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Abstract

This thesis studies the diversity issue of classification ensembles for class imbalance learn-

ing problems. Class imbalance learning refers to learning from imbalanced data sets, in

which some classes of examples (minority) are highly under-represented comparing to

other classes (majority). The very skewed class distribution degrades the learning ability

of many traditional machine learning methods, especially in the recognition of examples

from the minority classes, which are often deemed to be more important and interesting.

Although quite a few ensemble learning approaches have been proposed to handle the

problem, no in-depth research exists to explain why and when they can be helpful. Our

objectives are to understand how ensemble diversity affects the classification performance

for a class imbalance problem according to single-class and overall performance measures,

and to make best use of diversity to improve the performance.

As the first stage, we study the relationship between ensemble diversity and gener-

alization performance for class imbalance problems. We investigate mathematical links

between single-class performance and ensemble diversity. It is found that how the single-

class measures change along with diversity falls into six different situations. These findings

are then verified in class imbalance scenarios through empirical studies. The impact of di-

versity on overall performance is also investigated empirically. Strong correlations between

diversity and the performance measures are found. Diversity shows a positive impact on

the recognition of the minority class and benefits the overall performance of ensembles in

class imbalance learning. Our results help to understand if and why ensemble diversity

can help to deal with class imbalance problems.

Encouraged by the positive role of diversity in class imbalance learning, we then fo-

cus on a specific ensemble learning technique, the negative correlation learning (NCL)

algorithm, which considers diversity explicitly when creating ensembles and has achieved

great empirical success. We propose a new learning algorithm based on the idea of NCL,



named AdaBoost.NC, for classification problems. An “ambiguity” term decomposed from

the 0-1 error function is introduced into the training framework of AdaBoost. It demon-

strates superiority in both effectiveness and efficiency. Its good generalization performance

is explained by theoretical and empirical evidences. It can be viewed as the first NCL

algorithm specializing in classification problems.

Most existing ensemble methods for class imbalance problems suffer from the prob-

lems of overfitting and over-generalization. To improve this situation, we address the class

imbalance issue by making use of ensemble diversity. We investigate the generalization

ability of NCL algorithms, including AdaBoost.NC, to tackle two-class imbalance prob-

lems. We find that NCL methods integrated with random oversampling are effective in

recognizing minority class examples without losing the overall performance, especially the

AdaBoost.NC tree ensemble. This is achieved by providing smoother and less overfitting

classification boundaries for the minority class. The results here show the usefulness of

diversity and open up a novel way to deal with class imbalance problems.

Since the two-class imbalance is not the only scenario in real-world applications, multi-

class imbalance problems deserve equal attention. To understand what problems multi-

class can cause and how it affects the classification performance, we study the multi-class

difficulty by analyzing the multi-minority and multi-majority cases respectively. Both

lead to a significant performance reduction. The multi-majority case appears to be more

harmful. The results reveal possible issues that a class imbalance learning technique could

have when dealing with multi-class tasks. Following this part of analysis and the promising

results of AdaBoost.NC on two-class imbalance problems, we apply AdaBoost.NC to a

set of multi-class imbalance domains with the aim of solving them effectively and directly.

Our method shows good generalization in minority classes and balances the performance

across different classes well without using any class decomposition schemes.

Finally, we conclude this thesis with how the study has contributed to class imbalance

learning and ensemble learning, and propose several possible directions for future research

that may improve and extend this work.
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CHAPTER 1

INTRODUCTION

In machine learning and pattern recognition, classification is an important and popular

research area with the task of assigning a given data input into one of finite categories

(i.e. a set of class labels), such as speech recognition, email spam prediction and defect

prediction in language programming. Given a training set of examples with definite labels,

a range of supervised learning algorithms have been well developed for learning from the

data. The resulting model (i.e. a classifier) will enable us to predict the outcome for

new unseen examples. For instance, decision trees, neural networks and support vector

machines have been successfully applied to many real-world classification problems. The

performance of a classifier is judged by its generalization ability of predicting unseen data.

The overall accuracy or error rate is often measured as the evaluation criterion.

Many of current learning algorithms implicitly assume that classification errors coming

from different classes have the same cost, and treat them equally during learning. Their

learning procedure is driven by maximizing the overall accuracy (Visa and Ralescu, 2005;

Gu et al., 2008; Guo et al., 2008; Provost, 2000; He and Garcia, 2009). However, this

is not always the case in real-world applications. A number of problems have unequal

misclassification costs among classes, such as fraud detection in user behaviour and busi-

ness transactions (Fawcett and Provost, 1997; Chan and Stolfo, 1998), risk management

in telecommunications (Ezawa et al., 1996), medical diagnosis (Valdovinos and Sanchez,

2005) and defect prediction in software engineering (Menzies et al., 2007). In such prob-
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lems, some classes of data are heavily under-represented compared to other classes. For

the example of defect prediction for software quality, a defect case is much less likely to

occur than non-defect ones. The rare examples in specific classes are often more costly

and important. The failure of predicting these classes can cause incalculable loss. This

situation is known as the class imbalance problem. The standard classifiers with the

aim of maximum overall accuracy often have poor performance on this problem, because

small classes contribute little (Visa and Ralescu, 2005). They ignore different types of

misclassification errors (Gu et al., 2008).

For example, a classifier learns from a data set consisting of a class with 98 examples

and a second class with only 2 examples. If all data are labelled as the first class, the

classifier still achieves a 98% accuracy (Visa and Ralescu, 2005). Apparently, it is useless

in practice.

The difficulty of handling class imbalance problems has been drawing growing inter-

est from academia and industry. Numerous solutions were proposed at the data and

algorithm levels. Data-level methods include different forms of resampling techniques,

which rebalance skewed class distributions by manipulating training data directly, such

as random oversampling, random undersampling, heuristic sampling techniques and their

combinations. They are easy to use, but overfitting and over-generalization problems have

been reported. At the algorithm level, solutions adapt algorithms to enforce the learning

with regard to the small classes. The key idea is to adjust the inductive bias of a classifier

internally (Guo et al., 2008; Zadrozny and Elkan, 2001; Wu and Chang, 2003; Lin et al.,

2002). The weak point is that the treatment is algorithm-specific. Cost-sensitive learn-

ing methods have been applied to class imbalance applications when the misclassification

costs are known (Gu et al., 2008; Zhou and Liu, 2006b; Monard and Batista, 2002). They

assume that rare examples have higher costs, and the cost information is introduced into

the learning procedure with the aim of minimizing the total cost. In many cases, however,

explicit costs are not available.

Since ensemble learning showed great success in machine learning, it has become
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another major technique of handling class imbalance problems. The idea of ensemble

learning is to build a set of learners on the same task and then combine them to form

a better one (Hansen and Salamon, 1990). Particularly, Bagging (Breiman, 1996) and

Boosting (Freund and Schapire, 1996) are the most popular ensemble learning methods

in the literature (Opitz and Maclin, 1999). They have been modified and widely used

in class imbalance learning for their flexibility and effectiveness, such as BEV (Li, 2007),

SMOTEBoost (Chawla et al., 2003), RareBoost (Joshi et al., 2001), etc. From the indi-

vidual level, an ensemble can be integrated with other class imbalance learning techniques

easily. From the ensemble level, combining multiple classifiers can stabilize the prediction

and achieve better generalization.

Through the combination of multiple learners, maintaining a certain level of diversity

in their predictions is important for the success of ensembles, which has been explained

from both theoretical (Krogh and Vedelsby, 1995; Brown et al., 2005) and empirical (Liu

and Yao, 1999a; Islam et al., 2003) aspects. It is evident that no gain can be achieved

from combining a set of identical models. However, it is still not clear about the role

of diversity in the benefit of using ensembles to deal with class imbalance problems. In

addition, most existing ensemble methods in class imbalance learning are restricted to the

use of data-level techniques and cost-sensitive strategies, which suffer from some known

drawbacks. Therefore, an in-depth study of the effect of ensembles in the context of class

imbalance learning is necessary. It can help us to understand their learning potential and

allow us to make best use of this effect for better solutions.

Considering the great efforts of ensemble learning methods in class imbalance learning

and the importance of diversity to an ensemble model, this thesis gives a thorough study of

ensemble diversity for class imbalance learning and inspires a new ensemble algorithm for

classification that promotes diversity explicitly. It is used to solve imbalanced problems

with certain advantages and success.

