinks

in the articles text pointing to different English articles in Wikipedia.

Not all the internal links are of the same significance. Some links may be more reflective

of the relatedness of an article to another than many others. To illustrate this, take the two

links Basketball court and Peripheral Vision existing within the article about the famous

Basketball sport game as an example. Intuitively, the former link is more related to the

article than the second. It is thus important to apply some form of filtering to the article

138

links to reduce the resident noise and embrace those that link to most related articles.

Therefore, I devised my own links-filtering module. The module’s goal is twofold. First, it

reduces the number of noisy or unimportant links by focusing only on potentially high-

quality links. Second, it enhances the overall efficiency of the system since the total

number of links to be evaluated and analyzed will be reduced. This is especially evident

for those articles that contain a large number of incoming links such as the article about

the famous company Google which has over 70,000 incoming links. The analysis of such

large number of links for all the articles in Wikipedia would require a large amount of

computing resources and is simply not efficient.

In the filtering module, I classify the internal links into several levels signifying their

importance based on my own observations. As for the categories, I first attempted to

utilize the category structure within Wikipedia directly on its own but realized that even

though some categories are narrow and indicate strong relatedness between their articles,

some other categories are broad and not as useful as many others. For example, the

category Historiography is broad and has 129 pages. Among these pages are Silver Age

and Source Text which can not be said to be strongly related to each other. Due to the

generality of some categories and because I still think that categorization can be useful

especially for some narrative categories although to a limited extent, I chose to filter the

categories I use with the internal links. Figure 5.5 shows the links types I defined sorted

based on the weights they carry in a decreasing order. In general, it is possible to divide

the defined link types into three categories: Mutual Links where two articles directly link

to each other, One Link with shared a Parent Category, and See Also links which are

usually appended to most of the articles in Wikipedia. I next define and describe these link

types along with the weight level I assigned to each:

139

Figure 5.5: Link Types defined sorted based on their weights in descending order

w1 3 w2 2.75 w3 2.5 w4 2.25 w5 1.75
w6 1.5 w7 1.5 w8 1.25 w9 3.75 w10 3.25

Table 5.2: Weights assigned for the different links types

Mutual Linking

When article A contains a link or more pointing directly to article B, and article B contains

a link or more pointing to article A, I consider these links for the two articles to be of a

high value signifying a strong relatedness between the two articles. An example for this is

the Basketball and Slam dunk articles which both contain links pointing to each other and

they are closely related. If the two articles share one or more parent categories, they are

expected to be much more related than if they were not. Thus, I classified the mutual link

types into four classes 1-4 as shown in Figure 5.5. In 1, both articles directly share a parent

category. In 2, the parent category of one article is a subcategory of the parent category of

140

the second article. In 3, both articles share a grandparent category that is exactly one

category-level away from the articles. In other words, the articles belong to at least two

categories whose parents are the same. In 4, no shared parent or grandparent category is

found and thus only the reciprocal links are considered. All of the four link types 1-4

resemble strong relatedness between the two articles in each case when compared with the

types 5-8 but of varying weight. The weights I assigned to each link type are illustrated in

Table 5.2.

Shared Parent-Category with One Link

As highlighted above, merely having a shared category between two articles may indicate

a strong relevancy between the articles. However, this can not be applied as a general rule

due to the breadth and generality of some categories. Therefore, I adopted the “at least”

one link sharing rule as a filtering mechanism. I also expanded it to include grandparent

categories in some cases, namely link types 6, 7 and 8 in Figure 5.5. As a general rule for

the link types covered in this category of links, I say that when Article A points to Article

B or B links to A AND both articles belong to the same category (or grandparent

category), I have a potential strong relevancy between the two articles A and B. An

example for this category of links is the articles titled Great Depression and Panic of 1893

which both belong to the category Financial Crisis and the former article has a link

pointing to the second. Both articles discuss the economic depressions that occurred before

the Second World War. However, Until the Great Depression, Panic of 1893 was

considered the harshest depression in the history of the United States. The relevancy

between these two articles is thus greater than the relevancy between either and the rest

that only share one parent category with either of them such as the articles Bad Bank and

Bank Run both under Financial Crisis category.

141

See Also Links

These links are usually added manually by Wikipedia volunteer editors to the end of the

articles in Wikipedia and refer the readers to other semantically related topics to the

current article. I give a high weight to these types of links and label them with w9 in Table

5.2. I also give a high weight to the inverse of the See Also links labelling them with w10

in Table 5.2.

5.2.2.4 The Rationale behind Choosing the Links and their Weights

The idea of using the links within Wikipedia article was inspired by my study on the links

themselves and the use of websites links by search engines. I observed that in many cases,

there is some relatedness between an article and the articles being pointed to by the

anchors in that article. Just like the idea used by many search engines, links from pages in

sites of similar context pointing to a specific website indicate some importance for that

website which is being linked to. Moreover, a relatedness can be induced between all of

the websites given that they all share similar contexts. In my work here, I investigate the

links present within the Wikipedia articles, classify them, give them weight, and deduce

the relatedness between the target article and the anchor text articles.

After manually assessing the links presented in many articles, I observed that the anchors

presented in one article can be classified into two categories: reciprocal links and one-way

link. This is also evident in the information retrieval domain with many websites forming

mutual links to point to each other. For example, a website specializing in selling mobile

phones may be pointing to another website selling mobile phone accessories, or they can

both be linking to each other. Sometimes, both websites fall under the same category,

“Mobile Phone” for the previous example. My method applies a similar concept to

Wikipedia by using the Categories structure and links for defining a relatedness measure

142

between the articles. The weights I assign to the different links resemble the context-

ranking method applied by search engines when evaluating the internal and external links

in a webpage to combat and penalize Links Farming12. The context filtering and selection

in my method does not match the same complexity as those methods implemented by

search engines and it is actually not needed since Links Farming is not necessarily present

in Wikipedia. However, the general goal is the same: rank pages or articles based on their

relatedness to the target page.

The choices of the different links weights reflect the importance level of each link type. It

is intuitive to say that articles with mutual links are more related than articles sharing

single incoming or outgoing link. To demonstrate the effects of the different weights

assigned to the different link types and illustrate how they were chosen, I apply the

extracted features in the application of WSD. In the evaluation, I analyze how the weight

of each link affects the performance of the system and report the results I obtain. The

results I obtained are provided in section 5.4.4.

In [165], a methodology was used for detecting the explicitly-mentioned Wikipedia

concepts within documents. The authors applied that methodology in the task of

documents clustering. With the method proposed here, I also consider the related concepts

to those explicitly mentioned in the text documents and assign different weights to each

depending on how strongly related they are to the Exact-Match concepts. The effect of

adding the different weights is shown in the results illustrated in section 5.4.4. In that same

figure, I also show the performance when considering the links without any weight

assignments (Unweighted strong links).

12 A Link Farm is a group of websites that all link to each other for the purpose of increasing their page rank.
There doesn’t necessarily exist a context relationship between the sites in the farm.

143

5.3 Examples of Wikipedia-based Features Generation

I provide here examples for how features are extracted using both the term-concepts table

and Strong Links methods. For each given text, I show only the top 10 most related

concepts using both methods due to the limited space available. For some concepts, I

provide brief descriptions taken from the corresponding Wikipedia articles themselves.

The examples are illustrated in Table 5.3.

Text
Term-Concepts Table

Features Strong-Links Features

CNN Controversies United States Cable News
CNN International CNN Warner
CNN News Stand Ted Turner
CNN Center CNN Center
CNN.com Live Time Warner
CNN Pipeline Time Warner Center
Melissa Long – CNN news
anchor and reporter

Lary King Live

CNN Sports Illustrated Media Bias
Talkback Live – talk show
on CNN

Media Matters for America

Cable News Network

United States of Cable

News

RealNetworks
Outline of Google Google
Google Business Solutions Youtube Live
History of Google Fair Use
Google Viral Video
Censorship by Google CBS
Youtube Adobe Flash Player
Youtube Censorship High Definition Video
Criticism of Youtube Paypal – Youtube was founded by

3 former Paypal employees

History of Youtube Alternative Media

Google purchased Youtube one

year and a half after its launch

Google Apps 1080p

Table 5.3: Examples of Wikipedia-based Features Generation

The second example in the table included more than one concept in a sentence. For text

fragments that contain more than one concept, the aggregated list of concepts takes this

factor into account and disambiguation is usually required. In the next section, I describe

144

how the features have been applied to the application of Word Sense Disambiguation and

how concepts aggregations within text fragments or sentences take place.

5.4 Word Sense Disambiguation

The task of WSD is to automatically predict the right sense for a specific term in the given

context. In my system, I use the local features presented in the given context along with

the previously-extracted Wikipedia features to achieve this task. Figure 5.6 gives an

overview of the modular design in my WSD system. In each instance run, a text document

is fed to the system which can be a text fragment, a sentence, a paragraph or a whole

document. In the text document, a single term is marked as the target word to be

disambiguated, and is displayed as a separate input in Figure 5.6 for illustration. The

provided document is then processed sequentially in each module in a pipeline and the

final output of the system is the target sense for the marked word. In essence, the system

predicts the correct concept (or sense) for the target term by applying the term-concepts

table to the target term and then scoring each concept according to my analysis of the

strong links. The result is a ranked list of scored concepts with the top concept in the list

being the most likely sense for the target term and is produced as the final result. In the

following subsections, each module in the WSD system is described.

Figure 5.6: an Overview of the WSD process

145

5.4.1 Preprocessing and Context Selection:

Based on the format of the input text document, its content is parsed first and its terms are

extracted. Stop words are then removed from the document. This is followed by a

preprocessing step in which the marked target term is highlighted to determine its context

based on its surrounding words. If the supplied text document is in the form of a short text

fragment (less than a predefined number of words), all of its surrounding terms are

considered. Otherwise, I consider extracting 2n words surrounding the target term, n

words before and n words after, which I call Context Terms (CT) in the following steps. I

can label each CT with cti=1…|CT| where i is the context term number in the generated list.

5.4.2 Term-Concepts Expansion

After obtaining CT from the Context Selection module, the term-concepts vector is

applied on the resulting CT and also the target term. The number of concepts lists that

would be generated is |CT| + 1. If I label each concept list with C i=1…|CT|, I would have the

concepts list defined as:

|}|...1{},...1{}{ CTiVjiji cC  5.6

Where i is the number identifying the Ci concept list, j is the concept number in the list

and V is the total number of cij concepts in the concept list. As for the target term concepts

list TW, I define it as:

}...1{}{ MkkgTW  5.7

Where gk is the concept numbered k in the target term concepts list and M is the number

of concepts in the list.

146

5.4.3 Links Analysis and Sense Selection

In the built system, I use the local features presented in the given context along with the

features previously extracted from Wikipedia to detect the sense of an ambiguous term.

The links contained within Wikipedia articles are among the features I examined. I

illustrate in this section how they can be used to determine the relatedness between two

concepts and aid in the problem of WSD. I present different methods employing different

aspects of the extracted features and compare their performance in the evaluation section.

When analyzing the internal links present in an article, I consider only those that fall into

the category of one of the above-mentioned types. I use the links as part of a process to

compute the relatedness between two articles A and B. This is achieved in my work by

two methods: (i) directly examining the links present in both A and B and computing a

score for each link. (ii) forming two sets of articles SA and SB where each set would

contain the most relevant articles to A and B respectively and then computing the

similarity between the two sets using the Cosine distance. The following subsections

describe how the methods are implemented in the application of WSD.

5.4.3.1 Terms Vectors Intersection

In this basic method, I examine the CT surrounding the Target Term first and form a term

vector called T containing both CT and the Target Term. This can be represented as:

}1||......1{}{  CTyywT 5.8

where y identifies each term in the list. Suppose the Target Term has multiple meanings

represented as Sye, where y is the Target Word number in the list T and e is the meaning

(or sense) number. Since each sense is associated with an article in Wikipedia, it is

possible to attach each sense with the most dominant words in the document it represents

using the TFIDF measure. After all, this was already precomputed when forming the

147

Term-concepts table. It can be chosen as the top R terms with the highest TFIDF scores.

The list of dominant terms for each sense can be represented as:

}...1{}{ Dfyefye aS  5.9

Where f is the number of the word a in the dominant words list of Sye. For each candidate

sense e, I compare its dominant words list Sye with T. The candidate that would be chosen

as the representative for the Target Word is the one having the majority of its terms in Sye

present in T.

To illustrate the above method, I give the following example. Suppose that a document

contains the following T list:

T={ group, Foxtel, Fox, CBS, international, team}

The underlined word is the Target Word which I aim to find the right sense for. Suppose

that it has two possible meanings: (1) Fox (animal) and (2) Fox Broadcasting Company.

Each meaning has an associated article in Wikipedia and thus the dominant words in each

article as computed by the TFIDF measure can be represented in a simplistic view as:

S31 = { Mammals, tail, dog}

S32= { Foxtel, entertainment, CBS}

Now, an intersection of S31 and S32 with T yields the following:

031 TS 

232 TS 

This shows that the second sense S32 (Fox Broadcasting company) is the most

representative for the Target Word in the given document.

5.4.3.2 Unweighted Strong Links

In this method, the CT surrounding the Target Term are also examined first and a term

vector called T containing both CT and the Target Term is created. The Target Term

148

would have multiple meanings, and each meaning is associated with a Wikipedia article. I

compile a list of related articles for each meaning based on the strong links analysis

performed in section 5.2.2.3. It should be noted that the links weights are not considered

here. The list of most related articles (or concepts) for each meaning as devised from the

strong links is represented by the following formula:

}...1{}{ Qfyefye aP  5.10

Where f is the number of the related concept to the concept ye, e is the meaning number

and Q is the maximum number of related articles according to the strong links analysis.

Just like in the above method, for each candidate meaning, I compare its most related

articles with T. The candidate that would be chosen as the representative for the Target

Word is the one having the majority of its terms in Pye present in T.

I present the following example to illustrate the described method. Suppose that a

document contains the following T list:

T={ group, Foxtel, Fox, CBS, international, team}

Just like in the previous example, the underlined word is the Target Word which I aim to

find the right sense for. It also has two possible meanings (1) Fox (Animal) and (2) Fox

Broadcasting Company. Each meaning has a list of most related articles represented in the

following vectors:

P31 = { Animal, Species, tail, dog, Popular culture }

P32= { Foxtel, United States, News Corporation, CBS}

Performing the intersection here again of P31 and P32 with T yields

031 TS 

232 TS 

And this also shows again that the second sense is the best candidate for the Target Word

Fox in the given context.

149

5.4.3.3 Weighted Strong Links

In this method, I analyze the links present in the article content of each concept in Ci

against all concepts in TW. I propose performing the comparison between any two articles

indirectly through expanding the two articles into two lists and then comparing the two

lists with each other. This can be translated for my WSD process into the following:

}...1{}{ MkkGeTW  5.11

eTW is the expanded list for TW. It contains a list Gk of related articles for each possible

sense gk. The list of Gk is formed as follows:

0),(},...1{))},(,{(
wk gcgfVwwkwk gcgfgcG 5.12

In the above formula, gcw is any article that is related to gk. The function f(gk,gcw)

measures the relatedness between the two concepts gk and gcw based on the link analysis

and the weight assigned to each link. V refers to the total number of available concepts for

the set Gk after the expansion. I apply the same process to all the concepts existing within

Ci and then group them all together in one set summing the score for repeated concepts if

they occur in more than one set. I thus obtain the following as a result of the later

expansion of Ci:

0),(},...1{|},|...1{},...1{))},(,{(
ijwij rccfQwCTiVjijwijijwi rccfrceC 5.13

Where w refers to the number of the related concept rcijw, rcijw is the concept related to cij,

and Q is the total number of related concepts. The resulted score f(cii , rcijw) can be

written as twijw for abbreviation. I sum all of the resulting related concepts eCi into one list

eC where repeated concepts rcijw are grouped into one by summing their weight:

|}|...1{)},{(Dvvv twrceC  5.14

150





Q

w
ijwv twtw

1

)(, where rcw=rwv 5.15

Where rcv is a unique concept in eCi, D is the total number of unique concepts in eCj, twv

is the weight given (after computing the sum) for concept rcv.

After obtaining the list eC of related articles derived from the context terms, and a list Gk

for each meaning of the target term, I compute the distance between eC and each Gk using

the cosine distance measure. The final answer for the WSD problem would be the concept

carrying the number k where:

)),((max eCGdist kk 5.16

I examine the same example used with the previous method to illustrate this method.

Target term = Fox

Doc = {Foxtel, Fox, CBS }

Foxtel  C1= { Foxtel11, Optus Television12} = { c11, c12 }

CBS C2= { CBS21 , The Early Show22 } = { c21 , c22 }

Fox  TW = { Fox (animal)1 , Fox Broadcasting Company2} = { g1, g2}

When applying this method to the given example, C1 and C2 are expanded into the

following (applying Equation 5.12):

eC1 = { (Optus Television, 3) , (HDTV, 2.5) }

eC2 = { (20th Century Fox , 6.75) , (NBC, 3) }

Which are then grouped into the following:

eC = { (Optus Television, 3) , (HDTV, 2.5) , (20th Century Fox , 6.75) , (NBC, 3) }

TW on the other hand is transformed into the two weighted lists:

G1 = { (silver fox, 1.75) , (Pierson v. Post,1.5) }

G2 = { (20th Century Fox , 3), {NBC, 3) }

151

And thus, when I compute the relatedness between eC and G1 using the cosine measure I

get 0.0 while getting 0.4 for eC and G2. Therefore, I conclude that G2 is the most likely

sense for the given context.

Even though the given example above is very simple and only shows a small portion of

the concepts extracted for each term in TW and Doc, it is worth noting that the actual

number of possible senses (or concepts) given for each word is much larger and more

diverse. This is mainly due to the expansion of the terms using the boosted term-concepts

table described earlier. This can be seen as an advantage to the system when compared

against many others that attempt to use the disambiguation pages in Wikipedia to define

the possible senses of a term such as [166] and [167]. In many cases, the provided

disambiguation pages are not comprehensive and may require manual intervention to

match many concepts in the page against the main title of that page. For example, the

disambiguation page for the term Apple lists has the following as a possible meaning for

the term Apple:

Apple Martin, the daughter of Gwyneth Paltrow and Chris Martin13

In the above line, Apple Martin is the referred character and is not hyperlinked. However,

only Gwyneth Paltrow and Chris Martin are hyperlinked. Without manual analysis, an

automatic system would most likely choose wrongly one of the two hyperlinked characters

as the possible meaning for the term Apple. To improve the overall efficiency of the

system while running the evaluation experiment, I applied some filtering to limit the

number of concepts produced from the link-based expansion. This is further explained in

the evaluation section.

13 Words in Italic are hyperlinked in Wikipedia

152

5.4.4 WSD Evaluation

The datasets being used for evaluating WSD systems greatly depend on the variations of

the parameters for systems being evaluated. Senseval-1/2/3 and SemEval test collections

are based on WordNet making them difficult to use directly with my methods. This is

mainly in part due to the differences in the words senses defined in WordNet when

compared with those available in Wikipedia. Mapping senses from WordNet to Wikipedia

has proved to be a difficult task [168] and requires evaluation itself. In addition, due to

having WordNet developed by linguistic experts, common words happen to have a large

number of senses with small differences between them [169].

Therefore, I created my own benchmark which is most similar to those devised in the

recent work of Turdakov [170] as well as others in [171] and [172]. I use the manually

created links in Wikipedia as the basis for my dataset. The internal links of Wikipedia look

in the following form: [[Part1 | Part2]] where Part1 is the text in the hyperlink or the title

of the page being linked to while Part2 is the text displayed to the reader when reading the

article containing this link. An example for this is the text fragment “With colors such as

shades of [[brown (color) | brown]]” in the article titled Rabbits. Clicking the word

brown in that fragment redirects the reader to the article brown (color).

I chose the mentioned technique to construct a dataset of 1,000 anchors, along with their

correct meanings and the paragraphs that contain them, which were selected from 100

random articles from Wikipedia. During the evaluations, I chose 20 words surrounding the

target word TW as the context terms. This choice was based on an experiment I performed

on the third method for which the results are shown in Figure 5.9.

In an effort to choose the most optimal weights for the strong links, I performed an

experiment in which the weight of one link is changed while keeping the rest unchanged.

153

The effect of the change is reflected in the performance of the system in the WSD task and

is shown in Figure 5.7 for weights w1 to w5 and in Figure 5.8 for w6 to w10. It can be noted

from the results that the See Also and Inverse See Also links have the strongest effect on

the system as the accuracy degrades to 65.91% and 66.41% respectively when their

weights are set to zero. A link between two articles sharing a grand parent category is

found to be the weakest of all as the accuracy of the system is decreased to 75.31 when the

link weight w8 is set to zero. Setting w8 to any value above 1.25 negates the performance,

too. The effect of w6 and w7 is very similar and their curves on the chart in Figure 5.8

almost match. In general, representative lines for mutual links (w1-w4) show good

performance when the links weights are set above 2.5. This is not the case with single

links as the system performance degrades when the weights are set above 1.75.

67

68

69

70

71

72

73

74

75

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
cc

ur
ac

y

w1
w2
w3
w4
w5

Figure 5.7: Effects of Strong Links Weight Change for w1 to w5

154

65

67

69

71

73

75

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
cc

ur
ac

y

w6
w7
w8
w9
w10

Figure 5.8: Effects of Strong Links Weight Change for w6 to w10

I performed several experiments on the built dataset to test my methods and the effect of

introducing the chosen links: (1) Term vectors Intersection, (2) Unweighted strong links,

and (3) Weighted strong links. The best result I obtained was with weighted strong links

method giving an accuracy of 75.41%. This shows that including the strong links for

analysis does indeed improve the overall accuracy of the system especially when

compared with the Term vectors intersection (69.17%). The accuracies obtained for all

the methods during the evaluations are shown in Table 5.4. Since I produce a ranked list of

weighted potential meanings in each method, I considered computing the chances of

having the right sense in the top-2 and 3 senses of the produced list. The results I obtained

show that the accuracy of the best method increases to 91.82% when considering the top-3

senses in the list.

155

72.5

73

73.5

74

74.5

75

75.5

76

10 15 20 25 30Context Size

A
cc

ur
ac

y

Accuracy

Figure 5.9: Effect of Context Size on the Accuracy in WSD with the Simple Link
Analysis method

Top Top-2 Top-3
Term Vectors Intersection 69.17 75.8 82.71
Unweighted Strong Links 71.84 84.08 87.29
Weighted Strong Links 75.41 87.19 91.82

Table 5.4: The accuracy of all implemented methods including (i) Term Vectors
Intersection, (ii) Unweighted Strong Links, and (iii) Weighted Strong Links methods.

5.4.5 Conclusion

In the previous subsections, I described how to apply the Wikipedia-extracted features,

namely the term-concepts table and strong links, to the application of WSD. I used the

manually created links in Wikipedia as the basis for my evaluation dataset. I reported the

effects of changing the strong links weights to the performance of the system and

highlighted the reasoning behind choosing the weights reported in Table 5.2. The results I

obtained from evaluating the Wikipedia-extracted features in the application of WSD

suggest that the strong links method can give better performance than the term-concepts

table.

156

5.5 Summarization System

In this section, I describe a summarization system employing the features previously

extracted from Wikipedia to better enrich the documents representation and enhance the

summarization task at hand. The concepts explicitly mentioned within the provided

documents are detected and the relationships between them are identified. With the aid of

Wikipedia, inferred concepts which are related to the explicitly mentioned documents are

also captured and considered along with a list of other features when generating

summaries. The network of inferred and explicitly mentioned concepts and the

relationships between them provide a mean to quantify their semantic relations with the

documents topics and the user’s query.

In Figure 5.10 I show the main stages involved during the process. The system accepts as

input the documents to be summarized along with the user query. All of the documents to

be summarized are first parsed and tokenized with the stop words being removed.

Afterwards, the Wikipedia extracted features are used to enrich the representation of the

documents. This enrichment process produces several vectors reflecting different aspects

of the documents including the important terms, top Exact Match (EM) concepts/related

concepts, and the top M related categories. After generating the different vectors, they are

passed to the sentences ranking module which in return produces a sorted list of the top

candidates to be part of the summary.

157

Figure 5.10: Stages of the Wikipedia-backed Summarizer

In Figure 5.11, I present the class diagram of the implemented system. The elements

DocumentSet, Document, Sentence, Term, Concept and Link are self explanatory. The

classes textProcessor and documentPreprocessor are similar to the ones applied in the

WordNet-based summarizer and shown in Figure 4.6 and Figure 4.5. The class

WikiFeaturesRetrieval inherits the MySQLBroker class shown in Figure 5.2 and gives

access to the previously constructed features from Wikipedia which are stored in a

MySQL database. ConceptsRelatednessMetric defines and implements how the

relatedness between concepts is computed while SentencesRlatednessMeasure computes

the relatedness between sentences.

The developed system has been used to participate in the TAC10 summarization task. The

evaluation results are reported in a subsequent section. In the next section I give an

overview of the main stages involved in the framework followed by the evaluation.

158

Wikipedia-based Summarizer

+preprocess()
+getAllMentions()

documentPreprocessor

+getRelatedness()

-MeasureType
-Thresholds
-weight

SentencesRelatednessMeasure

+getDocs()
+addDoc()
+removDoc()
+getSummary()

-Name
-Path
-headLine

DocumentSet

+getText()
+getTitle()
+getSummary()

-Name
-Path
-Title
-Text
+PreprocessedText
-docID
-HeadLines

Document

+getOrder()
+getScore()
+assignScore()

+Text
-Position
-Score

Sentence

+Text
-Freq
-ConWeights

Term

+SentenceWeighter()

+similarityMeasureType
-betaThreshold
-simThreshold
-positionPerc
-positionScore

SentencesRanker

+getInstance()
+getTermConcepts()
+getLinks()

WikiFeaturesRetrieval

+Text
-linkType
-Freq
-Weight
-fromCon
-toCon

Link

+process()

textProcessor

+getRelatedness()
+MeasureType
ConceptsRelatednessMetric

+Text
-Freq
-Weight

Concept

Figure 5.11: Class diagram showing the main classes of the Wikipedia-assisted
Summarizer package

5.5.1 Preprocessing

The first stage in the framework is to preprocess all fed documents by cleaning and then

parsing them to extract the text and topics and then tokenizing the terms and splitting the

sentences. Stop words are then removed.

5.5.2 Identifying the Concepts

Two methods have been utilized to detect concepts by employing the built Wikipedia-

thesaurus and its extracted features. The first one is through an exact match measure where

explicitly mentioned concepts within each sentence are detected. A concept having

multiple spellings and synonyms should still be detected by the system as a single concept.

This is due to the integration of redirect links within the thesaurus and the mapping

159

algorithm that associates sentences with the concepts they contain. As for ambiguous

terms and concepts, the system implements the Weighted Strong Links method that was

described in section 5.4.3.3.

In the second method I examine each term within a sentence and replace it with its

concepts vector using the term-concepts table. The concepts vector has a weight associated

to each concept signifying its relatedness with the term. After forming a concepts vector

for each term, I group all concepts vectors within a sentence by summing the scores of the

individual concepts which are repeated. This in effect applies word sense disambiguation

as relevant concepts are boosted and given a higher score in the merged concepts vector.

For example, the concept “Fox” has two meanings: “Fox (Animal)” and “Fox

(Broadcasting company)”. Similarly, the concept “Dog” is associated with “Mammals”. In

the sentence “A dog attacked a fox”, the meaning “Fox (Animal)” is boosted.

5.5.3 Measuring the Relatedness between Concepts

For every explicitly detected concept, it is possible to devise a vector of related articles

through the strong links method. The vector would contain the related articles and the

weight assigned to each based on the detected link types between them. I compute the

relatedness between any two concepts using the cosine measure formula as follows:












m

j j

n

i i

ji
ji

ba

ba

barel
2

1

2

,

)()(
),(5.17

where a and b are the two concepts to be compared and ai and bj are the weights associated

with their related articles as extracted from Wikipedia using the Strong Links method.

160

5.5.4 Measuring the Relatedness between Sentences

Each sentence would have a vector of the concepts detected in it using the exact match

method. In addition, it would have another vector of concepts generated from merging its

individual terms concepts as extracted from the term-concepts table. When evaluating two

sentences, I consider both vectors to compute the relatedness between them. The semantic

relatedness is computed by the following formula:

erPairsCount

BArel
SentSentSrel

),(
),(21  5.18

Where Sent1 and Sent2 refer to Sentence1 and Sentence2 respectively, A is the concepts

set in Sentence1, B is the concepts set in Sentence2, and PairsCounter is the number of

concepts pairs compared. This formula can be applied to both vectors individually.

5.5.5 Feature Selection

Each sentence is tagged with several features. These features are used to compute a score

determining the sentence importance.

Overlap with the Topic/Query: I consider the overlap between each sentence and the

topic of its documents set. I take into account the concepts overlap when assigning a score

to each sentence. Synonyms and concepts with alternative spellings are considered as a

single concept in my system with the help of the Wikipedia thesaurus and the custom

matcher.

Concepts Dominance: The explicitly mentioned concepts within a document set which

are most frequent and the topic concepts are considered to be the most important. When

computing a score for each sentence based on this feature, I consider how pertinent the

sentence concepts to the important concepts with the document set.

161

Sentence Position: The system assumes that sentences appearing at the top and bottom of

a document have more chances of being important than the rest. Therefore, sentences

appearing in the top 20% and the bottom 20% portion of a document are given position

scores 50% larger than the others.

5.5.6 Sentences Scoring

As with the WordNet-based summarizer, each sentence is given a score representing its

importance. The score for each sentence (i), is simply the linear combination of the

weights given for each feature. The formula used for assigning a score to each sentence is:

N

sPsnQsSrelsSrel iiii 


)1((
Score(i)

 5.19

Where:

 N = the total number of sentences

 n(si) = The number of sentences that have semantic relatedness score bigger than a

pre-defined threshold value

 P(s) = either 1 for sentences appearing at the top and end of the document, or 0.5

for the rest.

 Srel(si ,T) and Srel(si ,Q) are for the Semantic Relatedness between the Title and

the Query, respectively, and the sentence (i)

The rationale behind the preceding is similar to what was proposed for the WordNet-based

summarizer. The main difference here is that the system deals with Wikipedia concepts,

and the ones detected within a sentence either directly through EM or indirectly are taken

into account when scoring the sentence.

162

5.5.7 Evaluation

The Text Analysis Conference (TAC) is one of the well-known workshops in the field of

Natural Language Processing which provides the infrastructure necessary to evaluate

different methodologies with different tasks. In TAC10, I participated in the Guided

Summarization task with two different runs. The aim of the task is to provide short

summaries for a set of newswire articles. The generated summaries are not to exceed 100

words each. The TAC10 task is different from the ones given in the previous years in that

the participants are asked to make a deeper semantic analysis of the source documents

instead of simply relying on documents words frequencies to select the important

concepts. For this, a list of categories and important aspects for each category are given

and it is asked that the summary provided should cover all of the mentioned aspects if

possible in addition to any other information related to the topic.

The “update” part of the task is similar to that of TAC08. For a given set of documents,

the participants are asked to write two summaries, one for set A and another for set B. A

topic statement is provided in addition to the Categories aspects which have been added to

the task only this year. The participants are asked to write a summary for set A using the

given topic statement and the specified category. For set B, a 100-word update summary is

to be generated assuming that the user has already read the set of articles in set A. I

participated with two runs. The ids of my runs are 14 and 19. The α parameter was set to 1

for both runs giving higher emphasis to the topic since no user queries are provided. The

term-concepts table method was used with run 19 while strong links method was used for

14.

In TAC10, three metrics were used to evaluate systems summaries against refernce

summaries prepared by humans: 1) ROUGE which is based on overlapping units, 2) BE

163

which relies on Basic Elements and 3) manual scores for Summaries Content Units (SCU),

linguistic quality and responsiveness. In Table 5.5, I show the scores obtained in the

automatic evaluations and the ranks of my system in the different evaluations settings. The

total number of peers the system is evaluated against is 43. The obtained ranks show an

above-average result for all evaluations. The strong links method also gave generally

better performance than the one using the term-concepts table.

Scores Ranks

Evaluation ROUGE2 ROUGESU4 BE ROUGE2 ROUGESU4 BE

Baseline1 0.053515 0.086865 0.029415 30 33 30

Baseline2 0.060965 0.093925 0.035485 25 29 23

My System 14 0.073921 0.112955 0.044357 13 14 10

My System 19 0.073562 0.111683 0.043174 17 15 15

Average 0.061678 0.097744 0.034408

Best 0.082861 0.120605 0.049935

Worst 0.002875 0.009935 0.001015

Table 5.5: Evaluation results for the Summarization Task showing the scores and
ranks of the two submitted runs 14 and 19 relative to other peers

As for manual evaluations, the system also obtained competitive results, and the ranks are

relatively better than with the automatic evaluations. Among the submitted peers by the

TAC10 organizers were two baseline summarizers: Baseline1 which is a basic summarizer

that returns all leading sentences in the most recent document. Summarizers that rely

heavily on choosing lead sentences from test documents have been found in the literature

to obtain highly competitive results as reported in [173] and [174], especially when

dealing with newswire articles. The second baseline is the MEAD summarizer [103]. It

scores sentences according to a linear combination of features including centroid, position

164

and first sentence overlap and considers cross-sentences dependencies. It models all

documents as BOW and was also found to obtain competitive results when applied to

newswire documents. More details about this summarizer were presented in section 2.4.1.

In all evaluations performed, my two submitted runs obtained better performance than

both baselines and above average scores. Both baselines rely on BOW-based techniques

and perform no training. Comparing the results of my runs, I find that the employing

several aspects of Wikipedia resulted in a better performance than employing only the text

of Wikipedia articles as was performed with the term-concepts table. The strong-links

method benefits from the linking structure within Wikipedia in addition to its categories

and the manually crafted links by humans indicating the semantic relatedness between

concepts (See Also links).

The results of the manual evaluations are shown in Table 5.6. The ranks and scores for the

manual evaluation were comparatively better than those of the automatic evaluation. This

was expected as the summarizer is extractive and no modifications were made to the

extracted sentences on the submitted runs. Overall, the ranks for the different evaluation

measures appear to be competitive especially when taking into consideration the fact that

the system is unsupervised and does not require any training. The obtained results indicate

that summarizing with the strong links method give better performance than when using

the term-concepts table.

165

Scores Ranks

Evaluation Linguistic

Quality

Overall

Responsiveness

Linguistic

Quality

Overall

Responsiveness

Baseline1 3.6955 2.098 1 30

Baseline2 2.7065 2.489 30 23

My System 14 3.1735 2.6635 10 13

My System 19 3.1195 2.6305 11 17

Average 2.800802 2.33336

Best 3.6955 2.9455

Worst 1.163 1.0975

Table 5.6: Manual Evaluation Results for the submitted runs in TAC10

To better understand the reasons why the strong links approach worked better for

summarization than the other method relying on term-concepts, I examined the generated

summary for each method on document set D1001A and analyzed the top generated

concepts for the top sentences in each. The generated summaries for each method along

with the top concepts detected by each are illustrated in Table 5.7. Comparing the detected

concepts for each method, I find that some of the detected concepts with the term-concepts

table method do not seem to be much related to the articles being summarized. For

example, the concept Swat, Pakistan was found to be among the top contributing concepts

when generating the summary. This was in part due to the chosen context size for the term

SWAT being larger than it should be. The article Swat, Pakistan in Wikipedia included

terms such as killing, kill, death, school and student which appear to be among the

surrounding terms for the SWAT term in the provided test documents. This noise caused

by the large context size has affected the performance negatively for the term-concepts

table method. On the other hand, the strong links method relied on the explicitly

mentioned concepts within the test documents and inferred the top related concepts to

166

detect the theme of the test documents and form the summary at the end. This had the

effect of correctly identifying the right concept of the term SWAT.

Term-Concepts
table

Summary:
The day that Columbine High School students are to
return to class has been delayed because so many have
been attending funerals for students killed in the April
20 massacre, an administrator said Tuesday. Two days
earlier, a massacre by two students at Columbine High,
whose teams are called the Rebels, left 15 people dead
and dozens wounded. Harris and Klebold, who authorities
say planned the massacre for more than a year, have been
portrayed by classmates as outcasts from the popular
students at Columbine.

Top Concepts:
Eric Harris and Dylan Klebold, Administration of Business, High School, Student,
School , Swat, Pakistan, Left-wing Politics, Funeral, Columbine, Colorado, Death,
Day School, The Massacre, Federal Government of the United States, Popularity

Strong Links

Summary:
The sheriff's initial estimate of as many as 25 dead in
the Columbine High massacre was off the mark apparently
because the six SWAT teams that swept the building
counted some victims more than once. The day that
Columbine High School students are to return to class
has been delayed because so many have been attending
funerals for students killed in the April 20 massacre,
an administrator said Tuesday. Two days earlier, a
massacre by two students at Columbine High, whose teams
are called the Rebels, left 15 people dead and dozens
wounded.

Top Concepts:
Eric Harris and Dylan Klebold, High School, School, Student, Columbine High
School, Funeral, Columbine High School Massacre, Murder, Local Government,
Funeral, SWAT, Killed in Action, Rebellion, Homicide, Columbine, Colorado,
Authority

Table 5.7: Sample summary output for the two submitted runs on the document set
D1001A in TAC10

In order to get a deeper view at the performance of the system, I tried to obtain the

ROUGE scores my best run obtained for each topic in the evaluated documents sets A and

B. I then found the rank of my system in each topic, and adjusted it with 1/(1+log(r))

where r is the rank of my system. I applied that formula to my ranks in each topic and

obtained the results illustrated in Figure 5.12, Figure 5.13, Figure 5.14, and Figure 5.15

where 1 means the best rank was obtained while 0 means the worst.

167

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

1 3 5 7 9 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 3 3 3 5 3 7 3 9 4 1 4 3 4 5
D o c ID

A
d

jR
a

n
k

-R
O

U
G

E
2

Figure 5.12: Adjusted Ranks Obtained as applied on all Topics in Set A with
ROUGE2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
DocIDs

A
d

jR
an

k-
R

O
U

G
E

-S
U

4

Figure 5.13: Adjusted Ranks obtained for Topics in Set A with ROUGE-SU4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
DocID

A
d

jR
an

k-
R

O
U

G
E

2

Figure 5.14: Adjusted Ranks for Topics in Set B with ROUGE-2

168

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45DocID

A
d

jR
an

k-
R

O
U

G
E

S
U

4

Figure 5.15: Adjusted Ranks for Topics in Set B with ROUGE-SU4

The results shown in the figures demonstrate that my system obtained the best ranks for

topics 1 and 39 from Set A followed by topics 15, 16 and 24. The worst performing topics

were 14, 28, 29 and 46. In Set B, the best ranks obtained were for topics 1, 9, 10 and 34

while the worst were for 2, 19 and 24.

