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ABBREVIATIONS 

SF=synovial fibroblast 

HS= horse serum 

FBS = Foetal Bovine Serum 

DKK1 = dickkopf-related protein 1 

TNF-α = Tumour necrosis factor-alpha 

11βHSD1 = 11β-hydroxysteroid dehydrogenase type 1 

RA = Rheumatoid arthritis 

RASF = Rheumatoid arthritis synovial fibroblasts 

Dex = dexamethasone 

Fz = frizzled receptor 

TCF = transcription factor 

LEF = lymphoid enhancing factor 

LRP5/6 = lipoprotein-related 5 and 6 

dNTP = Deoxyribonucleotide 

RNA = Ribonucleic acid 

mRNA = messenger ribonucleic acid 
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ABSTRACT 

The Wnt signalling pathway plays a key role within muscle differentiation. Wnt3a, Wnt5a, 

and DKK1 all have pivotal roles within this pathway. It’s hypothesised that due to their role 

within the Wnt pathway, Wnt3a, Wnt5a, and DKK1 will affect the differentiation of muscle, 

demonstrated by the murine C2C12 cell line.  

Differentiation of the C2C12 cells was induced by adding DMEM differentiation media at day 

0. Treatments (Wnt3a, Wnt5a, DKK1, control conditioned media, TNF-α conditioned media, 

and dexamethasone conditioned media) were added day 0, and mRNA levels of 

differentiation markers, MyoD, myogenin, α-actinin, and 11βHSD1 were measured using RT-

PCR at days 1, 3 and 6. Wnt3a and control conditioned media gave no significant change in 

differentiation. Wnt5a, DKK1, TNF-α conditioned media and dexamethasone conditioned 

media gave significant decreases in differentiation. DKK1 inhibitor was tested on cells treated 

with TNF-α conditioned media, resulting in the decrease in the differentiation no longer being 

significant. 11βHSD1 enzyme activity assays were carried out to test Wnt3a, Wnt5a, DKK1, 

and DKK1 inhibitor effects, the results followed the trend of the mRNA data, however were 

not statistically significant. The results suggest that factors secreted from synovial fibroblasts 

during inflammation affect muscle differentiation. 
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1 INTRODUCTION 

1.1 Rheumatoid arthritis 

Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disease, which primarily 

affects the synovial joints leading to their inflammation of the synovial membrane[1]. The 

most common joints affected are the hands, feet and wrists[4]. As well as causing 

inflammation RA can also cause extreme weakness in the muscles and tendons and could also 

affect other organs[3]. RA is a chronic disease which, if left untreated, could result in 

destruction of joints from erosion of cartilage and bones leading to deformity. The disease 

usually progresses from the periphery to more proximal joints, and if treatment is 

unsuccessful RA could lead to significant long-term locomotor disability within 10 to 20 

years. 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic of normal and arthritic joints.  

A comparison between normal joints, and joints suffering from either osteoarthritis or 

rheumatoid arthritis. The joint which is suffering from rheumatoid arthritis has a swollen and 

inflamed membrane and also some bone erosion. This will lead to pain during movement. 

Cited from, www.bestclocosamine.co.uk/rheumatoidartheritis 
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Around 580,000 people in England are affected by RA which is more common in females. 

The disease occurs most commonly in people aged between 40 and 60 years, however RA 

could occur at any time. Overall RA represents one of the most common autoimmune-related 

diseases, affecting as much as 1% of Western populations[4].  

 

The main symptoms of RA include swelling, soreness and stiffness within the joints. Bone 

degradation can also occur and this can lead to a lack of movement in the joint, and muscle 

wasting within the surrounding area. Due to the systemic nature of RA it could affect whole 

body and internal organs, including the lungs, heart, and eyes. 

 

Muscle weakness and muscular atrophy occur early in the onset of RA[2]. The exact cause of 

this muscle atrophy is not yet known. However, the loss of muscle is clearly not solely due to 

the inactivity resulting from reduced mobility of the joints due to pain[2]. Although this may 

be a contributing factor.  

 

Rheumatoid cachexia, which is a loss of muscle mass and strength and an increase in fat mass 

is very common in patients with RA[5]. Following successful treatment for RA it has been 

shown that rheumatoid cachexia persists even after joint inflammation improves. This adds 

further evidence to the concept that lack of muscle tone is not solely due to inactivity. 

Rheumatoid cachexia may also be an important risk factor for cardiovascular disease and 

excess mortality in RA[5]. 

RA is an autoimmune disease and as a consequence of this there is a strong involvement of 

immune cells. Due to this macrophages, T-cells and their cytokines have a critical role to play 
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in RA[4] where they infiltrate the synovial joints[8]. Recently it has been suggested that 

resident fibroblast-like cells make a major contribution to the perpetuation of the disease, and 

could also have a role to play in the initiation[4]. The synovial fibroblasts involved in 

rheumatoid arthritis (RASFs) represent a unique cell type, and themselves set RA apart from 

other inflammatory conditions of the joints[4]. Many studies have been undertaken on RASFs 

and these have demonstated that RASFs show alterations in morphology and behaviour. 

These alterations include molecular changes in signalling cascades, apoptosis responses and 

in the expression of adhesion molecules as well as matrix-degrading enzymes[4]. As a result 

of these findings RASFs are believed to play a pivotal role in the symptoms of RA. 

1.2 The role of TNF-α in rheumatoid arthritis  

TNF-α is found within synovial joints affected by RA[22], it is hypothesised that TNF-α 

causes the secretion of factors from synovial fibroblasts (SF) which leads to a decrease in 

muscle differentiation. 

 

TNF-α causes an increase in the inflammatory response of RA[6]. It is a pro-inflammatory 

cytokine produced by macrophages and T cells, that in RA leads to synovitis and joint 

destruction[7]. This knowledge of the effect of TNF-α has led to the development of anti-

TNF-α therapies which are commonly given to patients who are suffering with RA for 

example disease-modifying anti-rheumatic drugs (DMARDs). Chronically elevated levels of 

TNF-α is a catabolic factor that mediates cachectic muscle wasting[9].  
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1.3 Glucocorticoids 

It is hypothesised that dexamethasone causes the secretion of factors from synovial fibroblasts 

(SF) which leads to a decrease in muscle differentiation. 

 

Dexamethasone is a potent synthetic member of the glucocorticoid class of steroid drugs[11]. 

It is often given as a treatment for RA due to it acting as an anti-inflammatory and 

immunosuppressant[11]. Despite these positive effects of Dexamethasone an excess of 

glucocorticoids (GC) can lead to undesirable side effects such as muscle atrophy, 

osteoporosis, and diabetes[12].  

 

11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) is an enzyme which is NADPH 

dependent. It is most highly expressed in the key metabolic tissues, for example the liver, 

adipose tissue, and the central nervous system. 11βHSD1 functions by converting inactive 

cortisone into its active form, cortisol, via a reduction reaction. This cortisol then activates 

glucocorticoid receptors. Within this study 11βHSD1 is primarily used as a muscle 

differentiation marker. 

1.4 Wnt pathway 

The Wnt pathway affects may processes within a system due to control of the expression of 

many target genes. The Wnt pathways effect on muscle differentiation will be studied using 

the C2C12 cell line. 
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The Wnts are a family of glycoproteins characterised by several conserved cysteine 

residues[16]. They act in both autocrine and paracrine ways in order to regulate adult tissue 

homeostasis and remodelling by initiating a signal transduction cascade[14]. Wnts also 

control essential developmental processes such as embryonic patterning, cell growth, 

migration, and differentiation. If there are mutations or errors within the Wnt pathway then 

the target genes will be unable to be transcribed, which leads to abnormal Wnt signaling. 

