
 
 
 
 
 

Understanding KSHV vIRF-2-Cell Interactions 
 

 
by 

 
MOHAMED MUTOCHELUH 

 
 
 
 
 
 
 
 

A thesis submitted to  
The University of Birmingham 

for the degree of  
DOCTOR OF PHILOSOPHY 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The School of Cancer Sciences 

College of Medical and Dental Sciences 
The University of Birmingham 

August 2011 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



 
 

ii 

 
Abstract 

Kaposi’s sarcoma-associated herpes virus (KSHV) encodes genes with 

immunomodulatory potential, one of which is vIRF-2 that shares homology to cellular 

interferon regulatory factors. The innate antiviral mechanism mediating the type I 

interferons is an essential host cell defence mechanism limiting viral replication. The 

aim of this study was to determine the range and type of cellular gene sets and 

associated biological pathways whose expression is deregulated by vIRF-2. HEK 293-

derived cell clones were engineered to express doxycycline-inducible vIRF-2. 

Interferon (IFN) responses were induced with recombinant (r) IFN-α and measured by 

an IFN stimulated response elements (ISRE) luciferase reporter gene assay. The effects 

of vIRF-2 on cell transcriptome profile in response to rIFN-α were determined by 

DNA microarray analysis and confirmed by immunoblot assay. vIRF-2 protein 

inhibited activation of ISRE-luc by over 50% and significantly (p<0.05) down-

regulated the expression of 57/78 (73%) of rIFN-α regulated genes. The DAVID and 

GSEA software packages revealed vIRF-2 down-regulates the RIG-I-like receptor, 

JAK-STAT and Ubiquitin ligase pathways and many gene sets involved in antiviral 

response, transcriptional regulation and apoptosis. Immunoblot assays demonstrated 

reduced levels of RIG-I/DDX58, TBK-1, p-38, STAT1, pSTAT1, IRF-9 and OAS3. 

The biological significance of the vIRF-2 anti-IFN property was demonstrated by the 

rescue of encephalomyocarditis virus (EMCV) replication in vIRF-2 expressing cells 

treated with rIFN-α; EMCV was titred by plaque assay on L929 cells. These data 

confirm the role of KSHV vIRF-2 in negative regulation of the IFN-α/β innate 

immune response by a mechanism dependent on negative regulation of RIG-I/DDX58, 

STAT1, IRF-9 and OAS3. 
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CHAPTER 1     Introduction 

Kaposi’s sarcoma-associated herpesvirus, formally called human herpesvirus 8 

(HHV8), is the most recently identified human herpesvirus (Chang, Cesarman et al. 1994). 

KSHV was initially discovered on the basis of its association with Kaposi’s sarcoma (KS), 

an endothelial neoplasm and was later classified as a member of the lymphotropic (γ) 

herpesvirus subfamily. The discovery of KSHV has advanced our knowledge of AIDS-

related malignancies because since its discovery, KSHV has been identified in virtually 

all AIDS and non-AIDS-related KS lesions (Su, Hsu et al. 1995), (see Bouvard, Baan et al. 

2009). KSHV infection is now recognized as the aetiologic agents in two proliferative 

diseases: KS and body cavity-based or primary effusion lymphoma (BCBL or PEL) (see 

Bouvard, Baan et al. 2009). KSHV is associated with some plasmablastic forms of 

multicentric Castleman’s disease (MCD) (Soulier, Grollet et al. 1995). 

The overall aim of this research project was to determine the range and type of 

cellular genes whose expression is deregulated by vIRF-2. In the present chapter, I shall 

review our current understanding of KSHV infection by exploring KSHV discovery, 

replication, epidemiology and associated diseases. The KSHV lytic gene vIRF-2 and other 

KSHV immunomodulatory genes shall be discussed followed by an overview of innate 

and adaptive immune responses. 

Chapter 2 explains in detail the experimental procedures including the creation of 

vIRF-2 stable expressing clones and the ‘empty vector’ counterparts lacking vIRF-2. 

vIRF-2 expression and functional studies, techniques and procedures employed to prepare 

samples for DNA microarray investigations are discussed in Chapter 3. Studies of vIRF-

2-deregulated gene sets and related biological signaling pathways and the mechanism of 
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inhibition of the JAK-STAT pathway by vIRF-2 are described in Chapter 4. The 

biological significance of vIRF-2 anti-interferon property is discussed in Chapters 5. The 

general discussion and conclusions drawn are presented in Chapter 6. Publications 

emanating from the present study, together with the list of materials, antibodies, 

chemicals and solutions are shown in the appendices. 

 

1.1      Herpesviruses 

Herpesvirus taxonomy has been revised recently (Davison, Eberle et al. 2009). 

Herpesviruses contain a linear, double-stranded DNA genome of 125-290 kbp, encased in 

an icosaheral capsid (T=16), which is contained by a proteinaceous matrix known as the 

tegument. The tegument is incased in a lipid envelope containing membrane-associated 

proteins (see Pellet PE 2006). The new classification made it possible for the former 

family Herpesviridae that contained all herpesviruses to be divided in to three families in 

the new order Herpesvirales. Herpesviruses have been genetically classified in to three 

distinct groups, which are weakly linked to each other (see Davison 1992; Davison 2002). 

The revised Herpesviridae family retains the viruses of birds and reptiles, mammals, the 

new family Alloherpessviridae includes the fish and frog viruses, and another new family 

Malacoherpesviridae (a bivalve virus) (Davison, Eberle et al. 2009).  

Davison et al further divided Herpesviridae in to three subfamilies, the 

Alphherpesvirinae, the Betaherpesvirinae and the Gammaherpesvirinae (Davison, Eberle 

et al. 2009). KSHV is retained as a Gammaherpesvirus along with its simian relatives and 

falls under the genus Rhadinovirus and now contains four genera, macaviruses, 

percaviruses, lymphocrptoviruses and rhadinoviruses (Figure 1.1) (Davison, Eberle et al. 

2009). 
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Figure 1.1   Phylogenetic tree of Herpesviridae family. The phylogenetic tree was 

generated using DNA polymerase sequences from 36 Herpesviruses and related to the 

sequences of the corresponding 6 representative human herpesviruses (boxed). The 

herpesvirus DNA polymerase sequence data were generated using PCR with concensus-

degenerate hybrid oligonucleotide primers (CODEHOP), which were derived from amino 

acid sequence motifs highly conserved across Herpesviridae. This figure is reproduced 

from Rose (Rose 2005). 
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1.2      KS and KSHV Discovery  

The Austro–Hungarian dermatologist Moritz Kaposi first described Kaposi’s 

sarcoma in 1872 as an aggressive tumour affecting the older age group than is commonly 

seen today, suggesting a change in viral pathogenicity during more recent times. KS was 

considered classically an indolent disease of elderly men, but was later discovered to be 

more common in the Mediterranean basin, and in parts of Africa (see Antman and Chang 

2000; Herndier and Ganem 2001). The advent of human immunodeficiency virus (HIV) 

infection pandemic in the 1980s revealed KS as the most common neoplasm complicating 

AIDS. Its development in the context of HIV infection is an AIDS-defining condition. 

In 1994, using representational difference analysis to search for DNA sequences 

present in KS lesions but absent in normal tissue, Chang and colleagues (Chang, 

Cesarman et al. 1994) identified fragments of the KSHV genome. This seminal discovery 

led to the cloning of the entire viral genome (Neipel, Albrecht et al. 1997; Neipel, 

Albrecht et al. 1998) (Neipel F 1997; Neipel, Albrecht et al. 1998)and its complete DNA 

sequenced from a BC-1 PEL cell line (Russo, Bohenzky et al. 1996).  

KSHV infection is characterized by a prolonged viral and clinical latency and an 

infection that is lifelong like all herpesviruses. It is now possible to grow recombinant 

KSHV (rKSHV) in vitro thus making virologic characterization posible through reverse 

genetics experiments with deletion viruses (Zhou, Zhang et al. 2002). The infectious 

rKSHV was generated from a recombinant bacterial artificial chromosome by 

homologous recombination in KSHV-infected BCBL-1 cells. Some cell lines including 

HEK293 clones were infected with the rKSHV to create cellular model system for the 

purpose of investigating KSHV infection and pathogenisis (Zhou, Zhang et al. 2002) 
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1.3      KSHV epidemiology 

The individual clinicoepidemiologic forms of KS have been classified as classic or 

sporadic (in the Mediterranean region), epidemic (or AIDS related), endemic (in 

Subsaharan Africa), and iatrogenic (in organ or tissue transplant patients who have 

become immunocompromised). Seroconversion for KSHV occurs before progression of 

KS and is a strong predictor of clinical disease (Kedes, Operskalski et al. 1996; Moore, 

Kingsley et al. 1996). The risk of KS in most populations with or without AIDS is directly 

proportional to the prevalence of KSHV; while in non HIV infected populations, the 

prevalence varies widely in geographically distinct patterns (Gao, Kingsley et al. 1996; 

Lennette, Blackbourn et al. 1996; Whitby, Luppi et al. 1998). 

 Before the AIDS epidemic, “classic” KS was noted to have geographic clustering 

and occurred most frequently in elderly men of Mediterranean and Eastern European 

ecthnicity. Evidence for an environmental (i.e. infectious) component to this disease 

comes from geographic differences in KS rates. In the western world, AIDS-KS 

predominantly affects HIV-infected homosexual men. However, in Africa, since the 

spread of HIV, epidemic KS has become more common in both sexes, with a dramatic 

lowering of the male to female ratio, especially in east Africa (Wabinga, Parkin et al. 

1993). 

KSHV seroprevalence in northen Europe and North America is <5% in the general 

healthy population. In endemic regions of east and central Africa KSHV seroprevalence is 

>50% in adult populations (Boshoff and Weiss 2001). However, the highest KSHV 

seroprevalences have been reported in Native Americans from the Amazon region of 

Brazil (Cunha, Caterino-de-Araujo et al. 2005; Ishak Mde, Martins et al. 2007), French 

Guiana (Kazanji, Dussart et al. 2005), and Ecuador (Whitby, Marshall et al. 2004), where 

they exceed 80%. 
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1.4      Transmission of KSHV 

KSHV was first thought to be transmitted only sexually but recent reports point to 

other sources, such as casual behaviours. Routes of transmission are discussed below. 

 

1.4.1.	
  	
  	
  	
  	
  	
  Sexual	
  Transmission	
  

 Transmission of KSHV through sexual activities has been documented (Martin, 

Ganem et al. 1998; Blackbourn, Osmond et al. 1999). In univariate analyses, KSHV 

seroprevalence was significantly associated with subjects reporting either ≥2 receptive 

anal intercourse partners (65% vs. 33%) or ≥2 receptive oral intercourse partners (57.4% 

vs 16.7%) (Blackbourn, Osmond et al. 1999). It was observed that KSHV prevalence 

increased with the presence of sexually transmitted diseases (STDs) and the number of 

male sexual partners (Martin, Ganem et al. 1998). HIV and KSHV coinfected individuals 

produced a 10-year probability of 50% for developing KS (Martin, Ganem et al. 1998). 

Some reports show that transmission from male genital secretions, specifically semen is 

unlikely due to the low prevalence of detectable KSHV in semen samples obtained from 

both HIV+ and HIV- individuals (Howard, Whitby et al. 1997; Pauk, Huang et al. 2000), 

also (see Blackbourn and Levy 1997). 

 

1.4.2	
  	
  	
  	
  	
  	
  Organ	
  Transplant	
  recipients	
  	
  

 In a study of 356 post-transplant patients with KS, 40% had visceral involvement, 

a manifestation of KS with poor prognosis, and 17% of those with visceral KS died from 

the tumour (Penn 1997). KSHV seroconversion rate is reported to be higher in liver 

transplant patients compared to renal transplant patients. However, renal transplant 

patients tend to have higher risk of developing KS (Andreoni, Goletti et al. 2001). KS 
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tumours can regress after withdrawal of immunosuppressive therapy, but that can also 

cause graft rejection or organ impairment as a result of immunological recovery (Penn 

1997). Some suggested that post-transplant KS is caused by emergence of latent KSHV 

after previous infection (Parravicini, Olsen et al. 1997). Immunosuppression of any cause 

and that of transplant recipients is known to facilitate reactivation of herpesviruses, (for 

example, disseminated herpes zoster) and is associated with an increased incidence of 

herpesvirus associated lymphoproliferative malignancies (Penn 1997).  

 

1.4.3	
  	
  	
  	
  	
  	
  Casual	
  behaviour	
  	
  

In KSHV-endemic areas of Africa and the Amazon, the sharp and linear increases 

of KSHV seroprevalence in children before puberty, with modest increases later in life 

(He, Bhat et al. 1998; Cunha, Caterino-de-Araujo et al. 2005; de Souza, Sumita et al. 

2007), and the association of KSHV seropositivity in children having at least 1 first-

degree relative who is seropositive (Plancoulaine, Abel et al. 2000) suggest non sexual 

transmission of KSHV within families, possibly be through saliva (Dedicoat, Newton et al. 

2004). 

 

1.5      Diseases of KSHV 

1.5.1	
  	
  	
  	
  	
  	
  Primary	
  Infection	
  

In a 15-year longitudinal study of > 100 HIV negative men to determine the 

natural history of primary KSHV infection, five cases of KSHV seroconversion were 

identified (Akula, Pramod et al. 2001). The effects of KSHV primary infection were 

explored in the absence of HIV coinfection and no debilitating disease was observed in 

the five seroconverters. Four patients exhibited clinical symptoms, which ranged from 
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mild lymphadenopathy and diarrhoea to fatigue and localized rash. These symptoms were 

significantly associated with KSHV seroconverion when compared to the 102 

seronegative subjects who remained well. Organ transplantation is another clinical setting 

for primary infection. In a patient receiving a renal transplant, bone morrow failure was 

associated with a syndrome of fever, marrow aplasia, and plasmacytosis (Browning, 

Sechler et al. 1994). 

 

1.5.2	
  	
  	
  	
  	
  	
  Kaposi’s	
  sarcoma	
  

It is widely understood that KSHV infection is necessary for KS to develop and 

that cofactors play a key role. The most important cofactor is HIV infection. The 

incidence of KS in the general population is 1 in 100,000 but in HIV-infected individuals 

it is approximately 1 in 20 (Gallo 1998), climbing to almost 1 in 3 in HIV-infected 

homosexual men before the introduction of HAART (Beral, Peterman et al. 1990) 

although the debate is whether immunodeficiency itself is the main determinant of KS or 

HIV has a direct role. 

The four epidemiological forms of KS as described below have different clinical 

parameters, such as anatomic involvement and aggressiveness of the clinical course they 

have KSHV infection in common with indistinguishable histopathology (Ablashi, 

Chatlynne et al. 2002).  

 

1.5.3	
  	
  	
  	
  	
  	
  Classic	
  KS	
  

The classical or sporadic form of KS (CKS) is an indolent tumour affecting the 

elderly, preferentially men, in Mediterranean countries such as Italy, Israel and Turkey 

(Iscovich, Boffetta et al. 2000). The lesions tend to be found in the lower extremities and 
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the diease, due to its non-aggressive course, usually does not kill those afflicted. HIV 

infection, is not typically associated with CKS (Hengge, Ruzicka et al. 2002).  

 

1.5.4	
  	
  	
  	
  	
  	
  AIDS-­‐KS	
  

In the context of AIDS, KS is the most common malignancy and it is a defining 

illness (Goedert 2000). AIDS-KS is a more aggressive tumour than CKS and can 

disseminate into the viscera with a greater likelihood of death (Schwartz 1996). Unlike 

CKS, it presents more often multifocally and more frequently on the upper body and head 

regions (Hengge, Ruzicka et al. 2002).  

 

1.5.5	
  	
  	
  	
  	
  	
  Endemic	
  KS	
  

KSHV was prevalent in Africa prior to the HIV epidemic, and therefore, was 

responsible for the large prevalence of KS seen on the continent before HIV changed the 

scope of KS presentation (Dourmishev, Dourmishev et al. 2003). KS accounted for about 

4% of childhood cancers in Cameroon from 1986 to 1993 (Kasolo, Mpabalwani et al. 

1997). Prior to HIV infections, endemic KS affected men with an average age of 35 years 

and very young children (Wabinga, Parkin et al. 1993). KS on this continent evolved to 

epidemic levels with the advent of the HIV pandemic. Clinically, KS in Africa is more 

frequent in children (Kasolo, Mpabalwani et al. 1997; Wawer, Eng et al. 2001) and 

females than anywhere in else in the world and occurs in three forms. One form is similar 

to CKS in its course but found in young adults. The other two forms are more aggressive 

and are similar to AIDS-KS in their progression: one of these remains cutaneous with 

local tissue invasion, while another occurs most often in young children with a mean age 

of 3 years, is aggressive with visceral progression, but often lacks the cutaneous 
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involvement (Wabinga, Parkin et al. 1993). In the pre-AIDS period in Uganda, KS was 

diagnosed in approximately 7% of male cancer patients with no female records. However, 

by 1991 KS prevalence in male cancer patients had risen to about 49% becoming the most 

frequently reported cancer in men while prevalence in females reached about 18%.  

1.5.6	
  	
  	
  	
  	
  	
  Iatrogenic	
  KS	
  

 Iatrogenic KS represents another clinicoepidemiologic peculiarity of KSHV 

infection that presents either chronically or with rapid progression (Hengge, Ruzicka et al. 

2002). Immunosuppression that occurs in transplant patients is known to facilitate 

reactivation of herpesviruses (Rady, Yen et al. 1995) including KSHV, transplant patients 

under immunosuppressive therapy can present with KS. Withdrawal of therapy can cause 

the KS to regress (Hengge, Ruzicka et al. 2002). Iatrogenic KS seems to vary in its 

geographic prevalence, most probably reflecting the varying KSHV seroprevalence in the 

general populations of different countries (Dourmishev, Dourmishev et al. 2003). KS 

appears most frequently in renal transplant patients (Iscovich, Boffetta et al. 2000).  

 

1.5.7	
  	
  	
  	
  	
  	
  Other	
  forms	
  of	
  KSHV-­‐associated	
  diseases	
  

PELs contain KSHV DNA sequences (Cesarman, Chang et al. 1995). They are 

characterized by several pathological features, some of which are: (1) they do not exhibit 

Burkitt lymphoma-like morphology and do not have c-myc rearrangements; (2) they 

occur frequently in men; (3) they present initially as a lymphomatous effusion and remain 

localized to the body cavity of origin; (4) patients with PELs, especially in the context of 

AIDS, invariably are infected with KSHV (Cesarman, Chang et al. 1995; Nador, 

Cesarman et al. 1996). PEL is rare even in AIDS patients, constituting only 0.13% of all 

AIDS-associated lymphomas in the United States, but previous KS diagnosis confers an 
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increased risk of PEL relative to all other AIDS-associated non-Hodgkins lymphomas 

(NHL) (Mbulaiteye, Biggar et al. 2002). In non-AIDS patients, the disease has been 

termed “classic” PEL by Ascoli and colleagues (Ascoli, Lo Coco et al. 2002)  where it 

presents in HIV negative patients, but with similar risk factors as CKS. 

KSHV has been found variably in association with MCD which is a rare 

polyclonal B cell angiolymphoproliferative disorder for which vascular proliferation has 

been found in germinal centers (Soulier, Grollet et al. 1995). More than 90% of patients 

with AIDS and MCD are infected with KSHV, while no more than 40% of HIV 

seronegative MCD patients are infected (Soulier, Grollet et al. 1995). 

Taken together, these data suggest the four epidemiological forms of KS have 

KSHV infection in common with AID-KS being the most aggressive. The advent of the 

HIV epidemic drove endemic KS to epidemic levels in Africa. KSHV induced PEL and a 

variant of MCD causes lymphoproliferative disorder of B cells and can induce host 

lymphatic and blood vascular gene modulation (see below). 

 

1.8      KSHV Evolution and Strain Variability 

 The origin of KSHV and whether or not it recently entered into the human 

population are scientific questions that are being explored actively. Comparisons between 

conserved herpesvirus genes suggest that KSHV separated from the herpesvirus saimiri 

(HVS) lineage about 35 million years ago, corresponding to separation between their 

respective Old and New World monkey hosts (Moore PS 1996; McGeoch DJ 1999). 

Phylogenetic examination of homologous genes allows a unique evolutionary analysis 

because both viral and host genes can be directly compared. For example, Moore and 

colleagues demonstrated the phylogenetic relationship of KSHV to other herpesviruses by 

a single-gene comparison of Open reading frame (ORF) 25 (Major Capsid Proteins) 
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homologue from a lamda phage clone (KS5) and 12 members of the family Herpesviridae. 

This resulted in the assignment of KSHV to the gamma-2 sublineage of the genus 

rhadinovirus (Moore, Gao et al. 1996). In another example, vIL-6 genes are present in 

KSHV and rhesus rhadinovirus (RRV) but not in HVS, and sequence analysis lends 

support to the notion that the ancestral KSHV-RRV virus captured this gene after the split 

between New World and Old World monkey (McGeoch DJ 1999).  

At least two major variants of KSHV can be distinguished based on sequence 

differences at the right-hand end of the genome in the region between open reading frame 

75 (ORF 75) and the terminal repeat region. The two well characterized variants are 

named P (for prototype) and M (for minority) alleles (Poole LJ 1999). Interestingly, both 

P and M alleles preserve a functional ORF K15 gene, encoding spliced, polytopic 

transmembrane signaling protiens that share only 33% amino acid identity. These allelic 

variants could have resulted from recombination events with an unkown progenitor 

herpesviral genome at some point in the past. Zong and colleagues used PCR DNA 

sequence analysis of the ORF-K1 gene among over 60 different tumour samples from 

across the globe; and reported four major subtypes (A, B, C, D) and 13 distinct variants or 

clades in different human populations (Zong, Ciufo et al. 1999). The A & C subgroups 

have been reported in Europe, USA, Middle East and Asia. While the group B subgroup 

has been reported in subsaharan Africa; type D subgroup are reported in Asia, Australia, 

and the Pacific islands (Hayward 1999). Zong and colleagues later discovered N and Q 

alleles at the right-hand end of the genome (Zong, Ciufo et al. 2002). 

 

1.9      KSHV Structure 

KSHV is a double-stranded linear DNA virus. The long unique region (LUR) of 

the KSHV genome is about 140.5 kb in length (Figure 1.2) and contains 86 genes of 
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which at least 22 are potentially immunomodulatory, (see Rezaee, Cunningham et al. 

2006). The LUR is flanked at each end by variable numbers of a direct repeat (TR) 

resulting in genome size of approximately 170 kbp (Rezaee, Cunningham et al. 2006). 

This genome size is slightly larger than the 153-kb genome of herpes simplex virus type 1 

(HSV-1), the prototypical herpesvirus and member of the Alphaherpesvirinae subfamily 

(Roizman 2001). It is however, smaller than the 230-kb genome (Chee, Bankier et al. 

1990) of human cytomegalovirus (HCMV), a member of the Betaherpesvirinae subfamily. 

Varying numbers of TR units are present in each virus, and this variation may allow an 

assay of virus monoclonality within cells (Russo, Bohenzky et al. 1996; Judde JG 2000). 

The LUR sequence has 53.5% G+C content and includes all identified KSHV ORFs, 

while the TR regions consist of multiple 801-bp direct repeat units having 84.5% G+C 

content with potential packaging and cleavage sites (Russo, Bohenzky et al. 1996). 

New genes, particularly spliced genes, continue to be described from transcription 

studies because the initial annotations of the genome were purposely conservative. KSHV 

genes that are not homologous to HVS genes are given a K prefix (e.g. ORF K1 to K15) 

and include many of the cellular homologue genes. Some KSHV genes can functionally 

substitute for HVS oncogenes (Lee, Veazey et al. 1998) or are homologues of cellular 

genes induced by EBV oncogenes (Moore PS 1998). 

Virions of KSHV appear structurally similar to those of other herpesviruses. In the 

electron microscope (EM), they display an electron-dense nucleocapsid within a lipid 

bilayer envelope; in between these two structures is the tegument. KSHV envelope bears 

many glycoproteins some of which are conserved herpevirus glycoproteins. For example, 

KSHV glycoprotein B (KSHVgB) interacts with cell surface heparin sulphate molecules 

to gain entry in to cells (Akula, Pramod et al. 2001) and also plays a role in egress of the 

virus from infected cells (Krishnan, Sharma-Walia et al. 2005). 
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Figure 1.2.   KSHV genome map. The genome consists of a unique region flanked at each end 

by variable numbers of a direct repeat totalling 35–45; the genome size is approximately 170 kbp. 

Each genome end terminates with a partial copy of TR, making it possible for circularization to 

create a complete copy.  The coloured regions shown by arrows represent protein-coding sites (see 

the key). The names of the genes are shown below while the names of the encoded 

immunomodulatory proteins are shown above. Introns are shown as narrow white bars. This 

figure is reproduced from (Rezaee, Cunningham et al. 2006). 
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1.10      KSHV replication  

Overview 

Although precise knowledge of herpesvirus entry is limited, it is believed that 

herpesvirus enter cells by fusion of the viral envelope with the plasma membrane, 

resulting in the release of tegument proteins and the nucleocapsid into the cytoplasm, or 

alternatively by endocytosis followed by nucleocapsid release through the endosomal 

pore (Nicola, Hou et al. 2005). From there, capsids must be transferred to the nuclear 

envelope, following which the viral genome is delivered across the nuclear pore and into 

the nucleus. There, circularization of the genome occurs (Bruce J. Dezube 2002), which 

then becomes organized into chromatin via the assimilation of host histones, rendering it a 

suitable template for transcription by host RNA polymerase II.  

 As with all herpesviruses, KSHV is capable of two alternative genetic programs, 

latency and lytic replication. In the lytic phase, the virus produces infectious virions for 

dissemination and modulates cellular signalling pathways through unrestricted expression 

of viral genes (see Dourmishev, Dourmishev et al. 2003). During the latent phase, the 

virus is maintained as episomes and has restricted expression of genes which is essential 

for development of KSHV-induced malignancies. As a result, no virus is produced by 

latently infected cells; the nuclear viral genome is replicated as an episome at low copy 

number, and the replicated genomes are distributed to progeny cells during cell division. 

Although latently infected cells do not produce virus, they maintain the entire viral 

genome and, therefore, retain the potential for virion production (Ballestas and Kaye 

2001). In fact, such cells can be induced to undergo lytic replication by a variety of 

exogenous signals. The identities of these signals in authentic in vivo infections are not  
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known, but in culture several agents such as sodium butyrate, phorbol ester tetradecanoyl 

phorbol acetate (TPA), ionomycin as well as interferon gamma and other cytokines 

(Miller, Heston et al. 1997; Blackbourn, Lennette et al. 2000; Chang, Renne et al. 2000). 

Lytic infection involves the expression of virtually the entire viral genome, in 

temporally regulated cascades of transcription. The KSHV lytic switch protein whose 

activity is sufficient to reactivate KSHV is encoded by ORF50 locus and is known as 

replication and transcription activator (RTA) (Gradoville, Gerlach et al. 2000; Wang, Liu 

et al. 2001). 

From this general overview, I take a closer look at each step. 

1.10.1	
  	
  	
  	
  	
  	
  KSHV	
  Entry	
  

Viruses have evolved to use host cell surface molecules to internalise cells through 

a complex multistep process and for most viruses, cell attachment and internalisation are 

distinct steps. When KSHV virions are applied to susceptible cell monolayers, cell 

binding is readily observed, even at 4oC. As in HSV (Spear and Longnecker 2003), 

binding is initially mediated by interaction of the envelope with heparan sulphate (HS), an 

activity attributed to glycoprotein K8.1. Binding to heparan sulphate is thought to 

contribute to the efficiency of infection, because reduction in this binding by competition 

with soluble heparin impairs binding and reduces (but does not eliminate) infectivity 

(Spiller, Mark et al. 2006). The presence of residual infectivity in such studies suggest 

that, although helpful, HS may not be essential for infectivity, a finding compatible with 

the demonstration that mutant KSHV virions lacking the K8.1 glycoprotein retain 

infectivity in cultured cells (Luna, Zhou et al. 2004). KSHV encodes seven candidate 

envelope glycoproteins, but only three-gB, gH, and gL are required to mediate membrane 

fusion in transient expression assays that score for syncytium production (Pertel 2002). 

gB is reported to play critical roles in the infection process. The identification of an 
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argine-glycine-aspartate (RGD) integrin-binding motif in the gB sequence directed 

attention to integrins as possible receptor candidates. Akula and colleagues found that 

integrin α3β1 could be precipitated by anti-gB antibodies after initial binding of KSHV 

virions to cells (Akula, Pramod et al. 2002). Antibodies against the α3β1complex reduce 

infectivity, as do soluble versions of α3β1; RGD peptides derived from gB also inhibit 

infection (Akula, Pramod et al. 2002). Others have demonstrated another RGD-binding 

integrin, αvβ3, as a cellular receptor, which mediates KSHV entry to target cells by 

directly interacting with the gB (Garrigues, Rubinchikova et al. 2008). Krishnan et al also 

reported that besides a role in binding and entry into target cells, gB also plays a role in 

the maturation and egress of virus from the infected cells (Krishnan, Sharma-Walia et al. 

2005).  

Endothelial cells experimentally infected with KSHV express the KSHV lytic 

cycle protein KSHV complement protein (KCP). Because KCP is present on the virion, it 

is predicted to function as a ligand for virion binding to cells through heparan sulphate, 

and when KSHV was treated with an anti-KCP monoclonal antibody (MAb), infection of 

cells was inhibited by 35% (Spiller, Mark et al. 2006). These authors concluded that KCP 

confers on the virion its cell binding and complement evasion capability (Spiller, Mark et 

al. 2006).  

Another study reported that the 12-transmembrane cystine transporter protein xCT 

as the fusion-entry receptor for KSHV in adherent cells (Kaleeba and Berger 2006). 

Recombinant xCT expression in non-permissive cell lines restored permissivity to 

authentic KSHV infection, and antibodies to xCT block infection (Kaleeba and Berger 

2006). These data provide a strong case for xCT in KSHV entry. Interestingly, xCT exists 

as a heterodimer with the molecule CD98 and the complex is known to associate with cell 
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surface α3β1 (Kaleeba and Berger 2006). This gives credence to the earlier suggestion 

that integrins are part of the entry complex.  

DC-SIGN (a type of lectin) expressed on dendritic cells (DC) is a receptor for 

KSHV entry to DC and macrophages. KSHV is reported to productively infect activated 

B cells expressing the DC-SIGN (Rappocciolo, Hensler et al. 2008). Rappocciolo and 

colleagues reported that this infection of B cells with KSHV was inhibited by pre-

treatment of the cells with MAb against the DC-SIGN (Rappocciolo, Hensler et al. 2008). 

This publication was the first to confirm the role of DC-SIGN as entry receptor for KSHV 

(Rappocciolo, Hensler et al. 2008). 

 In addition to promoting virus entry, virus-cell binding triggers host cell signalling 

cascades, and these events alter the cellular microenvironment in a way that can favour 

the progression of infection. For example, virus binding to cultured fibroblasts triggers 

phosphorylation and activation of focal adhesion kinase (FAK); this in turn activates PI-3 

kinase and PKC-zeta, events that upregulate the extracellular signal-regulated kinase 

(MEK-ERK) pathway (Akula SM 2004; Naranatt, Krishnan et al. 2004) known to ensure 

cell survival and proliferation. FAK-PI-3 kinase activation also activates Rho guanosine 

triphosphatase (GTPase), triggering cytoskeletal rearrangements as well (Sharma-Walia N 

2004; Sharma-Walia N 2005) leading to the activation of adhesion molecules and 

promoting cell motility. Once capsids have been delivered to the cytosol, they must make 

their way to the nuclear envelope. However, how viral DNA actually enters the nucleus 

has yet to be examined directly in KSHV infection. Taken together, the KSHV entry in to 

the cell requires the concerted roles of the virus and cellular receptors stated in this 

subsection to ensure efficient viral entry, prevention of cell death and promotion of cell 

survival. Because the default replicative pathway of KSHV is latency it is discussed next. 
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1.10.2.	
  	
  	
  	
  	
  	
  Transition	
  to	
  latency	
  

With the probable help of host enzymatic machinery, the linear viral DNA rapidly 

circularizes to form nuclear episomes upon entry to the nucleus (Bruce J. Dezube 2002). 

Prevailing cellular microenvironmental conditions will dictate which of the two known 

transcriptional programmes of the virus-latency or lytic cascade will ensue. In the first 12 

hours after infection, many infected cells transiently display profiles of transcripts and 

antigens that indicate aberrant expression of a panoply of lytic-cycle genes, including 

selected members of immediate early (IE), delayed early (DE), and even late (L) classes 

(Krishnan 2004) whose expression ceases by 24 hours, giving way to latency. In some 

cases these transcripts may have been imported in to the cell by the virion (Bechtel, 

Grundhoff et al. 2005). 

The appearance of some of these gene products can be explained by the discovery 

of 11 virally encoded, lytic mRNAs that are incorporated into the virion during particle 

assembly (Bechtel, Grundhoff et al. 2005); as with the tegument proteins, these are 

delivered into newly infected cells immediately on viral entry and, therefore, are available 

for translation. Some studies have detected small quantities of the lytic switch protein in 

virions (Bechtel, Winant et al. 2005; Lan, Kuppers et al. 2005), which might account for 

some of these observations, but why such a function would not trigger full lytic cascade is 

unexplained. 

 

1.10.3	
  	
  	
  	
  	
  	
  Latency	
  

Much of the information gathered on KSHV latent gene expression comes from 

the study of cultured PEL cells. These cells stably maintain latent KSHV genomes and 

express latent viral transcripts in all cells in the culture (Ganem 2007). Although it is 

possible that latent gene expression in PEL is not representative of other forms of latency. 
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Besides, the latency programme may be variable since vIRF-3 (LANA2) is reported to be 

expressed in PEL cells but not in latent spindle cells (Rivas, Thlick et al. 2001). Spindle 

cells are elongated in shape, are of endothelial origin and are the particular cell types of 

the lesions infected by KSHV. Nevertheless, examination of PEL latency has revealed a 

number of latent functions that have been proposed to play roles in both viral persistence 

and disease induction. The main reservoir of latent KSHV is the B lymphocyte 

(Ambroziak, Blackbourn et al. 1995; Blackbourn, Lennette et al. 2000).  

 Below are some reported patterns of latent transcription and the functions of 

proteins encoded by these messages. 

 

1.10.4	
  	
  	
  	
  	
  	
  Latent	
  Transcripts	
  

The first transcripts to be discovered were derived from the LANA promoter 

located 5’ to ORF73, the coding region for LANA (Dittmer, Lagunoff et al. 1998; Talbot, 

Weiss et al. 1999) as it is the most constitutively active in most cells that are infected with 

KSHV. The ORF73 gene is located in a cluster of four latency-associated genes and is 

expressed from a bi-cistronic singly spliced mRNA of 5.7 kb that also encodes ORF72, a 

viral cyclin D homologue, ORF71, a vFLIP protein and the kaposin gene (Zhong, Wang 

et al. 1996; Dittmer, Lagunoff et al. 1998). These kaposin transcripts are very likely 

responsible for a set of 12 microRNA (miRNA), which map to the 5’ area of the kaposin 

repeats in the region. The KSHV latency gene products are discussed below.  

Moreover, at least in KS, maintenance of latency is inefficient and is hypothesised 

to require at least low level lytic replication to infected endothelial cells (Rezaee, 

Cunningham et al. 2006). Lytic gene expression in this setting may therefore contribute to 

tumourigenesis (See below). 
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1.10.5	
  	
  	
  	
  	
  	
  Latency-­‐associated	
  Nuclear	
  Antigen	
  

The product of ORF73 LANA (Kedes, Lagunoff et al. 1997; Rainbow, Platt et al. 

1997), is a large, multifunctional protein that is localized to the nucleus of infected cells. 

LANA is highly immunogenic since anti-LANA antibodies were the first useful serologic 

markers of KSHV infection (Gao, Kingsley et al. 1996; Kedes, Operskalski et al. 1996; 

Lennette, Blackbourn et al. 1996). LANA has been detected in virtually every cell type in 

which latency has been described – endothelial, epithelial, or fibroblastic cells infected in 

vitro; PEL and KS tumour cells in vivo; and in many B cell in nodes from MCD (Dupin, 

Fisher et al. 1999). 

 The best-characterized function of LANA is that involved in the establishment and 

maintenance of the latent viral episome in the nucleus (Ballestas and Kaye 2001; Cotter, 

Subramanian et al. 2001). Once incoming viral genomes have been circularized in the 

nucleus, they must then be replicated. LANA plays many roles in this replicative process. 

It directly binds to DNA sequences within the terminal repeats (TR) (Cotter, Subramanian 

et al. 2001; Garber, Shu et al. 2001; Garber, Hu et al. 2002), an interaction that triggers 

semiconservative replication presumably by recruitment of host DNA replicative 

machinery to the genome (Grundhoff and Ganem 2003). LANA plays a critical role in a 

mechanism where dividing cells ensures proper partitioning of progeny KSHV episomes 

to daughter cells (Ballestas, Chatis et al. 1999). This finding by Bellestas and colleagues 

supports a model in which LANA binds to the mitotic chromosomes (via its N-terminus) 

and indirectly tethers the viral genome to which it is bound via its C-terminus to this 

structure. This tethering allows the host’s chromosome segregation machinery to 

effectively deliver the piggy-backed viral genomes to both daughter cells following 

mitosis. Genetic evidence in support of this model has been provided by the observation 

that a KSHV mutant with a disrupted LANA gene cannot produce a stable latent episome 
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following infection (Ye, Zhou et al. 2004).  Si and Robertson reported that stable 

expression of LANA in cell lines showed a dramatic increase in chromosomal instability, 

indicated by the presence of increased multinucleation, and aberrant centrosomes. In 

addition, these stable cell lines demonstrated increased proliferation as well as increased 

entry to S phase (Si and Robertson 2006). These authors also observed that p53 

transcription and its transactivation activity were suppressed by LANA expression in a 

dose-dependent manner, and concluded that LANA may promote chromosomal instability 

by suppressing the functional activities of p53, thereby facilitating KSHV-mediated 

pathogenesis and cancer (Si and Robertson 2006). 

LANA has also been shown to participate in the regulation of a number of cellular 

signaling activities by functioning as a transcriptional coactivator or corepressor 

(Blackbourn, Lennette et al. 2000; An, Sun et al. 2004). The evidence showing that 

LANA can induce B cell hyperplasia and lymphoma in transgenic mice as well as inhibit 

TGF-β signalling through epigenetic silencing (Di Bartolo, Cannon et al. 2008), suggest a 

potential role for LANA in dysregulation of B lymphocyte immune response beyond its 

functions related to viral genome maintenance. LANA is reported to play a role in 

lymphomagenesis. Fakhari and colleagues generated transgenic mice expressing LANA 

under the control of its own promoter, which is B cell specific (Fakhari, Jeong et al. 2006). 

The transgenic mice developed splenic follicular hyperplasia due to an expansion of 

immature B cells and increased germinal center formation (Fakhari, Jeong et al. 2006). 

These authors detected lymphomas in these mice indicating that LANA can activate B 

cells and provide the first step toward lymphomagenesis. Therefore, during LANA is not 

only responsible for the establishment of latency but also mediates tumourigensis.  
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1.10.6	
  	
  	
  	
  	
  	
  v-­‐cyclin	
  

v-Cylin (ORF72) is a candidate KSHV oncogene with homology to the human 

cylin-D/Prad oncogene. Cyclin D proteins (D1, D2, D3) normally associate with specific 

cyclin-dependent kinases (CDKs) and phophorylate Retinoblastoma (Rb) family members 

(Sherr 1996), which in turn librates E2F/DP-1 transactivation functions necessary to drive 

the cell cycle to S-phase. The primary function of cyclin D complexes is inactivation of 

retinoblastoma protein (pRb). In malignancies, cell cycle progression is often deregulated 

by mutations in these pRb G1 checkpoint pathway genes. The mRNA for this protein is 

derived by splicing out that for the LANA gene, yielding a bicistronic (ORF72 and 71) 

mRNA whose 5’ gene encodes v-cylin (Talbot, Weiss et al. 1999). This protein can bind 

to and activate cdk6. It has several differences from host cyclin D, however: (a) it is much 

less active on cdk4 and (b), although both can trigger cdk6-mediated phosphorylation of 

Rb, the viral cyclin can also induce phosphorylation of p27, histone H1, Id-2, and cdc25a 

(Godden-Kent, Talbot et al. 1997; Li, Lee et al. 1997). Forced v-cyclin expression can 

induce S-phase entry in quiescent 3T3 cells, and also overcome an Rb-mediated growth 

arrest induced by cdk-inhibitors (Swanton, Mann et al. 1997). In fact, the v-cyclin-cdk6 

complex is less sensitive to inhibition by cdk inhibitors such as p27, p21, and p16. 