When examining the summaries of the low ranking topics, it was observed that in many

cases the sentences added to the summaries by my runs were long and comprised nearly

half of the summary length. Introducing means to simplify or compress these long

sentences without removing the important information they contain could allow for adding

even more content to the summary without going beyond the summary length limit. In

addition, some summaries contained sentences having redundant information. Handling

redundancy is likely to introduce improvements to the summarizer. In the next chapter, I

investigate handling these limitations through the introduction of an SSM module and

present its effects on the system.

169

5.6 Conclusion

In this chapter, I explained how Wikipedia can benefit a summarization system through

the abundant and diverse knowledge it contains. I described the need for a module to

extract important content from Wikipedia and transform them into a useful format that can

be used in NLP-based applications. I introduced my Wikipedia Features Extractor and

detailed its implementation. Afterwards, I examined the usage of the extracted features in

the application of WSD and evaluated the performance of the system. Following that, I

described how the extracted features can help enrich the representation of documents and

aid in the task of Automatic Summarization. In addition, I introduced measures for

computing the relatedness between any concepts, text fragments or sentences. The results

of the evaluations performed on the summarization system gave competitive results and

shed light on potential areas of improvement such as simplifying sentences and handling

redundancy. In the next chapter I describe my attempt in that direction and detail my

findings.

170

Chapter 6

Sentences Simplification for Automatic Summarization

In this chapter, I emphasize the need for conserving space within sentences by introducing

a Sentences Simplification Module (SSM). The module is aimed at shortening the length

of sentences via either splitting or compression. I describe how the module is integrated

with the Wikipedia-based summarization framework. I highlight the performance

differences obtained from introducing such a module by running a series of evaluations.

6.1 Overview

The goal of summarization systems is to provide summaries containing as much

information as possible meeting the user’s needs within a confined space determined by

the previously-set summary limit. Since the developed summarization systems that were

described in the previous chapters are extractive, they are inherently limited to only the

sentences that exist in the original test documents. A sentence may contain important

information in part and non-relevant information in another. Also, a sentence that may be

central to the theme of a document may contain a mixture of new and redundant data to

what is already available in the summary. It is therefore necessary to enforce a

methodology that allows for conserving more space within sentences and including as

much content as possible without sacrificing novelty or imposing redundancy. For this, it

is probably best to view how linguists and discourse analysts perform their studies on text

and sentences in particular. Their analysis usually begins by separating clauses and

phrases within a sentence to identify their features and properties [175]. In this chapter, I

aim to apply a similar step by introducing automatic sentences simplification to the

171

Wikipedia-based summarization framework for the purpose of better information

extraction.

Sentence Simplification can be defined as the operations used to simplify a sentence

structure and grammar and transform it into a simpler form that preserves the underlying

meaning or information. The changes being made to the original sentence include

reordering or dropping terms/phrases within the sentence, splitting the sentence, merging

its clauses or replacing terms/phrases with others which are either shorter or simpler. The

focus here is to implement sentences simplification by splitting and compressing

sentences.

Sentences Simplification has been applied in the literature to different applications with

different motivations. In [176] and [177], it has been used to create sentences that are

easier to read for humans and new language learners in particular. Their target was to

create sentences which are grammatically correct, short and cohesive. Sentence

simplification has also been applied in summarization systems to shorten the length of

sentences. The CLASSY summarization system described in [33], [178] and [179] for

example employs a sentence compression module by applying a set of rules to all

sentences before choosing the summary candidate sentences. Cut-and-Paste in [45] and

other summarizers in [180], [181] and [182] employ a similar approach. In [22], the

authors applied a sentences compression module after choosing the candidate sentences in

a post-processing step.

In the mentioned systems, compression is applied independently as a separate process to

all sentences and is not affected by how candidates are selected. It is possible that two

sentences containing an important piece of information are compressed by removing that

important content from both. It would be optimal to remove the redundant info from only

one sentence while keeping it in the other if both sentences were to be included in a

172

summary. Implementing this would require a system having the capability of applying a

dynamic set of rules to different sentences based on what is already contained in the

summary.

It was suggested in a pilot study in [183] that summarization systems implementing

compressions would have an edge over those that do not if the compression took into

account the different references and relationships among sentences. In [184], an approach

was applied to tackle the mentioned issue. Their system would apply a set of rules for

trimming sentences and creating multiple versions of each sentence using the rules

described in [24]. After creating multiple compressed versions of each sentence, the core

summarizer would consider all versions of each sentence as potential summary candidates.

To choose the optimal candidate, the system would check the redundancy of the sentence

against the current summary and select the least redundant. Another system with a similar

approach was implemented and described in [185]. Both systems emphasized preserving

only important content and do not necessarily preserve semantic content. Redundancy

checking is based on BOW methods and do not capture the semantics similarity and

relatedness between the different sentences and the concepts they carry. In my system, I

also employ a similar methodology by producing multiple simplified versions of

sentences. However, the focus here is rather on simplifying and compressing sentences

while in the same time preserving as much relevant semantic content as possible. For that,

the Sentences Simplification Module (SSM) I developed is integrated with the Wikipedia-

based summarizer described in the previous chapter and an iterative process is added.

173

6.2 Sentences Simplification Module

Before simplifying a sentence, it is necessary first to devise some means for interpreting

its text. The interpretation can be syntactic, lexical or semantic. Focus here is on

syntactical interpretation of sentences. For that, dependency tree of the sentence is drawn

with help from Stanford’s Parser14 which adopts the Penn Treebank conventions15. With

the tree drawn, one can apply any set of rules to make the changes desired to the sentence.

In effect, the rules may allow for simplifying a long and complicated sentence through

compression or splitting into several sentences. The simplified sentences, along with the

original, become summary candidates and the choice is based on the contained semantic

information in each and the redundancy and relevancy to what is already in the current

state of the summary. Factors like sentences length (before and after the split/compression)

and the existence of dominant concepts/words/phrases help play a role in making

decisions dynamically. Figure 6.1 gives an overview on the simplification process. It can

be noted that the parser produces two types of output: the phrase structure tree and the

dependencies which are otherwise known as grammatical relations. The sentence

simplification module outputs the simplified versions of the sentence which are used in

combination with the original sentence as inputs in other parts of the system to choose the

best summary candidate from the list.

14 http://nlp.stanford.edu/software/lex-parser.shtml
15 Phrase structure annotation conventions used when the parser was trained. More details are available in
the appendix

http://nlp.stanford.edu/software/lex-parser.shtml

174

Figure 6.1: Overview of Sentences Simplification Module

In complex sentences, facts, events and statements can be presented with various linguistic

constructions. I present an example illustrating this by the sentence:

The latest earthquake, the sixth this year, passed Nanchang in east of China , and waters

were rising in Putian, in east China’s Fujian province , on the middle reaches of the

Fuzhou, state television reported last Sunday.

In Figure 6.2, the types of the different clauses and phrases contained within that sentence

are labelled. After applying the simplification process to that sentence, the results I obtain

are the sentences shown in Figure 6.3. In the next two subsections I describe the two main

processes involved in SSM, namely Sentences Splitting and Sentences Compression.

Figure 6.2: An example of a complicated sentence with labelling of different clauses
types

175

Figure 6.3: Result of the simplification process when applied to a complicated
sentence

6.2.1 Sentences Splitting

Sentences with different syntactic formats would need to be handled differently with

different rules applied to achieve the splits desired. Based on the generated parse tree and

grammatical relations for the original sentence and the boundary terms found in a

sentence, it is decided what rule to apply. The boundary terms are chosen to be who,

which, that, and and or. Many of the rules mentioned here have been applied in the

literature in different studies for different systems including [176], [186] and [187]. The

following are few scenarios illustrating the patterns being detected and processed by SSM:

176

Example 1: The man who ate the poisoned food died yesterday.

Figure 6.4: Parse Tree of the first Example for Splitting Sentences

Used Modifiers:
rcmod(man-2, ate-4)
Generated sentences:
The man died yesterday. The man ate the poisoned food.

In the above example, the boundary term who appears before the phrase ate the food

yesterday. When viewing the phrase structure tree for the sentence, a phrase of type SBAR

which has WHNP as one of its children (or grandchildren) is detected. This indicates that a

potential split is in place. The split is achieved by separating the SBAR clause from the rest

of the sentence resulting in two sentences, with one being incomplete. These two

sentences are:

The man died yesterday.

who ate the poisoned food.

To complete the second sentence, I look at the phrase proceeding the boundary term who,

which is of type VP. With the relation rcmod(man-2, ate-4), one can tell that man is the

word that should be preceding the main verb in the incomplete sentence.

177

Example 2: I have read the books which you bought last week.

Figure 6.5: Parse Tree of the Second Example for Sentences Splitting

Used Modifiers:
rcmod(books-5, bought-8)
Generated Sentences:
I have read the books. You bought the books last week.

In this sentence, the boundary term which is proceeded by the Noun Phrase (NP) you. For

this scenario, I find the following VBD, which is bought, and use the relation rcmod to

find the subject that is being referred to by that verb. I obtain books as the answer. The NP

of books is used to complete the second sentence.

178

Example 3: I have read the books that you bought last week.

Figure 6.6: Parse Tree of the Third Example for Sentences Splitting

Used Modifiers:
dobj(read-3, books-5)
ccomp(read-3, bought-8)
Generated Sentences:
I have read the books. You bought the books last week.

The boundary term in this example is that. It is found underneath an SBAR and has an NP

following it. The VBD bought is used with the relation ccomp to find its complement:

read. The dobj relation is then employed to specify the direct object of the verb which is

books in my example.

179

Example 4: I have read the books you bought last week.

Figure 6.7: Parse Tree of the Fourth Example for Sentences Splitting

Used Modifiers:
dep(read-3, bought-7)
dobj(read-3, books-5)

Generated Sentences:

I have read the books. You bought the books last week.

This example does not contain a boundary term. Two S clauses appear with NP and VP for

each. The segmentation takes place by separating the clauses from each other. Since the

verb bought is dependent on read, I use the relation dobj to determine the NP following

bought.

180

Example 5: The team won the golden medal and achieved the highest team score of the
season

Figure 6.8: Parse Tree of the Fifth Example for Sentences Splitting

Used Modifiers:
conj_and(won-3, achieved-8)
nsubj(won-3, team-2)

Generated Sentences:

The team won the golden medal. The team achieved the highest team score of the season.

The boundary term in this example is and which separates two VPs. The relation conj_and

is used to link the main verb of the second clause with the first and thus find the shared

object.

181

Example 6: The infected rabid fox eventually dies, but a simple scratch can spread the
virus to other animals or people

Figure 6.9: Parse Tree of the Sixth Example for Sentences Splitting

Used Modifiers:
conj_but(dies-6, spread-13)

Generated Sentences:

The infected rabid fox eventually dies. A simple scratch can spread the virus to other
animals or people.

The boundary term in this example is but. It’s located between two clauses of type S. Both

clauses have NPs followed by VPs as their children. This pattern triggers a possible split

which is achieved with help from the relation conj_but to construct the new sentences.

6.2.2 Sentences Compression

I adopt the Trimmer algorithm described in [24] and [92] by applying some of its syntactic

compression rules. The original Trimmer algorithm aims to transform sentences into

Headline-style phrases by detecting patterns in a sentence parse tree and removing certain

nodes from the tree based on the applied rule and detected pattern. The goal here is to

generate sentences, not headlines, which are short, cohesive and grammatically correct.

Therefore, I implement only some of the rules that would be most suitable for producing

complete sentences and discard those resulting in headlines-styled text. At first, the rules

182

are applied to a sentence independently. And then in a second iteration, they are all applied

to the sentence in order with the output of one rule being fed to the next. The aim of both

operations (applying rules independently and in order) is to produce as many compressed

and valid versions of a sentence as possible. The rules being used are the following:

1- Keep Leftmost S Root and Remove the rest

Keep the leftmost S Root which has both NP and VP in the sentence and the remove the

rest.

Figure 6.10: Keeping the leftmost S Root and removing its siblings

Original Sentence: The Libyan leader and his wife were in good health, Mossa Ibrahim
told a press conference.

After compression: The Libyan leader and his wife were in good health.

2- Remove Time Expressions

Remove temporal expressions from sentences. This is achieved by deleting the PP node

which has an NP child with a Time word as one of its leaves. The deletion takes place by

removing the Prepositional Phrase (PP) with all of its children.

183

Figure 6.11: Removing Time Expressions for Sentences Compression

Original Sentence: After the raid took place on Saturday around 8:00 pm, Ibrahim took a
group of journalists to the site of the house.

After Compression: After the raid took place, Ibrahim took a group of journalists to the
site of the house.

3- Remove Conjunctions

Figure 6.12: Removing Conjunctions for Sentences Compression

For any sentence containing AND or BUT as a CC, I remove the preceding phrase of BUT

and proceeding for AND.

Before Compression: NATO continued its precision strikes against Gaddafi regime
military installations in Tripoli overnight but would not confirm the Libyan claim about
the assassination attempt.

184

After Compression: NATO continued its precision strikes against Gaddafi regime military
installations in Tripoli overnight.

4- Remove Complements

I remove IN nodes which have the term that as their leaves.

Figure 6.13: Removing Complements for Sentences Compression

Before Compression: The alliance acknowledged that it had struck a command and control
building

After Compression: The alliance acknowledged it had struck a command and control
building

185

5- XP over XP

XP here refers to either NP or VP. For first NP-over-NP or VP-over-VP where inner XP is

the first and leftmost child, I keep the left child and remove all of the child siblings. Note

that the child XP must be the first and leftmost child of the parent XP for the rule to apply.

Figure 6.14: Removing Complements for Sentences Compression

Before Compression: A woman whose husband killed himself with a circular saw in
Plymouth earlier this week was bludgeoned to death.
After Compression: A woman was bludgeoned to death

186

6- Remove PP under SBAR

PP expressions appearing under SBARs are removed.

Figure 6.15: Removing PPs under SBARs for Sentences Compression

Before Compression: The administration said it has deployed several countermeasures to
reduce oil dependence such as supporting research in alternative energy sources.
After Compression: The administration said it has deployed several countermeasures to
reduce oil dependence.

187

7- Remove SBAR
I remove SBARs in this step as illustrated in the following example.

Figure 6.16: Removing SBARs for Sentences Compression

Before Compression: NATO forces whose air strikes could not stop Gaddafi attacks on
civilians decided to supply rebels with weapons.

After Compression: NATO forces decided to supply rebels with weapons.

188

8- Remove PP

I remove PP nodes in this rule.

Figure 6.17: Removing PPs for Sentences Compression

Before Compression: NATO continued its precision strikes against Gaddafi regime
military installations in Tripoli overnight.

After Compression: NATO continued its precision strikes.

6.3 Summarization Methodology

The basic summarization methodology here relies on a modified version of the Wikipedia-

assisted summarizer that utilizes the strong weighted links approach described in the

previous chapter. The major change is in the introduction of SSM and an iterative process

handling redundancy. Figure 6.18 shows the architecture of the updated summarizer with

the iterative process inside the box. After preprocessing the documents, clusters of

sentences are formed with each cluster having the original sentence in addition to its

simplified versions as generated from SSM. Afterwards, all sentences are given a score

using the weighted links method. Then, an iterative process is applied after which a

summary is produced.

189

The approach I use here assumes that an optimal summary would contain the largest

amount of the most useful concepts within a limited space. This is implemented in the

system through the introduction of an iterative process enforcing this idea. In the previous

approach described in section 5.6, each sentence was given a score signifying its

importance based on a set of features: overlap with topic/query, concepts dominance and

sentence position. With the iterative process employed here, two of the mentioned features

become dynamic, namely overlap with topic/query and concepts dominance. After each

iteration, the top ranking sentence is added to the summary and its concepts are identified.

The identified concepts are then removed from the source documents and all remaining

sentences are rescored. The iterative process can be summarized by the following steps:

1- After scoring all sentences for the first time, I obtain a ranked list of candidate

sentences with the top being with the highest score.

2- I remove the top highest scoring sentence from the Candidate Sentences List (CSL)

and add it to the summary. Only one sentence should exist in the summary at this

stage.

3- The cluster of the sentence that was just included in the summary is added to a

Sentences Exclusion List (SEL). The cluster should contain the non-simplified

version of the sentence in addition to all of its simplified versions.

4- I detect all the concepts present in the sentence that was just added to the summary

and add them to a Concepts Exclusion List (CEL).

5- I re-score all remaining sentences taking two factors into account: First, sentences

in SEL should be ignored. Second, any occurrence of a concept that exists in CEL

should be ignored too.

6- Add the highest scoring sentence to the summary and verify the summary length

does not exceed the given limit. If it does not, go to step 3. Otherwise go to the

post-processing stage and produce the summary.

Note that in step 5, redundancy is implicitly enforced by counting concepts only once and

preferring sentences with a high density of concepts. Simplified sentences that are short

190

and contain important and relevant concepts would still be selected as the approach

ensures that no concept repetition within the summary takes place.

Figure 6.18: Architecture of the SSM-based Summarizer

6.4 Evaluation

To evaluate the implemented system, I used the TAC10 dataset with the same parameters

as those used in the previous chapter for a better performance comparison. Two other

systems were used as baselines. The first utilizes the Trimmer algorithm and creates a

single compressed version of each candidate sentence. The summary is then formed by

aggregating the compressed versions of the highest ranking sentences. The second

baseline is the summarizer implemented in the previous chapter using the strong weighted

links without SSM. The results obtained with the ROUGE metric are illustrated in Table

6.1 and Figure 6.19. The letters A and B refer to the labels of the two main documents sets

in TAC10, namely A and B which are both used during the testing stage for summarizing

documents.

191

Figure 6.19: Comparison of the ROUGE results obtained for the different systems

Evaluation Trimmer NO SSM With SSM
ROUGE2-R (A) 0.07011 0.07883 0.08173
ROUGE2-R (B) 0.06160 0.06901 0.07101
ROUGESU4-R (A) 0.10026 0.11889 0.11917
ROUGESU4-R (B) 0.10401 0.10702 0.10815

Table 6.1: ROUGE results suggest a performance improvement with the SSM-based
summarizer

It can be noted from the results that the introduction of the SSM-based system led to

various levels of improvements to the ROUGE results (1.1% to 4.6%) when compared

against the original Wikipedia-based summarizer. This goes along with the intuition that

compressing sentences should increase the capacity of a summary. With the increased

capacity, it is vital to have a dynamic features selection that can aid with sentences

selection. This is evident by examining the results of the Trimmer baseline where

compressing all sentences in the summary as a post-processing stage caused a loss to the

system’s performance.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R O U G E 2-R (A) R O U G E 2-R (B) R O U G E S U 4-R (A) R O U G E S U 4-R (B)

S
co

re

W ith H edgeTrim m er
N O S S M
W ith S S M

192

6.5 Conclusion

In this chapter, I described a module I implemented for simplifying sentences and

producing multiple splits and compressed versions of each sentence. The simplification

module, SSM, is aimed to help with summarization by segmenting sentences to remove

non important parts while retaining relevant parts for inclusion in the summary. For this

purpose, the syntactical interpretation of sentences allows for patterns detection and

applying a set of rules to simplify sentences whenever possible. After obtaining multiple

simplified versions of each sentence, another module within the Wikipedia-based

summarizer chooses the most important and least redundant sentence to include in the

summary. An evaluation was performed and the obtained and reported results indicate an

achieved improvement in the summarizer.

193

Chapter 7

Classification Aided with Wikipedia

Documents classification is the task of assigning a document to one or more of previously

defined categories based on the document content. After building the Features Generator

for Wikipedia, I chose classification as the first application to explore. This was supported

by the notion in [188] that text classification is the most suitable area to explore to test the

effectiveness of newly constructed features. With documents classification, the system

deals with documents previously constructed by humans with no user interaction. The

results of the system classification can be checked for accuracy against the humans’

classification for the same documents. In addition, no human queries that require further

expansion or processing are usually needed with classification.

In this section, I describe a novel classification system that employs the Wikipedia

extracted features in a unique way. Instead of mapping a documents text to a concept or a

small group of concepts as done in most of the previous work, I map it to all of the

previously-processed Wikipedia concepts. This is achieved by first processing all

Wikipedia articles and extracting the relationship between each of its terms and all the

concepts existing within Wikipedia as was described in section 5.3. This step is performed

only once and its result is utilized during the training and classification stages to compute

how similar each Wikipedia concept is to text fragments existing in the documents. In a

following step, I employ the concepts hierarchies existing within Wikipedia to analyze the

relationship between the concepts in each document. Furthermore, I apply a centroid-

based method directly on the documents contents. The centroid-based classifier extracts

inter-class, inner-document and inter-document features to form prototype vectors. The

194

result of all the mentioned steps (Concepts, Categories and Text) is then combined to form

a prototype vector for each class during the training stage. The classifier employs the

formed vectors to decide which class each of the test documents belongs to in a fast and

efficient way. My experimental results on the 20-newsgroup dataset and the ODP

collection demonstrate that my classifier performs very well when compared to previous

methods.

7.1 System Overview

I propose a system for classifying text documents with the aid of external knowledge.

Figure 7.1 shows the main stages involved during the process. The system accepts as input

the training documents along with the classes they belong to. In addition, the system takes

as input the test document that needs to be classified. All of the documents are initially

parsed and preprocessed to remove stop words and apply tokenization as was performed in

the Wikipedia-based summarizer and described in section 5.5.1. Afterwards, the

Wikipedia-extracted features are used to aid in enriching the provided training and test

documents. This enrichment process produces several vectors reflecting different aspects

of the documents including the important terms, top Exact Match (EM) concepts/related

concepts, and the top M related categories. After generating the different vectors, they are

passed to the similarity computing module which in return produces a sorted list of the top

classes the Test Document TD is likely to belong to.

195

Figure 7.1: A general framework for Wikipedia-assisted Text Classification

The first stage in the framework is to preprocess all fed documents by parsing them first to

extract the text and then tokenizing the terms. Following that is the removal of stop words.

Terms distributions are then taken into account by computing the term frequency TF and

Inverse Document Frequency IDF. The common TFIDF weighting scheme is used to find

a weight for each term in the documents. These values are used in other system modules as

described in the heuristics section 7.4.2.

In Figure 7.2, I show the class diagram of the implemented classifier with the main classes

illustrated. The classes textProcessor, DocumentPreprocessor and DocumentSet, Sentence,

Term, WikiFeaturesRetrieval and Concept are the same as those implemented in the

WordNet-based summarization system and described in chapter 4 and 5. Each Category is

for represented with FeaturesVectors which are built and prepared by the model

FeaturesBuilder. When classifying documents, the similarity between FeaturesVectors is

computed with help from the class VectorsSimMeasure.

196

Wikipedia-based Classifier

+preprocess()
+getAllMentions()

DocumentPreprocessor

+getSimilarity()

-MeasureType
-Thresholds
-weight

VectorsSimMeasure

+getDocs()
+addDoc()
+removDoc()

-Name
-Path
-headLine

DocumentSet

+getText()
+getTitle()

-Name
-Path
-Title
-Text
+PrepText
-HeadLines
-Category

Document

+getOrder()

+Text
-Position

Sentence
+Text
-Freq
-ConWeights

Term

+getInstance()
+getTermConcepts()
+getSLinks()

WikiFeaturesRetrieval

+process()

textProcessor

+getRelatedness()
+MeasureType

ConceRelMetric

+getRelConcs()

+Text
-Freq
-Weight

Concept

+getFeats()
-Title

Category

+buildTFIDF()
+buildITC()
+buildCC()
+buildG()

-Thresholds
FeaturesBuilder

-Type
-FeaturesWeights

FeaturesVectors

Figure 7.2 Class diagram of the Wikipedia-based classifier package

7.2 Using the Wikipedia-Extracted Features

After preprocessing the documents, I apply a set of heuristics focusing on different aspects

of the input documents. The goal is to provide the top recommended classes for the Test

Document TD with help from the best or all of these heuristics. For each class, I use the

documents that belong to it as the basis for extracting representative features of that class.

These features are represented as vectors in most of the applied heuristics and are

evaluated according to the evaluation policy of the heuristic that generated the features.

The scores of all evaluation vectors are aggregated at the end when computing the

similarity between the classes’ vectors and the TD vector. In the following sections, the

extracted features are described along with the process applied to each.

7.2.1 Important Terms Extraction

For each class C, I have a group of training documents di belonging to that class, where i

refers to the document number. The idea is to extract a list of the most important terms

197

ordered by their weights to represent each class. The aim is to have representative terms

for each class that best distinguish it from the rest of the text. This is similar to many other

approaches previously implemented in different applications including documents

clustering [165], cluster labelling [189] and automatic text summarization [43]. In my

work, I chose to implement this and use it as one of the baselines during the evaluation

comparisons.

I extract the important terms in each class and give each a score using a weight scheme

similar to the one described in [189] and [190]. In the implemented metric, inter-class,

inner-document and inter-document features are used to compute a weight for each term in

each class. They are then grouped in a set for each class to form a representative centroid.

For a term t in a class C, the term weight w(t,C) is derived using:

),()log(),(),(Ctidf
CF

C
CtctfCtw

t

 7.1

Where ctf(t,C) refers to the class term frequency and idf(t,C) is the inverse document

frequency. The inner part of equation 7.1 is for the inverse class frequency and attempts to

capture the different distributions of a term within the different classes. Intuitively, a term

that appears in one class is deemed to be important for that class. Similarly, if a term

appears in all of the classes, its discriminative power wouldn’t be that important for text

classification.

As for the TD, I simply find the TFIDF weight for each term. During evaluation, the

formed TD vector is compared against the vectors of all classes using the cosine similarity

measure. A ranked list of the recommended classes is then generated solely on the basis of

the obtained similarity scores.

198

7.2.2 Concepts Extraction

The documents that belong to each class can be represented in the form of a concepts

vector. The purpose here is to find the best representative concepts for each class that best

separate the class’s documents from the rest of the classes. This is usually achieved by

devising a mapping scheme that uses the class documents contents to decide which

concepts they are mostly related to. Previous approaches have been considered for

achieving this. For example, [191] defined some Wikipedia relations between the articles

such as synonymy and polysemy and used them with the categories structure to aid in

mapping any text fragment to concepts. In [165], the authors created a Wikipedia concepts

matrix from the content of the Wikipedia articles and used it as a bridge for the mapping.

In my work, I employ different heuristics for this task utilizing the term-concepts table, the

previously defined strong links and the concepts titles.

7.2.2.1 Expansion with Term-Concepts Table

In the first heuristic, I use the Term-Concepts table to form a vector of concepts for each

document in a class. Afterwards, all of the concepts vectors in a class are aggregated and a

centroid is created for each. When grouping the generated concepts for different adjacent

terms, the aggregation helps boost the multi-word concepts describing the contexts of the

targeted text. However, this is also not without a limitation as large segments of text

usually produce noise. In addition, important concepts which are briefly mentioned in a

relatively small number of sentences may not appear in the concepts list. I therefore treat

each sentence as a separate text fragment and generate a concepts vector for each. I keep

only a K maximum of the top representative concepts for each sentence before grouping

them altogether in the document. This way, important concepts which are mentioned once

or twice in the document would still appear in the document’s concepts vector.

199

7.2.2.2 Expansion with Strong Links

In another heuristic I applied, I used a revised Exact Match (EM) approach that is most

similar to the one suggested in [165] to find concepts in a document. The idea is to

construct the concepts vector by finding the explicitly mentioned concepts within each

document in a class. For a text fragment that covers more than one concept using the same

terms, I only keep the concept spanning the largest number of terms. For example, each

term in “cat fish”, namely cat and fish, is a title for a concept. However, because there is a

third concept titled Cat fish that spans the two adjacent words, I only choose that concept.

After finding all of the EM concepts in a document and adding them to the list, I extend

each of them with a maximum of RL of the most related concepts. I use the strong links

method previously defined to find the most related concepts to an EM concept. The weight

assigned to each EM concept is simply its frequency multiplied by a constant (chosen as 8

in my experiment). As for the weight of a related concept, it would be its frequency

multiplied by the actual weight of the different links types given in Table 5.2 which

depends on how strong the association is. This approach is enhanced with the redirect

links to find alternative names or abbreviations for some concepts. The concepts lists for

each document would then contain two types of concepts: EM concepts and their related

concepts. When computing the similarity between a class concepts list and a TD concepts

list, the cosine similarity measure is used.

When an ambiguous EM concept is encountered in a document, I attempt to find its exact

meaning by using the Weighted Strong Links based methodology previously described but

here taking into account the class label, the EM concept and its surrounding words.

200

7.2.3 Categories Mapping

A categories vector is generated for each class after forming the concepts vectors. The

previously extracted categories structure from Wikipedia is utilized for this task. After

obtaining the concepts vectors with a score associated to each concept, I form a new

similar vector in which the concepts are replaced with the categories they belong to. When

several concepts share the same parent category, the concepts scores are aggregated into

one and then they are replaced with the shared parent category in the categories vector.

This aggregation in turn signifies the dominant categories which are parents to the largest

number of concepts in a class. The same process is applied to the TD as well to generate a

categories vector.

7.3 Classifying a Test Document

In the previous sections, I described the different stages involved in obtaining the

important terms from each class and enriching its documents content with Wikipedia-

extracted features including concepts and categories vectors. I highlight here how to

classify a TD and combine the previously defined similarity measures into one. This is

achieved by computing the aggregated score gs(TD, CL) for the test document TD and the

class CL as follows:





q

i
ii CLTDSimCLTDgs

1

),(),( 7.2

Where q is the total number of heuristics or methods I apply, i is the number of the

heuristic and β is the weight I give to the different heuristics I implement. The sum of all

βi in the above formula is one and thus each βi is always given a value between zero and

one. In this work, I experimented with different values of β in the evaluation section as I

deemed reasonable and reported their results.

201

7.4 Experiments and Evaluation

My approach relies on the use of the vast and highly organized human knowledge existing

within Wikipedia giving it a major advantage over other approaches using smaller

thesauruses such as WordNet or Open Directory Project (ODP). I use the preprocessed

version of Wikipedia that was described in chapter 5 for the task at hand.

7.4.1 Dataset

I performed classification experiments on two data collections. The first is the 20 News

Groups (20N) which has newsgroups documents that were categorized manually into 20

different classes. Each class has nearly 1,000 documents making the total number of

documents available in the collection almost 20,000. The second collection was built from

the ODP. I selected 100 random categories and downloaded 100 pages for each category.

The total number of documents is 10,000. Both datasets are balanced in the sense that the

number of contained documents in every category is almost the same.

To both collections, all documents are parsed and tokenized. For the 20N collection only

the title, subject, keywords and content are kept. Also, I keep only the titles and the

content of the downloaded pages for ODP. I computed the TFIDF weight for each term.

Terms appearing in the titles and the keywords section have their weights doubled to

emphasize their importance. Unless otherwise stated in one of the applied heuristics, the

title and the keyword sections are treated as part of the content of the articles.

I divided each dataset into five random, but equivalently sized sub-datasets retaining the

documents distribution balance in each category. I use the five sub-datasets to evaluate my

methods five times. Then, I take the average of the obtained accuracies as the final

evaluation result.

202

7.4.2 Methods and Evaluation Setup

I conducted several experiments to evaluate the different methods and heuristics suggested

in this work. Specifically, I compared the performance of the following approaches:

 TFIDF: A centroid is formed for each class using the common TFIDF weights of

its documents terms.

 ITC: Important Terms Centroid is created for each class based solely on the

important terms in the class documents. Formula 7.1 is used to compute the terms

weight in the centroid and TFIDF is used for the weights of TD. Cosine similarity

is employed for comparisons.

 CC-TM: Concepts Centroid is created for each class. The concepts vector is

constructed by expanding the documents terms with the term-concepts table as

described in section 7.2.2.1.

 CC-SL: Concepts Centroid is constructed for each class with the help of the strong

links after detecting the explicitly mentioned concepts in the document as

described in section 7.2.2.2. All of the explicitly mentioned concepts within a

document were expanded through the inclusion of their 10 mostly related concepts

using the strong links method.

 G: Categories centroid is created for each class by aggregating the categories of the

encountered concepts using the best EM method.

 ITC-CCTM: This forms vectors for the Important Terms in each class, and the

Concepts using CC-TM method.

 ITC-CCSL: This forms two vectors for each class, namely Important Terms vector

and EM Concepts extended with related concepts using the strong links method.

203

 ITC-G: Important terms, and categories vectors are created for each class. The

categories vector is implemented using the EM method, though the concepts

vectors are not used directly when computing the similarity between the different

vectors.

 ITC-CCTM-G: Important Terms, Concepts and Categories vectors are created. The

categories vector is implemented using the EM method while the concepts vector

is constructed as in CC-TM.

 ITC-CCSL-G: Important Terms, Concepts and Categories vectors are created. This

is similar to ITC-CCTM-G except that the concepts vector is constructed as in CC-

SL instead.

For all the methods that utilize the term-concepts table, I applied the boosting to the table

with the parameters FLBS and SLBS assigned to 1 and 1.05 respectively which I found to

be reasonable at the time. When Forming the Concepts centroid, I chose 20 for K as the

maximum number of concepts to be obtained for any term from the term-concepts table.

Equation 7.2 takes part in the implementation of the approaches: ITC-CCTM, ITC-CCSL,

ITC-G, ITC-CCTM-G, and ITC-CCSL-G. For these approaches different values of β has

been assigned and the results I display are those obtained by the best combination. The

evaluation accuracy for a run is measured by dividing the number of correctly categorized

documents over the number of total documents in a class. As for the categories labels of

the 20N, they were updated to include full descriptive names as shown in Table 7.1.

204

Original Label Updated Label
sci.crypt science cryptography
sci.med science medicine
sci.space science space
sci.electronics science Electronics
rec.motorcycles motorcycles
rec.sport.hockey hockey
rec.sport.baseball baseball
rec.autos automobiles
soc.religion.christian society religion christianity

christian
talk.religion.misc religion
misc.forsale sale discount
comp.windows,x computer windows
comp.graphics computer graphics
comp.os.ms-windows.misc computer os operating system

Microsoft windows
comp.sys.ibm.pc.hardware computer system ibm pc hardware
comp.sys.mac.hardware computer system apple mac

macintosh hardware
alt.athesim atheism
talk.politics.gun politics guns
talk.politics.mideast politics mideast
talk.politics.misc politics

Table 7.1: Updated labels for the different categories in 20N

7.4.3 Results

The results I obtained for the run experiments are shown in Table 7.2. ITC-CCSL achieved

the best result on both datasets. For the 20N dataset, the β variable was assigned {0.3, 0.5,

0.2} for the Important Terms vector, Concepts vector and Categories vector, respectively.

As for the ODP collection data, they were chosen to be {0.3 , 0.4, 0.4}. These values were

chosen manually to provide the best performance for each variation on each datasets. On

both collections, the run of CC-SL, which uses the strong links method to construct

representative concepts vectors for documents yielded better results than CC-TM.

However, they both achieved better results than the two baselines TFIDF and ITC. This

suggests that the term-concepts table and the strong links methods can be both used to

form good representative vectors of text documents in different NLP applications,

205

including Text Summarization. The second best run on both datasets is ITC-CCSL which

relies on the strong links method while TFIDF achieved the least accuracy in both runs.

The results obtained for ITC-CCSL-G and ITC-CCTM-G are only marginally better than

those of ITC-CCSL and ITC-CCTM, respectively. Similarly, the effects of introducing the

G measure on ITC are only marginal. This suggests that it may be possible to skip the

implementation of the G run in other applications and still obtain comparable results to

runs that have G implemented.

20N ODP
TFIDF 82.98 69.26
ITC 84.78 71.54
CC-TM 86.42 74.85
CC-SL 86.79 77.24
G 85.08 73.73
ITC-CCSL 87.66 78.03
ITC-CCTM 86.94 77.12
ITC-G 85.41 74.34
ITC-CCSL-G 88.02 78.12
ITC-CCTM-G 87.08 77.31

Table 7.2: Accuracy results obtained for different variations of the system

ODP

64

66

68

70

72

74

76

78

80

TFIDF ITC CC-TM CC-SL G ITC-CCSL ITC-CCTM ITC-G ITC-CCSL-
G

ITC-CCTM-
G

A
cc

ur
ac

y

Figure 7.3: A comparison of the classification accuracies obtained for the different
runs on the ODP dataset

206

20N

80

81

82

83

84

85

86

87

88

89

TFIDF ITC CC-TM CC-SL G ITC-CCSL ITC-
CCTM

ITC-G ITC-
CCSL-G

ITC-
CCTM -G

A
cc

ur
ac

y

Figure 7.4A comparison of the classification accuracies obtained for the different
evaluated runs on the 20N dataset

7.5 Conclusion

In this chapter, I used the features extracted from Wikipedia in the application of

documents classification. I described the implementation of a text documents classifier

and detailed its structure. I explained how the Wikipedia extracted features are used to aid

in the processing stage of the classification system. To decide upon the effectiveness of the

introduced features and how they compare against other common BOG metrics, I

conducted an evaluation on two datasets with several runs for different methods. The

obtained results indicate that the features constructed from Wikipedia can be better

representative for test documents than other features such as TFIDF or ITC.

207

Chapter 8

Using SSM for Summarization

In this chapter, I illustrate how the SSM module works by providing sample sentences

taken from the TAC10 dataset and their simplified versions as produced by SSM. I also

include sample summaries generated by the SSM-enhanced summarizer which I described

in chapter 6. In addition, I discuss the advantages and disadvantages of introducing SSM

to summarization.

8.1 SSM for Simplifying Sentences

In section 6.2, I provided a description for SSM which aims to simplify sentences through

applying a set of rules depending on the detected pattern and the parse tree of a sentence.

SSM works by either splitting sentences into several versions or compressing sentences by

removing several parts from it or both. In Figure 8.1 , I provide a summary of the rules

applied by SSM. Rules 1 to 6 are for splitting sentences while rules 7 to 14 are for

compressing sentences.

1 SBAR , NP & < (WHNP << who) & << VP
2 SBAR , NP & < (WHNP << which) & << (VP , NP < VBD)
3 SBAR , NP & < (IN << that) & << (VP , NP < VBD)
4 S < (NP . VP) , S < (NP.VP)
5 VP , NP < (VP < VBD $ VP) < (CC < and | < or)
6 S < (NP . VP) $ (CC < but) $ S < (NP.VP)
7 Keep Leftmost S Root and remove its siblings
8 Remove Time Expressions
9 Remove Conjunctions
10 Remove Complements
11 XP-over-XP
12 Remove PP under SBAR
13 Remove SBAR
14 Remove PP

Figure 8.1: Summary of the rules applied by SSM for simplifying sentences

208

I present here several examples illustrating the effect of applying SSM on different

sentences.

The first example shows the effect of the removal of preposed adjuncts which is resulted

from applying rule 7. Preposed adjuncts are defined in [24] as “constituents that precede

the first NP under the Root S”. The original sentence for this example is:

According to a previously undisclosed agreement between President
Barack Obama and his Mexican counterpart, Felipe Calderon, the
Pentagon is authorized to fly unmanned surveillance flights over
Mexico.