In this chapter, sections 1.1 and 1.2 state the problems addressed in this thesis, includ-

ing a brief idea about where the problems come from. Section 1.3 gives a clear explanation
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of the research questions, their motivations and why they are important. It is followed by

an overview of the contributions in section 1.4. Section 1.5 presents the thesis structure

along with a chapter-by-chapter summary.

1.1 Class Imbalance Learning

Class imbalance learning refers to learning from data sets that exhibit significant im-

balances among or within classes. Any data set with uneven data distributions can be

considered imbalanced. The common understanding about “imbalance” in the literature is

concerned with the between-class imbalance, in which case some classes of data are highly

under-represented compared to other classes (He and Garcia, 2009). By convention, we

call the classes having more examples the majority classes, and the ones having fewer

examples the minority classes. Misclassifying an example from the minority class is usu-

ally more costly. For example, in a defect prediction problem from software engineering,

codes with defects are much less likely to occur than codes without defects. The defect

class is thus the minority and causes more concern in how to recognize defects accurately.

In practical applications, the ratio between classes can be drastic as 100:1, 1000:1 and

10000:1 (Pearson et al., 2003; Wu and Chang, 2003). It is worth mentioning that although

a lot of efforts have been devoted to two-class imbalance problems, multi-class imbalance

is of equal importance, which involves more than one minority or majority class. It exists

in many real-world domains, such as protein fold classification (Tan et al., 2003; Zhao

et al., 2008) and weld flaw classification (Liao, 2008).

The imbalance can also happen within a class, referred to as the within-class imbal-

ance. In this case, a class is composed of a number of sub-clusters and some sub-clusters

have much fewer examples than other sub-clusters (Japkowicz, 2001a). Although under-

represented sub-clusters can occur to both minority and majority classes, they are more

likely to exist in the minority class, since it is often much easier to collect examples for

the majority class (Weiss, 2004). For a clear understanding, we clarify that the “imbal-
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ance” without an explicit description in the rest of the thesis indicates the between-class

imbalance.

The imbalanced distribution pervasively exists in real-world applications. Although

it is often and should be the focus of research efforts, some studies have shown that the

minority concept can be learnt quite well for certain imbalanced data sets with simple

class distributions, such as a linearly separable problem (Japkowicz and Stephen, 2002;

Japkowicz, 2003; Prati et al., 2004; Batista et al., 2004, 2005). It suggests that the

imbalance degree is not the only factor responsible for the performance reduction of

learning algorithms. A learner’s sensitivity to the class imbalance was found to depend

on the data complexity and the overall size of the training set.

Data complexity comprises issues such as overlapping (Batista et al., 2005; Prati et al.,

2004) and small disjuncts (Holte et al., 1989; Jo and Japkowicz, 2004). The degree of

overlapping between classes and how the minority class examples distribute in data space

aggravate the negative effect of class imbalance. The small disjuncts problem is also

associated with the within-class imbalance (Japkowicz, 2003; Japkowicz and Stephen,

2002). In terms of the size of the training data, a very large domain has a good chance

that the minority class is represented by a reasonable number of examples, and thus may

be less affected by imbalance than a small domain containing very few minority class

examples. In other words, the rarity of the minority class can be in a relative or absolute

sense in terms of the number of available examples (He and Garcia, 2009).

Even if the degree of imbalance may not be the direct reason for the performance

reduction in the above situations, they have the same radical issue caused by the imbal-

anced distribution: the relatively or absolutely underrepresented class cannot draw equal

attention to the learning algorithm compared to the majority class, which results in very

specific classification rules for the minority class without much generalization ability for

future prediction or missing rules for the small concepts (Weiss, 2004; He and Garcia,

2009). This is because the learner assumes or expects balanced data distributions and

equal misclassification costs (Visa and Ralescu, 2005; Gu et al., 2008; Guo et al., 2008;
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Provost, 2000; He and Garcia, 2009). How to better recognize examples from the minority

class causes the major concern in class imbalance learning. It has been studied by either

rebalancing the data distribution or adjusting the learning bias inside the algorithm. Con-

sidering the learning difficulty of an imbalanced problem and the high misclassification

cost of minority class examples, the learning objective of class imbalance learning can

be generally described as “obtaining a classifier that will provide high accuracy for the

minority class without severely jeopardizing the accuracy of the majority class” (He and

Garcia, 2009).

Another related study is cost-sensitive learning. Given misclassification costs for each

class, a cost-sensitive method takes the cost information into consideration and treats

misclassifications differently during the training procedure. It is natural to apply cost-

sensitive learning methods to class imbalance problems by assigning a greater cost to the

minority class. Maloof showed that learning from imbalanced data sets and learning with

unequal costs can be handled in a similar manner (Maloof, 2003). A strong connection

has been indicated between cost-sensitive learning and class imbalance learning in recent

research (Liu and Zhou, 2006; Zhou and Liu, 2006b; Monard and Batista, 2002). The

cost matrix plays the essential role in cost-sensitive methods, a numerical representation

of the penalty when an example is mislabelled from one class to another (Elkan, 2001).

In many real-world problems, unfortunately, such cost information is not available.

This thesis aims to resolve the fundamental issue of class imbalance learning and

develop an effective solution, which has good generalization ability to discriminate the

minority class examples from the majority class examples and is applicable to most class

imbalance problems.

1.2 Ensemble Learning

The idea of ensemble learning is to employ multiple learners on a given problem and

combine their outputs as a “committee” to make a final decision for better accuracy. The
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individual committee member is sometimes called base learner. In classification, ensem-

ble learning is also referred to as multiple classifier system (Ho et al., 1994), classifier

fusion (Kuncheva, 2002), committee of classifiers, classifier combination, etc. The mem-

bers’ prediction might be real-valued numbers, class labels, posterior probabilities, or any

other quality. To make best use of the strengths of the individuals and make up their

weaknesses, how to combine the predictions is important and has been studied in the

literature (Ho et al., 1994; Kuncheva, 2002; Shipp and Kuncheva, 2002a; Kittler et al.,

1998), including averaging, majority vote and probabilistic methods (Kuncheva, 2004;

Polikar, 2006; Rao, 2001).

Ensemble learning methods have some desirable features, which encourage the rapid

growth of related research. For theoretical reasons (Dietterich, 2000b; Polikar, 2006), ev-

ery single learning model has limitations and may perform differently due to insufficient

data. Averaging many of them can reduce the overall risk of making a poor predic-

tion (Perrone and Cooper, 1993). It is an innate behaviour to consult opinions from

others before a decision is made. Second, certain learning algorithms confront the local

optima problem, such as neural networks and decision trees. Ensembles may avoid it

by running local search from different views, where a better approximation to the true

function is expected. Besides, some problems are just too difficult and complex which are

beyond the learning ability of the chosen models. Ensembles allow partition of the data

space, where each individual only learns from one of the smaller and simpler sub-problems.

Their combination can then represent the whole problem better.

For practical reasons (Polikar, 2006), real-world problems can be very large or small.

A large data set can be divided into several smaller subsets, which will be processed by

multiple learners in parallel. In the case of too little data, resampling techniques can

be used in ensembles for drawing overlapping subsets to emphasize the available data.

Ensemble methods have also been applied to data fusion applications, where the obtained

data come from different sources with heterogeneous features. In protein classification,

for example, protein sequences are often extracted into different feature spaces. Each
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feature space can be used to create a classifier, many of which with different views are

then combined as the complement to each other (Zhao et al., 2008).

With the above advantages, ensemble learning has made great contribution to various

fields, such as face recognition (Huang et al., 2000), speech recognition (Kirkland, 1995),

image analysis (Cherkauer, 1996) and handwritten digit recognition (Hansen et al., 1992).

A lot of efforts have been put into learning algorithms for constructing an effective en-

semble model since the 1990s. Particularly, Bagging (Breiman, 1996) and AdaBoost (Fre-

und and Schapire, 1996) have received the most attention in the literature, based on which

numerous variations have appeared for different learning scenarios. There also exist other

popular methods, such as Random Subspace (Ho, 1998), Random Forests (Breiman, 2001)

and Negative Correlation Learning (abbr. NCL) (Liu and Yao, 1999a).

The principle of designing a good ensemble learning algorithm is to consider “diversity”

among the committee members with good individual accuracies maintained. There is no

point to combine a set of identical learners. The concept of “diversity” is generally de-

scribed as the degree of disagreement or complementarity within an ensemble (Kuncheva,

2003; Kuncheva and Whitaker, 2003; Brown et al., 2005). All ensemble algorithms at-

tempt to encourage diversity. It can be achieved implicitly by manipulating training

data or using different training parameters for each individual (Polikar, 2006; Dietterich,

2002), such as Bagging and Random Subspace. It can be enforced explicitly by using

NCL algorithms.