Moreover, v-cyclin-cdk6 induces the degradation of p27 (Ellis, Chew et al. 1999; Mann, 

Child et al. 1999). v-cyclin over-expression induces transient  proliferation as well as 

apoptosis (Ojala, Yamamoto et al. 2000). Interestingly v-cyclin may exert both growth–

promoting and apoptotic functions in KS, depending on factors regulating CDK6 and v-

bcl2 levels because of the observation that expression of v-cyclin in cells with elevated 

CDK6 accelerated entry into S phase but also led to their death by apoptosis, (Ojala, 

Tiainen et al. 1999). Moreover, when v-cyclin was targeted to the B-cell lineage in 

transgenic mice, lymphomas were observed only when the animals were also p53-/- 
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(Verschuren, Klefstrom et al. 2002). Therefore, there is likelihood that the functional 

inactivation of p53 by LANA expression in KSHV latency might similarly potentiate the 

oncogenic potential of v-cyclin. 

 

1.10.7	
  	
  	
  	
  	
  	
  v-­‐FLIP	
  

The product of ORF71, v-FLIP is the KSHV homologue of the cellular FLICE 

inhibitory protein (FLIP). FLICE is the acronym for Fas-associated death domain 

(FADD)-like interleukin-1 beta-converting enzyme, now called caspase 8. Induction of 

apoptosis via death receptors (e.g. Tumour Necrosis Factor receptor 1 or Fas receptor) 

typically results in the formation of the death inducing signalling complex (DISC), which 

is made up of FADD, caspase 8 and caspase 10. Upon receptor clustering due to ligand 

binding, the adaptor molecules FADD & TRADD are recruited both have binding 

domains for the receptor and a conserved “Death effector domain” (DED) that binds and 

triggers the activation of caspase 8 (Hu, Vincenz et al. 1997). The death signal is then 

transduced through a number of cellular caspases resulting in the commencement of 

apoptosis. One possible mechanism of vFLIP action suggests competition with the 

adaptor molecule for binding to capase 8 via its DED. Others have found vFILIP to be 

involved in NFkB signalling. Thus, vFLIP uses its TRAF-binding domain to activte NF-

kB signalling (Guasparri, Keller et al. 2004) which is antiapoptotic in most cell lines. In 

addition, vFLIP induced MHC-I expression through NF-kB in KSHV-infected lymphatic 

endothelial cells (Lagos, Trotter et al. 2007), which underscores the physiological 

importance of vFLIP-NF-kB interaction. Eliminating either vFLIP or NF-kB activity from 

PEL induces apoptosis (Godfrey, Anderson et al. 2005). 
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1.10.8	
  	
  	
  	
  	
  	
  Kaposins	
  

Kaposin is located immediately downstream of LANA, vCyclin and vFLIP on the 

KSHV latency locus. Aside from the common promoter that regulates LANA, vCyclin 

and vFLIP, kaposin is also regulated by a promoter located between LANA and cyclin (Li, 

Komatsu et al. 2002). Kaposin mRNA is the most abundant in latently infected PEL cells 

resulting in translated proteins some of which can transform NIH3T3 cell in culture 

(Muralidhar, Pumfery et al. 1998). Kaposin protein is found in every tumour cell (Staskus, 

Zhong et al. 1997). The expression of kaposin A ORF transforms cell in culture and 

induces tumour formation in athymic nude mice (Kliche, Nagel et al. 2001; Tomkowicz, 

Singh et al. 2005). This transforming ability is reported to be consistent with that 

attributed to latent genes of other gammaherpesviruses (see Damania 2004). McCormick 

and colleagues have reported that kaposin B induces cytokine production; for example, 

transfection of kaposin B into cells resulted in augmentation of both GM-CSF and IL-6 

production, as determined by enzyme-linked immunosorbenassay (ELISA) of the culture 

medium 48 hours after transfection (McCormick and Ganem 2005). 

 

1.11      Lytic replication 

Although herpesvirus oncogenesis has been generally attributed to the activity of 

latent proteins, lytic proteins are increasingly believed to play an important role in KSHV 

tumorigenesis (see Nicholas, 2007). Grisotto and colleagues suggested that dysregulated 

expression of lytic genes during latent phase or during aborted lytic cycles triggers KSHV 

tumorigenesis (Montaner, Sodhi et al. 2003; Grisotto, Garin et al. 2006). One such KSHV 

lytic gene that has been frequently implicated in the pathogenesis of KSHV-associated 

PEL and MCD is viral IL-6, a structural and functional homologue of human IL-6 (hIL6) 

(Moore, Boshoff et al. 1996; Aoki, Jones et al. 2000). Lytic replication of KSHV induces 
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the expression of both viral interleukin-6 and hIL-6 (Jenner, Alba et al. 2001), both of 

which act as B-cell growth and differentiation factors and promote survival and 

proliferation of KSHV-infected cells (Jones, Aoki et al. 1999; Chatterjee, Osborne et al. 

2002). How the lytic cycle contributes to KS development has been a matter of debate 

(Ganem 2007). One model suggests that growth and angiogenic factors released from 

lytically infected cells may influence tumour progression in a paracrine fashion. Many 

such factors are encoded by DE viral genes that have been identified, which include viral 

cytokines and chemokines (e.g. vGPCR, v-CCL1, v-CCL2, v-CCL3, v-IL-6) (Nicholas 

2005).  

Below, I consider these KSHV lytic proteins in more detail.  

1.11.1	
  	
  	
  	
  	
  	
  Cytokines	
  

Many people have regarded cytokines as immune hormones. They are low 

molecular weight proteins that carry out their effects by binding to receptors on target 

cells. The cytokine network constitutes a communication circuit that links and 

orchestrates the early innate inflammatory responses and the subsequent developing 

adaptive immune responses to infection. The anti-cytokine strategies of viruses inhibit 

either cytokine production or cytokine activity (see Alcami 2003). The KSHV-related 

diseases, particularly KS, are associated with deregulation of the inflammatory-cytokine 

network (see Ensoli and Sturzl 1998; Nicholas 2005), suggesting the ability of the virus to 

block normal cytokine responses. 

 

1.11.2	
  	
  	
  	
  	
  	
  Viral	
  Interleukin-­‐6	
  (vIL-­‐6)	
  

 The amino acid sequence of vIL-6 protein is 25% identical to hIL-6 (Molden, 

Chang et al. 1997). It displays biological properties typical for hIL-6 and IL-6 for other 
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species such as support of IL-6-dependent murine B9 cell growth and induction of acute-

phase genes in hepatocytes (Moore, Boshoff et al. 1996; Neipel, Albrecht et al. 1997). 

vIL-6 also mediates signalling through the gp130 signal transducer to activate JAK/STAT 

and MAPK pathways (Molden, Chang et al. 1997; Osborne, Moore et al. 1999). 

 Chatterjee and colleagues (Chatterjee, Osborne et al. 2002) demonstrated that vIL-

6 was specifically induced by treatment of PEL cells with IFN-α, and effectively blocked 

the cell cycle arrest and apoptotic activities of IFN-α. This report suggests that at least one 

role of vIL-6 is to protect latently infected cells against anti-viral host defenses mediated 

by IFN, and could presumably perform a similar role during de novo infection or lytic 

reactivation. The mitogenic signalling and vascular endothelial growth factor (VEGF)-

inducing pro-angiogenic functions of vIL-6 (Burger, Neipel et al. 1998; Aoki, Jaffe et al. 

1999; Klouche, Brockmeyer et al. 2002) suggest that it may be involved in establishing 

appropriate intracellular conditions for virus replication and extracellular conditions for 

dissemination of infected cells and virus from local sites of infection. Further, because 

VEGF has been reported to enhance KSHV entry into cells via post-binding events (Ford, 

Hamden et al. 2004), VEGF induced by vIL-6 may contribute to initial stages of KSHV 

infection via paracrine effects within cell populations consisting of infected and 

uninfected cells. 

 There is considerable evidence that vIL-6 does indeed contribute to disease 

development. As already mentioned, VEGF is induced by vIL-6 and consequently 

angiogenesis is promoted by the viral cytokine (Aoki, Jaffe et al. 1999). In murine models, 

cell lines stably expressing vIL-6, and secreting high levels of VEGF, are tumorigenic in 

nude mice and PEL cells introduced into nude mice develop lymphomatous effusions in a 

VEGF-dependent manner (Aoki, Jaffe et al. 1999; Aoki and Tosato 1999). Also, vIL-6 

expression in mice led to increased haematopoiesis, plasmacytosis and organomegaly 
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features of MCD. vIL-6 is reported to upgrade angiopoeitin 2 (Ang2)-expression in 

lymphatic endothelial cells through the MAPK pathway (Vart, Nikitenko et al. 2007) and 

KSHV-induced Ang2 is angiogenic (Ye, Blackbourn et al. 2007). Taken together, these 

findings suggest that vIL-6 expression could mediate mitogenic and angiogenic activities 

of relevance to KSHV associated malignancies. 

 

1.11.3	
  	
  	
  	
  	
  	
  Viral	
  Chemokines	
  

There are three KSHV chemokines, named vCCL-1, vCCL-2 and vCCL-3, 

specified by ORFs K6, K4 and K4.1 respectively. The chemokines were previously called 

vMIP-1, vMIP-2, vMIP-3 (Moore, Boshoff et al. 1996; Nicholas, Ruvolo et al. 1997; 

Nicholas, Ruvolo et al. 1997). All of the KSHV v-chemokines are expressed during 

replication and chemoattract Th-2 cells, via their interactions either with the chemokine 

receptor CCR8 (vCCL-1, vCCL-2) or CCR4 (vCCL-3), and therefore have been 

postulated to mediate immune evasion via polarization away from anti-viral Th-1 

responses (Dairaghi, Fan et al. 1999; Endres, Garlisi et al. 1999; Stine, Wood et al. 2000; 

Weber, Grone et al. 2001). One of the chemokines, vCCL-2, is also able to interact as a 

neutral (non-signalling) ligand with a range of chemokine receptors, including CCR2, 

CCR5, CCR10, CXCR4, and therefore to block agonist binding to these receptors, 

potentially mediating immune evasion via inhibition of immune cell infiltration into sites 

of lytic replication (Chen, Bacon et al. 1998; Luttichau, Lewis et al. 2001). 

 With regards to the potential roles of the v-chemokines as contributors to KSHV 

neoplasia, the most notable of their properties is their pro-angiogenic activity (Boshoff, 

Endo et al. 1997; Stine, Wood et al. 2000). Thus, as for vIL-6, the induction of angiogenic 

factors would be expected to have a positive influence on endothelial/KS cell activation 

and proliferation and also to play a role in the progression and dissemination of PEL. It 
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has been demonstrated that vCCL-1 can induce VEGF expression in PEL cells, 

suggesting that autocrine signalling by the v-chemokine can promote the release of this 

and possibly other angiogenic factors (Liu, Okruzhnov et al. 2001).  

 

1.11.4	
  	
  	
  	
  	
  	
  Viral	
  G	
  protein-­‐Coupled	
  Receptor	
  (vGPCR)	
  

G protein-coupled receptors form a diverse family of seven transmembrane 

spanning receptors that function in numerous cellular processes by activating signal 

transduction networks via heterotrimeric G proteins. Mammalian genomes encode ~ 1000 

GPCRs that function to regulate physiological processes ranging from cardiac 

contractility to lymphocytes chemotaxis. Initiation of GPCR signaling typically occurs 

following the binding of agonist to the extracellular domains of the receptor. The agonist-

bound GPCR, via a series of conformational changes with its transmembrane domain, 

enables the receptor to calalyze GDP to GTP exchange on a Gα subunit of the 

heterotrimeric G protein complex. The G protein complex then dissociates generating a 

free GTP-bound Gα subunit and a free Gβγ heterodimers, both of which can modulate the 

activity of various downstream effectors including phospholipase C (PLC) and adenylate 

cyclase to generate second messenger molecules (Janeway 2001).  

Herpesviruses seem to have taken advantage of the utility of the GPCR signaling 

network as multiple family members encode proteins sharing sequence homology to 

cellular chemokine GPCRs. Just like any other oncogenic herpesvirus, the genes for these 

viral GPCRs homologues are postulated as having been acquired from the host genome 

and maintained with the viral genome throughout its co-evolution with the host. Many of 

the herpesvirus-encoded GPCR homologues including US28 from the human 

cytomegalovirus (HCMV), M33 from murine cytomegalovirus (MCMV), and ORF74 

from KSHV can initiate traditional G protein signalling cascades as well as other 
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signalling networks involved in gene transcription, cytoskeletal rearrangement, and cell 

motility. Additionally, some of the viral GPCRs, including MCMV M33 for example, 

have been shown to affect viral pathogenesis in vivo (Davis-Poynter, Lynch et al. 1997; 

Beisser, Vink et al. 1998). KSHV GPCRs are constitutively active. Also, they contribute 

to KS and possibly PEL and MCD via angiogenic and cytokine-inducing activities. The 

strongest evidence for a pathogenic role of vGPCR comes from the finding that transgenic 

or vector-transduced mice expressing the receptor in endothelial or other cell types, 

develop endothelial lesions with remarkable resemblance to KS tumours (Yang, Chen et 

al. 2000; Guo, Sadowska et al. 2003; Montaner, Sodhi et al. 2003). It is noteworthy that 

transgenic mice expressing the engineered version of KSHV vGPCR that is unable to bind 

chemokines, but is unaltered with respect to constitutive activity, fails to induce high rates 

of KS-like lesions in transgenic mice, implicating agonist-activated Gαq/MAPK 

signalling and MAPK-effected VEGF induction as key to vGPCR pathogenicity (Sodhi, 

Montaner et al. 2000; Holst, Rosenkilde et al. 2001). However, KSHV vGPCR is known 

to activate a range of pro-inflammatory, growth and angiogenic factors, such as TNF-α, 

IL-1β, IL-2, IL-4, IL-6, IL-8, and bFGF, principally via NFkB activation, and these 

cytokines are also potential contributors to KS, and also PEL and MCD (Pati, Cavrois et 

al. 2001; Schwarz and Murphy 2001). Recent studies by Ma and colleagues showed that 

vGPCR upregulation of Angiopeitin-like 4 (ANGPTL4) played a prominent role in 

promoting angiogenesis and vessel permeability manifested by KS (Ma, Jham et al. 2010). 

The inhibition of ANGPTL4 effectively blocked vGPCR promotion of the angiogenic 

switch and vascular leakage in vitro and tumourigenesis in vivo (Ma, Jham et al. 2010). 

Taken together, these findings suggest these KSHV lytic genes promote tumourigenesis 

just like the latent gene counterparts. 
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1.12      Teminal membrane signaling proteins 

Human γ herpesviruses contain genes located adjacent to the terminal repeat 

region of their genomes which encode membrane proteins that mediate signal 

transduction. These membrane proteins are called ‘terminal membrane proteins’ (TMP). 

TMP directly bind to a variety of signaling molecules to start signaling cascades including 

the PI3K, NF-κB and JAK/STAT pathways (Devergne, Hatzivassiliou et al. 1996; Gires, 

Kohlhuber et al. 1999; He, Xin et al. 2000).  

TMP of KSHV are the highly variable K1/VIP and K15 located at left and right 

ends respenctively of the viral genome, see below. K1 and K15 are also lytic genes 

(Lagunoff 1997; Jenner, Alba et al. 2001; Nakamura, Lu et al. 2003) suspected to play 

roles in KSHV tumourigenesis. 

 

1.12.1	
  	
  	
  	
  	
  	
  Variable	
  ITAM-­‐containing	
  protein	
  (VIP)	
  

An immunoreceptor tyrosine-based activation motif (ITAM) is a conserved 

sequence of four amino acids that is repeated twice in the cytoplasmic tails of certain cell 

surface proteins of the immune system. The motif contains a tyrosine separated from a 

leucine/isoleucine by any two other amino acids giving the signature YxxL/I (Benschop 

and Cambier 1999). ITAMs are important for signal transduction in immune cells; they 

are found in the tails of important cell signaling molecules such as the CD3 and ζ-chains 

of the T cell receptor complex, the CD79-alpha and -beta chains of the B cell receptor 

complex, and certain Fc receptors (Benschop and Cambier 1999). The tyrosine residues 

within these motifs become phosphorylated following interaction of the receptor 

molecules with their ligands and form docking sites for other proteins involved in the 

signaling pathways of the cell (Janeway 2001). 
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KSHV VIP is specifed by ORF K1, at the extreme left end of the genome. 

Transforming gammaherpesviruses HVS and EBV have genes at analoguos genomic 

positions that encode signaling membrane proteins STP (saimiri transformation-

associated protein) and LMP-1 (latency membrane protein-1), and these function as 

transforming proteins. STP and LMP-1 are not detectably homologous and neither of 

these proteins is homologuos to KSHV VIP, but all three proteins are constitutively active 

signal transducers (Moorthy and Thorley-Lawson 1993; Jung and Desrosiers 1995; 

Lagunoff, Majeti et al. 1999). HVS STP is required for HVS-mediated T cell 

transformation in vitro and for tumourigenesis in infected primate models. STP can 

mediate transformation of Rat-1 cells, and transgenic mice expressing STP develop T cell 

lymphomas or epithelia tumours (depending on the STP subtype) (Duboise, Guo et al. 

1998). LMP-1 is necessary for EBV-mediated immortalization of lymphocytes, can 

immortalize or fully transform primary cells and cell lines in culture, and gives rise to B 

cell lymphomas in transgenic mice (Kaye, Izumi et al. 1993; Kilger, Kieser et al. 1998). 

Like STP and LMP-1, KSHV K1/VIP can transform cells in culture, and can also induce 

plasmablastic lymphomas and sarcomatoid tumours in transgenic mice expressing K1/VIP 

in multiple tissues (Lee, Veazey et al. 1998; Prakash, Tang et al. 2002). Importantly, 

K1/VIP can substitute for STP in in vitro and in vivo transformation assays in the context 

of the HVS genome and virus infection. When introduced into the murine gamma-2 

herpesvirus MHV-68 K1/VIP was found to induce salivary gland adenocarcinomas in 

25% of infected animals (Lee, Veazey et al. 1998; Douglas, Dutia et al. 2004). Thus, there 

is evidence to suggest that K1/VIP may play a role in KSHV-induced malignancies. 

 Apart from the possible role of K1/VIP in KSHV malignancies via direct cellular 

transformation, the receptor may contribute to viral neoplasia, particularly KS, via the 

induction of agiogenic factors and inflammatory cytokines. K1/VIP is known to activate 
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SH2 domain-containing Src-family kinases, p85 subunit of PI3K, and PLCγ to initate a 

range of downstream signaling cascades (Lagunoff, Lukac et al. 2001; Tomlinson and 

Damania 2004; Lee, Lee et al. 2005). Of these, the PI3K/Akt pathway is of paramount 

importance in the regulation of cytokine expression via Akt-mediated NFkB activation 

(Samaniego, Pati et al. 2001). These cytokines include IL-6, IL-12 and GM-CSF. The 

angiogenic factors VEGF and matrix metalloproteinase 9 (MMP-9) are also induced by 

K1/VIP, by a mechanism involving the SH2 binding motifs that comprise the C-tail 

ITAM. K1/VIP internalization is recently found to be associated to its function and 

blocking of K1/VIP’s activation of Syk and P13K prevented K1 from internalizing 

(Tomlinson and Damania 2008). Pro-inflammatory and angiogenic factors are likely to 

contribute to KS, PEL and MCD by establishing the conditions for endothelial and B cell 

growth and promoting infiltration of inflammatory cells into sites of infection (Aoki, 

Yarchoan et al. 2000). 

 What might the function of K1/VIP be in KSHV biology? It is possible that dual 

mitogenic and survival signaling via the above-mentioned effector proteins (PI3K/Akt 

and PLCγ) allows efficient virus replication (Lagunoff, Lukac et al. 2001; Tomlinson and 

Damania 2004). A unique feature of K1/VIP relative to other KSHV proteins is the fact 

that domains within the extracellular regions are hypervariable, apparently the result of 

immune pressure (Kasolo, Monze et al. 1998; Zong, Ciufo et al. 1999). 

 

1.12.2.	
  	
  	
  	
  	
  	
  Latency	
  associated	
  membrane	
  protein	
  (LAMP)	
  

 K15 (LAMP) is predicted to comprise an integral membrane protein with twelve 

trasmembrane domains and cytoplasmic N- and C-termini (Choi, Lee et al. 2000). The C-

tail of LAMP contains SH2 and SH3 signaling motifs and sequences resembling C-

terminal activation region-1 (CTAR-1) of EBV LMP-1. CTAR-1 binds TRAFs 1, 2 and 3. 
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LAMP can activate NF-kB signalling (Glenn, Rainbow et al. 1999; Brinkmann, Glenn et 

al. 2003). Src-family protein tyrosine kinases Src, Lck, Hck, Yes and Fyn can associate 

with and phosphorylate the C-tail of LAMP, at least in vitro (Brinkmann, Glenn et al. 

2003). The SH2-binding motif (YEEVL), rather than the expected CTAR-like motif, is 

said to be required for NF-kB activation. In addition to NF-kB activation, LAMP can 

mediate signal transduction via the Ras/Raf/MAPK pathway. Both NF-kB and MAPK 

signaling are dependent on the YEEVL motif and TRAF-2 binding motif also appear to 

require other regions of the protein that are found in the full-length LAMP but not in 

“truncated” products of alternatively spliced mRNAs (Brinkmann, Glenn et al. 2003). In 

addition to potential mitogenic and survival signaling via Src-family kinases and NFkB 

activation, LAMP may also promote cell survival via interaction with the Bcl-2-related 

anti-apoptotic protein HAX-1 (Sharp, Wang et al. 2002). While there is as yet no 

demonstration that this interaction promotes cell survival, LAMP and HAX-1 have been 

found to co-localize to mitochondria, consistent with the notion of their association in 

vivo and the possibility of such a function (Sharp, Wang et al. 2002). The pro-mitogenic 

signal transducing and potential anti-apoptotic activities of LAMP could be relevant to 

KSHV neoplasia.   

Taken together, these KSHV TMPs are described as having transforming and 

tumourigenic properties, maintain constitutively active survival and anti-apoptotic 

pathways that can promote KSHV tumourigenesis. 

 

1.13   Virological aspects of KSHV in KS lesions 

KS initially present typically as a skin lesion and may be preceded by oral, nodular 

or visceral involvment; lesions in all variants of KS are positive for LANA-1 (Dupin, 

Fisher et al. 1999). In KSHV infection, KS tumour cells acquire a characteristic 



Chapter 1: Introduction 

 
 

35 

enlongated shape known as spindle cells. Stained KS spindle cells (Figure 1.3) of the 

lesion indicates about 10% of KSHV infection at the initial stage which increases to about 

100% in the late nodular stage (Boshoff, Schulz et al. 1995; Dupin, Fisher et al. 1999). 

The low level of initial infection may suggest a praracrine mechanism to dictate how the 

disease will progress and may be the virus induces selective growth and proliferative 

profile in infected cells (Boshoff, Schulz et al. 1995) indicative of hyperplasia rather that 

real malignancy. For example KSHV infected KS express VEGF-C (Colman and 

Blackbourn 2008) a growth and angiogenic factor. However, at late stages of KS lesions 

all spindle cells are infected with the predominantly latent virus and there is evidence of 

low level of lytic replication (Boshoff, Schulz et al. 1995). Established lesions are 

monoclonal expansion of KSHV-infected cells whereas advanced lesions are said to be 

oligoclonal (Duprez, Lacoste et al. 2007). 

KSHV sequences are reported to be about 40-80 times more abundant in the 

BCBLs than in KS lesions (Cesarman, Chang et al. 1995). In BCBLs, B cell genotypes 

indicate clonal rearrangement of immunoglobulin genes and frequently contained EBV 

(Knowles, Inghirami et al. 1989). The majority of KSHV infected cells in KS and PEL are 

latently infected and expess IL-6 in PEL (Decker, Shankar et al. 1996). 

KSHV disease progression is influenced by cofactors such as genetic, behavioural, 

host immune status etc. HIV coinfection and organ transplant with immunosuppressive 

therapy are essential cofactors in KS progression. KS regresses spontaneously with the 

withdrawal of the immunosuppressive therapy or with increased CD4+ cells. Moreover, it 

is widely known that highly active antiretroviral therapy (HAART) restores immune 

function and reduces KS incidence (Martro, Esteve et al. 2007). 
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Figure 1.3   KSHV infects spindle-shaped endothelial cells in vascular tissues of KS lesions. 

The KS skin section was dually stained for vascular endothelial growth factor (VEGF-C) (red) and 

KSHV LANA-1 (brown). N=Nucleus of spindle-shaped LANA positive KS cells. E=endothelial 

cell cytoplasm staining for VEGF-C. This figure reproduced from (Colman and Blackbourn 2008). 
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1.14      Transcriptional Reprogramming 

Global gene expression changes soon after KSHV infection of three susceptible cell 

types have been described (Naranatt, Krishnan et al. 2004) which revealed KSHV 

infection had a major impact on the expression pattern of cellular genes in a cell-type 

dependent manner. The differentially expressed genes belonged to a variety of cellular 

pathways. The striking cell type-specific behaviours suggested that at least in the intitial 

stages of infection, KSHV induced host cell gene modulation events in B cells may be 

different compared to observed in the adherent endothelial and fibroblast cells.  

KSHV induced gene expression profile of KS is closer to lymphatic endothelial cells 

(LECs) than to that of blood vessle endothelial cells (BECs); KSHV infects both LECs 

and BECs in vitro (see Boshoff and Weiss 2002). This came to light when Wang and 

colleagues examined the impact of of KSHV infection of LECs and BECs which showed 

the genetic profile of KSHV-infected BECs was skewed towards that of LECs than that of 

uninfected BECs and vice versa. This transcriptome data demonstrate that KSHV 

mediates transcriptional reprogramming of both cell types resulting in their differentiation 

(Wang, Trotter et al. 2004). Wang et al suggested that PROX1 (a homeobox trancription 

factor) expression played a key role for KSHV-induced differentiation of LECs and BECs 

by upregulating LEC markers and downregulating BEC markers in KS tissue (Wang, 

Trotter et al. 2004). The role of KSHV in transcriptional reprogramming was given 

credence when it was reported that KSHV-encoded microRNAs (miRNAs) contribute to 

viral-induced reprogramming by silencing the cellular trascription factor 

musculoaponeurotic fibrosarcoma oncogene homogue (MAF) (Hansen, Henderson et al. 

2010). MAF is expressed in LECs but not BECs. MAF drives tissue specification and 

terminal differentiation of a wide variety of cell types (Eychene, Rocques et al. 2008). 

MAF functions as a repressor of BEC-specific genes, thus maintaining the differentiation 
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status of LECs (Hansen, Henderson et al. 2010). However, MAF suppression in LECs 

was observed in KSHV-infected versus uninfected LECs, LECs transduced with KSHV 

miRNA versus empty lentiviral vector; the gene set enrichment analysis indicated a 

significant increase in expression of BEC-specific genes in the LECs infected with KSHV 

or transduced with KSHV miRNA (Hansen, Henderson et al. 2010). This down-regulation 

of MAF in LECs by KSHV miRNA suggest KSHV miRNA could contribute to the 

control of BEC markers through the suppression of MAF. 

Another study demonstrated that KSHV upregulated Ang-2 mRNA (Ye, Blackbourn 

et al. 2007). Angiopoietins are necessary for blood vessel remodelling, sprouting, and 

maturation (Holash, Maisonpierre et al. 1999). It was further shown that KSHV infection 

activated a full-length Ang-2 promoter reporter construct which was in line with the 

induction of Ang-2 mRNA by KSHV. 

Taken together, these studies show KSHV-infected cells result in the generation of a 

new lineage of cells adapted to provide the optimal condition for survival of the virus and 

concomitantly oncogenesis. 

 

1.15      Interferons (IFNs) 

Invasions by microorganisms are initially countered in all animals by the innate 

immune defense mechanisms that pre-exist in all individuals and begin to act within 

minutes of encounter of the host with an infectious agent. The innate response is 

described as being the first line of defence against a virus infection and involves the 

production of IFNs and other cytokines, activation of complement, and natural killer cells. 

These events in turn, stimulate the adaptive immune response, which enables recognition 

of antigens with a high degree of structural specificity. The effectiveness of the IFN 

response has led to many viruses developing specific mechanisms that antagonise the 
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production or actions of IFNs. Indeed, in order to replicate efficiently in vivo, it seems 

likely that all viruses must, at least to a degree, have some means of circumventing the 

IFN responses either by limiting IFN production or by blocking IFN actions (Randall and 

Goodbourn 2008). 

IFNs are grouped into three classes called type I or IFN-α/β, type II or IFN-γ and 

type III or IFN-λ according to their amino acid sequence. Type I IFN was discovered in 

1957 (Isaacs and Lindenmann 1957). A wide variety of interferon genes have been 

reported in mammals; for instance, 13 IFN-α genes, one IFN-β gene and others such as 

ω,ε,τ,δ, and ҝ (see Pestka, Krause et al. 2004) have been reported in humans. The role of 

ω,ε,τ,δ, and ҝ is not known. The biological significance of the multigenetic nature of IFNs 

is still contentious, as to whether IFNs are expressed differentially in different cell types, 

whether they are induced by different viruses and whether they have specialized funtions 

(Brideau-Andersen, Huang et al. 2007). T cells and natural killer cells activate the type II 

IFN. More recently, type III IFNs have been reported as λ1, λ2, λ3. They are referred to as 

IL-29, IL-28A, IL-28B respectively (Ank, West et al. 2006; Uze and Monneron 2007). 

Just like the type II IFNs, these cytokines are induced in direct response to virus infection 

and use the same signaling pathway (Onoguchi, Yoneyama et al. 2007). 

The heterodimeric IFN-α receptor is composed of at least two polypeptides, IFN-

αR1 and -αR2 which are used by both types I and II IFN (Pestka 2000). Two members of 

the Janus kinase (JAK) family, JAK1 and TYK2 (section 1.15) are recruited to this 

receptor upon ligand engagement and activate IFN signaling and concomittant responses 

(Stark, Kerr et al. 1998), that trigger the transcription of a diverse set of genes that 

together establish of an ‘antiviral state’ in target cells (Figure 1.4). These IFN stimulated 

genes are called IFN-induced or IFN-stimulated genes (ISGs). Some of these ISGs can be 

induced directly by viruses in IFN-independent manner but the antiviral effects are 
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reduced, (see Randall and Goodbourn 2008). Type I IFNs also modulate the immune 

system by activating effector-cell function and promoting the development of the acquired 

immune response. 

When secreted, the type III IFN binds to receptors on cells (the IL-28 receptor, 

which comprises a heterodimers of IL-10R2 and IFNLR1) and elicit the same pattern of 

antiviral response as type I IFNs. The type III IFNs are also induced in many cells but 

show limited tissue distribution (Mennechet and Uze 2006; Zhou, Hamming et al. 2007). 

The role of type III IFNs remains elusive. 

 Types I and II IFNs share no obvious structural homology. However, functional 

similarities exist due to a broad overlap in the types of genes that they induce (Stark, Kerr 

et al. 1998). The importance of IFN-α/β in mediating response to virus infection is 

established by the fact that mice lacking IFN-α/β (Muller, Steinhoff et al. 1994; Fiette, 

Aubert et al. 1995) receptors are unable to mount efficient responses to a large number of 

viruses. Importantly, there are often differences in the requirements for types I and II 

IFNs in resolving specific virus infections. Both types of IFNs stimulate an ‘antiviral state’ 

in target cells, whereby the replication of virus is blocked or impaired due to the synthesis 

of a number of enzymes that interfere with cellular and virus processes. Both types of 

interferons can also slow the growth of target cells or make them more susceptible to 

apoptosis, thereby limiting the extent of virus spread. Finally, both types of IFNs have 

profound immunomodulatory effects and stimulate the adaptive response (Figure 1.4). 

However, whilst both IFN-α/β and IFN-γ influence the properties of immune effector 

cells, they show significant differences, and it is these extended cytokine functions that 

probably account for the different spectrum of antiviral activities of these types of IFNs 

(Randall and Goodbourn 2008). 
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Figure 1.4.   The biological effects of IFNα/β or IFNγ . IFNα/β or IFNγ molecules bind to and 

activate their receptors which then transmit the signals through other processes (see text) to 

activate interferon responsive proteins (e.g. PKR, OAS, Mx etc). Some of these enzymes are 

normally in an inactive state and require the presence of a viral cofactor to become activated. 

Their effects include mediating cell death (Caspases), translational arrest (PKR active), etc. This 

process eventually confers on the host cell an ‘anti-viral state’. On the other hand, other interferon 

responsive proteins such as MHC class 1 process viral particles and present to the CTLs thereby 

connecting the innate immune response to adaptive immune response. IFNα/β molecules also have 

immunomodulatory functions such as promoting the maturation of DCs, upregulating the 

activities of natural killer cells and CD8+ T cells and inducing the synthesis of cytokines, such as 

IL-15 (promotes division of memory CD8+ T cells). This figure is redrawn from (Randall and 

Goodbourn 2008). 
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1.16      Virus induction of IFN genes 

IFN induction studies have been performed using both virus and synthetic nucleic 

acids. Synthetic double stranded RNAs (dsRNAs) such as polyriboinosinic 

polyribocytidylic acid (poly I:C) has been used to efficiently induce IFNs (De Clercq 

2006). Different ways by which a cell senses the presence of an invading pathogen or 

ways by which the host cell detects viruses and iniate IFN signal transduction through the 

pathogen-associated molecular patterns (PAMPs) that are detected by the pattern 

recognition receptors (PRRs) have been reported (Takeuchi and Akira 2010). For a long 

time toll-like receptors (TLRs) were the only known PRRs to sense viral nucleic acids. 

TLRs are membrane resident receptors found in the plasma membrane and endosomal 

compartments. The plasma membrane-bound TLRs generally detect molecules such as 

lipids and proteins, while the edosomal TLRs detect nucleic acids (Takeuchi and Akira 

2010). Upon activation, TLR3, and TLR7/8 initiate a signaling cascade through adaptors 

TRIF and MyD88 leading to expression of IFN and proinflammatory cytokines. Recently 

other types of intracellular PRRs have been reported (Akira, Uematsu et al. 2006). These 

intracellular PRRs are the RIG-I-like receptors (RLRs) retinoic acid-inducible gene I 

(RIG-I) and the melanoma differentiation-associated gene 5 (MDA5) (Uematsu and Akira 

2007). Both RIG-I and MDA5 are known to detect 5’triphosphate RNA and higher order 

RNA structures, respectively (Schlee, Roth et al. 2009; Schmidt, Schwerd et al. 2009). 

Ectopic expression of RIG-I enhances poly I:C responses, and small interfering RNA 

(siRNA) knockdowns  of RIG-I limit IFN-β induction by poly I:C (Yoneyama, Kikuchi et 

al. 2004). MDA-5 has similar properties to RIG-I (Andrejeva, Childs et al. 2004; 

Yoneyama, Kikuchi et al. 2005), but binds with less avidity to poly I:C. RIG-1 and 

MDA5 contain a C-terminal DExD/H box RNA helicase domain as well as two N-

terminal caspase recruitment domains (Yoneyama, Kikuchi et al. 2005). Binding of 



Chapter 1: Introduction 

 
 

43 

5’triphosphate RNA to RIG-I mediates the activation of a signaling cascade that 

culminates in the expression of type I IFNs and other cytokines (see Schlee, Hartmann et 

al. 2009; Yoneyama and Fujita 2009). 

Recently, intracellular DNA sensors capable of stimulatin IFN-α/β production and 

activation of NF-κB have been reported. Ablasser and colleagues showed a DNA-sensing 

mechanism involving RNA polymerase III and RIG-I (Ablasser, Bauernfeind et al. 2009). 

These authors revealed that RNA polymerase III was capable of transcribing AT-rich 

dsDNA into dsRNA containing the 5’triphosphate moiety, which is detectable by RIG-I 

(Ablasser, Bauernfeind et al. 2009). Both RIG-I and MDA5 initiate identical signaling 

cascades probably by acting in parallel after being triggered by their respective viral 

PAMPs (Yoneyama, Kikuchi et al. 2005), via the adaptor protein MAVS (known as 

VISA/CARDIF/IPS-1). MAVS is activated via CARD-CARD associated with RIG-I or 

MDA5 and transmits the signaling cascade culminating in the activation of downstream 

signaling events (see below), leading to the activation of IFN regulatory factor 3 (IRF-3) 

and NF-κB-dependant genes, including type I IFN (Yoneyama, Kikuchi et al. 2004; 

Kawai, Takahashi et al. 2005). Both RIG-I and MDA5 contain the N-terminal tandem 

CARD domains (C1 and C2) are required for interaction with MAVS CARD domain. The 

CARDs domains (C1 and C2) are required for down-stream signaling and constructs 

lacking either domain are dominant negative (Saito, Owen et al. 2008). DNA sensors are 

discussed more comprehensively in section 6.1 

MAVS recruits and activates TRAF-6 (Xu, Wang et al. 2005) and TRAF-3 (Saha, 

Pietras et al. 2006). In intracellular signaling, the IKK component of NEMO acts as an 

essential adaptor both for NF-κB activation and TBK-1/IRF-3 activation, through its 

interaction with TANK (Zhao, Yang et al. 2007) (Figure 1.5). Once activated through 

phosphorylation, these transcription factor(s) relocate to the nucleus via their nuclear 
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localization signal (NLS) to start other processes leading to the induction and production 

of type I interferons. 

It is commonly reported that the induction of IFN-β requires the activation of NF-

κB and interferon regulatory factor 3 (IRF-3) (Paun and Pitha 2007). IRF-3 and NF-κB 

transcription factors reside in the cytoplasm prior to induction. Upon receipt of the 

appropriate signal, the C terminus of IRF-3 is phosphorylated resulting in dimerization 

and the unveiling of the NLS (Dragan, Hargreaves et al. 2007; Panne, Maniatis et al. 

2007). The translocated IRF-3 is retained in the nucleus until it is dephosphorylated 

(Kumar, McBride et al. 2000). NF-κB is bound to the inhibitor of NF-κB (IκB) in the 

cytoplasm. When activated by upstream components of the signaling cascade in response 

to a viral infection, IκB becomes phosphorylated and subsequently ubiquitinated and 

degraded by the proteasome. The freed NF-κB translocates to the nucleus via its NLS 

(Wullaert, Heyninck et al. 2006). Optimal induction of the IFN-β gene also requires 

binding of a c-jun/ATF-2 heterodimer to the promoter (Figure 1.5). So that IRF-3, and 

NF-κB and c-jun/ATF-2 complexes assemble on the promoter in a co-operative manner to 

form what is known as the “enhanceasome”, the formation of which is aided by the the 

high-mobility group (HMG) chromatin-associated protein HMGI(Y) (Merika and Thanos 

2001). Once assembled the enhanceasome components aid the recruitment of CREB-

binding protein (CBP)/p300 that in turn, promote the assembly of the basal transcriptional 

machinery and RNA polymerase II. Others (Berkowitz, Huang et al. 2002; Panne, 

Maniatis et al. 2004) have reported that the IRF-3, NF-κB and c-jun/ATF-2 complexes 

can each form a stable structure with the promoter without HMGI(Y). It is generally 

accepted that binding of IRF-3 and/or IRF-7 is indispensable for induction. However, the 

activation of both NF-κB and c-jun/ATF-2 may not be essential; for example IFN 

induction has been reported under conditions where NF-κB and c-jun/ATF-2 are not 
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activated or their binding site not required (Peters, Smith et al. 2002; Poole, He et al. 

2002). 

The production of IFN during viral infection leads to the induction of at least these 

transcription factors (IRF-1, IRF-3, IRF-7 and IRF-9) (section 1.15) that play important 

roles under some circumstances (Honda, Yanai et al. 2005). IRF-7 is also reported to bind 

to the IFN-β promoter (Panne, McWhirter et al. 2007) and can enhance transcription 

dramatically (Yang, Ma et al. 2004). 

A recently identified adaptor protein STING (also known as MITA) (Ishikawa and 

Barber 2008) is required for IFN-β induction by intracellular DNA such as the synthetic 

oligonucleotides (poly (dA:dT)) and herpes simplex 1 virus (HSV-1). IFN-β responses to  

intracellular DNA involves the STING-TBK1-IRF-3 pathway (Ishikawa, Ma et al. 2009). 

Taken together, these data show that viral nucleic acids or synthetic nucleic acids 

are detected by intracellular PRRs such as the RIG-I and MDA5, which initiate signaling 

cascades culminating in the induction of IFNs and ISGs of the innate antiviral pathway. 