The parse tree of the above sentence is:

(ROOT
 (S
 (PP (VBG According)
 (PP (TO to)
 (NP
 (NP
 (NP (DT a) (RB previously) (JJ undisclosed) (NN agreement))
 (PP (IN between)
 (NP (NNP President) (NNP Barack) (NNP Obama))))
 (CC and)
 (NP
 (NP (PRP$ his) (JJ Mexican) (NN counterpart))
 (, ,)
 (NP (NNP Felipe) (NNP Calderon))))))
 (, ,)
 (NP (DT the) (NNP Pentagon))
 (VP (VBZ is)
 (VP (VBN authorized)
 (S
 (VP (TO to)
 (VP (VB fly)
 (NP (JJ unmanned) (NN surveillance) (NNS flights))
 (PP (IN over)
 (NP (NNP Mexico))))))))))

The simplified form of that sentence after applying rule 7 is:

The Pentagon is authorized to fly unmanned surveillance flights
over Mexico

The following sentence illustrates an example for the effects of applying the NP-over-NP

and PPs removal rules. The original form of the sentence before simplification is:

Many highly-publicized and politically charged cases from the
trial of the officers charged with attacking Abner Louima to the
World Trade Center bombing were not transferred to other venues.

209

The parse tree of the above sentence is:

(ROOT
 (S
 (NP
 (NP (JJ Many))
 (UCP
 (ADJP (RB highly) (VBN publicized))
 (CC and)
 (NP
 (NP
 (ADJP (RB politically) (VBN charged))

(NNS cases))
 (PP (IN from)
 (NP
 (NP (DT the) (NN trial))
 (PP (IN of)
 (NP
 (NP (DT the) (NNS officers))
 (VP (VBN charged)
 (PP (IN with)
 (S

 (VP (VBG attacking)
 (NP
 (NP (NNP Abner) (NNP Louima))
 (PP (TO to)
 (NP (DT the) (NNP World) (NNP Trade) (NNP

Center) (NN bombing)))))))))))))))
 (VP (VBD were) (RB not)
 (VP (VBN transferred)
 (PP (TO to)
 (NP (JJ other) (NNS venues)))))))

After applying rules 11 and 14, the following simplified versions are obtained:

1- Many highly-publicized cases from the trial of the officers
charged with attacking Abner Louima to the World Trade Center
bombing were not transferred to other venues .

2- Many highly-publicized and politically-charged cases were not
transferred to other venues.

The following example presents a sentence where a larger number of rules are applied.

The original sentence is:

The Rev Al Sharpton who organized the daily protests over the
Diallo shooting and is an adviser to the family also is expected
to attend the meeting, said Steven Reed, Johnson's spokesman.

The parse tree of the above sentence is:

(ROOT
 (SINV

210

 (S
 (NP
 (NP (DT The) (NNP Rev) (NNP Al) (NNP Sharpton))
 (SBAR
 (WHNP (WP who))
 (S
 (VP

 (VP (VBD organized)
 (NP (DT the) (JJ daily) (NNS protests))
 (PP (IN over)
 (NP (DT the) (NNP Diallo) (NN shooting))))
 (CC and)
 (VP (VBZ is)
 (NP

 (NP (DT an) (NN adviser))
 (PP (TO to)
 (NP (DT the) (NN family)))))))))
 (ADVP (RB also))
 (VP (VBZ is)
 (VP (VBN expected)
 (S
 (VP (TO to)
 (VP (VB attend)
 (NP (DT the) (NN meeting))))))))
 (, ,)
 (VP (VBD said))
 (NP
 (NP (NNP Steven) (NNP Reed))
 (, ,)
 (NP
 (NP (NNP Johnson) (POS 's))
 (NN spokesman)))))

When applying the rules individually and then jointly, SSM generated the following

simplified sentences:

1- The Rev Al Sharpton who organized the daily protests over the
Diallo shooting and is an adviser to the family is expected to
attend the meeting.

2- Rev Al Sharpton who organized daily protests over Diallo
shooting and is adviser to family is expected to attend meeting.

3- The Rev Al Sharpton also is expected to attend the meeting ,
said Steven Reed , Johnson 's spokesman.

4- The Rev Al Sharpton organized the daily protests over the
Diallo shooting and is an adviser to the family.

5- The Rev Al Sharpton organized the daily protests over the
Diallo shooting

6- The Rev Al Sharpton is an adviser to the family.
7- Rev Al Sharpton is expected to attend meeting

The rules that were applied to generate the above sentences are 5, 11, 12, 13 and 14

individually and then jointly by having the output of one rule as the input for the other.

211

The following is yet another example illustrating the effects of another set of rules being

applied. The original sentence is:

The accused officers are presumed innocent and deserve a fair and
impartial trial but there is no evidence that the people of the
Bronx and New York City cannot be trusted with this trial.

The parse tree of the above sentence is:

(ROOT
 (S
 (NP (NNP The))
 (VP (VBD accused)
 (SBAR
 (S
 (S
 (NP (NNS officers))
 (VP
 (VP (VBP are)
 (VP (VBN presumed)
 (S
 (ADJP (JJ innocent)))))
 (CC and)

 (VP (VBP deserve)
 (NP (DT a)
 (ADJP (JJ fair)
 (CC and)
 (JJ impartial))
 (NN trial)))))
 (CC but)
 (S
 (NP (EX there))
 (VP (VBZ is)
 (NP (DT no) (NN evidence))
 (SBAR (IN that)
 (S
 (NP
 (NP (DT the) (NNS people))
 (PP (IN of)
 (NP (DT the) (NNP Bronx)

 (CC and)
 (NNP New) (NNP York) (NNP City))))
 (VP (MD can) (RB not)
 (VP (VB be)
 (VP (VBN trusted)
 (PP (IN with)

 (NP (DT this) (NN trial)))))))))))))))

And the simplified versions of the above sentence are:

1- The accused officers are presumed innocent and deserve a fair
and impartial trial but there is no evidence that the people
can not be trusted.

2- The accused officers are presumed innocent and deserve a fair
and impartial trial but there is no evidence .

3- There is no evidence that the people of the Bronx and New York
City can not be trusted with this trial.

212

4- The accused officers are presumed innocent and deserve a fair
and impartial trial.

5- The accused officers are presumed innocent.
6- The accused officers deserve a fair and impartial trial.
7- Accused officers are presumed innocent.

Which were the results of applying the rules 6, 7, 9, 11, 12, 13 and 14. In some cases, the

parser produces inaccurate results as in the following example. The original sentence

before simplification is:

Mrs Mandela, the former wife of Nelson Mandela, the anti-apartheid
hero and first black president of South Africa, compared police
brutality in New York to the oppression of black South Africans
under the system of segregation she fought to change.

The parse tree generated for the above sentence is:

(ROOT
 (S
 (NP
 (NP (NNP Mrs) (NNP Mandela))
 (, ,)
 (NP
 (NP (DT the) (JJ former) (NN wife))
 (PP (IN of)
 (NP
 (NP (NNP Nelson) (NNP Mandela))
 (, ,)
 (NP (DT the) (JJ anti-apartheid) (NN hero))
 (CC and)
 (NP (JJ first) (JJ black) (NN president))))
 (PP (IN of)
 (NP (NNP South) (NNP Africa))))
 (, ,))
 (VP (VBD compared)
 (NP (NN police) (NN brutality))
 (PP (IN in)
 (NP (NNP New) (NNP York)))
 (PP (TO to)
 (NP
 (NP (DT the) (NN oppression))
 (PP (IN of)
 (NP (JJ black) (NNP South) (NNPS Africans)))))
 (PP (IN under)
 (NP
 (NP (DT the) (NN system))
 (PP (IN of)
 (NP
 (NP (NN segregation))
 (SBAR

 (S
 (NP (PRP she))
 (VP (VBD fought)
 (S
 (VP (TO to)
 (VP (VB change))))))))))))))

213

And the simplified versions of the above sentence as produced by SSM are:

1- Mrs Mandela , the former wife of Nelson Mandela , the anti-
apartheid hero of South Africa , compared police brutality in
New York to the oppression of black South Africans under the
system of segregation she fought to change .

2- Mrs Mandela compared police brutality in New York to the
oppression of black South Africans under the system of
segregation she fought to change .

3- Mrs Mandela , the former wife of Nelson Mandela , the anti-
apartheid hero and first black president of South Africa ,
compared police brutality in New York to the oppression of
black South Africans under the system of segregation.

4- Mrs Mandela , the former wife of Nelson Mandela , the anti-
apartheid hero and first black president of South Africa ,
compared police brutality in New York to the oppression of
black South Africans .

5- Mrs Mandela , the former wife , compared police brutality .
6- Mrs Mandela compared police brutality in New York to oppression

of black South Africans under system of segregation she fought
to change

7- Mrs Mandela compared police brutality in New York to oppression
of black South Africans under system of segregation

8- Mrs Mandela compared police brutality

The above-generated sentences were the results of applying the rules 5, 9, 11, 13 and 14

individually and then jointly by using the output of one rule as the input of another. As can

be noted from the generated simplified sentences, sentences 5 and 8 appear to be

incomplete. Sentence 5 was the output of applying rule 14 which removes all PPs from a

sentence. Sentence 8 was generated as the final output of applying rules 13 and 14 jointly.

This implies that the rules are not perfect and appear to generate incomplete or erratic

sentences in some rare cases. In addition, the parser may produce incorrect parsing results

for some complicated or irregular sentences as will be shown in the following section.

Even with these limitations, using SSM to improve summarization can lead to a better

performance as was highlighted in section 6.4. In the next section, I examine the output of

the Wikipedia-based summarization system that was enhanced by SSM which was also

described in section 6.3.

214

8.2 Summarizing with SSM

The goal of introducing SSM is to conserve as much space with the generated summaries

as possible by keeping the important parts and removing the rest. In the following

examples I show sample summaries generated by the strong links method of the

Wikipedia-based summarizer which was described in section 6.3. The summaries are for

different documents sets chosen from the TAC10 documents collection.

In Figure 8.2, I show two system summaries A and B. Summary A was generated without

making use of SSM while summary B took advantage of SSM. By comparing summaries

A and B, the difference can be noted in sentences 1 and 2 of summary A. For sentence 1,

the temporal expression on Saturday was removed and resulted in sentence 1 of summary

B. Sentence 2 on the other hand was simplified to the version shown in sentence 2 of

summary B. The simplification of these two sentences allowed for expanding the total

number of sentences in the generated summary from 4 as in summary A to 7 as shown in

summary B. Furthermore, one of the newly added sentences in summary B was simplified

before being added to summary B. The original form of sentence 5 in summary B appears

in the test document as follows:

Brian M Krzanich, vice president of the Technology and
Manufacturing Group and general manager of Assembly/Test for Intel
Corporation, said he felt proud Intel technological progress could
be useful in protection of the giant pandas.

This was simplified to the following form before addition to summary B:

Brian M Krzanich said he felt proud Intel technological progress could
be useful in protection of giant pandas

215

Reference Summaries
1
China continues to move ahead in efforts to preserve the panda population.
Seventy-eight mines and polluting companies, as well as three power companies,
have been closed or suspended. A major conservation group has protested an
offer of two pandas to Taiwan as a goodwill gesture. A museum is planned to
showcase their protection efforts. A communications network is being
established for information sharing. 161 pandas are in captive breeding
programs, mostly in China, with insemination by both artificial and natural
means. Even a medical facility has been set up for performing operations on
injured pandas.

2
A regional telecom network which now covers China's Wolong Grant Panda Nature
Reserve "will not only help increase the number of giant pandas but will also
help us manage the living environment of giant pandas" the Reserve's director
declared on April 3, 2005. On May 7 it was announced that China plans to build
a new giant panda museum to help save the endangered animal and its habitat. On
May 10 the Southwest Sichuan Province government announced that it had closed 78
mines and polluting companies in the giant panda's habitat.

3
A regional telecom network is helping to manage the endangered Great Panda and
share information about it. Researchers at China's Wolong panda reserve can
process panda data in real time, all day, and in all corners of the park.
Other activities to protect the panda include the suspension of industrial
expansion. Over 150 pandas are in captive breeding programs worldwide. Panda
fertility is low, and offspring in zoos outside China must be returned to China
when they mature, according to loan agreements. The panda is a CITES (Convention
on International Trade in Endangered Species) protected animal; strict import-
export laws apply.

4
Female giant pandas have a very short fertile period. Natural insemination in
captivity is rare and, even with artificial insemination, births are rare and
cubs are fragile. The Washington National and San Diego Zoos have had some
success. China continues to pursue the World Natural Heritage site designation
and closed mines and other polluters is the site area. China, France and the US
are creating a giant panda museum in southwestern China. China also offered two
pandas to Taiwan. China is beginning to use mobile technology at panda reserves
and is using advanced surgical techniques to save injured pandas.

System Summary
A
(1) The pandas mated for about a half-hour on Saturday. (2) With the broadband
network, researchers are able to process real-time data on the pandas, including
photos and video signals, around the clock at any given corner of the nature
reserve, or observe giant panda cubs on a daily basis without having to step out
of their offices, according to Wu. (3) It's a giant panda cub no bigger than a
stick of butter. (4) Artificial insemination resulted in the 1999 birth of Hua
Mei, the first giant panda to survive more than four days in the U.S.

B
(1) The pandas mated for about a half-hour. (2) Researchers are able to process
real-time data on pandas including photos around clock at any given corner of
nature reserve. (3) It's a giant panda cub no bigger than a stick of butter. (4)
Artificial insemination resulted in the 1999 birth of Hua Mei, the first giant
panda to survive more than four days in the U.S. (5) Brian M Krzanich said he
felt proud Intel technological progress could be useful in protection of giant
pandas.(6) The area is home to about 300 wild giant pandas. (7) Panda gestation
ranges from 90 to 185 days.

Figure 8.2: Reference Summaries and System Summaries for docset D1003B from
the TAC10 documents collection

216

Reference Summaries
1
During the night of July 17, a 23-foot tsunami hit the north coast of Papua New
Guinea (PNG), triggered by a 7.0 undersea earthquake in the area. At least four
villages were hit, three completely destroyed. A government station, a Catholic
mission, and a community school were destroyed. The death toll, officially 599
by July 19, is expected to rise considerably. Thousands are injured, hundreds
missing, and up to 6,000 are homeless. The PNG Defense Force, police, health
services, and the PNG Red Cross have been mobilized. Australia will transport
relief supplies and provide a mobile hospital and medical personnel.

2
A tsunami ravaged the northern coast of Papua New Guinea during the night of 17
July 1998, when a magnitude 7.0 undersea earthquake caused a 23 foot wall of
water to strike the West Sepik Province villages of Aitape, Nimas, Warapu, Arop,
and Teles-Lambu. Among the area's approximate population of ten thousand, 599
are dead and 6000 homeless from beach abodes constructed of very fragile jungle
materials. The Australian Air Force provided three C130 transports to ferry
supplies to the devastated area. Australia also was sending a mobile hospital
and doctors. Queen Elizabeth sent regrets.

3
On a Friday night in mid-July 1998, a 23-foot tsunami engulfed a heavily
populated area near Aitape on Papua New Guinea's remote northwest coast. The
tsunami followed 30 minutes after an undersea earthquake 18 miles off the coast,
measuring 7.0 on the Richter scale. The death toll was 599 but could rise to
2,000. Hundreds were missing and up to 6000 could be homeless. Most of the dead
were children and old people. Seven villages were completely destroyed,
including Nimas, Warapu, and Arop. Three Australian C130s were bringing food,
medical supplies and personnel and a mobile hospital.

4
A 23-feet tsunami struck the remote northwest coast of Papua New Guinea the
night of Friday 17 July, totally destroying three villages and almost completely
destroying another. The death toll, mostly children and old people, has reached
59 but is expected to rise to more than 1000 and there are thousands of injured
and homeless, with no food or water. Australia is sending medical supplies and
food and is expecting to set up a mobile hospital. The tidal wave was caused by
an undersea earthquake measuring about 7.0 on the Richter scale some 12 miles
off the coast.

System Summary
(1) A tsunami spawned by a 7 magnitude earthquake crashed into Papua New
Guinea's north coast , crushing villages and leaving hundreds. (2) The death
toll in Papua New Guinea's (PNG) tsunami disaster has climbed to 599 and is
expected to rise. (3) The Papua New Guinea (PNG) Defense Force killing scores of
people, on PNG's remote north-west coast Friday night. (4) Australia said it
will provide transport for relief supplies and a mobile hospital to Papua New
Guinea. (5) System would use seismological information from Australian
Geological Survey Organization from NTF to predict where tsunami, tidal wave
caused , would hit.

Figure 8.3: Reference Summaries and System Summaries for docset D1004A from
the TAC10 documents collection

In another example illustrated in Figure 8.3 above, I have a system summary on which

SSM was applied. As can be noted from sentences 1 and 5, it would appear that the

217

generated sentences after being simplified are incomplete. The original form of sentence 1

that appeared in the test documents is as follows:

A tsunami spawned by a 7 magnitude earthquake crashed into Papua
New Guinea's north coast, crushing villages and leaving hundreds
missing, officials said Sunday.

Parsing that sentence would generate the following parse tree:

(ROOT
 (S
 (NP
 (NP (DT A) (NN tsunami))
 (VP (VBN spawned)
 (PP (IN by)
 (NP (DT a) (CD 7) (NN magnitude) (NN earthquake)))))
 (VP (VBD crashed)
 (PP (IN into)
 (S
 (S
 (NP
 (NP (NNP Papua) (NNP New) (NNP Guinea) (POS 's))
 (NN north) (NN coast)))
 (, ,)
 (S
 (VP
 (VP (VBG crushing)
 (NP (NNS villages)))
 (CC and)
 (VP (VBG leaving)
 (S
 (NP (NNS hundreds))
 (ADJP (VBG missing))))))
 (, ,)
 (S
 (NP (NNS officials))
 (VP (VBD said)
 (NP (NNP Sunday)))))))))

When analyzing the generated parse, it would appear that missing does not belong to the

tree subset of crushing villages and leaving hundreds missing but rather to the subset of

officials said Sunday. This interpretation led to having the term missing removed along

with officials said Sunday when applying rule 7 of the SSM module. The compressed

sentence would then appear in the following form.

A tsunami spawned by a 7 magnitude earthquake crashed into Papua
New Guinea's north coast, crushing villages and leaving hundreds.

218

The incompleteness can also be noted in sentence 5 of summary B. The original sentence

before compression appears in the following form:

The system would use seismological information from Australian
Geological Survey Organization and sea level data from NTF to
predict where a tsunami , a tidal wave caused by an earthquake ,
would hit and how much damage it would cause.

The parse tree of that sentence takes the following form:

(ROOT
 (S
 (NP (DT The) (NN system))
 (VP (MD would)
 (VP (VB use)
 (NP (JJ seismological) (NN information))

 (PP (IN from)
 (NP (JJ Australian) (NNP Geological) (NNP Survey) (NNP
Organization)
 (CC and)
 (NN sea) (NN level) (NNS data)))
 (PP (IN from)
 (NP (NNP NTF)))
 (S
 (VP (TO to)

 (VP (VB predict)
 (SBAR
 (SBAR
 (WHADVP (WRB where))
 (S
 (NP
 (NP (DT a) (NN tsunami))
 (, ,)
 (NP

 (NP (DT a) (JJ tidal) (NN wave))
 (VP (VBN caused)
 (PP (IN by)
 (NP (DT an) (NN earthquake)))))
 (, ,))
 (VP (MD would)

 (VP (VB hit)))))
 (CC and)
 (SBAR
 (WHNP (WRB how) (JJ much))
 (S
 (VP (VBP damage)
 (SBAR
 (S

 (NP (PRP it))
 (VP (MD would)
 (VP (VB cause))))))))))))))))

After applying the SSM rules, I obtain the following sentences:

219

1- The system would use seismological information to predict where
a tsunami, a tidal wave caused, would hit and how much damage
it would cause

2- The system would use seismological information from Australian
Geological Survey Organization and sea level data from NTF to
predict

3- System would use seismological information from Australian
Geological Survey Organization from NTF to predict where
tsunami, tidal wave caused , would hit

4- System would use seismological information from Australian
Geological Survey Organization from NTF to predict

5- system would use seismological information to predict

As can be noted above, all of the generated sentences appear to be incomplete. The

original sentence defines the term tsunami as a tidal wave caused by earthquake. By

looking at the parse tree, it can be noted that by earthquake is a PP under the SBAR where

a tsunami, a tidal wave caused by earthquake, would hit. When applying any of the rules

12, 13 or 14, the phrase by earthquake would be removed. This is reflected in sentence 5

of the generated summary B in Figure 8.3.

8.3 Summary

In this chapter, I summarized the rules of SSM which, when applied to a sentence, aim to

produce as many simplified versions of that sentence as possible. I then provided

examples showing the effects of applying SSM to several sentences chosen from the

TAC10 dataset. Afterwards, I provided two sets of example summaries: one for the

Wikipedia-based summarizer and another for the Wikipedia-based summarizer that was

enhanced with SSM and described in section 6.3. I also compared the generated

summaries and highlighted the advantages and disadvantages of introducing SSM to the

system. While it appears from the comparisons that SSM can sometimes produce erratic

output in the form of incomplete sentences, the advantages it carries by generating

complete sentences and preserving space within summaries outweigh its disadvantages in

the task of summarization as was illustrated in the results of section 6.4.

220

Chapter 9

Summaries and Conclusion

9.1 Summary of Work

In this thesis, I proposed a feature generation methodology employing external knowledge

bases for reasoning on textual documents. In order to apply a level of reasoning that is as

close to that of humans as possible, I utilized two open-domain knowledge repositories

crafted by humans to create features extractors and generators. The features extractors and

generators analyze the text documents at hand, extract salient features and enrich their

representation with new features with the collaboration of the external knowledge

repositories. By relying only on what is available in text documents and not using the

external repositories, it would not have been possible to enrich them with new features.

Thus, external repositories would be useful in many Information Retrieval and Data

Mining applications including Automatic Documents Summarization.

Several approaches were mentioned in the background section of this thesis with their

limitations highlighted. Among the most common approaches is BOW. The use of

external ontologies allows for bypassing the limitations of BOW methods by inferring

knowledge about the terms that exist in a text document and defining the relationship

between these terms. For example, terms that appear in the topic of a document may be

different but related to what is mentioned in a section of the document. With external

repositories, it may be possible to detect the relationship between the topic terms/concepts

and the different sections of the text document. Two repositories have been used in my

work: WordNet and Wikipedia.

221

With WordNet, algorithms for computing the semantic similarity between terms were

proposed and implemented. The relationship between terms, and a composite of terms, is

quantified and weighted through the new algorithms allowing for grouping the terms,

phrases and sentences based on the semantic meaning they carry. These algorithms were

especially useful when applied to the application of Automatic Documents Summarization

as the evaluation results show. Several novel methods were also adapted to enhance the

diversity and reduce redundancy in the generated summaries. The implemented methods

utilize both the semantic relations and lexical links that exist within WordNet. As

illustrated in the evaluations performed, the results obtained suggest a better performance

of the summarization system when compared against others that do not employ the

implemented redundancy-diversity methods.

As for Wikipedia, its use in the process of generating features for text fragments allowed

for the introduction of human knowledge Concepts. Quantifying the relationship between

the detected concepts with the methods I propose allow for a better Automatic Semantic

Interpretation of Text. As the structure of Wikipedia was not designed to be machine

readable as was the case with WordNet, preprocessing stages had to be applied first to

extract its features. Each article in Wikipedia was viewed as a single Concept. The articles

content, links and categories were used to help define the relatedness between the

concepts. Two main sets of features were extracted from Wikipedia: Term-concepts table

and Weighted Strong Links. When a text fragment is processed with the Wikipedia-

assisted system, one of the two mentioned feature sets is applied. These two sets were also

extended to deduce even a larger set of methodologies that can be applied to text

fragments as described in Chapter 5.

I also applied the generated features to the problem of assessing the semantic relatedness

between any two text fragments. With the Wikipedia extracted features, two methods were

222

proposed. First is through the expansion of each term through the term-concepts table.

Each term would be replaced with a vector of its most related concepts where a weight is

assigned to each. This is followed by a merge applied to all the concepts vectors existing

within a single text fragment. The merge in effect boosts the concepts which best represent

the text fragment and degrades the rest. When comparing the two text fragments, applying

a cosine measure to the two concepts vectors would quantify the relatedness between

them. The second method is similar but relies on Weighted Strong Links instead of the

term-concepts table when constructing the vectors.

The WordNet-based system and the Wikipedia-based framework were both adapted to be

used in the application of Automatic Documents Summarization. To evaluate the

WordNet-based system, I participated in the summarization task of the TAC08 conference.

The system was evaluated and obtained an average rank in most of the evaluation

measures. In TAC10, I participated again in the summarization task with the Wikipedia-

assisted summarizer. Based on the evaluation results obtained, the system achieved a more

competitive performance.

I investigated the use of a Sentences Simplifications Module (SSM) to generate shorter

and simpler forms of sentences. Compressing and splitting sentences was applied in a step

preceding the candidate sentences selection in the Wikipedia-based summarizer. SSM was

used to generate multiple simplified versions of each sentence. The summary candidates’

selection module included an iterative process that implicitly enforces redundancy

checking while choosing simplified or un-simplified sentences to include in the summary

based on the current summary state and the summary length required. The effect of

introducing SSM and the iterative process was evaluated and the results show an overall

improvement in the summarizer’s performance.

223

In addition to Automatic Documents Summarization, the Wikipedia-assisted framework

was adapted and used in two other applications, namely Word Sense Disambiguation and

Automatic Documents Classification. Evaluations were also performed and the results

suggest a competitive performance. It is possible to expand the work of the framework and

apply it to other applications in the future including: documents clustering, clusters

labelling and hierarchical documents classification.

9.2 Summary of the Evaluations Performed

The evaluations performed in this thesis can be classified into mainly two categories:

Evaluations for measures and algorithms related to WordNet and evaluations related to

Wikipedia.

9.2.1 WordNet-Related Evaluations

In Chapter 4, I described a set of algorithms detailing how the similarity between

sentences can be computed. Namely, I proposed the following measures:

- arTonv_SemSimMeasure: This converts adjectives and adverbs to their

corresponding nouns and verbs whenver possible before computing the semantic

similarity between sentences.

- Syn_SimMeasure: When two sentences are compared, words in the second

sentence are expanded with their synonyms.

- EditDist_SimMeasure: This computes the Levenshtein edit distance between terms

when two sentences are compared.

- EditDistEx_SimMeasure: When computing the similarity between two sentences,

words in the second sentences are expanded with their synonyms first. Afterwards,

224

the edit distances between terms from first sentence and second sentence are

computed.

Details about the above mentioned measures with examples of their usages are provided in

section 4.2.2.

Instead of relying only on the semantic relations that exist within WordNet, I also utilized

WordNet’s lexical relations for improving how the similarity between sentences is

computed. This was especially evident with the proposed measure

arTonv_SemSimMeasure described above. The evaluations performed on the TAC08

dataset for summarizing documents illustrate the performance increase with the new

measure in the application of summarization. A summary of the results obtained is shown

in Table 4.4. The results in the table also indicate that using semantic-based measures such

as Sem_SimMeasure and arTonv_SemSimMeasure can lead to better system performance

when compared against other non-semantic based methods.

When examining the generated summaries with the above measures, it can be noted that

redundant sentences tend to appear in some summaries especially when producing a single

summary for a large number of documents. This was shown in an example summary in

Figure 4.23 which was generated for a document set from the TAC08 documents

collection. In an attempt to reduce redundancy and increase diversity of summary

sentences, I added a redundancy and diversity checking stage in the summarization

system. It works by checking the redundancy or diversity of candidate sentences before

they are added to the summary to ensure only non-redundant or diverse sentences are

added to the summary. The measures that were used for implementing the redundancy

checking stage are Red-Syn, Red-Sim, Red-LevDist and Red-LevDist-Exp. As for diversity

checking, I considered using the measures named Div-Ant and Div-Sim which attempt to

capture the diversity between sentences by checking the antonyms of the terms they

225

contain. The results obtained after enforcing these measures in the redundancy and

diversity checking stage indicate an overall performance increase as shown in Table 4.5.

The only exception is the ROUGE1 result for the simple diversity checking measure Div-

Ant which obtained a relatively inferior result. When examining the summaries obtained

with the help of this measure, it was noticed that the detection of the wrong sense for a

term lead to errors in generating its antonyms. An example for this is the term feet which

was interpreted incorrectly as part of the body instead of unit of length leading to have

head as its antonym.

The main contributions of the work performed in this section are:

- Considering both the lexical and semantic relations while computing the similarity

between sentences

- Considering nouns, verbs, adjective and adverbs while computing the semantic

similarity between sentences instead of relying only on nouns and verbs

- Introducing new measures for computing the similarity between sentence that lead

to performance increase against traditional measures when used in summarization

systems

9.2.2 Wikipedia-Related Evaluations

Because Wikipedia was not designed from the start to be machine-readable, a series of

process had to be applied. First is extracting and constructing features from Wikipedia. For

this, both the structure and content of Wikipedia were used. Second is devising means for

augmenting text documents with the extracted features. Third, is interpreting these new

features in the text document and deciding how to use them in the application at hand.

Two main sets of features were extracted from Wikipedia. One is called the term-concepts

table and the other is Strong links. I described in Chapter 5 how they are used to represent

226

text documents. I also explained how they can be used to compute the semantic

relatedness between sentences and text fragments in section 5.5.4.

After I developed a module for extracting features from Wikipedia and proposed several

methodologies for how the features can be mapped to text documents and then

interpretted, it was necessary to evaluate the effectiveness of the features and the mapping

and interpretation processes. The first chosen application for this was documents

classification as no user input is usually required during the different evaluation stages and

the evaluation is usually more robust as all documents have already been manually

classified by humans. I conducted several experiments on the ODP and 20N datasets to

evaluate the different heuristics suggested in my work. The results of the evaluations are

shown in Table 7.2. They suggest that the usage of the Wikipedia-extracted features does

indeed lead to performance improvements in the task of classification when compared

against other BOW-based methods.

I also used the extracted features in the task of WSD. This was necessary for testing the

best weights to choose for the different links types defined in the strong links method. In

addition, it was useful to use as a component in the summarization system to help in

disambiguating terms. The results of the evaluation results obtained are illustrated in Table

5.4 and indicate better performance for the strong links method when compared agains the

rest.

I then used the term-concepts table and strong links for building an automatic summarizer.

To evaluate the summarizer, I used the TAC10 dataset and compared it against two other

baselines. The results obtained indicate competitive performance for the methods

implemented in the new system. The strong links method achieved better performance

than the other utilizing the term-concepts table. The evaluation results for this are shown

in Table 5.6. When examining sample summaries generated by each method, it was

227

observed that usage of the right context size has a significant effect on the performance of

the term-concepts methods. Choosing a large number leads to a noise by having a large

number of weakly related concepts detected as top concepts. On the other hand, choosing

a small number affects the ability of the system in disambiguating concepts spanning

multiple terms. An example summary illustrating this was provided in section 5.5.7. This

notion was also supported by the results of the WSD evaluation in section 5.4.4.

In an attempt to enhance the performance of the Wikipedia-based summarizer even

further, I implemented SSM which aims to provide multiple simplified versions of any

processed sentence. This was supported by the notion that the top ranking sentences

detected by the summarizer tend to be long and thus occupy a large space within

summaries. An example illustrating this was provided in section 8.2. I provided details of

how SSM was implemented and performed an evaluation testing its effect on the built

summarizer. The obtained results with the ROUGE metric shown in Table 6.1 indicate an

improvement in the performance of the summarizer.

In Chapter 8 I provided examples showing the effect of SSM on a sample of sentences

chosen from the TAC10 documents collection. I also illustrated with an example summary

how SSM affected the summarizer. It was observed during the examination of the

obtained output from SSM that not all sentences are complete and that SSM is not error-

free. This can be caused by many reasons. The parser used for parsing sentences and the

simplification rules applied may provide incorrect or incomplete sentences for sentences

having grammatical errors or uncommon syntactical structures. However, as was noted in

the evaluation performed in Chapter 6 and the analysis in section 8.2, the advantages of

using SSM outweigh its disadvantages.

228

9.3 Future Work

Several parameters had to be assigned manually while running the different summarizers

described in this thesis. These parameters include the redundancy threshold, α (which

decides how much weight given to user query or documents titles), context size (for the

term-concepts table method) and summary limit. It would be optimal to have at least some

of these parameters automatically chosen by the system. A module that can aid in

determining this based on the length or the genre of the original text documents may be

useful. The same also applies to the context size when implementing methods or

algorithms involving the term-concepts table.

The evaluations performed in this thesis indicate that performance of summarization

systems in general can be improved through the usage of external knowledge repositories.

For the system to perform even better, the genre of the processed documents and query

nature may need to be identified. Documents with different genres may need to be handled

differently. For example, consider having a large number of movie reviews that need to be

summarized. Different aspects of the document would have to be handled differently

including the plot, user sentiment and rating. Consider the case of question answering.

Having asked a specific questions such as “when”, “who” or “where”, the system would

have to deal with each of these questions differently. Further investigation on this topic

and on how to make the extracted features useful for handling specific genres of

documents is needed.

In my future work, I plan to use the built and extracted features in several other

applications such information search, documents clustering and clusters labelling. With

information search, it may be useful to augment the query and the documents with human

knowledge concepts for better text interpretation and retrieval. Indexing documents would

229

also factor in the concepts contained within the documents in addition to their original

terms. For documents clustering, the methodologies that were applied to documents

classification in this thesis may need to be adapted. The discovery of the main topics

within documents and clustering based on the dominant concepts may yield good

performing clustering systems. The availability of the vast knowledge within the built

features, the concepts titles that were crafted by humans should also be useful for clusters

labelling.

I anticipate extending the implemented methods by applying new algorithms for matching

text documents with concepts and investigating better techniques for representing the

attributes of each concept. In this work, the focus for Wikipedia main features was on its

main links, articles titles, articles content text content and categories. Other useful

information was not considered such as the different versions of its pages in different

languages. An article written in Spanish, for example, may include some links to related

articles which do not exist in its English counterpart. These links may be especially useful

to include as extra features for defining the relatedness between concepts, especially in the

application of Word Sense Disambiguation.

In addition to WordNet and Wikipedia, I plan to use other open-world repositories such as

Wiktionary. Wiktionary is a freely available multilingual web-based dictionary. It shows

many similarities with expert-made repositories such as WordNet in that it contains

concepts which are connected by lexical semantic relations and described with a gloss

giving a short definition to the concept. Its size exceeds the size of WordNet. However, its

openness, incompleteness and structure make it difficult to extract its features and the

process is prone to parsing errors.

230

9.4 Conclusion

In this thesis, I presented and evaluated several algorithms for computing the similarity

between sentences and text fragments through utilizing WordNet’s lexical and semantic

relations. I also described methodologies detailing how features can be extracted from the

content and structure of Wikipedia making it machine readable. The extracted features

from Wikipedia have been used to augment the representation of text documents and

compute the semantic relatedness between any two text fragments. Through the

methodologies developed and algorithms implemented, I utilized both WordNet and

Wikipedia in the application of Automatic Documents Summarization. The evaluations

performed show that the usage of external knowledge repositories allows for

improvements in the performance of systems in the task of summarization.

231

REFERENCES

[1] H. Luhn, “The Automatic Creation of Literature Abstracts,” IBM Journal of Research
and Development, vol. 2, no. 2, 1958.

[2] K. S. Jones, “Automatic Summarising: Factors and Directions,” Advances in Automatic
Text Summarization, pp. 1-12, 1998.

[3] D. Lenat, “From 2001 to 2001: Common sense and the mind of HAL,” in Hal’s Legacy,
MIT Press, 1997, pp. 194-209.

[4] I. Mani, D. House, G. Klein, L. Hirschman, T. Firmin, and B. Sundheim, “The
TIPSTER SUMMAC Text Summarization Evaluation,” in Proceedings of the ninth
conference on European chapter of the Association for Computational Linguistics,
Stroudsburg, PA, USA, 1999, pp. 77–85.

[5] R. Tucker, “Automatic summarising and the CLASP system,” University of Cambridge
Computer Laboratory, 1999.

[6] D. R. Radev, E. Hovy, and K. McKeown, “Introduction to the special issue on
summarization,” Computational Linguistics, vol. 28, pp. 399–408, Dec. 2002.

[7] D. Das and A. F. T. Martins, “A Survey on Automatic Text Summarization,” Literature
Survey for the Language and Statistics II course at CMU, Nov. 2007.

[8] P. Baxendale, “Man-made index for technical literature - an experiment,” I.B.M.
Journal of Research and Development, vol. 2, no. 4, 1958.

[9] R. Brandow, K. Mitze, and L. F. Rau, “Automatic condensation of electronic
publications by sentence selection,” Information Processing & Management, vol. 31,
no. 5, pp. 675-685, Sep. 1995.

[10] J. Kupiec, J. Pedersen, and F. Chen, “A Trainable Document Summarizer,” SIGIR ’95
Proceedings of the 18th annual international ACM SIGIR conference on Research and
development in information retrieval, p. 68--73, 1995.

[11] E. Hovy and C.-Y. Lin, “Automated text summarization and the SUMMARIST
system,” in Proceedings of a workshop on held at Baltimore, Maryland: October 13-15,
1998, Stroudsburg, PA, USA, 1998, pp. 197–214.

[12] G. Salton, Automatic text processing: the transformation, analysis and retrieval of
information by computer. Reading, Mass: Addison-Wesley Longman Publishing Co.,
Inc., 1989.

[13] H. P. Edmundson, “New Methods in Automatic Extracting,” Journal of the ACM
(JACM), vol. 16, pp. 264–285, Apr. 1969.

[14] C. Orasan, V. Pekar, and L. Hasler, “A comparison of summarisation methods based on
term specificity estimation,” in Proceedings of the Fourth International Conference on
Language Resources and Evaluation (LREC2004), 2004.

[15] S. Teufel and M. Moens, “Sentence Extraction as a Classification Task,” Proceedings
of the ACL/EACL-97 Workshop on Intelligent Scalable Text Summarization, p. 58--65,
1997.

[16] J. J. Pollock and A. Zamora, “Automatic Abstracting Research at Chemical Abstracts
Service,” Journal of Chemical Information and Computer Sciences, vol. 15, no. 4, pp.
226-232, Nov. 1975.

[17] C. Aone, M. E. Okurowski, and J. Gorlinsky, “Trainable, scalable summarization using
robust NLP and machine learning,” in Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and 17th International Conference on
Computational Linguistics - Volume 1, Stroudsburg, PA, USA, 1998, pp. 62–66.

232

[18] D. Cristea, O. Postolache,, G. Puscasu, and L. Ghetu, “Summarizing documents based
on cue-phrases and references,” in Proceedings of the International Symposium on
Reference Resolution and Its Applications to Question Answering and Summarization,
Venic, Italy, 2003.

[19] M. Jaoua and A. B. Hamadou, “Automatic Text Summarization of Scientific Articles
Based on Classification of Extract’s Population,” in Computational Linguistics and
Intelligent Text Processing, vol. 2588, A. Gelbukh, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 623-634.