Due to different types of error functions and combining rules, ensemble diversity has

been studied for regression and classification tasks separately. While it has been clearly

formulated in regression ensembles (Brown, 2004; Brown et al., 2005), diversity in classifi-

cation ensembles is still not fully understood theoretically (Brown, 2010; Kuncheva, 2003).

Because class imbalance learning is concerned with a type of classification problems, the

thesis will provide further investigations into diversity for classification ensembles and an

in-depth analysis of how it can benefit class imbalance learning.
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1.3 Research Questions

The focus of this thesis can be simply described as “exploring and exploiting diversity

of ensemble learning methods for class imbalance learning”. This section explains the

research questions answered by this work around the central point, the motivations behind

them, and the reasons why they are important and interesting.

1.3.1 Ensemble Diversity for Class Imbalance Learning

In recent years, ensemble learning methods have become a popular way of advancing

the classification of imbalanced data. They can be easily adapted for emphasizing the

minority class by using resampling techniques from the data level (Li, 2007; Liu et al.,

2009; Chawla et al., 2003) or by applying different misclassification costs from the al-

gorithm level (Joshi et al., 2001; Chawla and Sylvester, 2007; Guo and Viktor, 2004;

Fan et al., 1999). In addition, the idea of combining multiple classifiers itself can lower

down the risk of overfitting and reduce the error variance (Brown et al., 2005). Particu-

lar techniques, such as oversampling and undersampling, are often used with ensembles

to improve the generalization of predicting the minority class. For example, SMOTE-

Boost (Chawla et al., 2003) is a frequently-used ensemble method that generates new

training data for the minority class to adjust the learning bias towards the majority class,

and utilizes Boosting (Schapire, 1999) to maintain the accuracy over the entire data set.

Although existing ensemble methods have shown great learning advantages and em-

pirical success over other types of solutions, no explanations have been offered as to why

it performs well in class imbalance problems. Some works mention that it is attributed

to the difference of individual classifiers (Estabrooks et al., 2004; Kotsiantis and Pintelas,

2003; Chawla and Sylvester, 2007), which is concerned with ensemble diversity. Since

diversity has been proved to be one of the main reasons for the success of an ensemble,

it is natural to ask if and how class imbalance learning benefits from ensemble methods

in terms of diversity. No study has actually investigated diversity in depth regarding its
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definitions and effects in the context of class imbalance learning. It is unclear whether

diversity will have a similar or different impact on the performance of minority/majority

classes.

In addition, all existing studies of ensemble diversity are limited to its relationship to

overall accuracy or error rate. How it relates to other evaluation criteria has not caused

much attention. In imbalanced scenarios, apparently, only considering overall accuracy

is not sufficient and less meaningful (Weiss, 2004; Maloof, 2003; Provost and Fawcett,

1997; Joshi, 2002). It is highly sensitive to changes in data. Other performance measures

are adopted in the class imbalance learning literature. To assess the performance over a

specific class we are concerned with, some single-class performance are defined, including

recall, precision and F-measure (Rijsbergen, 1979). For overall performance evaluation,

ROC/AUC (Fawcett, 2003, 2006; Ling et al., 2003) and G-mean (Kubat et al., 1997)

are the most frequently used metrics. Therefore, it would be useful to establish the

relationship between diversity and these performance measures.

For the above reasons, the thesis firstly studies the questions of “what is the relation-

ship between ensemble diversity and the performance measures used in class imbalance

learning? Is introducing diversity beneficial to the classification of the minority /majority

classes in the presence of imbalanced data?”.

From the viewpoint of gaining a better understanding of the role of ensemble diversity

in class imbalance learning, if diversity can be shown to be capable of alleviating the

classification difficulty of imbalanced problems, then a new possible way of handling this

problem could be to consider diversity explicitly during learning. From the viewpoint

of performance evaluation, it is always useful to understand the behaviours of major

performance measures caused by diversity, which can provide guidance for designing and

choosing a good ensemble model.

To answer the questions, we study the theoretical link between diversity and single-

class performance based on several classification patterns in chapter 3. In the same

chapter, we also examine how diversity affects the single-class and overall performance
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through extensive experimental analyses on artificial and real-world imbalanced data sets

with highly skewed class distributions. A positive effect of diversity is found in solving

class imbalance problems.

1.3.2 Ensemble Methods for Class Imbalance Learning

A variety of ensemble methods have been proposed to deal with class imbalance problems

based on Bagging and Boosting, and show superiority in certain applications. Although

their standard forms are not very effective in imbalanced scenarios, they can be easily

modified to work with other techniques, such as oversampling and undersampling, in

order to emphasize small classes. The common strategy for Bagging-based methods is

to undersample data from the majority class, and then build component classifiers with

relatively balanced training subsets. AdaBoost, the most well-known member in Boost-

ing family (Schapire, 2002), is often modified by employing the advanced oversampling

strategy at each step of sequential training. It has also been made cost-sensitive by ma-

nipulating its weight-updating rule, which assigns higher costs to rare examples than

common ones (Sun et al., 2007).

However, both resampling-based and cost-sensitive ensemble solutions suffer from some

known drawbacks. Undersampling majority class examples could abandon potentially

useful information (He and Garcia, 2009). Besides, it is always an issue of deciding how

many and which examples should be removed. Advanced oversampling techniques often

require careful parameter settings to manipulate training data before use. For example,

some data generation methods were reported to suffer from the over-generalization prob-

lem (He and Garcia, 2009), depending on the setting for creating synthetic examples. The

major reason for these problems is that they address “imbalance” by changing training

data directly, which could be risky sometimes. Cost-sensitive methods do not work on

the data level, but demand clear cost information of classes prior to learning, which is not

available in most real-world applications. Generally speaking, it is always a crucial and

problem-dependent issue of choosing the best sampling technique and parameter settings
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for these methods.

Hence, we are motivated to seek an alternative way to overcome the problems of

existing ensemble methods. Meanwhile, it should have good generalization especially

in the minority class. Encouraged by the results in chapter 3 where diversity shows a

positive impact on the minority-class and overall performance, we ask if and how we

can take advantage of ensemble diversity to better deal with class imbalance problems.

Following this line, we devote special attention to negative correlation learning (NCL),

a successful ensemble technique that encourages diversity explicitly during training and

presents very good generalization ability with a solid theoretical grounding (Liu and Yao,

1999a,b; Brown et al., 2005). A further related question is “Can NCL methods be good

solutions to class imbalance problems?”. At least, they have the advantages of improving

generalization without changing training data and requiring much prior data knowledge.

There has been very little work on this topic yet, which will be answered in this thesis.

On one hand, it gives a further understanding of the effect of ensemble diversity in solving

a specific and important type of classification problems. On the other hand, it provides a

new way of dealing with real-world problems that suffer from the class imbalance difficulty.

It opens up a practical and novel use of ensemble learning algorithms.

In chapter 5, we explore and exploit diversity through NCL methods to facilitate class

imbalance learning with comprehensive and systematic analyses. In particular, we study

the effectiveness of AdaBoost.NC, a new NCL method for classification ensembles, in

the presence of imbalanced data in depth. More background and motivations about this

algorithm can be found in the next section. The algorithm is proposed in chapter 4.

Another emerging research area in class imbalance learning is concerned with multi-

class imbalance problems, where multiple minority or/and majority classes exist in data.

Most current efforts are focused on two-class tasks. In practice, many applications have

more than two classes with uneven class distributions, such as protein fold classifica-

tion (Zhao et al., 2008; Chen et al., 2006; Tan et al., 2003) and weld flaw classifica-

tion (Liao, 2008). These multi-class imbalance problems pose new challenges that are
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not observed in two-class problems and have not been addressed so far. Many useful

techniques for two-class tasks were found ineffective on multi-class tasks (Zhou and Liu,

2006b). More investigations are necessary to explain what problems multi-class can cause

and how it affects the classification performance. Among limited solutions for multi-class

imbalance problems, most attention in the literature has been devoted to class decom-

position, which breaks the whole problem into several binary sub-problems. It simplifies

the problem. However, each individual classifier is trained without full data knowledge.