 

There are two processes by which Wnt signalling occurs. These are the canonical and the non-

canonical pathways[16]. The canonical pathway begins with the ligand binding to the seven-

transmembrane Frizzled receptor and the co-receptor lipoprotein-related 5 and 6 

(LPR5/6)[13]. Binding triggers signals which lead to the increase of β-catenin levels within 

the cytoplasm and its dephosphorylation[15]. β-catenin is a co-activator which works in 

conjunction with the TCF/LEF family of transcription factors. β-catenin translocates to the 

nucleus where it activates the downstream Wnt-responsive genes[13].  
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Figure 2 Schematic of the canonical Wnt pathway.  

Wnt interacts with the frizzled (Fz) receptor and the co receptor LRP5/6 on the cells surface. 

This leads to a cascade where β-catenin is increased in expression. The β-catenin is then 

transported into the nucleus where it interacts with transcription factor (TCF) resulting in the 

increased expression of Wnt target genes. DKK1 is able to bind to Lipoprotein-related 5 and 

6 (LRP5/6) preventing the formation of the LRP5/6, Fz and ligand complex.  

 

The non-canonical pathway is diverse and is mediated through various signalling molecules 

such as MAP kinase and Protein kinase C. These kinases induce rapid cellular responses such 

as alteration in cell shape. If neither of these signalling pathways are activated then the un-

stimulated β-catenin is phosphorylated by a complex of proteins, and causes the β-catenin to 

be tagged for degradation by the proteasome. 

 

Dickkopf-related protein 1 (DKK1) and Wnt5a are both inhibitors of the Wnt pathway. 

Within the study their effect on muscle differentiation will be analysed. DKK1 is a secreted 

β-catenin 

DKK1 
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protein[13] which in humans is encoded by the DKK1 gene, it is the prototype of a family of 

secreted proteins which are structurally unrelated to Wnt or frizzled[14]. DKK1 contains two 

cysteine rich regions and is involved in embryonic development. DKK1 interacts with 

LRP5/6[15] to form a ternary complex with another receptor, kremen. Once this ternary 

complex is formed there is endocytosis[14] of the complex and therefore the consequential 

removal of LRP5/6 from the cell surface Another way which has been proposed for the 

inhibition of the Wnt signalling pathway by DKK1 is that it binds to LRP6 thereby disrupting 

the Wnt-induced frizzled-LRP6 complex formation.  

 

Wnt5a suppresses β-catenin/TCF-dependent transcriptional activity and also leads to down-

regulation of the expression of cyclin D1, which is a downstream target gene of the canonical 

Wnt signalling pathway. Wnt5a has been classified as a non-canonical Wnt family 

member[18]. Wnt5a inhibits Wnt3a protein-induced reporter gene expression[18]. Despite 

being shown to function as a suppressor, Wnt5a can also activate β-catenin signalling in the 

presence of the appropriate Frizzled receptor, Frizzled 4[18]. 

 

Wnt3a activates the Wnt/β-catenin signalling pathway[24], thereby acting as a positive 

regulator of the canonical Wnt pathway. Wnt3a induces transcription of the LEF-1 promoter 

through both β-catenin-dependent and LEF-1-independent mechanisms[24]. 

1.5 Muscle differentiation 

Muscle differentiations occurs in three stages, from myoblast to myocyte, to myotuble and 

finally to myofibre at terminal differentiation. The understanding of muscle-cell commitment 

and differentiation has been rapidly advanced with the discovery of a group of transcription 
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factor proteins referred to as the myogenic regulatory factors (MRFs)[25]. The primary 

MRFs, Myf5 and MyoD, are required for the formation, propagation, and survival of skeletal 

myoblasts[25]. Both Myf5 and MyoD are required for the development of myoblasts to 

myocytes. MyoD is also required for the conversion of the myocytes to myotubles. The latter 

process involves the permanent cessation of DNA synthesis, activation of muscle-specific 

gene expression, and the fusion of single cells into multinucleated muscle fibres[26].  

Myoblast                          Myocyte                                       Myotuble                                      Myofibre 

 

 

 

 

Figure 3 Muscle differentiation 

Muscle differentiation occurs in three stages. Firstly the myoblast differentiates into a 

myocyte utilising Myf5 and MyoD. MyoD then contributes to the development of myocytes to 

myotubles, and finally myotubles form terminally differentiated myofibres. 

1.6 Hypothesis and aims 

The hypothesis for the experiment were as follows: 

1. Substances present during joint inflammation (DKK1, Wnt5a, Wnt3a) affect muscle 

differentiation.  

2. Substances secreted from synovial fibroblasts treated with either TNF-α or 

dexamethasone affect muscle differentiation.  

3. The effects seen with TNF-α conditioned media can be reversed by the addition of a 

DKK1 inhibitor. 
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2 METHODS 

2.1 C2C12 

C2C12 cells were generated from mouse muscle tissue. They were first generated by Yaffe 

and Saxel in 1977. This was achieved via selective serial passage of myoblasts cultured from 

the thigh muscle of C3H mice 70 hours after crush injury[21]. C2C12 are a useful model to 

study the differentiation of muscle cells due to their capacity for rapid differentiation. Upon 

differentiation the C2C12 cells form contractile myotubes and express characteristic muscle 

proteins. The formation of the myotubules is enhanced when the media used to culture cells is 

supplemented with 10% horse serum instead of foetal bovine serum. 

2.2 C2C12 cell culture 

C2C12 cells were cultured in DMEM High Glucose [10% Foetal Bovine Serum (FBS), 1% L-

Glutamine, Glucose (4.5g/l)]. They were incubated in a humidified atmosphere at 37˚C with 

5% CO2. The reagents used for cell culture were from Sigma Aldrich (Dorset, UK) and the 

plastic ware was from Corning (Surrey, UK). When the cells had reached around 70% 

confluence they were split into fresh flasks with fresh media. However when the cells were 

going to be used for experimentation they were allowed to reach 100% confluence. Any 

experimentation carried out on the cell line was conducted within a cell culture cabinet. 

 

Cells were passsaged by first removing the old media and adding 1.5ml of trypsin, which 

itself was removed. 3ml of trypsin was then added and the cells incubated for 5 minutes at 

37˚C to dislodge the cells from the flask. Any remaining adherent cells were dislodged by 

gentle tapping. 13ml of DMEM High Glucose was then added to inactivate the trypsin. An 
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appropriate amount of this media was added to a fresh 75cm
2
 flask depending on the required 

split. The volume was then made up to 10ml with the appropriate volume of fresh media. 