[20] X. Wan, J. Yang, and J. Xiao, “Towards an Iterative Reinforcement Approach for
Simultaneous Document Summarization and Keyword Extraction,” Proceedings of
ACL2007, 2007.

[21] J. M. Conroy and D. P. O’leary, “Text summarization via hidden Markov models,” in
Proceedings of the 24th annual international ACM SIGIR conference on Research and
development in information retrieval, New York, NY, USA, 2001, pp. 406–407.

[22] H. Daume III and D. Marcu, “Bayesian Multi-Document Summarization at MSE,”
Workshop on Multilingual Summarization Evaluation (MSE), 2005.

[23] J. Fürnkranz, T. Mitchell, and E. Riloff, “A Case Study in Using Linguistic Phrases for
Text Categorization on the WWW,” In Working Notes of the AAAI/ICML Workshop on
Learning for Text Categorization, p. 5--12, 1998.

[24] B. Dorr, D. Zajic, and R. Schwartz, “Hedge Trimmer: A Parse-and-Trim Approach to
Headline Generation,” in Proceedings of HLT-NAACL 2003 Text Summarization
Workshop, 2003, vol. 5.

[25] C.-yew Lin, “Training a Selection Function for Extraction,” in Proceedings of the
Eighteenth Annual International ACM Conference on Information and Knowledge
Management (CIKM), Kansas City, 1999, pp. 55-62.

[26] R. Jin, M. Abu-Ata, Y. Xiang, and N. Ruan, “Effective and efficient itemset pattern
summarization: regression-based approaches,” in Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, New York, NY,
USA, 2008, pp. 399–407.

[27] Y.-L. Chen and L. T.-H. Hung, “Using decision trees to summarize associative
classification rules,” Expert Systems with Applications: An International Journal, vol.
36, pp. 2338–2351, Mar. 2009.

[28] R. M. Schwartz, T. Imai, F. Kubala, L. Nguyen, and J. Makhoul, “A maximum
likelihood model for topic classification of broadcast news,” in EUROSPEECH, 1997.

[29] K. Knight and D. Marcu, “Statistics-Based Summarization - Step One: Sentence
Compression,” in Proceedings of the Seventeenth National Conference on Artificial
Intelligence and Twelfth Conference on Innovative Applications of Artificial
Intelligence, 2000, pp. 703–710.

[30] K. Knight and D. Marcu, “Summarization beyond sentence extraction: a probabilistic
approach to sentence compression,” Artificial Intelligence, vol. 139, pp. 91–107, Jul.
2002.

[31] J. Turner and E. Charniak, “Supervised and unsupervised learning for sentence
compression,” in Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, Stroudsburg, PA, USA, 2005, pp. 290–297.

[32] D. Zajic, B. Dorr, and R. Schwartz, “Automatic Headline Generation for Newspaper
Stories,” In the Proceedings of the ACL Workshop on Automatic
Summarization/Document Understanding Conference (DUC), p. 78--85, 2002.

[33] J. Conroy and S. Judith, “CLASSY Query-Based Multi-Document Summarization,” in
Proceedings of the 2005 Document Understanding Conference (DUC-2005) at

233

NLT/EMNLP 2005, Vancouver, Canada, 2005.
[34] M. Osborne, “Using maximum entropy for sentence extraction,” in Proceedings of the

ACL-02 Workshop on Automatic Summarization - Volume 4, Stroudsburg, PA, USA,
2002, pp. 1–8.

[35] V. Hatzivassiloglou, J. L. Klavans, M. L. Holcombe, R. Barzilay, M.-yen Kan, and K.
R. McKeown, “SIMFINDER: A Flexible Clustering Tool for Summarization,” In
Proceedings of the NAACL Workshop on Automatic Summarization, p. 41--49, 2001.

[36] I. Titov and R. Mcdonald, “A Joint Model of Text and Aspect Ratings for Sentiment
Summarization,” PROC. ACL-08: HLT, p. 308--316, 2008.

[37] K. Svore, L. Vanderwende, and C. Burges, “Enhancing Single-Document
Summarization by Combining RankNet and Third-Party Sources,” in Proceedings of
EMNLP-CoNLL, 2007, pp. 448-457.

[38] C. Burges, T. Shaked, E. Renshaw, M. Deeds, N. Hamilton, and G. Hullender,
“Learning to rank using gradient descent,” IN ICML, p. 89--96, 2005.

[39] G. B. Orr and K.-R. Müller, Neural Networks: Tricks of the Trade, 1st ed. Springer,
1999.

[40] K. Kaikhah, “Automatic Text Summarization with Neural Networks,” in Proceedings
of second international Conference on intelligent systems, IEEE, Texas, USA, 2004, pp.
40-44.

[41] S. P. Yong, A. I. Z. Abidin, and Y. Y. Chen, “A neural-based text summarization
system,” in Data Mining VII: Data, Text and Web Mining and their Business
Applications, Prague, Czech Republic, 2006, pp. 185-192.

[42] L. Hasler, “From Extracts to Abstracts: Human summary production operations for
computer-aided summarisation,” University of Wolverhampton, 2007.

[43] A. Bawakid and M. Oussalah, “A Semantic Summarization System: University of
Birmingham at TAC 2008,” in Proceedings of the First Text Analysis Conference, 2008.

[44] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller, “Five Papers on
WordNet,” in WordNet: An Electronic Lexical Database, MIT Press, 1998.

[45] H. Jing and K. Mckeown, “Cut and paste based text summarization,” in Proceedings of
the Sixth Applied Natural Language Conference (ANLP-00) and the First Meeting of the
North American Chapter of the Association for Computational Linguistics (NAACL-00),
2000, pp. 178-185.

[46] B. Boguraev and C. Kennedy, “Salience-based Content Characterisation of Text
Documents,” Advances in Automatic Text Summarization, p. 2--9, 1997.

[47] J. Jiang and D. Conrath, “Semantic Similarity Based on Corpus Statistics and Lexical
Taxonomy,” in Proceedings on International Conference on Research in Computational
Linguistics, Taiwan, 1997, pp. 19-33.

[48] D. Lin, “An Information-Theoretic Definition of Similarity,” In Proceedings of the 15th
International Conference on Machine Learning, p. 296--304, 1998.

[49] J. R. Curran, “From Distributional to Semantic Similarity,” PhD Thesis, School of
Informatics, University of Edinburgh, 2003.

[50] D. Wang, T. Li, S. Zhu, and C. Ding, “Multi-document summarization via sentence-
level semantic analysis and symmetric matrix factorization,” in Proceedings of the 31st
annual international ACM SIGIR conference on Research and development in
information retrieval, New York, NY, USA, 2008, pp. 307–314.

[51] R. Barzilay and M. Elhadad, “Using lexical chains for text summarization,” in In
Proceedings of the ACL Workshop on Intelligent Scalable Text Summarization, 1997,
pp. 10-17.

[52] M.-yen Kan, K. R. McKeown, and J. L. Klavans, “Domain-Specific Informative and

234

Indicative Summarization for Information Retrieval,” In Workshop on Text
Summarization (DUC 2001), vol. 78, p. 1629--1636, 2001.

[53] K. R. McKeown, J. L. Klavans, V. Hatzivassiloglou, R. Barzilay, and E. Eskin,
“Towards multidocument summarization by reformulation: progress and prospects,” in
Proceedings of the sixteenth national conference on Artificial intelligence and the
eleventh Innovative applications of artificial intelligence conference innovative
applications of artificial intelligence, Menlo Park, CA, USA, 1999, pp. 453–460.

[54] B. Baldwin and T. S. Morton, “Dynamic Coreference-Based Summarization,” In
Proceedings of The Third conference on Empirical Methods in Natural Language
Processing (EMNLP-3), 1998.

[55] U. Hahn and U. Reimer, “Knowledge-based Text Summarization: Salience and
generalization Operators for Knowledge Base Abstraction,” in Advances in Automatic
Text Summarization, Mani & Maybury (Ed.), 1999.

[56] E. Lloret, O. Ferrández, R. Muñoz, and M. Palomar, “A Text Summarization Approach
Under the Influence of Textual Entailment,” in Proceedings of the 5th International
Workshop on Natural Language Processing and Cognitive Science (NLPCS 2008),
2008, pp. 22-31.

[57] M. A. K. Halliday and P. R. Hasan, Cohesion in English, 1st ed. Longman, 1976.
[58] A. Correira, “Computing story trees,” Computational Linguistics, vol. 6, pp. 135–149,

Jul. 1980.
[59] K. Ono, K. Sumita, and S. Miike, “Abstract generation based on rhetorical structure

extraction,” in Proceedings of the 15th conference on Computational linguistics -
Volume 1, Stroudsburg, PA, USA, 1994, pp. 344–348.

[60] W. Mann and S. Thompson, “Rhetorical structure theory: Toward a functional theory of
text organization,” University of Southern California / Information Sciences Institute,
Technical Report RR-87-190, 1988.

[61] D. Marcu, “Improving Summarization Through Rhetorical Parsing Tuning,” in
Proceedings of the Workshop on Very Large Corpora, Montreal, Canada, 1998.

[62] D. Marcu, “The Rhetorical Parsing, Summarization, and Generation of Natural
Language Texts,” University of Toronto, Toronto, Ontario, Canada, 1998.

[63] L. Alonso i Alemany and M. Fuentes Fort, “Integrating cohesion and coherence for
automatic summarization,” in Proceedings of the tenth conference on European chapter
of the Association for Computational Linguistics - Volume 2, Stroudsburg, PA, USA,
2003, pp. 1–8.

[64] I. Cunha, S. Fernández, P. Velázquez Morales, J. Vivaldi, E. SanJuan, and J. M. Torres-
Moreno, “A New Hybrid Summarizer Based on Vector Space Model, Statistical Physics
and Linguistics,” in MICAI 2007: Advances in Artificial Intelligence, vol. 4827, A.
Gelbukh and Á. F. Kuri Morales, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 872-882.

[65] D. R. Radev and K. R. McKeown, “Generating natural language summaries from
multiple on-line sources,” Computational Linguistics, vol. 24, pp. 470–500, Sep. 1998.

[66] H. Jing and K. R. McKeown, “The decomposition of human-written summary
sentences,” in Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, New York, NY, USA, 1999, pp.
129–136.

[67] G. Grefenstette, “Producing Intelligent Telegraphic Text Reduction to Provide an
Audio Scanning Service for the Blind,” Intelligent Text Summarization, no. Intelligent
Text Summarization, pp. 111-117, 1998.

[68] I. Mani, Automatic Summarization. John Benjamins Pub Co, 2001.

235

[69] E. Reiter and R. Dale, Building Natural Language Generation Systems. Cambridge
University Press, 2000.

[70] K. McKeown, J. Robin, and K. Kukich, “Generating concise natural language
summaries,” Information Processing and Management: an International Journal, vol.
31, pp. 703–733, Sep. 1995.

[71] F. Liu and Y. Liu, “From extractive to abstractive meeting summaries: can it be done
by sentence compression?,” in Proceedings of the ACL-IJCNLP 2009 Conference Short
Papers, Stroudsburg, PA, USA, 2009, pp. 261–264.

[72] S. Guiasu and A. Shenitzer, “The principle of maximum entropy,” The Mathematical
Intelligencer, vol. 7, no. 1, pp. 42-48, Mar. 1985.

[73] G. Carenini and J. C. K. Cheung, “Extractive vs. NLG-based abstractive summarization
of evaluative text: the effect of corpus controversiality,” in Proceedings of the Fifth
International Natural Language Generation Conference, Stroudsburg, PA, USA, 2008,
pp. 33–41.

[74] J. Carbonell and J. Goldstein, “The use of MMR, diversity-based reranking for
reordering documents and producing summaries,” in Proceedings of the 21st annual
international ACM SIGIR conference on Research and development in information
retrieval, New York, NY, USA, 1998, pp. 335–336.

[75] J. Goldstein, V. Mittal, J. Carbonell, and J. Callan, “Creating and evaluating multi-
document sentence extract summaries,” in Proceedings of the ninth international
conference on Information and knowledge management, New York, NY, USA, 2000,
pp. 165–172.

[76] F. Boudin, J.-M. Torres-Moreno, and M. El-Bèze, “Improving Update Summarization
by Revisiting the MMR Criterion,” in Proceedings of CoRR, 2010.

[77] R. Ribeiro and D. M. de Matos, “Extractive summarization of broadcast news:
comparing strategies for European portuguese,” in Proceedings of the 10th international
conference on Text, speech and dialogue, Berlin, Heidelberg, 2007, pp. 115–122.

[78] Y. Li and B. Merialdo, “Multi-video summarization based on Video-MMR,” in
International Workshop on Image Analysis for Multimedia Interactive Services,
Desenzano del Garda, Italy, 2010.

[79] R. Mihalcea and P. Tarau, “TextRank: Bringing Order into Texts,” in Conference on
Empirical Methods in Natural Language Processing, 2004.

[80] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web search engine,” in
Computer Networks and ISDN Systems, Amsterdam, The Netherlands, The Netherlands,
1998, vol. 30, pp. 107–117.

[81] G. Salton, A. Singhal, M. Mitra, and C. Buckley, “Automatic text structuring and
summarization,” Information Processing and Management: an International Journal,
vol. 33, pp. 193–207, Mar. 1997.

[82] I. Mani and E. Bloedorn, “Summarizing Similarities and Differences Among Related
Documents,” Information Retrieval, vol. 1, pp. 35–67, May 1999.

[83] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman,
“Indexing by latent semantic analysis,” Journal of the American Society for Information
Science, vol. 41, no. 6, p. 391--407, 1990.

[84] W. Song and S. C. Park, “A Novel Document Clustering Model Based on Latent
Semantic Analysis,” in Third International Conference on Semantics, Knowledge and
Grid (SKG 2007), Xi’an, Shan Xi, China, 2007, pp. 539-542.

[85] B. Yu, Z.-ben Xu, and C.-hua Li, “Latent semantic analysis for text categorization
using neural network,” Knowledge-Based Systems, vol. 21, pp. 900–904, Dec. 2008.

[86] J.-Y. Yeh, H.-R. Ke, W.-P. Yang, and I.-H. Meng, “Text summarization using a

236

trainable summarizer and latent semantic analysis,” Information Processing and
Management: an International Journal, vol. 41, pp. 75–95, Jan. 2005.

[87] J. Steinberger, M. A. Kabadjov, and M. Poesio, “Improving LSA-based summarization
with anaphora resolution,” in In Proceedings of the Human Language Technology
Conference And Conference on Empirical Methods in Natural Language Processing,
2005, p. 1--8.

[88] J. Steinberger and K. Ježek, “Using latent semantic analysis in text summarization and
summary evaluation,” IN PROC. ISIM ’04, vol. 4, p. 93--100, 2004.

[89] J. D. Brown, “Developing an automatic document classification system: A review of
current literature and future directions,” Defence R&D Canada - Ottawa, Ottawa ONT
(CAN), Technical Report, Jan. 2010.

[90] W. Kraaij, M. Spitters, and A. Hulth, “Headline Extraction Based on a Combination of
Uni- and Multidocument Summarization Techniques,” in Proceedings of the ACL
workshop on Automatic Summarization/Document Understanding Conference (DUC
2002), 2002.

[91] T. Euler, “Tailoring Text Using Topic Words: Selection and Compression,” in In IEEE
Computer Society Press (ED.), Proceedings of the 3rd International Workshop on
Natural Language and Information Systems (NLIS), 2002, p. 215--219.

[92] D. Z. Bonnie and B. Dorr, “BBN/UMD at DUC-2004: Topiary,” In Proceedings of the
2004 Document Understanding Conference (DUC 2004), p. 112--119, 2004.

[93] L. Zhou and E. Hovy, “Headline summarization at ISI,” in Proceedings of the
Document Understanding Conference, Edmonton, Alberta, Canada, 2003.

[94] F. Lacatusu et al., “GISTexter at DUC 2006: Multi-Strategy Multi-Document
Summarization,” in 2006 Document Understanding Conference (DUC 2006), 2006.

[95] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, generators, and algorithms,”
ACM COMPUTING SURVEYS, vol. 38, no. 1, p. 2, 2006.

[96] M. E. J. Newman, “The Structure and Function of Complex Networks,” SIAM Review,
vol. 45, no. 2, pp. 167-256, 2003.

[97] W. Wang et al., “GraphMiner: a structural pattern-mining system for large disk-based
graph databases and its applications,” in Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, New York, NY, USA, 2005, pp. 879–
881.

[98] K. Zechner, “Automatic Summarization of Spoken Dialogues in Unrestricted
Domains,” PhD Thesis, Carnegie Mellon University, School of Computer Science,
Language Technologies Institute, Pittsburgh, PA 15213, 2001.

[99] I. Gurevych and M. Strube, “Semantic similarity applied to spoken dialogue
summarization,” in Proceedings of the 20th international conference on Computational
Linguistics, Stroudsburg, PA, USA, 2004.

[100] S. Furui, T. Kikuchi, Y. Shinnaka, and C. Hori, “Speech-to-Text and Speech-to-
Speech Summarization of Spontaneous Speech,” IEEE Trans. on Speech and Audio
Processing, vol. 12, no. 4, p. 401--408, 2004.

[101] H. Saggion, D. Radev, S. Teufel, W. Lam, and S. M. Strassel, “Developing
Infrastructure for the Evaluation of Single and Multi-document Summarization Systems
in a Cross-lingual Environment,” IN LREC 2002, PAGES 747–754, LAS PALMAS,
GRAN CANARIA, p. 747--754, 2002.

[102] D. R. Radev, H. Jing, and M. Budzikowska, “Centroid-Based Summarization of
Multiple Documents: Sentence Extraction, Utility-Based Evaluation, and User Studies,”
in Proceedings of the ANLP/NAACL 2000 Workshop on Automatic Summarization,
2000.

237

[103] D. Radev, S. Blair-Goldensohn, and Z. Zhang, “Experiments in Single and Multi-
Document Summarization Using MEAD,” in In First Document Understanding
Conference, New Orleans, LA, 2001.

[104] D. R. Radev, W. Fan, and Z. Zhang, “WebInEssence: a personalized web-based
multi-document summarization and recommendation system,” In NAACL 2001
Workshop on Automatic Summarization, p. 79--88, 2001.

[105] K. R. McKeown et al., “Tracking and Summarizing News on a Daily Basis with
Columbia’s Newsblaster,” in In Proceedings of Human Language Technology
Conference (HLT 2002), 2002.

[106] R. Barzilay, K. R. McKeown, and M. Elhadad, “Information Fusion in the Context of
Multi-Document Summarization,” in In Proceedings of the 37th Annual Meeting of the
ACL, 1999, p. 550--557.

[107] D. M. Dunlavy, D. P. O’Leary, J. M. Conroy, and J. D. Schlesinger, “QCS: A system
for querying, clustering and summarizing documents,” Information Processing &
Management, vol. 43, no. 6, pp. 1588-1605, Nov. 2007.

[108] N. Madnani, D. Zajic, B. Dorr, N. Fazil Ayan, and J. Lin, “Multiple Alternative
Sentence Compressions for Automatic Text Summarization,” in Proceedings of the
2007 Document Understanding Conference, 2007.

[109] C. Sauper, A. Haghighi, and R. Barzilay, “Incorporating content structure into text
analysis applications,” in Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing, Stroudsburg, PA, USA, 2010, pp. 377–387.

[110] D. Zajic, B. Dorr, J. Lin, and C. Monz, “A sentence-trimming approach to
multidocument summarization,” In Proceedings of the Document Understanging
Conference 2005 (DUC-2005), pp. 151-158, 2005.

[111] L. Zhou and E. Hovy, “A web-trained extraction summarization system,” in
Proceedings of the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology - Volume 1,
Stroudsburg, PA, USA, 2003, pp. 205–211.

[112] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman, “Indexing by
latent semantic analysis,” JOURNAL OF THE AMERICAN SOCIETY FOR
INFORMATION SCIENCE, vol. 41, no. 6, pp. 391-407, 1990.

[113] J. Steinberger and K. Ježek, “Text Summarization and Singular Value
Decomposition,” in Advances in Information Systems, vol. 3261, Springer Berlin /
Heidelberg, 2005, pp. 245-254.

[114] N. Cristianini, J. Shawe-Taylor, and H. Lodhi, “Latent Semantic Kernels,” Journal of
Intelligent Information Systems, vol. 18, pp. 127–152, Mar. 2002.

[115] T. Liu, Z. Chen, B. Zhang, W.-ying Ma, and G. Wu, “Improving Text Classification
using Local Latent Semantic Indexing,” in Data Mining, IEEE International Conference
on, Los Alamitos, CA, USA, 2004, vol. 0, pp. 162-169.

[116] H. Jing, R. Barzilay, K. Mckeown, and M. Elhadad, “Summarization Evaluation
Methods: Experiments and Analysis,” in In AAAI Symposium on Intelligent
Summarization, 1998, p. 60--68.

[117] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method for automatic
evaluation of machine translation,” in Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, Stroudsburg, PA, USA, 2002, pp. 311–318.

[118] C. H. And, C. Hori, and T. Hori, “Evaluation Method for Automatic Speech
Summarization,” in Evaluation Method for Automatic Speech Summarization, Geneva,
Switzerland, 2003.

[119] C.-yew Lin, “Rouge: a package for automatic evaluation of summaries,” in

238

Proceedings of the Workshop on Text Summarization Branches Out, post-conference
workshop of ACL 2004, Barcelona, Spain, 2004, p. 25--26.

[120] A. Nenkova and R. Passonneau, “Evaluating Content Selection in Summarization:
The Pyramid Method,” in Proceedings of the 2004 Human Language Technology
Conference and the North American Chapter of the Association for Computational
Linguistics Annual Meeting, 2004.

[121] H. Saggion, S. S. Dp, E. Uk, D. Radev, S. Teufel, and W. Lam, “Meta-evaluation of
Summaries in a Cross-lingual Environment Using Content-based Metrics,” IN
PROCEEDINGS OF COLING-2002, p. 849--855, 2002.

[122] K. Zechner and A. Waibel, “Minimizing word error rate in textual summaries of
spoken language,” in Proceedings of the 1st North American chapter of the Association
for Computational Linguistics conference, San Francisco, CA, USA, 2000, pp. 186–193.

[123] K. S. Jones and J. R. Galliers, “Evaluating natural language processing systems: an
analysis and review,” in Communications of the ACM, 1996, vol. 39, pp. 73-80.

[124] T. E. Fawcett, “Feature discovery for problem solving systems,” PhD Thesis,
University of Massachusetts, Amherst, MA, USA, 1993.

[125] S. Mohammad, “Measuring Semantic Distance using Distributional Profiles of
Concepts,” PhD Thesis, University of Toronto, 2008.

[126] S. Nirenburg, S. Beale, and M. McShane, “Evaluating the performance of the
OntoSem semantic analyzer,” in Proceedings of the 2nd Workshop on Text Meaning
and Interpretation, Barcelona, Spain, 2004, pp. 33-40.

[127] ACM Computing Classification System. 1998.
[128] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd, “Cyc: toward

programs with common sense,” Communications of the ACM, vol. 33, pp. 30-49, Aug.
1990.

[129] The Editors of Time-Life Books, “Understanding computers: Artificial intelligence,”
in Understanding computers: Artificial intelligence, Time-Life books Inc., 1986, p. 84.

[130] D. Milne, O. Medelyan, and I. H. Witten, “Mining Domain-Specific Thesauri from
Wikipedia: A Case Study,” in Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence, 2006, pp. 442-448.

[131] C. Fellbaum, WordNet: an electronic lexical database. Cambridge Mass: MIT Press,
1998.

[132] G. A. Miller, C. Leacock, R. Tengi, and R. T. Bunker, “A Semantic Concordance,” in
Proceedings of the workshop on Human Language Technology, Stroudsburg, PA, USA,
1993, pp. 303–308.

[133] R. Rada, H. Mili, E. Bicknell, and M. Blettner, “Development and application of a
metric on semantic nets,” IEEE Transactions on Systems, Man, and Cybernetics, vol.
19, no. 1, pp. 17-30, 1989.

[134] Shen Wan and R. A. Angryk, “Measuring semantic similarity using wordnet-based
context vectors,” in 2007 IEEE International Conference on Systems, Man and
Cybernetics, Montreal, QC, Canada, 2007, pp. 908-913.

[135] R. Richardson and A. F. Smeaton, “Using wordnet in a knowledge-based approach to
information retrieval,” School of Computer Applications, Dublin City University,
Ireland, Working Paper CA-0395, 1995.

[136] P. Resnik, “Semantic Similarity in a Taxonomy: An Information-Based Measure and
its Application to Problems of Ambiguity in Natural Language,” Journal of Artificial
Intelligence Research, vol. 11, p. 95--130, 1999.

[137] G. Varelas, E. Voutsakis, E. G. M. Petrakis, E. E. Milios, and P. Raftopoulou,
“Semantic Similarity Methods in WordNet and their Application to Information

239

Retrieval on the Web,” In the 7th ACM International Workshop on Web Information
and Data Management (WIDM 2005), pp. 10-16, 2005.

[138] D. Lenat and R. Guha, Building Large Knowledge-Based Systems; Representation
and Inference in the Cyc Project. Addison-Wesley Longman Publishing Co., Inc., 1989.

[139] E. Gabrilovich and S. Markovitch, “Overcoming the brittleness bottleneck using
Wikipedia: enhancing text categorization with encyclopedic knowledge,” in Twenty-
First AAAI Conference on Artificial Intelligence, 2006.

[140] J. Giles, “Internet encyclopaedias go head to head,” Nature, vol. 438, no. 7070, pp.
900-901, Dec. 2005.

[141] K. A. Clauson, H. H. Polen, M. N. K. Boulos, and J. H. Dzenowagis, “Scope,
completeness, and accuracy of drug information in Wikipedia,” in Annals of
Pharmacotherapy, 2008, vol. 42, pp. 1814-1821.

[142] D. Fallis, “Toward an epistemology of Wikipedia,” Journal of the American Society
for Information Science and Technology, vol. 59, pp. 1662–1674, Aug. 2008.

[143] H. Cunningham, H. Cunningham, R. J. Gaizauskas, and R. J. Gaizauskas, “A General
Architecture for Text Engineering (GATE),” Computers and the Humanities, no. 36, pp.
223-254, 2002.

[144] H. Cunningham, “JAPE: a Java Annotation Patterns Engine,” Department of
Computer Science, University of Sheffield, Research Memorandum CS–99–06, 2000.

[145] H. Cunningham and D. Scott, “Software Architecture for Language Engineering,”
Natural Language Engineering, vol. 10, pp. 205–209, Sep. 2004.

[146] T. Pedersen and S. Patwardhan, “Wordnet::similarity - measuring the relatedness of
concepts,” in Proceedings of the Nineteenth National Conference on Artificial
Intelligence (AAAI-04), San Jose, CA, 2004, p. 1024--1025.

[147] M. Greenwood, Pure Java WordNet Similarity Library. 2007.
[148] M. F. Porter, “An algorithm for suffix stripping,” in Program, San Francisco, CA,

USA, 1980, vol. 14, pp. 130-137.
[149] C. Nobata, S. Sekine, M. Murata, U. Kiyotaka, M. Utiyama, and H. Isahara,

“Sentence Extraction with Information Extraction technique,” in Proceedings of the
Second NTCIR Workshop Meeting, 2001, pp. 213-218.

[150] M. Bautin and S. Skiena, “Concordance-Based Entity-Oriented Search,” in
IEEE/WIC/ACM International Conference on Web Intelligence (WI’07), Fremont, CA,
USA, 2007, pp. 586-592.

[151] V. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” in Sov. Phys. Dokl. 10 Original in Russian in Dokl. Akad. Nauk SSSR 163,
1966, pp. 707-710.

[152] E. Hovy, C.-yew Lin, and L. Zhou, “Evaluating DUC 2005 using Basic Elements,”
Proceedings of DUC2005, 2005.

[153] A. Bawakid and M. Oussalah, “A Semantic-Based Text Classification System,”
presented at the 8th IEEE International Conference on Cybernetic Intelligent Systems,
2009, p. 135.

[154] G. Giannakopoulos, V. Karkaletsis, and G. Vouros, “Testing the use of N-gram
Graphs in Summarization Sub-tasks,” in Proceedings of the First Text Analysis
Conference, 2008.

[155] R. Verma, D. Kent, and P. Chen, “Semantic Multi-document Update Summarization
Techniques,” in Proceedings of the First Text Analysis Conference, 2008.

[156] P.-E. Genest, G. Lapalme, L. Nerima, and E. Wehrli, “A Symbolic Summarizer for
the Update Task of TAC 2008,” in Proceedings of the First Text Analysis Conference,
2008.

240

[157] E. Wehrli, “Fips, a ‘deep’ linguistic multilingual parser,” in Proceedings of the
Workshop on Deep Linguistic Processing, Stroudsburg, PA, USA, 2007, pp. 120–127.

[158] D. Galanis and P. Malakasiotis, “AUEB at TAC 2008,” in Proceedings of the First
Text Analysis Conference, 2008.

[159] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no.
3, pp. 273-297, Sep. 1995.

[160] T. Mansuy and R. J. Hilderman, “A characterization of wordnet features in Boolean
models for text classification,” in Proceedings of the fifth Australasian conference on
Data mining and analystics - Volume 61, Darlinghurst, Australia, Australia, 2006, pp.
103–109.

[161] M. de B. Rodriguez, J. M. G. Hidalgo, and B. D. Agudo, “Using WordNet to
Complement Training Information in Text Categorization,” in Proceedings of the
Second International Conference on Recent Advances in Natural Language Processing,
1997.

[162] K. Dave, S. Lawrence, and D. M. Pennock, “Mining the Peanut Gallery: Opinion
Extraction and Semantic Classification of Product Reviews,” in WWW-2003, 2003, p.
519--528.

[163] D. Milne, “Computing Semantic Relatedness using Wikipedia Link Structure,” in
Proceedings of the New Zealand Computer Science Research Student Conference, 2007.

[164] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness using
Wikipedia-based explicit semantic analysis,” In Proceedings of the 20th International
Joint Conference On Artificial Intelligence, p. 1606--1611, 2007.

[165] X. Hu, X. Zhang, C. Lu, E. K. Park, and X. Zhou, “Exploiting Wikipedia as external
knowledge for document clustering,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, Paris, France, 2009,
pp. 389-396.

[166] R. Bunescu and M. Pasca, “Using Encyclopedic Knowledge for Named Entity
Disambiguation,” in Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics (EACL-06), Trento, Italy, 2006, pp. 9-16.

[167] S. P. Ponzetto and M. Strube, “Exploiting semantic role labeling, WordNet and
Wikipedia for coreference resolution,” IN PROC. OF HLT/NAACL, p. 192--199, 2006.

[168] R. Mihalcea, “Using Wikipedia for Automatic Word Sense Disambiguation,” in
North American Chapter of the Association for Computational Linguistics (NAACL
2007), 2007.

[169] R. Mihalcea, “Turning WordNet into an Information Retrieval Resource: Systematic
Polysemy and Conversion to Hierarchical Codes.,” IJPRAI, pp. 689-704, 2003.

[170] D. Turdakov and P. Velikhov, “Semantic Relatedness Metric for Wikipedia Concepts
Based on Link Analysis and its Application to Word Sense Disambiguation,” in
SYRCoDIS, 2008, vol. 355.

[171] R. Mihalcea and A. Csomai, “Wikify!: linking documents to encyclopedic
knowledge,” in CIKM ’07: Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management, Lisbon, Portugal, 2007, pp.
242, 233.

[172] A. Fogarolli, “Word Sense Disambiguation Based on Wikipedia Link Structure,” in
Semantic Computing, 2009. ICSC ’09. IEEE International Conference on, 2009, pp. 77-
82.

[173] C.-yew Lin and E. Hovy, “From Single to Multi-document Summarization: A
Prototype System and its Evaluation,” in In Proceedings of the ACL, 2002, vol. 48, pp.
457-464.

241

[174] C.-Y. Lin and E. Hovy, “Automatic evaluation of summaries using N-gram co-
occurrence statistics,” in Proceedings of 2003 Language Technology Conference (HLT-
NAACL 2003), Edmonton, Canada, 2003, vol. 1, pp. 71-78.

[175] J. P. Gee, An Introduction to Discourse Analysis: Theory and Method, 1st ed.
Routledge, 1999.

[176] A. Siddharthan, “Syntactic Simplification and Text Cohesion,” Research on
Language and Computation, vol. 4, no. 1, pp. 77-109, Mar. 2006.

[177] J. Carroll, G. Minnen, Y. Canning, S. Devlin, and J. Tait, “Practical Simplification of
English Newspaper Text to Assist Aphasic Readers,” in In Proc. of AAAI-98 Workshop
on Integrating Artificial Intelligence and Assistive Technology, 1998, pp. 7-10.

[178] J. Conroy, J. Schlesinger, D. Schlesinger, and J. Goldstein, “Back to Basics:
CLASSY 2006,” in Proceedings of the Sixth Document Understanding Conference
(DUC), 2006.

[179] J. Conroy, J. Schlesinger, and D. Schlesinger, “CLASSY 2007 at DUC 2007,” in
Proceedings of the Seventh Document Understanding Conference (DUC), Rochester,
New York, 2007.

[180] S. Blair-Goldensohn et al., “Columbia University at DUC 2004,” in In 4th Document
Understanding Conference (DUC 2004) at HLT/NAACL, 2004.

[181] H. Jing, “Sentence Reduction for Automatic Text Summarization,” In Proceedings of
the 6th Applied Natural Language Processing Conference, p. 310--315, 2000.

[182] H. Liu, Q. Zhao, Y. Xiong, L. Li, and C. Yuan, “The CIST Summarization Systems
at TAC 2010,” in Proceedings of the Text Analysis Conference (TAC), Gaithersburg,
Maryland USA, 2010.

[183] C.-Y. Lin, “Improving summarization performance by sentence compression: a pilot
study,” in Proceedings of the sixth international workshop on Information retrieval with
Asian languages - Volume 11, Stroudsburg, PA, USA, 2003, pp. 1–8.

[184] D. Zajic, B. Dorr, J. Lin, and C. Monz, “A sentence-trimming approach to
multidocument summarization,” in In Proceedings of the Document Understanging
Conference 2005 (DUC-2005), 2005, p. 151--158.

[185] L. Vanderwende, H. Suzuki, C. Brockett, and A. Nenkova, “Abstract Beyond
SumBasic: Task-Focused Summarization with Sentence Simplification and Lexical
Expansion,” Information Processing and Management, vol. 43, no. 6, pp. 1606-1618,
2007.

[186] E. Ong, J. Damay, G. Lojico, K. Lu, and D. Tarantan, “Simplifying Text in Medical
Literature,” Journal of Research in Science, Computing and Engineering, vol. 4, no. 1,
2008.

[187] S. Jonnalagadda and G. Gonzalez, “Sentence Simplification Aids Protein-Protein
Interaction Extraction,” in Proceedings of the 3rd International Symposium on
Languages in Biology and Medicine, 2009, pp. 109-114.

[188] D. D. Lewis, “An evaluation of phrasal and clustered representations on a text
categorization task,” in Proceedings of the 15th annual international ACM SIGIR
conference on Research and development in information retrieval, New York, NY,
USA, 1992, pp. 37–50.

[189] D. Carmel, H. Roitman, and N. Zwerdling, “Enhancing cluster labeling using
wikipedia,” in Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, Boston, MA, USA, 2009, pp. 139-
146.

[190] H. Guan, J. Zhou, and M. Guo, “A class-feature-centroid classifier for text
categorization,” in Proceedings of the 18th international conference on World wide

242

web, Madrid, Spain, 2009, pp. 201-210.
[191] J. Hu et al., “Enhancing text clustering by leveraging Wikipedia semantics,” in

Proceedings of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval, Singapore, Singapore, 2008, pp. 179-186.