Also, an intracellular DNA detector such as STING induces the IFN-β response pathway 

upon sensing viral infection.  
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Figure 1.5. MDA-5- and RIG-I-dependent signaling. The presence of viral RNA in the 

cytoplasm activates the pattern-recognition receptors MDA-5 and RIG-I both of which are 

activated by dsRNA, whilst RIG-I can also be activated by RNA molecules with 5’ 

triphosphates. These RNA helicases contain N-terminal CARD domains that recruit the 

adaptor protein Cardif/VISA/MAVS/IPS-1. This adaptor protein recruits signaling 

elements that feed into IRF-3 or the NF-κB routes of the IFN-β signaling pathways. NF-

kB activation requires the recruitment of both TRAF6 and RIP1 to the adaptor protein 

Cardif/VISA/MAVS/IPS-1 and their co-operation in recruiting the IKK complex and 

TAK1. TAK1 phosphorylates the IKKβ subunit of the IKK complex, which leads to its 

activation and phosphorylation of IκB. Phosphorylated IκB is ubiquitinated and 

subsequently degraded by proteasomes, releasing NF-κB for migration to the nucleus and 

assembly on the IFN-β promoter. IRF-3 and IRF-7 activation requires that TRAF3 binds 

to TANK, which then binds to TBK-1 and/or IKKe, which are activated and can 

phosphorylate IRF-3/7 directly. The activated IRFs also migrate to the nucleus and 

assemble on the IFN-β promoter, either with or without NF-κB and ATF-2/c-jun, leading 

to the recruitment of co-factors such as CBP/p300 and RNA polymerase II and ultimately 

stimulation of transcription. This figure is reproduced from (Randall and Goodbourn 

2008). 
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1.16.1	
  	
  	
  	
  	
  	
  Regulatory	
  element	
  of	
  the	
  human	
  interferon–β	
  enhancer	
  

The events leading to induction of transcription of the IFN-β gene provide one of 

the best examples of our understanding of how a set of transcription factors assemble on 

an enhancer to direct a specific gene expression programme (Thanos and Maniatis 1995). 

In humans, the IFN-β enhancer is located between nucleotides -110 and -45 relative to the 

transcription start site. It contains four overlapping positive regulatory domains (PRDs) 

that are recognised by sequence-specific trancription factors to form a transcriptionally 

competent enhanceosome (Merika and Thanos 2001). For example, on the IFN-β 

enhancer IRF-3 binds to PRDI and PRDIII elements. It interacts synergistically with NF-

κB and ATF-2/c-Jun bound to adjacent PRDII and PRDIV elements respectively, and 

with HMGI (Y) protein (Kim and Maniatis 1997). In order to overcome histone-mediated 

transcriptional repression (Figure 1.6A), the enhanceosome recruits histone acetyl 

transferase (HATs) called, the general control-of amino-acid synthesis 5 (GCN5) and 

CREB binding protein. They acetylate lysine residues of histones H3 and H4 in the 

nucleosome (Figure 1.6B). These acetylated histones then recruit a nucleosome 

modification complex called, Brahma associated factor (BAF) complex, which forces the 

dislocation of the nucleosome from the transcription start site (Figure 1.6C). This 

nucleosomal dislocation facilitates the recruitment of the transcription complex TFIID to 

the promoter (Figure 1.6D), an essential event for the induction of IFN-β gene expression 

(Agalioti, Lomvardas et al. 2000). 
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Figure 1.6. IFN-β  gene transcription after viral infection. (A) The transcription start site 

(located at +1 base pairs, bp) of the IFN-β gene is covered by a positioned nucleosome when in 

the steady state. (B) During a viral infection, PRD I-IV direct the assembly of transcription factors 

such as ATF2, c-JUN, IRFs, NF-κB, and HMG-I(Y) on the enhanceosome. The enhanceosome 

then recruits HATs, such as GCN5 and CBP/p300, which acetylate (Ac) a subset of lysine 

residues of histones in the nucleosome. (C) Followed by the recruiment of the RNA polymerase II 

holoenzyme and the BAF complexes by contacting the acetylated histone. (D) The BAF 

complexes induce nucleosome displacement from the transcription start site, making it accessible 

to TFIID for the induction of IFN-β expression. This Figure is reproduced from (Honda, Takaoka 

et al. 2006). 
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1.17      Interferon regulatory factors (IRFs) 

Recent studies have shown that IRFs are also involved in most PRR signaling 

events aside from NF-κB (section 1.14), thereby conferring a more diverse immune 

activation capability on the platform that links innate and adaptive immunities. The IRFs 

are transcription mediators of virus, bacteria and IFN-induced signalling pathways and as 

such play a critical role in antiviral defence, immune response, cell growth regulation and 

apoptosis. The IRF family of transcription factors comprises of nine members: IRF-1, 

IRF-2, IRF-3, IRF-4, IRF-5, IRF-6, IRF-7, IRF-8, and IRF-9 (IRF-9 is also known as 

ISGF3)  (see Taniguchi and Takaoka 2001). These family members are reported to have a 

well-conserved amino (N)-terminal DNA binding domain (DBD) with tryptophan repeats 

resembling the DBD of myb transcription factors (see Taniguchi and Takaoka 2001). The 

helix-turn helix domain of the formed DBD recognises similar DNA sequences. The DBD 

of IRF-1 bound to the PRD1 of the IFN-β enhancer revealed that 5’-GAAA-3’ is the 

recognition sequence of the helix turn helix motif of IRF-1 (Escalante, Yie et al. 1998). 

Subsequently 5’-AANNGAAA-3’ was reported as the consensus IRF recognition 

sequence (Fujii, Shimizu et al. 1999). The 5’flanking AA sequence is essential for 

recognition. IRFs therefore do not bind to NF-κB sites since they contain a GAAA core 

sequence without a 5’ flanking AA sequence. Subsequent data indicated that the 

interaction of an IRF DBD with the core motif GAAA result in DNA structure distortion 

allowing cooperative binding of another IRF DBD to the IRF binding site that usually 

contains dimeric repeats of the core sequence (Fujii, Shimizu et al. 1999). IRF-1, IRF-3, 

IRF-5, and IRF-7, have been reported as positive regulators of type I IFN gene 

transcription. 
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The rest of my discussion on the IRF family will focus on IRF-1, IRF-2, IRF-3, 

IRF-7 and IRF-9 because of their involvement in IFN signaling pathways. See below. 

 

1.17.1	
  	
  	
  	
  	
  	
  IRF-­‐1	
  and	
  IRF-­‐2	
  

Work on type I IFN led to the identification of IRF-1 as a protein that binds to the 

virus inducible elements of the human IFN-β gene (Miyamoto, Fujita et al. 1988). 

Overexpression of IRF-1 resulted in the induction of endogenous type I gene induction. 

However, the induction of both IFN-α and IFN-β genes occurred normally in IRF-1 

defecient (Irf-/-) mouse embryonic fibroblasts (MEFs) in response to virus infection 

(Matsuyama, Kimura et al. 1993). This observation means there is an IRF-1-independent 

mechanism of type 1 gene induction in some cells. IRF-1 expression was shown to be up-

regulated during myeloid differention (Abdollahi, Lord et al. 1991). Moreso, others have 

confirmed IRF-1 as essential regulator of the differentiation and maturation of a subset of 

DCs, particularly the CD8α+ subset (Gabriele, Fragale et al. 2006). IRF-1 

transcriptionally targets many genes, including those encoding nitric-oxide synthethase 

(iNOS) (Kamijo, Harada et al. 1994). The induction of iNOS and OAS (oligoadenylate 

synthetase) was impaired in IFN-γ-treated IRF-1 deficient MEFs (Kamijo, Harada et al. 

1994; Kimura, Nakayama et al. 1994). However, IRF-2-/- MEFs showed about a three 

fold rise in type I IFN induction following Newcastle disease virus infection (Matsuyama, 

Kimura et al. 1993). Others reported that IRF-2 prevented virus-induced recruitment of 

transcriptional coactivator CBP in the IFN-β enhancesome (Senger, Merika et al. 2000). 

IRF-2 null mice exhibit NK cell deficiency and IRF-2 deficient NK cells show an 

immature phenotype and compromised receptor expression (Taki, Nakajima et al. 2005). 

IRF-2 was identified as a factor binding the same recognition site as IRF-1, which 

suppresses its transcriptional activity.  
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1.17.2	
  	
  	
  	
  	
  	
  IRF-­‐3	
  and	
  IRF-­‐7	
  

The highly homologous IRF-3 and IRF-7 have been widely reported as the key 

regulators of the type I IFN gene expression induced by viruses (Wathelet, Lin et al. 1998) 

(see Servant, Tenoever et al. 2002). Overexpression of IRF-3 leads to a marked increase 

in virus-induced IFN-β mRNA expression (Sato, Tanaka et al. 1998). Homozygous 

deletion of IRF-3 in mice showed impairment in encephalomyocarditis virus (EMCV)-

mediated induction of type I IFN. The expression levels of type I IFN in New Castle 

Disease virus (NDV) infected MEFs were also substantially decreased in this study, 

although IFN expression could be rescued by ectopic IRF-3 (Sato, Suemori et al. 2000). 

Others also showed that IRF-3 deficiency resulted in enhanced lethality in West Nile virus 

(WNV) infection of mice (Daffis, Samuel et al. 2007). IRF-3 plays a critical role in 

mediating the antiviral response because its ubiquitous expression makes it possible to 

stimulate the antiviral response and synthesis of IFN-β in infected cells (Lowther, Moore 

et al. 1999).  

Conversely, the IRF-7 gene is expressed at a very low level in MEFs and is 

strongly induced by type I IFN through the activation of ISGF3; this induction is 

completely absent in ISGF3-deficient mice MEFs (Marie, Durbin et al. 1998; Sato, Hata 

et al. 1998). IRF-7 undergoes serine phosphorylation in its carboxyl-terminal upon viral 

activation resulting in nuclear translocation. Deletion of this region results in the 

inactivation of this transcription factor (Sato, Hata et al. 1998). Mice with a homozygous 

deletion of IRF-7 were unable to express type I IFN genes upon viral infection or 

activation of TLR9 by CpG-rich DNA, indicating that IRF-7 is also a regulator of type I 

IFN expression (Honda, Yanai et al. 2005).  Moreover, IRF-7 is key to protective IFN-α 

response; as IRF-7-/- mice showed increased lethality to WNV compared to congenic wild 

type (Daffis, Samuel et al. 2008). In MEFs and splenocytes from mice doubly deficient 
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for IRF-3 and IRF-9 (DKO mice), in which IRF-7 mRNA induction is abolished, type I 

IFN mRNA induction was completely abolished (Sato, Suemori et al. 2000). These results 

demonstrate the distinct and essential roles of IRF-3 and IRF-7, which together ensure the 

transcriptional efficiency and diversity of type I IFN genes for antiviral response.  

 

1.17.3	
  	
  	
  	
  	
  	
  IRF-­‐9	
  

IRF-9, also called ISGF3γ/p48 is a DNA binding subunit of the hetero-trimeric 

transcriptional activator, termed IFN-stimulated gene factor 3 (ISGF3). ISGF-3 consists 

of IRF-9, STAT1, and STAT2. IRF-9 can also form a DNA binding complex with STAT1 

homodimers and with STAT2 alone, with these complexes binding to DNA with the same 

specificity as ISGF3 (Kraus, Lau et al. 2003). The formation of ISGF3 is triggered by the 

type I IFN receptor-mediated signal resulting in the induction of many IFN-inducible 

genes (see Bluyssen, Durbin et al. 1996). Virus-induced expression of the IFN-α genes 

was dramatically reduced in IRF-9-/- and also type I receptor (IFNAR1)-deficient MEFs 

(Harada, Matsumoto et al. 1996), while virus-induced expression of IFN-β genes was 

slightly suppressed. There is evidence that ISGF3 binds to the IFN-β promoter 

(Kawakami, Matsumoto et al. 1995). A critical connection between type I IFNs  and p53 

was established when type IFNs transcriptionally activated the tumour suppressor p53 

gene through ISGF3; IRF-9-/- MEFs failed to up-regulate p53 upon IFN-β stimulation 

(Takaoka, Hayakawa et al. 2003). These findings suggest that IRF-9 is a key regulator of 

type I pathway. 

 

1.18      Signal transduction in response to IFNs 

The biological activities of IFNs are initiated by the binding of IFN-α/β and IFN-γ 

to their cognate receptors on the surface of cells, which results in the activation of distinct 
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but related signaling pathways, known as the JAK/STAT pathways (Stark, Kerr et al. 

1998). The ultimate outcome of this signaling is the activation of transcription of target 

genes that are normally expressed at low levels or are quiescent. The upstream regulatory 

sequences of most IFN-α/β-inducible genes contain a variation of the consensus 

sequences [GAAAN-(N)GAAA] called IFN-stimulated response elements (ISRE). The 

upstream regulatory regions of IFN-γ-inducible genes contain a unique element called the 

gamma activation sequence (GAS), which contains the consensus sequence 

TTNCNNNAA. 

Upon IFN-α/β binding, both the IFNAR1 and IFNAR2 associate, facilitating the 

transphophorylation and activation of the tyrosine kinases TYK2 and JAK1 (Novick, 

Cohen et al. 1994). TYK2 then phosphorylates the tyrosine kinases at position 466 

(Tyr466) on IFNAR1 (Colamonici, Yan et al. 1994), creating a new docking site for 

STAT2 through the latter’s SH2 domain (Yan, Krishnan et al. 1996). STAT2 is then 

phosphorylated by TYK2 at Tyr690 and serves as a platform (Leung, Qureshi et al. 1995) 

for the recruitment of STAT1 (also through its SH2 domain), which is subsequently 

phosphorylated on Tyr701 by STAT2 (Shuai, Stark et al. 1993). The STAT1/STAT2 

complex associates with a monomer of IRF-9 to form the ISGF3 heterotrimer that binds 

to the ISRE, present in the promoters of most IFN-responsive genes, and enhances their 

transcription (Figure 1.7). Initial reports indicated that the assembly of ISGF3 took place 

in the nucleus but Tang et al suggested that might be coordinated at the receptor (Tang, 

Gao et al. 2007). Thus, in response to IFN stimulation, the transcriptional co-factor CBP 

is recruited to the IFNAR2 chain of the receptor and catalyses IFNAR2 acetylation, which 

enables the receptor to create docking site for IRF-9 that in turn, also gets acetylated as do 

the receptor, bound STAT1 and STAT2. Acetylation of IRF-9 is required for DNA 
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binding, and acetylation of the STAT factors may aid ISGF3 complex assembly (Tang, 

Gao et al. 2007). 

Type III IFN signaling (Figure 1.7) is reported to follow a similar pattern of 

response to type I IFN (Zhou, Hamming et al. 2007). IFN-γ receptors are composed of at 

least two major polypeptides, IFNGR1 and IFNGR2 (see Bach, Aguet et al. 1997). In 

unstimulated cells, IFNGR1 and IFNGR2 do not pre-associate strongly with one another 

(Bach, Tanner et al. 1996), but their intracellular domains specifically associate with the 

Janus kinases JAK1 and JAK2, respectively (Kotenko, Izotova et al. 1995; Sakatsume, 

Igarashi et al. 1995; Bach, Tanner et al. 1996). Binding of the dimeric IFN-γ to receptor 

triggers receptor dimerization (Figure 1.7), which brings JAK1 and JAK2 molecules on 

adjacent receptor molecules into close proximity (Greenlund, Farrar et al. 1994; Igarashi, 

Garotta et al. 1994); JAK2 is thus activated and in turn activates JAK1 by 

transphosphorylation (Briscoe, Rogers et al. 1996). The activated JAKs then 

phosphorylate a tyrosine-containing sequence near the C terminus of IFNGR1 (Tyr440-

Tyr444) creating binding sites for STAT1 that interact through their SH2 domains 

(Greenlund, Farrar et al. 1994; Igarashi, Garotta et al. 1994) and are phosphorylated at 

Tyr701 culminating in their activation and receptor disassociation. The phosphorylated 

STAT1 proteins dissociate from the receptor and form a homodimer, which translocates 

to the nucleus through poorly characterized mechanism (Sekimoto, Nakajima et al. 1996). 

Activated STAT1 homodimers, also called gamma activated factor (GAF), bind to the 

specific IFN-γ activated site (GAS) that is present in the promoters of ISGs and stimulate 

their transcription.  IFN-α/β can also induce the formation of STAT1 homodimers, albeit 

less efficiently than IFN-γ (Haque and Williams 1994), although the mechanism whereby 

STAT1 homodimers are activated by IFN-α/β remains obscure. 
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Some studies have revealed the important connection between STAT1 and the 

CRB/p300 transcription factors. The CBP/p300 family of transcription factors potentiate 

the activity of several groups of transcription factors (Janknecht and Hunter 1996). Both 

the C- and N- terminal domains of STAT1 have been shown to bind CBP/p300 (Zhang, 

Vinkemeier et al. 1996).  
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Figure 1.7.   Inteferon receptor signaling. IFNs transmit signals via 3 receptor complexes: 

IFNAR1 & IFNAR2 bind type 1 IFNs; IL-10R2 associates with IFNLR1 to bind the three IFNλ 

subtypes; a tetramer consisting of two IFNGR2 chains and two IFNGR1 chains binds dimers of 

the type II IFNγ. When types 1 and III IFNs bind, signal transduction is initiated by the pre-

associated JAK1 & TYK2, which phosphorylate IFNAR1 and lead to the recruitment and 

phosphorylation of the STATI and STAT2. The activated STAT1-STAT2 heterodimers associate 

with IRF-9 to form ISGF3. Similarly, when type II IFN binds, the activated JAKs pre-associated 

with IFNGRs recruit and activate STAT1 homodimers to form the GAF. These complexes 

translocate to the nucleus to induce IFN-stimulated genes from ISREs or GAS promoter elements, 

for types I and type III, or type II IFN responses, respectively. Divergence from this simplified 

signalling pathway can occur, for example, type I IFNs are reported to elicit STAT homodimers. 

This figure is reproduced from (Platanias 2005). 
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1.19      IFN Induced Responsive Elements 

IFN induced genes and responsive elements eventually confer on the host and 

surrounding cells an ‘antiviral state’ through autocrine or paracrine activities. The number 

of ISGs is very large and therefore selected examples of genes and the functions of their 

proteins are discussed in this section to provide a representative overview of the nature of 

the type I IFN-induced antiviral reponse.  

Therefore, I will discuss our current understanding of the role of protein kinase R, 

2’5’ Oligoadenylate synthetase (OAS) and Myxovirus resistance proteins in the antiviral 

host immune response. Other important antiviral proteins such as: the deaminases ADARI 

(adenosine deaminase, RNA specific) and APOBEC (apolipoprotein B mRNA-editing 

enzyme, catalytic polypeptide); members of the tripartite-motif-containing (TRIM) 

proteins; the highly IFN-induced translation regulators IFITs (IFN-induced protein with 

tetraricopeptide repeats) will however not be discussed in this chapter. 

 

1.19.1	
  	
  	
  	
  	
  	
  Protein	
  Kinase	
  R	
  (PKR)	
  

PKR induced by IFN is a serine/threonine kinase with multiple functions in 

control of transcription and translation (Clemens and Elia 1997). The two well 

characterized domains of PKR are the N-terminal regulatory domain containing the 

dsRNA binding site and a C-terminal catalytic domain that contains all of the conserved 

motifs for protein kinase activity (Meurs, Chong et al. 1990). Members of the PKR family 

of proteins phosphorylate the eukaryotic initiation factor 2α (EIF2α) resulting in the 

sequestration of guanine-nucleotide exchange factor EIF2β (Roberts, Hovanessian et al. 

1976). The phosphorylation of EIF2α by PKR may be attributed to PKR’s antiviral and 

antiproliferative activities. PKR is reported to be constitutively expressed in all tissues 

and is up-regulated in types I and II IFNs (Ank, West et al. 2006). PKR is always in an 
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inactive form until it becomes activated by a dsRNA or viral replication or other cofactors. 

It then dimerizes leading to the activation ElF2α to halt translation (Kimball 1999). 

Besides, elF2α phosphorylation can activate autophagy, by which the contents of a cell 

can be degraded (Espert, Codogno et al. 2007). Experiments in PKR-deficient mouse 

embryonic fibroblasts show that PKR is involved in protection against infection with 

several RNA viruses, including hepatitis C virus (HCV) (Noguchi, Satoh et al. 2001), 

hepatitis D virus (HDV) (Chen, Tsay et al. 2002), West Nile virus (WNV) (Samuel, 

Whitby et al. 2006) as well as some DNA viruses such as HSV-1 (Al-khatib, Williams et 

al. 2003). 

 

1.19.2	
  	
  	
  	
  	
  	
  2’5’	
  Oligoadenylate	
  synthetase	
  (OAS)	
  

First identified as IFN-induced proteins that generate low-molecular-weight 

inhibitors of cell-free protein synthesis, a distinct nature of OAS proteins is their ability to 

synthesize 2’5’-linked phosphodiester bonds to polymerize ATP oligomers of adenosine 

(Kerr, Brown et al. 1977; Kerr and Brown 1978). These unique 2’5’-oligomers 

specifically activate the latent form of ribonuclease L (RNaseL), which can then mediate 

RNA degradation (Clemens and Williams 1978). The four OAS identified in humans, 

termed OAS1, OAS2, OAS3 and OASL have been mapped to chromosome 12 

(Hovanessian and Justesen 2007). The antiviral function of the OAS proteins has been 

investigated using RNaseL-deficient mice (Zhou, Paranjape et al. 1997). These mice 

showed increased susceptibility to RNA viruses from the Picornaviridae, Reoviridae, 

Togaviridae, Paramyxoviridae, Orthomyxoviridae, Flaviviridae and Retroviridae families 

(see Silverman 2007). 
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1.19.3	
  	
  	
  	
  	
  	
  Myxovirus	
  resistance	
  (Mx)	
  GTPase	
  

The Mx family GTPases, which comprise MxA and MxB in humans and Mx1 and 

Mx2 in mice, were initially identified as antiviral proteins by the observation that the 

sensitivity of many inbred mouse strains to orthomyxovirus was solely due to mutation 

within the Mx locus on chromosome 16 (Lindenmann 1962; Haller, Arnheiter et al. 1979). 

This sensitivity could be rescued by restoration of Mx1 expression (Arnheiter, Skuntz et 

al. 1990). Interestingly, constitutive expression of the human equivalent of mouse Mx1, 

MxA, in IFNAR-deficent mice confers full resistance to otherwise fatal infection with 

Thogoto virus, LaCrosse virus or Semliki Forest virus (Arnheiter, Skuntz et al. 1990). The 

two human Mx proteins are encoded on chromosome 21 in a region syngeneic to the Mx 

region on mouse chromosome 16 (Horisberger, Wathelet et al. 1988). Members of some 

virus families such as: coxsackie virus (Picornaviridae) and hepatitis B virus 

(Hepardnaviridae) are susceptible to human MxA antiviral activity (Chieux, Chehadeh et 

al. 2001; Gordien, Rosmorduc et al. 2001). Besides, genetic studies of human populations 

have shown that a polymorphism in the MxA gene correlates with increased susceptibility 

to HCV (Hijikata, Ohta et al. 2000), HBV57 and measles virus, with the later associated 

with higher rates of subacute sclerosing panencephalitis (Torisu, Kusuhara et al. 2004). 

Both the central interacting domain and the C-terminal domain of Mx proteins are 

required to recognise target viral structures, the main viral target seems to be viral 

nucleocapsid-like structures (Kochs and Haller 1999). 

 

1.20      Overview of immune modulation by KSHV vIRFs 

KSHV encodes four vIRFs with homology to cellular IRFs (Russo, Bohenzky et al. 

1996).These genes have probably evolved to subvert cellular IRF signalling, but other 

activities cannot be excluded and may therefore explain why the virus carries so many of 
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these genes. It is also possible that certain types of the vIRFs are expressed preferentially 

in different cell types or during different stages of the virus life cycle (Dittmer 2003). The 

vIRFs are not unique to KSHV, as rhesus rhadinovirus encodes nine, one of which 

appears to be spliced (Searles RP 1999; Alexander, Denekamp et al. 2000). KSHV vIRF-

1, vIRF-2, and vIRF-3 have been cloned and characterized functionally, whilst vIRF-4 

(K10/K10.1) has been detected by gene array (Jenner, Alba et al. 2001), Northern blot and 

RT-PCR analyses (Cunningham, Barnard et al. 2003). 

 

KSHV vIRF-2 is the subject of the present thesis. In the following sections I will 

review the current understanding of the functions of each of the four KSHV vIRFs. 

1.20.1	
  	
  	
  	
  	
  	
  vIRF-­‐1	
  

The vIRF-1 protein is encoded by ORF K9. A 449 amino acid (aa) protein with 

homology to several IRFs. The amino terminal region contains a conserved tryptophan–

rich DNA binding sequence and shows 13.4% homology to the IFN consensus sequence-

binding protein (ICSBP) (Russo, Bohenzky et al. 1996). The mRNA has a size of 1.5 kb 

(Cunningham, Barnard et al. 2003). The expression of vIRF-1 can be induced by TPA 

treatment in BCBL-1 cells (Jenner, Alba et al. 2001; Cunningham, Barnard et al. 2003). 

Transcripts of vIRF 1 have been detected in KS biopsies by RT-PCR (Dittmer 2003) and 

also in MCD (Parravicini, Chandran et al. 2000). vIRF-1 (Figure 1.8) is a multifunctional 

protein; it inhibits IFN-β signal transduction as measured using an IFN-responsive ISG54 

reporter construct co-transfected into HeLa and 293 cells. Some groups have shown that 

vIRF-1 can function as a repressor on promoters containing ISRE genes by suppressing 

the transcriptional activity of IRF-1 and IRF-3, interacting with them directly or 

competing for their binding to the transcriptional coactivator p300 (Burysek, Yeow et al. 

1999; Lin, Genin et al. 2001) and that NIH 3T3 cells constitutively overexpressing vIRF-1 
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gained the ability to grow in soft agar and to form tumours in nude mice (Gao, Boshoff et 

al. 1997; Li, Lee et al. 1998). vIRF1 represses p53-dependent transcription and 

deregulates its apoptotic activity suggesting that vIRF1 could regulate cellular function by 

inhibiting p53 (Seo, Park et al. 2001). Roan and colleagues however, reported that vIRF-1 

can act as a transcriptional activator in some settings (Roan, Zimring et al. 1999). Some 

studies showed that vIRF1 interacts with p300/CBP, inhibiting the transactivation of CBP, 

the histone acetyltransferase activity of p300 and the formation of transcriptionally active 

IRF-p300/CBP complexes (Burysek, Yeow et al. 1999; Lin, Genin et al. 2001). Another 

report showed that vIRF1 inhibits ataxia telangiectasia-mutated kinase (ATM) activity, 

leading to reduced p53 serine 15 phosphorylation and increased p53 ubiquination and 

degradation (Shin, Nakamura et al. 2006).  

Clinical studies showed that a combination of retinoid acid (RA) and IFN inhibits 

cell growth in vitro and in vivo more potently than either agent alone (Lindner and Borden 

1997). Retinoid-IFN-induced mortality-19 (GRIM19) is a gene associated with cell death 

caused by IFN/RA. In the presence of IFN/RA vIRF1 protein deregulates GRIM19-

induced apoptosis (Seo, Lee et al. 2002). 

Taken together, theses findings suggest vIRF-1 is multifunctional. Thus, vIRF-1 

can inhibit IFN-β signal transduction, repress the functions of the promoters of some 

ISRE genes, causes tumour in nude mice and deregulate the apoptotic pathway by 

suppressing GRIM19. 

 

1.20.2	
  	
  	
  	
  	
  	
  	
  vIRF-­‐2	
  

Burysek and colleagues 1999 cloned and characterised the first exon of vIRF-2 of 

163 amino acid residues encoded by ORF-K11.1 (Burysek, Yeow et al. 1999), (Figure 

1.8). These authors suggested ORF K11.1 is a DNA binding protein with specificity 
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distinct from the cellular IRFs because it formed homodimers, which specifically bound 

to the NF-κB binding site (Burysek, Yeow et al. 1999). Like vIRF-1, ORF-K11.1 bound 

various transcription factors including IRF-1, IRF-2, ICSBP, RelA/p65 and CBP/300 as 

demonstrated by pull-down assays (Burysek, Yeow et al. 1999). Subsequently, by 

studying KSHV-infected BCBL-1 cells, the same group revealed that the majority of ORF 

K11.1 was localized in the nuclear fraction while the cytoplasmic fraction showed low 

levels of the protein (Burysek and Pitha 2001). This finding suggested ORF-K11.1 was 

constitutively expressed in the nucleus. 

More detailed studies by others (Jenner, Alba et al. 2001; Cunningham, Barnard et 

al. 2003), revealed that vIRF-2 encodes an inducible, 2.2 kbp, spliced transcript 

representing the two exons K11.1 and K11 from which full-length vIRF-2 protein is 

translated. In reporter gene assays in 293 cells, full-length vIRF-2 protein inhibited both 

type 1 and type III IFN-induced ISRE signaling (Fuld, Cunningham et al. 2006). Also, 

vIRF-2 blocked the transactivation of the full-length IFN-β reporter promoter by either 

IRF-3 or IRF-1 (Fuld, Cunningham et al. 2006). Recently, we reported that the 

inactivation of IRF-3 by vIRF-2 involved caspase 3 during poly I:C induced antiviral 

reponse in 293 cells (Areste, Mutocheluh et al. 2009). 

These studies, suggest vIRF-2 have similar activities like vIRF-1, these activities 

include inhibition of IFN-β functions but unlike vIRF-1, vIRF-2 mediates signaling via 

IRF-3 and there are no yet reports of vIRF-2’s oncogenic properties. 
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Figure 1.8. Gene arrangement in the vIRF region. The region between genes 57 and 58 (83–95 

kbp) is shown in inverse orientation with respect to the HHV-8 DNA sequence (Russo et al., 

1996). The shaded arrows representing the ORFs are labeled including two putative IRF regions 

in the shaded rectangles, which was proposed by Russo et al. (1996) Neipel et al (1997). The 

lower section (shaded arrows) are labeled as vIRFs and shows the expression pattern deduced 

from subsequent publications. RNAs and introns are shown as thick black lines. Polyadenylation 

signals are shown as vertical lines at the 3’-ends of mRNAs. This figure is reproduced from 

(Cunningham, Barnard et al. 2003) 
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1.20.3	
  	
  	
  	
  	
  	
  vIRF-­‐3.	
  	
  	
  	
  

vIRF-3 (also known as LANA-2), (Figure 1.8) has been shown to be expressed 

during latency in PEL cell lines, whereas the other vIRFs appear to be expressed 

exclusively or predominantly as lytic genes (Jenner, Alba et al. 2001; Rivas, Thlick et al. 

2001; Fakhari and Dittmer 2002; Cunningham, Barnard et al. 2003). It is important to 

note that while vIRF-3 is a latent protein in PEL cell lines, it has also been detected in 

lymphocytes in MCD tissue, but is undetectable in KS cells (Rivas, Thlick et al. 2001) 

therefore might not be essential for KS-mediated cell survival. The size of vIRF-3 mRNA 

is 1.9 kb as assessed by northern blot hybridization (Cunningham, Barnard et al. 2003). 

The fundamental role of vIRF-3 in KSHV biology appears to be in blocking cellular IRF 

functions and IRF-stimulated pathways that lead to apoptosis. It has been reported that 

vIRF-3 can inhibit these activities of IRF-3 and IRF-7 and, as a consequence, suppress the 

interferon induction in response to virus infection (Lubyova and Pitha 2000). One way by 

which vIRF-3 inhibits IRF-7 activity is that vIRF-3 specifically interacts with either the 

DNA-binding domain or the central IRF association domain of IRF-7 leading to the 

inhibition of IRF-7 DNA binding activity and the inhibition of IFN-α production (Joo, 

Shin et al. 2007). Also, vIRF-3 interacts with cellular IRF-5 leading to the inhibition of 

IRF-5 binding to ISRE promoters (Wies, Hahn et al. 2009). vIRF-3 can also protect 

against apoptosis by inhibition of p53 activity, which may involve direct interactions with 

the tumour suppressor (Rivas, Thlick et al. 2001), and can interfere with immune response 

via inhibition of NF-kB-activating IkB kinase β (IKKβ) (Beissbarth, Hyde et al. 2004). 

The role of vIRF-3 would therefore be predicted to promote survival of latently infected 

cells and contribute to the KSHV malignancies involving B cells (PEL, MCD), in which it 

is expressed.  
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1.20.4	
  	
  	
  	
  	
  	
  vIRF-­‐4	
  	
  	
  	
  

vIRF-4 is encoded by the spliced genes ORF K10 and ORF K10.1 (Figure 1.8). It 

has been characterized incompletely and the extents of its functions are still unkown 

(Cunningham, Barnard et al. 2003; Kanno, Sato et al. 2006). Expression of K10 protein 

was induced by TPA in KSHV-infected PEL cell lines, suggesting K10 is a lytic proten 

(Katano, Sato et al. 2000). K10 protein is expressed in the nucleus by a few tumour cells 

in KS tissues, and also a few mantle zone B cells express K10 protein in their cytoplasm 

in MCD (Katano, Sato et al. 2000). Cunningham and others reported that the length of 

K10 gene is more than 2 kbp making it the longest of all the vIRFs (Cunningham, Barnard 

et al. 2003). DNA microarray analysis suggested the presence of 2 transcripts in addition 

to the K10/K10.1 spliced transcript (Jenner, Alba et al. 2001). Northern blot analysis 

showed that spliced transcript K10/K10.1 transcript (2.9 kb) was induced by TPA in TY-1 

cells (Kanno, Sato et al. 2006), while western blotting analysis identifies showed a 110-

kDa protein of  K10/K10.1. Multiple sequence alignments revealed the K10.1 N-terminal 

region encoded DBD with homology to IRFs including a typtophan pentad repeat (Kanno, 

Sato et al. 2006). K10/K10.1 protein clustered with vIRF-1 in the same branch when a 

phylogenetic analysis was conducted leading to speculation that it might share similar 

functions to vIRF-1 (Kanno, Sato et al. 2006). Just like vIRF-1 and vIRF-3, vIRF-4 is 

reported to downregulate p53-mediated host immune surveillance against viral infections 

(Lee, Toth et al. 2009). However, vIRF-4 is reported not to inhibit early events in IFN 

pathway (Kanno, Sato et al. 2006).  

Taken together, the immuno-modulatory potential of the three KSHV vIRFs 

(vIRFs 1-3) stems from their ability to down-regulate the IFN-regulatory pathway of the 

innate immune system. Also, the down-regulation of p53-mediated cell growth control is 
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a common characteristic of the four KSHV vIRFs suggesting these vIRFs deregulate the 

cell cycle. 

 

1.21      Justification 

In the present study, more detailed understanding of the biology of KSHV vIRF-2 has 

been sought. We hypothesise that KSHV has evolved to encode the vIRF-2 protein as an 

immune evasion strategy. The outcomes of understanding KSHV-host interactions in the 

context of vIRF-2 include: 

 

1 Defining the molecular bases or details behind vIRF-2 function may further our 

understanding of cellular processes driving front-line defense against infecting 

pathogens, particularly viruses. 

2 Discovering new immune system responses or components in the innate immune 

response to virus infection. 

3 Discovering the role of vIRF-2 in KSHV biology could reveal mechanisms by 

which other DNA viruses evade the immune system and cause disease and 

therefore development of new therapies against such viruses. 

 

1.22      Aims and objectives 

We hypothesise that vIRF-2 is multifunctional and may target events up-stream 

and down-stream of the IFN-α receptor and other cellular genes involved in the IFN-α/β 

pathway. The aim of this study is therefore to determine the range and type of cellular 

genes whose expression is deregulated by vIRF-2. This approach will unravel cellular 

pathways sensitive for intervention in KSHV infected cells. These data should provide an 

understanding of the role of the vIRF-2 protein in the biology of KSHV. 
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The specific objectives are to: 

1 Engineer cell clones stably transfected with an inducible vIRF-2 gene and in 

parallel empty vector cell clones. 

2 Ensure the functionality of the vIRF-2 protein in the stable transfected cells by 

repeating the reporter gene experiments described (Fuld, Cunningham et al. 2006), 

which were originally perfomed in transiently transfected 293 cells. 

3 Determine the impact of vIRF-2 on the cellular transcriptome by performing a 

DNA microarray investigation. 

4 Confirm differential expression of vIRF-2 targeted biological pathways and their 

products by alternative approaches, including immunoblot assay. 
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CHAPTER 2      Materials and Methods 

 

The experimental methodologies used throughout this research project will be 

outlined and described in this chapter, with reference to background literature where 

applicable. The appendices include comprehensive lists of commonly used chemicals and 

reagents (Appendix A), antibodies (Appendix B), plasmids (Appendix C), commonly 

used buffers and other solutions (Appendix D). 

 

2.1.    Mamalian cell culture techniques 

The most commonly used cells in the present study are: Human embryonic kidney 

cells (HEK 293), African green monkey kidney cells (Vero cells) and mouse fibroblasts 

cells (L929 cells). The cells were cultured in culture media at 37oC, in a humidified and 

5% CO2 condition. Depending on the type of experiment being conducted the cells were 

grown in T75 flasks, T25 flasks, 6-well plates, 24-well plates, 12-well plates and 96-well 

plates.  

Cultured confluent cells were gently rinsed with phosphate buffered saline (PBS) 

and then covered in 0.5% Trypsin-EDTA for a few minutes to allow the cells to detach 

from each other. The flask was then given a vigorous shake by slapping it a few times to 

detach cells from the walls of the flask. The cells were then suspended in culture medium 

to quench the trypsin. Cells were plated on Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% heat inactivated foetal bovine serum (FBS), 1% v/v 

penicillin/streptomycin, 1% non essential amino acids (this medium shall be referred to as 

culture medium). Aliquots of the culture cells were stored in liquid nitrogen (-196oC) for 

long-term storage and -80oC for short-term storage. Cells were counted prior to seeding 

the culture plates (section 2.2). 
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2.2.      Culture cell count using trypan blue dye exclusion staining 

technique 

Cell suspensions were diluted in 0.5% trypan blue solution (Table 1, Appendix A) 

the ratio ranging from 1:2 to 1:5 depending on cell concentration and incubated at room 

temperature for about 5 minutes after gently mixing. Dead cells normally take up this dye 

making it possible to distinguish between dead and live cells when counting under the 

light microscope. About 15 µl of Trypan blue–cell suspension mixture was transferred to 

both chambers of the heamocytometer (Nebauer Chamber), which was filled by capillary 

action. Starting with chamber 1 of the heamocytometer, all non-stained (viable) cells were 

counted. Each square of the heamocytometer with cover slip in place represents a total 

volume of 0.1 mm3. 1 cm3 is equivalent to 1 ml, so that cell concentration per ml was 

determined using the following calculations:  

Cells per ml = the average count per square x dilution factor x 104 (a constant). 

For example: if the average count per square is 50 cells x 5 x 104 = 2.5 x 106 cells/ml. 

 

2.3      SDS-PAGE and Western blotting 

2.3.1	
  	
  	
  	
  	
  	
  Cell	
  lysate	
  preparation	
  with	
  lysis	
  buffer	
  E	
  

Cells grown in each well of the 6-well plates were gently rinsed with ice cold PBS 

and suspended in 1 ml ice-cold PBS. Next, the cells were centrifuged (13,000 x g, 1 

minute 4o C), the pellets from each well of the 6-well plate were collected and suspended 

in 100 µl lysis buffer E (Table 1, Appendix D). The cell lysates were then incubated for 

~ 20 minutes on ice and the insoluble material removed by centrifugation (13,000 x g, 5 

minutes, 4o C). The supernatant was transferred to fresh 1.5 ml eppendorf tubes and stored 

frozen at -80oC. 
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2.3.2	
  	
  	
  	
  	
  	
  Cell	
  lysate	
  preparation	
  with	
  non-­‐ionic	
  detergent	
  lysis	
  buffer	
  

The cultured confluent cells (grown in 6-well plates) were first rinsed with ice 

cold PBS. 200µl of ice-cold non-ionic detergent lysis buffer solution (Table 1, Appendix 

D) was added to the cells and incubated (15 minutes, 4o C) with shaking. Next, the cell 

suspension from each well of the 6-well plate were collected in to 1.5 ml Eppendorf tubes 

and sonicated for 15 seconds followed by another round of centrifugation (13,000 x g, 5 

minutes, 4o C). The supernatant was transferred to fresh 1.5 ml Eppendorf tubes and 

stored frozen at -80oC 

 

2.3.3	
  	
  	
  	
  	
  	
  Sodium	
  Dodecyl	
  Sulfate	
  PolyAcrylamide	
  Gel	
  Electrophoresis	
  (SDS-­‐

PAGE)	
  	
  

SDS-PAGE was made to separate proteins under reducing and denaturing 

conditions. The resolving gel was prepared first according to Table 2.1 and was adjusted 

to the desired percentage of acrylamide for different applications. The stacking gel was 

prepared according to Table 2.2.  