2.3 Preparation of C2C12 cells for treatment 

When the cells were to be used in an experiment they were passaged into either 6 or 12 well 

plates, whichever was most appropriate. The media was removed from the cells within the 

75cm
2
 flask and 1.5mls of trypsin was added and then removed. 3mls of trypsin was added 

and the flask incubated at 37˚C for 5 minutes. This removed the adherent cells, and remaining 

adherent cells were removed by gentle tapping. The cells were then counted using a 

haemocytometer. An average count was made and the number of cells in the flask was 

calculated. The cells were then spun down at 12,000rpm for 5 minutes and the excess media 

removed. The cells were re-suspended in an appropriate volume of DMEM High Glucose to 

give 100,000 cells per ml. For 6 well plates 1ml of the cells was added to each of the wells 

and then the wells were made up to 2ml with fresh media. For 12 well plates 0.5ml of the 

cells was added and 0.5ml of fresh media was added. This allowed the cells to reach around 

100% confluence after 24 hours. Once this was achieved the DMEM High Glucose was 

removed and replaced with DMEM differentiation media [5% Horse Serum (HS), 1% L-

Glutamine, Glucose (4.5g/l)] and the appropriate test substances. 

2.4 C2C12 Cell treatment 

Once the cells had reached 100% confluence within the wells the media was replaced with 

DMEM differentiation media. The FBS was replaced with HS as the HS causes the C2C12 

myocytes to differentiate. Test conditions were Wnt3a, Wnt5a, DKK1, control conditioned 

media, TNF-α conditioned media, and dexamethasone conditioned media. Wnt3a, Wnt5a, and 
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DKK1 control SF-conditioned media, TNF-α SF-conditioned media, and dexamethasone SF-

conditioned media were added at a concentration of 50ng/ml. The conditioned media was 

obtained by treating synovial fibroblasts (SF) with either TNF-α or dexamethasone (dex), then 

removing the TNF-α and dex and collecting the media containing the products from the 

treated SFs. The treatments were added at day 0 and remained within the media until day 6. 

2.5 RNA extraction 

After either 1, 3 or 6 days of exposure to the substances or conditioned media the medium 

was removed from the cells and 1ml of TRI-reagent was added. The cells were removed from 

the adherent surface by scraping. The solution was then placed into micro-centrifuge tubes 

and left to stand for 5 minutes at room temperature. 200μl of chloroform was then added and 

the solution shaken vigorously for 15 seconds. It was then left to stand for 10 minutes. The 

eppendorfs were then centrifuged at 12,000g for 30 minutes at 4˚C in order to separate the 

aqueous and the organic phases. The aqueous phase containing the RNA was then removed 

and placed in a fresh eppendorf and the organic phase was discarded. 1μl of glycoblue was 

then added along with 500μl of isopropanol. The tubes were inverted a few times and then 

centrifuged at 12,000g for 30 minutes at 4˚C. Following this the supernatant was removed and 

discarded leaving the glycoblue stained pellet, and 500μl of 70% ethanol was added. The 

sample was then vortexed and centrifuged for 5 minutes at 12,000g at 4˚C. The supernatant 

was then removed and the sample centrifuged for a further minute at 12,000g at 4˚C. The 

remaining supernatant was then removed and the eppendorfs were left open to air dry for 10 

minutes. The pellet was then re-suspended in 20μl of RNase free water, and then placed on 

ice. 
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2.6 Assessment of RNA quality and concentration 

The quantity of the RNA which had been extracted was determined using a Nanodrop ND-

1000 spectrophotometer (Wilmington, Delaware, USA). The value given via the Nanodrop 

allowed for the calculation of the volume of RNA needed to obtain the 500ng/µl 

concentration used for reverse transcription. This also allowed for an assessment of the 

quality of the RNA which had been extracted. This made use of the A260/A280 ratio. This 

was required to fall between 1.8 and 2.0. 

2.7 Reverse transcription 

Once the RNA had been extracted it was reverse transcribed to cDNA and used as a template 

in the real-time PCR. The reverse transcription generated 50ng of cDNA/μl from 20μl of the 

initial reaction volume. (2.0μl of 10xRT Buffer, 4.4μl 25mM MgCl2, 4.0µl dNTPs (10mM), 

1.0μl random hexamers, 0.4μl RNase inhibitor, 1.25 MultiScribe reverse transcriptase, 7μl 

RNA, and nuclease free water [the amount of RNA used gave a final amount of 1μg, 

nuclease-free water was added to bring the combined RNA/water volume to 7μl]). One cycle 

was used (25˚C for 10 minutes, 37˚C for 60 minutes, and 95˚C for 5 minutes). All reagents 

were supplied by Applied Biosystems (Warrington, UK). 

2.8 Real time (RT) PCR 

RT-PCR allowed the effects of the treatments on the mRNA levels of key genes (11β-HSD1, 

MyoD, Myogenin, and α-actinin) to be analysed. This was achieved by comparing the change 

in the mRNA expression of the genes with the 18S housekeeping gene. The RT-PCR 

reactions were undertaken using a 96 well microarray reaction plate (MicroAmp; Applied 
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Biosystems, Warrington, UK). Each of the wells contained 5μl TaqMan gene expression 

assays (Applied Biosystems) including 1μl of the primers and probes for the gene of interest, 

0.5μl of 18S, 0.5µl of Assay on Demand master mix, and 3μl of RNase-free water. This gave 

each well a total volume of 10μl. The plate was analysed on a 7500 Real Time PCR System 

(Applied Biosystems) using a 96 minute programme (95˚C for 1 minute, 40 cycles of 95˚C 

(12 seconds) cooling to 60˚C (60 seconds)). 

2.9 Analysis of relative real-time PCR data 

The mRNA expression of the gene of interest was measured in comparison to the 18S 

housekeeping gene. This was done by calculating the ΔCt (change in cycle threshold) values. 

This was calculated using; (ΔCt = Ct (Gene of interest) – Ct (18S housekeeping gene)). Also 

the fold change was calculated using 2
- ΔCt

. 

2.10 11β-HSD1 enzyme activity assay 

Once the cells had reached terminal differentiation (day 6) the media was removed from the 

cells and replaced with 1ml of fresh media containing 5μl of hot A (
3
H 11 

dehydrocorticosterone) and cold A (not radio-labelled), which had been previously prepared 

within the lab. The cells were placed at 37˚C over a period of 2 hours. The media was then 

removed and placed into a glass thin layer chromatography (TLC) tube. Following this 5ml of 

dichloromethane was added and the solution was vortexed for 20 seconds, and then 

centrifuged for 15 minutes at 15,000rpm. This allowed for separation of the aqueous and 

organic phases. The aqueous phase was then removed and discarded. The sample was then 

placed at 55˚C to evaporate the remaining organic phase. The remaining sample was then re-

suspended in 70μl of dichloromethane which was then spotted on a silica plate. The steroids 
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were then separated over 1.5 hours by TLC, using chloroform:ethanol (92:8) as a mobile 

phase (of 200ml total volume). The silica plate was then analysed using a Bioscan Imaging 

scanner (BioScan, Washington DC, USA). This confirmed the steroid running distance 

against the migrated distance of the standard. From this information the conversion of inactive 

to active steroid was calculated. 

2.11 Statistics 

The experiments were each conducted in triplicate and the three values obtained were 

averaged for presentation on the graphs. The fold changes for the differentiation were all 

compared to day 1 for the respective treatment. A t-test was also carried out in order to 

determine the significance. With the T-test the values of the treated cells were compared to 

those of the untreated cells for the respective time point, the changes were taken to be 

significant if the value was less than 0.05. 
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3 RESULTS 

3.1 Myocyte differentiation to myotubules 

C2C12 cells were differentiated by replacing DMEM high glucose with DMEM 

differentiation media once the cells had reached 100% confluence. mRNA was extracted at 

days 1, 3, 6 following initiation of differentiation on day 0, this allowed for the measurement 

of mRNA levels for key factors indicative of the change in the differentiation of the cells. 