It can cause classification ambiguity or uncovered data regions with respect to each type

of decomposition (Tan et al., 2003; Jin and Zhang, 2007; Valizadegan et al., 2008). It is

desirable to develop a more effective method without increasing learning problems. Ac-

cording to the current progress in this topic, we would like to explore new approaches to

tackling the multi-class difficulties in class imbalance learning effectively and directly.

In chapter 6, we study the impact of two types of multi-class, i.e. multi-minority and

multi-majority, on the performance of two basic resampling strategies that are widely

used in two-class imbalance problems. Based on the results, we propose to use the best

NCL strategy obtained in chapter 5 to handle multi-class imbalance problems.

1.3.3 Negative Correlation Learning for Classification Ensem-
bles

Motivated by the positive role of ensemble diversity in class imbalance learning found in

chapter 3 of this thesis, we study negative correlation learning (NCL) (Liu and Yao, 1997),

an important ensemble learning technique that considers ensemble diversity explicitly dur-

ing the learning procedure, with the aim of improving the generalization on the minority

class. The fundamental part of NCL is to introduce a diversity-related term derived

from the generalization error into the ensemble training to manage the accuracy-diversity

trade-off. Because of different types of error functions and combining methods, there is

no agreed definition and theoretical framework of diversity for classification ensembles.

Hence, it is hard to explain and extend NCL to classification problems theoretically.
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From the viewpoint of practical use, existing NCL algorithms suffer from some known

drawbacks that hinder them from being more widely used. The original NCL algorithm

is called Cooperative ensemble learning system (CELS) (Liu and Yao, 1999b), following

which several variations have appeared (Liu et al., 2000; Chan and Kasabov, 2005a; Islam

et al., 2003; Alam and Islam, 2007; Chen and Yao, 2009). They are all designed for and

tested on neural networks. Other base learners have not been applied successfully so far.

Besides, they can be computationally expensive for large data sets and large ensembles

due to the simultaneous and back-propagation training procedure (Chan and Kasabov,

2005a). In short, low flexibility and poor efficiency are their major problems.

To introduce the idea of NCL into class imbalance learning, we need a better NCL

algorithm for classification ensembles, which is flexible, efficient, and as effective as other

NCL methods in generalization. With this goal in mind, two questions have to be an-

swered: 1) how to express diversity of a classification ensemble? 2) How to introduce the

diversity term in the training procedure without losing flexibility and efficiency?

In chapter 4, we propose a new NCL algorithm in the classification context, called

AdaBoost.NC, in which an “ambiguity” term is obtained from the 0-1 error function to

express the difference within the ensemble and introduced into the training framework

of AdaBoost. AdaBoost.NC combines the strength of NCL and AdaBoost, and shows

very promising results in both effectiveness and efficiency. We provide theoretical and

empirical evidences to explain its generalization performance. With these encouraging

results, it is explored and exploited as a potential solution for class imbalance problems

in chapters 5 and 6.

To our best knowledge, it is the first work that uses the idea of NCL in the design of

classification ensembles. It is applicable to all classification tasks and free of choosing any

base learner.
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1.4 Thesis Contributions

How this thesis contributes to the fields of ensemble learning and pattern classification is

summarized here. It will be discussed in more detail in the Conclusions chapter.

• The first systematic and in-depth study of the relationship between diversity of clas-

sification ensembles and single-class performance, including the possible behaviours

of three single-class performance measures widely used in class imbalance learning

as diversity varies. (chapter 3)

• Empirical work demonstrating the correlation between diversity and generalization

in terms of both single-class and overall performance in class imbalance scenarios,

where strong correlations are found. Diversity exhibits a positive impact on the

minority class. It is also beneficial to the overall performance of class imbalance

problems. (chapter 3)

• A new learning algorithm for classification ensembles, which is shown to be flexi-

ble, effective and efficient based on thorough theoretical explanations and empirical

discussions. (chapter 4)

• A novel way of dealing with class imbalance problems by exploiting the new ensem-

ble algorithm, which shows good ability to recognize minority class examples and

balance the performance among classes. A comprehensive and in-depth analysis

is conducted over artificial and real-world imbalanced data problems. Two-class

and multi-class cases are studied separately with different learning challenges and

focuses. (chapters 5 and 6)

• The first systematic study of the “multi-class” difficulties in class imbalance learning

with separate and in-depth discussions of “multi-minority” and “multi-majority”

cases. (chapter 6)

• A thorough empirical study on a set of software engineering problems, which are

highly imbalanced in nature and come from real projects. (chapter 5)
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1.5 Thesis Structure

1.5.1 Thesis Structure

This chapter presented a general picture for the whole thesis, clarified our research ques-

tions, and summarized the main contributions.

In chapter 2, we review the literature relating to “class imbalance learning” and “di-

versity in classification ensembles”. Section 2.1 introduces the most commonly used tech-

niques of handling class imbalance problems and corresponding evaluation criteria in

two-class learning scenarios. Section 2.2 describes the current research progress in multi-

class imbalance learning. Section 2.3 reviews existing diversity studies in classification

ensembles, including the definitions of various diversity measures and their role in gener-

alization. Section 2.4 reviews main negative correlation learning algorithms proposed so

far.

In chapter 3, we give a systematic analysis of ensemble diversity for class imbalance

learning, to answer the research questions in section 1.3.1. We build mathematical links

between Q-statistic, a widely used diversity measure for classification ensembles, and

several single-class performance measures. Six different situations are found based on

the pattern analysis, showing how the single-class performance is affected by diversity.

Then, they are verified in imbalanced scenarios empirically, where we proceed with com-

prehensive correlation analysis on artificial and real-world data sets with highly skewed

class distributions. The relationship between diversity and overall performance is also

discussed. Strong correlations are found between diversity and the chosen performance

measures. Diversity shows a positive impact on the recognition of the minority class and

benefits the overall performance of ensembles.

In chapter 4, we propose a new learning algorithm based on the idea of negative

correlation learning, named “AdaBoost.NC”, in order to address the issues in section 1.3.3.

An “ambiguity” term decomposed from the 0-1 error function is introduced into the

training framework of AdaBoost. We give both theoretical and empirical evidences to
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support its effectiveness in general cases.

In chapter 5, we explore the learning ability of AdaBoost.NC in depth to solve two-class

imbalance problems, following the suggested conclusions in chapters 3 and 4. In order to

answer the research questions in section 1.3.2, comprehensive experiments are conducted

to evaluate AdaBoost.NC and other NCL algorithms, in comparison with state-of-art

ensemble solutions for class imbalance problems. AdaBoost.NC is shown to perform the

best in AUC and minority-class performance when working with random oversampling.

In chapter 6, the study in chapter 5 is extended to “multi-class” cases, where multiple

minority or/and majority classes exist. We first investigate the impact of “multi-class” on

the classification of class imbalance problems and point out the potential issues. Based

on the findings, we then use the best ensemble model obtained in chapter 5, oversam-

pling+AdaBoost.NC, to solve a set of real-world imbalanced problems with more than

two classes, in comparison with existing state-of-art approaches. Its generalization ability

is explored and exploited in a wider scope. It keeps the good capability of recognizing

minority class examples and better balances the performance among classes in terms of

G-mean, which is one of the most frequently used measures of overall performance in class

imbalance learning.

In chapter 7, we conclude this thesis, summarize the contributions to ensemble learning

and class imbalance learning areas, and propose several future studies suggested by our

research so far.

1.5.2 Publications Resulting from the Thesis

The work resulting from these investigations has been reported in the following publica-

tions:

Submitted journal publications:

[1] S. Wang and X. Yao. Relationships Between Diversity of Classification Ensembles

and Single-Class Performance Measures. In IEEE Transactions on Knowledge and
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Data Engineering, 2011.

[2] S. Wang, L. L. Minku, and X. Yao. Negative Correlation Learning for Class Imbal-

ance Problems. In IEEE Transactions on Knowledge and Data Engineering, 2011.

[3] S. Wang and X. Yao. Multi-Class Imbalance Problems: Analysis and Potential

Solutions. In IEEE Transactions on Systems, Man and Cybernetics, Part B, 2011.

Refereed conference publications:

[1] S. Wang and X. Yao. The Effectiveness of A New Negative Correlation Learning

Algorithm for Classification Ensembles. In IEEE International Conference on Data

Mining Workshops 2010, pages 1013-1020, 2010.

[2] S. Wang, H. Chen, and X. Yao. Negative correlation learning for classification

ensembles. In International Joint Conference on Neural Networks, WCCI, IEEE

Press, pages 2893-2900, 2010. (Travel Grant Awarded)

[3] S. Wang and X. Yao. Theoretical study of the relationship between diversity and

single-class measures for class imbalance learning. In IEEE International Conference

on Data Mining Workshops 2009, pages 76-81, 2009.