 

Table 2.1      Resolving gel preparation chart 
Stock solution Supplier Acrylamide 

  10% w/v 12% w/v 8% w/v 

30% w/v Acryl/bis 

Acrylamide 

SIGMA 5.0 ml 6.0 ml 4.0 ml 

4X Tris-SDS-HCl, pH 8.8  Lab made solution 3.75 ml 3.75 3.75 ml 

H2O Lab made solution 6.25 ml 5.25 ml 7.25 ml 

10% APS SIGMA 0.05 ml 0.05 ml 0.05 ml 

TEMED SIGMA 0.01 0.01 0.01 

  
The resolving gel preparation chart was optimised for protein electrophoresis in the present study. 

The volumes shown are enough to prepare two gels of 0.75 mm, 1 mm, and 1.5 mm. The 

ammonium persulphate (APS) & TEMED were added last. 
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Table  2.2       Stacking gel preparation chart 
Stock solution  Volume (ml) 

30% Acryl/bis-Acrylamide 0.65 

4X Tris-SDS-HCl, pH 6.8 1.25 

H2O 3.20 

10% APS 0.025 

TEMED 0.01 

 
The stacking gel preparation chart was optimised for protein electrophoresis in the present study. 

The volumes shown are enough to prepare two gels of 0.75 mm, 1 mm, and 1.5 mm. The 

ammonium persulphate (APS) & TEMED were added last. 

 
 

Briefly, the resolving gel mixtures were poured in to glass plate sandwiches and 

allowed to polymerize. The stacking gel mixtures were then poured on top of the 

resolving gel; combs were inserted and the gel allowed to polymerize. The desired 

volumes of the protein samples-2X loading buffer mixtures were then loaded on the wells 

of the gels. The protein markers were loaded on each gel in parallel with the samples. 

Gels were run at 40 mA or 150 V until the tracking dye had almost reached the bottom of 

the gasket. The proteins were electro blotted to polivinylidene difluoride (PVDF) 

membrane (Table 1, Appendix A) by applying 300 mA or 100 V for the desired time in a 

transfer chamber (Table 1, Appendix B).  

 

2.3.4	
  	
  	
  	
  	
  	
  Immunoblotting	
  

The non-specific antibody binding sites on the blotted membranes were blocked 

with 5% w/v BSA, 1X TBS, 0.05% Tween-20 solution (Table 1, Appendix D) for 

approximately 1 hour at room temperature. Next, the membranes to which proteins had 

been blotted (blotted membranes) were probed with primary antibodies (Table 1, 
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Appendix B). The antibodies were diluted in the blocking buffer. The blotted membranes 

were incubated with the diluted primary antibody solution at 4oC with gently shaking 

overnight (approximately 16 hours). The blotted membranes were washed with 1X TBS, 

0.05% Tween-20 solution for 2 times at 20 minutes intervals followed by another 

incubation step with the secondary antibodies (Table 2, Appendix B). The horseradish 

peroxidase (HRP) conjugated secondary antibodies were usually probed for 1 hour 

(incubation at 4oC, with gentle shaking). Following the manufacturer’s instructions, the 

peroxidase activity of the secondary antibodies was detected with enhanced 

chemiluninescence (ECL) reagents (Table 1, Appendix A). The membranes were 

exposed to photographic films or X-ray films (Table 1, Appendix A) for a few seconds 

or up to 20 minutes. Protein images (bands) captured on the X-ray films were detected 

with Compact X4 automatic X-ray film processor.  

 

2.3.5	
  	
  	
  	
  	
  Coomassie	
  Blue	
  staining	
  

Where necessary, polyacrylamide gels were stained with Coomassie Blue solution 

(Table 1, Appendix D) with agitation for 30 minutes at room temperature and then 

destained in a destaining solution. Gels were then vacuum-dried on to Whatmann paper at 

80oC for approximately 60 minutes. 

 

2.4      Molecular techniques  

2.4.1	
  	
  	
  RNA	
  isolation	
  

Total cellular RNA was isolated with RNAeasy mini kit (Table 1, Appendix A) 

according to the manufacturer’s instruction. Briefly, cultured cell pellets from a 6-well 

plate were disrupted with the desired volume of the lysis buffer RLT. Using a blunt 20-
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guage needle (0.9 mm diameter) fitted to an RNase-free syringe, the lysate was passed 

through at least 5 times. 70% ethanol was added to the homogenized lysates, which were 

then transferred to an Rneasy spin column and centrifuged (10,000 x g, 15 seconds, 4oC) 

to allow the total RNA to bind to the membrane resins. This centrifugation was followed 

by 3 wash steps: (1) Buffer RW1 was added to the Rneasy spin columns and centrifuged 

(10,000 x g, 15 seconds, 4oC) to wash the spin columns membranes, (2) buffer RPE was 

added to the Rneasy spin columns and centrifuged (10,000 x g, 15 seconds, 4oC), this step 

was repeated. The Rneasy columns were then transferred to fresh Eppendorf collection 

tubes. Approximately 50 µl of Rnase-free water was added directly to each spin column 

membrane and centrifuged (10,000 x g, 15 seconds, 4oC) to elute the ultra pure total RNA. 

Next, the concentration of the ultra pure total RNA was measured by spectroscopy 

(Nanodrop). 

 

2.4.2	
  	
  	
  	
  	
  	
  Complementary	
  DNA	
  (cDNA)	
  synthesis	
  

RNA for real time PCR assays was first reverse transcribed to cDNA using 1µg of 

the ultra pure total RNA in a 20-µl reaction volume. TaqMan mixture was used for the 

qPCR. Briefly, in a nuclease free microcentrifuge tube the following were added: 0.5 µl of 

random primers, 1 µg of RNA, 1 µl 10 mM of dNTP mix (10 mM each dATP, dGTP, 

dCTP and dTTP at neutral pH. Sterile distilled water was added to 11 µl and the mixture 

was incubated (65oC, 5 minutes) and immediately placed on ice. Next, the following were 

added: 4 µl of 5X First–Strand Buffer, 2 µl 0.1 M DTT and 1 µl RNaseOUT 

(Recombinant Ribonuclease Inhibitor 40 units/µl (Table 1, Appendix A). The contents of 

the tube were gently mixed and incubated (37oC, 2 minutes) followed by the addition of 1 

µl (200 units) of M-MLV RT (Table 1, Appendix A), mixed again and incubated at room 

temperature for 10 minutes. The reaction was incubated (37oC, 1 hour) and stopped by 



Chapter 2: Materials and Methods 

 
 

74 

further incubating (70oC, 15 minutes). The cDNA was then ready to be used as template 

for amplification by PCR. 

 

2.4.3	
  	
  	
  vIRF-­‐2	
  primer	
  and	
  probe	
  design	
  

Real time PCR primer pairs were designed to amplify a 140 bp amplicon of the 

vIRF-2 gene. The primer sequences were: Forward 5’-TGGTTCCTGCGTCAAGTACA- 

CA-3’ and reverse 5’-TATTAAGGACGGCCAATCGAGC-3’. The GC content of the 

primers was 50%. The vIRF-2 TaqMan probe was designed as: 5’-CACATCCCTTGTAT 

GGCCTAGGTG-3’. This 24 bp (50% GC) probe annealed 10 bp downstream of the 

5’end of the forward primer. The probe was labelled with fluorescent reporter dyes; 6-

FAM and quencher dye-TAMARA, at the 5’ and 3’ ends respectively. The primers and 

probe were designed to suit the following cycling conditions: a melting temperature (Tm) 

of 60oC +/- 2oC for each primer, a maximal Tm difference for both primers of ≤ 2oC, a 

GC content of 50%, the primer lengths were 22 nucleotides. The GAPDH primers/probe 

mix (a predeveloped TaqMan Assay Reagent) (Table 1, Appendix A) was employed to 

amplify the GAPDH gene. The CT values were determined by the automated threshold 

analysis (ABI PRIZM software; Applied Biosystems). 

 

2.4.4	
  	
  	
  Primers	
  and	
  probe	
  efficiency	
  measurements	
  

Primers and probes efficiency values were measured using the CT slope method. 

The ‘slope’ is a regression coefficient calculated from the regression line in the standard 

curve. This method involves generating a dilution series of the target template and 

determining the CT value for each dilution. A plot of CT versus log cDNA concentration 

was constructed. With this method, the expected slope for a 10-fold dilution of template 

DNA is approximately -3.32 indicating 100% amplification. In this study, % of 
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amplification efficiency was preferred over slope values. Calculations and data analyses 

were performed with the 7500 Software v2.0 Applied Biosystems. 

 

2.4.5	
  	
  	
  Relative	
  gene	
  expression	
  level	
  was	
  determined	
  with	
  Delta	
  Delta	
  CT	
  

(ΔΔCT)	
  

The relative level of gene expression was calculated using the ΔΔCT 
 method. The 

ΔΔCT 
 analysis of the data was performed automatically by the 7500 software package. 

Data are therefore presented as the fold change in gene expression normalized to an 

endogenous reference gene (GAPDH for this study) and relative to untreated control 

(calibrator sample). For the time course of gene expression experiments the calibrator 

sample represents the amount of transcript that is expressed at time zero. 

Briefly, the relative expression (RE) of each target gene was calculated by 

normalising to the CT value of endogenous control and relative to the calibrator sample 

(untreated control). This method assumes that amplification efficiency of both the target 

and endogenous control genes is very similar and close to 100% (± 10%).  

 

2.5   Plasmid DNA propagation and purification with EndoFree plasmid 

Maxiprep Kit 

Plasmid DNA was extracted from bacterial cultures with the Endo-free MaxiPrep 

kit (Table 1, Appendix A). Thus, the E.coli DH5α strain habouring pISRE-luc, or 

pRLSV-40-luc used in this study was retrieved from glycerol stocks and plated on Luria 

Bertani broth (LB) containing 100 µg/ml ampicillin and incubated (37oC, 16 hours). Next, 

a single bacterial colony was picked and inoculated in a 3 ml LB medium containing 100 

µg/ml ampicillin to generate a starter culture. Following incubation (37oC, 16 hours) with 
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vigorous shaking, the starter culture was diluted 1:1000 in LB containing 100 µg/ml 

ampicillin and further incubated (37oC, 16 hours) with vigorous shaking. At this stage the 

culture reached approximately 3-4 x 109 cells/ml. The bacterial cells were harvested by 

centrifugation (4000 x g, 4oC, 10 minutes). The pellets were recovered and the plasmid 

DNA was extracted using the EndoFree Maxi Prep Kit according to the manufacturer’s 

instructions. Briefly, the bacterial cells were lysed with the 250 µl of the lysis buffer P2. 

Next, the released proteins were precipitated using buffer N3. Each sample was then 

centrifuged (13 000 x g, 4oC, 10 minutes) and the supernatant applied to the QIAprep spin 

column. The QIAprep spin columns were washed by adding 0.5 ml of buffer PB before 

centrifuging (13 000 x g, 4oC, 1 minute) and the flow through discarded. Another wash 

step involved the use of 0.75 ml of wash buffer PE. After the flow through was discarded 

another centrifugation step was carried out to remove residual wash buffer. The QIAprep 

column of each sample was placed in a fresh 1.5 ml tube and the DNA eluted by adding 

50 µl of buffer EB to the QIAprep spin column and centrifuged (1300 x g, 4o C, 1 minute). 

Plasmid yield was determined by spectroscopy (Nanodrop) and the quality was further 

confirmed by resolving on 1% agarose gel (Figure 2.1) 
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Figure 2.1   Agarose gel analysis of purified representative plasmid DNA.  1 µg of plasmid– 

1X loading buffer mixture of CV or EV was resolved on 1% agarose gel for analysis of purity 

after the Endotoxin Free Maxi Prep. 1 kb DNA ladder was loaded in parallel. The gel was run at 

50 V for 1 hour. MM = DNA ladder, CV = Control vector, EV = empty vector: Lysates containing 

supercoiled (lower big bands) and open circular plasmid DNA (upper faint bands) are visible. 
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Supercoiled plasmids 
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2.6     Reporter gene assays 

2.6.1	
  	
  	
  	
  	
  	
  Transient	
  transfections	
  

Cells were grown to confluence with initial seeding density of 5x105 cells in 6-

well plates and incubated overnight (~ 17 hours) in antibiotic free medium. The medium 

in each well of cells was replaced with fresh one (each well contained 2 ml culture 

medium). A transfection mixture containing the required amount of DNA (Table 1, 

Appendix C) and Lipofectamine (Table 1, Appendix A) in antibiotic free and serum free 

medium was made and incubated at room temperature for 20 minutes. Next, 250 µl of the 

transfection mixture was plated on each well of cells. The cells were then harvested 24 

hours post transfection. Where reporter plasmids expressing the firefly luciferase gene 

were transfected, cells were cotransfected with a plasmid constitutively expressing the 

Renilla luciferase to which the firefly luciferase activity was normalized. 

 

2.6.2	
  	
  	
  Dual	
  Luciferase	
  Reporter	
  Assay	
  

The reporter enzymes of two distinct luciferase reporter genes expressed in a 

single cell or within a single system can be simultaneously measured by the dual 

luciferase assay (DLA) with the luciferase assay kit (Table 1, Appendix A). In general, 

an “experimental” reporter gene is co-transfected with a “control” reporter gene, which 

serves as internal control and the baseline response to which the experimental reporter 

gene is normalized. This is necessary to minimise errors such as transfection inefficiency, 

differences in pippetting volumes, incomplete cell lysis or cell growth variability. In dual 

luciferase reaction (DLR) the activities of firefly (Photinus pyralis) and Renilla (Renilla 

reniformis) luciferases are measured sequentially from a single sample. The DLR systems 

are quantified using a luminometer. The firefly luciferase is first quantified by adding the 

Luciferase Assay Reagent II (LARII) to generate a stable luminescent signal, which is 
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quenched or stopped after the data is recorded. The Renilla luciferase activity is then 

simultaneously measured by adding the ‘Stop & Glo’ reagent to the same tube; it also 

generates a stable signal. This is possible because of the distinct structures of both the 

firefly (61 kDa monomeric protein) and Renilla (36 kDa monomeric protein) luciferases 

to selectively discriminate between their respective bioluminescent reactions. Photon 

emission is achieved through oxidation of beetle luciferin in a reaction that requires ATP, 

Mg2+ and O2. The luminescence signal generated by Renilla luciferase utilizes O2 and 

coelenterate-luciferin (coelentrazine). The luciferase assay reagents contain coenzyme A 

(CoA), which stabilises and significantly intensifies the luminescence signal. The firefly 

luciferase assay is very sensitive and extends over a linear range over seven orders of 

magnitude in enzyme concentration (sourced from Promega website, DLR Laboratory 

manual).  

Therefore, luciferase activity was quantified by DLR assay, according to the 

manufacturer’s instructions. Briefly, adequate volumes of the following solutions and 

reagents were prepared immediately before the start of the assay: 1 part of the 5X Passive 

lysis buffer was added to 4 parts of sterile distilled water to make up 1X passive lysis 

buffer. 20 µl of 50X Stop & Glo® substrate was added to 980 µl of the Stop & Glo® 

buffer contained in a polypropylene tube. The LAR II, Stop & Glo® Reagent and the 

samples were warmed to room temperature prior to performing the DLR assay. The two 

auto-injectors of the luminometer were purged by repeat priming/washing with 2 ml of 

sterile distilled water per each auto-injector. The system was then primed with 600 µl of 

LARII and 600 µl of the Stop & Glo Reagent solutions; both reagents used separate 

injectors. The luminometer was programmed to perform a 2-second premeasurement 

delay, followed by a 10-second measurement period for each reporter assay. The data 
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were automatically saved to Excel spread sheet (Microsoft). Normalised pISRE-luc 

activity was calculated as: Firefly luminescence / Renilla luminescence. 

 

2.7      Creating a stable cell line engineered to individually express vIRF-2 

clone 3-9 

The clone 3-9 cell line, engineered to be stably transfected with an inducible 

vIRF-2 gene was constructed by Blackbourn et al prior to the start of the present study. 

The details of construction follows. The vIRF-2 gene was subcloned in to the pTRE2-pur-

Myc Vector (Clontech) (Table 1, Appendix C). This plasmid is a Tet expression vector 

for tetracycline-regulated expression of a gene of interest bearing a Myc tag for use with 

the Tet-On and Tet-Off gene expression and the Tet-On and Tet-Off Cell lines (Gossen 

and Bujard 1992; Gossen, Freundlieb et al. 1995; Vectors: 2000). The vector also contains 

a gene for puromycin resistance regulated by an SV40 promoter. The Tet Expression 

Systems and Cell lines gives researchers ready access to tetracycline-regulated expression 

systems as described (Gossen, Freundlieb et al. 1995). 

The HEK 293 Tet-On cells express the reverse tetracycline-controlled 

transactivator (rtTA) so that in the presence of tetracycline or doxycycline, rtTA binds 

TRE and activates transcription of the downstream gene. The 293 Tet-On cells were 

therefore transfected with the pTRE2-pur-Myc-vIRF-2 or pTRE2-pur-Myc-luc or left 

untransfected using a lipid-based transfection reagent. Following antibiotic selection with 

G418 and puromycin, the cell clone carrying the vIRF-2 expression cassette was obtained 

by limiting dilution and was called the ‘vIRF-2 clone 3-9’. vIRF-2 expression was 

confirmed by both immunofluorescent assay and dual luciferase assay. The empty 

parental vector pTRE2-pur-Myc lacking vIRF-2 was transfected in parallel to create an 

“empty vector” (EV) cell line lacking vIRF-2 expression. 
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Using similar techniques I constructed the vIRF-2 sister clones and their empty 

vector counterparts for the purpose of this study, see below (section 2.8). 

 

2.8      Deriving vIRF-2 expressing and empty vector counterpart stable cell 

lines 

First, HEK 293 Tet-On cells were transfected as described (section 2.6.1) with 

pTRE2pur-Myc (1000 ng/well) or pTRE2pur-myc-vIRF-2 (1000 ng/well) or pTRE2-pur-

Myc-luc (1000 ng/well) using a 6-well plate (Table 1, Appendix C). Approximately 24 

hours post transfection; the medium in each well of cells was replaced with fresh medium 

supplemented with 400 µg/ml G418, 1 µg/ml puromycin and 3 µg/ml fungizone (Table 1, 

Appendix A). The medium was changed weekly until confluent growth of oligoclonal 

stable cell lines was achieved. Aliquots of each cell line were stored frozen in liquid 

nitrogen. The next task was to derive clones from each of the oligoclonal cell lines. 

Briefly, 1x106 cells of each of these cell lines was plated in T25 flask containing DMEM 

supplemented with 400 µg/ml G418, 1 µg/ml puromycin and 3 µg/ml fungizone (Table 1, 

Appendix A). Upon reaching confluence the cells were trypsinised as described in section 

2.1. Each cell line was suspended in the culture medium and diluted to 0.3 cells/100 µl 

medium and 100 µl was plated in to a 96-well flat bottom plate and incubated (37oC, 5% 

CO2) until confluent growth was achieved. Any outgrowing clones were expanded to one 

well of a 24-well plate containing 1 ml culture medium and incubated (37oC, 5% CO2). 

Upon reaching confluence, cell clones from each well of the 24-well plate were expanded 

by subculturing in a T25 flask, incubated (37oC, 5% CO2) until confluent and a sufficient 

quantity of cells was grown for further studies. 
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2.9   Cell culture and induction of vIRF-2 protein expression 

Previously grown vIRF-2 clones or EV clones were split and quantified as 

described (sections 2.1 and 2.2). The cells were then plated 5 x 105 cells per well of the 6-

well plate or 2 x 104 cells per well of the 96-well plate in the culture media supplemented 

with 400 µg/ml G418 and 1µg/ml puromycin and incubated for approximately 72 hours. 

The culture media were then replaced with a fresh culture media supplemented with or 

without 1µg/ml doxycycline and further incubated for the desired period of time. Where 

necessary cells were treated with the required concentration of recombinant IFN-αB2 

(rIFN-α). 

 

2.10      Indirect immunofluorescence assay (IFA) 

IFA was employed to detect the subcellular localization of vIRF-2 in clone 3-9 vs 

EV cells. First, each of the glass coverslips (13 mm diameter) was placed in each well of 

the 24-well plate; 100 µl of fibronectin, 0.1% solution diluted (1:20 PBS) was dispensed 

in to each well of the 24-well plate to cover the glass coverslips and incubated (37oC, 5% 

CO2) overnight to allow for sufficient coating of the coverslips with fibronectin (Table 1, 

Appendix A). Next, the fibronectin was removed, replaced with fresh culture medium 

supplemented with 400 µg/ml G418 and 1 µg/ml puromycin, and plated with 1x103 cells 

in each well of 24-well plate. On confluence, the cells were treated with or without 

doxycycline (1µg/ml, 24 hours) and fixed in acetone:methanol (1:1) solution for 5 

minutes at room temperature. They were then washed once in PBS/1% FBS, followed by 

incubation for 10 minutes in permeabilisation solution (Table 1, Appendix D). The cells 

were then washed twice and the non-specific binding sites were blocked with 10% heat 

inactivated sheep serum for 30 minutes at room temperature followed by a further wash. 

The cells were then incubated with the primary antibody (mouse anti-cmyc 1:100) for 1 
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hour at room temperature, washed three times at 5 minute intervals and incubated with the 

secondary antibody sheep anti-mouse IgG conjugated to fluorescein isothiocyanate (FITC) 

(1:100) (Table 2, Appendix B). Washing three times at 5 minute intervals at room 

temperature followed this incubation period. The nuclei were stained in 1 µg/ml DAPI 

(Table 1, Appendix A) in sterile distilled water for approximately 5 seconds and rinsed in 

sterile distilled water. Finally, the glass cover slips were mounted on Prolong Gold + 

antifade reagent (Table 1, Appendix A) for 24 hours and sealed with nail varnish (Table 

1, Appendix A). In each experiment images were recorded under the same exposure 

conditions for comparative analysis using the fluorescent microscope. 

 

2.11      Bioinformatics 

The DNA microarray experiments used in the present study were performed on 

exon arrays (see section 4.1). Microarray technology is a widely used high-throughput 

tool for measuring gene expression (Schena, Shalon et al. 1996), (see Allison, Cui et al. 

2006). The bioinformatics software packages employed for data analyses are stated below. 

 

2.11.1	
  	
  	
  	
  	
  	
  Data	
  Preprocessing	
  and	
  QC	
  

Gene level analysis of the Affymetrix exon arrays was performed using 

Affymetrix Expression Console (EC) with option Robust Multichip Average (RMA)-

Sketch. The EC software package provides signal estimation and quality control (QC) 

functionality for GeneChip expression arrays (3’ Expression and Exon arrays). Further, its 

workflow provides the more commonly used summarization probe set algorithms such as 

RMA.  
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2.11.2	
  	
  	
  Identification	
  of	
  differentially	
  expressed	
  genes	
  

Differences in gene expression levels between cell treatments (-dox-ifn, +dox-ifn, 

-dox+ifn, +dox+ifn (phenotype features) were assessed with the Limma package (Smyth 

2004). The Limma package provides a set of tools for background correction and scaling, 

as well as an option to average on-slide duplicate spots. The Limma p-value is a version 

of student t-test specifically adapted for microarray data analysis. Heatmaps were 

generated using dChip (http://www.dchip.org) with default setting option. This phase of 

the data pre-processing was performed by Dr. Wenbin Wei (School of Cancer Sciences, 

University of Birmingham). 

 

2.11.3	
  	
  	
  Gene	
  Ontology	
  Analysis	
  

One of two analytical software packages used in this work was DAVID (database 

for annotation, visualization and integrated discovery) (v6.7), bioinformatics and data 

mining resources which is capable of extracting biological meanings associated with large 

gene lists. 

Probe set identifiers (gene identities or user gene list) were uploaded to the 

DAVID package (Huang da, Sherman et al. 2009). The classification stringency of the 

functional annotation clustering tool allowed users to choose higher stringency setting for 

tight, clean and smaller numbers of clusters. There were five predefined levels from the 

lowest to highest according to the user’s choices. Default setting was medium and was 

chosen for our gene list because with the high setting, gene enrichment scores were very 

low. The default settings were used to cluster genes into functionally related groups to 

unravel their biological significance. The details of individual gene sets or related 

biological pathways were viewed with the functional annotation chart and/or table.  
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Gene Set Enrichment Analysis (GSEA) was the second analytical software 

package used to evaluate the array data (Subramanian, Tamayo et al. 2005). GSEA 

determines whether a priori defined set of genes shows statistically, concordant 

differences between two biological states such as phenotypes. It derives its power by 

focusing on gene sets, that is, groups of genes that share biological function, 

chromosomal location, or regulation. Enrichment analysis increases the likelihood for 

investigators to identify biological processes most pertinent to the biological phenomena 

being investigated. The Molecular Signature Database (MsigDB) package is a collection 

of gene sets for use with the GSEA package. For example, the canonical pathways (one of 

the 5 major collections of the GSEA), sorts gene sets from the pathway databases most of 

which are canonical representations of a biological process compiled by domain experts.  

From the array raw data file, all spikes and positive and negative controls were 

deleted. Spikes are non-human DNAs (bacterial etc) added into the hybridization mix so 

that the technical aspects of the experiment can be assessed. The expression data set 

values above 50 units were considered to be above the baseline noise levels and were 

therefore recalculated and expressed as log (2). The expression data set were uploaded on 

to the GSEA software package (http//www.broadinstitute.org/gsea/). The collapse dataset 

to gene symbols parameter was set to TRUE when GSEA was run so that the expression 

dataset, which had 13798 native features, was reduced to 13542 after collapsing features 

to gene symbols. By collapsing the dataset, GSEA converts the probsets in the expression 

dataset in to a single entity or vector for the gene, which gets identified by its symbol. The 

data was then analysed with the standard guide procedure. 
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2.12   Chandipura virus and EMCV experimental procedures 

The virus work experiments were employed to quantify viruses grown in the 

vIRF-2 induced cells vs EV counterpart pre-treated with IFN-α. Vero and L929 cells were 

maintained in DMEM supplemented with 1% penicillin-streptomycin, and 10% heat 

inactivated foetal bovine serum. Professor David Evans generously donated the 

Chandipura virus and EMCV. Clone 3-9 or EV clone 5 (5 x 105 cells/well) were grown in 

a 6-well plate for 72 hours. Next, the culture medium supplemented with 10% heat 

inactivated foetal bovine serum, 1% penicillin-streptomycin, 1% non essential amino acid, 

1µg/ml puromycin and 400 µg/ml G418 was removed and the cells were incubated (37 oC, 

5% CO2, 24 hours) in fresh culture medium with or without 1µg/ml doxycycline and with 

or without increasing amounts of rIFN-α (3 U/ml, 30 U/ml, & 300 U /ml). The culture 

medium was taken off and the cells infected with either the Chandipura virus or EMCV at 

multiplicity of infection (MOI) of 0.1 in the culture medium; the required amount of viral 

stock was suspended in 500 µl of the culture medium and plated in each well of cells. 

After the 1 hour adsorption step (37 oC, 5% CO2), the supernatant was removed and the 

cells rinsed twice with sterile PBS. The cells were again incubated (37 oC, 5% CO2,) in a 

fresh culture medium with or without 1µg/ml doxycycline and with or without increasing 

amounts of IFN-α (3 U/ml, 30U/ml, & 300 U/ml). 24 hours later the supernatant was 

harvested in order to quantifiy virus by plaque assay. 

 

2.13      Plaque assay 

One of the most important procedures in virology is measuring the virus titer by 

plaque assay. This technique was developed to calculate the titers of bacteriophage stocks 

and was later updated by Renato Dulbecco in 1952 and has since been used for reliable 
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determination of the titers of many different viruses. The plaque assay was used to 

quantify virus titres in this section of the study.  

Monolayers of vero or L929 cells were grown in DMEM GlutMAX (Invitrogen) 

supplemented with 10% heat inactivated FBS, 1% HEPES, 1% penicillin-streptomycin 

and incubated (37 oC, 5% CO2) to confluence prior to the start of the plaque assay. To 

determine the virus titer, virus suspension stocks were titrated to 10-6 in the plaque assay 

medium (DMEM supplemented with 1% penicillin-streptomycin). The vero or L929 

monolayer cells were infected with 250 µl of the diluted virus suspension per well of the 

12-well plate and incubated (37oC, 5% CO2) for 30 minutes. The vero or L929 cells were 

then covered with an overlay medium consisting of 10% v/v Minimum Essential Medium 

(MEM) with Earl’s salt (10X), 1% v/v L-glutamine, 3% v/v 7.5% sodium bicarbonate, 2% 

v/v foetal calf serum heat inactivated, 1% v/v penicillin/streptomycin, and 30 ml of 2% 

agar (0.6%). After the overlay medium had set (semisolid), the vero and L929 cells were 

incubated (37 oC, 5% CO2 ) for 24 and 72 hours respectively. The plaques were stained by 

dispensing 2 ml crystal violet solution in to each well and incubated at room temperature 

with a gently shake. The overlay gel was removed by gently washing the plates with 

running tap water. The Plaques are readily seen at the bottom of the culture plate against a 

purple background. Number of plaques counted per well X 4 = plaques/ml X 10 = plaque 

forming units per ml (PFU/ml), 4 and 10 are dilution factors. 

 

2.14       Quantifying proteins by densitometry 

The relative densitometry was performed on the immunoblots for pSTAT1 and 

IRF-9/p48. Scanned Immunoblot images were uploaded on to Image J software package 

and blot band sizes and density were measured. See 

(http://lukemiller.org/index.php/2010/11/analyzing-gels-and-western-blots-with-image-j/). 
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2.15      Statistics 

Microsoft spreadsheets excel and GraphPad Prism software packages carried out 

statistical analysis of the data. Because the p value measures the strength of evidence 

against the null hypothesis, statistical significance is presented as (∗p<0.05), (∗∗p<0.01) 

or (∗∗∗p<0.001). 
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Chapter 3.     KSHV vIRF-2 expression and functional studies 

 

Research into KSHV vIRF-2 expression in clone 3-9 cells will enable us to 

decipher its functions and protein partners, and provide a clearer picture of the complex 

regulatory networks that control fundamental biological processes that may be regulated 

by vIRF-2. The construction of the clone 3-9 cell line carrying doxycycline-inducible 

vIRF-2 and its empty vector counterpart lacking vIRF-2 are described in sections 2.7 and 

2.8. vIRF-2 protein expression and function have been previously studied in HEK293 

cells with transient transfection assays using vIRF-2 expressing plasmid vectors (Fuld, 

Cunningham et al. 2006; Areste, Mutocheluh et al. 2009). However, a vIRF-2 expressing 

stable cell line in which every cell will express vIRF-2 was required (i) to validate vIRF-2 

inhibition of pISRE-luc activity (Fuld, Cunningham et al. 2006) and (ii) for mechanistic 

studies of the impact of vIRF-2 on the second phase of the IFN-α/β pathway (JAK-STAT 

pathway). Additional vIRF-2 expressing cell lines were engineered and studied in parallel 

to clone 3-9 to ensure results were not clone specific. In the following chapter I will 

describe the characterization of vIRF-2 expression and function in clone 3-9 cells. 

 

3.1     Evidence of vIRF-2 antiviral activities 

Others have reported on vIRF-2 functional activities. Early studies indicated that 

part of vIRF-2 protein encoded by exon 1 inhibited IFN-α and IFN-β promoters in 

transient transfection assays (Burysek, Yeow et al. 1999). Burysek and Pitha further 

investigated the biological impact of the anti-IFN effect of vIRF-2 exon 1 and reported 

that HEK293 cells transfected with its expression vector rescued vesicular stomatitis virus 

(VSV) mRNA translation from IFN-induced block. VSV protein synthesis was not 



Chapter 3: vIRF-2 KSHV vIRF-2 expression and functional studies 

 
 

90 

significantly inhibited by up to 1000 IU/ml of IFN-α in the presence of vIRF-2 whereas in 

HEK293 cells transfected with empty vector, the synthesis of VSV matrix proteins was 

reduced significantly by IFN-α, at approximately 360 IU/ml.  

Our group reported full-length vIRF-2 inhibits IFN-α-induced ISRE signalling by 

approximately 80%. In this study HEK293 cells were transiently cotransfected with a 

luciferase reporter regulated by the promoter of ISG56 ISRE (pISRE-luc) and increasing 

amounts of vIRF-2 expressing vector. The cells were then treated with rIFN-α (200 IU/ml) 

(Fuld, Cunningham et al. 2006). One mechanism may have been the prevention of IRF-1 

from binding to its cognate DNA in the ISRE; since ISRE sites overlaps with IRF1-E, to 

which IRF-1 binds within the IFN-β promoter (Taniguchi and Takaoka 2002). 

Alternatively,  ISGF-3 may be targeted by vIRF-2. 

Recently, our group reported another mechanism of vIRF-2 function: vIRF-2 

suppressed IFN-β promoter transactivation by suppressing the activity of wild type IRF-3 

protein levels by taking advantage of the phosphorylation of residues at the IRF-3 C-

terminal site 2 (Areste, Mutocheluh et al. 2009). Phosphorylation at this site represses 

autoinhibition and permits interaction with CBP/p300, making it possible for site 1 to be 

phosphorylated as well resulting in homodimerization (Panne, McWhirter et al. 2007). 

When we mutated the IRF-3 C terminal sites 1 and 2 separately and together we showed 

that the transactivation capabilities of all the mutants were reduced by approximately 50 

% compared to that of IRF-3 wild type (WT). Also, we showed the decay of 

phosphorylated IRF-3WT by vIRF-2 depends on caspase-3 activity, because studies with 

caspase-specific inhibitors demonstrated that IRF-3 decay was reduced when caspase-3 

activity was inhibited (Areste, Mutocheluh et al. 2009). This study was performed in a 

system where the full-length IFN-β promoter driving luciferase reporter gene expression 

(p125-luc) was transiently cotransfected with a vIRF-2 expressing plasmid and also in 
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clone 3-9 cells (where vIRF-2 expression was induced); the IFN-α/β pathway was 

activated by synthetic double-stranded RNA (Areste, Mutocheluh et al. 2009).  

Previous attempts at making vIRF-2 expressing stable cell lines by Fuld and 

Blackbourn proved unsuccessful as the cells died when vIRF-2 expression was 

constitutive (unpublished observations). Thus, the clone 3-9 cell line carrying the vIRF-2 

expression cassette regulated by doxycycline was developed in the Blackbourn laboratory 

just before the present work began. Although clone 3-9 and its EV counterpart cells were 

used for some vIRF-2 functional studies (Areste, Mutocheluh et al. 2009), for the purpose 

of this study it was necessary to create more clones to ensure the data generated were not 

clone specific. The vIRF-2 functional studies described so far by the various research 

groups have all relied on the IFN-α/β pathway to represent the most immediate antiviral 

response in the host cells but none have reported on how vIRF-2 affects the JAK-STAT 

pathway. Much more information could be generated by investigating the impact of vIRF-

2 on the cell transcriptome in response to IFN-α as determined by DNA microarray 

analyses. 

Data presented in this chapter include those indicating that doxycycline induction 

of vIRF-2 expression in clone 3-9 peaked at 24–36 hours and that vIRF-2 was 

predominantly a nuclear resident protein as determined by IFA. Also, the luciferase 

reporter experiments in which IFN-α drove pISRE-luc activity demonstrated that vIRF-2 

significantly (p<0.001, Student’s t test) inhibited the pISRE-luc transactivation. The 

Agilent bioanalyser data showed the 12 RNA samples were of excellent condition to 

undergo DNA microarray investigations, which are subsequently discussed in chapter 4. 
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3.2     vIRF-2 expression studies in clone 3-9 cells 

To establish the optimal amount of doxycycline required for the induction of the 

peak amount of vIRF-2 expression in the clone 3-9 cell line, confluent cells of this line 

were treated with increasing amounts of doxycycline up to 1 µg/ml for 24 hours. The cells 

were harvested and lysates prepared using a standard protocol. Equal amounts of cell 

lysates were then resolved by SDS-PAGE and immunoblotted with antibodies to the 

cmyc-epitope of vIRF-2. To ensure equal amounts of lysates were loaded, blots were also 

performed with anti-GAPDH antibodies. vIRF-2 expression accumulated in a dose 

dependent fashion and reached a plateau with 1 µg/ml of doxycycline compared with the 

non-doxycycline-treated cells. Residual amounts of vIRF-2 protein representing 

background levels were detected in non-doxycycline-treated cells (Figure 3.1A). 

The next task was to determine the time point at which vIRF-2 protein expression 

peaked in clone 3-9 cells following induction. Confluent clone 3-9 cells were treated with 

1 µg/ml doxycycline up to 144 hours. Equal amounts of cell lysates were then resolved on 

SDS-PAGE and immunoblotted with antibodies to cmyc-epitope of vIRF-2. Blots were 

also performed with anti-GAPDH antibodies to ensure equal amounts of lysates were 

loaded. vIRF-2 expression peaked at 36 hours post-doxycycline treatment. In untreated 

cells (0 hours) there was virtually no bands seen but a trace band representing weak 

accumulation of vIRF-2 could be seen in cells treated with doxycycline for 12 hours 

which then peaked at 36 hours and declined to background levels in cells treated for 72 

hours onwards (Figure 3.1B). Another experiment performed as described for figure 3.1B 

was repeated up to 48 hours of doxycycline treatment (Figure 3.1C) and also 

demonstrates vIRF-2 expression peaked at 36 hours. 

Taken together, vIRF-2 protein expression peaked at 24-36 hours in clone 3-9 

cells following induction with 1 µg/ml of doxycycline. 
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Figure 3.1.   Establishing the concentration of doxycycline and the time of treatment 

providing maximal vIRF-2 expression in clone 3-9 cells. (A)  Clone 3-9 cells were plated at a 

density of 5 x 105 cells/well in 35 mm wells and treated with the indicated concentrations of 

doxycycline for 24 hours. 20 µg of cell lysate were resolved on 10% SDS-PAGE and 

immunoblotted with antibody against the cmyc-epitope of vIRF-2 protein as primary antibody and 

horseradish peroxidase-conjugated anti-mouse antibody as secondary antibody. (B) and (C) Clone 

3-9 cells were grown as described in (A), treated with doxycycline (1 µg/ml) and harvested at the 

indicated time points. Cell lysates were prepared as described in (A) and immunoblotted with 

antibody against the cmyc-epitope of vIRF-2 protein as primary antibody and horseradish 

peroxidase-conjugated anti-mouse antibody as secondary antibody. Probing for GAPDH ensured 

equal amounts of lysate were loaded in each lane. Blotted membranes were developed using 

enhanced chemiluminiscence and protein images (bands) were detected with the Compact X4 

automatic X-ray film processor. These results are representative of three independent experiments 

showing the same pattern. Each image is representative of 3 experiments performed separately. h, 

hours. 
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3.3       Quantifying vIRF-2 mRNA by real time quantitative PCR (RT-qPCR) 

The aim of this section of the study was to determine vIRF-2 mRNA levels by RT-

qPCR to verify the western blot data (Figure 3.1). In order to use the ΔΔCT 
 method for 

relative quantification of vIRF-2 mRNA levels, the efficiency of the target amplification 

and the efficiency of the endogenous control amplification must be approximately equal 

(Livak and Schmittgen 2001; Liu and Saint 2002). Therefore, it was necessary to first 

determine the amplification efficiencies of vIRF-2 and GAPDH primers/probes in 

singleplex and duplex reactions respectively (see section 2.4.4). The recommended 

amplification efficiency range is 90 %-110%.  

The two most commonly used methods to analyse data from RT-qPCR 

experiments are absolute quantification and relative quantification. The absolute 

quantification determines the input copy number, usually by relating PCR signal to a 

standard curve whereas relative quantification relates the PCR signal of the target 

transcript in a treatment group to that of another sample such as an untreated control. Both 

techniques were used in this section of the study. 

The clone 3-9 cells were treated with doxycycline 1µg/ml for 30 hours. 

Subsequently, total RNA was extracted from the cell lysate as described (see section 2.4.1) 

and the template cDNA synthesized (see section 2.4.2). The cDNA samples were 10-fold 

serially diluted with distilled water (range 1:10-1-1:10-6). vIRF-2 and GAPDH 

primers/probes binding efficiencies were measured by qPCR and TaqMan probe detection. 

Primers and probe efficiency values were measured using the CT slope method and result 

expressed as % (see section 2.4.4). There was a linear correlation over all six data points 

plotted for each graph (Figure 3.2). Thus, vIRF-2 amplification efficiency in singleplex 

reaction was 94.4% (Figure 3.2A) while in duplex reaction with GAPDH it was 90% 

(Figure 3.2B). The amplification efficiency of GAPDH in singleplex reaction was 91% 
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(Figure 3.2C) while in duplex reaction with vIRF-2 was 90% (Figure 3.2D). These 

values are therefore within range to proceed with primers and probe together in multiplex 

assays. 