Images were also obtained at each time point. 

 

 

 

 

 

 

 

 

 

 

Figure 4 Morphological changes during myocyte differentiation.  

The images (A, B, C, and D) show control C2C12 cells after the addition of DMEM 

differentiation media [5% HS (Horse serum), 1% L-Glutamine, Glucose (4.5mg/ml)] on day 

0. The images A, B, C, and D were obtained on day 0, day 1, day 3, and 6 respectively. The 

images show that the C2C12 cells develop thicker syncytia over the six days of differentiation. 

It can also be seen that it is not until day 3 (C) that the cells show clear evidence of 

undergoing differentiation. All photographs were taken at 10x magnification with automatic 

white light adjustment. 
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The morphological changes in the C2C12 cells shown in figure 4 show that there is 

differentiation induced by the change in media, and that there is an increase in the level of 

differentiation throughout the days. The differentiation is seen to be greatest at day 6 (figure 

4-1 D), and this represents the time point where the C2C12 are terminally differentiated. 

3.2 Myocyte differentiation marker mRNA levels during differentiation 

mRNA levels of the myocyte differentiation markers, MyoD, myogenin, α-actinin, and 

11βHSD1 were measured at days 1, 3, and 6 following the initiation of differentiation. This 

was achieved by collecting the total RNA from the cells at the respective time points. The 

levels of mRNA of the differentiation markers were measured using RT-PCR, and the values 

were compared to the control cells from day 1. 
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Figure 5 mRNA levels of key markers of myocyte differentiation.  

The differentiation of the C2C12 myocytes was induced by replacing the existing media with 

DMEM differentiation media [5% HS, 1% L-Glutamine, Glucose (4.5g/l)] at day 0. The 

media was replaced on day 3 of differentiation. The RNA was extracted from the cells at day 

1, day 3 and day 6. The changes in the level of mRNA levels of the myocyte differentiation 

markers, α-actinin(A), 11βHSD1(B), MyoD(C), and myogenin(D) was measured using 

relative real-time PCR. The amount of differentiation after day 6 compared to the amount of 

differentiation after day 1 was seen to be significant in all four markers when assessed using 

a t-Test. 
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The level of mRNA of all four markers of differentiation showed a clear increase over the 6 

days of differentiation, (figure 5) with all genes showing the largest increase between days 3 

and 6. α-actinin mRNA (figure 5 A) showed an increase from day 1 to day 6 of 307-fold 

during the transformation of myoblasts (day 1) to terminally differentiated myotubles (day 6), 

whilst MyoD (figure 5 C) mRNA levels increased 432-fold. Myogenin (figure 5 D) mRNA 

levels increased 462-fold. 11βHSD1 (figure 5 B) mRNA levels increased 386-fold. For all the 

differentiation markers tested there was a significant increase in mRNA expression on day 6 

as compared to day 1. Thus, along with the morphological evidence, there is an increase in 

differentiation of the cells over the 6 days, and successful differentiation from myoblasts to 

terminally differentiated myotubules was achieved. 

3.3 The effects of Wnt3a, Wnt5a, or DKK1 treatment on the morphology of 

differentiating C2C12 myoblasts 

During the differentiation of the C2C12 myocytes from myoblasts to myotubules over the six 

days images were obtained to enable changes in the morphology of the cells to be visualised. 

Control cells were left untreated whereas treated cells had the addition of either Wnt3a, Wnt5 

or DKK1. Images were taken with 10x magnification using automatic white light adjustment. 

Please note the ssame control cell image is used in figures 6 and 7. 

 

 

 

 

 



Emma McCabe Page 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 The effects of DKK1 treatment on the morphology of differentiating C2C12 

myoblasts  

C2C12 myoctes were differentiated from myoblasts to myotubules over a period of 6 days. 

The images are shown for control cells (A, C, E) and cells treated with DKK1 (B, D, F). After 

day 1 (A, B) and day 3 (C, D) there is very little morphological difference between the cells, 

however on day 6 (E, F) the control cells (E) have larger syncytia than the DKK1 (F)-treated 

cells and also have higher confluence. Photographs were taken at 10x magnification using 

automatic white light adjustment.  
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Figure 7 The effects of Wnt5a treatment on the morphology of differentiating C2C12 

myoblasts  

C2C12 myocytes were differentiated from myoblasts to myotubules over a period of 6 days. 

The images are shown for control cells (A, C, E) and cells treated with Wnt5a (B, D, F). After 

day 1 (A, B) and day 3 (C, D) there is very little morphological difference between the cells, 

however on day 6 (E, F) the control cells (E) have larger syncytia than the Wnt5a (F) treated 

cells and also have higher confluence. Photographs were taken at 10x magnification using 

automatic white light adjustment.  

E
A
 
syn
cyt
ia 

A
 
syn
cyt
ia 

B
B 

syn
cyt
ia 

C 

syn
cyt
ia 

D
 
syn
cyt
ia 

E 

syn
cyt
ia 

F 

B
A
 
syn
cyt
ia 

A
 
syn
cyt
ia 

C
A
 
syn
cyt
ia 

E
A
 
syn
cyt
ia 

F
A
 
syn
cyt
ia 

D
A
 
syn
cyt
ia 



Emma McCabe Page 29 

 

Figure 6 and figure 7 show that there is no clear difference between the cells after days 1 and 

3, however by day 6 there is a clear morphological difference between untreated cells and 

those treated with DKK1 or Wnt5a respectively. The changes shown in figure 6 (B, D, and F) 

for those treated with DKK1 are similar to those which are seen with Wnt5a (figure 7). The 

control cells appear more confluent and to have differentiated to a greater degree than those 

which have undergone treatment with Wnt5a or DKK1. The images appear to show that there 

is possible apoptosis or another form of cell loss which has occurred with the cells that were 

treated with Wnt5a or DKK1. These differences in the morphology of cells following 

treatment with Wnt5a and DKK1 is not reflected with the cells treated with Wnt3a (data not 

shown). 

3.4 The effects of control SF-conditioned media, TNF-α SF-conditioned media, or 

dexamethasone SF-conditioned media treatment on the morphology of 

differentiating C2C12 myoblasts 

In order to test the effect of secretory factors obtained from synovial fibroblasts under control 

conditions, or after TNF-α or dexamethasone stimulation, differentiating C2C12 cells were 

incubated with DMEM differentiation media and the respective conditioned media. Images 

were obtained to enable changes in the morphology of the cells to be compared at days 1, 3 

and 6. Control cells were left untreated whereas treated cells had the addition of either control 

conditioned media, TNF-α conditioned media, or dexamethasone conditioned media. Images 

were taken with 10x magnification using automatic white light adjustment. 
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Figure 8 The effects of TNF-α SF-conditioned media treatment on the morphology of 

differentiating C2C12 myoblasts 

C2C12 myocytes were differentiated from myoblasts to myotubules over a period of 6 days 

following the addition of DMEM differentiation media with the media changed at day 3 of 

differentiation. The images are shown for control cells (A, C, E) and cells treated with TNF-α 

conditioned media (B, D, F). After day 1 (A, B) and day 3 (C, D) there is very little 

morphological difference between the cells, however on day 6 (E, F) the control cells (E) have 

larger syncytia than the TNF-α conditioned media (F) treated cells and also have higher 

confluence. Photographs were taken at 10x magnification using automatic white light 

adjustment.  