243

Index
—A—
Abstraction, 33, 64
ADAM, 26
ADS. Automatic Documents

Summarization
analyzer, 23
Anaphor Resolution, 2
Anaphora resolution, 37
ANNIE, xvi, 73, 76, 78, 79, 81
Antonyms, 89, 91, 109, 111
Automatic Documents Summarization, 2,

22
Automatic intrinsic evaluations, 47
Automatic summarization, 1
—B—
back propagation algorithm, 30
Bag of Words, xvi, 11, 44
Bayesian classifier, 27, 28, 38
Bayesian summarizer, 28
binary trees, 32
BLEU, xvi, 47, 48, 49
bonus words, 26
BOW. Bag of Words
—C—
Categories Mapping, 200
CLASSY, 29, 171
co occurrence, 30, 31
coherence, 32, 47, 100
Cohesion, 32
Complements Removal, 184
Compressing Sentences, 181
compression rules, 34, 181
Computing Classification System (CCS),

57
Concepts Dominance, 160
concepts relatedness, 159
Concepts-Boosting, 133
Conjunctions Removal, 183
controversial corpora, 34
Coreference Resolution, 2, 79
cue phrases, 26
cue words, 24, 27, 38, 43
CYC, 57, 64
—D—
Data Mining, xvi, 2, 126, 220
Decision Trees, 27, 28
Discourse, 30, 32

Diversity, 104
DM. Data Mining
Documents Classification, 10, 12, 127, 223
documents cleaner, 77
documents clustering, 37, 125, 197, 223
Documents Understanding Conference

(DUC), 49
DUC 2007, 30
—E—
edit distance, 92, 93, 107
entity level analysis, 30
EuroWordNet, 123
Exact Match (EM) approach, 199
Extrinsic evaluations, 50
—F—
Feature Generation, 53
Feature Generator, 68
F-Measure, 48
—G—
General Architecture for Text Engineering

(GATE), 71
Generic background summaries. generic

summaries
generic stages of summarization, 19
generic summaries, 2
gradient descend method, 30
—H—
Hidden Markov Models, 27, 28, 29
HMM-Hedge, 29, 42
hypernyms, 61
hyponyms, 31, 61, 64, 84
—I—
IDF. Inverse Document Frequency
Information Retrieval, xvi, 2, 50, 220
Intrinsic evaluations, 47
Inverse Document Frequency, xvi, 26,

132, 195
IS-A relations, 75
—L—
Latent Semantic Analysis, xvi, 35, 37, 45
Levenshtein metric, 92, 93, 107, 109, 122
logical relations, 30, 31
Log-Linear models, 27, 29
—M—
Machine Learning approaches, 39
Machine Translation, 39

244

Maximal Marginal Relevance - MMR, 35,
36, 39

Maximum Entropy, 34
MEAD, 40, 41, 42, 163
Medical Subject Headings (MeSH), 57
MEDLINE, 42
multi-document summary, 2
Multiple Alternative Sentences

Compressions (MASC), 42
Mutual Linking, 139
—N—
Naïve-Bayes, 27
Named Entities, 23, 30, 53
Natural Language Generation, 34
Natural Language Processing, 2, 10, 36,

162
Natural Language Understanding, 2
NE. Named Entities
NetSum, 30
Neural Networks, 27, 29
Newsblaster, 40, 41
n-gram, 30, 31, 48, 49, 50, 120
Nucleus, 32
—O—
Ontological Semantic (OntoSem)

repository, 56
OnTopic, 28
Open Directory Project (ODP), 57, 128,

201
Open Text Summarizer, 40, 43
—P—
parser, 22
Part-of-Speech (POS), 23, 53
PLANDOC, 34
Porter Stemmer Algorithm, 79
precision, 28, 48, 50, 183, 184, 188
Pure Java WordNet Similarity Library

(PJWSL), 71
Pyramid, 50
—Q—
Query, cluster and Summarize (QCS)

system, 42
query-specific summaries, 2
Question Answering - QA, 38
—R—
RankNet, 30
recall, 28, 48, 49, 50
Redundancy, 104
reference human summaries, 28

Rhetorical Structure Theory, 32
Rocchio algorithm, 125
ROUGE, xvi, 34, 47, 49, 50, 97, 98, 99,

100, 101, 102, 108, 109, 121, 162, 166,
167, 168, 190, 191

RST. Rhetorical Structure Theory
rule-based sentences compression, 29
—S—
Satellite, 32
See Also links, 141
Semantic Content Units (SCU), 49
Semantic Distance, 55, 58
semantic relatedness, 58
Semantic Relations, 60
semantic similarity, 30, 58, 59, 61
Semantics Analysis, 9
Sentence Simplification Module, 8, 46
Sentences Similarity, 81
Sentences Splitter, 78
Sentiment Analysis, 2, 40
single-document summary, 2
Singular Value Decomposition (SVD), 45
Speech summarization, 39
SSM. Sentence Simplification Module,

Sentence Simplification Module
stigma words, 26
Stop Words List, 25
STREAK, 34
Subject Search Summarizer (SSSearch),

44
Summaries Evaluation, 47
SUMMARIST, 39
Summarization Features, 80
Summary Coverage, 105
SUMMONS, 33
Support Vector Regression (SVR), 122
surface level features, 24
Synonyms Expansion, 93
synset, 59, 60, 61, 81, 84, 91, 125
synthesizer, 23
—T—
TAC 2008, 14, 97, 98, 121
TAC 2010, 125, 127, 157, 162, 163, 165,

190, 222
TDS. Text Documents Summarization
TE. Textual Entailment
temporal expressions, 182
Term Frequency, xvi, 26
Term-Concepts Table, 132, 198

245

Text Analysis Conference (TAC), 49, 162
Text Categorization, 2
Text Documents Summarization, xvi, 2, 11
Text Summarization, 9
TextRank, 36, 120
Textual Entailment, 31
TF. Term Frequency
TIPSTER SUMMAC, 51
Tokenizer, 78
Topics Extractions, 2
Training corpus, 29
Trimmer, 43, 181, 190, 191
troponyms, 61
—U—
Unweighted Strong Links, 147, 155
update summary, 21

—V—
Vector Space Model, 35
Video-MMR, 36
—W—
Weighted Strong Links, 149, 155, 159,

199, 221, 222
Wikimedia, 65, 137
Wikipedia, 11, 52
Wikipedia Feature Generator, 68
Wiktionary, 57, 229
Word Sense Disambiguation, ii, xvi, 13,

53, 125, 127, 128, 144, 223, 229
WordNet, 11, 31, 52, 59
WordNet based semantic similarity

measures, 31
—X—
XP over XP, 185

246

APPENDICES

APPENDIX A

Sample Summaries Generated by the Implemented Systems

I provide here sample summaries generated by the best runs of my WordNet and Wikipedia

summarizers. I start by providing sample single document summaries generated by the best

run of my WordNet summarizer which was described and evaluated in section 4.3. The

original document I consider is named LTW_ENG_20050302.0121 and is part of the D0818D-A

document set in the TAC08 documents collection. The document is shown in Figure A.1 and

Figure A.2 in its original form.

Figure A.1: Part 1 of the document named LTW_ENG_20050302.0121 which was taken
from the document set D0818D-A in the TAC08 dataset

<DOC id="LTW_ENG_20050302.0121" type="story" >
<HEADLINE>
Authorities Probe Evidence as Judges Call for Better Protection
</HEADLINE>
<TEXT>
A window shard, spent shell casings and a bloody mop emerged as key pieces of
evidence Wednesday in the apparent execution-style murders of the husband and
mother of a U.S. district court judge in Chicago.

Returning to her home on the city's north side Monday, Judge Joan Humphrey
Lefkow discovered the bodies of her husband, Michael Lefkow, 64, and mother,
Donna Humphrey, 89. Both victims had been shot to death.

Authorities stressed that federal agents and local detectives had not yet
narrowed the scope of their investigation. But several law-enforcement
officials and media reports Wednesday indicated that task force members were
leaning toward considering it a premeditated crime. The victims apparently
were forced to lie down on the basement floor before they were shot in the
head and chest.

``There is nothing spur-of-the moment or anything that would indicate this was
a crime of passion,'' one official said, adding that the slayings bore the
hallmarks of ``an execution.''

Authorities also found a bloody shoe print and a blood-streaked mop,
indicating there was an effort to clean up the crime scene, the Chicago
Tribune reported.

247

Figure A.2: Part 2 of the document named LTW_ENG_20050302.0121 which was taken
from the document set D0818D-A in the TAC08 dataset

It can be noted that the document contains a headline which I treat as the Topic of the

document. This is represented as T in the scoring formula detailed in section 4.2.2.3. The

document set which this document belongs to also has a title which is Judge Joan Lefkow's

Family Murdered. I treat this title as a user query (represented by Q) in the sentences

scoring formula. To begin with, α is set to 0.0 which in effect causes the summarizer to

Chicago police spokesman David Bayless said FBI forensics experts at the
bureau's laboratory in Quantico, Va., would analyze ballistics evidence
retrieved from the home. At least two .22-caliber shell casings reportedly
were recovered from the Lefkow residence.

Bayless and other officials would not provide specific details about
evidence retrieved from the house, out of concern that leaks about the
investigation might aid the killer or killers. ``We're going to be vague
and general for the time being,'' he said.

A security detail of federal marshals was guarding Lefkow and other family
members at an undisclosed location. The judge and her husband briefly
received protection last year during the trial of a white supremacist who
later was convicted of trying to arrange her murder.

The extremist leader, Matthew Hale, is awaiting sentencing next month.

In an interview Wednesday for the Chicago Tribune, Lefkow said she always
knew her job put her at risk but never thought it would endanger her
family.

``It's so unthinkable,'' the judge said. ``I imagine my husband must have
just walked into something,'' Lefkow said. ``Both of them were on crutches.
They didn't have a chance.''

Two U.S. district judges who work with Lefkow called for officials
Wednesday to reassess security arrangements for the nation's federal
judiciary. ``This horrible tragedy has got to serve as the basis for a
substantial increase in security for judges and their families,'' U.S.
District Judge Wayne R. Andersen said. ``The Internet is plastered with
information about every one of us, and I fear -- and my family certainly
fears -- that these kinds of incidents are going to be repeated unless
there is a very high priority on the safety of judges and their families.''

U.S. District Judge Marvin E. Aspen also asked for a new look at security
measures. Dan Lehman, a spokesman for the U.S. Northern District of
Illinois, said that Andersen had talked to Chief Judge Charles P. Kocoras
about his concerns and that some other judges working out of Chicago's
downtown federal courthouse had expressed worries since the killings.

``There's real concern that there needs to be a dispassionate,
comprehensive look at security arrangements in light of these homicides,''
Lehman said. The judge's husband had recently injured his leg and had
surgery.

</TEXT>
</DOC>

248

ignore the headline of the document (or T in the scoring formula) and only considers the

document set title (Q). The summary generated is shown in Figure A.3. The summary limit is

set to 100 words.

Figure A.3: Summary generated with α set to 0.0

By examining the sentences in the generated summary and comparing them to the query

Judge Joan Lefkow’s Family Murdered, it can be noted that the name of the judge Joan

Lefkow appears in sentence 2. Also, the terms husband from sentences 3 and 4, and family in

the query are semantically related. The term murder appears explicitly in sentences 1 and 3.

When changing the value of α to 0.5 which gives an equal weight to both T and Q, the

summary I get is shown in Figure A.4.

Figure A.4: Summary generated with α set to 0.5

In the new summary, I have sentences 2 and 4 from the old summary being replaced by

sentence 2 in the new summary. Also, it can be noted that an almost equal share of emphasis

on terms appearing in both T and Q is applied in the new summary. For example, the word

murder still appears in sentences 1 and 3. The term probe from T is semantically related to

the term investigation which appears in sentence 2. I try to set the value of α to 1.0. This

(1) A window shard, spent shell casings and a bloody mop emerged as
key pieces of evidence Wednesday in the apparent execution-style
murders of the husband and mother of a U.S. district court judge in
Chicago. (2) Bayless and other officials would not provide specific
details about evidence retrieved from the house, out of concern that
leaks about the investigation might aid the killer or killers. (3)
The judge and her husband briefly received protection last year
during the trial of a white supremacist who later was convicted of
trying to arrange her murder.

(1) A window shard, spent shell casings and a bloody mop emerged as
key pieces of evidence Wednesday in the apparent execution-style
murders of the husband and mother of a U.S. district court judge in
Chicago. (2) Returning to her home on the city's north side Monday,
Judge Joan Humphrey Lefkow discovered the bodies of her husband,
Michael Lefkow, 64, and mother, Donna Humphrey, 89. (3) The judge
and her husband briefly received protection last year during the
trial of a white supremacist who later was convicted of trying to
arrange her murder. (4) The judge's husband had recently injured his
leg and had surgery.

249

causes the system to effectively consider only T and ignores Q. The effect of this is shown in

Figure A.5. Note the captured semantic similarity between the term Security in sentences 3

and 4 and Protection from the document headline.

Figure A.5: Summary generated with α set to 1.0

Now, by setting the value of α back to 0.0, I shift the focus of the system back to Q. I

consider replacing Q with “risky job” for the sake of comparison. The effect of this change is

shown in Figure A6.

Figure A.6: Summary generated with α set to 0.0 and Q changed to “risky job” for the

sake of comparison

By examining the new summary, it appears that the system has captured the similarity

between the adjective risky and the words risk and endanger in sentence 2 showing the

effectiveness of the measure arTonv_SemSimMeasure implemented in this summarizer.

The same summarizer has also been applied for multi-document summarization. An example

showing the effect of this on the document set D0813A from the TAC08 collection is shown

in Figure A.7. This summary is generated by setting α to 0.5 which gave the best performance

from my own observations.

(1) A window shard, spent shell casings and a bloody mop emerged as
key pieces of evidence Wednesday in the apparent execution-style
murders of the husband and mother of a U.S. district court judge in
Chicago. (2) In an interview Wednesday for the Chicago Tribune,
Lefkow said she always knew her job put her at risk but never
thought it would endanger her family. (3) Aspen also asked for a new
look at security measures. (4) There's real concern that there needs
to be a dispassionate, comprehensive look at security arrangements
in light of these homicides, Lehman said

(1) A window shard, spent shell casings and a bloody mop emerged as
key pieces of evidence Wednesday in the apparent execution-style
murders of the husband and mother of a U.S. district court judge in
Chicago. (2) The judge and her husband briefly received protection
last year during the trial of a white supremacist who later was
convicted of trying to arrange her murder. (3) Aspen also asked for
a new look at security measures. (4) There's real concern that there
needs to be a dispassionate, comprehensive look at security
arrangements in light of these homicides, Lehman said

250

Reference Summaries
1
In the Nov. 2, 2004 election for Governor of Washington, the first vote
count showed Republican Rossi leading by 800 votes. The following day
Democrat Gregoire led by 1400; the next day Gregoire by 21,234; and by
Nov. 16 Rossi by 19. By Nov 18 all votes were counted and Rossi led by
261. A machine recount gave Rossi a 42-vote edge but a manual recount
gave Gregoire a lead of 261. On Dec. 30 Gregoire was declared Governor-
elect. On Jan. 7, 2005, with inauguration scheduled for Jan. 12, Rossi
filed a lawsuit seeking a new election.

2
Democrat Christine Grigoire was declared winner in the Washington
gubernatorial election two months after election day, winning by 129
votes out of 2.9 million cast. Republican opponent Dino Rossi filed a
lawsuit seeking the extraordinary remedy of a new election. The initial
count after the Nov 2 election had Rossi ahead by 261 votes. The first
recount reduced his lead to 42 votes. A second recount put Grigoie
ahead. An estimated 60% of Washingtonians vote by mail and absentee
ballots can be postmarked as late as election day so counting in close
races can drag on for weeks.

3
Until the last days of the campaign, State Attorney General Christine
Gregoire (Democrat) was favored to win Washington's 2004 governor's
race over wealthy real estate agent Dino Rossi (Republican). Absentee
ballots postmarked by Election Day trickled in. Rossi led by 261 votes,
triggering a recount required by law if the margin is less than 2000.
Following a machine recount, Rossi led by 42 votes. A third count, by
hand, took place after Democrats raised sufficient money. Election
officials discovered over 700 erroneously rejected or misplaced
absentee ballots. Seven weeks after Election Day, Gregoire led by 130
votes, reversing election results.

4
The race for to be governor of Washington state was extremely close.
The initial count showed the Republican candidate, Dino Rossi, ahead by
261 votes out of 2.9 million. The first recount, done by machine,
showed him ahead by only 42 votes. The second recount, done by hand,
gave Democrat Christine Gregoire a 120-vote lead and she was declared
the winner on 30 December, fifty eight days after the election. Rossi
has filed a lawsuit, alleging that dead people, felons, and other
ineligible voters cast ballots and demanding an unprecedented statewide
re-vote.The inauguration may be postponed.

System Summary
After a bitter and protracted recount fight in the Washington
governor's race, elections officials announced Wednesday that the
Democratic candidate, Christine O. Gregoire, was leading her Republican
opponent by 10 votes a minuscule margin but a stunning reversal of the
Nov. 2 election results. A month and a day after voters went to the
polls, the closest governor's race in Washington state history and one
of the nation's closest-ever statewide contests lurched forward Friday,
as state Democrats announced they had raised enough money to start a
third count, this one by hand, of nearly 3 million ballots.

Figure A.7: System summary generated with the WordNet-based summarizer for

document set D0813-A from the TAC08 documents collection

251

Two main methodologies were applied for summarization with Wikipedia. The first uses the

term-concepts table while the second employs the strong links features. Both were described

and presented in Chapter 5. I present here a sample summary generated by each method. First

is shown in Figure A.8 and uses the term-concepts table method. It is applied to document set

D1017A from the TAC10 data collection.

Reference Summaries
1
Between 10 and 13 September 1999, a storm named Floyd proceeded from
northwest of Barbuda towards Miami, moving at speeds up to 14 mph, with
winds progressing from 110 mph to 155 mph, thus upgrading it to a major
hurricane. Warnings extended along the Atlantic Coast from South
Florida to the barrier islands of South Georgia. Florida Governor Bush
declared an emergency, hundreds of thousands, particularly mobile
homers, moving inland. Cape Kennedy workers were sent home. FEMA stood
ready with ice, potable water, generators, tents, and food, as well as
having contractors ready for debris removal and roof repair.

2
In early September, 1999, authorities worried about the growth of
Hurricane Floyd as they tracked its movements from the Atlantic toward
the U.S. coast. Emergency management officials in Florida began
mobilizing and the Governor declared a state of emergency. On September
13, mandatory evacuations were ordered in Brevard County Florida, and
coastal Georgia; hundreds of thousands fled their homes. Experts
speculated Floyd could become a catastrophic category 5 Hurricane, with
winds over 156 miles per hour, the first such storm to hit the coast.
Individuals were urged to make homes as hurricane proof as possible.

3
On September 11, tropical storm Floyd became the fourth Atlantic
hurricane of the year, moving through the North Atlantic toward the
eastern US. Moving away from the Caribbean's Leeward Islands toward
Florida, Category 4 Hurricane Floyd, with 131 mph winds that reached
155 mph around the eye, extended 700 miles in all directions. In
Florida, emergency management officials mobilized and the governor
declared a state of emergency. Mandatory evacuations were ordered in
Florida and Georgia, and cruise ships and pleasure craft left for safer
waters. FEMA emergency response centers positioned ice, water, cots,
tents and emergency food and medical supplies.

4
Floyd became a hurricane on September 10, 1999. It was north of Puerto
Rico and the Virgin Islands. By September 13, Floyd had become a
Category 4, monster storm, expected to hit the east coast between Miami
and Brunswick, Georgia, by September 15. If the winds increase it would
be only the third Category 5 storm to hit the U.S. FEMA has opened
response centers, formed a liaison team, and pre-positioned supplies in
Atlanta. Florida has declared a state of emergency and is mobilizing.
Kennedy Space Center is being evacuated. Citizens are urged to prepare
and consider voluntary evacuations.

252

System Summary
(1) The National Hurricane Center in Miami reported that Floyd was
expected to intensify today, becoming a Category 3 hurricane, and it
could become a Category 4 with sustained winds of at least 131 mph by
Tuesday afternoon, when it's expected to reach the northern Bahamas.
(2) Officials posted warnings for Hurricane Floyd across the central
Bahamas and hurricane watches throughout the northwest Bahamas. (3) A
U.S. hurricane hunter airplane reported Sunday evening that Floyd's
winds had topped the 131 mph mark of a very dangerous Category 4 storm.
(4) Customers streamed into the store to pick up hurricane supplies.

Top Concepts:
Hurricane Floyd, National Hurricane Center, Hurricane Hunters ,Tropical
Cyclone, The Bahamas, The United States, Miami, Miles per hour, Fixed-
wing aircraft, Flood Alert, Wind, Category 4 Hurricane, Maximum
sustained wind, Hunting, Storm, Customer, Tornado Warning, Tornado
Watch, Cardinal Direction, Central America

Figure A.8: Summary generated with the Term-concepts table method for document set

D1017A from the TAC10 documents collection

The top detected topics within the original document are shown in the above figure. When

applying the strong links method to the same document set, I obtain the summary shown in

Figure A.9. The noise introduced with the term-concepts table greatly depends on the number

chosen for the context size when disambiguating concepts. For this particular example, the

top detected concepts appear to correspond better to the reference summaries than in the

example provided in section 5.5.7.

(1) Hurricane Floyd got stronger and headed toward the Bahamas
Saturday, packing 110 mph winds and leaving weather pundits wondering
whether it will hit South Florida this week. (2) Five Caribbean islands
canceled tropical storm watches Friday night as Floyd, packing winds of
110 mph, moved further out to sea, the National Hurricane Center in
Miami reported. (3) The National Hurricane Center in Miami reported
that Floyd was expected to intensify today, becoming a Category 3
hurricane, and it could become a Category 4 with sustained winds of at
least 131 mph by Tuesday afternoon, when it's expected to reach the
northern Bahamas.

Top Concepts:
Hurricane Floyd, National Hurricane Center, Hurricane Hunters ,Tropical
Cyclone, Tropics, Tropical Cyclone Warning and Watches, Flood Alert,
Storm, Confederate states of America, Saffir-Simpson Hurricane Scale,
Wind, Weather, Out to Sea, South Florida Metropolitan Area, The
Bahamas, Miami

Figure A.9: Summary generated with the strong links method for document set D1017A

from the TAC10 documents collection

253

APPENDIX B

Penn Treebank Tags and Stanford Typed Dependencies

Provided here is a list showing the Treebank tags that were used during the parsing of

sentences in Chapter 6 and Chapter 8. The list is followed by the Stafornd Typed

Dependencies which were used in Chapter 6 for describing how the processes of sentences

splitting are performed.

Tag Description

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

NP Noun Phrase

PDT Predeterminer

PP Prepositional Phrase

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

S simple declarative clause

SBAR Clause introduced by a (possibly empty) subordinating conjunction

254

SYM Symbol

TO to

UH Interjection

VP Verb Phrase

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WHNP Wh-noun Phrase

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

Stanford Typed Dependencies16

rcmod: relative clause modifier
“I am the man you love” rcmod(man, love)

dobj: direct object
“She gave me a raise” dobj(gave, raise)

ccomp: clausal component
“He says that you like to swim” ccomp(says, like)

dep: dependent
“Then, as if to show that he did it … “ dep(show, if)

conj: conjunct
“Bill is big and honest” conj(big, honest)

Nsubj: nominal subject
“The baby is cute” nsubj(baby, cute)

16 All definitions and examples are taken from Stanford Dependencies Manual
http://nlp.stanford.edu/software/dependencies_manual.pdf

255

APPENDIX C

Publications

The following publications have been published while working on this thesis. They are added

here to provide a reference to the different sections covered in this thesis and the experiments

that were conducted. They also give details about any ideas that may have been included

briefly within this thesis. A brief description about how each paper relates to the work in this

thesis was provided in Chapter 1 section 1.2.

http://nlp.stanford.edu/software/dependencies_manual.pdf

Sentences Simplification for Automatic
Summarization

Abdullah Bawakid and Mourad Oussalah
School of Engineering

Department of Electronic, Electrical and Computer Engineering
University of Birmingham

{ axb517 , M.oussalah }@bham.ac.uk
[

Abstract— In this paper, we emphasize the need for conserving
space within sentences by introducing a Sentences Simplification
Module (SSM). The module is aimed to shorten the length of
sentences via either splitting or compression. We describe how
the module is integrated in a Wikipedia-based summarization
framework. We highlight the performance differences obtained
from introducing such a module by running a series of
evaluations.

Keywords; Summarization; Sentences Simplification; SSM;
links analysis ; strong links

I. INTRODUCTION

The goal of summarization systems is to provide
summaries containing as much information as possible meeting
the user’s needs within a confined space determined by the
previously-set summary limit. Since most of the recently
developed summarization systems are extractive, they are
inherently limited to only the sentences that exist in the original
test documents. A sentence may contain important information
in part and non-relevant information in another. Also, a
sentence that may be central to the theme of a document may
contain a mixture of new and redundant data to what is already
available in the summary. It is therefore necessary to enforce a
methodology that allows for conserving more space within
sentences and including as much content as possible without
sacrificing novelty or imposing redundancy. For this, it is
probably best to view how linguists and discourse analysts
perform their studies on text and sentences in particular. Their
analysis usually begins by separating clauses and phrases
within a sentence to identify their features and properties [1]. In
this paper, we describe how a similar step was introduced by
integrating a module for automatic sentences simplification
into the Wikipedia-based summarization framework we
previously developed for the purpose of better information
extraction.

The rest of this paper is organized as follows. In section 2
we briefly discuss the related work in the field. In section 3 we
give an overview on the built SSM and its main components. In
section 4 we describe the summarization methodology we
adopt and how SSM is integrated in the process. Section 5
discuss the evaluation performed on the summarization system
and compare its performance against other baselines. In section
6 we summarize and conclude our work.

II. RELATED WORK

Sentences Simplification has been applied in the literature
to different applications with different motivations. In [2] and
[3], it has been used to form sentences which are easier to read
for humans and new language learners in particular. Their
target was to create sentences which are grammatically correct,
short and cohesive. Sentence simplification has also been
applied in summarization systems to shorten the length of
sentences. The CLASSY summarization system described in
[4], [5] and [6] for example employs a sentence compression
module by applying a set of rules to all sentences before
choosing the summary candidate sentences. Cut-and-Paste in
[7] and other summarizers in [8], [9] and [10] employ a similar
approach. In [11], the authors applied a sentences compression
module after choosing the candidate sentences in a post-
processing step.

In the mentioned summarization systems, compression is
applied independently as a separate process to all sentences and
is not affected by how candidates are selected. It is possible
that two sentences containing an important piece of
information are compressed by removing that important
content from both. It would be optimal to remove the
redundant info from only one sentence while keeping it in the
other if both sentences were to be included in a summary.
Implementing this would require a system having the capability
of applying a dynamic set of rules to different sentences based
on what is already contained in the summary.

It was suggested in a pilot study in [12] that summarization
systems implementing compressions would have an edge over
those that do not if the compression took into account the
different references and relationships among sentences. In [13],
an approach was applied to tackle the mentioned issue. Their
system would apply a set of rules for trimming sentences and
creating multiple versions of each sentence using the rules
described in [14]. After creating multiple compressed versions
of each sentence, the core summarizer would consider all
versions of each sentence as potential summary candidates. To
choose the optimal candidate, the system would check the
redundancy of the sentence against the current summary and
select the least redundant. Another system with a similar
approach was implemented and described in [15]. Both
systems emphasized preserving only important content and do
not necessarily factor in the semantic relationships between the
documents content. Redundancy checking is based on BOW

methods and do not capture the semantics similarity and
relatedness between the different sentences and the concepts
they carry. In our system, we also employ a similar
methodology by producing multiple simplified versions of
sentences. However, the focus here is rather on simplifying
sentences while in the same time preserving as much relevant
semantic content as possible. For that, the Sentences
Simplification Module (SSM) we developed is embedded in
our Wikipedia-based summarizer and an iterative process is
added for handling redundancy.

III. OVERVIEW OF SSM

Before simplifying a sentence, it is necessary first to devise
some means for interpreting its text. The interpretation can be
syntactic, lexical or semantic. Focus here is on syntactical
interpretation of sentences. For that, dependency tree of the
sentence is drawn with help from Stanford’s Parser1 which
adopts the Penn Treebank conventions. With the tree drawn,
one can apply any set of rules to make the changes desired to
the sentence. In effect, the rules may allow for simplifying a
long and complicated sentence through compression or
splitting into several sentences. The simplified sentences, along
with the original, become summary candidates and the choice
is based on the contained semantic information in each and the
redundancy and relevancy to what is already available in the
current state of the summary. Factors like sentences length
(before and after the split/compression) and the existence of
dominant concepts/words/phrases play a role in making
decisions dynamically. In the next two subsections we describe
the two main processes involved in SSM, namely Sentences
Splitting and Sentences Compression.

A. Sentences Splitting

Sentences with different syntactic formats would need to be
handled differently with different rules applied to achieve the
splits desired. Based on the generated parse tree and
grammatical relations for the original sentence and the
boundary terms found in a sentence, it is decided what rule to
apply. The boundary terms are chosen to be who, which, that,
and and or. Many of the rules mentioned here have been
applied in the literature in different studies for different
systems including [2], [16] and [17]. The following scenarios
show the Tregex [18] patterns2 detected and processed by SSM
for sentences splitting with an example provided for each.

Scenario 1
Sentence: The man who ate the poisoned food died yesterday.
Parse: (ROOT (S (NP (NP (DT The) (NN man)) (SBAR (WHNP (WP
who)) (S (VP (VBD ate) (NP (DT the) (VBN poisoned) (NN food))))))
(VP (VBD died) (NP (NN yesterday)))))

Tregex Pattern: SBAR , NP & < (WHNP << who) & << VP

Used Modifiers: rcmod(man-2, ate-4)

Sentences after Split: The man died yesterday. The man ate the
poisoned food.

1 http://nlp.stanford.edu/software/lex-parser.shtml

2 Syntactic patterns are written in this paper in the tree searching
language Tregex which encodes the different tree relations

In the above example, the boundary term who appears
before the phrase “ate the food yesterday”. When viewing the
phrase structure tree for the sentence, a phrase of type SBAR
which has WHNP as one of its descendents is detected. This
indicates that a potential split is in place. The split is achieved
by separating the SBAR clause from the rest of the sentence
resulting in two sentences, with one being incomplete. These
two sentences are:

The man died yesterday.

who ate the poisoned food.

To complete the second sentence, we look at the phrase
proceeding the boundary term who, which is of type VP. With
the relation rcmod(man-2, ate-4), one can tell that man is the
word that should be preceding the main verb in the incomplete
sentence.

Scenario 2

Sentence: I have read the books which you bought last week.
Parse: (ROOT (S (NP (PRP I)) (VP (VBP have) (VP (VBN read) (NP
(NP (DT the) (NNS books)) (SBAR (WHNP (WDT which)) (S (NP
(PRP you)) (VP (VBD bought) (NP (JJ last) (NN week))))))))))
Tregex Pattern: SBAR , NP & < (WHNP << which) & << (VP ,
NP < VBD)
Used Modifiers: rcmod(books-5, bought-8)
Sentences after Split: I have read the books. You bought the
books last week.

In this sentence, the boundary term which is proceeded by
the Noun Phrase (NP) you. For this scenario, we find the
following VBD, which is bought, and use the relation rcmod to
find the subject that is being referred to by that verb. We obtain
books as the answer. The NP of books is used to complete the
second sentence.

Scenario 3

Sentence:

I have read the books that you bought last week.
Parse:

(ROOT (S (NP (PRP I)) (VP (VBP have) (VP (VBN read) (NP
(DT the) (NNS books)) (SBAR (IN that) (S (NP (PRP you)) (VP (VBD
bought) (NP (JJ last) (NN week)))))))))
Tregex Pattern: SBAR , NP & < (IN << that) & << (VP , NP <
VBD)
Used Modifiers:

dobj(read-3, books-5), ccomp(read-3,
bought-8)
Sentences after Split:

I have read the books. You bought the
books last week.

The boundary term in this example is that. It is found
underneath an SBAR and has an NP following it. The VBD
bought is used with the relation ccomp to find its complement:
read. The dobj relation is then employed to specify the direct
object of the verb which is books in the given example.

Scenario 4

Sentence:

I have read the books you bought last week
Parse:

(ROOT (S (S (NP (PRP I)) (VP (VBP have) (VP (VBN read)
(NP (DT the) (NNS books))))) (S (NP (PRP you)) (VP (VBD bought)
(NP (JJ last) (NN week))))))
Tregex Pattern: S < (NP . VP) , S < (NP.VP)
Used Modifiers: dep(read-3, bought-7), dobj(read-3, books-5)

http://nlp.stanford.edu/software/lex-parser.shtml

Sentences after Split:

I have read the books. You bought the

books last week.

This example does not contain a boundary term. Two S
clauses appear with NP and VP for each. The segmentation
takes place by separating the clauses from each other. Since the
verb bought is dependent on read, we use the relation dobj to
determine the NP following bought.

Scenario 5

Sentence:

The team won the golden medal and achieved the

highest team score of the season.
Parse:

(ROOT (S (NP (DT The) (NN team)) (VP (VP (VBD won) (NP
(DT the) (JJ golden) (NN medal))) (CC and) (VP (VBD achieved)
(NP (NP (DT the) (JJS highest) (NN team) (NN score)) (PP (IN of)
(NP (DT the) (NN season))))))))
Tregex Pattern:

VP , NP < (VP < VBD $ VP) < (CC < and | < or)
Used Modifiers:

conj_and(won-3, achieved-8)
nsubj(won-3, team-2)
Sentences after Split:

The team won the golden medal. The
team achieved the highest team score of the season.

The boundary term in the above example is and which
separates two VPs. The relation conj_and is used to link the
main verb of the second clause with the first and thus find the
shared object.

Scenario 6

Sentence:

The infected rabid fox eventually dies, but a simple
scratch can spread the virus to other animals or people.
Parse:

(ROOT (FRAG (S (S (NP (DT The) (JJ infected) (JJ rabid)
(NN fox)) (ADVP (RB eventually)) (VP (VBZ dies))) (, ,) (CC but) (S
(NP (DT a) (JJ simple) (NN scratch)) (VP (MD can) (VP (VB spread)
(NP (DT the) (NN virus)) (PP (TO to) (NP (JJ other) (NNS animals)
(CC or) (NNS people)))))))))
Tregex Pattern:

S < (NP . VP) $ (CC < but) $ S < (NP.VP)
Used Modifiers:

conj_but(dies-6, spread-13)
Sentences after Split:

The infected rabid fox eventually dies. A
simple scratch can spread the virus to other animals or people.

The boundary term in the above example is but. It is located
between two clauses of type S. Both clauses have NPs followed
by VPs as their children. This pattern triggers a possible split
which is achieved with help from the relation conj_but to
construct the new sentences.

B. Sentences Compression

We adopt the Trimmer algorithm described in [14] and [19]
by applying some of its syntactic compression rules. The
original Trimmer algorithm aims to transform sentences into
headline-style phrases by detecting patterns in a sentence parse
tree and removing certain nodes from the tree based on the
applied rule and detected pattern. The goal here is to generate
sentences, not headlines, which are short, cohesive and
grammatically correct. Therefore, we implement only some of
the rules that would be most suitable for producing complete
sentences and discard those resulting in headline-styled text.
The rules being used are the following with an example
provided for each:

Keep the leftmost S root and remove its siblings

Keep the leftmost S Root which has both NP and VP in the
sentence and the remove the rest.
Sentence:

The Libyan leader and his wife were in good health,

Mossa Ibrahim told a press conference.
Parse:

(ROOT (S (S (NP (NP (DT The) (JJ Libyan) (NN leader)) (CC

and) (NP (PRP$ his) (NN wife))) (VP (VBD were) (PP (IN in) (NP
(JJ good) (NN health))))) (, ,) (NP (NNP Mossa) (NNP Ibrahim)) (VP
(VBD told) (NP (DT a) (NN press) (NN conference))) (. .)))
After compression:

The Libyan leader and his wife were in

good health.

Remove Time Expressions

Remove temporal expressions from sentences. This is achieved
by deleting the PP node which has an NP child with a Time
word as one of its leaves. The deletion takes place by removing
the Prepositional Phrase (PP) with all of its children.
Sentence: After the raid took place on Saturday around 8:00
pm, Ibrahim took a group of journalists to the site of the
house.
Parse:

(ROOT (S (SBAR (IN After) (S (NP (DT the) (NN raid)) (VP
(VBD took) (NP (NN place)) (PP (IN on) (NP (NNP Saturday))) (PP
(IN around) (NP (CD 8:00) (NN pm)))))) (, ,) (NP (NNP Ibrahim))
(VP (VBD took) (NP (NP (DT a) (NN group)) (PP (IN of) (NP (NNS
journalists)))) (PP (TO to) (NP (NP (DT the) (NN site)) (PP (IN of)
(NP (DT the) (NN house)))))) (. .)))
After Compression: After the raid took place, Ibrahim took a
group of journalists to the site of the house.

Remove Conjunctions

For any sentence containing and or but as a CC, we remove the
preceding phrase of but and proceeding for and.
Sentence:

NATO continued its precision strikes against
Gaddafi regime military installations in Tripoli overnight but
would not confirm the Libyan claim about the assassination
attempt.
Parse:

(ROOT (S (NP (NNP NATO)) (VP (VP (VBD continued) (NP
(PRP$ its) (NN precision) (NNS strikes)) (PP (IN against) (NP (NNP
Gaddafi) (NN regime) (JJ military) (NNS installations))) (PP (IN in)
(NP (NNP Tripoli))) (ADVP (RB overnight))) (CC but) (VP (MD
would) (RB not) (VP (VB confirm) (NP (DT the) (JJ Libyan) (NN
claim)) (PP (IN about) (NP (DT the) (NN assassination) (NN
attempt))))))))
After Compression:

NATO continued its precision strikes
against Gaddafi regime military installations in Tripoli
overnight.

Remove Complements

We remove IN nodes which have the term that in their leaves.
Sentence: The alliance acknowledged that it had struck a
command and control building
Parse:

(ROOT (S (NP (DT The) (NN alliance)) (VP (VBD
acknowledged) (SBAR (IN that) (S (NP (PRP it)) (VP (VBD had) (VP
(VBN struck) (NP (DT a) (NN command) (CC and) (NN control) (NN
building)))))))))
After Compression:

The alliance acknowledged it had struck a
command and control building

XP over XP

XP here refers to either NP or VP. For first NP-over-NP or VP-
over-VP where inner XP is the first and leftmost child, we keep
the left child and remove all of the child siblings. Note that the
XP child must be the first and leftmost child of the parent XP
for the rule to apply.

Sentence:

A woman whose husband killed himself with a

circular saw in Plymouth earlier this week was bludgeoned to
death.
Parse:

(ROOT (S (NP (NP (DT A) (NN woman)) (SBAR (WHNP

(WP$ whose) (NN husband)) (S (VP (VBD killed) (NP (PRP himself))
(PP (IN with) (NP (NP (DT a) (JJ circular) (NN saw)) (PP (IN in)
(NP (NNP Plymouth))))) (NP (RBR earlier) (DT this) (NN week))))))
(VP (VBD was) (VP (VBN bludgeoned) (PP (TO to) (NP (NN
death)))))))
After Compression:

A woman was bludgeoned to death

Remove PP under SBAR

PP expressions appearing under SBARs are removed.
Sentence: The administration said it has deployed several
countermeasures to reduce oil dependence such as supporting
research in alternative energy sources.
Parse:

After Compression: The administration said it has deployed
several countermeasures to reduce oil dependence.

Remove SBAR

We remove SBARs in this step as illustrated in the following
example.
Sentence:

NATO forces whose air strikes could not stop
Gaddafi attacks on civilians decided to supply rebels with
weapons.
Parse:

(ROOT (S (NP (NP (NNP NATO) (NNS forces)) (SBAR
(WHNP (WP$ whose) (NN air)) (S (NP (NNS strikes)) (VP (MD
could) (RB not) (VP (VB stop) (NP (NNP Gaddafi) (NNS attacks))
(PP (IN on) (NP (NNS civilians)))))))) (VP (VBD decided) (S (VP
(TO to) (VP (VB supply) (NP (NNS rebels)) (PP (IN with) (NP (NNS
weapons))))))) (. .)))
After Compression:

NATO forces decided to supply rebels
with weapons.

Remove PP

We remove all PP nodes in the tree with this rule.
Sentence:

NATO continued its precision strikes against
Gaddafi regime military installations in Tripoli overnight.
Parse:

(ROOT (S (NP (NNP NATO)) (VP (VBD continued) (NP
(PRP$ its) (NN precision) (NNS strikes)) (PP (IN against) (NP (NNP
Gaddafi) (NN regime) (JJ military) (NNS installations))) (PP (IN in)
(NP (NNP Tripoli) (JJ overnight)))) (. .)))
After Compression:

NATO continued its precision strikes.

At first, the rules mentioned above are applied to a sentence
independently. And then in a second iteration, they are all
applied to the sentence in sequence with the output of one rule
being fed to the next. The aim of both operations (applying
rules independently and in order) is to produce as many
compressed and valid versions of a sentence as possible.

IV. SUMMARIZATION METHODOLOGY

The basic summarization methodology applied here relies
on a modified version of the Wikipedia-assisted summarizer
that utilizes the strong weighted links approach described in
[20]. The major change is in the introduction of SSM and an
iterative process handling redundancy. Figure 1 shows the
architecture of the updated summarizer with the iterative
process inside the box. After preprocessing the documents,
clusters of sentences are formed with each cluster having the
original sentence in addition to its simplified versions as
generated from SSM. Afterwards, all sentences are given a
score using the weighted links method. Then, an iterative
process is applied after which a summary is produced.

Figure 1. Architecture of the SSM-based Summarizer

The sentences scoring stage relies on other process to
complete, namely: identifying the concepts within sentences,
measuring the relatedness between concepts and sentences, and
identifying the features used for scoring sentences. In the next
subsections we outline each of these processes.