Having validated vIRF-2 and GAPDH real time quantification it was possible 

vIRF-2 mRNA levels could be established to correlate with peak protein levels shown in 

Figure 3.1. Therefore, confluent clone 3-9 cells were treated with doxycycline (1µg/ml) 

for 2-48 hours or left untreated. The template cDNA was prepared as described (see 2.4.2) 

and mRNA levels determined with vIRF-2 and GAPDH specific primers and probes. The 

relative expression of vIRF-2 mRNA in cells treated with doxycycline increased with time 

peaking in cells treated with doxycycline for 36 hours at almost 10-fold above that of 

background levels. By 48 hours of doxycycline treatment, vIRF-2 levels had dropped 

(Figure 3.3). 

Thus, vIRF-2 mRNA expression peaked at 36 hours post-doxycycline treatment 

consistent with the protein expression levels shown earlier. 
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Figure 3.2   vIRF-2 and GAPDH primers and probe amplification efficiency validation study. 

The clone 3-9 cells were plated at a density of 5 x105 cells/well in 35 mm wells and were treated 

with doxycycline 1µg/ml for 30 hours. RNA was isolated and cDNA synthesized from 1µg RNA 

with random primers and serially diluted 10 fold for six data points (1:10-1-1:10-6). Using gene 

specific primers and probes, the amplification efficiency of the target vIRF-2 and the endogenous 

control GAPDH were measured by qPCR. Primers and probes efficiency values (%) were 

measured using the CT slope method. The amplification efficiency is calculated using the slope of 

the regression line in the standard curve (see 2.4.4). (A) vIRF-2 amplification efficiency in 

singleplex reaction was 94% and (B) 90% in duplex reaction with GAPDH. (C) GAPDH 

amplification efficiency in singleplex reaction was 91% and (D) 90% in duplex reaction with 

vIRF-2. Data are representative of 3 independent replicates. Amplification efficiency reference 

values: 90% - 110%. 

 

(A) 

(B) 

(C) 
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Figure 3.3   Quantifying vIRF-2 mRNA by RT-qPCR.    The clone 3-9 cells were plated at a 

density of 5 x105 cells/well in 35 mm wells and were treated with or without doxycycline (1µg/ml) 

for the indicated time points. cDNA was synthesized and served as template for qPCR using vIRF-

2 and GAPDH specific primers and probes. vIRF-2 mRNA levels were determined by the ΔΔCT 
 

method. Data are presented as mean +/- SD of three individual experiments where each sample 

was run in triplicate. 
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3.4     Determining the maximal concentration and time of IFN-α  activity 

To ensure inducible vIRF-2 in clone 3-9 cells retains functional activity in terms 

of inhibition of IFN responsive reporter genes, these reporter assays were performed in 

clone 3-9 cells. Firstly, it was necessary to determine the concentration of IFN-α that 

would stimulate the maximal activity of the pISRE-luc IFN responsive reporter gene. 

These studies were performed in cells lacking vIRF-2, but that were stably transfected 

with empty vector and clonally selected. This cell line is called EV clone 5 or EV5. 

Confluent EV clone 5 cells were transiently co-transfected in 35 mm wells with pISRE-

luc (250 ng) and pRLSV40-luc (1 ng) in a transfection mixture including lipofectamine. 

24 hours later the cells were treated with rIFN-α at a range of concentrations from 0-400 

IU/ml for 30 hours. As expected there was no normalised pISRE-luc activity in untreated 

cells (0 IU/ml). However, normalized pISRE-luc activity peaked approximately 25-fold 

above background levels in cells treated with 300 IU/ml rIFN-α and dropped sharply in 

cells treated with 400 IU/ml rIFN-α (Figure 3.4A). Thus, 300 IU/ml rIFN-α is required to 

induce maximal pISRE-luc activity in EV cells. 

The next task was to determine the time point at which 300 IU/ml rIFN-α caused 

maximal pISRE-luc activity. Confluent EV clone 5 cells were transiently co-transfected 

with plasmids as described (Figure 3.4A). 24 hours later the cells were treated with 300 

IU/ml rIFN-α from 0-48 hours. The normalised pISRE-luc activity peaked at 

approximately 25-fold at 12 hours (Figure 3.4B) 
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Figure 3.4   Determining the maximal concentration and time of IFN-α  induction of ISRE-

driven luciferase reporter gene activity in EV clone 5 cells. (A) The EV clone 5 cells were 

plated at a density of 5x105 cells/well in 35 mm wells. Each well of confluent cells was transiently 

co-transfected using a transfection mixture consisting of pISRE-luc (250 ng) & pRLSV40-luc (1 

ng) and lipofectamine in serum free medium. 24 hours post transfection the cells were treated with 

the indicated concentrations of rIFN-α for 30 hours. Cells were harvested and lysates prepared. 

The pRLSV40-luc plasmid vector constitutively expressing Renilla luciferase was added as an 

internal control to which pISRE-luc plasmid driving firefly luciferase activity was normalised. 

Both firefly luciferase and Renilla luciferase activities were determined by dual luciferase assay. 

Data are presented as mean normalised pISRE-luc activity (± standard deviation) of three 

independent experiments each performed in duplicate. (B) The cells were grown and transfected 

with plasmids as described in A. 24 hours later, the cells were treated with rIFN-α (300 IU/ml) for 

the indicated time points. Data are presented as mean normalised pISRE-luc activity (± standard 

deviation) of three independent experiments each performed in duplicate. 
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3.5     Functional studies of vIRF-2 in clone 3-9 cells 

Having established that 300 IU/ml rIFN-α induced the optimum pISRE-luc 

activity in the EV clone 5 cells, the next task was to determine if vIRF-2 inhibits pISRE-

luc activity in clone 3-9 cells following peak vIRF-2 expression. Clone 3-9 cells were 

transiently co-transfected with reporter plasmids as described (Figure 3.4), followed by 

treatment with doxycycline and rIFN-α as indicated (Figure 3.5).  

This experiment was run in parallel with another set of clone 3-9 cells but those 

were not transfected with the reporter plasmids and were immunoblotted for vIRF-2. In 

cells transfected with the pISRE-luc promoter reporter plasmids (Figure 3.5A) both -dox-

ifn (i.e. no doxycycline treatment and no rIFN-α treatment) and +dox-ifn (i.e. includes 

doxycycline treatment and no rIFN-α treatment) treated cells indicated background levels 

of the normalized pISRE-luc activity. Cells treated with -dox+ifn were described as 

having 100% pISRE-luc activity and showed approximately 250-fold increase from the 

background levels. This level was reduced by 52% in the +dox+ifn treated cells. The 

differences in the levels of normalized pISRE-luc activity between cells treated with -

dox+ifn and +dox+ifn were statistically significant (p<0.01, Student’s t test). Thus, vIRF-

2 protein significantly inhibited rIFN-α driven pISRE-luc activity by 52% in clone 3-9 

cells.  

Consistent with Figure 3.5A the immunoblot data of cells that were treated in 

parallel showed substantial accumulation of vIRF-2 in cells treated with doxycycline 

(Figure 3.5B). Nonetheless, traces of vIRF-2 protein are seen in the non-doxycycline 

treated samples due to the leaky expression of the vIRF-2 expressing plasmid that became 

increasingly apparent. 
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(A) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(B) 
 
 
 

 

 

 

Figure 3.5     vIRF-2 inhibits the pISRE-luc promoter reporter activity.  (A) The clone 3-9 

cells were plated at a density of 5 x 105 cells / well in 35 mm wells. Each well of confluent cells 

was transiently co-transfected using a transfection mixture consisting of pISRE-luc (250 ng) & 

pRLSV40-luc (1 ng) and lipofectamine (2000 IU) in serum free medium. 24 hours after the 

transfection, the cells were treated with or without rIFN-α (300 IU/ml) and with or without 

doxcycycline (1µg/ml) for 30 hours. Cells treated as +ifn-dox were calculated to have 100% 

normalised pISRE-luc activity. Data are presented as mean normalised pISRE-luc activity (± 

standard deviation) of three independent experiments each performed in duplicate (**p < 0.01, 

Student’s t test). (B) This experiment was performed in parallel to that described in A, except the 

cells were not transfected with reporter plasmids. Cell lysates were resolved on 10% SDS-PAGE 

and immunoblotted with antibodies against cmyc-epitope of vIRF-2 and GAPDH respectively. 

The size of vIRF-2 protein with the tagged cmyc-epitope was approximately 130 kDa. This 

experiment is representative of 3 independent experiments. 
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3.6     Engineering additional vIRF-2 expressing clones and their empty 

vector counterparts 

To be certain that any mechanism of vIRF-2 inhibition of pISRE-luc activation 

identified in clone 3-9 cells in later studies was not clone-specific, additional independent 

clones stably transfected with the doxycycline-inducible vIRF-2 expression vector 

(showing inhibition of pISRE-luc activity) were established and selected for further study. 

Further, EV counterparts were also derived in parallel. The 293 Tet-On cell lines 

containing pTRE2pur-Myc-vIRF-2 or pTRE2pur-Myc were constructed as described in 

section 2.8. The cells expressing vIRF-2 were screened for clones that behaved like the 

vIRF-2 clone 3-9 as described (Figure 3.5A). Over 300 clones were screened for their 

ability to suppress rIFN-α driven pISRE-luc activity. Representative clones are shown 

(Figure 3.6). As expected, the untreated cells (-dox-ifn) indicated background levels of 

the normalized pISRE-luc activity across all the clones. The majority of the vIRF-2- 

expressing clones did not exhibit the expected inhibitory effects of rIFN-α driven pISRE-

luc activity. For example, there is no significant difference of the normalized pISRE-luc 

activity between cells treated with (-dox+ifn) and (+dox+ifn) although the levels of rIFN-

α activated pISRE-luc activity peaked more than 60-fold above levels of untreated cells 

(Figure 3.6A, B, C). However, some vIRF-2-expressing clones did demonstrate the 

expected inhibitory effects of rIFN-α driven pISRE-luc activity and were therefore 

selected for further studies. These vIRF-2 expressing clones are: 293TetOn-vIRF-2, clone 

#20 and 293TetOn-vIRF-2, clone #24. Both showed rIFN-α driven pISRE-luc activity 

increased above 200-fold in cells treated with -dox+ifn compared to untreated cells and 

was significantly inhibited by vIRF-2 accumulation in cells treated with +dox+ifn, by 

50% and 52%, respectively. In 293TetOn-vIRF-2, clone #20 and 293TetOn-vIRF-2, clone 
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#24 the differences in the levels of normalized pISRE-luc activity between cells treated 

with -dox+ifn and +dox+ifn were statistically significant (p<0.01, Student’s t test) 

(Figure 3.6D, E). 

The EV clones lacking vIRF-2 and engineered in parallel to 293TetOn-vIRF-2, 

clone #20 and 293TetOn-vIRF-2, clone #24 are: 293TetOn-EV, clone #1, and 293TetOn-

EV, clone #4. A representative EV clone (293TetOn-EV, clone #5), analysed in parallel to 

the vIRF-2 expressing clones clearly demonstrates the absence of vIRF-2 since the levels 

of the rIFN-α driven pISRE-luc activity of cells treated with -dox+ifn and +dox+ifn 

remained the same after having increased more than 140-fold above levels of untreated 

cells (Figure 3.6F). Thus, vIRF-2 protein significantly inhibited rIFN-α driven ISRE-luc 

promoter reporter activity in vIRF-2 clone 20 and vIRF-2 clone 24. They were confirmed 

to express vIRF-2 by immunoblot assay and were selected for vIRF-2 mechanistic study 

in parallel with clone 3-9 (see chapter 4). 
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Figure 3.6   Representative vIRF-2-expressing and EV cell clones screened for their ability 

to inhibit rIFN-α  driven pISRE-luc activity. (A-F)  Transfection of plasmids was carried out in 

these experiments as described in Figure 3.5A. 24 hours later the cells were treated with or 

without rIFN-α (300 IU/ml) and with or without doxycycline (1µg/ml) for 30 hours. Cells treated 

with -dox+ifn were calculated to have 100% normalised pISRE-luc activity. Data are presented as 
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mean normalised pISRE-luc activity (± standard deviation) of three independent experiments each 

performed in duplicate (**p < 0.01, Student’s t test). 

 
 

3.7     Preparation of samples for DNA microarray studies 

Having established that the clone 3-9 cell line stably transfected with inducible 

vIRF-2 expression vector could suppress rIFN-α induction of pISRE-luc activity 

analogous to our previous studies of transient transfections of vIRF-2 expression vector, 

the next task was to perform the clone 3-9 cells treatments for transcriptome profiling 

analysis in the presence and absence of vIRF-2 induction and rIFN-α treatment. Therefore, 

clone 3-9 cells treated with -dox-ifn, +dox-ifn, -dox+ifn and +dox+ifn for 30 hours were 

grown in triplicate (cell replicates are described as M11A, M11B and M10). The triplicate 

cultures were then analysed to (i) estimate the impact of vIRF-2 on IFN-α driven pISRE-

luc activity, (ii) quantify the relative vIRF-2 mRNA expression and (iii) perform 

transcriptome profiling analysis by DNA microarray.  

In sample set M11A the induction of rIFN-α driven pISRE-luc activity peaked at 

approximately 300-fold in cells treated with -dox+ifn and was reduced by 50% by vIRF-2 

in cells treated with +dox+ifn (Figure 3.7A) compared with the background levels of 

cells without rIFN-α treatment. The relative vIRF-2 mRNA expression levels increased 

approximately 5-fold following doxycycline treatment compared with the background 

levels of non-doxycycline treated cells (Figure 3.7B). Consistent with Figure 3.7B, the 

immunoblot data showed vIRF-2 protein accumulated substantially in the doxycycline 

treated cells (Figure 3.7C). Probing for GAPDH ensured equal loading in each well and 

also provided evidence that GAPDH was not affected by the treatment. Samples set 

M11B (Figure 3.7 D, E and F) showed a similar pattern of results as in A, B and C 

although inhibition of rIFN-α driven pISRE-luc activity by vIRF-2 in cells treated with 
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+dox+ifn was 52% (Figure 3.7D). vIRF-2 mRNA levels increased between 3 and 4-fold 

in doxycycline treated cells relative to the background levels of non-doxycycline treated 

cells (Figure 3.7E). Sample set M10 (Figure 3.7 G, H and I) showed a similar pattern of 

result as in A, B and C and inhibition of rIFN-α driven pISRE-luc activity by vIRF-2 in 

cells treated as +dox+ifn was 47% (Figure 3.7G). 

Having verified vIRF-2 inhibited pISRE-luc activity in sample sets M11A, M11B 

& M10, RNA was prepared from one of each sample set for microarray transcriptome 

profiling. Total RNA was extracted from the cell lysate and the RNA purity determined 

before further investigations were conducted. The data for these samples are summarized 

(Table 3.1). Aliquots of the total RNA isolated from all 12 samples were then given to Dr. 

John Arrand (School of Cancer Sciences) to determine their integrity for microarray 

studies with the Agilent bioanalyser. The electrophoresis file indicated excellent RNA 

condition in all 12 samples as evidenced by both the 28S and 18S RNAs (Figure 3.7J). 

Moreover, the RNA integrity (RIN) ranged 9.40 – 10.0 on a scale of 1-10 (Figure 3.7K). 

These samples were therefore submitted for microarray profiling (see chapter 4). 
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Figure 3.7 for legend see page 110. 
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Figure 3.7 for legend see page 110. 
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Figure 3.7 for legend see page 110. 
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Figure 3.7     Representative data of studies performed on triplicate cultures prior to the 

Affymetrix exon array study   (A), (D) and (G). vIRF-2 inhibited the rIFN-α driven pISRE-luc 

activity by 50% (M11A), 52% (M11B) and 47% (M10), respectively. The experiments were 

performed as described in Figure 3.5A. Cells treated with -dox+ifn were described as having 

100% normalised pISRE-luc activity. Data are presented as mean normalised pISRE-luc activity 

(± standard deviation) of three independent experiments each performed induplicate (**p < 0.01, 

Student’s t test). Experimental data shown in (B), (E) and (H) were performed as described in 
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Figure 3.3. Data are presented as mean +/- SD of three individual experiments. Experimental data 

shown in (C), (F) and (I) were performed as described in figure 3.5B. (J) Electrophoresis file of 

28S and 18S RNA of all the 12 samples. (K) Shows RNA integrity values of the samples. 

 

 

 

 

 

 

 
Table 3.1   Data summary of additional investigations performed on the 12 biological 

samples prior to the bioanalyser and exon array investigations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample 
names 

Treatment  
profile 

Total RNA  
conc ng/µ l  

260/280nm 
 ratio 
 

Extent of  
inhibition 
 

M11A –dox–ifn 560 2 50%  
M11A +dox–ifn  526 2 50%  
M11A –dox+ifn 548 2 50%  
M11A +dox+ifn  616 2 50%  
     
M11B –dox–ifn 726 2 52%  
M11B +dox–ifn  746 2 52%  
M11B –dox+ifn 891 2 52%  
M11B +dox+ifn  968 2 52%  
     
M10 –dox–ifn 872 2 47%  
M10 +dox–ifn  650 2 47%  
M10 –dox+ifn 1136 2 47%  
M10 +dox+ifn  762 2 47%  
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3.8     Characterizing vIRF-2 subcellular localization by 

Immunofluorescence Assay 

 

Additional experiments were performed to reveal the subcellular location of vIRF-

2. In eukaryotic cells there is continuous exchange of macromolecules between the 

nucleoplasm and the cytoplasm. For example, nuclear localization is regulated for several 

proteins involved in gene expression and development, as well as for proteins involved in 

the cell cycle. To determine vIRF-2 subcellular localization, confluent vIRF-2 clone 3-9 

or EV clone 5 cells were treated with doxycycline for 30 hours or left untreated. The fixed 

cells were probed with an antibody against the cmyc-epitope of vIRF-2 and visualised 

using FITC conjugated anti-mouse IgG. The nuclei were stained with DAPI. Images were 

captured for FITC and DAPI staining under the same exposure conditions (see section 

2.10.). 

As expected, the negative control EV clone 5 cells did not express vIRF-2 (Figure 

3.8 A and B), panel A shows background staining that is predominantly confined to the 

cytoplasm (Figure 3.8 A), whereas panel B represents the nuclear staining. vIRF-2 was 

detected in clone 3-9 (Figure 3.8 C and D); panel C vIRF-2 is detected predominantly in 

the nucleus as evidenced by FITC staining of the nuclear compartment. This nuclear 

staining is confirmed by overlap with DAPI staining in panel D. Taken together, vIRF-2 

is predominantly a nuclear resident protein in clone 3-9 cells. 
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Figure 3.8     Determining vIRF-2 subcellular localization.   Panel A & B, empty vector cells 

do not express vIRF-2 and panel C & D are vIRF-2-expressing clone 3-9 cells. The FITC staining 

of panel A shows background staining that are predominantly confined to the cells cytoplasm. 

Panel B shows DAPI staining of the cells nuclei. In panel C, the vIRF-2 protein is detected 

predominantly in the nucleus by FITC conjugated anti mouse IgG directed against cmyc epitope 

of vIRF-2. This nuclear staining is confirmed by overlap with DAPI staining in panel D. This 

image is representative of three independent experiments. 
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EV clone 5 cells 
(lacking vIRF-2) 

vIRF-2 clone 3-9 cells 
(expressing vIRF-2) 

A                                                       B 

C                                                       D 
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3.9     Discussion 

Production of constitutively expressing vIRF-2 stable cell lines has been attempted 

(Fuld & Blackbourn, unpublished observation), but vIRF-2 expression in these cell lines 

was not sufficiently stable to enable mechanistic studies. The limitation of transient 

transfection studies using gene expression plasmid vectors is that the overexpressed 

gene(s) are not expressed in every cell. Stable cell lines in which every cell expresses 

vIRF-2 were therefore established for this study. 

Investigations into vIRF-2 protein expression and functions in vIRF-2 expressing 

cells were performed. Cell lines stably transfected with the ‘empty vector’ pTRE2pur-

Myc were analysed in parallel. vIRF-2 clone 3-9 cells are stably transfected with vIRF-2-

expressing plasmid vector so that vIRF-2 expression is regulated by doxycycline. This 

was made possible because vIRF-2 was subcloned into a site downstream of the 

tetracycline responsive elements of the pTRE2-pur-Myc plasmid vector (Clontech) and 

stably transfected in to 293Tet-On cells. Thus, in the presence of doxycycline vIRF-2 will 

be responsive to the tetracycline transactivator (see 2.7 and 2.8). To maintain stable cell 

lines retaining the plasmid, clone 3-9 cells were maintained in media supplemented with 

both puromycin (1 µg/ml) and G418 (200 µg/ml). Furthermore, vIRF-2 was tagged to a 

myc epitope since there are still no available antibodies to vIRF-2 proteins; vIRF-2 

protein expression was therefore detected with anti c-myc antibodies. 

The immunoblot data established that 1 µg/ml doxycycline induced maximum 

accumulation of vIRF-2 (Figure 3.1A). Cells treated with 2 µg/ml doxycycline did not 

survive, most probably due to toxicity of the drug (data not shown). Further immunoblot 

investigation revealed vIRF-2 expression peaked at 24-36 hours with the earliest time 

point of 12 hours (Figure 3.1B, C). RT-qPCR was employed to quantify vIRF-2 mRNA 

levels in experiments performed in parallel as described in Figure 3.1C. For the ΔΔCT 
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calculation to be valid, the amplification efficiencies of the target and reference must be 

approximately equal. The vIRF-2 primer/probe amplification efficiency experiment 

(Figure 3.2) made it possible to choose GAPDH mRNA as the endogenous control since 

both 18S mRNA and β-actin mRNA were not suitable, as evidenced by the poor binding 

or amplification of their primers/probes (data not shown). When vIRF-2 and /or GAPDH 

were run as a singleplex or duplex assay, their amplification efficiencies remained within 

the recommended efficiency reference values (Figure 3.2 A-D). Consistent with protein 

expression data in Figure 3.1C, the RT-qPCR data showed vIRF-2 mRNA expression 

peaked at 36 hours post doxycycline treatment (Figure 3.3).  

The inhibition of antiviral effects of IFN-α by vIRF-2 has been used as a tool to 

functionally characterize either full-length vIRF-2 protein or that part encoded by exon 1 

(Burysek, Yeow et al. 1999; Burysek and Pitha 2001; Fuld, Cunningham et al. 2006). 

However, Burysek and colleagues only studied exon 1 of vIRF-2, our group was the first 

to study the function of the complete (spliced) gene of vIRF-2 (Fuld, Cunningham et al. 

2006). 

In the present study, a luciferase reporter gene regulated by ISG56 ISRE (pISRE-

luc) was used as a measure of ISRE activity in response to rIFN-α in HEK293 cells 

expressing vIRF-2 or the EV clones counterparts. Among the most strongly induced virus 

stimulated or interferon stimulated genes is the ISG56 family of genes (Der, Zhou et al. 

1998), comprising of four human members (ISG54/IFIT2, ISG56/IFIT1, ISG58/IFIT5 and 

ISG60/IFIT3) clustered on chromosome 10 (Wathelet, Moutschen et al. 1986; Bluyssen, 

Vlietstra et al. 1994; de Veer, Sim et al. 1998). These proteins are sometimes designated 

p54, p56, p58 and p60, contain arrays of multiple tetratricopeptide repeat helix-turn-helix 

motifs mediating a variety of protein-protein interactions which result in a number of 

effects on cellular and viral functions. Their activities include translation initiation, virus 
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replication, dsRNA signaling, cell migration and proliferation (D'Andrea and Regan 

2003). A conspicuous characteristic of the ISG56 family of genes is that the promoters 

contain 2 IFN-stimulated response elements as the only identifiable cis-acting elements, 

located with 200 bp upstream of the TATA box promoter (Bluyssen, Vlietstra et al. 1994). 

These elements are recognised by the IRFs that are activated by various stimuli and 

induce transcription of the corresponding mRNAs (see Tamura, Yanai et al. 2008). 

Infection with a multitude of RNA- or DNA-viruses, such as Sendai virus (SeV), 

Respiratory syncytial virus (RSV), Lymphocytic choriomeningitis virus (LCMV), West 

Nile virus (WNV), Influenza virus, Reovirus, VSV, Herpes simplex virus (HSV), 

cytomegalovirus (CMV), and Adenovirus, efficiently induces these genes (Zhu, Cong et 

al. 1997; Nicholl, Robinson et al. 2000; Terenzi, Pal et al. 2005; Smith, Schmechel et al. 

2006; Daffis, Samuel et al. 2007; Janssen, Pennings et al. 2007; Wacher, Muller et al. 

2007). The use of cell lines with appropriate genetic deficiencies of the JAK-STAT 

pathway components was instrumental for demonstrating that viral and bacterial pathogen 

associated molecular patterns can directly (i.e., independently of IFN action) induce 

transcription of a subset of ISGs, including ISG56 family genes (Bandyopadhyay, 

Leonard et al. 1995; Elco, Guenther et al. 2005). These genes are therefore termed viral 

stress-inducible genes (VSIG) (see Sarkar and Sen, 2004). The activation of IRFs plays a 

key role in the induction of these VSIGs by different stimuli, which recognise the ISREs 

in the VSIG promoters and initiate transcription. For example, ISGF3 composed of IRF-9 

along with STATI and STAT2 and activated by the IFN-α/β receptor, mediates IFN 

responses; IRF-3, activated by dsRNA via TLR3 or via RIG-I/MDA5, and by 

lipopolysaccharides via TLR4, potentially induces the ISG56 family genes (Grandvaux, 

Servant et al. 2002; Sarkar, Peters et al. 2004; Ogawa, Lozach et al. 2005; Terenzi, Hui et 
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al. 2006). Therefore, consistent with this study, ISG56 is frequently used as the readout 

for the IFN-α/β pathway activity (Chattopadhyay, Marques et al. 2010). 

Human and mouse p54 and p56 interact with different subunits of translation 

initiation factor 3 (eIF3), resulting in an inhibition of translation (Hinnebusch 2006). A 

reported complexity of murine p54 versus p56 protein expression in vivo, depending on 

the stimulus (IFN, dsRNA, or virus infection), tissue type and cell type revealed 

interesting findings; for example, whereas tail vein injection of dsRNA induced p54 and 

p56 in the liver and spleen, injection of VSV induced p54 in the spleen but not in the liver; 

this was observed at both protein and mRNA levels (Terenzi, White et al. 2007). These 

authors further showed that the relative induction of p54 versus p56 in organs such as the 

heart or lungs varies depending on the inducing stimulus. Therefore, we speculate that in 

evolutionary terms, vIRF-2 may have evolved to inhibit ISG56 expression in cells as a 

way of suppressing the innate antiviral pathway, due to the fact that ISG56 can be induced 

by both IFN and non-IFN (such as virus trigger) dependent factors whereas some 

interferon stimulated genes such as the MxA are known to be induced selectively by IFNs 

but not directly by virus infection (Holzinger, Jorns et al. 2007). In cell lines such as 

HEK293, IFN-induced levels of ISG56 mRNAs are maintained at high levels even after 

24 hours of treatment (Terenzi, Hui et al. 2006) indicating these cells respond to IFN. 

Moreover, HEK293 cells can be infected with KSHV.  

ISGF3 from upstream stimuli such as activated IFN-α/β receptors or IRF-3/7 

activated by double-stranded RNA via TLR3 or via RIG-I/MDA-5 potentially induces 

ISG56 (Grandvaux, Servant et al. 2002; Ogawa, Lozach et al. 2005; Terenzi, Hui et al. 

2006). In the present study, the optimum concentration of rIFN-α was determined to 

stimulate pISRE-luc activity in the EV clone 5 cells. The first phase of this experiment 

involved a titration of rIFN-α to stimulate pISRE-luc activity in EV clone 5 cells which 
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established that 300 IU/ml IFN-α stimulated the maximal pISRE-luc activity peaking 

about 25-fold (Figure 3.4A). It was observed that 200 IU/ml rIFN-α stimulation of 

HEK293 cells co-transfected with pISRE-luc induced the maximum luciferase activity in 

a rIFN-α2b titration assay (Fuld, Cunningham et al. 2006). It is worth noting that Fuld 

and colleagues harvested their cells 16 hours after addition of rIFN-α2b (Stratagene), 

about 14 hours earlier than in this study. Besides, their rIFN-α may differ subtly from our 

rIFN-α, since different manufacturers supplied them. The second experiment 

demonstrated that (300 IU/ml) rIFN-α stimulation of pISRE-luc activity peaked at 12 

hours and was sustained around the same level until 36 hours (Figure 3.4B). These data 

are consistent with the observation by others (Terenzi, Hui et al. 2006) that the mRNA of 

some IFN-induced target genes, such as ISG56, are maintained beyond 24 hours of 

treatment. Because rIFN-α stimulation of the cells peaked around 30 hours and inducible 

vIRF-2 expression also peaked around 30 hours, cell treatment for this period was 

selected for further studies. 

The inhibition of pISRE-luc activity by vIRF-2 (Figure 3.5), is consistent with 

previous reports that demonstrated vIRF-2 exon1 is a potent inhibitor of IFN-α promoters 

in transient transfection assays through binding to IRF-1, RelA and CBP/p300 

culminating in the inhibition of their transactivating capabilities (Burysek, Yeow et al. 

1999). Also, our group reported the repression of rIFN-α stimulated pISRE-luc activity by 

full-length vIRF-2 through IRF-3 inhibition in HEK293 cells (Fuld, Cunningham et al. 

2006). More recently, our group reported that vIRF-2 repressed full-length IFN-β 

promoter transactivation via IRF-3 in a model system where the antiviral response and 

IRF-3 activation were triggered by poly I:C transfection of HEK293 cells (Areste, 

Mutocheluh et al. 2009). In conclusion, taken together the evidence indicates inducible 
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vIRF-2 protein is capable of inhibiting the type I IFN pathway. This may be its role in the 

context of KSHV infection.  

Additional vIRF-2 expressing cells and their EV counterparts were engineered 

using techniques described (section 2.7 and 2.8). The confirmation of vIRF-2 expression 

and functional studies were performed as described (Figure 3.5). Representative data of 

over 300 clones screened indicated over 50% suppression of rIFN-α stimulated pISRE-luc 

activity in vIRF-2 clones 20 and 24 respectively (Figure 3.6 D, E). The most likely 

reason the vIRF-2 suppressing clones are in the minority is that vIRF-2 expression is so 

leaky that the established concentration of rIFN-α cannot induce ISRE activation. 

Therefore, the suppression of ISRE activation and lack of induction due to leaky vIRF-2 

expression is what was experienced. 

Having verified vIRF-2 expressed in sample sets M11A, M11B & M10 inhibited 

pISRE-luc activity (Figure 3.7) the RNA prepared from each sample set (data for these 

samples are summarised in Table 3.1) was submitted for DNA microarray profiling. The 

DNA profiling data are presented in chapter 4. Cell samples were prepared to investigate 

vIRF-2 regulation of the transcriptome by DNA microarray based on the data presented in 

this chapter. For reasons of cost only clone 3-9 cells were prepared for the DNA 

microarray investigations and follow up studies to validate the findings from this cell line 

were then performed on vIRF-2 clones 3-9, 20, 24, and the empty vector counterparts 

EV1, EV4 and EV5. 

Further characterization of vIRF-2 by immunofluorescence assay indicated that it 

is a nuclear resident protein (Figure 3.8) consistent with Burysek et al., who reported a 

similar observation for vIRF-2 exon 1 in KSHV positive PEL cell lines (Burysek and 

Pitha 2001). 
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Chapter 4      vIRF-2-deregulated gene sets and signaling 

pathways 

 

The aim of this chapter was to investigate (i) the impact of vIRF-2 on the cell 

transcriptome profile and (ii) reveal the mechanism by which vIRF-2 inhibits the type 1 

IFN pathway. The data were generated from DNA microarray experiments performed 

with the sample sets M11A, M11B and M10 described in section 3.7. The GeneChip 

names for each sample for which the data were derived are presented in Table 4.1. We 

began by performing a comprehensive quality control assessment of the Affymetrix 

GeneChips to identify arrays with divergent probe signal intensity distributions relative to 

other arrays in the study; in other words to identify problematic GeneChips, but none was 

identified. Gene level analysis of the Affymetrix exon arrays was performed using the 

Affymetrix Expression Console. The bioinformatics analyses included the DAVID and 

GSEA packages to generate gene ontology and gene set enrichment data. Immunoblot 

assay was employed to validate some of the identified vIRF-2 deregulated gene sets and 

associated biological signaling pathways. 

 

4.1   Introduction 

Microarray technology is a widely used high-throughput tool for measuring gene 

expression (Schena, Shalon et al. 1996; Allison, Cui et al. 2006). The most popular 

platform is the Affymetrix GeneChip microarray. In this technique, gene level expression 

indices are computed based on hybridization of signal intensity measurements from 

multiple perfect match (PM) and mismatch (MM) probes targeting the 3’ end of the 

mRNA sequence. Recently however, Affymetrix released another product called the Exon 
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array, which was used in this study. Exon arrays differ very much from 3’ expression 

arrays in the number and placement of the probes [http://www.affymetrix.com/support 

/technical/datasheets/exon_arraydesign_datasheet.pdf]. In exon arrays, up to four probes are 

selected to target each putative exonic region thereby providing a more accurate 

measurement of gene expression than the traditional 3’ arrays. The exon arrays also differ 

in that they do not use the PM/MM system, but instead have a limited number of control 

probes for assessing non-specific hybridization. 

DNA microarray has been previously used to study vIRF-2; Jenner and colleagues 

used the PEL-derived cell line (BC-3) to study the expression of KSHV during latency 

and lytic replication. The authors revealed vIRF-2 and vIRF-3 were spliced transcripts 

(Jenner, Alba et al. 2001).  

The ubiquitin proteasome pathway may be deregulated by vIRF-2 because of its 

active role in events upstream of the IFN-α/β receptor. It was discovered by Avram 

Hershko and colleagues in the late 1970’s, and is required for the targeted degradation of 

most short-lived proteins in the eukaryotic cell. In all tissues, the majority of intracellular 

proteins are degraded by the ubiquitin proteasome pathway (Rock, Gramm et al. 1994). 

However, the ubiquitination of RIG-I is reported to promote the antiviral response (Gack, 

Shin et al. 2007). RIG-I activation by dsRNA promotes recruitment of unanchored lysine 

63 (K63)-linked ubiquitin chains to the CARD domain of RIG-I and forms a potent viral 

RNA sensor that directly communicates with MAVS (also called IPS-1/VISA/Cardiff) to 

promote IRF-3 activation (Zeng, Sun et al. 2010), ultimately leading to an antiviral 

response. 

Ubiquitin modification is an ATP-dependent process carried out by three classes 

of enzymes. A ubiquitin-activating enzyme (E1) which forms a thio-ester bond with 

ubiquitin. This allows subsequent binding of ubiquitin to the active site of one of the 
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approximately 40 ubiquitin conjugating enzymes (E2), followed by the formation of an 

isopeptide bond between the carboxyl-terminus of ubiquitin and a lysine residue on the 

substrate protein in a reaction requiring ubiquitin ligase 3 (E3). E3s can be single- or 

multi-subunit enzymes such that in some cases ubiquitin-binding and substrate-binding 

domains reside on separate polypeptides brought together by adaptor proteins (Pickart 

2004). Many E3s provide specificity in that each can modify only a subset of substrate 

proteins. A single run of the reaction causes mono-ubiquitination of a target protein that 

could change its function. Multiple runs of the reaction lead to poly-ubiquitination of the 

substrate. Lysine-48-linked chains typically signals proteasomal degradation, whereas the 

conjugation of lysine-63-linked poly-ubiquitin chains is associated with DNA repair, 

kinase signaling pathways, and receptor regulation (see Konstantinova, Tsimokha et al. 

2008). Because of this involvement of ubiquitination in the normal functioning of the 

antiviral response, consideration was given to its possible modulation by vIRF-2 in the 

present study, aside from IRF-3 and the JAK-STAT pathways. 

 

4.2   Quality assessment of exon arrays 

As stated earlier, the aim of this section of the study was to identify problematic 

GeneChips in Table 4.1 but none was identified. The quality assessment procedures used 

in this study were computed from CEL files of the Human Exon 1.0 ST Array. The 

Affymetrix CEL file contains a single intensity value calculated for each probe on each 

GeneChip. CEL files are generated together with the expression data set and can be used 

to assess problems with data quality. The CEL files were first uploaded into Expression 

Console (EC) and a multi-chip analysis was performed according to suggestions stated in 

the exon array Whitepaper Collection (see Affymetrix). Once this analysis was complete, 

a number of quality assessment metrics were visualized graphically. These metrics can 
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identify outlier arrays within the expression data set. The metrics categories used in this 

study and their meaning are summarised in Appendix II. 

Data shown (Appendix II, Figure 1) were performed in accordance with 

Affymetrix guidelines set out in the Exon Array Whitepapper Collection and sometimes 

referred to as Affymetrix criteria for quality assessment of exon arrays (see Affymetrix). 

The first set of quality assessment metrics are based on probe intensity level data such as 

pm_mean and bgrd_mean. Apart from dM11A_+Dox+IFN_RNA_220709.rma-gene-core, 

which was indicative of being slightly dim, all the other GeneChips were bright 

(Appendix II, Figure 1A). Affymetrix deal with this difference in intensity using a 

process called the quantile normalization, which puts all GeneChips on the same scale. 

The bgrd_mean was plotted together with the pm_mean to measure how the background 

signals varied from that of the pm_mean. As expected, the bgrd_mean data correlated 

with that of the pm_mean (Appendix II, Figure 1B). Generally, the mean of probe level 

intensity for all the perfect matched probes was consistently above that of the background 

levels, as expected.  

The rle_mean is a probeset summarisation metric used for the quality assessment 

of the exon arrays. The box plots of the relative log expression for all the probesets 

analysed indicate there was no divergent probe intensity distributions relative to other 

arrays in the study as evidenced by the median rle (the middle bar in each box) 

(Appendix II, Figure 1C). This value is below 0.12 as shown on the y-axis of the graph 

and should be zero in most applications as suggested by Affymetrix although no specific 

median rle value was suggested as acceptable. Therefore, the 3 summarisation probesets 

metrics: rle_mean, pos_vs_neg_auc and mad_residual_mean are all within the parameters 

suggested by the Whitepaper Collection (Appendix II, Figure 1D). 
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The internal quality control metrics (mad_residual_mean of bac_spike, polya _ 

spike and pos_control) have all shown consistency in their probesets signal intensity 

distribution (Appendix II, Figure 1E) dM11A_+Dox+IFN _RNA_220709.ma.gene.core 

has a mean absolute deviation of residuals value of 0.44 and was not considered an outlier 

because Affymetrix considered 0.77 as outlier (see Affymetrix). It was therefore included 

in the study since the robust multichip and multiprobe analysis methods used (Appendix 

II, Figure 1C)  indicated dM11A_+Dox+IFN_RNA_220709.ma. gene core was well 

within the range of signal intensities observed for all the GeneChips within the study.  
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Table 4.1    Affymetrix GeneChip names and profiles of the exon arrays 

 

During the DNA microarray studies Affymetrix GeneChip names were assigned to each of the 

sample sets M11A, M11B and M10 (section 3.7). These names are presented on the right column. 

The ‘Extent of inhibition’ column shows the percentage at which IFN-α induced pISRE-luc 

activity was inhibited by vIRF-2 expression (see section 3.7). 

 

Sample 
names 

Treatment  
profile 

Total RNA  
conc ng/µ l  

260/280nm 
 ratio 
 

Extent of  
inhibition 
 

GeneChip names 

M11A –dox–ifn 560 2 50%  aM11A_-Dox-IFN_RNA_22-
709.rma-gene-core 

M11A +dox–ifn  526 2 50%  bM11A_+Dox-IFN_RNA_22-
709.rma-gene-core 

M11A –dox+ifn 548 2 50%  cM11A_-Dox+IFN_RNA_22-
709.rma-gene-core 

M11A +dox+ifn  616 2 50%  dM11A_+Dox+IFN_RNA_22-
709.rma-gene-core 

 
M11B –dox–ifn 726 2 52%  aM11B_-Dox-IFN_RNA_22-

709.rma-gene-core 
M11B +dox–ifn  746 2 52%  bM11B_+Dox-IFN_RNA_22-

709.rma-gene-core 
M11B –dox+ifn 891 2 52%  cM11B_-Dox+IFN_RNA_22-

709.rma-gene-core 
M11B +dox+ifn  968 2 52%  dM11B_+Dox+IFN_RNA_22-

709.rma-gene-core 
 
M10 –dox–ifn 872 2 47%  aM10_-Dox-IFN_RNA_22-

709.rma-gene-core 
M10 +dox–ifn  650 2 47%  bM10_+Dox-IFN_RNA_22-

709.rma-gene-core 
M10 –dox+ifn 1136 2 47%  cM10_-Dox+IFN_RNA_22-

709.rma-gene-core 
M10 +dox+ifn  762 2 47%  dM10_+Dox+IFN_RNA_22-

709.rma-gene-core 
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4.3   vIRF-2 modulated cell transcriptome in response to IFN-α  treatment 

Having shown that the Affymetrix GeneChips have passed the quality assessment 

criteria suggested by Affymetrix (section 4.2), the next task was to test the hypothesis that 

vIRF-2 deregulates cellular genes and related signaling pathways responsive to IFN-α. The 

expression data set was analysed using the EC. The exon array raw data revealed 13542 

cellular genes were differentially expressed (expression data set not shown). The expression 

levels of these genes exhibited a range of values representing a range of fold change in 

response to IFN-α. The profiles of genes transcriptionally responsive to IFN-α are shown 

(Figure 4.1 A, C) and those modulated by vIRF-2 are shown in Figure 4.1 B, D & E. 