A 

F 

E 

D 
C 

B A
 
syn
cyt
ia 

C 

syn
cyt
ia 

E
A
 
syn
cyt
ia 

F
A
 
syn
cyt
ia 



Emma McCabe Page 31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 The effects of dexamethasone SF-conditioned media treatment on the morphology of 

differentiating C2C12 myoblasts  

C2C12 myocytes were differentiated from myoblasts to myotubules over a period of 6 days 

following the addition of DMEM differentiation media with the media changed at day 3 of 

differentiation. The images are shown for control cells (A, C, E) and cells treated with 

dexamethasone conditioned media (B, D, F). After day 1 (A, B) and day 3 (C, D) there is very 

little morphological difference between the cells, however on day 6 (E, F) the control cells (E) 

have larger syncytia than the dexamethasone conditioned media (F) treated cells and also 

have higher confluence. Photographs were taken at 10x magnification using automatic white 

light adjustment.  
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Figure 8 shows that there is no clear difference between the cells after days 1 (Figure 8 A and 

B) and 3 (Figure 8 C and D), however by day 6 (Figure 8 E and F) there is a clear 

morphological difference between untreated cells (Figure 8 E) and those treated with TNF-α 

conditioned media (Figure 8 F). This is also the case for the images in figure 9 where the cells 

are treated with dexamethasone conditioned media. The control cells appear more confluent 

and to have differentiated to a greater degree than those which have undergone treatment with 

TNF-α conditioned media or dexamethasone conditioned media. The images appear to show 

that there is possible apoptosis or another form of cell loss which has occurred with the cells 

that were treated with dexamethasone conditioned media. These differences in the 

morphology of cells following treatment with TNF-α conditioned media and dexamethasone 

conditioned media is not reflected with the cells treated with Wnt3a (data not shown). 

3.5 The effects of Wnt3a, Wnt5a, and DKK1 treatment on myocyte differentiation 

markers in differentiating C2C12 myoblasts 

Differentiation of the C2C12 cells was initiated by replacing the existing media with 

differentiation media at day 0. The cells were treated with either Wnt3a, Wnt5a (an inhibitor 

of the canonical Wnt pathway), or DKK1 (negative regulator of the Wnt signalling pathway) 

at day 0. The effect that the additions had on the differentiation of the C2C12 cells was 

assessed by measuring the mRNA concentrations of key differentiation markers, (MyoD, 

myogenin, α-actinin, and 11βHSD1) at days 1, 3 and 6 following the initiation of 

differentiation by RT-PCR. These concentrations were compared to the control cells at day 1 

and also the control cells at the respective days. The n number for this study is 4. 
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Figure 10 mRNA level of α-actinin following treatment.  

The differentiation of the C2C12 myocytes was induced by supplementing the cells with 

DMEM differentiation media at day 0. The media was replaced on day 3 of differentiation. 

The treated cells also had either Wnt3a, Wnt5a, DKK-1 added to them. The RNA was 

extracted from the cells at day 1, day 3 and day 6. The changes in the level of mRNA 

expression of the myocyte differentiation markers α-actinin was measured using relative real-

time PCR. The levels of mRNA expression are shown as fold change with regard to the 

control cells from day 1. *p <0.05. Statistical analysis was performed using a t-test. 
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Figure 11 mRNA level of 11βHSD1 following treatment.  

The differentiation of the C2C12 myocytes was induced by supplementing the cells with 

DMEM differentiation media at day 0. The media was replaced on day 3 of differentiation. 

The treated cells also had either Wnt3a, Wnt5a, DKK-1 added to them. The RNA was 

extracted from the cells at day 1, day 3 and day 6. The changes in the level of mRNA 

expression of the myocyte differentiation marker 11βHSD1 was measured using relative real-

time PCR. The levels of mRNA expression are shown as fold change with regard to the 

control cells from day 1. *p <0.05. Statistical analysis was performed using a t-test. 
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Figure 12 mRNA level of MyoD following treatment.  

The differentiation of the C2C12 myocytes was induced by supplementing the cells with 

DMEM differentiation media at day 0. The media was replaced on day 3 of differentiation. 

The treated cells also had either Wnt3a, Wnt5a, DKK-1 added to them. The RNA was 

extracted from the cells at day 1, day 3 and day 6. The changes in the level of mRNA 

expression of the myocyte differentiation markers MyoD was measured using relative real-

time PCR. The levels of mRNA expression are shown as fold change with regard to the 

control cells from day 1. *p <0.05. Statistical analysis was performed using a t-test. 

 

 

 

 

* 



Emma McCabe Page 36 

 

 

 

 

Figure 13 mRNA level of key myogenin following treatment.  

The differentiation of the C2C12 myocytes was induced by supplementing the cells with 

DMEM differentiation media at day 0. The media was replaced on day 3 of differentiation. 

The treated cells also had either Wnt3a, Wnt5a, DKK-1 added to them. The RNA was 

extracted from the cells at day 1, day 3 and day 6. The changes in the level of mRNA 

expression of the myocyte differentiation marker myogenin was measured using relative real-

time PCR. The levels of mRNA expression are shown as fold change with regard to the 

control cells from day 1. *p <0.05. Statistical analysis was performed using a t-test. 

 

There is a clear increase in the amount of 11βHSD1 mRNA produced by the C2C12 cells by 

day as shown in figure 11. This in turn shows that there is an increase in differentiation of the 

C2C12 cells throughout the 6 days despite the addition of the substances. These increases in 

mRNA expression are greatest for the control cells closely followed by the cells treated with 
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Wnt3a which have day 6 fold changes of 386 and 251 respectively when compared to the 

respective measurements for day 1. The increases seen for the cells with Wnt5a or DKK1 

added at day 6 of differentiation are significantly lower than the control cells with values of 

93 and 70 respectively. Similar mRNA level changes are observed with MyoD, myogenin and 

α-actinin (Figure 10-13). 

 

There is a significant decrease in C2C12 differentiation with respect to the control cells on 

day 6 with all of the differentiation markers when either Wnt5a or DKK1 was added. There 

was also a significant decrease at day 3 with all of the differentiation markers except α-actinin 

when either Wnt5a or DKK1 was added. With the addition of Wnt3a there is a consistent 

trend showing a decrease in differentiation compared to the control cells for the respective 

time points, however none of the decreases were significant. 

3.6 The effects of control SF-conditioned media, TNF-α SF-conditioned media and 

dexamethasone SF-conditioned media on the differentiation markers in 

differentiating C2C12 myoblasts 

The C2C12 myocytes were also treated with either SF-conditioned media, TNF-α SF-

conditioned media or dexamethasone SF-conditioned media at day 0 to determine the role 

which they had in the differentiation of C2C12 myoblasts to myotubules. Total RNA was 

extracted from the cells and the levels of the differentiation markers, 11β-HSD1, MyoD, 

myogenin, and α-actinin were measured as before (3.5). The n number for this study is 3. 
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Figure 14 mRNA levels of 11βHSD1 following treatment.  

The differentiation of the C2C12 myocytes was induced by supplementing the cells with 

DMEM differentiation media at day 0. The media was replaced on day 3 of differentiation. 