A. Identifying the Concepts

We use an exact match measure where explicitly mentioned
Wikipedia concepts within each sentence are detected. A
concept having multiple spellings and synonyms should still be
detected by the system as a single concept. This is due to the
integration of redirect links within the thesaurus and the
mapping algorithm that associates sentences with the concepts
they contain.

B. Measuring the Relatedness between Concepts

For every explicitly detected concept, it is possible to
devise a vector of related Wikipedia articles through the strong
links method. The vector would contain the related articles and
the weight assigned to each based on the detected link types
between them. We compute the relatedness between any two
concepts using the cosine measure formula as follows:

m

j j

n

i i

ji
ji

ba

ba

barel
2

1

2

,

)()(
),(

(1)

where a and b are the two concepts to be compared and ai and
bj are the weights associated with their related articles as
extracted from Wikipedia using the Strong Links method.

C. Measuring the Relatedness between Sentences

Each sentence would have a vector of the concepts detected
in it using the exact match method. The semantic relatedness
between two sentences is computed by the following formula:

erPairsCount

BArel
SentSentSrel

),(
),(21

 (2)

Where Sent1 and Sent2 refer to Sentence1 and Sentence2
respectively, A is the concepts set in Sentence1, B is the
concepts set in Sentence2, and PairsCounter is the number of
concepts pairs compared.

D. Feature Selection

Each sentence is tagged with several features. These
features are used to compute a score determining the sentence
importance. The main features used are the following:

Overlap with the Topic/Query: We consider the overlap
between each sentence and the topic of its documents set. We
take into account concepts overlap when assigning a score to
each sentence. Synonyms and concepts with alternative
spellings are considered as a single concept in our system with
the help of the Wikipedia thesaurus and the custom matcher.

Concepts Dominance: When computing a score for each
sentence based on this feature, we consider how pertinent the
sentence concepts to the important concepts with the document
set.

Sentence Position: Sentences appearing in the top 20% and
the bottom 20% portion of a document are given position
scores 50% larger than the others.

E. Sentences Scoring

Each sentence is assigned a score representing its importance.
The score for each sentence (i), is simply the linear
combination of the weights given for each feature. The formula
used for assigning a score to each sentence is:

N

sPsnQsSrelsSrel iiii(
 Score(i)

(3)

Where:

N = the total number of sentences

+ = 1

n(si) = The number of sentences that have semantic
relatedness score bigger than a pre-defined threshold
value

P(s) = either 1 for sentences appearing at the top and
end of the document, or 0.5 for the rest.

Srel(si ,T) and Srel(si ,Q) are for the Semantic
Relatedness between the Title and the Query,
respectively, and the sentence (i)

The rationale behind the preceding is similar to what was
proposed for the WordNet-based summarizer which was
described in [21]. The main difference here is that the system
deals with Wikipedia concepts, and the ones detected within a
sentence either directly through EM or indirectly are taken into
account when scoring the sentence.

F. Integration of SSM

The approach we use here assumes that an optimal
summary would contain the largest amount of the most useful
and relevant concepts within a limited space. This is
implemented in the system through the introduction of an
iterative process enforcing this idea. In the original
summarizers we previously built, each sentence was given a
score signifying its importance based on a set of features:
overlap with topic/query, concepts dominance and sentence
position. With the iterative process employed here, two of the
mentioned features become dynamic, namely overlap with
topic/query and concepts dominance. After each iteration, the
top ranking sentence is added to the summary and its concepts
are identified. The identified concepts are then removed from
the source documents and all remaining sentences are rescored.
The iterative process can be summarized by the following
steps:

1- After scoring all sentences for the first time, we obtain a
ranked list of candidate sentences with the top being
with the highest score.

2- We remove the top highest scoring sentence from the
Candidate Sentences List (CSL) and add it to the
summary. Only one sentence should exist in the
summary at this stage.

3- The cluster of the sentence that was just included in the
summary is added to a Sentences Exclusion List (SEL).
The cluster should contain the non-simplified version of
the sentence in addition to all of its simplified versions.

4- We detect all the concepts present in the sentence that
was just added to the summary and add them to a
Concepts Exclusion List (CEL).

5- We re-score all remaining sentences taking two factors
into account: First being sentences in SEL should be
ignored. Second is any occurrence of a concept that
exists in CEL should be ignored too.

6- Add the highest scoring sentence to the summary and
verify the summary length does not exceed the given
limit. If it does not, go to step 3. Otherwise go to the
post-processing stage and produce the summary.

Note that in step 5, redundancy is implicitly enforced by
counting concepts only once and preferring sentences with a
high density of concepts. Simplified sentences that are short
and contain important and relevant concepts would still be
selected as the approach ensures that no concept repetition
within the summary takes place.

V. EVALUATION

To evaluate the implemented system, we used the TAC10
dataset with the same parameters as those used in the system
we participated with in TAC10 [22]. Two other systems were
used as baselines. The first utilizes the Trimmer algorithm and
creates a single compressed version of each candidate sentence.
The summary is then formed by aggregating the compressed
versions of the highest ranking sentences. The second baseline
is the summarizer implemented for TAC10 using the strong

weighted links without SSM. The results obtained with the
ROUGE metric are illustrated in Table 2 and Figure 2.

Figure 2: Comparison of the ROUGE results obtained for the different
systems

TABLE 2: THE ROUGE RESULTS OBTAINED SUGGEST PERFORMANCE

IMPROVEMENT WITH THE SSM-BASED SUMMARIZER.
Evaluation Trimmer NO SSM With SSM

ROUGE2-R (A) 0.07011 0.07883 0.08173
ROUGE2-R (B) 0.06160 0.06901 0.07101

ROUGESU4-R (A) 0.10026 0.11889 0.11917
ROUGESU4-R (B) 0.10401 0.10702 0.10815

It can be noted from the results that the introduction of the
SSM-based system led to various levels of improvements to the
ROUGE results when compared against the original
Wikipedia-based summarizer. This goes along with the
intuition that compressing sentences should increase the
capacity of a summary. With the increased capacity, it is vital
to have a dynamic features selection that can aid with sentences
selection. This is evident by examining the results of the
Trimmer baseline where compressing all sentences in the
summary as a post-processing stage caused a loss to the
system’s performance.

VI. CONCLUSION

In this paper, we briefly described a module we
implemented for simplifying sentences and producing multiple
splits and compressed versions of each sentence. The
simplification module, SSM, is aimed to help with
summarization by segmenting sentences to remove non
important parts while retaining relevant parts for inclusion in
the summary. For this purpose, the syntactical interpretation of
sentences allows for patterns detection and applying a set of
rules to simplify sentences whenever possible. After obtaining
multiple simplified versions of each sentence, another module
within the Wikipedia-based summarizer chooses the most
important and least redundant sentence to include in the
summary. An evaluation was performed and the obtained and
reported results indicate an achieved improvement in the
summarizer.

REFERENCES

[1] J. P. Gee, An Introduction to Discourse Analysis: Theory and Method, 1st

ed. Routledge, 1999.

[2] A. Siddharthan, “Syntactic Simplification and Text Cohesion,” Research on

Language and Computation, vol. 4, no. 1, pp. 77-109, Mar. 2006.

[3] J. Carroll, G. Minnen, Y. Canning, S. Devlin, and J. Tait, “Practical

Simplification of English Newspaper Text to Assist Aphasic Readers,” in In

Proc. of AAAI-98 Workshop on Integrating Artificial Intelligence and Assistive

Technology, 1998, pp. 7-10.

[4] J. Conroy and S. Judith, “CLASSY Query-Based Multi-Document

Summarization,” in Proceedings of the 2005 Document Understanding

Conference (DUC-2005) at NLT/EMNLP 2005, Vancouver, Canada, 2005.

[5] J. Conroy, J. Schlesinger, D. Schlesinger, and J. Goldstein, “Back to Basics:

CLASSY 2006,” in Proceedings of the Sixth Document Understanding

Conference (DUC), 2006.

[6] J. Conroy, J. Schlesinger, and D. Schlesinger, “CLASSY 2007 at DUC

2007,” in Proceedings of the Seventh Document Understanding Conference

(DUC), Rochester, New York, 2007.

[7] H. Jing and K. Mckeown, “Cut and paste based text summarization.” 2000.

[8] S. Blair-Goldensohn et al., “Columbia University at DUC 2004,” 2004.

[9] H. Jing, “Sentence Reduction for Automatic Text Summarization,” IN

PROCEEDINGS OF THE 6TH APPLIED NATURAL LANGUAGE

PROCESSING CONFERENCE, p. 310--315, 2000.

[10] H. Liu, Q. Zhao, Y. Xiong, L. Li, and C. Yuan, “The CIST Summarization

Systems at TAC 2010,” in Proceedings of the Text Analysis Conference (TAC),

Gaithersburg, Maryland USA, 2010.

[11] H. Daume III and D. Marcu, “Bayesian Multi-Document Summarization at

MSE,” Workshop on Multilingual Summarization Evaluation (MSE), 2005.

[12] C.-Y. Lin, “Improving summarization performance by sentence

compression: a pilot study,” in Proceedings of the sixth international workshop

on Information retrieval with Asian languages - Volume 11, Stroudsburg, PA,

USA, 2003, pp. 1–8.

[13] D. Zajic, B. Dorr, J. Lin, and C. Monz, “A sentence-trimming approach to

multidocument summarization,” IN PROC. OF DUC, p. 151--158, 2005.

[14] B. Dorr, D. Zajic, and R. Schwartz, “Hedge Trimmer: A Parse-and-Trim

Approach to Headline Generation,” 2003.

[15] L. Vanderwende, H. Suzuki, C. Brockett, and A. Nenkova, “Abstract

Beyond SumBasic: Task-Focused Summarization with Sentence Simplification

and Lexical Expansion,” Information Processing and Management, vol. 43, no.

6, pp. 1606-1618, 2007.

[16] E. Ong, J. Damay, G. Lojico, K. Lu, and D. Tarantan, “Simplifying Text in

Medical Literature,” Journal of Research in Science, Computing and

Engineering, vol. 4, no. 1, 2008.

[17] S. Jonnalagadda and G. Gonzalez, “Sentence Simplification Aids Protein-

Protein Interaction Extraction,” 1001.4273, Jan. 2010.

[18] R. Levy and G. Andrew, “Tregex and Tsurgeon: tools for querying and

manipulating tree data structures,” IN LREC 2006, 2006.

[19] D. Z. Bonnie and B. Dorr, “BBN/UMD at DUC-2004: Topiary,” IN

PROCEEDINGS OF THE 2004 DOCUMENT UNDERSTANDING

CONFERENCE (DUC 2004) AT NLT/NAACL 2004, p. 112--119, 2004.

[20] A. Bawakid and M. Oussalah, “Using features extracted from Wikipedia for

the task of Word Sense Disambiguation,” in 2010 IEEE 9th International

Conference on Cybernetic Intelligent Systems (CIS), 2010, pp. 1-6.

[21] A. Bawakid and M. Oussalah, “A Semantic Summarization System:

University of Birmingham at TAC 2008,” in Proceedings of the First Text

Analysis Conference, 2008.

[22] A. Bawakid and M. Oussalah, “Summarizing with Wikipedia,” in

Proceedings of the Text Analysis Conference (TAC), Gaithersburg, Maryland

USA, 2010.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ROUGE2-R (A) ROUGE2-R (B) ROUGESU4-R (A) ROUGESU4-R (B)

S
co

re

With HedgeTrimmer

NO SSM

With SSM

Summarizing with Wikipedia

Mourad Oussalah, Abdullah Bawakid

School of Engineering
Department of Electronic, Electrical and Computer Engineering

University of Birmingham
{M.oussalah , axb517 }@bham.ac.uk

Abstract

This paper describes a query-based multi-document
summarizer that was built to participate in the update
summarization task of TAC10. The system relies on a
thesaurus extracted from Wikipedia and uses it as its
underlying ontology. The concepts which are
detected within the documents are used as weighted
features to score the document sentences. The
relationships previously defined in the thesaurus
between the different concepts help in finding the
most important concepts within a document or a set
of documents. Sentences are ranked based on the
scores they have been assigned and the summary is
formed from the highest ranking sentences till the
100-word limit is reached. The evaluation results and
the performance of the system are described. The
total number of the submitted runs by all participants
is 43.

Keywords: Semantic Similarity, Semantic Relatedness
Wikipedia, Text Summarization, Information Retrieval

1. Introduction
The Text Analysis Conference (TAC) is one of the
well-known workshops in the field of Natural
Language Processing which provides the
infrastructure necessary to evaluate different
methodologies with different tasks. In TAC10, we
participated in the Guided Summarization task with
two different runs. The aim of the task is to provide
short summaries for a set of newswire articles. The
generated summaries are not to exceed 100 words
each. This year’s task is different from last year in
that the participants are asked to a deeper semantic
analysis of the source documents instead of simply
relying documents words frequencies to select the
important concepts. For this, a list of categories and
important aspects for each category are given and it is
asked that the summary provided should cover all of
the mentioned aspects if possible in addition to any
other information related to the topic.

The “update” part of the task is similar to that of
TAC09 and TAC08. For a given set of documents,
the participants are asked to write two summaries,
one for set A and another for set B. A topic statement
is provided in addition to the Categories aspects
which have been added to the task only this year. The
participants are asked to write 100-word summary for
set A using the given topic statement and the
specified category. For set B, a 100-word update
summary is to be generated assuming that the user
has already read the set of articles in set A.

To enhance the representation of the documents to
summarize in each set, the developed system
described in this paper applies a set of rules to expand
the document representation with the help of an
external ontology. In our participation in the
Summarization task of TAC08, we relied on
WordNet as an external ontology [1]. In this year, we
used Wikipedia instead. Wikipedia has several
advantages over what WordNet has to offer. The
coverage and breadth of Wikipedia is larger than that
of WordNet. In addition, it is more up-to-date. Using
the concepts extracted from Wikipedia is especially
useful with short topic statements provided in the task
for each set. Also, they are used to detect the most
dominant concepts within a document and the inter-
connection between these dominant concepts within a
document set and the given topic.

In our system, we use the Wikipedia ontology to
build a thesaurus containing a list of Wikipedia’s
concepts. To determine the relationship between all
of the extracted concepts from Wikipedia, we used
the internal links, categories structure and other rules.
These concepts are used to aid in extracting the
dominant concepts within each document and
documents set, and the association strength of the
extracted concepts. The ontology we used along with
a description of how it was built was reported in our
earlier work[2].

The rest of this paper is structured as follows: an
overview of the related work followed by a

description of how the concepts ontology was built
and extracted from Wikipedia. Then, we describe our
system and how it was applied to this year’s task.
Next, we present the evaluation results and discusses
the rank, the strength and the limitations of our
system. Finally, the paper is concluded with a
potential future work.

2. System Overview

The system developed for the summarization task is
extractive. Each sentence is assigned a score
signifying its importance based on its extracted
features. The summary is then generated for sets A by
ranking the sentences based on their assigned scores
in a descending order and choosing the top n
sentences till the maximum word-limit is reached.
The stages involved for creating summaries are
summarized in the following subsections:

2.1 Preprocessing

The first stage in the framework is to preprocess all
fed documents by cleaning them and then parsing
them to extract the text and topics and then
tokenizing the terms and splitting the sentences. The
stop words are then removed.

2.2 Identifying the Concepts

Two methods have been utilized to detect concepts by
employing the built Wikipedia-thesaurus and its
extracted features. First one is through an exact match
measure where explicitly mentioned concepts within
each sentence are detected. A concept having
multiple spellings for a concept and synonyms should
still be detected by the system as a single concept.
This is due to the integration of redirect links within
the thesaurus and the mapping algorithm that
associates sentences with the concepts they contain.
As for ambiguous terms and concepts, the system
implements the Weighted Strong Links method that
was described in [2].
In the second method we examine each term within a
sentence and replace it with its concepts vector is
through the term-concepts table. The concepts vector
has a weight associated to each concept signifying its
relatedness with the term. After generating a concepts
vector for each term, we group all concepts vectors
within a sentence by summing the scores of the
individual concepts that are repeated. This in effect
applies word sense disambiguation as relevant
concepts are boosted and given a higher score in the
merged concepts vector. For example, the concept
“Fox” has two meanings: “Fox (Animal)” and “Fox

(Broadcasting company)”. Similarly, the concept
“Dog” is associated with “Mammals”. In the sentence
“A fox attacked a dog”, the meaning “Fox (Animal)”
is boosted.

2.3 Features Selection
Each sentence is tagged with several features. These
features are used to compute a score determining the
sentence importance.

Overlap with the Topic: In our system, we consider
the overlap between each sentence and the topic of its
document set. We take into account both the concepts
overlap and the terms overlap when assigning a score
to each sentence. Synonyms and concepts with
alternative spellings are considered as a single
concept in our system with the help of the Wikipedia
thesaurus and the custom matcher.

Concepts Dominance: The explicitly mentioned
concepts within a document set which are most
frequent and the topic concepts are considered to be
the most important. When computing a score for each
sentence based on this feature, we consider how
pertinent the sentence concepts to the important
concepts with the document set. We use the relevancy
degrees between the concepts which are precomputed
in the Wikipedia thesaurus for achieving this task.

Sentence Position: The system assumes that
sentences appearing at the top and bottom of a
document have more chances of being important than
the rest. Therefore, sentences appearing in the top
20% and the bottom 20% portion of a document are
given position scores 50% larger than the others.

2.1 Measuring the Relatedness and Similarity
between Sentences

Each sentence would have a vector of the concepts
detected in it using the exact match method. In
addition, it would have another vector of concepts
generated from merging its individual terms concepts
as extracted from the term-concepts table. When
evaluating two sentences, we consider both vectors to
compute the similarity and relatedness between them.
The semantic relatedness is computed by the
following formula:

erPairsCount

BArel
SentSentSrel

),(
)2,1(

Where Sent1 and Sent2 refer to Sentence1 and
Sentence2 respectively, A is the concepts set in
Sentence1, B is the concepts set in Sentence2, and
PairsCounter is the number of concepts pairs
compared. This formula can be applied to both
vectors individually.

3.5 Summary Generation
Knowing what features to use in the system, it is
possible to assign a score for each feature in each
sentence. A sentence score comprises of its Topics
scores, the relevancy of these Topics with the
dominant ones, the overlap between the sentence and
the rest of the sentences in a document, and the
position of a sentence in the document. After scoring
all sentences, the summary is formed by ranking the
sentences in a descending order based on their scores,
and adding the sentences one by one to the summary
till the 100-word limit is reached.

After adding the last sentence to the summary and
reaching the mentioned word limit, the sentences are
re-ordered according to their appearance in the
original documents they were taken from. The last
sentence in the summary is then truncated to enforce
the 100-word limit. At last, we applied a custom set
of rules we developed to remove non-important data
from some sentences such as date stamps and writers
references appearing at the beginning of some
sentences.

3. Evaluations

The provided dataset for the update task is composed
of 46 topics divided into five categories. Each topic
has a title, category, and 20 relevant documents
divided equally into two sets: A and B. Documents in
set A precede chronologically those in set B.
Participants are asked to submit a summary for each
set. They are also given the option of submitting up to
two runs for each team.

We participated with two runs. The ids of our runs
are 14 and 19. The term-concepts table method was
used with run 19 while strong links method was used
for 14. In Table 1, the ranks obtained by the system in
the different evaluation methods are displayed. The
total number of runs the system is compared with is
43.

Manual ROUGE-2 ROUGE-SU4 BE
Run 14 11 13 14 10
Run 19 13 17 15 15

Table 1: Evaluation results for the Update Task
showing ranks of the two submitted runs 14 and 19
relative to the 43 submitted runs

4. Conclusion

In this paper, we briefly described the methodology
that was implemented in our system for this year’s
Update task. We outlined how Wikipedia was used,
the features that we focused on, and how the
summaries were constructed. The results obtained
show that the performance of our system is
competitive when compared with the other teams
systems, although there is still room for improvement.
Creating a redundancy/diversity matcher and finding
a better method to set their thresholds, and
implementing better measures to utilize the found
concepts and better understand what they refer to
through a deeper linguistic analysis than what is
performed here are potential future work we intend to
focus on.

References:
[1] A. Bawakid and M. Oussalah, “A Semantic

Summarization System: University of Birmingham at
TAC 2008,” in Proceedings of the First Text Analysis
Conference (TAC 2008), 2008.

[2] A. Bawakid and M. Oussalah, “Centroid-based
Classification Enhanced with Wikipedia,” in The
Ninth International Conference on Machine Learning
and Applications 2010, 2010.

[3] L. Qiu, M. Kan, and T. Chua, “A Public Reference
Implementation of the RAP Anaphora Resolution
Algorithm,” cs/0406031, Jun. 2004.

[4] A. Bawakid and M. Oussalah, “Using Features
Extracted from Wikipedia for the Task of Word Sense
Disambiguation,” in 9th Conference on Cybernetic
Intelligent Systems, 2010.

Using Features Extracted from Wikipedia for the
Task of Word Sense Disambiguation

Abdullah Bawakid and Mourad Oussalah
School of Engineering

Department of Electronic, Electrical and Computer Engineering
University of Birmingham

{ axb517 , M.oussalah }@bham.ac.uk
[

Abstract—In this paper, a method using features extracted from
Wikipedia for the task of Word Sense Disambiguation (WSD) is
presented and evaluated. A term-concepts table constructed from
Wikipedia and the redirect links is described. With its help, the
Wikipedia internal links along with the categories structure are
used to compute the relatedness between any two concepts
through a two-level process: a term-concepts expansion followed
by a links-based expansion. The result is a ranked list of concepts
which are most related to the ambiguous term given the context it
exists in. For the evaluation experiment, the benchmark is
constructed from a segment of the internal links of Wikipedia.
The evaluation results obtained suggest that introducing links
analysis and the categories structure to the built term-concepts
table provide improvement to the accuracy of the method in the
WSD task.

Keywords; Word Sense Disambiguation; WSD; Wikipedia;
links analysis ; Categories ; strong links

I. INTRODUCTION
In English, and many other languages, a word may carry

more than one meaning. For example, the term Fall may refer
to the autumn season of the year, the movement caused by the
earth gravity, or it can be the academic term occurring usually
around the autumn season. The correct meaning of a word is
usually determined based on the context it is placed in. In
previous work, it has been hypothesized that the correct sense
of a polysemous word can be determined by the surrounding
words accompanying it [1],[2]. We follow here the same
hypothesis in our system by using the surrounding words to
help decide the right sense of the target word.

Our approach relies on the use of the vast and highly
organized human knowledge existing within Wikipedia giving
it a major advantage over other approaches using smaller
thesauruses such as WordNet or Open Directory Project
(ODP). Due to its openness and structure, Wikipedia is not
suitable for being used directly as is by machines and its
content needs to be analyzed first with semantic processing
tools. In our semantics-extraction framework, we treat each
Wikipedia article as a unique Concept and use its title as a
label. The content of the article is used to help build a
relationship vector between the article terms and its title. The
formed term-concept vector along with the links and
Categories structure existing within Wikipedia are analyzed in
a separate step to aid in computing the relatedness score
between any terms, or even text fragments. In this work, we

highlight an optimized version of our method being used in the
application of Word Sense Disambiguation (WSD).

The rest of this paper is organized as follows. In section 2
we briefly describe how the term-concepts table is constructed
and the boosting algorithm we apply to it afterwards. In section
3 we give an overview on the link types we focus on, and the
filtering we apply to the categories and links. In section 4 we
describe our WSD system and the stages involved in it. Section
5 gives an overview on the related work. In section 6 we
conclude our work and some potential areas to investigate in
the future.

II. CONSTRUCTION OF THE TERM-CONCEPTS TABLE
The preprocessed version of Wikipedia is analyzed to

leverage the articles contents, their titles, redirect links and the
categories structure. First, all stop-words are removed from the
articles content and stemming using Porter’s stemmer
algorithm is applied. The remainder terms are then used to
serve the purpose of representing all of Wikipedia Concepts.
This was achieved by examining the terms distributions within
each article and computing the weight for each word in the
form of TFIDF which is one of the most common weighting
methods used to describe documents in the vector space model.
TFIDF factors two aspects for each term: its frequency within
each document (represented as TF) where the higher the TF in
a document the more chance that it is important within that
document. The second factor is the Inverse Document
Frequency IDF where a word is deemed more important in a
document if it doesn’t appear in many of the test collection
documents giving it a higher IDF value.

A. Term-Concepts Table
In essence, we map all the terms existing within each article

to all the Wikipedia Concepts creating a vector for each term
whose elements are the l2-normalized term weights within each
Concept. These weights resemble how much the terms
contribute to each concept they are attached to. We rank the
concepts each term belongs to based on the formed weights in
a decreasing order to form the Term-Concept table. The top
concepts in the list are the most relevant ones to the term. For
example, the term Birmingham has the following associated
concepts history of Birmingham, Birmingham (the English
City), Birmingham Alabama (the American City), Arts in
Birmingham, Timeline of Birmingham History, Birmingham
City University, Barry Vincent Jackson, B Postcode Area,

Birmingham Local Elections, Economy of Birmingham,
Birmingham Business Journal, etc. One can notice that the
covered range of different concepts varies from the city name
(in UK and USA), to events that occurred in one of the two
cities, to a person name who owned a theatre the English
Birmingham.

After building the table, we perform a two-level update to it
through a series of iterations focusing on boosting the weight
scores for some terms based on their appearances within the
titles and redirects links. This is explained further in the
following section.

B. Concepts Boosting
In the Birmingham term example, one can also notice the

occurrence of the term Birmingham in many of the Concepts
titles or the text of the articles they belong to. This is not
always the case for some of the other generated concepts. Take
the word Unhappy as an example. Some of the concepts the
word is related to do not have any occurrence of the word
Unhappy in their titles or even the article text they represent.
For example, the concept Depression (mood) does not have any
reference to the word Unhappy in its text or its title, yet it is
still related to it. With the sole help of the Term-Concept table
previously built, the concept Depression (mood) would not
appear in the list of related concepts for the term Unhappy
because the TF for that term in the concept’s article text is zero.
In a similar way, some concepts titles may contain the keyword
Unhappy in their titles which should give them a higher
tendency to be more related to the term than many other
concepts. For instance, the concepts Unhappy Consciousness,
Unhappy Triad and Unhappy Happiness are assumed to be
more related to the term Unhappy due to them all sharing the
key term Unhappy.

To tackle the above-mentioned issues, we thereby apply a
two-level Boosting process as a following step after generating
the concepts vector using the term-concept table for a given
term. In essence, we make use of the large number of Redirect
links existing within the Wikipedia structure by analyzing the
keywords existing within the title of each Redirect link in
addition to the titles of the articles they link to. In the first
boosting level for a term or a group of terms w, we hypothesize
that a redirect link r containing only w in its title should link to
a concept c that is highly related to w regardless of whether the
concept c has w in its title or text. In other words, w and c
should have a high relatedness score which is achieved through
the boosting performed in our algorithm. This is done by
assigning a score to c based on the value of a variable we call
FirstLevelBoost. In a similar way, we apply the same idea to
the concepts titles ct and w to generate a relatedness score for
ct using the same variable FirstLevelBoost.

In the second boosting level, we examine the occurrence of
the term or group of terms w in the concept title ct or the
redirect link r that points to it. If ct or r contains w in addition
to some other terms, we increment the relatedness score of c by
a value correlated with SLB. The resulted relatedness score
from the second level boost will always be less than the first
level boost. Also, as the number of terms appearing within the
title or redirect link increases, the amount of boost being

applied inversely decreases. This is reflected in the following
formula being applied to generate a value for the SLB.

 SLBt = ((SLB -1)SecondLevelBoostAdj + 1) (1)

 SecondLevelBoostAdj = | ct | / | t c | (2)

In (2), it is displayed how SecondLevelBoostAdj is
computed. In it, we have | ct | as the number of terms that exist
within the concept title (or the redirect link), and | tc | as the
number of times the term tc appears within the concept title.

III. WIKIPEDIA LINKS AND CATEGORIES STRUCTURE
Wikipedia contains a large amount of structured data. It has

structured pages for ambiguous terms listing their possible
meanings with links to the articles describing them. It also has
structured categories attached to each article. The categories
have parents and/or children relationships defined among them.
Articles belonging to the same category have generally similar
outline and structure. In addition, over 86 million links exist
within it linking articles with each other. These links are of
different types and can be a representative for some form of
relationship between articles with each other. The categories
too with their hierarchy can help better enhance the definition
of the semantic relationship between the articles.

In this work, we focus on using the links and categories
structure in Wikipedia to enhance the features we previously
extracted. Wikipedia contains different types of links. There
are interlanguage links linking to a version of the article in
different language. There are internal links linking to other
pages within the same Wikipedia language. There are interwiki
links pointing to other pages within the Wikimedia project but
not necessarily to Wikipedia articles. There are also external
links to pages outside the wikimedia project. Many other types
of links exist too within the articles such as section links, date
links, and template links. Our focus here is on the internal
hyperlinks in the articles text pointing to different English
articles in Wikipedia.

Not all the internal links are of the same significance. Some
links may be more reflective of the relatedness of an article to
another than many others. To illustrate this, take the two links
Basketball court and Peripheral Vision existing within the
article about the famous Basketball sport game as an example.
Intuitively, the former link is more related to the article than
the second. It is thus important to apply some form of filtering
to the article links to reduce the resident noise and embrace
those that link to most related articles. Therefore, we devise our
own links-filtering module. The module’s goal is twofold.
First, it reduces the number of noisy or unimportant links by
focusing only on high-valued links. Second it enhances the
overall efficiency of the system since the total number of links
to be evaluated and analyzed will be reduced. This is especially
evident for those articles that contain a large number of
incoming links such as the article about the famous company
Google which has over 70,000 incoming links. The analysis of
such large number of links for all the articles in Wikipedia

would require a large amount of computing resources and time
and is not simply efficient.

In the filtering module, we classify the internal links into
several levels signifying their importance based on our own
observations. As for the categories, we attempted to utilize the
category structure within Wikipedia directly on its own but
realized that even though some categories are narrow and
indicate strong relatedness between their articles, some other
categories are broad and not as useful as many others. For
example, the category Historiography is broad and has 129
pages. Among these pages are Silver Age and Source Text
which can not be said to be strongly related to each other. Due
to the generality of some categories and because we still think
the categorization can still be useful especially for some
narrative categories, we chose to filter the categories we use
with the internal links. Figure 1 shows the links types we
defined sorted based on the weights they carry in a decreasing
order. In general, it possible to divide the defined link types
into three categories: Mutual Links where two articles directly
link to each other, One Link with shared a Parent Category,
and See Also links which are usually appended to most of the
articles in Wikipedia. We next define and describe these link
types along with the weight level we assigned to each:

A B

A B

A B

A B

Category 1

Category 2

Category 1

Category 1

A B

Category 1

Category 2

A B

Category 1

Category 2

A B

Category 1

Category 2Category 3

A B

Category 1

Category 2Category 3

1 2

43

5 6

7 8

Figure 1. Link Types defined sorted based on their weights in descending
order

A. Mutual Linking
When article A contains a link or more pointing directly to

article B, and article B contains a link or more pointing to
article A, we consider these links for the two articles to be of a
high value signifying a strong relatedness between the two
articles. An example for this is the Basketball and Slam dunk
articles which both contain links pointing to each other and
they are closely related. If the two articles share one or more
parent categories, they are expected to be much more related
than if they were not. Thus, we classified the mutual link types
into four classes 1-4 as shown in Figure 1. In 1, both articles

directly share a parent category. In 2, the parent category of
one article is a subcategory of the parent category of the second
article. In 3, both articles share a grandparent category that is
exactly one category-level away from the articles. In other
words, the articles belong to at least two categories whose
parents are the same. In 4, no shared parent or grandparent
category is found and thus only the reciprocal links are
considered. All of the four link types 1-4 resemble strong
relatedness between the two articles in each case when
compared with the types 5-8 but of varying weight. The
weights we assigned to each link type are illustrated in Table 1.

B. Sharing Parent-Category with One Link
As highlighted above, merely having a shared category

between two articles can indicate a strong relevancy between
the articles. However, this can not be applied as a general rule
due to the breadth and generality of some categories.
Therefore, we adopted the “at least” one link sharing rule as a
filtering mechanism. We also expanded it to include
grandparent categories in some cases, namely 6, 7 and 8 in
Figure 1. As a general rule for the link types covered in this
category of links, we say that when Article A points to Article
B or B links to A AND both articles belong to the same
category (or grandparent category), we have a potential strong
relevancy between the two articles A and B. An example for
this category of links is the articles titled Great Depression and
Panic of 1893 which both belong to the category Financial
Crisis and the former article has a link pointing to the second.
Both articles discuss the economic depressions that occurred
before the Second World War. However, Until the Great
Depression, Panic of 1893 was considered the harshest in the
history of the United States. The relevancy between these two
articles is thus greater than the relevancy between either and
the rest that only share one parent category with either of them
such as the articles Bad Bank and Bank Run both under
Financial Crisis category.

Table 1: Weights assigned for the different links types
w1 3 w2 2.75 w3 2.5 w4 2.25 w5 1.75
w6 1.5 w7 1.45 w8 1.25 w9 3.75 w10 3.25

C. “See Also” Links
These links are usually added manually by the Wikipedia

volunteer editors to the end of the articles in Wikipedia and
refer the readers to other semantically related topics to the
current article. We give a high weight to these types of links
and label them with w9 in Table 1. We also give a high weight
to the inverse of the See Also links labeling them with w10 in
Table 1.

IV. THE PROCESS OF WSD
The task of WSD is to automatically predict the right sense

for a specific term in the given context. In our system, we use
the local features presented in the given context and the
previously-extracted Wikipedia features to achieve this task.
Figure 2 gives an overview of the modular design in our WSD
system. In each instance run, a text document is fed to the
system which can be a text fragment, a sentence, a paragraph
or a whole document. In the text document, a single term is
marked as the target word to be disambiguated, and is

displayed as a separate input in Figure 2 for illustration. The
provided document is then processed sequentially in each
module as a pipeline and the final output of the system is the
target sense for the marked word. In essence, the system
predicts the correct concept (or sense) for the target term by
applying the term-concepts vector to the target term and then
scoring each concept according to our analysis of the strong
links. The result is a ranked list of scored concepts with the top
concept in the list being the most likely sense for the target
term and is produced as the final result. In the following
subsections, each module in the WSD is described.

Figure 2: an Overview of the WSD process

A. Preprocessing and Context Selection
Based on the format of the input text document, its content

is parsed first and its terms are extracted. Stop words are then
removed from the document. This is followed by a
preprocessing step in which the marked target term is
highlighted to determine its context based on its surrounding
words. If the supplied text document is in the form of a short
text fragment (less than a predefined number of words), all of
its surrounding terms are considered. Otherwise, we consider
extracting 2n words surrounding the target term, n words
before and n words after, which we call Context Terms (CT) in
the following steps. Then, stemming is applied on all of the
context terms.

B. Term-Concepts Expansion
After obtaining CT from the Context Selection module, the

term-concept vector is applied on the resulting CT and also the
target term. The number of concept lists that would be
generated is |CT| + 1. If we label each concept list with
Ci=1…|CT|, we would have the concepts list defined as:

 Ci = {cij}j={1…V}, i=1…|CT| (3)

Where i is the number identifying the concept list, j is the
concept number in the list and V is the total number of
concepts in the concept list Ci. As for the target word concepts
list TW, we define it as:

 TW = {gk} k={1…M} (4)

Where gk is the concept numbered k in the target term
concepts list and M is the number of concepts in the list.

C. Links Analysis and Sense Selection
When analyzing the internal links present in an article, we

consider only those that fall into the category of one of the
above-mentioned types. We use the links as part of a process to
compute the relatedness between two articles A and B. This is
achieved by two methods: (i) directly examining the links

present in both A and B and computing a score for each link.
The second is (ii) forming two sets of articles SA and SB
where each set would contain the most relevant articles to A
and B respectively and then computing the similarity between
the two sets using the Cosine distance. The following
subsections describe how both methods fit in our process and
highlight the advantages and disadvantages of both.

Simple Links Analysis
In this method, we analyze the links present in the article

content of each concept in Ci against all concepts in TW. We
use the previously extracted Wikipedia features for this task, in
particular the articles links and the categories structure. Based
on the weight assigned for each link type, we assign each
concept cij a score cwij presenting its importance. This
transforms the formed concept list Ci into another expanded list
Ci’ that has a score associated with each of its members.

 Ci’ = Cik = { (cij,cwij)k }j={1…V}, i=1…|CT|, k={1…M} (5)

Where k denotes the corresponding concept gk that the pair
(cij,cwij) points to. In other words, for each concept cij, we
compute its links-strength score against all the concepts gk and
associate the score wcij to each comparison. Therefore, the total
number of entries in Ci’ should be |TW| * |Ci|.

After expanding the concepts list Ci to Cik and producing a
score cwij for each concept cij, the next step is to score all
concepts in TW based on the values generated in Cik. This is
achieved by expanding TW into a new weighted list we call
TW’ which has a score gwk associated to each concept gk.

 TW’ = { (gk, gwk) } k={1…M} (6)

We compute the score for each concept gk by summing the
generated scores in Ci for all the related concepts to gk. This
can be translated to:

 gwk = Σ j={1.. V} Σ i={1.. |CT|} (cwijk) (7)

Essentially, all the concepts in TW’ will have varying
scores which are used to determine how related the concept to
the context domain chosen early in the process. The final
chosen concept gk (or sense) will have the maximum score.

 maxk (gwk) (8)

Links-Based Expansion
In the previous method, we consider the cases where two

related articles have a link being directly shared between them.
While this may be true in many cases, there are still some cases
where two related articles do not directly share a link and they
are still semantically related. Therefore, we propose performing
the comparison between any two articles indirectly through
expanding the two articles into two lists and then comparing
the two lists with each other. This can be translated for our
WSD process into the following:

 eTW = { Gk } k={1…M} (9)

eTW is the expanded list for TW. It contains a list Gk of
related articles for each possible sense gk. The list of Gk is
formed as follows:

 Gk = { (gcw , f(gk , gcw)) }w={1…V} , f(gk,gcw) >0 (10)

In (10), gcw is any article that is related to gk. The function
f(gk,gcw) measures the relatedness between the two concepts gk
and gcw based on the link analysis and the weight assigned to
each link. V refers to the total number of available concepts for
the set Gk after the expansion. We apply the same process to all
the concepts existing within Ci and then group them all
together in one set summing the score for repeated concepts if
they occur in more than one set. We thus obtain the following
as a result of the later expansion of Ci:

eCi={(rcijw , f(cii , rcijw))} j={1…V}, i=1…|CT|, w =1…Q, f(cii , rcijw) >0 (11)

Where w refers to the number of the related concept rcijw,
rcijw is the concept related to cij, and Q is the total number of
related concepts. The resulted score f(cii , rcijw) can be written
as twijw for abbreviation. We sum all of the resulting related
concepts eCi into one list eC where repeated concepts rcijw are
grouped into one by summing their weight:

 eC = { (rcv , twv) } v =1…|D| (12)

 twv= Σ w={1.. Q} (twijw), where rcw=rwv (13)

Where rcv is a unique concept in eCi, D is the total number
of unique concepts in eCj, twv is the weight given (after
computing the sum) for concept rcv.