[4] S. Wang, K. Tang, and X. Yao. Diversity exploration and negative correlation

learning on imbalanced data sets. In International Joint Conference on Neural

Networks 2009, IEEE Press, pages 3259-3266, 2009. (Travel Grant Awarded)

[5] S. Wang and X. Yao. Diversity analysis on imbalanced data sets by using ensemble

models. In IEEE Symposium on Computational Intelligence and Data Mining 2009,

pages 324-331, 2009.
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CHAPTER 2

LITERATURE REVIEW

This chapter gives the background knowledge and reviews the relevant literature to this

thesis, including the reasons why ensemble learning approaches are widely used in class

imbalance learning and the main issues encountered when an ensemble system is created

for class imbalance problems. Section 2.1 reviews existing ensemble methods and major

techniques in class imbalance learning, from which our main research questions are identi-

fied. Section 2.2 reviews proposed methods for learning from imbalanced problems in the

presence of multiple minority or/and majority classes. For the consideration that class im-

balance learning is a specific type of classification problems, section 2.3 describes current

studies of diversity in classification ensembles. Section 2.4 explains the idea of negative

correlation learning (NCL) as an important technique of ensemble learning that encour-

ages diversity explicitly, and introduces main algorithms under this topic. Section 2.5

summarizes this chapter.

2.1 Learning from Class Imbalance Problems

Many conventional learning algorithms are not appropriate for learning from data with

imbalanced class distributions. Their training procedure with the aim of maximizing

overall accuracy often leads to a high probability of the induced classifier producing the

majority-class label and a very low recognition rate for the minority class. It is useless
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for future prediction, considering that the minority class usually has a much higher mis-

classification cost and deserves better performance. The negative effect of class imbalance

on classifiers, such as decision trees (He and Garcia, 2009; Japkowicz and Stephen, 2002),

neural networks (Visa and Ralescu, 2005; Japkowicz and Stephen, 2002), k-Nearest Neigh-

bour (kNN) (Kubat and Matwin, 1997; Batista et al., 2004; Zhang and Mani, 2003) and

SVM (Yan et al., 2003; Wu and Chang, 2003), has been reported in the literature.

For a better understanding, we give some concrete descriptions here. 1-NN is a method

that labels an example with the class belonging to its nearest neighbour. If the imbalance

rate is very high, the nearest neighbour of a minority class example is very likely to be

an example from the majority class. A misclassification thus happens. Constructing a

decision tree is a recursive and top-down greedy search procedure (Quinlan, 1986). It

selects the feature that can best split the classes of examples at each node. As a result,

the training set is successively divided into smaller subsets, corresponding to disjoint

rules for each class. However, the majority class dominates the leaves, and successive

partitioning results in very specific rules for the minority class. Some papers specialized

in the performance analysis of decision trees in the presence of imbalanced data (Chawla,

2003; Weiss and Provost, 2003; Drummond and Holte, 2003).

Numerous methods have been proposed to adjust the bias towards the majority class

at data and algorithm levels. Data-level methods refer to a variety of resampling tech-

niques, manipulating training data to rectify the skewed class distributions. They are

simple and efficient, but their effectiveness depends on the solving problem greatly. How

to tune them properly is a key issue. Various algorithm-level methods address class imbal-

ance by modifying their training mechanism with the more direct goal of better accuracy

on the minority class, including one-class learning (Japkowicz et al., 1995) and cost-

sensitive learning algorithms. Rather than differentiating examples of one class from the

other, one-class learning (also known as novelty detection and recognition-based method-

ology (Chawla et al., 2004)) learns a model by using mainly or only a single class of ex-

amples alone. One attempts to measure the similarity for a new input to the learnt class,
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so as to judge whether it belongs to this class. Some representative works from this cate-

gory include one-class SVM (Raskutti and AdamKowalczyk, 2004; Manevitz and Yousef,

2001; Scholkopf et al., 2001; Zhuang and Dai, 2006) and autoencoder methods (Manevitz

and Yousef, 2007; Japkowicz, 2001b; Japkowicz et al., 1995). One-class learning was

shown to be useful in dealing with extremely imbalanced data sets with high dimensional

feature space (Raskutti and AdamKowalczyk, 2004; Lee and Cho, 2006). With respect

to cost-sensitive methods, decision trees and neural networks have been made capable

of processing different misclassification costs of classes, such as adjusting the decision

threshold (Japkowicz, 2000b), making the tree split criteria cost-sensitive (Drummond

and Holte, 2000; Ting, 2002), and applying cost-sensitive modifications to the error min-

imization function or outputs of the neural network (Kukar and Kononenko, 1998; Zhou

and Liu, 2006b; Alejo et al., 2009). A cost-sensitive learning method is preferred only when

clear misclassification costs of classes are available. In many situations, however, this in-

formation is unknown. Besides, algorithm-level solutions require different treatments for

specific kinds of learning algorithms. It restricts their use in many applications, since we

do not know which algorithm would be the best choice beforehand in most cases. A good

solution is expected to be able to deal with most given problems effectively (Visa and

Ralescu, 2005). Therefore, it is more meaningful to explore solutions that are applicable

to a wider scope as a major aim of this thesis.

In addition to the aforementioned data-level and algorithm-level solutions, ensemble

learning has become another major category of approaches to handling class imbalance

problems. From the individual level, it can be easily adapted for emphasizing the minority

class by integrating different resampling techniques (Li, 2007; Liu et al., 2009; Chawla

et al., 2003) or by applying different misclassification costs (Joshi et al., 2001; Chawla

and Sylvester, 2007; Guo and Viktor, 2004; Fan et al., 1999). From the ensemble level,

the idea of combining multiple classifiers can make up every single classifier’s weaknesses

and lower down the risk of overfitting by reducing the error variance (Brown et al., 2005).

Therefore, an ensemble is believed to outperform a single classifier with more stable
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performance by learning from different views.

Generally speaking, great research efforts of solutions for class imbalance learning in

the literature have been made in resampling techniques, one-class learning algorithms,

cost-sensitive learning methods and ensemble learning methods. In order to establish a

less specific, simple and effective way to deal with class imbalance problems, we put our

focus on resampling techniques and ensemble learning methods for their good flexibility

and effectiveness, which will be introduced in this section in more detail. Important

motivations of this thesis are discovered, based on which our attention in this thesis will be

devoted to a deeper understanding and the improvement of existing ensemble methods in

class imbalance learning. How to evaluate class imbalance learning algorithms is a crucial

issue. A review of major evaluation criteria will be provided following the algorithm

introduction.

2.1.1 Resampling Techniques

Resampling is a group of data-level techniques that adjust the distribution of training

data directly. It includes oversampling and undersampling methods. Oversampling in-

creases the number of minority class examples until the imbalance is eliminated. Likewise,

undersampling removes some examples from the majority class until the data set is rel-

atively balanced. There are various ways of enlarging the minority class and shrinking

the majority class. We give them respective descriptions next. For a training data set Z

with N examples taken by the algorithm as input (Z = {(x1, y1) , (x2, y2) , . . . , (xN , yN)},

cardinality |Z| = N), each xi belongs to an instance space X, and each label yi belongs to

a finite label set Y = {ω1, . . . , ωc}. Particularly, c = 2 represents a two-class problem with

one minority-class subset Zmin ⊂ Z and one majority-class subset Zmaj ⊂ Z. Without

loss of generality, we have |Zmin| < |Zmaj|, Zmin ∩ Zmaj = Ø and Zmin ∪ Zmaj = Z hold.

The obtained data set after resampling is denoted by S, composed of disjoint subsets Smin

containing all minority class examples and Smaj containing all majority class examples.
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Oversampling

(1) Random oversampling (abbr. ROS)

It is a non-heuristic method that makes replicates of randomly selected examples in

Zmin and adds them to S. The degree of class distribution can be adjusted to any desired

level. It is simple, but it has been argued that exact copies can lead to overfitting (Chawla

et al., 2002; Batista et al., 2004; Weiss and Provost, 2001).