The treated cells also had either control SF-conditioned media, TNF-a SF-conditioned media, 

or dexamethasone SF-conditioned media added to them. The RNA was extracted from the 

cells at day 1, day 3 and day 6. The changes in the level of mRNA of the myocyte 

differentiation marker 11BHSD1 was measured using relative real-time PCR. The levels of 

mRNA expression are shown as fold change with regard to the control cells for day 1. *p 

<0.05. Statistical analysis was performed using a t-test. 
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Figure 15 mRNA levels of α-actinin following treatment.  

The differentiation of the C2C12 myocytes was induced by supplementing the cells with 

DMEM differentiation media at day 0. The media was replaced on day 3 of differentiation. 

The treated cells also had either control SF-conditioned media, TNF-a SF-conditioned media, 

or dexamethasone SF-conditioned media added to them. The RNA was extracted from the 

cells at day 1, day 3 and day 6. The changes in the level of mRNA of the myocyte 

differentiation markers a-actinin was measured using relative real-time PCR. The levels of 

mRNA expression are shown as fold change with regard to the control cells for day 1. *p 

<0.05. Statistical analysis was performed using a t-test. 
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Figure 16 mRNA levels of MyoD following treatment.  

The differentiation of the C2C12 myocytes was induced by supplementing the cells with 

DMEM differentiation media at day 0. The media was replaced on day 3 of differentiation. 

The treated cells also had either control SF-conditioned media, TNF-a SF-conditioned media, 

or dexamethasone SF-conditioned media added to them. The RNA was extracted from the 

cells at day 1, day 3 and day 6. The changes in the level of mRNA of the myocyte 

differentiation marker MyoD was measured using relative real-time PCR. The levels of mRNA 

expression are shown as fold change with regard to the control cells for day 1. *p <0.05. 

Statistical analysis was performed using a t-test. 

 

 

 

 

* 

* * * 



Emma McCabe Page 41 

 

 

 

 

 

Figure 17 mRNA levels of myogenin following treatment.  

The differentiation of the C2C12 myocytes was induced by supplementing the cells with 

DMEM differentiation media at day 0. The media was replaced on day 3 of differentiation. 

The treated cells also had either control SF-conditioned media, TNF-a SF-conditioned media, 

or dexamethasone SF-conditioned media added to them. The RNA was extracted from the 

cells at day 1, day 3 and day 6. The changes in the level of mRNA of the myocyte 

differentiation marker myogenin was measured using relative real-time PCR. The levels of 

mRNA expression are shown as fold change with regard to the control cells for day 1. *p 

<0.05. Statistical analysis was performed using a t-test. 

 

There was a clear increase in 11βHSD1 expression in C2C12 cells with differentiation 

compared to day 1, as shown in figure 14. These increases were largest for the control cells 

and the cells treated with the control conditioned media, which had fold changes of 307 and 
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243 respectively. This is reflected with all of the markers of differentiation tested. The size of 

the increase in mRNA expression on day 6 is lower with the cells treated with TNF-α 

conditioned media and dexamethasone conditioned media. This trend is also reflected with all 

of the markers of differentiation tested, shown in figure 15 for α-actinin, figure 16 for MyoD, 

and figure 17 for myogenin. 

 

There was also a significant decrease at day 3 with all of the differentiation markers except α-

actinin when TNF-α conditioned media was added, when the treated cells were compared to 

the control cells at day 3. With the addition of dexamethasone conditioned media there was a 

consistent trend showing a decrease in differentiation compared to the control at day 3, 

however none of the decreases were significant.  

 

At days 3 and 6 with the addition of control conditioned media there is a slight decrease in 

mRNA expression seen with all the differentiation markers, however this is not significant at 

any of the time points. 

3.7 The effect of DKK1 inhibitor treatment on reversing the effects of TNF-α SF-

conditioned media treatment on differentiating C2C12 myoblasts 

Following on from the results from the conditioned media and Wnt3a/Wnt5a/DKK1 

experiments, we hypothesised that the decrease in differentiation seen with the TNF-α 

conditioned media could be due to the effect of DKK1 which it would contain. This 

hypothesis was based on the previous experiments conducted within this study showing that  

DKK1 is an inhibitor of C2C12 differentiation. To test this we differentiated the C2C12 

myocytes at day 0 by adding DMEM differentiation media and also adding either, TNF-α 
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conditioned media , DKK1 inhibitor, or both TNF-α conditioned media and DKK1 inhibitor. 

The RNA was extracted at day 6 when terminal differentiation had occurred and when the 

largest significance was seen with the addition of DKK1 and TNF-α conditioned media. The 

mRNA levels of the markers of differentiation (MyoD, myogenin, α-actinin, and 11βHSD1) 

were measured using RT-PCR. The n number for this experiment is 3. 

 

Figure 18 Effect of DKK1 inhibition on TNF-α conditioned media induced changes in C2C12 

differentiation markers. 

The addition of the DKK1 inhibitor had no significant effect on TNF-α conditioned media 

induced decrease in C2C12 differentiation(11βHSD-1). *p <0.05. Statistical analysis was 

performed using a t-test. 
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Figure 19 Effect of DKK1 inhibition on TNF-α conditioned media induced C2C12 cell 

mRNA levels (MyoD). 

The addition of the DKK1 inhibitor had a significant effect on reversing the effects seen by 

TNF-α conditioned media on C2C12 cells, which is to significantly decrease the differentation 

of C2C12 cells. With the addtion of the DKK1 inhibitor there was no longer a significant 

decrease in muscle differentation caused by the addition of TNF-α conditioned media. *p 

<0.05. Statistical analysis was performed using a t-test. 
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Figure 20 Effect of DKK1 inhibition on TNF-α conditioned media induced C2C12 cell 

mRNA levels (α-actinin). 

The addition of the DKK1 inhibitor had a significant effect on reversing the effects seen by 

TNF-α conditioned media on C2C12 cells, which is to significantly decrease the differentation 

of C2C12 cells. With the addtion of the DKK1 inhibitor there was no longer a significant 

decrease in this muscle differentation marker caused by the addition of TNF-α conditioned 

media. *p <0.05. Statistical analysis was performed using a t-test. 
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Figure 21 Effect of DKK1 inhibition on TNF-α conditioned media induced C2C12 cell 

mRNA levels (Myogenin). 

The addition of the DKK1 inhibitor had a significant effect on reversing the effects seen by 

TNF-α conditioned media on C2C12 cells, which is to significantly decrease the differentation 

of C2C12 cells. With the addtion of the DKK1 inhibitor there was no longer a significant 

decrease in this muscle differentation marker caused by the addition of TNF-α conditioned 

media. There is however still a clear non-significant decrease in C2C12 mucle differentiaiton. 

*p <0.05. Statistical analysis was performed using a t-test. 

 

When the mRNA of the genes MyoD, myogenin, and α-actinin were measured at day 6 there 

was a significant decrease in mRNA expression following the addition of TNF-α conditioned 

media, when the values were compared to the control cells, as before (3.5). However when the 

DKK1 inhibitor was added along with the TNF-α SF-conditioned media the significant 

decrease in mRNA levels was no longer significant (MyoD, myogenin, and α-actinin). 
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However when the mRNA of 11βHSD1 was measured there was a significant decrease when 

TNF-α SF-conditioned media was added, with or without the DKK1 inhibitor. The difference 

between these markers of differentiation could be due to the number of repetitions of the 

experiment not being high enough or the gene is differently regulated. 