After obtaining the list eC of related articles derived from
the context terms, and a list Gk for each meaning of the target
term, we compute the distance between eC and each Gk using
the cosine distance measure. The final answer for the WSD
problem would be the concept carrying the number k where Gk
is most similar to eC.

 maxk (dist(Gk, eC)) (14)

V. EVALUATION
The datasets being used for evaluating WSD systems

greatly depend on the variations of the parameters for the
systems being evaluated. Therefore, we created our own
benchmark which is most similar to those devised in the recent
work of Turdakov [3] as well as others [4] [5]. We use the
manually created links in Wikipedia as the basis for our
dataset. The internal links of Wikipedia look in the following
form: [[Part1 | Part2]] where Part1 is the text in the hyperlink
or the title of the page being linked to while Part2 is the text
displayed to the reader while reading the article containing this
link. An example for this is the text fragment “With colors such
as shades of [[Brown (color) | brown]]” in the article titled
Rabbits. Clicking the word brown in that fragment redirects the
reader to the article Brown (color).

We therefore chose the mentioned technique to construct a
dataset of 1000 examples of ambiguous terms along with their
correct meanings and the paragraphs that contain them from
Wikipedia. During the evaluations, we chose 20 words
surrounding the target word TW as the context terms. We
performed three experiments on the built dataset to test our
method and the effect of introducing the chosen links: (i) the
simple Links analysis method, (ii) the links-based expansion
and (iii) centroid-based method that does not rely on links. For
the third method, we simply expand each term to generate a list
of corresponding concepts using the term-concepts table. Then,
we compute the centroid for the lists generated from the
context terms along with the target term. The centroid is used
to create a single list of ranked concepts based on their scores.
The predicted sense would be the one with the highest score in
the generated list.

TABLE 2: THE ACCURACY OF ALL IMPLEMENTED METHODS INCLUDING (I)
SIMPLE-LINK ANALYSIS, (II) LINKS-BASED EXPANSION, AND (III) CENTROID

BASED METHODS.
 Top Top-2 Top-3

(I) 64.82 75.4 81.02
(II) 75.31 87.89 91.52
(III) 63.75 75.3 82.50

The best result we obtained was with the link-based
expansion method (75.31). This shows that including the strong
links for analysis does indeed improve the overall accuracy of
the system especially when compared with the centroid-based
method (63.75). The accuracy obtained for all the methods
during the evaluations is shown in Table 2. Since we produce a
ranked list of weighted potential meanings in each method, we
considered computing the chances of having the right sense in
the top-2 and 3 senses of the produced list. The results we
obtained show that the accuracy of the best method increases to
91.52 when considering the top-3 senses in the list.
Furthermore, the centroid-based method produces a better
result than the simple link-based analysis when considering the
top-3 senses.

The testing during the evaluation was strict in that we only
count a correctly identified sense if it were the one labeled in
the constructed corpus. In a small number of cases, the system
correctly predicted the right sense for some terms or gave an
alternative answer to the one provided by the Wikipedia
volunteer who edited the link. Even in that case we considered
the found link as a mismatch when computing the results since
it didn’t match the exact meaning referred to by the link. An
example for this is the link in the sentence “WSVN and KTTV
are [[Fox Entertainment Group |Fox]] affiliates”. The system
chose Fox Broadcasting Company instead, which is what the
Wikipedia editor should have chosen for the mentioned link.

It is possible that the results obtained above can be
improved by expanding the number of context terms
considered during evaluation. Also, the number of related
documents that were considered after the links-based
expansion was 20 at maximum. Increasing that number or
finding a better model that gives a better compromise between
efficiency and accuracy would be optimal and is expected to
produce even better results.

VI. RELATED WORK
Different types of WSD systems have been proposed in the

past. Some systems are knowledge-based relying on external
knowledge sources and dictionary definitions. Lesk [6] for
example used dictionary definitions of terms to compare with
the surroundings of the target word and decide the right sense
for the target word. Navigli et al [7] used WordNet and other
lexical resources to form structural sense specifications for
each word in a context and selected the best hypothesis based
on a set of rules they defined in their method. Reference [1]
used a WordNet-based relatedness measure to compute the
semantic relatedness between the context words of an
ambiguous term and all the possible senses for that term. The
sense giving the highest relatedness score is then chosen as the
correct sense.

Some other systems are data-driven relying on statistical
probabilities computed from a given sense-annotated corpus.
For instance, Gliozzo et al [8] exploited kernel methods to
model sense distinctions in a supervised method. In [9], related
non ambiguous words were used for the constructing of
examples retrieved from the web. These examples were then
processed to replace the non ambiguous words with ambiguous
ones giving example contexts for the different senses of the
ambiguous words. [10] relied on the idea that ambiguous words
can have different translations in other languages. They used
such collections of parallel text in their method to annotate the
different senses of ambiguous words.

The method we propose here has several advantages over
the mentioned above. First, using knowledge database or a
dictionary in a system will render the system limited by the
breadth, coverage and accuracy of the knowledge they depend
on. We used Wikipedia which is the largest known
encyclopedia to mankind. The size of Wikipedia is increasing
and so its coverage, breadth and accuracy making it most
suitable for the job than others. Second, our method here is
monolingual and no parallel data is required. After
preprocessing the Wikipedia dump for the first time, we use the
extracted features in our system for as many processes as
needed. The accuracy obtained by our system as shown in the
evaluation results is comparable, or exceeding, to those of the
systems mentioned above.

With respect to Wikipedia, other systems investigated the
use of its links and category structure. Mihalca [2] used a
supervised method employing the internal links of Wikipedia
for the purpose of building a corpus with annotated senses in a
WSD task. After building the sense-annotated corpus, they
matched the senses to the definitions in WordNet. In [4], the
authors proposed a method that extracts a feature vector for
each of the occurrence of an ambiguous word from the links in
Wikipedia. We used a similar method to build our evaluation
corpus for this work.

In [5], a method was investigated using one type of internal
links in Wikipedia: mutual links. In [3], several link types were
proposed and weighted. We extend these two methods in our
work by including more important link types and using the
category structure within Wikipedia to filter the chosen links.
We also employ a test-concept table that provides a more

comprehensive list of related articles for any given word. This
allows the consideration for the senses which are not explicitly
displayed in the Disambiguation pages of Wikipedia. We show
in the results that even with the breadth introduced from
applying the test-concept table to the terms, the method still
obtains good evaluation results.

The term-concepts table we use in our method is similar in
principle to the concepts matrix built in [11]. However, we
apply our boosting algorithm to consider the alternative names
mentioned in Wikipedia’s redirect links. We also integrated the
structure of the categories as well as the classified and
weighted internal links in Wikipedia to our method. One of
methods we evaluate is based on a centroid formed from the
built term-concepts table for the sake of comparison.

VII. CONCLUSION AND FUTURE WORK
We have presented a method for WSD utilizing the

extracted features from Wikipedia, namely: the term-concepts
table, categories structure and strong links. We have classified
the strong links and gave a weight to each type. We then
evaluated the method and presented the results we obtained.
The good results we have encourage us to apply the same
methodologies to other applications including text
classification or categorization. Also, it is possible to use an
optimized version of our method on other open knowledge
sources such as Wiktionary. We plan to do that next and
compare the obtained results with the Wikipedia-based method.

REFERENCES
[1] S. Patwardhan, S. Banerjee, and T. Pedersen, “UMND1: unsupervised word sense

disambiguation using contextual semantic relatedness,” Proceedings of the 4th
International Workshop on Semantic Evaluations, Prague, Czech Republic: Association
for Computational Linguistics, 2007, pp. 390-393.

[2] R. Mihalcea, “Using Wikipedia for Automatic Word Sense Disambiguation,” North
American Chapter of the Association for Computational Linguistics (NAACL 2007),
2007.

[3] D. Turdakov and P. Velikhov, “Semantic Relatedness Metric for Wikipedia Concepts
Based on Link Analysis and its Application to Word Sense Disambiguation,” SYRCoDIS,
CEUR-WS.org, 2008.

[4] R. Mihalcea and A. Csomai, “Wikify!: linking documents to encyclopedic knowledge,”
CIKM '07: Proceedings of the sixteenth ACM conference on Conference on information
and knowledge management, Lisbon, Portugal: ACM, 2007, pp. 242, 233.

[1] A. Fogarolli, “Word Sense Disambiguation Based on Wikipedia Link Structure,”
Semantic Computing, 2009. ICSC '09. IEEE International Conference on, 2009, pp. 77-
82.

[6] M. Lesk, “Automatic sense disambiguation using machine readable dictionaries: how to
tell a pine cone from an ice cream cone,” SIGDOC '86: Proceedings of the 5th annual
international conference on Systems documentation, Toronto, Ontario, Canada: ACM,
1986, pp. 26, 24.

[7] R. Navigli and P. Velardi, “Structural semantic interconnections: a knowledge-based
approach to word sense disambiguation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 27, 2005, pp. 1075-1086.

[8] A. Gliozzo, C. Giuliano, and C. Strapparava, “Domain kernels for word sense
disambiguation,” Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, Ann Arbor, Michigan: Association for Computational
Linguistics, 2005, pp. 403-410.

[9] X. Wang and D. Martinez, “Word sense disambiguation using automatically translated
sense examples,” Proceedings of the International Workshop on Cross-Language
Knowledge Induction, Trento, Italy: Association for Computational Linguistics, 2006,
pp. 45-52.

[10] M. Diab, “Relieving the data acquisition bottleneck in word sense disambiguation,”
Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics,
Barcelona, Spain: Association for Computational Linguistics, 2004, p. 303.

[11] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness using
Wikipedia-based explicit semantic analysis,” IN PROCEEDINGS OF THE 20TH
INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, pp.
1606--1611.

Centroid-based Classification Enhanced with Wikipedia

Abdullah Bawakid and Mourad Oussalah
School of Engineering

Department of Electronic, Electrical and Computer Engineering
University of Birmingham

{ axb517 , M.oussalah }@bham.ac.uk

Abstract— Most of the traditional text classification methods
employ Bag of Words (BOW) approaches relying on the words
frequencies existing within the training corpus and the testing
documents. Recently, studies have examined using external
knowledge to enrich the text representation of documents.
Some have focused on using WordNet which suffers from
different limitations including the available number of words,
synsets and coverage. Other studies used different aspects of
Wikipedia instead. Depending on the features being selected
and evaluated and the external knowledge being used, a
balance between recall, precision, noise reduction and
information loss has to be applied. In this paper, we propose a
new Centroid-based classification approach relying on
Wikipedia to enrich the representation of documents through
the use of Wikpedia’s concepts, categories structure, links, and
articles text. We extract candidate concepts for each class with
the help of Wikipedia and merge them with important features
derived directly from the text documents. Different variations
of the system were evaluated and the results show
improvements in the performance of the system.

Keywords-component; Classification, Semantics, Wikipedia,
Categorization, text enrichment (key words)

I. INTRODUCTION
The amount of newly created information in electronic

form increases in a large pace everyday. In particular, the
available text on the web created the necessity to implement
different methodologies to organize information into
different useful forms. Among the various approaches that
have been designed for managing the information is
Automatic Text Classification (ATC) which is the process of
assigning previously defined classes to documents. ATC has
been used recently in many web applications including
search engines queries [1] and web documents classification
[2]. These applications usually require fast training and
classification in addition to high precision and recall.

Many traditional text classification systems focus on Bag
of Words (BOW) techniques which represent the documents
or classes with weighted features extracted from documents
terms and their frequencies. Among the most popular BOW
techniques are SVM [3], Neural Networks [4], knn [5],
Naïve-Based [6] and centroid-based methods [7],[8].
Centroid-based methods were generally found in the
literature to be faster and more efficient than most of the rest
of the methods. Their precision and recall were also lacking
when compared with other methods such as SVN [8]. In a
recently published study, a new centroid-based method was

proposed and found after evaluation to give better accuracy
than many of the other state-of-art BOW approaches [7].

While the efficiency and performance of many BOW
methods may be somewhat high for tasks when the category
of a group of documents can be identified with a few distinct
keywords appearing in the belonging documents, this is not
always the case. For example, consider the case when a class
labeled “Abnormal Psychology” has several training
documents in which none has the keyword “Hyperthymesia”
(meaning superior memory). If a document discussing
Hyperthymesia were to be classified, a BOW method would
not be able to distinguish the relationship between the class
“Abnormal Psychology” and the word “Hyperthymesia”. On
the other hand, a human with good background knowledge in
Hyperthymesia should be able to tell which class the
document actually belongs to. Also, consider the case when
two consecutive words such as “Cat Fish” provide a new
meaning different from the two separate words. With only
traditional BOW methods, multi-word concepts are usually
misinterpreted or simply omitted. Hence, the use of external
knowledge to enrich classification methods should help
address similar scenarios where semantic understanding of
the content of the documents and the relationship between its
contents and the different classes is needed. This semantic
analysis is especially important when the training or testing
documents are short in length providing not much enough
info for training with BOW methods.

In this paper, we describe a novel system that employs
Wikipedia as its underlying knowledge base in a unique way.
The large number of concepts and diverse domains covered
in Wikipedia makes it most suitable for the task. Instead of
mapping the documents text to a concept or a small group of
concepts as done in most of the previous work, we map it to
all of the previously-processed Wikipedia concepts. This is
achieved by first processing all Wikipedia articles and
extracting the relationship between each of its terms and all
the concepts existing within Wikipedia. In essence, this
forms a term-concepts table. Then, we extract the categories
structure within Wikipedia and analyze its links.
Furthermore, we employ a centroid-based method directly on
the documents contents and give the terms weights based on
inter-class, inner-document and inter-document features. The
result of all the mentioned steps (Concepts, Categories and
Text) is then combined to form prototype vectors for each
class during the training stage. The classification uses the
formed vectors to decide which class each Test Document
(TD) belongs to in an efficient way. Our experimental results
on the 20-newsgroups dataset and the ODP collection

demonstrate that our classifier performs very well when
compared to previous methods.

 The rest of the paper is organized as follows:
section 2 discusses the related work. Section 3 elaborates the
extracted features and the design of our method. Section 4
describes how the extracted features are used in the different
implemented heuristics. Section 5 presents the evaluation
results and discusses our findings. Finally, in section 6 we
conclude this paper with possible research direction in the
future.

II. RELATED WORK
An increasing amount of work has been recently applied

to enriching text representations for different applications
including classification, clustering, information retrieval and
clusters labeling. Different kinds of knowledge bases have
been used too for the different applications. In [9], WordNet
was used to enhance the Classification of text documents by
improving the Rocchio algorithm. Their method was
supervised and required manual annotations of terms vectors.
In [10], WordNet was used for the task of documents
clustering. They used WordNet synsets to enrich the
representation of documents but without word sense
disambiguation. The results they obtained did not show
improvements with the use of synsets.

Wikipedia was also used in different applications. In
[11], Wikipedia was used to build a thesaurus for use in
specific domains. The focus was on using Wikipedia’s
internal and redirects links for this task. with small emphasis
on the rich relations and hierarchy available in Wikipedia.
Also in [12] and [13], a method was proposed and evaluated
that uses Wikipedia and ODP to obtain representative
concepts vectors for documents in the task of text
classification. Their idea is similar to ours when building the
term-concepts table but without applying the boosting
algorithm. In our work, we attempt to leverage the abundant
information present in Wikipedia by extracting other features
such as strong links and categories structure and integrating
them in our system to obtain even better performance. Also,
the Exact Match concepts matching methodology we
implemented here is similar to the method implemented in
[14]. However, it primarily differs in that we perform an
expansion to the concepts vector by including related
concepts which are not explicitly mentioned in the
documents and assign different weights to each depending
on how related they are to the EM concepts. This expansion
leads to improvement in the system accuracy as shown in the
evaluation section.

III. EXTRACTING THE FEATURES FROM WIKIPEDIA
Our approach relies on the use of the vast and highly

organized human knowledge existing within Wikipedia
giving it a major advantage over other approaches using
smaller thesauruses such as WordNet or Open Directory
Project (ODP). Due to its openness and structure, Wikipedia
is not suitable for being used directly as is by machines and
its content needs to be analyzed first with semantic
processing tools. In our semantics-extraction system, we
treat each Wikipedia article as a unique Concept and use its

title as a label. The content of the article is used to help build
a relationship vector between the article terms and its title.
The formed term-concept vector along with the Categories
structure existing within Wikipedia are analyzed to aid in
computing the relatedness score between any two text
fragments.

There are a number of stages the framework system has
to go through before generating the Wikipedia-based vectors.
First, we preprocess the available Wikipedia data to retain its
articles text, titles, redirect and internal links, and categories
structure and remove non-relevant information such as the
edit history, image descriptions, and the articles authors.
Afterwards, we apply some filtering metrics to extract the
important strong links and concepts along with their
categories. We then analyze the extracted information and
form the term-concepts, concepts and categories vectors. The
following sections describe further these elements.

A. Term-Concepts Table
In Wikipedia, each article discusses a sole topic and is

uniquely represented with its title. The TFIDF weight of each
term existing within the article text is computed. After
computing the weights for all the terms in each Wikipedia
article, we create a concepts vector for each term. The
concepts vectors contain a list of the article titles that contain
the term in a descending order based on the weight of the
term in each article. We thus call this vector the term-
concepts vector. One can view the resulted structure in the
form of a non-negative weight table or a sparse matrix where
rows correspond to terms and columns correspond to
concepts. The weights are computed by using the common
TFIDF metric with the following variant:

)
)(

log(),(),(
tdf

ncttfctWeight ∗= (1)

Where tf(t,c) is the term frequency of the term t in the article
(or concept) c, n is the total number of articles in the
evaluation set, and df(t) is the number of articles containing
the term t. The weight is then l2-normalized to account for
the different lengths of the Wikipedia articles.

After building the term-concepts table, we apply a 2-level
boosting process which boosts the scores for some entries in
the table according to the appearance of some terms in the
redirect links titles. This boosting process has been described
in [15]. The purpose is to first use the non-repeated info in
the redirect links to enhance the rank of the most related
concepts as in the term Unhappy and concept Depression
(mood). Another aim is to enhance the ranking of those
concepts for a term t that contain that term in their titles. This
is evident for the Unhappy term and the Unhappy Triad
concept which appeared higher in its list after the boost.

B. Categories
Each concept in Wikipedia is linked to a parent category

or more signifying a form of relatedness between the concept
and the categories. Therefore, for each concept we define a
vector of the parent categories the concept belongs to. Also,

we define other vectors to store the relationship between the
categories with each other, in particular the parent/child
relationships. These categories vectors are used either
directly in one of the heuristics we implemented, or
indirectly to aid define the strong links.

A B

A B

A B

A B

Category 1

Category 2

Category 1

Category 1

A B

Category 1

Category 2

A B

Category 1

Category 2

A B

Category 1

Category 2Category 3

A B

Category 1

Category 2Category 3

1 2

43

5 6

7 8
Figure 1. Sorted Link Types based on their weights in descending order

C. Strong Links
The internal links within Wikipedia resemble a form of

relationship in many cases between the articles. However,
not all the links are of the same significance. We hereby
extend the work in [15] and classify the internal links into
eight different types. The structure of the Wikipedia
categories is employed in defining several of these link
types. These link types along with their weights are
illustrated in Figure 1. Types 9 and 10 refer to the See Also
links and the Inverse See Also links respectively. We use
these link types to form a list between each article and other
related articles. Each association is assigned a score based on
the weight of the links found that led to forming the
association.

Figure 2. Weights assigned for the different links types

w1 3 w2 2.75 w3 2.5 w4 2.25 w5 1.75
w6 1.5 w7 1.45 w8 1.25 w9 3.75 w10 3.25

IV. USING THE WIKIPEDIA-EXTRACTED FEATURES
After preprocessing the documents, we apply a set of

heuristics focusing on different aspects of the input
documents. The goal is to provide the top recommended
classes for TD with the help of the best or all of these
heuristics. For each class, we use the documents that belong
to it as the basis for extracting representative features of that
class. These features are represented as vectors in most of the
applied heuristics and are evaluated according to the
evaluation policy of the heuristic that generated the features.
The scores of all evaluation vectors are aggregated at the end

when computing the similarity between the classes’ vectors
and the TD vector. In the following sections, the extracted
features are described along with the process applied to each.

A. Important Terms Extraction
For each class C, we have a group of training documents

di belonging to that class. The idea is to extract a list of the
most important terms ordered by their weights to represent
each class. The aim is to have representative terms that best
distinguish each class from the rest of the text. This is similar
to many other approaches previously implemented in
different applications including documents clustering [14],
cluster labeling [16] and automatic text summarization [17].
In this work, we chose to implement and use it as one of the
baseline methods during the evaluation comparisons.

We extract the important terms in each class and give
each a score using a weight scheme similar to the described
in [16] and [7]. In the implemented metric, inter-class, inner-
document and inter-document features are used to compute a
weight for each term in each class. They are then grouped in
a set for each class to form a representative centroid. For a
term t in a class C, the term weight w(t,C) is derived using:

),()log(),(),(Ctidf

CF
C

CtctfCtw
t

⋅⋅=
 (3)

Where ctf(t,C) refers to the class term frequency and
idf(t,C) is the inverse document frequency. The inner part of
the equation (3) is for the inverse class frequency and
attempts to capture the different distribution of a term within
the different classes. Intuitively, a term that appears in one
class is deemed to be important for that class. Similarly, if a
term appears in all of the classes, its discriminative power
wouldn’t be that important for text classification. As for the
TD, we simply compute the TFIDF weight for each term.
During evaluation, the formed TD vector is compared
against the vectors of all classes using the cosine similarity
measure. A ranked list of the recommended classes is then
generated solely on the basis of the obtained similarity
scores.

B. Concepts Extraction
The documents that belong to each class can be

represented in the form of a concepts vector. This is usually
achieved by devising a mapping scheme that uses the class
documents contents to decide which concepts they are
mostly related to. Previous approaches have been considered
for achieving this. For example, [18] defined some
Wikipedia relations between the articles such as synonymy
and polysemy and used them with the categories structure to
aid in mapping any text fragment to concepts. In [14], the
authors created a Wikipedia term-concept matrix from the
content of the Wikipedia articles and used it as a bridge for
the mapping. In our work, we employ different heuristics for
this task utilizing the term-concepts table, the previously
defined strong links and the concepts titles.

1) Concepts Centroid

In the first heuristic, we use the term-concepts table to
form a vector of concepts for each document in a class.
Afterwards, all of the concepts vectors in a class are
aggregated and a centroid is created for each. This process
has been evaluated in a previous work for the application of
Word Sense Disambiguation (WSD) [15]. When grouping
the generated concepts for different adjacent terms, the
aggregation helps boost the multi-word concepts describing
the contexts of the targeted text. However, this is also not
without a limitation as large segments of text usually
produce noise. In addition, important concepts which are
briefly mentioned in a relatively small number of sentences
may not appear in the concepts list. We therefore treat each
sentence as a separate text fragment and generate a concepts
vector for each. We keep only a K maximum of the top
representative concepts for each context before grouping
them altogether in a document. This way, important concepts
which are mentioned once or twice in the document still
appear in the document’s concepts vector.

2) Strong Links
Expansion through the use of Strong Links was another

method implemented in [15]. Some form of relationship
between articles can be deduced from their internal links. We
used the strong links to aid in finding related concepts for
each document and built a concepts vector. Just like with the
previous method, we aggregate all of the formed documents
concepts vectors to create a representative centroid for each
class. The centroid would contain a ranked list of the
important concepts along with the score assigned to each.
After obtaining the concepts vector for each context, we limit
the actual number of concepts to a maximum of L during the
evaluation.

3) Exact Match and Related Concepts
In another heuristic we applied, we used a revised Exact

Match (EM) approach that is most similar to the one
suggested in [14] to find concepts in a document. The idea is
to construct the concepts vector by finding the explicitly
mentioned concepts within each document in a class. For a
text fragment that covers more than one concept using the
same terms, we only keep the concept with the largest
number of terms. For example, each term in “cat fish”,
namely cat and fish, is a title for a concept. However,
because there is a third concept titled Cat fish that spans all
the words, we only choose that concept.

After finding all of the EM concepts in a document and
adding them to the list, we choose the 4 most important EM
concepts and extend them with a maximum of 10 most
related concepts. We use the strong links method previously
defined to find the most related concepts to an EM concept.
The weight assigned to each EM concept is simply its
frequency multiplied by a constant (chosen as 4 in our
experiment). As for the weight of a related concept, it would
be its frequency multiplied by the actual weight given in
Table 2 which depends on how strong the association is. This
approach is enhanced with the redirect links to find
alternative names or abbreviations for some concepts. The
concepts lists for each document would then contain two
types of concepts: EM concepts and related concepts. When

computing the similarity between a class concepts list and a
TD concepts list, the cosine similarity measure is used.

As mentioned above, only the four most important EM
concepts are expanded to include related concepts. We use
two metrics to help decide which of the found EM concepts
in a document are the 4 most important. First, we take into
account the frequency of EM concepts in the document.
Afterwards, we consider the similarity between the concepts
text content (the original text of the concepts from
Wikipedia) and the document they appeared in. For this, we
use the TFIDF weight and the cosine similarity to compute
the similarity between the EM concepts original text and the
documents they appeared in.

When an ambiguous EM concept is encountered in a
document, we attempt to find its exact meaning by using the
centroid based methodology outlined in [15] but here taking
into account the class label, the EM concept and its
surrounding words. We apply the term-concepts table to
expand all the terms in the class label, the EM concept and
its 4 surrounding words. This results in several concepts
vectors which, after aggregation, form a single sorted
concepts vector. The occurrence of the EM concept in the list
with the highest score should resemble the disambiguated
meaning.

C. Categories Mapping
A categories vector is generated for each class after

forming the concepts vectors. The previously extracted
categories structure from Wikipedia is utilized for this task.
After obtaining the concepts vectors with a score associated
to each concept, we form a new similar vector in which the
concepts are replaced with the categories they belong to.
When several concepts share the same parent category, the
concepts scores are aggregated into one and then it is
associated with the shared parent category in the categories
vector. This aggregation in turn signifies the dominant
categories which are parents to the largest number of
concepts in a class. For each class, we limit the number of
obtained categories to M. The same process is applied to the
TD too to generate a categories vector.

D. Classifying a Test Document
In the previous sections, we described the different stages

involved in obtaining the important terms from each class
and enriching its documents content with Wikipedia-
extracted features including concepts and categories vectors.
We highlight here how to classify a TD and combine the
previously defined similarity measures into one. This is
achieved by computing the aggregated score gs(TD, CL) for
the test document TD and the class CL as follows:

∑

=

=
q

i
ii CLTDSimCLTDgs

1

),(),(β
 (4)

Where q is the total number of heuristics or methods we
apply, and β is the weight we give to the different heuristics
we implement. The sum of all βi in the above formula is one
and thus each βi is a number between zero and one. In this

work, we experimented with different values of β in the
evaluation section as we deemed reasonable and reported
their results.

V. EXPERIMENTS AND EVALUATION

A. Dataset
We performed classification experiments on two data

collections. The first is the 20 News Groups (20N) which has
newsgroups documents that were categorized manually into
20 different classes. Each class has nearly 1,000 documents
making the total of documents available in the collection
almost 20,000. The second collection was built from the
ODP. We selected 100 random categories and downloaded
100 pages for each category. The total number of documents
is 10,000. Both datasets are balanced in the sense that the
number of contained documents in every category is almost
the same.

To both collections, all documents are parsed and
tokenized. For the 20N collection only the title, subject,
keywords and content are kept. Also, we keep only the titles
and the content of the downloaded pages for ODP. We
computed the TFIDF weight for each term. Terms appearing
in the titles and the keywords section have their weights
doubled to emphasize their importance. Unless otherwise
stated in one of the applied heuristics, the title and the
keyword sections are treated as part of the content of the
articles.

We divided each dataset into five random, but
equivalently sized sub-datasets retaining the documents
distribution balance in each category. We use the five sub-
datasets to evaluate our methods five times. Then, we take
the average of the obtained accuracies as the final answer.

B. Methods and Evaluation Setup
We conducted several experiments to evaluate the

different methods and heuristics suggested in this work.
Specifically, we compared the performance of the following
approaches:
• TFIDF: A centroid is formed for each class using the

common TFIDF weights of its documents terms.
• ITC: Important Terms Centroid is created for each class

based solely on the important terms in the class
documents. Equation (3) is used to compute the terms
weight in the centroids and TFIDF is used for the TD.
Cosine similarity is employed for comparisons.

• CC-Rel: Concepts Centroid is created for each class.
The concepts vector is constructed by expanding the
documents terms with the boosted term-concepts table
as described in section 4.B.1.

• CC-Rel-Ex: Concepts centroid is constructed for each
class with the help of the strong links as described in
section 4.B.2. For this, we apply the term-concepts table
first to form a concepts vector just like in CC-Rel. Then,
we expand the concepts list by including related
concepts with the help of the Strong Links method.

• CC-EM: Concepts Centroid is constructed for each class
by finding the concepts which are explicitly mentioned

in the documents. For each document, we choose only
the top 5 concepts.

• CC-EM-Ex: Concepts Centroid is constructed for each
class with the help of strong links as described in section
4.B.3. The main difference between this and CC-Rel-Ex
is in how the initial concepts vector is constructed. In
this method, we detect the explicitly mentioned concepts
and use them to build the initial list.

• G: Categories centroid is created for each class by
aggregating the categories of the encountered concepts
using the best CC method.

• ITC-CCRelEx: This forms vectors for the important
terms in each class, and the concepts using CC-Rel-Ex
method.

• ITC-CCEMEx: This forms two vectors for each class,
namely Important Terms vector and EM Concepts
extended with related concepts using the strong links
method.

• ITC-G: Important terms, and categories centroids are
created for each class. The categories vector is
implemented using the method described in section
4.B.4. The categories are formed from the concepts of
the approach CC-Rel-Ex, though the concepts vectors
are not used directly when computing the similarity
between the different vectors.

• ITC-CCRelEx-G: Important Terms, Concepts and
Categories Centroids are created. The categories vector
is implemented using the method described in section
4.B.4. The concepts vector is constructed as in CC-EM-
Ex.

For all the methods that utilize the term-concepts table,

we applied the boosting to the table with the parameters
FLBS and SLBS assigned to 1 and 1.05 respectively which
we found to be reasonable at the time. When Forming the
Concepts centroid, we chose 20 for K as the maximum
number of concepts to be obtained for any term from the
term-concepts table. As for finding related concepts using
the strong links method, 10 for L was the maximum number
of related concepts extracted from any document. Equation
(4) takes part in the implementation of the approaches
labeled ITC-CCRelEx, ITC-CCEMEx, ITC-G, ITC-
CCRelEx-G, and ITC-CCEMEx-G. For these approaches
different values of β has been assigned and the results we
display are those given by the best combination. The
evaluation accuracy for a run is measured by dividing the
number of correctly categorized documents over the number
of total documents in a class. As for the categories labels of
the 20N, they were updated display clear form of words.

C. Results
The results we obtained for the run experiments are show

in Table 3. ITC-CCRelEx-G is the best among all for both
datasets. For the 20N dataset, the β variable was assigned
{0.3, 0.5, 0.2} for the important terms vector, concepts
vector and categories vector, respectively. As for the ODP
collection data, they were chosen to be {0.3 , 0.4, 0.4}. For
both collections, the expirment CC-Rel-Ex, which uses the

term-concepts table to locate concepts in a document and
then extend it with related concepts using the strong links
method, yielded better results than CC-EM-Ex. Also,
extending the located concepts in documents with other
related ones not explicitly mentioned in the document proved
to be useful. This was especially evident for the runs CC-Rel
and CC-EM giving a performance increase of up to %4.3.
The second best method for both data collections was for
ITC-CCRelEx and the weight β assigned to the important
terms vector and the concepts vector was {0.4,0.6} for both
collections.

TABLE I. ACCURACY RESULTS OBTAINED FOR DIFFERENT
VARIATIONS OF THE SYSTEM

 20N ODP
TFIDF 82.98 69.26

ITC 84.78 71.54
CC-Rel 85.82 74.85

CC-Rel-Ex 87.62 77.63
CC-EM 84.84 74.06

CC-EM-Ex 86.79 77.24
G 87.08 77.73

ITC-CCRelEx 87.97 78.33
ITC-CCEMEx 86.94 77.12

ITC-G 87.71 77.72
ITC-CCRelEx-G 88.63 78.82
ITC-CCEMEx-G 87.18 77.31

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a system incorporating

background knowledge in Wikipedia to enrich the
representation of text documents and enhance the task of
Text Classification. We extracted different sets of features
from Wikipedia including term-concepts table, categories
structure and strong links and organized them for subsequent
processing. We then investigated different sets of heuristics
employing the extracted features from wikipedia and
reported their results. Accuracy improvements of up to
13.8% were achieved when compared against the common
BOW approaches. We plan to apply and optimize our
methodologies for work on other applications such as Text
Summarization and hierarchical classification in our future
work. We also will investigate the use Wiktionary and in
particular its Words relations to extend the work applied
here. Finding a methodology to automatically obtain the
optimal parameters for the different methods we outlined is
also something that we need to work on.

REFERENCES

[1] B.J. Jansen, D.L. Booth, and A. Spink, “Determining the user intent
of web search engine queries,” Proceedings of the 16th
international conference on World Wide Web, Banff, Alberta,
Canada: ACM, 2007, pp. 1149-1150.

[2] S. Dumais and H. Chen, “Hierarchical classification of Web
content,” Proceedings of the 23rd annual international ACM SIGIR
conference on Research and development in information retrieval,
Athens, Greece: ACM, 2000, pp. 256-263.

[3] S.R. Gunn, “Support Vector Machines for Classification and
Regression,” 1998.

[4] R.D. Goyal, “Knowledge Based Neural Network for Text
Classification,” Proceedings of the 2007 IEEE International

Conference on Granular Computing, IEEE Computer Society,
2007, p. 542.

[5] L. Baoli, L. Qin, and Y. Shiwen, “An adaptive k-nearest neighbor
text categorization strategy,” ACM Transactions on Asian
Language Information Processing (TALIP), vol. 3, 2004, pp. 215-
226.

[6] S. Eyheramendy, D.D. Lewis, and D. Madigan, “On the Naive
Bayes Model for Text Categorization,” 2003.

[7] H. Guan, J. Zhou, and M. Guo, “A class-feature-centroid classifier
for text categorization,” Proceedings of the 18th international
conference on World wide web, Madrid, Spain: ACM, 2009, pp.
201-210.

[8] Z. Cataltepe and E. Aygun, “An Improvement of Centroid-Based
Classification Algorithm for Text Classification,” Proceedings of
the 2007 IEEE 23rd International Conference on Data Engineering
Workshop, IEEE Computer Society, 2007, pp. 952-956.

[9] M.D.B. Rodriguez, J.M.G. Hidalgo, and B.D. Agudo, “Using
WordNet to Complement Training Information in Text
Categorization,” cmp-lg/9709007, Sep. 1997.

[10] K. Dave, S. Lawrence, and D.M. Pennock, “Mining the Peanut
Gallery: Opinion Extraction and Semantic Classification of Product
Reviews,” 2003, pp. 519--528.

[11] D. Milne, “Computing Semantic Relatedness using Wikipedia Link
Structure,” Proceedings of the New Zealand Computer Science
Research Student Conference, 2007.

[12] “Overcoming the Brittleness Bottleneck using Wikipedia:
Enhancing Text Categorization with Encyclopedic Knowledge.”

[13] E. Gabrilovich and S. Markovitch, “Computing semantic
relatedness using Wikipedia-based explicit semantic analysis,” IN
PROCEEDINGS OF THE 20TH INTERNATIONAL JOINT
CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, pp.
1606--1611.

[14] X. Hu, X. Zhang, C. Lu, E.K. Park, and X. Zhou, “Exploiting
Wikipedia as external knowledge for document clustering,”
Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, Paris, France: ACM, 2009,
pp. 389-396.

[15] M.O. Abdullah Bawakid, “Using Features Extracted from
Wikipedia for the Task of Word Sense Disambiguation,” 9th IEEE
International Conference on Cybernetic Intelligent Systems 2010,
Reading, UK: IEEE, 2010.

[16] D. Carmel, H. Roitman, and N. Zwerdling, “Enhancing cluster
labeling using wikipedia,” Proceedings of the 32nd international
ACM SIGIR conference on Research and development in
information retrieval, Boston, MA, USA: ACM, 2009, pp. 139-
146.

[17] A. Bawakid and M. Oussalah, “A semantic summarization system:
University of Birmingham at TAC 2008,” Proceedings of the First
Text Analysis Conference (TAC 2008), 2008.

[18] J. Hu, L. Fang, Y. Cao, H. Zeng, H. Li, Q. Yang, and Z. Chen,
“Enhancing text clustering by leveraging Wikipedia semantics,”
Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval,
Singapore, Singapore: ACM, 2008, pp. 179-186.

A Semantic-Based Text Classification System

Abdullah Bawakid and Mourad Oussalah
School of Engineering

Department of Electronic, Electrical and Computer Engineering
University of Birmingham

{axb517 , M.oussalah}@bham.ac.uk

Abstract

This paper presents a system that performs automatic
semantic-based text categorization. Using Princeton WordNet, a
series of induced methods were implemented that extract
semantic features from text and utilize them to decide how
similar a document is to different topics. In addition, a bag-of-
words method incorporating no knowledge from WordNet is
implemented in the system as a basis to compare different
WordNet-based approaches. This paper describes the system
and reports on a simple analysis performed to evaluate the
different implemented methods. At the end, a discussion on the
limitations of this study and the future work to optimize the
system is presented.