(2) Synthetic Minority Over-sampling TEchnique (abbr. SMOTE) (Chawla et al., 2002)

It is an advanced oversampling technique that has shown great success in many ap-

plications. It generates new data points labelled as minority based on the similarities

between original minority class examples in the feature space. Concretely, to create a

synthetic example, SMOTE randomly selects one of the k-nearest neighbours in Zmin of

a minority example xi, denoted by x̂i, calculates the difference between them, and then

adds the difference vector where each dimension is multiplied by a random number δ in

range [0, 1] to xi. It is a point along the line between xi and x̂i. By doing so for certain

rounds, it forces the decision boundaries of the minority class to spread towards the ma-

jority class region effectively. The pseudo-code for SMOTE is given in Table 2.1. The

oversampling rate M and the number of nearest neighbours k are pre-defined parameters.

SMOTE is reported to have the over-generalization problem (Wang and Japkowicz,

2004). It does not consider the neighbourhood with regard to the majority class, thus

resulting in the possibility of overlapping between classes (Prati et al., 2004).

(3) Borderline-SMOTE (Han et al., 2005)

Borderline-SMOTE is a modification of SMOTE. It assumes that the examples near

classification boundaries (i.e. borderline examples) are more likely to be misclassified

and thus more important. Only borderline examples are used to generate new data by

applying SMOTE. If most nearest neighbours of a minority class example belong to the

majority class, it is treated as a borderline example in “danger”.
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Table 2.1: The SMOTE algorithm (Chawla et al., 2002).

Given: the SMOTE rate M ; number of nearest neighbour k.
Let: Smin = Zmin.

For each minority example xi (i = 1, . . . , |Zmin|):
Step 1. Compute the k-NN set {x̂i} for xi in Zmin.
Step 2. For j = 1 to M :

2.1. Choose a random neighbour x̂i ∈ {x̂i}.
2.2. Compute difference vector dif = x̂i − xi.
2.3. Multiply the value on each dimension of dif by a random number

δ ∈ [0, 1].
2.4. xnew = xi + dif .
2.5. Add xnew to Smin.

Return: Smin.

(4) Adaptive Synthetic Sampling (abbr. ADASYN) (He et al., 2008)

Its main idea is to generate minority class examples adaptively according to their

distributions, where more synthetic data is created for “difficult” ones than “easy” ones.

Similar to Borderline-SMOTE, “difficult/easy” is determined by the neighbourhood of

a minority class example. For each xi in Zmin, ADASYN calculates the proportion of

majority class examples in the k-NN set of xi, denoted by ∆i. Normalize ∆i so that∑
∆i = 1. Then, the number of synthetic examples that need to be generated for xi is

∆i × T , where T is the desired amount of new data (i.e. |Smin| − |Zmin|). ∆ describes a

density distribution that decides the number of synthetic examples automatically.

Undersampling

(1) Random undersampling (abbr. RUS)

It is a non-heuristic method that removes data from Zmaj randomly until the minority

and majority classes have a comparable size. It enforces balance with a radical effect, and

may discard useful information pertaining to the majority class for better learning (Batista
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et al., 2004; He and Garcia, 2009).

(2) Tomek links (Tomek, 1976)

Given two examples xi in Zmin and xj in Zmaj, d (xi, xj) stands for the distance be-

tween them. The (xi, xj) pair is called a Tomek link if there does not exist any example

xk, such that d (xi, xk) < d (xi, xj) or d (xj, xk) < d (xi, xj). Either one in the link is noise,

or both are near the boundary. As an undersampling method, only the ones belonging to

the majority class in the links are removed. It can clean up overlapping between classes

and establish well-defined classification rules. Finding Tomek links could be computa-

tionally expensive (Batista et al., 2004).

(3) Condensed nearest neighbour rule (abbr. CNN) (Hart, 1968) and One-sided selection

(abbr. OSS) (Kubat and Matwin, 1997)

CNN is a data cleaning technique that aims to find examples far from decision bound-

aries. The idea is to find a consistent data subset Ẑ ⊆ Z, where all the examples in Z

can be classified correctly by using 1-NN in Ẑ. OSS uses it to find and remove redundant

examples in Zmaj first, which are outside the consistent subset. Then, the Tomek links

method is applied to the obtained consistent subset, so as to pick out borderline and noisy

examples from the majority class.

(4) Wilson’s edited nearest neighbour rule (abbr. ENN) (Wilson, 1972) and Neighbour-

hood cleaning rule (abbr. NCR) (Jorma, 2001)

ENN removes any example whose class label differs from the class of at least two of its

three nearest neighbours. Based on the idea, NCR removes the majority class examples

that are misclassified by 3-NN, which are considered as noisy. Meanwhile, if a minority

class example is misclassified by 3-NN, its neighbours that belong to the majority class

are removed.
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Quite a few papers have discussed the effectiveness of resampling techniques and their

combinations. Generally speaking, resampling techniques have shown improved classi-

fication performance for most imbalanced data sets (Seiffert et al., 2008b; Japkowicz,

2000a). They work independently with learning algorithms, and are thus more versatile

than algorithm-level methods. However, it is always an issue of tuning them effectively.

It is unclear which resampling method performs better and which sampling rate should

be used. Some empirical studies found that resampling to full balance is not necessarily

optimal, and the best resampling rate varies with problem domains and resampling tech-

niques (Estabrooks et al., 2004). Their performance also depends on different classifiers

and evaluated measures (Hulse et al., 2007). It is difficult to choose the “right” one when

an imbalanced task is given without much prior data knowledge.

2.1.2 Ensemble Learning Methods

Due to the lack of guidance for the choice of resampling techniques, the idea of combining

multiple classifiers arose, in order to make up each other’s weaknesses (Kotsiantis et al.,

2006; Kotsiantis and Pintelas, 2003; Estabrooks et al., 2004; Seiffert et al., 2008a,b). En-

semble learning thus has become one of the major techniques in class imbalance learning.

It allows individual classifiers to emphasize the minority class regions differently, and ex-

ploits their combination to lower down the risk of overfitting for better generalization.

Many ensemble methods were proposed with varying degrees of success. Existing ensem-

ble solutions so far mainly focus on how to rebalance the training subset for each base

classifier from the data level and how to make the ensemble cost-sensitive. In the fol-

lowing, we will first describe the ineffectiveness of some traditional ensemble algorithms

in dealing with class imbalance problems, and then explain why they are still exploited

widely in various ways by reviewing some frequently used solutions.

Bagging (Breiman, 1996) and AdaBoost (Freund and Schapire, 1996) are two most

popular ensemble learning techniques in the literature (Brown, 2010; Bauer and Kohavi,

1999). Especially, AdaBoost is reported to have greater benefits to the prediction accuracy
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of a weak learning algorithm (Quinlan, 1996). In class imbalance learning, however, both

become less effective in recognizing rare cases (Liu et al., 2009; Valdovinos and Sanchez,

2005).

Bagging-Based Methods

The Bagging algorithm (Breiman, 1996), the acronym of Bootstrap AGGregatING, con-

structs multiple base classifiers by sampling the training examples at random with re-

placement from data space, as known as bootstrapping. The final prediction is uniformly

voted by those sub-classifiers. Apparently, applying the original Bagging algorithm to

classifying an imbalanced data set is not a wise idea. Every training subset bootstrapped

from the original data still has an imbalanced distribution. It could be biased even more

towards the majority class when compared with the original training set (Zhu, 2007).

Either ignoring or overfitting the minority class examples is very likely to happen to each

base classifier (He and Garcia, 2009). Consequently, the final performance will favor the

majority class. Specific techniques are necessary to compensate this situation. A straight-

forward way is to correct this skewness within each subset by resampling, and can thus

build component classifiers from data with balanced class distributions (Barandela et al.,

2003).

Some representatives of Bagging-based methods include Tao et al.’s AB-SVM (Tao

et al., 2006), Li’s BEV (abbr. of Bagging Ensemble Variation) (Li, 2007), Chan et al.’s

combining model (Chan and Stolfo, 1998), and Yan et al.’s SVM ensemble (Yan et al.,

2003). They undersample the majority class examples into several subsets with the equal

size of the minority class, each of which is then merged with the entire minority class

examples. Every classifier is thus trained from a strictly balanced subset. AB-SVM simply

bootstraps examples from the majority class, while the others divide the majority class

examples into disjoint sets. However, it has been argued that these Bagging variations

inherit the disadvantage of sacrificing too much performance on the majority class from

undersampling. Especially when data is highly imbalanced, it is difficult to obtain a
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representative subset by using undersampling alone. Besides, since the same minority

class examples are taken as input by every classifier, the resulting ensemble still have

a high possibility of suffering from overfitting (Liu et al., 2009). Other techniques are

usually required to make up the drawbacks.