3.8 11βHSD1 activity assay testing the effects of Wnt3a, Wnt5a, and DKK1 on 

treatment on the differentiation of C2C12 myoblasts 

Following on from the mRNA analysis and morphological evidence of the effect of Wnt3a, 

Wnt5a, and DKK1 on C2C12 differentiation, 11βHSD1 activity assays were carried out at 

day 6 of differentiation. The n number for this experiment is 1. 
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Figure 22 11βHSD1 activity assay testing the role of Wnt3a, Wnt5a, and DKK1 effect on 

C2C12 muscle differentiation.  

The differentiation of the C2C12 myocytes was induced by supplementing the cells with 

DMEM differentiation media at day 0. The media was replaced on day 3 of differentiation. 

The treated cells also had either Wnt3a, Wnt5a, or DKK1 added to them. The activity of the 

cells was measured on day 6 which represents terminal differentiation by performing an 

11βHSD1 activity assay on the cells. 
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The largest amount of activity was seen with the control cells which had a steroid conversion 

rate of 8 pmol/mg/h closely followed by the cells which were supplemented with Wnt3a 

which had a steroid conversion rate of 7 pmol/mg/h. There is a larger decrease in activity seen 

with the cells treated with Wnt5a which had a steroid conversion rate of 6 pmol/mg/h and an 

even further decrease in the cells which had been supplemented with DKK1 which had a 

steroid conversion rate of 5 pmol/mg/h. However none of the decreases seen were significant 

(figure 22). 

3.9 11βHSD1 activity assay testing the effect of a DKK1 inhibitor on reversing the 

effects seen with TNF-α SF-conditioned media treatment of differentiating 

C2C12 myoblasts 

Following on from the experiments testing the role of the DKK1 inhibitor in reversing TNF-α 

conditioned media effects in C2C12 cells a 11βHSD1 activity assay was carried out. Although 

there was no significant effect of the DKK1 inhibitor on the TNF-α SF-conditioned media 

induced decrease in 11βHSD1 mRNA levels (figure 18) an activity assay was performed to 

rule out any post-transcriptional effect. This was performed on day 6 of differentiation when 

the cells were terminally differentiated and when the largest and significant changes in gene 

expression were seen. Differentiation was initiated on day 0 following the addition of DMEM 

differentiation media and the addition of the respective treatments. The media was changed on 

day 3 of differentiation. The n number for this experiment is 1. 
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Figure 23 11βHSD1 activity assay to test the effect of a DKK1 inhibitor on reversing the 

effects of TNF-α SF-conditioned media on C2C12 cell differentiation.  

The results show a decrease in activity with the cells treated with TNF-α conditioned media 

with respect to the control cells, and also a decrease in activity with the cells which were 

treated with both TNF-α conditioned media and the DKK1 inhibitor. However neither of these 

changes are significant. 
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4 DISCUSSION 

The study confirmed that substances which are present during joint inflammation affect 

muscle differentiation, namely Wnt3a, Wnt5a, and DKK1. The most effective of these was 

shown to be DKK1. It was also confirmed that substances which are secreted from synovial 

fibroblasts treated with either TNF-α or dexamethasone lead to a decrease in muscle 

differentiation, as measured morphologically and with differentiation marker mRNA levels. I 

was able to confirm that effects seen with TNF-α conditioned media could be successfully 

reversed with the addition of the DKK1 inhibitor, when the mRNA levels of α-actinin, 

myogeninin and MyoD were measured, however not when the mRNA levels of 11βHSD-1 

were measured. 

4.1 Myocyte differentiation to myotubles 

There was obvious differentiation from the myocytes at day 0 into myotubules at day 6. The 

morphology show in figure 4 shows clearly that there is development of myotubles which are 

more elongated than the myocytes, and also the development of multinucleated myotubles. 

The undifferentiated cells are star-shaped mono-nucleated cells[17]. During differentiation 

there is a steady change in the morphology of the cells where they become more elongated. 

The fully differentiated cells are elongated, with thick syncytia and contain more than 20 

nuclei[17]. The changes shown in figure 4 for the differentiation of the myotubules over time 

was seen consistently throughout the experiment whenever the cells were differentiated. This 

allows confidence in that the changes in mRNA expression seen are due solely to the 

treatments and not to other influences, for example the passage of the cells. 
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The mRNA data further supports the successful differentiation of the myocytes at day 0 to 

myotubles at day 6. It is seen with all the markers of differentiation, that there is an increase 

in their expression as the cells become more differentiated. MyoD plays a key role in muscle 

differentiation; it belongs to a family of proteins known as myogenic regulatory factors. 

Myogenin is a regulatory factor which controls myogenesis. In mice, myogenin is essential 

for the development of functional skeletal muscle. It is involved in the coordination of skeletal 

muscle development and repair. α-actinin is located to the z-disc and analogous dense bodies. 

Its function is to help anchor the myofibrillar actin filaments. So it would be expected that the 

mRNA levels of these genes would increase as differentiation occurred and this is what the 

results reflect. 

 

All of this evidence together shows strongly that there was myocyte differentiation induced 

throughout the experiment once the media was replaced by DMEM differentiation media. 

4.2 Effect of Wnt3a on 11βHSD1, MyoD, Myogenin and α-actinin mRNA levels 

When the cells were treated with Wnt3a there is still a clear increase in the amount of 

differentiation marker mRNA expression seen with the C2C12 cells throughout the 

experiment. This shows that there is still clear and obvious differentiation of the cells. The 

level of mRNA expression seen however is slightly lower than the control cells at all of the 

time points, however not significantly lower and this trend is seen throughout the 

differentiation markers. Although not significant, the finding of, if anything, a decrease in 

Wnt3a was unexpected given the positive role in Wnt signalling and therefore muscle 

differentiation. Therefore an increase in expression with respect to the control cells would be 
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expected. The reason this has not been seen could be due to the effect which the addition of 

Wnt3a had on the C2C12 cells away from the actual direct effect of Wnt3a itself.  

 

When activity assays were carried out to test the role which Wnt3a may have on 11βHSD1 

activity it reflected what was seen with both the mRNA data and also the morphology of the 

cells, in that there was no significant decrease or increase in the differentiation of the C2C12 

at day 6. 

4.3 Effect of Wnt5a on 11βHSD1, MyoD, Myogenin and α-actinin mRNA levels 

The mRNA levels of 11βHSD1, MyoD, Myogenin, and α-actinin were measured at day 1, 3 

and 6. They were used as they represent markers of differentiation. The mRNA levels of each 

of these markers increased throughout the time points for differentiation from day 1 to day 6. 

This shows that despite the addition of Wnt5a there is still some differentiation of the C2C12 

cells, which was induced at day 0 after the addition of DMEM differentiation media. 

 

Despite the mRNA levels of the differentiation markers increasing the level of increase is less 

with Wnt5a than that seen for the control. This curtailed increase in the level of mRNA 

expression is seen at all of the time points and becomes significant on day 6 for all of the 

markers. The reason for this is most likely due to the role which Wnt5a plays in the canonical 

Wnt pathway. Wnt5a promotes beta-catenin degradation through a GSK-3-independent 

pathway which involves down-regulation of beta-catenin-induced reporter gene 

expression[18]. Due to Wnt5a causing degradation of beta-catenin it functions as an inhibitor 

of the Wnt pathway. The enhanced turnover of β-catenin prevents it from being translocated 

to the nucleus and therefore there is no activation of downstream target genes. 
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It has already been shown that canonical Wnt signaling plays a critical role in muscle 

development[20], and is thought to regulate muscle differentiation[20]. Therefore by blocking 

this pathway with Wnt5a muscle development is interrupted perhaps explaining why Wnt5a 

decreases C2C12 differentiation.  