Comparison of the differentially expressed genes from untreated cells (-dox-ifn) with 

those treated with -dox+ifn indicates 78 IFN-α genes were significantly up-regulated based 

on Limma p value < 0.001 (Figure 4.1A). The Limma p value is explained in section 2.11.2. 

The expression values of these 78 IFN-α up-regulated genes were then compared with those 

of vIRF-2 induced cells (+dox+ifn), which demonstrated that 57/78 (73%) were significantly 

down-regulated based on Limma p value < 0.05 (Figure 4.1B). Of the remaining 21 of 78 

IFN-α up-regulated genes, 10 (13%) were less significantly down regulated by vIRF-2 

expression based on Limma p values of between 0.05 and 0.1. The remaining 11/78 (14%) 

differentially expressed genes were not significantly changed by vIRF-2 expression with 

limma p-value >0.1. 17/26 (65%) of the 26 genes were up-regulated by vIRF-2 in the 

absence of IFN-α based on Limma p value < 0.05 and the remaining 9/26 (35%) of the genes 

down-regulated by vIRF-2 (Limma p<0.05) (Figure 4.1E). The heat maps show expression 

values arranged in descending order from the most down-regulated, i.e. IFIT3 (Figure 4.1 B, 

D). 
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Comparison of the gene expression profile of cells treated with -dox-ifn and -dox +ifn 

identified 26 IFN-α down-regulated genes with Limma p value < 0.001 (Figure 4.1C). The 

expression values of these 26 IFN-α down-regulated genes were then compared between 

cells treated with -dox+ifn and +dox+ifn. Of these 26 genes, 13 (50%) were significantly up-

regulated by vIRF-2 with Limma p value < 0.05 (Figure 4.1D). These data indicate that the 

effect of IFN-α treatment on the expression of these genes is modulated by vIRF-2 

expression. Further, 3/26 (12%) of the IFN-α down-regulated genes were significantly up-

regulated by vIRF-2 with Limma p value between 0.05 and 0.1. The remaining 10/26 (38%) 

genes were not significantly changed by vIRF-2 expression with Limma p value >0.1.  

These data suggest vIRF-2 deregulates IFN-α regulated cellular genes because genes 

up-regulated by IFN-α were down-regulated by vIRF-2 and vice versa (Figure 4.1). 
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Figure 4.1.   The 78 genes up-regulated by rIFN-α . (A) The expression values for a gene across all 

samples in the heatmap were standardized to have mean 0 and standard deviation 1. The colour scale 

at the bottom represents the expression pattern with white representing no change (=0), shades of red 
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representing up-regulation, and shades of blue representing the down-regulated genes. -Dox-IFN-α  

represents untreated cells, -Dox+IFN-α represent cells treated with rIFN-α. Each column represents a 

replicate experiment of three performed for each treatment condition. Comparison of the gene 

expression profiles of cells treated with -Dox-IFN-α with those of -Dox+IFN-α identified 78 IFN up-

regulated genes based on Limma p<0.001.  
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Figure 4.1.    Effect of vIRF-2 on the 78 genes up-regulated by rIFN-α . (B) The expression values 

for a gene across all samples in the heatmap were standardized to have mean 0 and standard deviation 
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1. The colour scale at the bottom represents the expression pattern with white representing no change 

(=0), shades of red representing up-regulation, and shades of blue representing the down-regulated 

genes. -Dox+IFN-α represents IFN-α treated cells, +Dox+IFN-α represents vIRF-2 induced cells 

treated with IFN-α. Each column represents a replicate experiment of three performed for each 

treatment condition. Comparison of the gene expression profiles of cells treated with -Dox+IFN-α 

with those of +Dox+IFN-α identified 57 genes as down-regulated by vIRF-2 based on Limma p<0.05.  
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Figure 4.1.   The 26 genes down-regulated by IFN-α . (C)  The expression values for a gene across 

all samples in the heatmap were standardized to have mean 0 and standard deviation 1The colour 

scale at the bottom represents the expression pattern with white representing no change (=0), shades 

of red representing up-regulation, and shades of blue representing the down-regulated genes. -Dox-

IFN-α represents untreated cells, -Dox+IFN-α represents cells treated with IFN-α. Each column 

represents a replicate experiment of three performed for each treatment condition. Comparison of the 

gene expression profiles of cells treated with -Dox-FN-α with those of -Dox+IFN-α identified 26 

IFN-α down-regulated genes based on Limma p<0.001. 
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Figure 4.1. Effect of vIRF-2 on the 26 genes down-regulated by rIFN-α . (D)  The expression 

values for a gene across all samples in the heatmap were standardized to have mean 0 and standard 

deviation 1. The colour scale at the bottom represents the expression pattern with white representing 

no change (=0), shades of red representing up-regulation, and shades of blue representing the down-

regulated genes. -Dox+IFN-α represents cells treated with rIFN-α, +Dox+IFN represents vIRF-2 

induced cells treated with IFN-α. Each column represents a replicate experiment of three performed 

for each treatment condition. Comparison of the gene expression profiles of cells treated with -

Dox+FN-α with those of +Dox+IFN-α identified 13 of the IFN-α down-regulated genes as up-

regulated by vIRF-2 based on Limma p<0.05. 
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Figure 4.1. vIRF-2 regulated genes in the absence of IFN-α . (E)  The expression values for a gene 

across all samples in the heatmap were standardized to have mean 0 and standard deviation 1. The 

colour scale at the bottom represents the expression pattern with white representing no change (=0), 

shades of red representing up-regulation, and shades of blue representing the down-regulated genes. -

Dox-FN-α represents untreated cells, +Dox-IFN represents vIRF-2 induced cells. Each column 

represents a replicate experiment of three performed for each treatment condition. Comparison of the 

gene expression profiles of the untreated cells with those of +Dox-IFN-α identified 17 up-regulated 

and 9 down-regulated genes by vIRF-2 based on Limma p<0.05. 
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4.4     Bioinformatics analysis of the IFN-α  up-regulated genes deregulated by 

vIRF-2 

The bioinformatics analysis of the expression data set were performed by both 

DAVID and GSEA software packages to avoid over reliance on one package to generate the 

data because of the differences in the analytical capabilities of both packages (see section 

2.11.3). For example, DAVID is not a gene set enrichment tool in the same way as GSEA 

(section 4.6), as DAVID focuses on the enrichment of GO terms, rather than gene sets. Genes 

identified by DAVID, belong to the same category, but their products do not necessarily 

interact with each other. This section will discuss the data generated by DAVID package.  

The gene ontology analyses of the expression values of genes down-regulated by 

vIRF-2 in response to IFN-α treatment (Figure 4.1B, C) were subsequently performed with 

the DAVID package and are presented (Table 4.2). Therefore, these IFN-α up-regulated 

genes that were down-regulated by vIRF-2 were identified and grouped in to GO terms 

having common biological functions or belonging to related pathways (Table 4.2). The 

DAVID analytical software package can perform gene ontology analysis to extract biological 

meanings, e.g. biological pathways (Huang da, Sherman et al. 2009). Probeset identifiers 

(IDs) of genes shown in Figure 4.1 B, D were uploaded on to the DAVID package and the 

details of biological information were viewed with the functional annotation clustering, table, 

chart and/or the pathways map viewer tools. The identified GO terms together with their 

associated gene sets were listed according to their enrichment score and DAVID p < 0.01 

(Table 4.2). For example, Response to virus, Antiviral defence, Host-virus interactions and 

Innate immune response were the GO terms with the highest enrichment score of 8.86 (Table 

4.2). Further search of DAVID via the KEGG_PATHWAYS tool for biological pathways 

deregulated by vIRF-2 identified 15 genes and their related biological pathways out of which 

only 6 (ISG15, RIG-I/DDX58, IFIH1, STAT1, IRF-9/p48 and UBE2L6) were associated 
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with Table 4.2. Genes presented in Figure 4.1 D and analysed by the DAVID package did 

not have GO terms significantly enriched (≥ 1.3) and p < 0.01 and were therefore not 

investigated further. 

The next task was to analyse the biological pathways associated with the GO terms 

(Table 4.2). The protein expression of some biological pathways was confirmed by 

immunoblot  (section 4.5). 
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Table 4.2    The functional annotation clusters of the IFN-α  up-regulated genes down-

regulated by vIRF-2. These data were derived from the expression data set shown 

(Figure 4.2 B) and generated by the DAVID package. 
Antiviral Reponses    
Annotation cluster 1  
 (ES 8.86)2 

GO Term1 Genes p-value 

GOTERM_BP_FAT4 Response to virus (15) DDX58/RIG-I, ISG15, BST2, SAMHD1, EIF2AK2, IFIH1, 
IRF9, IFI16, IFI35, IFI44, PLSCR1, RSAD2, STAT1, TRIM22, 
TRIM5 

<0.001 

SP_PIR_KEYWORDS4 Antiviral defence (11) DDX58/RIG-1, ISIG15, BST2, EIF2AK2, IFIH1, IRF9, 
PLSCR1, RSAD2, STAT1, TRIM22, TRIM5 

<0.001 

SP_PIR_KEYWORDS4 Host-virus 
interaction 

(7) ISG15, SP110, EIF2AK2, IFIH1, STAT1, TRIM22, TRIM5 
 

<0.001 

SP_PIR_KEYWORDS4 Innate immune 
response 

(4) DDX58/RIG-I, SAMDH1, ERAP2, IFIH1 <0.001 

Annotation cluster 2  
 (ES 2.32) 

GO Term  Genes   

INTERPRO4 
 
SP_PIR_KEYWORDS4 
SMART4 

IFN induced 
proteins with 
tetratricopeptide 
repeats (TPR) 
TPR 
TPR 

(4) IFIT1, IFIT2, IFIT3, IFIT5 
 
(4) IFIT1, IFIT2, IFIT3, IFIT5 
(4) IFIT1, IFIT2, IFIT3, IFIT5 

<0.001 

Transcription 
regulation 

   

Annotation cluster 3 
(ES2.17) 

GO Term Genes  

INTERPRO4 
 
 
GOTERM_MF_FAT4 

Poly (ADP-ribose) 
polymerase, 
catalytic region, 
transcription 
regulation  
NAD+ADP-
ribosyltransferase 
activity 

(3) PARP 9, PARP 12, PARP 14 
 
 
(3) PARP 9, PARP 12, PARP 14 
 

<0.001 

Annotation cluster 4 (ES 
2.17) 

GO Term Genes   

GOTERM_MF_FAT4 Regulation of 
transcription, DNA 
binding 

(13) SP110, THAP2, IFIH1, IRF9, IFI16, STAT1, TRIM22, 
ZNF223, ZNF417, ZNF558, ZNF615, ZNF670, ZNF845 

<0.001 

Annotation cluster 5 (ES 
1.11) 

GO Term Genes  

SP_PIR_KEYWORDS4 
SP_PIR_KEYWORDS4 
 

Ligase 
Ubl conjugation 
pathway 

(6) DTX3L, HERC5, HERC6, TRIM22, TRIM5, UBE2L6 
(7) ISG15, DTX3L, HERC5, HERC6, TRIM22, TRIM5, 
UBE2L6 

<0.01 

 
 

1. GO Term: The associated biological annotation to which the gene list was mapped. 

2. GO Term with enrichment scores ≥ 1.3 are recommended by the DAVID protocol for further analyses 

to be performed since they indicate significant difference. However the DAVID protocol (Huang et al, 

2009) suggests gene groups with lower scores could be potentially interesting and should be explored 

as well, especially where they may be linked to groups of higher scores within the study. 

3. Genes with enrichment scores below 1.3 were ignored. 

4. GOTERM_MF_FAT, INTERPRO, SP_PIR_KEYWORDS, SMART: These are the original databases 

where the gene ontology (GO) terms originate. MF: molecular function; FAT: the GO Fat set attempts 

to filter the broadest terms so that they do not overshadow the more specific terms.  PIR: protein 
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information resource (http://pir.georgetown.edu/) integrated protein informatics resource for genomic, 

proteomic and systems biology research; INTERPRO: is an integrated documentation resource for 

protein families, domains, regions and sites (http://www.ebi.ac.uk/interpro). Simple Modular 

Architecture Research (SMART) is a protein analysis database, which uses Uniprot/Ensembl to 

provide high quality and freely accessible resource of protein sequence and functional information 

(http://www.smart.embl.de). 

 
 
 

4.5      IFN-α -responsive biological pathways identified as deregulated by 

vIRF-2 expression 

We hypothesised that vIRF-2 deregulates events upstream or downstream of the IFN-

α/β receptor. Therefore, five deregulated GO terms identified in Table 4.2, representing 

three signaling pathways were studied in further detail. The GO terms were: Response to 

virus, Antiviral defence, Host-virus interaction, Innate immune response and Ubiquitin ligase 

conjugation pathway. 

The first phase of testing the hypothesis involved analysing the pathway details with 

the pathway map viewer tool of the DAVID package. The second phase involved 

investigating expression of proteins in these pathways by immunoblot assay. The pathways 

represented by GO terms “IFN induced proteins with tetratricopeptide repeats” and the “Poly 

(ADP-ribose) polymerase catalytic region” (Table 4.2) were not studied further due to time 

constrains. 

The details of the RIG-like receptor, JAK-STAT and Ubiquitin ligase conjugation 

signaling pathways were analysed by DAVID pathway map viewer tool and confirmed by 

immunoblots assay are discussed below. 
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4.5.1	
  	
  	
  	
  	
  	
  vIRF-­‐2	
  modulates	
  the	
  JAK-­‐STAT	
  Signaling	
  Pathway	
  

The JAK-STAT signaling pathway downstream of the IFN-α/β receptor comprises 

the later phase of the IFN-α/β pathway and is discussed in section 1.15. Analysis of the JAK-

STAT pathway with the DAVID package pathway map viewer tool revealed vIRF-2 inhibits 

signal transduction downstream of the activated IFN-α receptors by specifically targeting 

STAT-1 protein in the cell cytoplasm and IRF-9/p48 in the nuclear compartment (Figure 

4.2). The next task was to confirm this bioinformatics result by immunoblot assay in the 

vIRF-2 induced clones compared with the EV clones (lacking vIRF-2). Therefore, for each 

pair of clones (vIRF-2 clone 3-9 vs EV clone 5, vIRF-2 clone 20 vs EV clone 1 and vIRF-2 

clone 24 vs EV clone 4), a dual luciferase assay was performed to confirm vIRF-2 inhibited 

pISRE-luc activity as described (section 3.5), components of the IFN-α/β signaling pathway 

were investigated in parallel by immunoblot assay. 

The luciferase assay result shows vIRF-2 clone 3-9 cells treated with -dox-ifn and 

+dox-ifn represent background levels of normalised pISRE-luc activity. The normalised 

pISRE-luc activity increased approximately 90-fold in response to IFN-α in cells treated with 

-dox+ifn and was reduced significantly (p < 0.05, Student’s t test) by 52% in vIRF-2 induced 

cells treated with +dox+ifn (Figure 4.3A). Whereas with the EV clone 5 cells, the 

normalised pISRE-luc activity increased by approximately 250-fold in response to IFN-α in 

cells treated -dox+ifn and +dox+ifn. Comparatively, induced vIRF-2 expression significantly 

inhibited (p < 0.01, Student’s t test) normalised pISRE-luc activity by 83% in vIRF-2 clone 

3-9 cells treated with +dox+ifn compared with the same treatment profile in EV clone 5 cells 

(Figure 4.3A). To ensure this result (Figure 4.3A) was not clone specific, the experiment 

was performed on vIRF-2 clone 20 vs EV clone 1 and vIRF-2 clone 24 vs EV clone 4 cells. 

The normalised pISRE-luc activity increased by approximately 250-fold above 

background levels of cells treated with -dox-ifn and +dox-ifn, in response to IFN-α in the 
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vIRF-2 clone 20 cells treated with -dox+ifn but was reduced significantly (p < 0.05, 

Student’s t test) by 50% in the vIRF-2 induced cells treated with +dox+ifn (Figure 4.3B). 

Whereas in the EV clone 1 cells treated with -dox+ifn and +dox+ifn, the normalised pISRE-

luc activity increased by approximately 500-fold in response to IFN-α from background 

levels and was significantly reduced (p < 0.01, Student’s t test) by 74% when compared to 

the vIRF-2-induced cells of vIRF-2 clone 20 cells treated with +dox+ifn (Figure 4.3B). 

As with vIRF-2 clones 3-9 and 20, the normalised pISRE-luc activity of vIRF-2 clone 

24 increased by approximately 90-fold in response to IFN-α in cells treated with -dox +ifn 

compared to background levels of cells treated with -dox-ifn and +dox-ifn and was 

significantly reduced (p < 0.05, Student’s t test) by 40% in vIRF-2 induced cells treated with 

+dox+ifn (Figure 4.3C). Whereas in the EV clone 4 cells, the normalised pISRE-luc activity 

in cells treated with -dox+ifn and +dox+ifn increased by approximately 170-fold in response 

to IFN-α from the background levels and was significantly reduced (p < 0.01, Student’s t test) 

by 75% when compared to the vIRF-2-induced cells of vIRF-2 clone 24 cells treated with 

+dox+ifn. 

Having confirmed by dual luciferase reporter assays that vIRF-2 inhibits ISRE 

promoter reporter activities, aliquots of lysates were analysed by immunoblot assay to study 

vIRF-2 deregulated proteins. The relative levels of proteins involved in the IFN-α-induced 

JAK-STAT pathway were measured by immunoblot assay. It must be emphasized that the 

dual luciferase and the corresponding immunoblot assays were performed more than 20 times 

as so much lysate were required for the large numbers of proteins being studied (data not 

shown). 

The immunoblot assay was therefore performed with aliquots of lysates from each 

pair of cell clones described (Figure 4.3) and the results for each pair of clones are presented 

as two independent experiments (Figure 4.4). Across the three pairs of clones, vIRF-2 
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expression accumulated substantially in the vIRF-2 induced clones treated with doxycycline 

compared with the background levels of non-doxycycline treated cells and no vIRF-2 was 

seen in the EV clones (lacking vIRF-2) treated in parallel (Figure 4.4, A-F, row 1). Probing 

for GAPDH confirmed equal loading of lysates in each lane (Figure 4.4, A-F, rows 6, 11, 

14). 

In the ground state, IFNAR1 is associated with TYK2 while IFNAR2 with JAK1. 

IFN binding brings the heterodimeric IFN receptor subunits together which then facilitate 

phosphorylation across receptor associated tyrosine kinases (see Randall and Goodbourn 

2008). IFN receptor mediated activation of the IFNα/β pathway was confirmed by the 

substantial accumulation of TYK2 phosphorylated at Tyr1054 and Tyr1055 (pTYK2 

(Tyr1054/1055)) following treatment with IFN-α in all clones (Figure 4.4, A-F, row 3). In 

only one experiment was pTYK2 (Tyr1054/1055) of a vIRF-2-expressing clone reduced 

compared to its empty vector partner. This experiment was for vIRF-2 clone 24 compared to 

EV clone 4 counterpart (Figure 4.4, compare panels E and F). The levels of IFNAR1, TYK2 

and JAK1 remained consistently unchanged across all clones regardless of vIRF-2 induction 

(Figure 4.4, A-F, row 2, 4, 5). TYK2 phosphorylates STAT2 at tyrosine residue 689 

(pSTAT2 (Tyr689)) (Yan, Krishnan et al. 1996), and the levels of pSTAT2 (Tyr689) 

increased in all clones following IFN-α treatment (Figure 4.4, A-F, row 7). The levels of 

total STAT2 (Figure 4.4, A-F, row 8) were not changed between vIRF-2 induced clones and 

EV clones counterparts (lacking vIRF-2). Taken together, these data demonstrate that vIRF-2 

does not modulate these IFN-α receptor-proximal events of the JAK-STAT pathway. 

Interestingly, the levels of STAT1 phosphorylated at Tyr701 (pSTAT1 (Tyr701)) 

(Figure 4.4, A-F, row 9) and total STAT1 (Figure 4.4, A-F, row 10) were differentially 

regulated by vIRF-2 expression. The levels of total STAT1 increased substantially following 

IFN-α treatment across each pair of clones. However, both the background levels and the 
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IFN-α-induced levels of total STAT1 were lower in the vIRF-2 induced clones compared to 

their EV counterparts (lacking vIRF-2) (Figure 4.4, A-E, row 10). As expected, the levels of 

pSTAT1 (Tyr701) were reduced concomitantly with the levels of total STAT1 (Figure 4.4, 

A-E, row 9). In one replicate experiment, the vIRF-2 clone 24 total STAT1 (Figure 4.4, F, 

row10) did not respond to the IFN treatment for unknown reasons. The relative densitometry 

results indicate the levels of pSTAT1 (Tyr 701) were significantly reduced by about 2.7-fold 

(p< 0.01, Student’s t test) in vIRF-2 clone 3-9 cells compared to EV clone 5, by 4.6-fold in 

vIRF-2 clone 20 compared to EV clone 1 (p< 0.05, Student’s t test) and by 1.7-fold in vIRF-

2 clone 24 compared to EV clone 4 (p< 0.05, Student’s t test) (Figure 4.5 A,C,E). 

Since the activated STAT1/2 heterodimer is known to associate with IRF-9/p48 to 

form the active heterotrimeric transcription factor ISGF-3, the levels of this protein were 

studied as well. As expected, the levels of IRF-9/p48 were substantially reduced by vIRF-2 

in all vIRF-2 expressing clones compared to the EV clones counterparts (lacking vIRF-2) 

following IFN-α treatment (Figure 4.4, A-F, row 12). 

The relative densitometry results indicate the levels of IRF-9/p48 were significantly 

reduced by about 5.3-fold in vIRF-2 clone 3-9 cells compared to EV clone 5 (p< 0.01, 

Student’s t test), by 3.8-fold in vIRF-2 clone 20 compared to EV clone 1 (p< 0.05, Student’s t 

test) and by 6.1-fold in vIRF-2 clone 24 compared to EV clone 4 (p< 0.05, Student’s t test) 

(Figure 4.5 B, D, F). Additionally, the levels of OAS3 (a representative IFN stimulated gene) 

were substantially reduced in all clones expressing vIRF-2 as compared to their EV clone 

counterparts (Figure 4.4, A-F, row 13). 
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Figure 4.2   Mapping of vIRF-2 to the JAK-STAT pathway.  The details of the JAK-STAT 

pathway down-regulated by vIRF-2 (Table 4.2) were viewed with the DAVID package pathways map 

viewer tool. Pathway information was generated by KEGG. vIRF-2 (red font) is shown to suppress or 

block signal transduction. +p = phosphorylated. 
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Figure 4.3  Investigating the impact of vIRF-2 on the IFN-α-induced JAK-STAT signaling 

pathway by dual luciferase assay. vIRF-2 expressing clones (3-9, 20 and 24) or  clones lacking 

vIRF-2 (EV clones 1, 4 and 5) were plated at a density of 5 x 105 cells/well in 35 mm wells and 

transiently co-transfected with a transfection mixture consisting of pRLSV40-luc (1ng) constitutively 
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expressing Renilla luciferase to which pISRE-luc (250 ng) firefly luciferase was normalised and 

lipofectamine in serum free medium. 24 hours later, the cells were treated with or without rIFN-α 

(300 IU/ml) and with or without dox (1µg/ml) for 30 hours before analysis of luciferase activity by 

the dual luciferase assay. Data are presented as normalised pISRE-luc activity (± standard deviation) 

of three independent experiments each performed in duplicate. (A) vIRF-2 clone 3-9 vs EV clone 5 

(lacking vIRF-2). (B) vIRF-2 clone 20 vs EV clone 1 (lacking vIRF-2). (C) vIRF-2 clone 24 vs EV 

clone 4 (lacking vIRF-2). *p <0.05, **p <0.01, Student’s t test. 
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Figure 4.4   Investigating the impact of vIRF-2 on key proteins of the IFN-α-induced JAK-

STAT signaling pathway by immunoblot assay. (A-F)  Aliquots of lysates for cells treated as 

described (Figure 4.3) were employed for relative quantification by immunoblot of components of the 

IFN-α-induced JAK-STAT signaling cascade. 20 or 40 µg of lysate was resolved on SDS-PAGE (8% 

or 10%)  and immunoblotted with the following sets of primary antibodies: anti-cmyc epitope of 

vIRF-2, anti-IFNAR1, anti-pTYK2 (Tyr1054/1055), anti-TYK2, anti-JAK1, anti-pSTAT2 (Tyr689), 

anti-STAT2, anti-pSTAT1 (Tyr701), anti-STAT1, anti-IRF-9, anti-OAS3 and anti-GAPDH, The 

horseradish peroxidase-conjugated secondary antibodies employed were either polyclonal goat anti-

rabbit or polyclonal goat anti-mouse. Probing GAPDH ensured equal amount of loading lysate in 

each well. Blotted membranes were developed using enhanced chemiluminiscence. Profiles of 

primary and secondary antibodies and conditions under which they were used are shown appendix B, 

tables 1 and 2 respectively. 
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Figure 4.5   Quantifying STAT1 and IRF-9/p48 proteins in vIRF-2 clones vs EV clones with 

densitometry. The relative densitometry was performed on the immunoblots for pSTAT1 and IRF-

9/p48 for each pair of clones. Scanned immunoblot images were uploaded on to Image J software 

package and blot band sizes and density were measured (see section 2.14). Error bars represent 

standard deviation of two independent readings of each blot (two blots in total) for Figure 4.4. 

Student’s t test was performed for each pair of clones: ★p< 0.05 or ★★p<0.01 Student’s t test. 
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4.5.2	
  	
  	
  	
  	
  	
  The	
  impact	
  of	
  vIRF-­‐2	
  on	
  RIG-­‐I-­‐Like	
  Receptor	
  Signaling	
  Pathway	
  

The RIG-I-like receptor-signaling pathway is one of the IFN-mediated events up-

stream of IFN-α/β receptor pathways hypothesised to be suppressed by vIRF-2 and was 

identified to be down-regulated by vIRF-2 (Table 4.2). This section of the study will provide 

details of this pathway viewed with the DAVID package pathway map viewer tool and some 

key signaling proteins confirmed by immunoblot assay. 

The RIG-I-like receptor signaling pathway is part of the IFN-α/β pathway and it is 

discussed in section 1.13. The down-regulation of RIG-I/DDX58, IFIH1/MDA5 and ISG15 

by vIRF-2 is shown (Figure 4.1B), these are among a set of 15 genes associated with the GO 

terms such as: Response to virus, Antiviral defence, Host-virus interactions and Innate 

immune response and clustered with the highest enrichment score in Table 4.2.  

Analysis with the DAVID package pathway map viewer tool has shown (Figure 4.6A) 

the down-regulation of RIG-I/DDX58, IFIH1/MDA5 via IPS-1 that feeds in to CASP10, p38 

MAPK and IRF-3 pathways to perform various biological activities such as activation of the 

antiviral, inflammatory, apoptotic and ubiquitin-mediated proteolysis pathways (Figure 

4.6A). Therefore, the inhibition of RIG-I/DDX58, p38 MAPK and TBK1 by vIRF-2 was 

investigated at the protein level in vIRF-2 clone 20 compared to EV clone 1 cells (Figure 

4.6B).  

vIRF-2 accumulated substantially in the vIRF-2 clone 20 cells treated with 

doxycycline, although basal amounts of vIRF-2 can be seen in the non-doxycycline treated 

clone 20 cells (Figure 4.6B, row 1). However, there was no vIRF-2 expression in EV clone 1 

cells as expected. The levels of RIG-1/DDX58 accumulated in the pair of clones in response 

to IFN-α treatment were reduced in response to increased accumulation of vIRF-2 in the 

vIRF-2 clone 20 cells treated with +dox+ifn and was accumulated to a greater extent in the 

EV clone 1 cells treated with the same treatment profile (Figure 4.6, row 2). The level of 
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TBK1 also increased in response to IFN-α treatment in the pair of clones but was reduced by 

vIRF-2 in the vIRF-2 clone 20 cells; the non-IFN treated cells show basal TBKI levels 

(Figure 4.6, row 3). Additionally, the levels of p38 MAPK increased in response to IFN-α 

treatment in the pair of clones and were substantially reduced in vIRF-2-expressing clone 20 

cells compared to the EV clone 1 counterpart. GAPDH ensured equal loading of lysates. 

Although this work could not be completed due to time constraints, the components of the 

pathway investigated (Figure 4.6B) are down-regulated by vIRF-2 consistent with that 

shown at the transcript level (Figure 4.6A). 

Taken together, the data support our hypothesis that vIRF-2 interferes with the RIG-I-

like receptor pathway which mediates events up-stream of the IFN-α/β receptor signaling 

pathway. 
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A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6   Mapping of vIRF-2 to the RIG-I-like receptor pathway.   (A) The details of 

individual genes or biological pathways that were identified as downregulated by vIRF-2 at the 

transcript level (Table 4.2) were viewed with the DAVID pathway map viewer tool. The red vIRF-2 

font is shown to suppress genes or block signal transduction. Pathway information was generated by 

KEGG.  The proteins analysed in further details by immunoblot are identified with an asterix. (B) 

Confirmation of RIG-I/DDX58, TBK-1 & p38 MAPK by immunoblot. Both the vIRF-2 clone 20 & 

the EV1 cell lines were treated with or without dox (1µg/ml), and with or without IFN-α (300 IU/ml) 

for 30 hours. Cell lysates were resolved on SDS PAGE (8% or 10%) and immunoblotted with 

antibodies against RIG-I/DDX58, TBK-1 & p38 MAPK. Probing for GAPDH ensured equal loading 

in the wells. 
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4.5.3	
  	
  	
  vIRF-­‐2	
  suppresses	
  the	
  Ubiquitin-­‐Proteasome	
  Pathway	
  

The aim of this section was to test the hypothesis that the ubiquitin-ligase pathway (a 

key player in promoting signal transduction by activated RIG-I discussed in section 4.1) is 

down-regulated by vIRF-2. The ubiquitin ligase pathway is an integral part of the ubiquitin-

proteasome pathway. The ubiquitination of RIG-I on its own is reported to promote the 

antiviral response (Gack, Shin et al. 2007). The ubiquitin ligase conjugation pathway shown 

to be down-regulated by vIRF-2 (Table 4.2) was identified by the DAVID package.  

Additional analysis of this pathway using the DAVID pathway map viewer tool indicated 

vIRF-2 inhibits UBE2L6 one of the approximately 40 proteins of the ubiquitin-conjugating 

enzyme (E2) (Figure 4.7). The details of vIRF-2 down-regulated genes sets involved in the 

ubiquitin-ligase pathway are summarized (Table 4.2). The gene products could not be 

analysed further due to time constrains. 

 

 
 
 
Figure 4.7.   Mapping of vIRF-2 to the Ubiquitin ligase conjugation pathway. UBE2L6 is 
suppressed by vIRF-2. Pathway information was generated by KEGG. 
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4.6      Investigating the impact of vIRF-2 on membrane-resident proteins  

associated with IFN-α /β  receptor 

 

Membrane-resident proteins; IFNAR1, JAK and TYK2 shown in Figure 4.4 were not 

detectable with the concentration of IFN-α (300 IU/ml) treatment used throughout this study. 

The IFN concentration was therefore increased to enable their detection. The optimal 

concentration was identified by dose response assay. The vIRF-2 clone 3-9 cells were 

transfected with pISRE-luc and the pRLSV40 and treated with doxycycline as described 

(Figure 4.3) and treated with increasing amounts of IFN-α up to 5000 IU/ml or left untreated 

(Figure 4.8). This experiment revealed no substantial differences in normalised pISRE-luc 

activity between cells treated with 300-4000 IU/ml (Figure 4.8). 

 Because the inhibitory effect of vIRF-2 was demonstrated in cells treated with 1000 

IU/ml the membrane proteins could be detected following treatement at this concentration, 

these experiments were therefore performed with this concentration of IFN-α. 
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Figure 4.8.    Investigating the impact of increasing amounts of IFN-α  treatment on the 

inhibitory potential of vIRF-2 in vIRF-2 clone 3-9 cells. vIRF-2 clones 3-9 cells were plated at a 

density of 5x105 cells/well in 35 mm wells and transiently co-transfected with a transfection mixture 

consisting of pRLSV40-luc (1ng) constitutively expressing Renilla luciferase to which pISRE-luc 

(250 ng) firefly luciferase was normalised and lipofectamine in serum free medium. 24 hours later, 

the cells were then treated with or without increasing amounts of rIFN-α (up to 5000 IU/ml) and with 

or without doxycycline (1µg/ml) for 30 hours before analysis of luciferase activity by dual luciferase 

assay. Data are presented as normalised pISRE-luc activity (± standard deviation) of three 

independent experiments each performed in duplicate. Wells treated with 300 IU/ml -dox are control 

samples for uninduced vIRF-2 cells.  
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4.7.     Analysis of the expression data set by the GSEA package 

The expression data set used to generate Figure 4.1 A-D was further analysed with 

the GSEA package. This analysis was expected to generate gene set enrichment data to 

augment the bioinformatics data generated by DAVID in section 4.5. Because GSEA derives 

its analytical power by focusing on gene sets, which consist of co-regulated genes and works 

in conjunction with the molecular signature database (MSigDB) (Subramanian, Tamayo et al. 

2005) it was expected to (i) generate more gene set enrichment data than the DAVID 

package, (ii) reveal co-regulated genes and their biological pathways that might be enriched 

by vIRF-2. 

 The expression data set was uploaded on to the GSEA package and analysed 

according to the standard procedure (see section 2.11.3). The GSEA package generates an 

enrichment report when the expression data set has been analysed. The GSEA analysis report 

highlights enrichment gene sets with a false discovery rate (FDR) of less than 25% as those 

most likely to generate interesting hypotheses and drive further research, but does analyse 

results for all gene sets. GSEA also suggests that given the lack of coherence in most 

expression datasets and the relatively small number of gene sets being analysed, an FDR 

cutoff of 25% is appropriate. Therefore, our assessment of significance for enrichment scores 

was an FDR <25%. Gene sets enriched by IFN-α in the vIRF-2 clone 3-9 cells treated with -

dox+ifn are presented in Table 4.3. Those gene sets enriched by vIRF-2 expression in vIRF-

2 induced clone 3-9 cells treated with +dox+ifn are presented in Table 4.4. However, 

enrichment in -dox-ifn vs +dox-ifn showed no gene sets were significantly enriched 

(FDR<25%). 
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Table 4.3    Gene sets enriched by IFN-α  in clone 3-9 cells. 

Cell cycle  
BIOCARTA_ATRBRCA_PATHWAY BRCA1 and BRCA 2 block 

cell cycle progression in 
response to DNA damage 
and promote double-
stranded break repair; 
mutations induce breast 
cancer susceptibility. 
 

DNA damage repair, G1/S 
DNA damage checkpoint 
activity, regulation of 
cyclin-dependent protein 
kinase activity, cellular 
response to UV 

WELCSH_BRCA1_TARGETS_1_UP Upregulated by induction of 
exogenous BRCA1 in EcR-
293 cells. 
 

Positive regulation of cell 
cycle & cell growth, 
antiapoptosis 

Transcription regulation  
DAZARD_UV_RESPONSE_CLUSTER_G6 Downregulated by UV-B 

light in normal human 
epidermal keratinocytes, 
cluster 6. 
 

Positive regulation of 
transmission from RNA 
polymerase II promoter, 
angiogenesis, DNA repair 

DAZARD_RESPONSE_TO_UV_NHEK_DN Downregulated by UV-B 
light in normal human 
epidermal keratinocytes. 
 

GPCR signaling pathway, 
positive regulation of cell 
proliferation, positive 
regulation of transmission 
from RNA polymerase II 
promoter 

Gene set Brief description  GO biological process 
Antiviral responses  
BROWNE_INTERFERON_RESPONSIVE_GENES Up-regulated in fibroblasts 

at 6 hours following 
treatment with interferon-
alpha. 
 

Response to virus, 
activation of JAK-STAT 
pathway, microtubule 
bundle formation, positive 
regulation of transcription 
from RNA polymerase II 
promoter 

DER_IFN_ALPHA_RESPONSE_DN Genes up-regulated by 
interferon-alpha in HT1080 
(fibrosarcoma). 

Response to virus, antigen 
processing & presentation 
via MHC I, induction of 
apoptosis by extracellular 
signals. 

DEBIASI_APOPTOSIS_BY_REOVIRUS_INFECTION_UP Up-regulated at any time 
point up to 24 hours 
following infection of 
HEK293 cells with reovirus 
strain T3Abney  

Antiviral response, 
inflammatory response, 
GPCR protein signal 
pathway 

KRASNOSELSKAYA_ILF3_TARGETS_UP Upregulated by ectopic 
expression of NF90 in 
GHOST(3) CXCR4 cells. 
 

Response to virus, 
induction of IFN 
responsive proteins, 
response to exogenous 
dRNA, positive regulation 
of transcription from RNA 
polymerase II promoter 

DER_IFN_BETA_RESPONSE_DN Genes up-regulated by 
interferon-beta in HT1080 
(fibrosarcoma). 
 

Response to virus, 
production of antiviral 
proteins, positive 
regulation of transcription 
from RNA polymerase II 
promoter 

DER_IFN_BETA_RESPONSE_UP Upregulated 2-fold in 
HT1080 cells 6 hours 
following treatment with 
interferon beta. 
 

Response to virus, positive 
regulation of transcription 
from RNA polymerase II 
promoter, positive 
regulation of JAK-STAT 
pathway 
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Apoptosis  
RADAEVA_IFN_ALPHA_RESPONSE_DN Genes up-regulated by 

interferon-alpha in 
primary hepatocyte 
 

Induction of apoptosis by 
extracellar signals, response 
to virus, tyrosine 
phosphorylation of STAT 
proteins 

SANA_RESPONSE_TO_IFNG_UP Genes up-regulated by 
interferon-gamma in 
colon,derm,iliac,aortic,lun
g endothelial cells. 
 

Activation of pro-apoptotic 
gene products, antigen 
processing and presentation 
of peptide antigen via MHC 
class I 

 
 
 
Table 4.4    Gene sets enriched by vIRF-2 in clone 3-9 cells  

 
 
The expression data set used to generate (Figure 4.1) were also used to generate Tables 4.3 and 4.4 

respectively with the GSEA package. GSEA enrichment score reflects the degree to which a gene set is 

overrepresented at the top or bottom of a ranked list of genes. By default, the ranking metric is the 

signal-to-noise ratio. Enrichment score of FDR <25% was considered significant. 

 
 

 

 

 

 

 

 

 

 

 

Gene set Brief description  GO biological process 
Cell growth, proliferation & adhesion pathway   
VERRECCHIA_RESPONSE_TO_TGBF1_C2 Upregulated by TGF-beta 

treatment of skin fibroblasts, 
cluster 2. 
 

Cell adhesion, 
angiogenesis, skin 
morphogenesis 

SA_MMP_CYTOKINE_CONNECTION Cytokines can induce 
activation of matrix 
metalloproteinases, which 
degrade extracellular matrix  

Positive regulation of cell 
matrix adhesion, TGFR 
signaling pathway, IL-6 
mediated signaling 
pathway 

Inflammatory pathway   
BIOCARTA_INFLAM_PATHWAY Interleukins and TNF serve 

as signals to coordinate the 
inflammatory response, in 
which macrophages recruit 
and activate neutrophils, 
fibroblasts, and T cells. 
 

Inflammatory response, 
regulation of immune 
response, angiogenesis, 
positive regulation of cell 
proliferation, TNF-
mediated signaling 
pathway. 
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4.8   Discussion 

The quality assessment of the exon arrays expression dataset with the Affymetrix EC 

had established that the three probeset summarisation metrics: relative log expression, 

positive_ vs_negative_auc and mad-residual mean, including the probe level metrics and the 

probeset signal metrics evaluated (section 4.2) were all highly correlated and consistent with 

the suggested guidelines for quality assessment of exon arrays by Affymetrix.  