Liu et al. proposed two ensemble methods to strengthen the use of majority class

examples, called EasyEnsemble and BalanceCascade (Liu et al., 2009). They construct

an ensemble of ensembles, where each individual classifier is also an ensemble of Ad-

aBoost (Freund and Schapire, 1996), but use different sampling strategies. Similar to

AB-SVM, EasyEnsemble samples majority class examples randomly. Selected ones are

then combined with all minority class examples for forming training subsets. Each sub-

set in EasyEnsemble is believed to be better learnt through AdaBoost. EasyEnsemble

benefits from the combination of Boosting and the Bagging-like sampling strategy with

balanced class distribution. BalanceCascade explores the majority class in a supervised

manner by paying more attention to the misclassified ones. It builds classifiers sequen-

tially, during which some correctly classified majority class examples are removed from

the training set based on the conjecture that they are somewhat “redundant”.

Boosting-Based Methods

In addition to Bagging-based approaches, Boosting-based methods appear to be more

popular. AdaBoost (Freund and Schapire, 1996) is the most well-known algorithm in

Boosting family (Schapire, 2002). It builds classifiers sequentially with subsequent classi-

fiers focusing on training examples that are misclassified by earlier ones. A set of weights

is maintained over the training set, which are updated at the end of each round according

to the accuracy of the current classifier, and then fed back into the next round. It is

observed to be capable of both bias and variance reduction, but does not deal well with

noise (Bauer and Kohavi, 1999; Quinlan, 1996).

The emphasis on misclassified examples makes AdaBoost an accuracy-oriented al-

gorithm. Classifiers having higher accuracies receive higher weights. It treats all classes
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equally. In the presence of imbalanced data, its learning strategy tends to bias towards the

majority class as rare examples contribute less to the overall classification accuracy (Joshi

et al., 2002; Sun et al., 2007). Therefore, the original AdaBoost is not good at recognizing

rare cases. In addition, it may suffer from the overfitting problem, for the reason that rare

examples tend to be weighted more than common ones, and thus replicated and boosted

more often (Weiss, 2004; Kotsiantis et al., 2006; Guo et al., 2008).

Nevertheless, AdaBoost is still popular in the field of class imbalance learning, for

the reason that it can be easily adapted for advancing the classification performance on

the small class with following merits (Weiss, 2004; Kotsiantis et al., 2006). First, it is

applicable to most classification algorithms (flexibility). Second, the optimal class distri-

bution and representative examples are explored automatically without extra computa-

tional cost (efficiency). Third, there is no need to eliminate any majority class examples

(accuracy) (Sun et al., 2007). These attractive properties encourage AdaBoost to have

evolved in two ways – the integration with resampling techniques (Seiffert et al., 2008b)

and cost-sensitive Boosting (He and Garcia, 2009).

When it is integrated with resampling techniques, data generation methods are of-

ten used to broaden the decision region for the minority class. For instance, SMOTE-

Boost (Chawla et al., 2003) introduces SMOTE (Chawla et al., 2002) in each round of

Boosting, to enhance the probability of selecting the difficult rare cases that is dominated

by the majority class examples. Meanwhile, Boosting prevents from sacrificing accuracy

over the entire data set. It is believed to produce higher diversity within the ensemble. It

shows improved classification performance compared to the conventional Boosting, but the

parameter setting in SMOTE is crucial, which could cause over-generalization. Besides,

generating new data could be computationally costly (He and Garcia, 2009). Table 2.2

describes the SMOTEBoost algorithm following the AdaBoost.M2 procedure (Freund and

Schapire, 1996).

Mease et al. proposed a faster method, JOUS-Boost (Mease et al., 2007). Instead of

generating new examples for the minority class, it simply adds a small amount of random
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Table 2.2: The SMOTEBoost algorithm (Chawla et al., 2003).

Given: a training set Z = {(x1, y1) , (x2, y2) , . . . , (xN , yN)}; the SMOTE rate M ;
number of nearest neighbour k.
Let: B = {(i, y) : i = 1, . . . , N, y 6= yi}.
Initialize data weights D1 (i, y) = 1/|B| for (i, y) ∈ B.

For each training epoch j = 1, 2, . . . , L:
Step 1. Apply SMOTE(M,k) to the minority classes, and obtain a synthetic

data set {xnew}.
Step 2. Train a weak classifier fj using selected examples based on Dj and {(xnew, y)}:

X × Y → [0, 1].
Step 3. Compute the pseudo-loss of fj:

εj =
∑

(i,y)∈BDj (i, y) (1− fj (xi, yi) + fj (xi, y)).

Step 4. Set βj = εj/ (1− εj).
Step 5. Update weights Dj: Dj+1 = (Dj/Zj) β

(1/2)(1−fj(xi,y)+fj(xi,yi))
j ,

where Zj is a normalization factor.

Output the final ensemble: H (x) = argmax
y∈Y

∑L
j=1

(
log 1

βj

)
fj (x, y).

noise (“jittering”) to the replicates caused by oversampling in each round of Boosting. It

shows efficient results in experiments, but the over-generalization problem still exists due

to the introduction of “noise”.

Cost-sensitive Boosting is another class of ensemble solutions for class imbalance learn-

ing. The key idea is to increase the probability of selecting costly examples in each round

by manipulating the weight updating rule. They aim at minimizing the total misclassifi-

cation cost instead of the classification error, such as AdaCost (Fan et al., 1999), CSB1

and CSB2 (Ting, 2000). A cost matrix or associated cost items must be specified prior

to learning. However, it is hard to obtain an explicit cost description in many situations.

To overcome this issue, RareBoost (Joshi et al., 2001) was proposed as a cost-sensitive

Boosting method. Its attractive feature is that the cost is determined dynamically by the

performance of the current classifier based on the proportions of four types of examples

TP (true positives), FP (false positives), TN (true negatives) and FN (false negatives).

The constraint of TP > FP and TN > FN is necessary. Sometimes, it is a quite strong
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condition for the minority class. Existing cost-sensitive Boosting algorithms have been

categorized into three forms by Sun et al. (Sun et al., 2007). Since no new data informa-

tion is introduced into training, the learning algorithm might over-emphasize the minority

class with a higher cost assigned. Cost-sensitive Boosting could still confront the problem

of overfitting minority class examples.

Generally speaking, ensemble methods attempt to make use of the difference of indi-

vidual classifiers for the performance improvement by adjusting the learning focus on the

minority class differently during training (Estabrooks et al., 2004; Kotsiantis and Pintelas,

2003; Chawla and Sylvester, 2007). However, no study has actually shown the effects of

this difference in classifying imbalanced data sets to date, which motivates us to take this

step further in this thesis.

2.1.3 Evaluation Criteria

For a traditional classification task, overall accuracy is the most commonly used criterion

of performance evaluation. As we have described in the Introduction chapter, it is not

appropriate for class imbalance problems and can provide misleading conclusions, since it

is strongly biased to favor the majority class. A classifier can achieve very high accuracy

but performs poorly in predicting examples from small classes. Overall accuracy becomes

meaningless when the learning concern is how to find rare examples effectively. Therefore,

other performance criteria have been adopted under this scenario. This section introduces

the major evaluation measures for class imbalance learning.

For a two-class problem, classification performance can be represented by a confusion

matrix, as illustrated in Table 2.3.

Table 2.3: Confusion matrix.

Positive prediction Negative prediction
Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)
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A classifier produces four types of examples on testing data,

• TP: the number of correctly classified examples belonging to the positive class.

• TN: the number of correctly classified examples belonging to the negative class.

• FP: the number of misclassified examples belonging to the negative class.

• FN: the number of misclassified examples belonging to the positive class.

By convention, we treat the minority class as positive and the majority class as nega-

tive. Based on the four metrics, following measures are defined and have been frequently

used in the class imbalance learning literature, which can be divided into two groups:

single-class performance measures that evaluate how well a classifier performs in one

class, particularly the minority class; overall performance measures that show how well a

classifier can balance the performance among classes.

Single-Class Performance Measures

Recall (R), precision (P ) and F-measure (F ) come from information retrieval area (Rijs-

bergen, 1979) and are adopted to assess single-class performance in classifier evaluation

of class imbalance problems. For the positive class, they are defined as

R =
TP

TP + FN
, (2.1)

P =
TP

TP + FP
, (2.2)

F =
(1 + ρ2) ·R · P
ρ2 ·R + P

, (2.3)

where ρ controls the relative importance of recall and precision. It is usually set to 1.