Keywords: Semantic Similarity, WordNet, Categorization, Text
Classification, Information Retrieval, Word Sense Disambiguation

1. Introduction
Most of the available data nowadays exist in the form of
electronic unstructured text information. The size of the data
and its rapid growth makes it challenging for users to analyze,
organize and access the required information efficiently.
Therefore, document categorization, as an efficient tool that
enables effective retrieval, organization and summarization
tasks, has received more and more attention from information
processing community as suggested by the impressive number
of publication in the field, e. g., [14]. Typically, a text
classification, or categorization, is the task of automatically
assigning a class label to an unlabelled document where the set
of classes may either be previously defined, or automatically
generated from the document.
During the last decades, a large number of text categorization
systems have been proposed using a variety of approaches such
as support vector machines [4], boosting algorithms [13], term
frequency and inverse document frequency [16], among others.
Most of these systems use the bag-of-words model or vector
space representation by having individual words (or word
stems) as basic representative features for the document content
[8, 12].
While bag-of-words approaches present a good performance on
many machine-learning tasks due to low computational cost
and inherent parallelism, their limitations are also well
acknowledged. Especially, the underlying classification scheme
is restricted to detecting patterns within the used terminology

only, which excludes conceptual patterns as well as any
semantically related words. It is thus possible to gain better
results across multiple domains by utilizing an external
semantic thesaurus like WordNet that defines an upper-level of
relationships among most of the terms in the testing data.
Typically, WordNet is a database for the English language
containing semantic lexicon that organizes words into groups of
synsets [7]. Every synset stands for a single word prototype that
refers to a group of words that share the same (semantic)
meaning. In addition to making use of relations in WordNet,
features such as Part-of-Speech tags have been considered in
[8]. This motivates the intensive research carried out in this
issue which had given rise to a variety of implemented systems
incorporating features derived from the common semantic
thesaurus WordNet and its words relations [2, 6, 11]. Strictly
speaking, the hierarchical organization of WordNet involves
important distinction between various part of speech (PoS)
parts. Indeed, while categorization of nouns into underlying
taxonomies, headed by a unique beginner such as animate or
artifact is straightforward, this does not extend to verbs, which
are rather partitioned into several semantic fields with many
overlapping [7]. This discrepancy between verbs and nouns
obviously influences the calculus of semantic similarity,
especially when dealing with sentences where the word-by
word semantic similarity has proven usually to be non-effective
[5], which, in turn, influences negatively the performance of
retrieval, summarization and categorization tasks. This makes
the debate of nouns versus verbs semantic similarity widely
open. This paper attempts to contribute to this debate by
investigating the influence of six different schemes on the
performance of text categorization. This consists of co-
occurrence frequency, expansion with synonyms, PoS semantic
similarity, Noun-semantic similarity, semantic similarity with
verb-noun conversions and semantic similarity with
adverb/adjective conversion. The proposals were implemented
in Java platform making use of WordNet libraries and Jiang’s
semantic similarity measure [3]. A test data constructed from
news website is used to evaluate the performance of the various
schemes. The developed system performs automatic text
classification through semantic-based approaches relying on
semantic similarities between the testing data and the classes
where, for each class, a score that quantifies the closeness of a
given document with the underlying class is computed. The
document is deemed to belong to a specific category if the latter
endows the highest score.

Section 2 presents an overview of our system, its main
stages and how it works. In section 3 we discuss the evaluation
tests performed on different runs for the implemented methods
in the system. While discussions and perspective works are
given in Section 4.

2. System Overview
Figure 1 shows the main steps performed in the

preprocessing stage of the developed system. Overall,
tokenization, filtering and stop words removal were applied to
both the categories and the test documents. More formally, the
text documents are cleaned from any unnecessary information
such as XML/HTML tags. Some of the category names are
merely one or two phrases while others are two complete
sentences or longer. Because of these variations, a sentences
splitter is applied to both the categories and the document that
needs to be classified. Tokenizing the words and converting
them to their morphological forms is the next step (with the
help of WordNet [7]). Tagging the words with their Part-of-
Speech, which distinguishes verbs, nouns, adverbs/adjectives,
among others, is the last step in the preprocessing stage.

After preprocessing both the categories and the document,
the classification process takes place. Each category or class is
given a score that quantifies the extent to which the class is
close to the given document. The class that has the highest
score is the one assumed to represent the document. Various
classifiers were implemented for the purpose of quantifying the
document-category matching based on the way the semantic
similarity is calculated, if any. In each of these variations, we
compare the terms comprising the class with the document
terms (or the induced terms). The scores of all classes are
initially zeros. If there is a hit, which is meeting the condition
defined in the system variations, the score of the category
increases by one. Thereby, the category achieving high score
will inherent its label to the document.

2.1 Co-occurrence frequency
This is referred to as a Base classifier. It is a simple classifier
that does not use WordNet or any of its features. Instead, a bag-
of-words representing the document with the frequency of each
word is compiled which then is compared to all the terms in
each category. The class having the largest number of co-
occurring terms in the bag is considered the one that the
document belongs to. The words in the bag are given different
weights depending on their number of occurrences in the
document. POS Tagging is not needed in the preprocessing
stage for this variation of the classifier. For example, given the
document “Sam likes playing football”, and the two classes
“football playing” and “Surgery”, the score of the first class is 2
(co-occurrence of two words –“football” and “playing”-) and
the second is 0 (no co-occurrence).

 Figure 1 The Overall System Architecture

2.2 Expansion with Synonyms

The document terms are expanded with their synonyms using
WordNet. A simple words-matching then takes place between
the tokens in each category and document terms. The category
that has the largest number of matches with the document terms
is considered to be the one the document belongs to. For
example, the sample document “Alan had flu” (Doc2 in Figure
2 after removing the stop words) would be expanded to become
“Alan influenza flu grippe” as in Figure 3. The expanded
document is then compared with the terms in each class. The
standard Co-occurrence frequency approach is then applied to
the synonym-expanded documents; that is, when a match is
found, it’s considered a hit and the score of the class is
increased by one.

2.3 Semantic Similarity

With this approach, the semantic similarity score is computed
between document nouns and category nouns, and document
verbs and category verbs. Using the semantic similarity
measure

jcnSim [3], similarity scores are computed between

each term in the document, and all terms in the classes of the
same part-of-speech. More specifically, given two words: w1
belonging to the category text, and w2 belonging to a
document, the semantic similarity score is computed as follows:

)2,1(2))2()1(()2,1(wwsimwicwicwwSim resresresjcn

Where IC stands for Information Content, or the number of
times a term occurs in a corpus and is expressed in the form of
a probability. The formula used for measuring IC is:

)(log)(wPwicres

Where P(w) is the probability of encountering a word w in a
corpus, which is quantified using frequency-based approach.
The formula for

jcnSim is:

)(max)2,1(
)2,1(

wicwwSim res
wwSw

res

In our system, we used an information content file provided
with the WordNet::Similarity package [9]. Although there are
several IC files provided, we have limited our analysis to ic-
bnc-resnik-add1 which is based on the British National Corpus,
world edition released in 2000 and is based on the Resnik
Counting [10].

After obtaining the similarity score, if it is found to be equal to
(or bigger than) a predefined threshold, it is a hit. The
document would then belong to the category that has the largest
number of hits.

Figure 2. Sample of documents in the processing stage

2.4 Noun-Semantic Similarity
As in the previous approach, Jiang’s semantic measure is used
with this one, too. However, the words to be compared with
this variation are always nouns, while verbs, adjectives and
adverbs are omitted. If the semantic similarity score is found to
be larger than a previously set threshold, it is a hit. The
document would, again, belong to the category that has the
largest number of hits. For example, the term “Strive” that
appears in Figure3 Doc5 would be omitted with this approach.
The reason for omitting the evaluation of verbs, as will appear
in the experiment section, is to evaluate whether the next
approach adds noise to the nouns-only method, makes no
changes, or improve the results as desired.

2.5 Semantic Similarity with Verb-Noun Conversion
With this approach, all verbs are converted into nouns using
WordNet relations whenever possible. The hypothesis here is
that “a higher accuracy will be achieved when computing the
semantic similarity score between two sentences or phrases, if
all words can be converted to a form that allows them to be all
compared with each other”. Since WordNet contains more
Nouns than verbs, it was decided to convert verbs into nouns,
and not the opposite, using the different WordNet relations
such as derivational links, synonyms and Pertainyms. A custom
function was developed to perform the conversion operation. It
starts by checking if one of the derivations for one of the verb
senses yields a noun. If not, the synonyms of the verb are
explored and we try to find whether one of the derivations for
the synonyms gives a noun. If not successful, we explore the
Pertainyms relations along with the related adjectives and

Syn(Flu) = {Influenza , flu, grippe}
Syn(Ask)= {inquire, enquire, require, expect, necessitate, postulate, take, involve, demand, call_for}
NounOf(Teach)= {teacher, teaching, instruction, instructor}
NounOf(Ask)= {asker, inquirer, inquiry, inquiring, enquirer, enquiry}
NounOf(Strive)={endeavor, endeavour, striving, strain}

Figure 3. Finding Nouns and synonyms of different words through the use of WordNet Relations

adverbs which are one level close to the verb, and then we
move one more level if a noun is not found.
By applying the above process, the first encountered noun is
used as a representative for the verb. It should be noted here
that not much analysis was performed on Words Senses
Disambiguation due to the lack of an intelligent technique that
could be applied in our setup and for our application.
Few examples illustrating the implemented method are
illustrated in figure 2. The verb “ask” for example is replaced
with the nouns “asker, inquirer, inquiry, inquiring, enquirer,
enquiry”. When performing the comparison, if any of these
nouns give a semantic similarity score equals or above the
desired threshold, it is a hit.

2.6 Semantic Similarity with Adverbs/Adjectives
Conversion
In contrast to previous approach, we convert any encountered
adjective or adverb in the processed document into their
corresponding nouns or verbs whenever possible. The
limitation arises because there are some adjectives/adverbs in
which the conversion is not possible. We use the different
relations in WordNet for achieving this task including
Pertainyms, synonyms, antonyms, and derivational links. For
example, the adjective “American” is transferred to the noun
“America”. After performing the conversion, we compute the
semantic similarity of the nouns (original nouns and converted
nouns) from the documents with nouns in each class. We do the
same to verbs. For each comparison when the semantic
similarity score is above the desired threshold, it is a hit.

3. Experiment
The classifiers mentioned in Section 2 have been implemented
in Java platform. Furthermore, the system provides some
flexibility to the user to configure the weight to different parts
of the documents. For instance, more weight might be assigned
to the first portion of the document that includes the abstract or
last part, which likely includes the conclusion of the document.
Similarly, the threshold associated to the semantic similarity
and governing the hit part can also be adjusted by the user.
Indeed, after computing the semantic similarity score, we
compare its value with a predefined threshold. We say there is a
hit only if the score is equal to or above that threshold. To
improve the overall performance of the system, a semantic
similarity matrix between all the nouns in WordNet was
constructed. The software runs on an IBM-compatible PC with
a 3.0 GHz Pentium 4 processor and 4 GB of memory. The
semantic similarity matrix was built with the help of PJWSL1.
Gate 2 ANNI Tagger was used for identifying the POS of
words.

1
Pure Java WordNet Similarity Library by Mark GreenWood

http://nlp.shef.ac.uk/result/software.html
2 Gate: General Architecture for Text Engineering, University of Sheffield

3.1 Test Data and Metrics:
35 documents which were previously manually classified by
humans were used as the testing data. The documents are
scientific papers covering different topics that were classified
based on their domains. The total number of domains, or
classes, that they were classified to is 25. The system was run
with the different variations mentioned above. Different
thresholds were used for the semantic similarity-based runs:
0.1, 0.2, 0.3, 0.45, 0.5, 0.6, 0.7 and 0.8.

The accuracy is measured by dividing the number of right
classifications by the total number of documents
If a document was found to belong to two different categories,
and one of the two categories is correct, then it is assumed that
the classification is correct. A summary of the results of the
runs is shown in Table 1.
For each variation, Syn, which stands for the synonyms-
expansion method in the table, does not require the use of the
threshold. Sim refers to the semantic similarity-based method.
NO refers to Nouns-Only and VC refers to the Verbs-
Conversion version of the system. AAC corresponds to the
method involving adjectives/adverbs conversions. Sim, NO and
VC all require setting the threshold value before each run. The
table illustrates the best-obtained accuracy score along with the
threshold it was obtained at.

3.2 Results
As shown in Table 1, the introduction of WordNet-based

features to the system did make significant changes. The
accuracy obtained for the base system is 85.5%. The Synonyms
method seems to have a relative increase of 3.3 over the base
accuracy.

As for the rest of the methods, choosing different thresholds
when deciding about whether the similarity score for a pair of
words is a hit or not did make significant differences. By
examining and comparing the results in Table 1, it seems that
evaluating only nouns when forming the pairs for computing
the semantic similarity yields the best result, given that the right
threshold is chosen. The semantic similarity method which is
solely based on nouns, without conversions, gave the best
overall accuracy: %90.3.

Method

Base Syn Sim
Sem
Sim
(N)

Sem
Sim
(VC)

Sem
Sim

(AAC)

Accuracy
%

85.5 88.8
87.4

(at 0.7)

90.3
(at 0.7)

84.2
(at 0.7)

87.4
(at 0.7)

Table 1: Evaluation results of the accuracy of the different
variations of the system

http://nlp.shef.ac.uk/result/software.html

74

76

78

80

82

84

86

88

90

0.1 0.2 0.3 0.45 0.5 0.6 0.7 0.8

Threshold

A
cc

u
ra

cy
 %

Sim

Sem Sim NO

Sem Sim VC

Syn

Base

Sem Sim (AAC)

Figure 4: Illustration of the effects of changing the thresholds
at difference runs of the system

An illustration of the effects of changing the threshold value for
different runs of the system on different method is shown in
figure 4. It can be noted that for the methods relying on
semantic similarity computations, setting the threshold to a low
value (generally below 0.45), creates a lot of noise and thus
decrease the accuracy of the system. The best results from each
method of the mentioned method were obtained when the
threshold value was set to 0.7. Increasing the threshold value
beyond that had either a negative effect on the result or no
effect at all. All of the methods, except for the VC, resulted in
better results than the base when the threshold was set to values
bigger than 0.3.

3.3 Discussion:
While it does seem from the results that the introduction of

WordNet-based semantic similarity features gave a positive
effect, the system still needs to get the right threshold for
optimum results. There are other factors which should be
considered as well such as the number of documents being
evaluated and the domains they were taken from. While the
authors have tried to choose documents from domains which
are as much diverse from each other as possible, it is expected
that running the system on a large corpus with larger number of
documents per domain will yield more accurate results.

It is also noted that the function that has been developed for
converting verbs into nouns using WordNet relations did not
perform as desired. It is possible that this was caused by not
setting a limit to the number of relations a conversion may
require going through before generating a noun in some cases
which can lead to unexpected results. One could have tackled
this by introducing a penalty affecting the semantic similarity
score. The deeper the relations the conversion process had to
traverse through, the less weight the computed score is given.

Even though WordNet gave better results in our experiment
and others too [6], using it as the main backend source to
classify documents may not be optimum. WordNet was
manually built and covers a limited number of concepts that
may not include some aspects in many domains. Furthermore,

the WordNet ontology is aging and costly to update and
assemble again and does not include facts such as the current
president of the United States. Again, this is mainly because it
is manually assembled. It is therefore useful to consider using
other thesaurus such as Wikipedia which is constantly being
updated and is the world largest encyclopedia. For example, the
number of synsets existing in WordNet 3 is 115,000 while there
are over 2 million articles in Wikipedia which can each be
treated as a concept. Many of these concepts contain multiple
words in their names which are not found in WordNet. Having
a larger number of concepts covered in the system’s underlying
reference ontology in addition to handling multi-word concepts
is expected to boost the performance of the system
tremendously.

In addition, the availability of articles in different languages
opens the possibility of investigating languages other than
English and comparing the performance of the implemented
methods in different or similar domains from different
languages.

4. Future Work
We plan to add and improve many aspects of the system we

developed, especially in the processing part. Among the ideas
we plan to integrate are the following:

The current system focuses on terms and single words
alone, and not multi-word concepts. Sometimes, a combination
of two words may carry a different meaning from each word
alone, as in “Crowd Financing”. Using a larger thesaurus than
WordNet such as Wikipedia [15] or multi-word units when
scanning documents (windows) [1] are two approaches that will
be explored.

Finding a method to automatically optimize the weight of
the dynamic features. Currently, the thresholds are assigned
manually based on the user's observations.

Handling polysemous (one term carrying multiple
meanings) and synonymous words. If a word has multiple
senses and is to be compared with another word, our system
currently chooses the highest similarity score.

The lack of an intelligent scheme for Word Sense
Disambiguation may have been the cause for the decrease of
the performance of the Verbs-Conversion approach described
above.

5. Conclusion
In this paper we presented our on-going work on building

an automatic semantic-based classification system and the
results of the experiments we had. The results suggest that
using WordNet-based semantic approaches does yield to a
better accuracy given that the right parameters (i.e. semantic
similarity threshold) are selected. In future work, we plan to
apply and experiment with more detailed measures to handle
different aspects such as automatic optimization for the
dynamic features, polysemous/synonymous words and the use
of the world’s largest encyclopedia, Wikipedia

References
1. Bloehdorn, S. and A. Hotho, Boosting for Text

Classification with Semantic Features Proceedings of the
MSW 2004 Workshop at the 10th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining,
2004

2. Jensen, L. and T. Martinez, Improving Text Classification
by Using Conceptual and Contextual Features Proceedings
of the Workshop on Text Mining at the 6th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2000.

3. Jiang, J. and D. Conrath, Semantic Similarity based on
Corpus Statistics and Lexical Taxonomy. Proceedings of
International Conference Research on Computational
Linguistics,Taiwan, 1997

4. Joachims, T., Text Categorization with Support Vector
Machines: Learning With Many Relevant Features.
Proceedings of ECML, 1998.

5. Li, Y., McLean, D., Bandar, Z. A., O’Shea, J. D., and
Crockett, K.,Sentence similarity based on semantic nets and
corpus statistics, IEEE Transactions on Knowledgeand Data
Engineering Vol 18, No. 8, pp. 1138–1150, 2006.

6. Mansuy, T.N. and R.J. Hilderman, A Characterization of
Wordnet Features in Boolean Models For Text
Classification. AusDM 2006, 2006: p. 103-109.

7. Miller, G., WordNet: A lexical database for English.
Communications of the ACM, 1995: p. 39-41.

8. Padmaraju, D. and V. Varma, Applying Lexical Semantics
to Improve Text Classification. Proceedings of Second
symposium on Indian Morphology, Phonology and
Language Engineering, 2005: p. 94-98.

9. Pedersen, T., S. Patwardhan, and J. Michelizzi,
Wordnet::similarity - Measuring the Relatedness of
Concepts. Proc. of AAAI-04, 2004.

10. Resnik, P., Using information content to evaluate semantic
similarity in a taxonomy. Proceedings of the 14th
International Joint Conference on Artificial Intelligence,
1995.

11. Rodriguez, M.d.B., J.M.G. Hidalgo, and B.D. Agudo, Using
WordNet to complement training information in text
categorization,. Second International Conference on Recent
Advances in Natural Language Processing, 1997.

12. Salton, G. and M.J. McGill., Introduction to Modern
Information Retrieval. McGraw-Hill Book Co., 1983.

13. Schapire, R.E. and Y. Singer, BoosTexter: A Boosting-
based System for Text Categorization. Machine Learning,
2000: p. 135-168.

14. Sebastiani, F., Machine Learning in Automated Text
Categorization. ACM Computing Surveys, 2002. 34: p. 1-
47.

15. Wang, P. and C. Domeniconi, Building Semantic Kernels
for Text Classification using Wikipedia. International
Conference on Knowledge Discovery and Data Mining
2008: p. 713-721.

16. Yang, Y. and C.G. Chute, An example-based mapping
method for text categorization and retrieval. ACM
Transactions on Information Systems, 1994: p. 252-277.

A Semantic Summarization System: University of Birmingham at TAC 2008

Abdullah Bawakid and Mourad Oussalah

University of Birmingham, School of Engineering
Department of Electronic, Electrical and Computer Engineering

Edgbastoon, Birmingham B15 2TT
{ axb517 , M.oussalah}@bham.ac.uk

Abstract
Text summarization of document or multi-documents
has been acknowledged as one of the most
challenging tasks in information system community
because of the rich semantic structure of the language
and the subjectivity inherent to the summarization
task. In this paper, a new query-based extractive
summary methodology is put forward. The approach
makes use of phrasal decomposition of the text where
each sentence is ascribed a scoring function, which
will then be used to identify the most relevant
sentences in the sequel. The scoring function is
expressed as a convex combination of a set of features
that are extracted beforehand from the (multi)
document(s). Besides, the scoring function includes a
semantic similarity evaluation where the WordNet
taxonomy is used in conjunction with a variety of
other extracted features, as a basis to construct the
sentence-sentence semantic similarity. The system
architecture as well as its linguistics processing parts
are described. Finally, we present the results of our
participation in TAC 2008 with possible perspectives.

Keywords: Semantic Similarity, WordNet, Linguistic
Quantifiers, Text Summarization, Information Retrieval

1. Introduction
Text Summarization, as the process of identifying the
most salient information in a document or set of
documents (for multi-document summarization) and
conveying it in less space, became an active field of
research in both Information Retrieval (IR) and
Natural Language Processing (NLP) communities.
Summarization shares some basic techniques with
indexing as both are concerned with identification of
the essence of a document. Also, high quality
summarization requires sophisticated NLP techniques
in order to deal with various Parts Of Speech (POS)
taxonomy and inherent subjectivity. Typically, one
may distinguish various types of summarizers.
Loosely speaking, most common existing
summarizers work in an extractive fashion, where
portions of the input documents, for instance,

sentences, which believed to be more silent, are
selected to form the summary. On the other hand,
non-extractive does not rely on text selection but
rather on a deeper understanding of input text. Query-
based summaries are generated in reference to some
user query (e.g., summarize a document about an
international summit focusing only on the issues
related to the environment)
This paper advocates a trade-off methodology
between extractive and query-based summarization.
The former is due to the fact that the developed
methodology uses a scoring function, which uses
WordNet taxonomy to generate sentence-sentence
semantic similarity as well as a set of extracted
features, to quantify the relevance of each sentence.
This yields a resulting summary which is nothing else
than the most ranked sentences. While the query-
based approach is due to the explicit accounting of
the topic-sentence semantic similarity in the overall
methodology as it will be detailed later on.
 The paper describes the system we developed to

participate in the update task of TAC 2008. The
update summarization task requires participants to
submit fluent and organized 100-word multi-
document summaries of a set of news articles under
the assumption that the user has already read a given
set of articles earlier. The summaries to be generated
should be relevant to the topic statement given by the
user. The purpose of each summary is to inform the
reader of new information about a particular topic.
The test documents provided were chosen from the
AQUAINT-2 collection1.

The next section gives some background and
relates our work with existing summarization
systems. In section 3, we give an overview on our
system, its main components and how it works. In
section 4 we discuss the evaluation performed by
NIST on our submitted runs and the obtained results.
In section 5 we present some ideas for future work
and how the system can be improved.

1 See http://www.nist.gov/tac/tracks/2008/summarization/

for the detailed task description.

http://www.nist.gov/tac/tracks/2008/summarization/

2. Background

In the past few years, many multi-document
summarization systems have been implemented, most
of which are extractive. The key in such systems is to
extract the most relevant parts from the source to the
user. An example for such systems is MEAD [1] [2]
which ranks sentences using a linear combination of
features and forms summaries from the highest
scoring sentences. MASC [3] is another feature-based
summarization system that performs compressions to
sentences after the extraction stage.

Our system assigns a score to each sentence in the
source documents based on a set of static and
dynamic features. Static features include sentences
locations and the number of Named Entities (NEs) in
each sentence. Dynamic features on the other hand
are those that change based on the document sets
chosen. The score given for the semantic similarity
between a sentence, and the rest of the sentences in
the documents set is an example of a dynamic feature
employed in our system. Part of our system performs
analysis on linguistic quantifiers and combines it with
the semantic similarity computing module to form a
metric affecting the score given to each sentence.

3. System Overview
Figure 1 shows the three main stages involved in

generating summaries with our summarizer:
Preprocessing the source documents, Extracting and
Analyzing the features, and Generating the
summaries. The documents are preprocessed first and
prepared to extract the features of their sentences.

Figure 1 The Summarizer Architecture.
After extracting the features, a score is computed for
each sentence based on the extracted features. The
summary is presented at the end by iterating through
the sentences and selecting the highest-scoring
candidates till the maximum number of words is
reached.

The TAC 2008 update task requires participants
to submit ~100-word summaries given a group of

documents and a topic statement (title and narrative).
In our system, the topic statement was treated as the
user query. The 100-word limit was met by
examining the length of the last sentence appearing in
the summary. The 100-word limit was met by
iterating through all the highest scoring sentences,
starting with the highest rank and proceeding with the
next lowest ranked and appending them to the
summary until the limit is reached or all candidate
sentences are exhausted. If the addition of the last
sentence in summary caused the summary length to
exceed the limit, it is replaced with the next shorter
high scoring sentence. This process can be improved
by adding a stage for editing the summary to shorten
its length by removing unnecessary information from
the summary sentences. Due to time constraints, the
editing process was not applied. The following
sections examine each of the summarization stages in
more details.

3.1 Preprocessing
The preprocessing stage involves cleaning the

source documents, splitting and annotating the
sentences, and extracting the features.

First, unnecessary information and tags are
removed from the source documents such as the
HTML/XML tags, news agencies names and tables
containing numbers. Then, key parts from the
documents are extracted such as the publication dates,
the documents IDs, and the headlines. The document
ID and publication date along with the document
name are used to identify each document during the
different processing stages. The headline is treated as
the document title as explained in the next section.
Sentences and word boundaries are then detected and
different features are extracted with the help of
GATE [4] from the source sentences and the
provided user query. The extracted features and
annotations include Named Entities in each sentence
(Locations, Organizations, and Persons), Part-of-
Speech tags (POS), and co reference resolution.

After preprocessing the documents and the queries,
the processing stage begins scoring sentences based
on the computed/extracted set of features detailed in
next section.

3.2 Summarization Features
3.2.1 Sentences Location:
The position of sentences in a document can play a
significant factor in finding the sentences that are
most related to the topic of the document [5]. So, we
have decided to take into account the position of
sentences when computing the score for each

sentence. More weight is given to sentences at the
beginning and end of each document than the rest.

3.2.2 Named Entities:
Using GATE, it was possible to recognize the Named
Entities (NEs) mentioned in each document. The
sentences containing more NEs are assumed to be
more important than those that contain no NEs. Only
the frequency of NEs in each sentence and the
document was taken into account when forming the
scoring formula.

3.2.3 Title / Query
The title of the document, if any, as well as user’s
query or abstract sentence(s) used to characterize the
document or a set of documents are without doubt of
paramount importance to quantify the relevance of
each sentence/phrase with respect to overall meaning
conveyed by the document(s). Therefore, the
evaluated semantic similarity of each sentence and
title and/or query is explicitly taken into account.

3.3 Sentence-sentence semantic Similarity:
To determine the similarity between two sentences,
say, a and b, consisting of the sets of terms A and B,
each term in A and B is first tagged with their POS
(part of speech). It is then determined which noun
each adjective describes and which verb each adverb
describes. This is done by attempting to find the
closest noun or verb following the adjective or
adverb, and if none are found the closest noun or
adjective preceding the adjective or adverb is used.
The adjective and adverb lists are also expanded with
exact synonyms from WordNet. The linguistic
quantifiers, which may indicate the relative
importance of a term within a text, are also associated
with nouns in the same way. Typically, linguistic
quantifiers are determiners which express information
about relative or absolute quantity. The list of
linguistic quantifiers is based on Bond’s list [12]. In
this study, one limited to two classes of linguistic
quantifiers: those which induce an increasing order of
relevancy like “very”, “more”, and those inducing a
decreasing order like “less”, “none”, etc.
The similarity score for the sentence is therefore
calculated by finding an average of the score for
each noun or verb in both of the sentences. First the
set of nouns and verbs for each sentence must be
found.

})(:{ verbnounAPOSAxNVA

})(:{ verbnounBPOSBxNVB

Next, the best weighted match for each noun and
each verb in both sentences must be determined.

})],([max),(:),{(NVAu and iumatchkvumatchkvuBA ui
NVBi

uv

})],([max),(:),{(NVBv and vjmatchkvumatchkvuBA jv
NVAj

uv

Where

otherwise 1

quantifier opposit havej and i if

quantifier decrease an havej and i both if

quantifier increase an havej and i both if

kij 5.0

2

2

And

otherwise v),sim(u,

found wereadverbsor adjectives matching if 2/)1),((
),(

vusim
vumatch

where sim(u,v) is determined using either Jiang and
Conrath’s [6] semantic similarity),(vuSimJC or

Lin’s similarity [7] measure),(vuSimL .

Finally the semantic similarity between sentence a
and b is calculated by average the nouns and verbs
semantic similarity as

BBvuBAvu

BBvuBAvu

vumatchvumatch

baSimSem

),(
uv

),(
uv

),(
uv

),(
uv

k k

),(k),(k

),(

The effect of this is to get a score which depends on
every noun and verb in both sentences. In cases
where a matching pair of adjectives or adverbs is
found the score will be increased but not exceeding 1.
If linguistic quantifiers are found, these are used to
weight the average. The word-pair is weighted more
highly where matching quantifiers are found and the
weighting is reduced when opposite quantifiers are
found. The above expression is also used to
determine the score attached to the semantic
similarity of the sentence to the query and the title, if
any.

Using the abovementioned features, we are able to
give a score to each sentence in all documents
signifying their importance. The next section
describes how the scoring takes place.

3.4 Scoring the Sentences:

The score for each sentence (score(i)), is generated
based on the linear combination of the weighted
features computed as described in the previous steps.
The formula used for scoring each sentence is:

)1 (

(
 Score(i)

NEN

sPsFsnQsSimsSim iiNEiii

Where:

N is the total number of sentences in the
document

n(si) is the number of sentences that have

semantic similarity score bigger than a pre-defined
threshold value

P(si) is the sentence position weight. For

simplicity.

Sim(si ,T) and Sim(si ,Q) are for the Semantic

Similarity between the Title and the Query,
respectively, and the sentence (i) determined using
the sentence-sentence semantic similarity previously
described.

NE is the number of Named Entities in the
document

FNE(si) is the number of Named Entities contained
in the sentence (i)

The rationale behind the preceding is to allow the
score assigned to the sentence si very much
dependent on the evaluation of the semantic similarity
of si to both the title and the query using a convex
combination of both entities. This output is weighted
by n(si), which expresses, at some extent, the
frequency of the sentences in the document(s) that are
semantically similar to si up to some threshold µ, as
well as the number of Named Entities in the sentence
and its position. The positioning parameter is
motivated by the observation that usually, beginning
and end of the document contains more information
regarding the context of the underlying document (s)
as authors attempt to provide concise overview at the
beginning and concluding remarks at the end. But,
obviously this is very much context dependent. The
weighting parameters and (+ = 1) are left
open to the choice of the user depending on his/her
prior knowledge about the relevance of the title
and/or query. In the absence of any further evidence,
the default values are 0.5 each, which is in agreement
with the principle of insufficient reason in statistics.

3.5 Generating Summaries:
A summary is generated by choosing the most

important sentences in a document (or the highest
scoring) and arranging them in chronological order to
insure the readability of the generated summary.
Multi-document summaries are generated in a similar
fashion by computing sentences scores in each
document separately and then choosing the highest
scoring sentences from all documents to generate
multi-document summaries.

Handling the information redundancy between
sentences and within each sentence was not
completed in time and thus was not part of the system
we used to participate in TAC 2008.

4. Evaluation
To evaluate our system, we participated in TAC

2008 for the first time even though some major
components were not fully implemented in our
system yet (i.e. redundancy checking and linguistic
qualifiers handling). Next, we present results
obtained from the automatic evaluation performed by
NIST using ROUGE [8] and BE [9] metrics, and the
manual responsiveness measure.

4.1 Test Data and Metrics:

For the TAC 2008 update task, we adopted the
Jiang & Conrath [6] method when computing the
semantic similarity between words. The redundancy
handling component was not completed in time and
thus the system used when participating in TAC 2008
did not handle sentences redundancy.

The provided test dataset comprised 48 topics.
Each topic had a topic statement and 20 relevant
documents which had been divided equally into 2
sets: A and B. The set A always chronologically
precedes the documents in set B. The provided test
dataset was taken from the AQUAINT-2 collection of
news articles.2

All of the submitted summaries were truncated to
100 words. NIST conducted manual evaluation of
summary content based on the Pyramid Method. Four
different NIST assessors would create 100-word
model summaries for each document set that
addresses the information need expressed in the topic
statement.

Each participant team was requested to submit up
to 3 runs ranked by priority (1-3). Our team submitted
two runs: one (run # 1) has more weight given to the
topic statement, and the other (run # 34) has more
weight given to the headlines. In the abovementioned
scoring formula, was given a value of 0.75 for run
1, and 0.25 for run 34.

4.2 Results:
In the update task of TAC 2008, 57 peer

summaries were manually evaluated with the pyramid
method, and 71 were evaluated using ROUGE and
the Basic Elements evaluation package [9].

Table 1 shows the average Recall, Precession and
F-measure for the Rouge1, Rouge2, and RougeSU4
evaluations on the two runs we submitted. It can be
noted that in both runs, the system generally ranked

2
See

http://www.nist.gov/tac/tracks/2008/summarization/update.summ.0
8.guidelines.html for more details about the Task.

http://www.nist.gov/tac/tracks/2008/summarization/update.summ.0
8.guidelines.html

higher in Recall than Precession. This suggests that
the system is better at finding relevant content than it
is at removing irrelevant content. Also, it can be
noted that the run which more weight given to the
topic statement generally achieved better ROUGE
scores than the other run with more weight given to
the headlines.

Run 1 Run 34
ROUGE

Avg R

Avg P

Avg. F

Avg R

Avg P

Avg F

1 0.34463

0.33866

0.34148

0.34022

0.33372

0.33680

2 0.08091

0.07933

0.08008

0.08080

0.07912

0.07991

SU4 0.11852

0.11634

0.11737

0.11706

0.11471

0.11583

Table1: The Rouge Scores obtained by our system in
the two runs we submitted.

Table 2 shows the automated evaluations average
scores obtained by our submitted runs (with their
ranks) in comparison with the 71 peer summaries
submitted by the rest of the participants.

Evaluation Run (1) Run
(34)

Best Worst

ROUGE2-R

0.08091
(25/71)

0.08080
(26/71)

0.10382 0.03343

ROUGESU4-
R

0.11858
(23/71)

0.11713
(29/71)

0.13646 0.06517

BE 0.04964
(24/71)

0.04903
(28/71)

0.06462 0.01337

Table2: the automated scores (and ranks) obtained by
our system in comparison with the rest.

The evaluation in TAC2008 included human
judgments of linguistic quality. Table 3 shows the
results and the rank of our system in respect with the
rest in the manual evaluation. The metrics shown in
the table are: responsiveness which is how well the
summary addresses the user's information need; and
linguistic quality. The linguistic quality score is
guided by consideration of the following factors:

1. Grammaticality
2. Non-redundancy
3. Referential clarity
4. Focus
5. Structure and Coherence

with scores between 1 (very poor) and 5 (very good).

Run (1)

Run
(34)

Best Worst

Avg Linguistic
Quality

2.719
(12/58)

2.76
(11/58)

3.073 1.312

Overall
Responsiveness

2.427
(15/57)

2.385
(18/57)

2.667 1.198

Table 3 : Manual Evaluation Results

5. Future Work
We plan to add and improve many aspects of the

system we developed, especially in the post-
processing part. Among the ideas we plan to integrate
are the following:

Implement redundancy checking and remove
repeated information. We think that implementing
this feature will greatly enhance the evaluation
results. This should be done from two different
perspectives: First, removing repeated or non-
essential content from within sentences such as
relative clauses (which can be done in the last stage
just before choosing the summary highest scoring
sentences by adding a new metric: redundancy
penalty affecting the repeated sentences score).
Second, relating the chosen summary sentences with
each other and trying to maximize the information
content diversity between sentences to achieve the
highest possible comprehensiveness in the generated
summary. To achieve the later, the semantic similarity
between the summary candidate sentences can be
checked against a previously set threshold and thus
reducing the score for those sentences containing
repeated data.

Try to find a method to automatically optimize the
weight of the dynamic features. Currently, the
weights are assigned manually based on the user's
observations. Implementing this will require great
deal of analysis to the syntax of the text in each
sentence, which has not been deeply explored in our
system.

Compressing the summary sentences to allow for
more information to be presented in the summary at
the same or shorter length. Syntactic trimming which
has been studied in previous work [3] is what we are
currently exploring and hoping to improve and
implement in our system.

Meeting the word limit in our system was
achieved by simply iterating through all the highest
scoring sentences to replace the last summary
sentence with the next shorter and high scoring
sentence. This means that in some cases, none of the
sentences are chosen (in the case when replacing the
last summary sentence with any other will yield a
summary longer than the required word-limit) and

thus sentences with valuable and relevant content to
the user query are not added because of their length.
This will need further investigation and can be
partially overcome by generating shorter forms of
long sentences (compressing the summary sentences)
and eliminating non-important sentences before the
processing stage using "shallow parsing " techniques
similar to [10].

We plan to use co reference resolution to enhance

the quality of our generated summaries. For example,
some sentences might contain references to important
entities such as "President Bush" in the form of one
word "he". We think that replacing the pronoun with
the Named Entities before processing the summaries
should give better scores for our summaries [11].

6. Conclusion
In this paper we present our on-going work on

building a query-focused multi-document
summarization system and the evaluation results for
the system in the update task of TAC 2008. The
results suggest that our overall system rank can be
placed in the middle tier when compared with all the
participants in the task for this year. In future work,
we plan to apply and experiment with more detailed
measures to handle different aspects such as
redundancy, comprehensiveness and length, and
automatic weight optimization for the dynamic
features.

References

1. Radev, D., et al., MEAD ReDUCs: Michigan at
DUC 2003. Proceedings of DUC 2003, 2003.

2. Radev, D.R. and G. Erkan, The University of
Michigan at duc2004. Proceedings of Document
Understanding Conference Workshop, 2004: p.
120-127.

3. Zajic, D., Multiple Alternative Sentence
Compressions as a Tool for Automatic
Summarization Tasks, in Department of
Computer Science. 2007, University of Maryland.

4. GATE. GATE - General Architecture for Text
Engineering. 2007; Available from:
www.gate.ac.uk.

5. Sekine, S. and C. Nobata, Sentence Extraction
with Information Extraction Techniques.
Workshop on Text Summarization 2001, 2001.

6. Jiang, J. and D. Conrath, Semantic Similarity
based on Corpus Statistics and Lexical
Taxonomy. Proceedings of International
Conference Research on Computational
Linguistics,Taiwan, 1997.

7. Lin, D., An information-theoretic definition of
similarity. Proc. 15th International Conference on
Machine Learning, 1998: p. 296-304.

8. Lin, C.-Y., ROUGE: a Package for Automatic
Evaluation of Summaries. Proceedings of the
Workshop on Text Summarization Branches Out
(2004), 2004.

9. Hovy, E., C. Lin, and L. Zhou, Evaluating DUC
2005 using Basic Elements. Proceedings of the
HLT/EMNLP Workshop on Text Summarization
DUC 2005, 2005.

10. Dunlavy, D., et al., Performance of a Three-Stage
System for Multi-Document Summarization. 2003.

11. Conroy, J.M., et al., Left-Brain/Right-Brain
Multi-Document Summarization. Document
Understanding Conference Workshop at
HLT/NAACL 2004, 2004.

12. F. Bond, Determiners and Number in English
contrasted with Japanese, as exemplified in
Machine Translation, University of Queensland,
2001

http://www.gate.ac.uk