Next, we proceeded to analyse the expression data set focusing on vIRF-2 

deregulated IFN-α responsive genes. The gene expression data set analysis revealed vIRF-2 

significantly down-regulated (Limma p < 0.05) 73% of the 78 IFN-α up-regulated genes 

including RIG-1/DDX58, STAT1, IRF-9/p48 & OAS3 (Figure 4.1B) and that vIRF-2 up-

regulated 50% of  the 26 IFN-α down-regulated genes (Figure 4.1D). Since our interest was 

not to study individual genes, rather gene sets and related biological pathways, the DAVID 

and the GSEA software packages were employed to independently analyse the expression 

data set and to extract GO terms and/or enriched gene sets with related biological pathways 

whose functions have been deregulated by vIRF-2 (see Tables 4.2, 4.3, 4.4).  

vIRF-2 down-regulated GO terms: Response to virus, Antiviral defence, Host-virus 

interactions and Innate immune response were the most highly clustered GO terms by 

DAVID followed by those involved in transcription regulation and ubiquitin ligase pathways 

(Table 4.2). Both DAVID and GSEA showed gene sets participating in antiviral response, 

cell cycle, transcription regulation and apoptosis were deregulated by vIRF-2. Unlike 

DAVID, GSEA identified vIRF-2 enriched gene sets involved in positive regulation of cell 

adhesion, angiogenesis and inflammatory response (Table 4.4). These bioinformatics 

analyses therefore provided us with the opportunity to test the hypothesis that vIRF-2 down-

regulates IFN mediated events up-stream and down-stream of the IFN-α/β receptor, 
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including pathways such as the RIG-I-like receptors (RLRS) and JAK-STAT. As mentioned 

earlier the Ubiquitin ligase pathway was not analysed further due to time constrains. 

Analysis of the expression dataset with the DAVID package of vIRF-2-deregulated 

pathways identified 15 genes and related biological pathways, six (ISG15, RIG-I/DDX58 

IFIH1, STAT1, IRF-9/p48 and UBE2L6) of them overlapped with the data presented in 

Table 4.2, the other 9 genes and related pathways could not be studied further as they were 

not significantly (p > 0.01) enriched by DAVID. Subsequent studies of the data generated by 

the DAVID package was therefore based on Table 4.2. The impact of vIRF-2 on these 6 

genes and related biological pathways is discussed below beginning with the JAK-STAT 

pathway: 

Key IFN-induced signaling components of the JAK-STAT pathway such as STAT1, 

IRF-9/p48 and OAS3 were among the individual genes shown to be down-regulated at the 

mRNA levels by vIRF-2 (Figure 4.1B). Further analysis with the DAVID package pathway 

map viewer confirmed the down-regulation of STAT1 and IRF-9/p48 (Figure 4.2). At the 

protein level, key components of the JAK-STAT signaling pathway were confirmed in the 

three pairs of clones by immunoblot assay (Figure 4.4). These results confirmed vIRF-2 

consistently reduced to a greater extent the levels of pSTAT1, STAT1, IRF-9/p48 and OAS3 

in the vIRF-2 induced clones compared to their EV clone counterparts (lacking vIRF-2) 

(Figure 4.4).  

Although pTYK2 was reduced in one of the two experiments of vIRF-2 clone 24 vs 

EV clone 4 (Figure, 4.4, E, row 3) the trend was not consistent in the other four experiments 

with the other two pairs of clones. Moreover, in the other four experiments with the other two 

pairs of clones it was pSTAT1, IRF-9/p48 and OAS3 proteins that were consistently down-

regulated in all the six experiments (Figure 4.4). STAT1 was not reduced in one of the two 

experiments of vIRF-2 clone 24 vs EV clone 4 for unkown reasons (Figure, 4.4, F, row 10).  
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Although the antiviral activity of vIRF-2 has been reported (Burysek and Pitha 2001; 

Fuld, Cunningham et al. 2006; Areste, Mutocheluh et al. 2009) this is the first time vIRF-2 

has been shown to inhibit the JAK-STAT pathway. The mechanism of the antiviral activity is 

through specific inhibition of pSTAT1, STAT1, IRF-9/p48 and OAS3. The upstream 

signaling components of the pathway (IFAR1, pTYK2, TYK2 and JAK1) remained 

unaffected by vIRF-2. This specificity is evident as pSTAT2/STAT2 are unaffected by vIRF-

2 since together with pSTAT1/STAT1 and IRF-9/p48 they form the heterotrimeric 

transcription factor ISGF-3 which regulates antiviral gene transcription. Targeting specific 

components of the JAK-STAT pathway by viruses has been reported. For example, measles 

virus V protein disrupts the JAK-STAT pathway by specifically binding to STAT2 

(Ramachandran, Parisien et al. 2008). West Nile virus protein NS5 disrupted the JAK-STAT 

pathway by inhibiting the phosphorylation and activation of JAK1 and TYK2 with the 

concomitant inhibition of STAT1 and STAT2 (Guo, Hayashi et al. 2005; Laurent-Rolle, Boer 

et al. 2010).  

To counteract the important role-played by the IFN-α/β in antiviral host defence, 

many viruses have evolved to develop a variety of mechanisms to overcome the antiviral 

state elicited by IFN-α/β (Diamond 2009; Gale and Sen 2009). These viruses are able to 

express proteins that interfere with the type I IFN induction pathway. Examples include 

influenza A virus NS1 protein and the human papillomavirus E6 oncoprotein that inhibit 

expression of type 1 IFN by blocking the activation or activity of IRF-3 (Ronco, Karpova et 

al. 1998; Talon, Horvath et al. 2000). Additionally, the IFN-α/β pathway may also be 

targeted by viruses via the expression of IFN antagonist proteins acting at the level of STAT 

proteins, inducing STAT inhibition or degradation. For example, Johnson et al have shown 

the inhibition of STAT1 nuclear accumulation in cells that express ICP27 (Johnson and 

Knipe 2010). ICP27 is a multifunctional immediate early protein with homologues in all 
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herpesviruses (Roizman 2007) that is essential for transcription of some early and late viral 

proteins (Jean, LeVan et al. 2001). These authors reported that ICP27 also induces the 

secretion of a small, heat-stable type I IFN antagonizing protein that inhibits STAT1 nuclear 

accumulation (Johnson and Knipe 2010). It therefore makes biological sense for vIRF-2 to 

specifically inhibit STAT1 because of its role as the central mediator of both types 1 and 2 

IFN signaling pathways that play key roles in cell growth regulation, antitumour activity, 

antiviral and immune defence. 

The importance of STAT1 in the antiviral response is demonstrated by the variety of 

viruses that target it and also by in vivo evidence. Thus, Dupius et al studied two unrelated 

infants with severe mycobacterial and viral diseases not consistent with any reported primary 

immunodeficiency (Dupuis, Jouanguy et al. 2003). These infants were homozygous with 

respect to mutated STAT1 alleles. After developing disseminated Bacillus Calmette-Guerin 

(BCG) vaccine infection, the first infant died of recurrent encephalitis caused by HSV-1 and 

the second infant died of a viral-like illness. STAT1 was considered as a likely candidate 

because of its involvement in both IFN-α/β and IFN-γ pathways. STAT1 sequence studies in 

the first patient showed a homozygous two-nucleotide deletion AG in exon 20 and the 

second infant carried a homozygous nucleotide substitution (T-C), resulting in the 

substitution of a proline for a leucine at amino-acid position 600 also in exon 20. 

Electrophoretic mobility shift assay (EMSA) studies showed impaired activation of ISGF3 in 

response to IFN-α in both infants. The EMSA data are consistent with our data which 

showed ISGF3 significantly accummulated (p-value < 0.01, Student’s t test) in the EV clone 

5 cells compared to the vIRF-2 expressing clone 3-9 cells in response to rIFN-α treatment 

(Mutocheluh, Hindle et al. 2011). This study by Dupuis et al demonstrated that the STAT1-

containing complexes GAF and ISGF-3 were not activated in response to IFN-γ and IFN-α in 

the two infants homozygous at mutated STAT1 alleles (Dupuis, Jouanguy et al. 2003). 



Chapter 4: vIRF-2-deregulated gene sets and signaling pathways 

 162 

However, when EBV infected B-cells from both infants were transiently transfected with 

wild-type STAT1 allele, both GAS and ISRE-binding proteins were produced in the 

transfected cells in response to IFN-γ and IFN-α. This experiment provided additional 

evidence that defective STAT1 led to the patients death. 

In a related study, Chapgier et al described the complex pathophysiology of complete 

STAT1 deficiency in a third unrelated Pakistani child (Chapgier, Wynn et al. 2006). The 

three month old child presented with severe disseminated BCG infection 8 weeks after BCG 

vaccination and subsequently died of viral illness. As the clinical features were consistent 

with a defect in the IFN-γ pathway additional investigations were organized. The results 

showed a complete inability of BCG to stimulate the patient’s blood leukocytes to produce 

cytokines such as IL-12 or IFN-γ beyond background levels (Chapgier, Wynn et al. 2006). 

When STAT1 was sequenced it revealed a homozygous mutation and western blot analysis of 

the patient’s EBV-transformed B cells showed absence of STAT1 but presence of STAT3 

expression (Chapgier, Wynn et al. 2006). These authors further stated IFN-α/β did not 

suppress HSV and VSV replication in fibroblasts from this child (ex vivo studies) although 

in vivo the patient was successful in clearing at least some viruses (Chapgier, Wynn et al. 

2006).  

These studies demonstrate formally that STAT1 deficiency prevents IFN-α/β and 

IFN-γ signaling in humans and advance our understanding of complete STAT-1 deficiency as 

a severe form of innate immune deficiency. 

The OAS3/RNase L is an RNA decay pathway known to play an important role in the 

established endogenous antiviral pathway (Silverman 2007; Randall and Goodbourn 2008). 

The large isoform of the OAS family of antiviral proteins (OAS3, p100) was included in the 

study as a representative of the IFN-stimulated genes. OAS3 protein was also down-

regulated by vIRF-2 most probably as a consequence of the down-regulation of the JAK-
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STAT pathway (Figure 4.4). The OAS3 antiviral mechanism stems from the fact that when 

activated, its RNase L degrades ssRNA molecules including mRNA and viral RNA 

(Silverman 2007). It therefore makes biological sense for vIRF-2 to inhibit OAS3 in order to 

impair the antiviral innate defence system. Moreover, its downregulation in vIRF2- induced 

cells confirms the downstream effector functions of the type 1 IFN pathway are negatively 

affected by this KSHV protein. Others have reported the 1b isoform of mouse OAS gene 

(Oas1b) is a critical component of innate immunity to West Nile virus in vivo and in vitro 

(Perelygin, Scherbik et al. 2002; Kajaste-Rudnitski, Mashimo et al. 2006) and that Oas1b is 

capable of suppressing flavivirus infection in RNase L-deficient mouse cells. However, none 

of the OAS family members have been reported to affect KSHV. Because OAS3 is an IFN- 

stimulated gene its inhibition by vIRF-2 in this study could result from the inbition of the 

JAK-STAT pathway or vIRF-2 probably directly targeted it. The latter reason needs to be 

confirmed by other studies such as immunoprecipitation. Hence, the inhibition of OAS3 by 

vIRF-2 underscores OAS3’s biological importance to the innate antiviral defence. 

The IFN-α responsive gene sets whose biological processes include the positive 

regulation of transcription by RNA polymerase II (RNAPII) promoters were clustered 

together with the antiviral response and transcription regulation gene sets enriched by IFN-α 

treatment (Table 4.3). These data suggest transcription regulation of antiviral genes by 

RNAPII promoters has been down-regulated by vIRF-2. 

The mechanism by which vIRF-2 downregulates the JAK-STAT pathway by 

specifically inhibiting STAT1 and IRF-9/p48 has been shown for the first time in this study 

(section 4.5.1). STAT1 anti-tumour activities gives credence to our prediction that vIRF-2 

may play a carcinogenic role in KSHV biology. The inhibition of STAT1 by vIRF-2 does not 

only lead to defective antiviral pathway but tumorigenesis as well, since STAT1 is 

considered a tumour suppressor (Stephanou and Latchman 2003). Activation of STAT1 
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induces many pro-apoptotic and anti-proliferative genes. For example, IRF-1 is involved in 

IFN-γ/STAT1 dependent apoptosis of hematological malignancies (Sato, Selleri et al. 1997; 

Bernabei, Coccia et al. 2001), cervical carcinoma (Lee, Anderson et al. 1999) and Ewing 

tumour (Sanceau, Hiscott et al. 2000) cells. Furthermore, all-trans retinoic acid (ATRA) 

induces STAT1 phophorylation in myeloid cells, which in turn up-regulates the expression of 

the CDK inhibitor p27Kip1 and eventually triggers G0/G1 arrest (Dimberg, Karlberg et al. 

2003). Taken together, this evidence may explain why the gene sets involved in cell cycle 

regulation were not enriched by vIRF-2 in the vIRF-2 induced clone 3-9 cells stimulated with 

IFN-α (Table 4.4) but rather in the non-vIRF-2 induced IFN-α stimulated clone 3-9 cells 

(Table 4.3). These data suggest vIRF-2 down-regulated the said gene sets as they were not 

enriched by vIRF-2 in the vIRF-2 induced cells treated with IFN-α (Table 4.4). 

Besides cell cycle arrest, STAT1 promotes apoptosis in tumours by inducing the 

expression of cell death receptors and their ligands. IFN-γ-dependent STAT1 activation 

induces the expression of Fas and Fas ligand in haematopoeitic and colon carcinoma cells 

(Conti, Regis et al. 2007; Elahi, Zhang et al. 2008). Also, STAT1 promotes induction or 

activation of different members of the executor of cell death caspase family. For example, 

IFN-γ induces caspase-1 in a STAT1-dependent manner in breast cancer, epithelial 

carcinoma, T cell lymphoma, and together with caspase-3 and -7, in renal cell carcinoma 

(Kumar, Commane et al. 1997; Fulda and Debatin 2002; Egwuagu, Li et al. 2006). Our data 

suggest IFN-α stimulated gene sets involved in apoptosis were enriched by IFN-α in clone 3-

9 cells (Table 4.3) but not vIRF-2 induced cells (Table 4.4). These data are consistent with 

the down-regulation of the apoptotic pathway by vIRF-2 at the transcription level (Figure 

4.6A), probably through targeting STAT1. 

STAT1 is required for optimal DNA damage-induced apoptosis by negatively 

regulating the p53-inhibitor mdm2 and acting as a p53 co-activator. It can also directly 
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interact with p53 and this association is enhanced following DNA damage (Thomas, 

Finnegan et al. 2004; Youlyouz-Marfak, Gachard et al. 2008). Therefore, the gene sets 

involved in DNA damage and repair were not enriched by vIRF-2 (Table 4.4) but rather by 

the non-vIRF-2 induced IFN-α stimulated cells (Table 4.3). 

The enrichment of the gene sets involved in the angiogenic pathway by vIRF-2 

(Table 4.4) could be attributed to the down-regulation of STAT1 by vIRF-2, because STATI 

is already known to play a key role in the inhibition of angiogenesis, acting on both 

endothelial and tumour cells. Moreover, angiogenesis is up-regulated in KS (Ye, Blackbourn 

et al. 2007) which could be attributed the inhibition of STAT1 by vIRF-2. 

IFN-γ/STAT1 activation inhibits growth and tube formation in human umbilical vein 

endothelial cells (HUVEC) (Battle, Lynch et al. 2006) and suppresses the biological activity 

of VEGF through the inhibition of genes required for VEGF response, including 

angiopoietin-2, tissue inhibitor of matrix metalloproteinase (MMP)-1 and VEGF receptor 2 

(Battle, Lynch et al. 2006). Consequently, the inhibition of STAT1 by vIRF-2 may also up-

regulate growth factors active in angiogenesis, vasculogenesis and endothelial cell growth or 

KS cell proliferation and promote their migration in KSHV infected patients, consistent with 

the observation in our laboratory that KSHV infection increases HUVEC motility (Jeffrey 

and Blackbourn, unpublished observation). 

STAT1 activation is pivotal for tumour immunosurveillance as it drives induction of 

MHC Class I, required for efficient display of antigens to effector T-lymphocytes and thus 

elicit anti-tumour immune response. For example, defective class I MHC inducibility was 

correlated with defective STAT1 phosphorylation in melanoma cells (Rodriguez, Mendez et 

al. 2007). Therefore in the context of KS or PEL the vIRF-2 deregulated JAK-STAT pathway 

could lead to reduced tumour immune serveillance. For example, the down-regulation of 
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IRF-1 and STAT1 (key players of the IFN-α/β pathway) by the oncogenic KSHV vIRF-1 

protein has been reported as a contributory factor to PEL (Y Zhang 2009). 

Taken together, the inhibition of STAT1 activity by vIRF-2 protein has revealed its 

mechanism controlling the antiviral response and has suggested its carcinogenic role in the 

biology of KSHV. 

The RIG-I-like receptor pathway is one of the upstream events of the IFN-α receptor 

shown to be down-regulated by vIRF-2. The affected component is the RIG-I/DDX58 

(Figure 4.1B, Table 4.2). RIG-I/DDX58 senses exogenous cytosolic viral RNA molecules 

and initiates a signaling cascade that involves binding of RIG-I-like receptor to MAVS. This 

interaction then activates TBK1, which phosphorylates IRF-3. MAVS also promotes 

activation of NF-κB. IRF-3 and NF-κB then translocate to the nucleus to induce the 

transcription of genes involved in antiviral defense (Moore and Ting 2008). 

vIRF-2 activity was mapped to the RIG-I-like receptor pathway (Figure 4.6A) where 

RIG-I/DDX58 and MDA5/FIH1 have been shown to be down-regulated; the inhibition of 

RIG-I/DDX58 was confirmed by immunoblot assay in one experiment (Figure 4.6B). 

Viruses including human CMV have been shown to down-regulate RIG-I/DDX58 as a 

strategy to evade the RIG-I-mediated immune response (Scott 2009). Also, RIG-I-dependent 

sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA 

intermediate has been reported (Ablasser, Bauernfeind et al. 2009). These authors revealed a 

novel DNA-sensing pathway via RIG-I/DDX58. AT-rich dsDNA served as template and was 

transcribed by RNA polymerase III into dsRNA with a 5’-triphosphate moiety in a process 

that converted AT-rich DNA into RIG-I ligand (Ablasser, Bauernfeind et al. 2009). 

Therefore it makes biological sense for vIRF-2 to inhibit RIG-I/DDX58 in other to impair the 

innate antiviral pathway.  
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An antiviral gene essential for the function of RIG-I/DDX58 that was down-regulated 

by vIRF-2 is ISG15 (TRIM25 or E3 ligase) (Table 4.2, Figure 4.6A). This protein is known 

to ubiquitinate RIG-I/DDX58 on lysine 172 in the second CARD domain, a residue 

necessary for RIG-I activation (Gack, Shin et al. 2007). ISG15 binds the RIG-I first CARD 

and subsequently ubiquitinates its second CARD. Mutation in both RIG-I CARDs abolished 

ISG15 interaction and eliminated polyubiquitination and antiviral activity (Gack, Kirchhofer 

et al. 2008). One reason vIRF-2 may down-regulate the ubiquitin ligase pathway is because 

unanchored ubiquitin chains (inherently present in the cell microenvironment) together with 

RIG-I form a potent viral RNA sensor that directly communicates with MAVS to promote 

IRF-3 and NF-κB activation (Zeng, Sun et al. 2010), leading to the antiviral response. The 

down-regulation of the RIG-I/DDX58 by vIRF-2 confirms our hypothesis that vIRF-2 may 

down-regulate events upstream of the IFN-α receptor.  

The third antiviral pathway shown to be down-regulated by vIRF-2 is the ubiquitin 

ligase pathway (Figure 4.7, Table 4.2). The down-regulation of UBE2L6 (one of about 40 

enzymes in mammals) by vIRF-2 (Figure 4.8, Table 4.2) could significantly impair the E2 

charging of ubiquitin molecules to E3 thereby blocking the activities of the K63-ubiquitin 

protein, which promotes RIG-I sensing, and signal transmission. For example, the N-terminal 

CARD domains of RIG-I can function without the requirement for viral RNA in the pathway 

activation. Zeng and colleagues made this finding when they incubated the N-terminal 

CARD domains of RIG-I with E2-conjugating enzymes and the ISG15/TRIM25 ubiquitin-

like protein (Zeng, Sun et al. 2010). This incubation catalyzed the assembly of K63-ubiquitin 

chains on RIG-I resulting in MAVS-dependent activation of IRF-3. As described above, 

ISG15/TRIM25 is down-regulated by vIRF-2. Moreover, the down-regulation of UBE2L6 

and the related ubiquitin ligase pathway by vIRF-2 may inherently impair the activity of the 

ubiquitin ligase pathway (Figure 4.6A), which is an integral part of the ubiquitin mediated-
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proteasome pathway. The consequence is suppression of antiviral response, deregulation of 

cell cycle, promotion of tumourigenesis and suppression of the adaptive immune response 

pathway. These are classic mechanisms by which vIRF-2 subverts the innate and adaptive 

immune defence systems and perhaps promote cancer in humans. 

Taken together, these data strongly suggest that the role of vIRF-2 protein in KSHV 

biology is the down-regulation of both type 1 and 2 IFN signaling pathways resulting in (i) 

increased resistance of many viruses especially the IFN-sensitive viruses to both IFN 

pathways and (ii) promote tumourigenesis in KSHV infected patients.  

In the next chapter we will test the hypothesis that vIRF-2 rescues IFN-sensitive 

viruses from the type 1 IFN pathway. 
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Chapter 5     The biological significance of vIRF-2 anti-IFN 

property  

 
Having established possible mechanisms by which vIRF-2 down-regulates the IFN-

α/β pathway (chapter 4), in this chapter we aimed to test the hypothesis that vIRF-2 rescues 

IFN sensitive Chandipura and Encephalomyocarditis viruses from the antiviral pathway. 

Testing this hypothesis would help to determine in vitro the physiological significance of the 

role of vIRF-2 in KSHV biology.  

The importance of IFNs is underscored by the observation that mice that lack the 

IFN-α/β receptor or proteins of the JAK-STAT signaling pathway have an increased 

sensitivity to many viral infections (Durbin, Hackenmiller et al. 1996; Meraz, White et al. 

1996; Karst, Wobus et al. 2003). Furthermore, in humans inherited impairment of the 

STAT1-dependent response to human IFN-α/β results in susceptibility to viral diseases 

(Dupuis, Jouanguy et al. 2003; Chapgier, Wynn et al. 2006), see section 4.8. 

 

5.1     Chandipura virus causes encephalitis in humans 

The Chandipura virus was discovered in 1966 by Bhatt and Rodrigues, scientists of 

the Virus Research Centre (VRC) established by the Rockefeller Foundation in 1952 in Pune, 

India (Bhatt and Rodrigues 1967). They were investigating persons with fever in Chandipura 

in northern Maharashtra, near Nagpur in India, for dengue or chikungunya virus aetiology 

(Bhatt and Rodrigues 1967). Bhatt and Rodrigues named it Chandipura after the geographic 

location of its discovery (Bhatt and Rodrigues 1967). Scientists from the Centres for Disease 

Control (CDC) in the USA later classified it as a member of the Rhabdoviridae family, genus 

Vesiculovirus. Members of this genus include Lyssa (rabies) and vesicular stomatitis virus. 
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Chandipura virus came to the limelight in 2003, with the publication of a report by 

scientists in India on a large outbreak of an acute neurological illness of young children with 

high case-fatality rate, diagnosed as encephalitis and putatively associated with infection with 

Chandipura virus (Rao, Basu et al. 2004). In the same year another outbreak of Chandipura 

virus infection was reported in some districts of Gujarat, mostly among tribal children 

(Chadha, Arankalle et al. 2005). 

 

5.2      Chandipura virus replication has been used to measure the activity of 

the type I IFN signaling pathway 

The use of Chandipura virus replication as a measure of IFN antiviral activity has 

been reported by many groups including Easton and colleagues (Easton, Scott et al. 2011). 

These authors developed a novel approach to vaccine protection using defective interfering 

(DI) viruses. DI viruses are deletion mutants, deficient in replication, usually arise 

spontaneously from the genome of infectious viruses and can only multiply when co-infected 

with a genetically compatible infectious virus.  

These authors previously successfully protected mice from lethal in vivo infection of 

many different subtypes of influenza A virus when they intranasally administered a 

protecting influenza A virus (Dimmock, Rainsford et al. 2008). Recently the authors reported 

that protecting influenza A virus also protected in vivo against genetically unrelated 

pneumovirus. The protection was achieved by stimulating the type I interferon pathway in 

the mice and lung samples from the mice were assayed for interferon type I activity by 

challenge with Chandipura virus. The readout was reduction in Chandipura virus-induced 

cytopathology in L929 cells (Easton, Scott et al. 2011). The authors work suggested 

quantifying Chandipura virus replication in the presence of IFN-α can be used to measure 

type I interferon activity in vivo or in vitro (Easton, Scott et al. 2011). 



Chapter 5: The biological significance of vIRF-2 anti-IFN property 

 171 

5.3      Investigating the impact of vIRF-2 on Chandipura virus replication 

In chapter 4 we demonstrated that vIRF-2 expression down-regulates genes involved 

in the IFN-α/β pathway. Therefore, one way to assess the biological significance of this 

phenomenon is to determine in vitro if ectopic vIRF-2 expression rescues IFN-sensitive virus 

replication from the effects of IFN. This experiment was therefore performed with 

Chandipura virus. 

Monolayers of EV clone 5 and vIRF-2 clone 3-9 cells were pre-treated with or 

without doxycycline and increasing amounts of rIFN-α (up to 300 IU/ml) for 30 hours before 

infection with Chandipura virus at a multiplicity of infection (MOI) of 0.1. The cell 

supernatants were harvested 24 hours later for quantification of the viral titre by plaque assay 

(Figure 5.1). In the non-IFN treated cells the viral yield recovered from the pair of cell 

clones indicated a marginal decrease in the vIRF-2 expressing clone 3-9 cells (3.97x108 

PFU/ml) compared with EV clone 5 (6.4x108 PFU/ml). Moreover, increasing the amount of 

rIFN-α revealed vIRF-2 in clone 3-9 cells failed to rescue Chandipura virus replication from 

the rIFN-α as the recovered virus yield was persistently less than that recovered from the EV 

clone 5 cells (Figure 5.1). For example, in the pair of clones treated with 300 IU/ml rIFN-α, 

the virus yield recovered from the vIRF-2 clone 3-9 cells averaged 3.03x106 PFU/ml 

compared with 1.01x107 PFU/ml in the EV clone 5 cells (Figure 5.1). Although the 

Chandipura virus is IFN-sensitive, as demonstrated by the IFN dose dependent reduction of 

virus yield, the result suggests vIRF-2 decreased Chandipura virus replication in the vIRF-2 

clone 3-9 cells, contrary to our expectation (Figure 5.1).  

Given this unexpected result, we then investigated whether vIRF-2 expression could 

rescue replication of another interferon-sensitive virus, EMCV. 
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Figure 5.1  vIRF-2 expression does not rescue Chandipura virus replication from the IFN-α /β  

pathway. Monolayers of vIRF-2 clone 3-9 and EV clone 5 cells were pre-treated with doxycycline (1 

µg/ml) and either none or increasing amounts of rIFN-α (3, 30, and 300 IU/ml) for 30 hours.  The 

cells were then infected with Chandipura virus (MOI = 0.1) and incubated for 30 hours. The culture 

fluid was collected and virus titres determined by limiting dilution plaque assay on vero cells. After 

24 hours of incubation, plaques were identified by crystal violet staining and counted. Data are 

presented as the mean Chandipura virus titre +/- standard deviation in clone 3-9 cells compared to the 

titre in EV clone 5 cells in two independent experiments, each performed in duplicate. Chandipura 

virus titre was statistically significant (p <0.01, Student’s t-test) between the pair of clones when 

treated with 300 IU/ml rIFN-α. The error bars are too small to be clearly visible. 
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5.4     EMCV causes myocarditis and encephalitis 

The Picornaviridae family consists of a diverse group of viruses that cause a variety 

of human and animal diseases. The family consists of eight genera and the best studied is 

poliovirus (PV), the aetiologic agent of the paralytic disease poliomyelitis. The three PV 

serotypes are classified in the Enterovirus genus together with enterovirus type 70 (EV 70), 

which causes acute heamorrhagic conjunctivitis (see Pallansch M. 2007). 

Cardioviruses are positive-strand RNA viruses in the Picornaviridae family that have 

been associated with myocarditis, encephalitis, and demyelinating disease in rodents (see 

Brahic, Bureau et al. 2005), (Liang, Kumar et al. 2008). The Cardiovirus genus consists of 

Theilovirus, the prototype of which is Theiler’s murine encephalomyelitis virus (TMEV), 

and EMCV. Infection with EMCV is associated with sporadic cases and outbreaks of 

myocarditis and encephalitis in domestic pigs, in numerous species of nonhuman primates, 

and in other mammalian species (Grobler, Raath et al. 1995). The disease is often fatal with 

sudden death as the first indication of infection. Most outbreaks have been associated with 

captive animals, such as those found in piggeries, primate research centers and zoos. 

 

5.5    EMCV replication has been used to measure the activity of the type I 

IFN signaling pathway  

Type 1 IFN has been shown to regulate EMCV replication (Kato, Takeuchi et al. 

2006). These authors challenged mice with EMCV as a model virus that is recognised by 

MDA5. Induction of cytokines such as IFN-β, IFN-α, and IL-6 was severely impaired in the 

sera of MDA5-/- mice challenged with EMCV (Kato, Takeuchi et al. 2006). MDA5-/- mice 

and mice null for the IFN-α/β receptor were highly susceptible to EMCV infection compared 

to littermate controls (Kato, Takeuchi et al. 2006). These experiments demonstrate the 

sensitivity of EMCV replication to type 1 IFN activity in vivo. 
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5.6      Investigating the impact of vIRF-2 on EMCV replication  

Given the sensitivity of EMCV to type 1 IFN, we tested our hypothesis that vIRF-2 

rescues IFN-sensitive viruses from the type 1 IFN antiviral pathway with this virus. 

Monolayers of EV clone 5 and vIRF-2 clone 3-9 cells were pre-treated with or without 

doxycycline and increasing amounts of rIFN-α (up to 300 IU/ml) for 30 hours before 

infection with encephalomyocarditis virus at a multiplicity of infection (MOI) of 0.1. The 

cell supernatant was harvested 24 hours later for quantification of the viral titre by plaque 

assay (Figure 5.2). In the non-IFN treated cells, the viral yield recovered from the pair of cell 

clones remained approximately the same. Thus, EMCV yield recovered from the vIRF-2- 

expressing clone 3-9 cells averaged 7.4x106 PFU/ml, compared with an average of 6.6x106 

PFU/ml for EV clone 5 cells. However and as expected, increasing amounts of rIFN-α 

decreased significantly (p< 0.01, Student’s t test) the yield of EMCV in the EV clone 5 cells 

by as much as two orders of magnitude (to 7.7x104 PFU/ml for 300 IU rIFN-α/ml) (Figure 

5.2). In contrast, the yield of EMCV recovered from the vIRF-2-expressing clone 3-9 cells 

was almost unchanged following IFN-α treatment (2.9x106 PFU/ml at 300 IU rIFN-α/ml) 

compared to untreated cells (Figure 5.2). These data provide evidence that vIRF-2 can 

mediate viral resistance to IFN and rescue IFN-sensitive EMCV replication. 
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Figure 5.2   Effects of vIRF-2 on EMCV replication. Monolayers of vIRF-2 clone 3-9 and EV 

clone 5 cells were pre-treated with doxycycline (1 µg/ml) and either none or increasing amounts of 

rIFN-α (3, 30, and 300 IU/ml) for 30 hours.  The cells were then infected with EMCV (MOI = 0.1) 

and incubated for 30 hours. The culture fluid was collected and EMCV titres determined by limiting 

dilution plaque assay on L929 cells.  After 72 hours of incubation, plaques were identified by crystal 

violet staining and counted. Data are presented as the mean EMCV titre +/- standard deviation in 

clone 3-9 cells compared to the titre in EV clone 5 cells in three independent experiments, each 

performed in duplicate. In cells treated with 300 IU rIFNα/ml, the EMCV titre was statistically 

significant (**p <0.01, Student’s t-test) when compared between the two clones. 
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5.7     Discussion 

vIRF-1 and vIRF-3 can inhibit virus-mediated activation of IFN-α and IFN-β 

promoters by inhibiting the transactivating activities of cellular IRFs such as IRF-1 and IRF-

3 (Burysek, Yeow et al. 1999; Lubyova and Pitha 2000). Also, vIRF-2 exon 1 or K11.1 has 

been shown to rescue VSV mRNA translation from IFN-induced block and we have shown 

in chapter 4 of this study that vIRF-2 down-regulates the IFN-α/β pathway. Hence, we 

investigated the biological significance of this phenomenon. We used a model system for 

these studies in which the extent of replication of Chandipura virus or EMCV was compared 

in the presence or absence of IFN-α treatment of vIRF-2 expressing clone 3-9 cells compared 

with EV clone 5 lacking vIRF-2. 

Originally, we wanted to measure replication of wild type KSHV-BAC36 virus vs. 

KSHV-BAC36 deleted for vIRF-2 in the presence and absence of type 1 IFN, but that was 

aborted due to inherent problems with the KSHV-BAC36 (Yakushko, Hackmann et al. 2011). 

The bacterial artificial chromosome (BAC) for the KSHV genome was originally reported by 

Zhou and colleagues (Zhou, Zhang et al. 2002). BAC technology allows the mutagenesis of 

individual genes in complete herpesviral genomes and the functional analysis of the resulting 

phenotype (Borst, Hahn et al. 1999; Zhou, Zhang et al. 2002; Zhu, Li et al. 2006; Estep, 

Powers et al. 2007; Nagel, Dohner et al. 2008). Since the original publication (Zhou, Zhang 

et al. 2002) several mutagenesis investigations involving KSHV-BAC36 have been reported 

(Xu, AuCoin et al. 2005; Xu, Rodriguez-Huete et al. 2006; Zhu, Li et al. 2006; Ye, Zhou et al. 

2008). Nevertheless, none has been able to achieve high titre virus of either KSHV-BAC36 

or mutant derivatives for the de novo infection studies. Recently, Yakushko et al reported 

that the KSHV-BAC36 genome contains a duplication of a 9-kb LUR fragment in the 

terminal repeat area and proved that the BAC cassette is located within this duplication 

(Yakushko, Hackmann et al. 2011). These authors also demonstrated sequence coverage 
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across the KSHV genome when mapping all the 454 reads against the reference sequence 

(GenBank accession no. AF148805) with a Roche Mapper software package. This analysis 

showed up to 4 times the number of reads of positions at approximate nucleotides 25000 to 

35000 which was consistent with an amplification of that part of the KSHV genome. This 

region (~ 25000 to ~35000) covered part of ORF19, as well as complete ORFs 18, 17, 16, K7, 

K6 and K5. This duplicated region was verified and confirmed by a Southern blot assay. 

These authors then hybridized KSHV-BAC36 DNA to a DNA microarray and found that 

probes mapping to a region comprising nt ~ 25000 to 35000 yielded hybridization signals 

that were about 2-fold higher than those observed for the remainder of the genome 

(Yakushko, Hackmann et al. 2011). The PCR analysis of the terminal repeat (TR) region 

yielded a band showing that the BAC cassette was located in the duplicated LUR fragment. 

These and other experiments performed by these authors provide evidence of a ~9-kb 

duplication of an LUR fragment inserted in the terminal repeat region that it contains the 

BAC cassette. These authors suggested that insertion of the BAC cassette within the 

duplication of an LUR fragment in the TR region could lead to homologous recombination in 

bacteria and the preferential loss of the intact KSHV LUR region, since the use of selection 

markers such as chloramphenicol to select the BAC cassette would favour the retention of the 

smaller LUR fragment containing the BAC cassette. Although the KSHV-BAC36 has been 

successfully used in many laboratories to analyse the functions of several KSHV genes in the 

context of the entire KSHV genome, the LUR duplication will complicate mutagenesis or 

knockout of viral genes especially those located within this duplication region. This 

limitation has hampered our vIRF-2 knockout studies. 

We do not know why vIRF-2 expression failed to rescue the Chandipura virus from 

the antiviral effect of IFN-α. However, the expression of vIRF-2 in clone 3-9 cells did rescue 

EMCV replication from the antiviral effect of IFN-α pathway (Figure 5.2). The data 
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demonstrate a rIFN-α dose dependent reduction of EMCV titre in the EV clone 5 but not in 

the vIRF-2 expressing clone 3-9 cells. Also, the EMCV yield recovered from the vIRF-2 

expressing clone 3-9 cells treated with rIFN-α at 300 IU/ml was approximately unchanged 

compared to that of untreated cells. In a similar experiment to study viral inhibition of IFN 

response, Morrison and Racaniello showed picornaviruses encoding the 2Apro gene such as 

polio virus are able to replicate in cells that have been pre-treated with IFN-α, whereas others 

that do not encode the 2Apro gene such as EMCV are exquisitely sensitivity to IFN and are 

unable to replicate in IFN-pre-treated cells (Morrison and Racaniello 2009). However, these 

authors showed EMCV chimeric viruses expressing the 2Apro gene, replicated to higher titres 

in the IFN-pre-treated cells. The result of this study can be likened to the observation made in 

Figure 5.2 indicating vIRF-2 antiviral property in KSHV is able to rescue the replication of 

other viruses such as EMCV. In another experiment, Morrison and Racaniello pre-treated 

HeLa cells with 1000 U/ml IFN-α for 24 hours and then infected the cells with EMCV, 

whose replication was inhibited by approximately 100-fold compared to mock treated cells 

(Morrison and Racaniello 2009). This result is consistent with ours (Figure 5.2) in which EV 

clone 5 cells were pre-treated with rIFN-α 300 IU/ml for 30 hours before being infected with 

EMCV. The replication of the virus was inhibited by ~100-fold. 

The experiments performed in clone 3-9 and EV clone 5 were performed with both 

viruses at MOIs of 1 and 10 as well (data not shown) and a similar pattern of results were 

observed as with (Figure 5.1, 5.2) but the extent of IFN inhibition was not comparable. This 

result is consistent with that reported recently where HeLa cells were pre-treated with IFN-α 

1000 IU/ml or left untreated and were infected with the Polio virus type 1 Mahoney (P1M) at 

MOI of 100, 10,1, or 0.1, and the viral titres were determined 24 hours postinfection. P1M 

was relatively resistant to IFN pretreatment at an MOI of 10 or 1, but IFN resistance declined 

substantially at MOI of 0.1 (Morrison and Racaniello 2009). 
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IFN antagonism of viruses can occur at two levels. Firstly, viral recognition leading 

to IFN production. In the present study we have shown vIRF-2 down-regulates the RIG-like 

receptor pathway by specifically inhibiting RIG-I and MDA5 PRRs that detect pathogen 

associated molecular patterns (Figure 4.7). Also, the JAK-STAT pathway is inhibited by 

vIRF-2 (chapter 4). Secondly, IFN signaling leading to ISG production. From the present 

study we have shown that ISG56 and OAS3 expression are inhibited by vIRF-2 (Chapters 3 

and 4). Thus, expression of two (OAS3 and ISG56) of the over 300 known ISGs was 

confirmed in this study to be inhibited by vIRF-2. Taken together, the vIRF-2 mechanisms of 

evading the antiviral effect of IFN-α include avoidance of sensing by PRRs through the 

inhibition of their expression, the inhibition of antiviral signaling pathways and the inhibition 

of the expression of antiviral genes; giving credence to the impression that vIRF-2 is 

pleiotropic. These mechanisms presumably play a key role in the ability vIRF-2 to rescue 

EMCV replication from the antiviral effect of IFN-α. A typical type 1 IFN mechanistic 

action in vitro is: (i) OAS3 leads to the destruction of viral RNA (Dong, Xu et al. 1994; 

Silverman 2007), (ii) ISG56 suppresses both host and viral translation by binding to 

eukaryotic initiation factor 3 (Hui, Bhasker et al. 2003), (iii) induction of apoptosis and 

establishment of antiviral state in infected cells. Other viruses which have antagonized the 

IFN pathway at the IFN production step include hepatitis C virus inhibition of IRF-3 and 

NFκB activation through the NS3/4 protease (Foy, Li et al. 2005), VSV inhibition of IFN-β 

transcription by matrix protein (Ferran and Lucas-Lenard 1997) and binding of human 

papillomavirus 16 E6 oncoprotein to IRF-3 (Ronco, Karpova et al. 1998). Dengue virus also 

disrupts IFN signaling (Jones, Davidson et al. 2005). The identification of such viral immune 

evasion strategies provides strong evidence for the importance of the early innate immune 

system in the control of viral infections. 
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 Taken together, in the context of KSHV infection, vIRF-2 together with other KSHV 

anti-IFN genes may enhance the replication of this virus in a fashion similar to that 

demonstrated for the model virus EMCV (Figure 5.2), through the continuous suppression of 

the innate antiviral pathway in particular and adaptive immune systems in general. 
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Chapter 6     General discussion 

6.1     General discussion 

 

The ultimate goal of this study was to investigate the impact of KSHV vIRF-2 on cell 

transcriptome profiles involved in the IFN-α/β pathway. Based on previous studies of vIRF-2 

function, including our own laboratory, this study was designed to (i) reveal vIRF-2 down-

regulated gene sets and associated biological pathways that regulate the IFN-α/β pathway, (ii) 

test the hypothesis that vIRF-2 inhibits pathways upstream and downstream of the IFN-α/β 

receptor, (iii) reveal the mechanisms by which vIRF-2 deregulates the IFN-α/β pathways 

leading to the circumvention of the innate immune antiviral response. 