 

The inhibition on C2C12 cell differentiation by Wnt5a is also evident morphologically. It is 

most evident on day 6 where there is less formation of the elongated differentiated C2C12 

myotubules. 

4.4 Effect of DKK1 on 11βHSD1, MyoD, Myogenin and α-actinin mRNA levels 

With DKK1 there is however a decrease in the expression of 11βHSD1, MyoD, myogenin, 

and α-actinin mRNA with respect to the control for all of the time points and this is 

significant at day 6 upon the terminal differentiation of the myoblasts to myotubles. This is 

likely due to DKK1 being a negative regulator of the Wnt signalling pathway. Acting through 

removal of LRP5/6 from the cell surface, or by DKK1 binding to LRP6, thereby disrupting 

the Wnt-induced frizzled-LRP6 complex formation[15]. Overall DKK1 inhibits β-catenin 

signaling activated by the Wnt family of secreted signalling proteins. This effect which DKK1 

has on the Wnt signalling pathway could explain why there is a decrease in the mRNA 

expression of the differentiation markers. However the morphological evidence shows that 

there is possible apoptosis of the cells or necrosis which could have been caused by the 

addition of the DKK1. 
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4.5 Effect of control SF-conditioned media on 11βHSD1, MyoD, Myogenin and α-

actinin mRNA levels 

With the addition of control SF-conditioned media to the C2C12 cells, there was a clear 

increase in the amount of differentiation of the cells throughout the days of differentiation as 

shown with all the markers of differentiaition in figures 14, 15, 16, and 17. This control SF-

conditioned media contains the substances which are released from synovial fibroblasts when 

nothing has been added to them. The slight decreases in mRNA levels of the markers of 

differntiation for the cells treated with the control SF-conditioned media as compared to the 

control cells seen in figures 14, 15, 16, and 17 could show that there is something which is 

released by the synovial fibroblasts naturally which inhibits the differentiation of the cells. 

Alternatively due to the results not being significant, the decrease could be due to 

experimental error and not from a substance released from the synovial fibroblasts. The 

control conditioned media also provides the required negative control for the later TNF-α and 

dex SF-conditioned media experiments. 

4.6 Effect of TNF-α SF-conditioned media on 11βHSD1, MyoD, Myogenin and α-

actinin mRNA levels 

With the addition of conditioned media from TNF-α-treated SF cells a decrease with respect 

to the control cells at day 6, where there was terminal differentiation from myoblasts to 

myotubules. This could be explained due to the TNF-α conditioned media containing Wnt5a 

which had previously been shown to decrease the level of 11βHSD1, MyoD, Myogenen, and 

α-actinin mRNA expression. 
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4.7 Effect of Dexamethasone conditioned media on 11βHSD1, MyoD, Myogenin 

and a-actinin mRNA levels 

Differentiation of C2C12 cells was suppressed, most markedly at day 6. This could be due to 

the dexamethasone conditioned media containing Wnt5a and DKK1 which had previously 

been shown to decrease the level of 11βHSD1 mRNA expression. 

 

The decrease in expression of differentiation markers is less with the dexamethasone 

conditioned media than with the TNF-α conditioned media. This could be due to 

dexamethasone conditioned media containing DKK1 as well as Wnt5a. 

 

Having seen that DKK1 causes a decrease in myocyte differentiation (figure 10, 11, 12, 

and13)  it was hypothesised that the decrease in expression seen with dexamethasone SF-

conditioned media, and TNF-α SF-conditioned media was at least in part due to DKK1. To 

test this the experiment was repeated but this time with the addition of a DKK1 inhibitor, to 

see if this eliminated the significant decrease in mRNA levels of the markers of differentiation 

which was seen with the addition of TNF-α conditioned media. 

4.8 The effect of DKK1 inhibitor on reversing the effects of TNF-α conditioned 

media 

DKK1 inhibitor was added at day 0 along with the DMEM differentiation media and any 

other treatments to test whether by removing the action of DKK1 from the conditioned media, 

the effect which conditioned media had on the C2C12 cell differentiation could be reversed. 

Confirming earlier results TNF-α SF-conditioned media caused a decrease in the 
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differentiation of C2C12 cells, shown with all the markers of differentiation. When the DKK1 

inhibitor was added alone to the C2C12 cells there was no significant decrease in the 

differentiation of the C2C12 cells, showing that the DKK1 inhibitor alone does not affect the 

differentiation. When the inhibitor was added along with the TNF-α conditioned media there 

was no longer a significant decrease in the mRNA expression of the majority of the markers 

of differentiation (α-actinin, MyoD, and myogenin). It suggests that DKK1 is a factor within 

TNF-α conditioned media which leads to it causing a significant decrease in C2C12 

differentiation. Clearly DKK1 is not the only factor contained within the TNF-α conditioned 

media to have an affect on the differentiation of the C2C12 cells. There is also the potential 

that the DKK1 inhibitor concentration or indeed the conditioned media preparation 

concentration was not optimised and this would need to be investigated further. In contrast to 

α-actinin, myogenin, and MyoD the levels of 11βHSD1 were still significantly decreased 

when the DKK1 inhibitor was added to the cells treated with TNF-α SF-conditioned media. 

This implies either other factors contained within the TNF-α conditioned media which 

contribute to the decrease in the expression of the genes on top of DKK1, or that these factors 

differentially regulate 11βHSD1 and other muscle differentiation marker genes. 

4.9 Conclusions and future work 

The data presented clearly demonstrates that, Wnt5a, DKK1, TNF-α conditioned media and 

dexamethasone conditioned media lead to a significant decrease in muscle differentiation, and 

that the effects seen with TNF-α conditioned media could be a result of DKK1. This confirms 

both parts one and two of the hypothesis, that substances present within inflamed joints 

(Wnt5a, and DKK1) can lead to a decrease in muscle differentiation, and that TNF-α 

conditioned media and dexamethasone conditioned media can lead to a decrease in muscle 
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differentiation. It also goes some way to testing the third part of the hypothesis that by 

inhibiting DKK1 the effects of TNF-α conditioned media can be reversed. Due to both Wnt5a 

and DKK1 being present in the joint during inflammation[22], it is possible that these are 

factors which lead to the decrease in muscle differentiation seen in people with RA[2]. The 

C2C12 model which was used throughout this project have the benefit of being a clean single 

cell source that has a good chance of showing a direct effect of any factor that might affect the 

system. 

 

In future work the inhibition of DKK1 action by the DKK1 inhibitor could be further 

explored by finding the optimum concentration. Also the same work could be carried out on 

human muscle cell lines in order to bring the research closer to humans, and also on mice 

models to see how the substances affect the muscle differentiation in the whole organism, and 

if the optimised DKK1 inhibitor could reverse any effects seen. Improvements could be made 

to this experiment by optimising the dosage of the substances used to treat the C2C12 cells 

and also by using human cell lines. The main limitation of this project was that all the work 

was carried out on the same C2C12 cell line throughout, and there was no work done on 

animals which would have given results which included all interactions and substances found 

within a complete mammal. 
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