Immunological control of herpesviruses is achieved by both the adaptive and the 

innate immune systems. CD8+ T cells play crucial roles in the adaptive immune system (Liu, 

Khanna et al. 2000; Liu, Khanna et al. 2001; Braaten, Sparks-Thissen et al. 2005). IFN-α/β 

and natural killer cells play key roles in the innate immune response to herpesviral infections 

(see Areste and Blackbourn 2009). 

The innate immune signaling pathway, being the first line of defence against 

microbial infection is critical for an effective antiviral immune response. It has therefore 

attracted much attention from many researchers in recent times (Krishnan, Selvarajoo et al. 

2007; Loo and Gale 2007; Medzhitov 2007; Loo, Fornek et al. 2008). It is activated 

following sensing of infections by PRRs (Takeuchi and Akira 2010). TLRs were the first 

PRRs to be discovered. Recently, more intracellular PRRs have been identified that detect 

pathogen nucleic acids in the cytoplasm. The cytoplasmic RNA helicase-like receptors RIG-I 

and MDA5 act as sensors in coupling recognition of RNA virus infections to the type 1 IFN 

gene induction (Andrejeva, Childs et al. 2004; Takeuchi and Akira 2007; Yoneyama and 

Fujita 2007). Moreover, five intracellular DNA sensing proteins have been reported: (i) 
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DNA-dependent activator of IFN-regulatory factors (DAI). DAI was the first cytoplasmic 

DNA sensor to be identified and was shown to contribute to the type 1 IFN response to HSV-

1 infection (Takaoka, Wang et al. 2007); (ii) absent in melanoma 2 (AIM2). Burckstummer 

and others were the first to report AIM2 as a cytoplasmic DNA sensor to activate the 

inflammasome when they (authors) screened proteins that associate with DNA and are 

transcriptionally regulated by IFN-β. This protein screen identified AIM2 as a new 

cytoplasmic DNA candidate sensor. These authors showed that AIM2 recognized dsDNA 

and activated the inflammasome via the adaptor protein ASC, leading to IL-1β maturation 

(Burckstummer, Baumann et al. 2009); (iii) RNA polymerase III.  Two groups, Chiu and 

colleagues and Ablasser and colleagues identified a novel DNA-sensing pathway mediated 

by RNA polymerase III, which uses AT-rich dsDNA as a template to transcribe dsRNA 

containing 5’-triphosphate moiety, which is recognized by RIG-I leading to IFN production 

(Ablasser, Bauernfeind et al. 2009; Chiu, Macmillan et al. 2009); (iv) leucine-rich repeat 

flightless-interacting protein 1 (LRRFIP1). Yang and colleagues were the first group to show 

the cytosolic nucleic acid binding protein LRRFIP1 plays a role in the IFN production 

stimulated by VSV (Yang, An et al. 2010). These authors revealed LRRFIP1 bound 

exogenous nucleic acids and β-catenin resulting in increased IFN-β, which then leads to the 

production of type 1 IFN (Yang, An et al. 2010), and (v) IFN-γ-inducible protein 16 (IFI16), 

IFI16 was shown to be essential for IFN and cytokine response to HSV-1 infection 

(Unterholzner, Keating et al. 2010). Nothing is known about how vIRF-2 in particular and 

KSHV as a whole influence the above listed intracellular nucleic acid sensors in order to 

circumvent the innate antiviral immune response but the present study provides some clues 

(see below). Previous work in our laboratory showed that vIRF-2 inhibits the IFN-α/β 

pathway by inactivating IRF-1 and IRF-3. However, that alone may not be sufficient to 

impair the antiviral innate immune response pathway, since the IRF-3-independent 
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mechanism of inducing IFN-β and the innate antiviral response in cells such as those of 

myeloid lineage is reported to occur through an IPS-1-dependent signal that does not require 

IRF-3 and IRF-7 (Daffis, Suthar et al. 2009). Further more, Daffis and colleagues showed 

that the systemic type 1 IFN response in IRF-3-/- and IRF-7-/- double knockout (DKO) mice is 

blunted but not abolished (Daffis, Suthar et al. 2009), in line with their previous studies 

which also showed an absence of IRF-3 in vivo does not profoundly reduce the levels of type 

I IFN in serum after West Nile virus infection (Bourne, Scholle et al. 2007; Daffis, Samuel et 

al. 2007). These studies suggest the residual systemic type I IFN response is non-IRF-3-

dependent. Furthermore, the activation of IRF-1 and IRF-3 is regulated by upstream PRRs 

and we reasoned vIRF-2 may target these PRRs to inhibit the IFN-α/β pathway 

We first engineered a vIRF-2 stable inducible cell line in which the vIRF-2 

expressing cassette is regulated by doxycycline and in parallel a negative control clone which 

does not express vIRF-2. This vIRF-2 clone 3-9 and negative control cell line EV clone 5 

were then used for a series of studies prior to the DNA microarray investigation. The initial 

phase of these studies demonstrated 1 µg/ml doxycycline treatment of vIRF-2 clone 3-9 cells 

up to 36 hours provided maximal vIRF-2 expression (Figures 3.1, 3.3). The second 

experiment aimed to determine the concentration of rIFN-α capable of stimulating maximal 

activation of pISRE-luc activity in EV clone 5 cells. This concentration was established at 

300 IU/ml rIFN-α for up to 36 hrs (Figure 3.4). These studies made it possible to conduct 

vIRF-2 functional assays which established vIRF-2 inhibited rIFN-α driven pISRE-luc 

activity by 52% in clone 3-9 cells (Figure 3.5). vIRF-2 was further characterized by IFA, 

which showed it is predominantly a nuclear resident protein (Figure 3.8). 

vIRF-2 clones 20, 24 and their EV clone counterparts 1 and 4 lacking vIRF-2 were 

also engineered and vIRF-2 expression and functional studies were confirmed in these 

additional clones (Figure 3.6). As explained earlier, over 300 clones were screened and only 
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three clones were capable of suppressing rIFN-α stimulated pISRE-luc. The most likely 

explanation being that vIRF-2 expression is so leaky that rIFN-α treatment does not induce 

ISRE. Therefore greater suppression of ISRE and lack of induction due to leaky vIRF-2 

expression was seen in the majority of clones. 

Having established vIRF-2 is functional in clone 3-9 cells, RNA was prepared from 

cell sample sets M11A, M11B and M10 (Figure 3.7 and Table 3.1) and submitted for 

microarray profiling investigations. Due to the cost involved, the DNA microarray studies 

were performed for vIRF-2 clone 3-9 cells only.  

Upon receipt of the microarray data we conducted exon array quality assessment 

analyses on all 12 GeneChips to ensure the data quality were consistent with guidelines 

suggested by Affymetrix (Appendix II, Figures 1A-E). The exon array raw data revealed 

13542 genes were differentially expressed. We then compared the gene expression profile of 

-dox-IFN and -dox+IFN phenotypes (in triplicates) and identified 78 IFN up-regulated genes 

based on Limma p value less than 0.001; out of which 57 (73%) were significantly down-

regulated by vIRF-2 (Limma p< 0.05) (Figure 4.1). To identify vIRF-2 regulated genes in 

the absence of IFN; the expression profile of untreated cells was compared with that of +dox-

ifn treated cells, which identified 26 genes as differentially regulated by vIRF-2. 17/26 (65%) 

of these vIRF-2 regulated genes in the absence of IFN-α were significantly up-regulated by 

vIRF-2 based on Limma p<0.05. The remaining 9/26 (35%) genes were significantly down-

regulated by vIRF-2 based on Limma p<0.05 (Figure 4.1E). The vIRF-2 regulated genes in 

the absence of IFN were not studied further due to time constraints.  

Although 13/26 (50%) genes of the IFN-α down-regulated genes were up-regulated 

by vIRF-2, we elected not to pursue their study because they were not significantly enriched 

by the DAVID package. Instead, we focused on IFN-α-induced gene sets with common 

biological functions or biological pathways that were down-regulted by vIRF-2 expression. 
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The DAVID and GSEA packages were therefore employed to perform these analyses and 

summaries of these data analyses are presented (Tables 4.2, 4.3, 4.4). As expected, GO terms 

and gene sets involved in the ‘Antiviral response’ pathway are the most highly enriched and 

their annotation clustered at the top of the Tables. 

Our initial hypothesis that vIRF-2 down-regulates IFN-α mediated events upstream 

and downstream of the IFN-α/β receptor was confirmed (Tables 4.2 and 4.3, respectively.) 

Although the data presented in each table were generated independently, i.e. with either the 

DAVID or the GSEA package, they both indicated that gene sets involved in antiviral 

responses, transcription regulation, cell cycle and apoptosis were down-regulated by vIRF-2. 

This study is the first to show vIRF-2 inhibits these pathways. Investigation of the JAK-

STAT pathway revealed vIRF-2 down-regulated STAT1 & IRF-9 at the transcription level 

(Figure 4.1) and these findings were confirmed by immunoblot at the protein level (Figure 

4.4). This result is consistent with the reduced ISGF-3 binding to cognate ISRE sequences 

(as determined by EMSA) by vIRF-2 expressing clone 3-9 compared to the EV clone 5 

counterpart shown by Miss Laura Hindle in our laboratory (Mutocheluh, Hindle et al. 2011). 

These data also confirm our hypothesis that vIRF-2 is multifunctional and its targeted 

inhibition of IRF-1 and IRF-3 (Fuld, Cunningham et al. 2006; Areste, Mutocheluh et al. 2009) 

may not be sufficient to block the entire IFN-α/β pathway. The reduction of ISG56 (section 

3.9) and OAS3 (section 4.5.1) by vIRF-2 measured the impact of vIRF-2 on the IFN-

stimulated genes and was suggestive of being a consequence of the down-regulation of the 

IFN-α/β pathway. 

To date, two distinct systems for RNA virus detection and IFN induction have been 

characterized. One is composed of the toll-like receptors and the other is the RIG-I-like 

receptor family. RIG-I and MDA5 of the RIG-I-like receptor family are known cytoplasmic 

sensors expressed in the majority of cell types and they detect intracellular RNA viruses. The 
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present study has shown the specific down-regulation of RIG-I/DDX58 and MDA5/IFIH1 by 

vIRF-2 at the transcription level (Figure 4.1). Interestingly, RIG-I/DDX58 was confirmed at 

the protein level to be substantially reduced by vIRF-2 accumulation in the vIRF-2 induced 

clone 20 cells treated with (+dox+ifn) compared with those of the non-vIRF-2 induced cells 

treated with (-dox+ifn) or EV clone 1 with the same treatment profile (Figure 4.6B). These 

results suggest the RIG-I-like receptor pathway may be inhibited by vIRF-2.  

The inhibition of the RIG-I-like receptor pathway by vIRF-2 suggests the 

consequence is the reduced transduction of signaling cascades which converge upon 

activation and nuclear localization of three families of transcription factors: NF-κB, IRF-3 

and ATF-2/cJun. Also, impaired RIG-I/DDX58 and or MDA5/IFIH1 responses would not be 

expected to recruit MAV adaptor protein under normal circumstance (Kawai, Takahashi et al. 

2005; Meylan, Curran et al. 2005; Seth, Sun et al. 2005). MAV under normal circumstance 

relays the signal to TBK1 and IKK (Fitzgerald, McWhirter et al. 2003; Sharma, tenOever et 

al. 2003), which phosphorylates IRF-3 and IRF-7. Since the level of TBK1 is reduced by 

vIRF-2 in the vIRF-2 induced clone 20 compared with the EV clone 1 counterpart (Figure 

4.6B), this result confirms the RIG-I-like receptor pathway is down-regulated by vIRF-2. 

These data are consistent with our prediction that IFN-α mediated events upstream of the 

IFN-α/β receptor are deregulated by vIRF-2. Another reason vIRF-2 may inhibit the RIG-I-

like receptor pathway is that both RIG-I/DDX58 or MDA5/IFIH1 respond to viruses 

(Yoneyama, Kikuchi et al. 2005) and it makes biological sense to attenuate the viral PRR in 

order to evade innate immune response. 

vIRF-2 inhibition of RIG-I/DDX58 or MDA5/IFIH1 has now opened a new avenue 

for work on how KSHV affects the intracellular PRRs including the above listed DNA 

sensors such as IFI16 (Unterholzner, Keating et al. 2010). IFI16 was down-regulated by 

vIRF-2 (Figure 4.1 and Table 4.2) and is known to be essential for the IFN and cytokine 
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response to HSV-1 infection (Unterholzner, Keating et al. 2010). Further, the inhibition of 

STAT1 by vIRF-2 in the JAK-STAT pathway (Figure 4.5) suggests vIRF-2 may contribute 

to KSHV oncogenesis. 

The ISG56/IFIT1 family of genes (ISG54/IFIT2, ISG56/IFIT1, ISG58/IFIT5 and 

ISG60 /IFIT3) are down-regulated by vIRF-2 (Table 4.2) most probably as a consequence of 

the down-regulation of the IFN-α/β pathway since they are transcriptionally regulated by 

IFN-αβ and IFN-γ (Der, Zhou et al. 1998). As stated (section 3.9), a multitude of RNA- or 

DNA- viruses, viral and bacterial PAMPs can directly induce transcription of a subset of 

ISGs including ISG56 family genes suggesting the crucial role they play in the innate 

antiviral immune response. Interestingly, ISG58/IFIT5 and ISG60 /IFIT3 were originally 

discovered as ATRA-inducible genes (Niikura, Hirata et al. 1997). ATRA is used in the 

treatment of acute promyelocytic leukemia, as it induces differentiation of immature 

leukemic cells and prevents their further proliferation. However, induction of ISG60 /IFIT3 is 

not directly by ATRA but partly by IFN-α, which is secreted after ATRA treatment and 

activates ISG60 /IFIT3 transcription via the JAK-STAT pathway (Xiao, Li et al. 2006). This 

IFN-α activity provides further evidence that the ISG56 gene family members were down-

regulated as a consequence of the down-regulation of the JAK-STAT pathway by vIRF-2. 

One of the best characterized cellular functions of the ISG56 is the inhibition of translation 

by binding to specific subunits of eIF3, thus presenting a mechanism of cell growth 

inhibition distinct from other ISGs like PKR and OAS. For example, Guo et al have shown 

that exogenous expression of human ISG56/IFIT1 suppressed overall cellular translation by 

40% in HT1080 cells, thus being as effective as IFN-β treatment (Guo and Sen 2000).  

The general inhibition of cellular translation mediated by the ISG56/IFIT1 family of 

proteins can be considered as part of a nonspecific antiviral program elicited by exposure of 

cells to IFNs or viral PAMPs, which induce the concerted expression of these and other ISGs. 
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But the repertoire of functions of the ISG56/IFIT1 gene family extends to virus-specific 

inhibitory functions. They are both translation-related and unrelated. For example, translation 

of the HCV positive-sense RNA genome is initiated by IRES-dependent ribosome 

recruitment, which, similar to cap-dependent translation, requires eIF3 (Lukavsky 2009). 

This process is known to be IFN-sensitive, since IFN induces the human ISG56/IFIT1 family 

of genes, which in turn inhibits HCV translation initiation both in vitro and within cells. Also, 

HCV-IRES translation is known to be more strongly compromised than cap-dependent 

translation in the presence of human ISG56/IFIT1. The inhibition depends on binding of 

human ISG56/IFIT1 to eIF3. The human ISG56/IFIT1 is found specifically in the ribosomal 

initiation complexes containing eIF3 and HCV RNA (Wang, Pflugheber et al. 2003). 

Therefore, IFN- or virus-induced human ISG56/IFIT1 contributes to the inhibition of HCV 

virus. Although KSHV vCyclin coding sequence contains an IRES element (Bieleski and 

Talbot 2001), the inhibitory effect of ISG56/IFIT1 on cellular protein translation regulation 

may not be biologically significant because vCyclin deregulates the cell cycle. 

Taken together, we speculate that vIRF-2 down-regulates this human ISG56/IFIT1 

gene family as a consequence of the down-regulation of the JAK-STAT pathway and the 

pleiotropic effects include: the rescue of virus replication as shown for EMCV (section 5.6, 

Figure 5.2), the inhibition of apoptosis (Figure 4.6, Table 4.3), the inhibition of cell 

migration and antiproliferation as a result of inhibition of IFITs (Lai, Chang et al. 2008). 

Three genes encoding members of the Poly(ADP-ribosyl)polymerase superfamily 

(PARP 9, 12, 14) originally identified as enzymes that catalyze the attachment of ADP-ribose 

subunits to target proteins using NAD+ as a substrate (Chambon, Weill et al. 1963; Fujimura, 

Hasegawa et al. 1967) were also down-regulated by vIRF-2 (Table 4.2). The ADP-ribose 

polymer is formed by sequential attachment of ADP-ribosyl moieties from NAD+. PARPs 

have been shown to be involved in DNA damage repair, cell death pathways, transcription 



Chapter 6: General discussion 

 189 

and chromatin modification/remodeling (see Kim, Zhang et al. 2005; Schreiber, Dantzer et al. 

2006). PARPs are important targets for anti-cancer therapies (Fong, Boss et al. 2009). The 

first PARP purified and cloned, PARP 1 from human, remains the best studied, while PARPs 

1 and 2 are the most abundant nuclear protein after histones (Virag and Szabo 2002) . The 

PARP-like family has been characterized in humans, where there are seventeen members that 

share the PARP catalytic domain (Ame, Spenlehauer et al. 2004; Hottiger, Hassa et al. 2010). 

In our previous studies, one of our experiments showed cleaved PARP levels were reduced in 

the presence of vIRF-2 compared with its absence regardless of the presence of caspase-3 

siRNA, and we speculated that vIRF-2 might have anti-apoptotic activity (Areste, 

Mutocheluh et al. 2009). These data are consistent with Yu et al, who have provided 

evidence that PARP-1 activity triggers release of a mitochondrial pro-apoptotic protein called 

apoptosis-inducing factor (AIF) that promotes programmed cell death through a capase-

independent pathway (Yu, Wang et al. 2002). Therefore, we speculate that vIRF-2 has 

evolved to down-regulate these PARPs in order to deregulate the cell cycle, gene 

transcription regulation and apoptotic pathways resulting in the deregulation of the antiviral 

pathways and promotion of tumourigenesis. Both the IFIT and the PARP GO terms (Table 

4.2) were not confirmed by immunoblot due to time constrains. 

The hypothesis that vIRF-2 anti-type 1 IFN effects could rescue EMCV from the 

IFN-α/β pathway was also confirmed (Figure 5.2). As stated (section 5.7), the best model 

system to determine the biological relevance of the deregulation of the type 1 IFN pathway 

by vIRF-2 is to compare titre of a KSHV-vIRF-2 mutant lacking vIRF-2 with that of WT 

when propagated in the presence or absence of IFN. Our original plan was to use KSHV-

BAC36, which has been used for the purpose of mutagenesis studies by some groups since 

its establishment as an experimental model in 2002 (Zhou, Zhang et al. 2002; Gunther and 

Grundhoff 2010). Although, Dr. Simon Chanas in our laboratory created a KSHVBAC36-



Chapter 6: General discussion 

 190 

vIRF-2 mutant, it could not be used due to our inability to reactivate it and produce virus. 

The reason is likely due to duplication of approximately 9-kb in the LUR fragment within the 

terminal repeat (Yakushko, Hackmann et al. 2011). This problem is discussed in section 5.1.  

The replication kinetics of interferon sensitive Chandipura virus or EMCV in IFN-α 

pre-treated cells expressing vIRF-2 or not was studied. For unknown reason, vIRF-2 was not 

able to rescue Chandipura virus replication from the anti-viral effect of IFN-α (Figure 5.1). 

However, vIRF-2 was able rescue EMCV replication from this effect (Figure 5.2). It must be 

emphasized that the experiments involving each type of virus were performed in parallel; 

therefore the unexpected Chandipura virus result is unlikely to be experimental error. 

Nevertheless, the EMCV result confirms our hypothesis that the anti-type 1 IFN effects of 

vIRF-2 can rescue IFN-sensitive virus replication. 

Taken together, the present study has established that vIRF-2 deregulates the entire 

type 1 IFN signaling pathway by specifically inhibiting key signaling proteins such as the 

RIG-I, MDA5, p38 and TBK1 of the early part of the IFN-α/β signaling pathway and STAT1 

IRF-9 and OAS3 key signaling components of the JAK-STAT-ISRE pathway (Figure 6.1). 

The mechanisms by which vIRF-2 inhibits the IFN-α/β signaling pathway, the biological 

significance of these findings and the suggestive oncogenic property of vIRF-2 were shown 

in this study. 
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Figure 6.1.   Proposed deregulation of the IFN-α /β  signaling pathway by KSHV vIRF-2. The 

innate immune response to viral RNA has been well characterized in that the endosomal toll-like 

receptors (TLRs) and the cytoplasmic RIG-like receptors (RLRs) sense viral RNA, which leads to the 

induction of the IFN-α/β signaling pathway through activation of downstream signaling pathways 

(Pichlmair and Reis e Sousa 2007). Initiation of the early part of the IFN-α/β signaling pathway by 

TLR3 begins with TLR3 sensing dsRNA, which leads to recruitment of TLR adaptor protein TRIF; 

this then triggers activation of kinases including TBK1 and IKK-β, kinases that phosphorylate and 

activate the transcription factors IRF-3 and NF-κB respectively (Fitzgerald, McWhirter et al. 2003; 

Sharma, tenOever et al. 2003) Thereafter, IRF-3 and NF-κB translocate to the nucleus and mediate an 

antiviral gene induction program that includes the production of IFN-β. Cytosolic RNA is detected by 

the RLRs RIG-I and MDA5, which via the adaptor protein IPS-1 turn on a signaling pathway similar 

to that of TLR3 in the induction of IFN-β production via TBK1-mediated IRF-3 activation (Pichlmair 

and Reis e Sousa 2007). However, the present study shows the levels of RIG-I, MDA5, p38 and 

IFN- !, other  
antiviral genes mediators of the IFN 

antiviral response 

T
R

IF
 PI(3)K 

TBK1 

IKK" 

R
IG

-I
 &

 m
da

5 

I#B 
NF-#B 

TRAF6 

IKK$! 

RIP1 

T
LR

3 endosome 

IFN-$, ! 

entry by 
endocytosis 

entry by plasma 
membrane fusion IF

N
-$

R
1 

IF
N

-$
R

2 

Tyk2 

Jak1 
STAT1 

STAT2 

IRF-3 

STAT2 STAT1 
p48/IRF9 

STAT2 STAT1 
p48/IRF9 

ISRE 

ISGF-3 

NUCLEUS 

CYTOPLASM 
IFN-! 
enhancesome Akt 

PRD I-IV 

CARD 

ATF-2 
c-Jun 

P38 

JNK TI
R
 

TIR 

ds RNA 

ds
 R

N
A

 

Mito
ch

on
dr

io
n 

IPS1 CARD vIRF-2 

vIRF-2 



Chapter 6: General discussion 

 192 

TBK1 were reduced by vIRF-2 (indicated by red font and straight lines crossed at one end). Once the 

cell has responded to the infection through the production of IFN-α/β cytokines, they are secreted and 

can act in a paracrine and autocrine fashion to initiate the remainder of the IFN response (right side of 

illustration). This initiation occurs through the production of the IFN-stimulated gene factor (ISGF-3) 

followed by the activation and expression of IFN-stimulated response elements (ISRE)-containing 

promoters whose products establish the antiviral state in infected and uninfected bystander cells 

(Stark, Kerr et al. 1998). This process involves the recruitment and phosphorylation of signal 

transducer and activator of transcription factors (STAT1 and STAT2) by IFN-receptor-associated 

tyrosine kinases upon IFN binding. The heterodimerization of phosphorylated STAT1 and 2 recruits 

IRF-9 and form the ISGF-3 transcription factor complex. Because the ISRE is recognized by IRF-3 

and ISGF-3 the genes active in the early kinetics in response to virus infection and those induced by 

the type 1 IFNs overlap. The present study has demonstrated that vIRF-2 inhibits STAT1 and IRF-9 

(indicated by red font and straight lines crossed at one end) key proteins  of the later part of IFN-α/β 

signaling pathway. Amended from (Rezaee, Cunningham et al. 2006; Areste and Blackbourn 2009). 

 

 

 

 

 

6.2   Recommendations for future research 

Future work in this area should aim to (i) verify the microarray data at the protein 

level as was done for the JAK-STAT-ISRE pathway in this study, for the IFITs, PARPs and 

the ubiquitin ligase conjugation pathways (Table 4.2); (ii) make a new KSHV-BAC knock 

out for vIRF-2 seperately and all four vIRFs together which would be used to assess the 

impact of all the KSHV vIRFs on the type 1 IFN pathway; (iii) construct a transgenic mouse 

for vIRF-2 and infect it with EMCV compared to WT mouse; (iv) verify how vIRF-2 down-

regulates STAT1 and IRF-9. Other studies could investigate the impact of vIRF-2 on the 

intracellular PRRs, such as the recently discovered intracellular DNA sensing proteins like 

DAI, AIM2, RNA polymerase III and IFI16. Special attention could be paid to IFI16, which 
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was confirmed to be down-regulated in this study (Figure 4.1 and Table 4.2). It was 

recently reported to act as a sensor for exogenous DNA, but not RNA, directly detecting the 

presence of viral DNA, leading to activation factors and gene induction via a STING-

dependent pathway (Unterholzner, Keating et al. 2010).  
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Appendices: 

Appendix	
  I	
  	
  	
  	
  	
  	
  Commonly	
  used	
  reagents	
  and	
  solutions,	
  antibodies,	
  and	
  

plasmids	
  

 

Appendix A   

Table 1.    Reagents and chemicals 

Reagents / Chemical Supplier 

Sodium orthovanadate Santa cruz biotechnology 

Phosphatase inhibitor cocktail B Santa cruz biotechnology 

Protease inhibitor cocktail set III Calbiochem 

Nonidet-P40 (NP40) BDH 

Acrylamide / bis-acrylmide (30% Solution) Sigma 

Phenylmethylsulfonyl fluoride (PMSF) Santa cruz biotechnology 

Puromycin dihydrochloride Sigma 

G418 disulfate salt Sigma 

p-Coumaric Acid Sigma 

Methanol 

Ethanol 

Fisher Scientific 

Double distilled water,  Sigma 

2X reaction mixture (PCR) EUROGENTEC S.A 

Coomassie blue Bio-Rad Laboratories 

Bradford Reagent Bio-Rad Laboratories 

Tris base Fisher Scientific 

Sodium chloride Fisher Scientific 

Glycine Fisher Scientific 

Sodium dodecyl sulphate (SDS) Fisher Scientific 

Glycerol Fisher Scientific 

Ammonium persulphate BioRad 

Bradford reagent BioRad 

Trypan Blue solution Sigma 
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Tetramethylethylenediamine (TEMED) Sigma 

 Moloney Murine Leukemia Virus Reverse 

Transcriptase (MMLV RT ) 

Random primers  

DNAse  

Taq polymerase 

RNAse Inhibitor (Rnasin, 40 U/µl) 

Applied Biosystems 

X-ray film Amersham Hyperfilm, GE 

Health Care Limited 

Lipofectamine 2000  Invitrogen 

Luciferase Reporter Assay Kit Promega 

Polyinosinic Polycytidylic acid potassium 

salt (poly I:C) 

Sigma 

Fungizone Amphotericin B GIBCO 

Doxycycline hyclate Sigma 

Penicillin Sigma 

Triton X-100 Sigma 

Bovine serum albumin Sigma 

Tween 20 molecular grade Sigma  

Immobilon-P membrane filter type: 

Polivinylidene difluoride, pore size: 

0.45µm, cut size: 7 cm X 8.4 cm) 

Millipore 

Protein markers Lonza 

Nail varnish Rimmel 

EndoFree Plasmid Maxi – cat. No. 12362 QIAGEN 

Rneasy Mini Kit – cat. No. 74104 QIAGEN 

4’, 6-diamidino-2-phenylindole, 

dihydrochloride 

DAPI 

Recombinant Human Interferon Alpha B2 

(rIFN-α) 

PBL Interferon Source 

DMEM Invitrogen 

Enhanced chemiluminence (ECL) Gene Flow 

Fibronectin, 0.1% solution from bovine SIGMA 
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plasma 

ProLong Gold antifade reagent Invitrogen 

Human GAPDH 20X (4310884E) Applied Biosystems 

 
 
 
 
 
Appendix B.      Antibodies 

Table 1      Primary antibodies  

Antibodies Host 

species 

 

Suppl-

ier 

 

Dilution 

 

Lysis 

buffer 

% 

SDS 

PAGE 

Electro-

phoresis 

run 

voltage 

Incuba- 

tion 

time 

Catalo-

gue 

Number 

IFNAR1 Rabbit Abcam 1:500 Non-

ionic 

8 40 MA 48 hrs ab45172 

p-TYK2 

Tyr1054/10

55 

Rabbit CST 1:200 Non 

ionic 

8 40 MA 48 hrs #9321 

TYK2 Rabbit CST 1:200 Non-

ionic 

8 40 MA 16 hrs SC-169 

JAK1 Rabbit CST 1:200 Non-

ionic 

8 40 MA 16 hrs SC-277 

p-STAT1 

Tyr701 

Rabbit SCB 1:500 Non-

ionic 

8 40 MA 16 hrs #9167 

 

STAT1 Rabbit SCB 1:1000 Non-

ionic 

8 40 MA 16 hrs SC-346 

p-STAT2 

Tyr689 

Rabbit Milipore 1:200 Non-

ionic 

8 40 MA 16 hrs #07-224 

STAT2 Rabbit SCB 1:200 Non-

ionic 

8 40 MA 16 hrs SC-476 

p48/IRF-9 Rabbit SCB 1:300 Buffer 

E 

10 150 V 16 hrs SC-10793 

OAS3 Rabbit Abcam 1:300 Buffer 

E 

10 150 V 16 hrs ab71780 
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GAPDH Mouse  Sigma 

Aldrich 

1:2000 Buffer 

E 

10 150 V 16 hrs G8795 

Cmyc-

vIRF-2 

Mouse DJB 

Lab 

1:2000 Buffer 

E 

10 150 V 16 hrs N/A 

RIG-I Rabbit Abcam 1:1000 Buffer 

E 

10 150 V 16 hrs Ab65588 

TBK-1 Rabbit Gene 

Tex  

1:1000 Buffer 

E 

10 150 V 16 hrs GTX 

108338S 

 
• The blotted membranes were incubated with diluted primary antibodies in 5% w/v bovine 

serum albumin, 1X tris-buffered saline, 0.05% Tween-20 at 4oC with gentle shaking for the 
indicated times. 

• 10 µl of phosphatase inhibitor cocktail B (table 2.1) was added per 1 ml of the primary 
antibody buffer solution for phosphor-specific antibodies. 

• Transfer: 300 MA   
• NI: Non-ionic detergent lysis buffer. 
• S C:  Santa Cruz Biotechnology. 
• CST:  Cell Signaling Technology. 
• DJB Lab:  Professor David Blackbourn’s laboratory 
• MA:  Milli Ampere 
• V:   Volts 

 

 
 
 
Table 2.      Secondary antibodies  
 

 
The blotted membranes were incubated with diluted secondary antibodies in 0.05% w/v bovine serum 

albumin, 1X tris-buffered saline, 0.05% Tween-20 at 4oC with gentle shaking for the indicated times. 

 

Antibodies Host 

species  

 

Supplier  

 

Dilution Incubation  

time 

Catalogue 

number 

Anti Mouse-

FITC 

Sheep DAKO 1:100 1 hr  

Anti Mouse HRP 

conjugate 

Goat DAKO 1:2000 1 hr P0447 

Anti Rabbit HRP 

conjugate 

Goat DAKO 1:2000 1 hr P0448 
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Appendix C.      Plasmids 

 

Table 1. 

Plasmid name Final Concentration  Profile 

pISRE-luc 250 ng/well (6-well plate)  A luciferase reporter plasmid 

containing tandem repeats of the ISG56 

ISRE driving the expression of a firefly 

luciferase reporter gene.  

pRLSV-40 1 ng/well (6-well plate) Contains a constitutively active CMV 

promoter driving the expression of a 

Renilla luciferase reporter gene. 

pTRE2-pur-myc-

vIRF-2 

1000 ng/well (6-well plate) pTRE2-pur-myc (the tetracycline 

responsive vector) carrying the vIRF-2 

expression cassette 

pTRE2-pur-myc 1000 ng/well (6-well plate) The tetracycline responsive vector 

(does not expresss vIRF-2) referred to 

as ‘empty vector’. 
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Appendix D.       Commonly used buffer and other solutions 

 

Table 1. 

 
Solution  Composition 

Lysis buffer E 100 mM Tris-HCl pH 8, 100Mm NaCl, 2 mM EDTA, 

2 mM EGTA, 1% NP-40, 0.5% Na Deoxycholate, 0.5 

mM PMSF. 

 

Non-ionic detergent Lysis 

buffer  

 

50 mM Tris HCI  pH 8.0, 50 mM NaCI, 5 mM EDTA, 

1% Triton X-100, 50 mM sodium fluoride, 1 mM 

sodium orthorvanadate, 0.05% SDS, 10 mM Sodium 

pyrophosphate, 1 mM PMSF, Protease Inhibitor 

cocktail set III cat no. 535140 (used at 1:100 dilution) 

 

4X Tris-SDS-HCI, pH 6.8  0.5 M Tris-Cl, 0.4% SDS 

4X Tris-SDS-HCI, pH 8.8  1.5 M Tris-Cl, 0.4% SDS 

Trypsin 0.5% w/v Trypsin – EDTA  

Enhanced Chemiluminescence 

solutions 

(A) 0.22 g Luminol, 5 ml DMSO.  

(B) 0.07 g Coumaric Acid, 5 ml DMSO.  

10X Electrophoresis / Running 

buffer 

Tris base 30.24 g, Glycine 142.5 g, 1L dH2O, adjust 

pH 8.4 

1X Electrophoresis / Running 

buffer 1 L 

100 ml 10X electrophoresis buffer, 0.1% of 20% SDS, 

1L dH2O 

5% BSA  5% w/v Bovine Serum Albumin, 1X TBS, 0.05% 

Tween-20 

10X Transfer buffer 1 L 

 

Tris 30.3 g, Glycine 142.5 g & 1 L dH2O, pH to 8.4 

1X Transfer buffer 1 L 100 ml 10X transfer buffer, 20% methanol, 700 ml 

dH2O 

10X Phosphate buffered saline 

1 L 

10.9 g Na2HPO4 (anhydrous), 3.29 g NaH2PO4 

(anhydrous), 1 L distilled water, pH to 7.2 
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Tris Buffered Saline-Tween 

Solution (TBS-T) 1 L 

100 ml TBS, 0.05% Tween-20, 900 ml dH2O. 

2X Loading sample buffer 10 

ml  

1 M Tris-HCl, pH 6.8, 4 ml 10% SDS, 2 ml glycerol, 

2.5 ml β-mecaptoethanol, 500 µl bromophenol blue 

(1%) 

Luria Bertani (LB) Broth 10 g NaCl, 10 g bactopeptone, 5 g yeast extract in 1L 

distilled water, pH 7.5 

Coomasie blue stain 0.02% w/v Coomasie Brilliant Blue, 50% v/v 

methanol, 43% v/v water, 7% acetic acid 

Destaining solution 5% v/v methanol, 88% v/v water, 7% v/v acetic acid 

Stripping buffer 100 mM β-mercaptoethanol, 2% SDS, 62.5 mM Tris-

HCl, pH 6.7 

Permeabilisaton solution 20 ml 19 ml PBS, 1 ml 10% NP40, 2 g sucrose 
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Appendix	
  II	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Quality	
  assessment	
  metrics	
  of	
  exon	
  arrays	
  

 
Table 1.   List of quality assessment metrics used to identify potential outlier arrays 

within the expression data set. 

 

 

Metrics Definition  

Probe level metrics 

pm_mean Is the mean of the raw intensity for all of the perfect matched 

(PM) probes on the array prior to any intensity transformation 

(e.g. background correction). It can also be used to ascertain 

whether certain chips are unusually dim or bright. 

bgrd_mean Is the mean of raw intensity of probes used to measure 

background prior to any intensity transformation such as RMA 

algorithm background normalisation. 

Probeset summarisation based metrics 

rle_mean Is the mean absolute relative log expression (rle) for all probesets 

analysed. For example, the signal estimate of a given probeset of 

a particular chip was taken and the difference in log base 2 of the 

median signal value of that probset was calculated over all the 

chips 

mad_residual_mean Is the mean of the absolute deviation of the residuals from the 

median. To account for the different signal intensities returned 

when different probes hybridize to a common target, the RMA or 

PLIER algorithms have models to identify problematic chips. 

The difference between actual signal values and that predicted by 

the model is called residual. 

all_probesets Stands for all probesets analysed and will be the most 

representative of the quality of the data being used downstream. 

pos_vs_neg_auc Area under the curve (AUC) discriminates probesets signal 

intensities between positive and negative controls. An AUC of 1 

reflects perfect separation whereas an AUC value of 0.5 reflects 

no separation. 
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The quality assessment metrics and associated definitions presented (Table 4.2) were sourced from 

the Affymetrix GeneChip and Exon Array Whitepaper Collection (see Affymetrix) which guides 

users to perform quality assessment of exon and gene arrays. 

 

 

 

 

 

 

 

 

 

 

 

Internal quality control metrics 

bac_spike Probe sets hybridize to pre-labeled bacteria spike control. Used 

mainly to identify problems with hybridization and or GeneChip. 

Polya_spike Is the set of polyadenylated RNA spike used to identify problems 

with target RNA. 

Neg_control Is a set of putative intron based probes sets from putative 

housekeeping genes. 

pos_control Is the set of putative exon based probesets from the putative 

housekeeping genes 
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Figure  1A.   pm_mean. The CEL files were uploaded in EC and a multichip analysis was performed 

according to standard instructions and a plot of the pm_mean was generated. GeneChip names and 

profiles are displayed on the x-axis and their corresponding signal intensity levels displayed on the y-

axis. GeneChip names are explained in Table 4.1. 

(A) 
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Figure 1B.   pm_mean vs bgrd_mean. This figure was generated as described for (A). A plot of 

pm_mean vs bgrd_mean was generated to facilitate their comparisons. pm_mean (Red) and 

bgrd_mean (Blue). GeneChip names and profiles are displayed on the x-axis and their corresponding 

signal intensity levels displayed on the y-axis. GeneChip names are explained in Table 4.1. 

 

(B) 
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Figure 1C.   Median relative log expression. Box plots for the relative log expression values of all 

probesets were generated in EC. The middle bar in each box is the median rle. These should be zero 

in most applications and deviations from zero typically indicate a skewness of signal intensities 

towards outlier. GeneChip names and profiles are displayed on the x-axis and their corresponding 

signal intensity levels are displayed on the y-axis. GeneChip names are explained in Table 4.1. 

 

(C) 
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Figure 1D.   Three summarisation probesets metrics. All three metrics: pos_vs _ neg _ auc (red), 

all_probesets_mad_residual_mean (blue) and all_probesets_rle_mean (green) were generated in EC. 

GeneChip names and profiles are displayed on the x-axis whereas their corresponding signal intensity 

levels are displayed on the y-axis. GeneChip names are explained in Table 4.1. 
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Figure 1E. All three internal quality control metrics: bac_spike_ mad_ residual_mean (red), 

polya_spike_mad_residual_mean (blue), pos_control_mad_ residual_ mean  (green) were also 

generated in EC. GeneChip names and profiles are displayed on the x axis whereas their 

corresponding signal intensity levels are displayed on the y-axis. GeneChip names are explained in 

Table 4.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(E) 



Appendices 

 246 

 
 
 
 
 

Appendix	
  III	
  	
  	
  	
  	
  	
  Publications	
  arising	
  from	
  this	
  work	
  

 
1. Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor-2 inhibits 

type 1 interferon signalling by targeting interferon-stimulated gene factor-3. J Gen 
Virol. 2011 Oct;92(Pt 10):2394-8. Epub 2011 Jun 22. 

 
2. Identification of caspase-mediated decay of interferon regulatory factor-3, exploited 

by a Kaposi sarcoma-associated herpesvirus immunoregulatory protein.  J Biol 
Chem. 2009 Aug 28;284(35):23272-85. Epub 2009 Jun 24. 

 
 