Recall is a measure of completeness – the proportion of positive class examples that

are classified correctly to all positive class examples. Precision is a measure of exactness

– the proportion of positive class examples that are classified correctly to the examples

predicted as positive by the classifier (He and Garcia, 2009). F-measure incorporates
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both recall and precision to express the trade-off between them. It was shown to be

a more favorable measure (Joshi, 2002) and has been used as a criterion for classifier

selection (Chawla and Sylvester, 2007; Sun et al., 2006).

Overall Performance Measures

Kubat et al. (Kubat et al., 1997) proposed to use G-mean to replace overall accuracy. It is

the geometric mean of recall values of the positive and negative classes. A good classifier

should have high accuracies on both classes, and thus a high G-mean.

ROC analysis (abbr. of Receiver Operating Characteristic) (Fawcett, 2003, 2006) and

the associated use of the area under the ROC curve (i.e. AUC) (Bradley, 1997; Ling

et al., 2003) are probably the most common technique to evaluate overall classification

performance in this area. They measure the separating ability of a classifier between two

classes. A ROC curve depicts all possible trade-offs between TP rate and FP rate, which

are defined as

TP rate =
TP

TP + FN
; FP rate =

FP

FP + TN
.

T
P
 r
a
te

FP rate

C1

C2

A(0,1)

B(1,0)

Figure 2.1: Illustration of ROC curves (He and Garcia, 2009).

TP rate is equivalent to the recall measure of the positive class. TP rate and FP

rate can be understood as the benefits and costs of classification with respect to data
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distributions. Each point on the curve corresponds to a single trade-off. A better classifier

should produce a ROC curve closer to the top left corner. As illustrated in Fig. 2.1, curves

C1 and C2 represent two ROC curves. The corresponding classifier associated with C2

can provide better performance compared to the classifier associated with C1. Point A

(0,1) represents a perfect classification. The diagonal line represents the situation of a

classifier randomly guessing the class labels. Therefore, any classifier that falls into the

shaded area of the ROC space (i.e. the lower right triangle) performs worse than random

guessing. A ROC curve of a classifier is often generated by varying the classification

decision threshold for separating positive and negative classes (Monard and Batista, 2002;

Maloof, 2003; Fawcett, 2003, 2006), which produces a set of (TP rate, FP rate) points.

Closely related to ROC, AUC represents a ROC curve as a single scalar value by

estimating the area under the curve, varying in [0, 1]. A random guess has an AUC

value of 0.5. According to Hand and Till (Hand and Till, 2001), AUC is equivalent to

the probability that a randomly chosen example of the positive class will have a smaller

estimated probability of belonging to the negative class than a randomly chosen example

of the negative class. It is proved to be independent of the selected decision threshold

and class distributions (Fawcett, 2003). It should be noted that the ROC analysis and

AUC estimation are only able to describe the discriminability of a pair of classes. The

extension of AUC for multi-class evaluation will be given in section 2.2.3.

2.2 Learning from Multi-Class Imbalance Problems

Most efforts of class imbalance learning so far have been made to handle two-class imbal-

ance problems. A great number of real-world applications, however, have more than two

classes with imbalanced distributions. They pose new challenges that are not observed in

two-class problems. Multi-class imbalance problems have been shown to suffer from more

classification difficulties. Zhou and Liu (Zhou and Liu, 2006b) examined the effectiveness

of various class imbalance learning techniques developed for two-class problems on a set

34



of cost-sensitive data sets with multiple classes. Their experimental results showed that

most of the techniques become ineffective and may even cause negative effects to multi-

class tasks. Dealing with multi-class tasks is generally more difficult. Without much

work done on this topic so far, more investigations into multi-class imbalance problems

are necessary to explain what problems multi-class can cause to existing class imbalance

learning techniques and how it affects the classification performance.

Among the limited works of dealing with multi-class imbalance problems, most meth-

ods seek help from class decomposition, which breaks down the whole problem into a series

of small two-class sub-problems. For each sub-problem, two-class techniques are applied

to addressing class imbalance. In this section, we first introduce different types of class

decomposition schemes. Then, we review current solutions and performance evaluation

criteria for multi-class imbalance learning.

2.2.1 Class Decomposition

Class decomposition is a technique of processing multi-class by transforming the prob-

lem into multiple two-class classification problems. It has been categorized into three

types (Ou and Murphey, 2007): one-against-all (OAA, also known as one-vs-others, one-

vs-rest), one-against-one (OAO) and P-against-Q (PAQ). Decomposing a big problem

has following advantages:

• Individual classifiers are likely to be simpler than a classifier learnt from the whole

data set.

• They can be trained simultaneously for less modeling time.

• They can be trained independently, which allows different feature spaces, feature

dimensions and architectures. The change of one classifier will not affect the others.

Its potential drawback is that each individual classifier is trained without full data

knowledge. It can cause classification ambiguity or uncovered data regions with respect
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to each type of decomposition. Given a c-class task (c > 2),

(1) OAA scheme (Rifkin and Klautau, 2004)

Each of the c classes is trained against all other classes. It results in c binary classifiers.

The final decision will be the class label whose corresponding binary classifier produces

the highest output value among all. However, it can make training data highly imbal-

anced (Tan et al., 2003). If the original data is imbalanced already or contains a large

number of classes, OAA will make the problem even worse. In addition, the classification

boundary produced by the individual classifier is independent from each other, which can

lead to uncovered and overlapped regions in the data space. It is unable to exploit the

fact that each example belongs to only one class (Jin and Zhang, 2007; Valizadegan et al.,

2008).

(2) OAO scheme (Hastie and Tibshirani, 1998)

Each of the c classes is trained against every one of the other classes. It results in

c (c− 1) /2 binary classifiers. A combining strategy of their outputs is necessary for a

final decision. The simplest way is a majority vote, which outputs the class label with

the most votes. Major advantages of OAO are,

• It provides redundancy to the prediction of each class, which can be beneficial to

generalization performance. If one classifier makes a classification mistake, others

still have chance to make it up.

• It does not produce imbalanced training data.

• It is capable of incremental learning. When a new class joins to the current data,

we just need to build another c new classifiers without affecting the existing ones.

It also suffers from some known disadvantages (Tan et al., 2003),

• The number of individual classifiers grows fast in a quadratic rate of c. When c is

large, the training time can be very long.
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• Due to different learning problems for each classifier, combining their results can

cause potential classification errors.

(3) PAQ scheme (Ou and Murphey, 2007)

Using P of the c classes against the other Q of the c classes, the training process

is repeated several times. Different P classes are chosen at each time. Which classes

to choose is decided by a codeword table with 0/1 bits. There are several methods to

produce a codeword table. Error-correcting output code (ECOC) (Dietterich and Bakiri,

1995) is one of the most well-known and popular methods. The major disadvantage of

PAQ scheme is that its performance depends on many factors, including base classifiers

and the codeword table (Jin and Zhang, 2007).

2.2.2 Existing Solutions

Most existing solutions for multi-class imbalance problems use class decomposition schemes

to handle multi-class and work with two-class imbalance techniques to handle each ob-

tained binary sub-task. For example, protein classification is a typical multi-class imbal-

ance problem. Tan et al. used both OAA and OAO schemes with rule-based learners

to improve the coverage of examples from small protein classes (Tan et al., 2003). Zhao

et al. used OAA to handle multi-class, and undersampling and SMOTE (Chawla et al.,

2002) to compensate the imbalanced distribution in their protein data (Zhao et al., 2008).

Liao investigated a variety of oversampling and undersampling techniques used with OAA

for a weld flaw classification problem (Liao, 2008). Chen et al. proposed an algorithm,

using OAA to deal with multi-class and then applying some advanced sampling methods

that can further decompose each binary problem so as to rebalance the training set (Chen

et al., 2006). Fernandez integrated OAO with SMOTE in their algorithm (Fernández

et al., 2010). Instead of using data-level methods, Alejo et al.’s algorithm made the er-

ror function of neural networks cost-sensitive by incorporating the proportion of classes
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within the data set to emphasize minority classes, after OAA was applied (Alejo et al.,

2009).

Different from the above methods, a cost-sensitive ensemble algorithm was proposed

(Sun et al., 2006), which addressed multi-class imbalance directly without using class

decomposition. The key points of this algorithm are to find an appropriate cost matrix

with multiple classes and introduce the costs into the algorithm. They applied a genetic

algorithm (GA) to searching the optimal cost setup of each class. Two kinds of fitness

were tested, G-mean and F-measure, whose choice depended on the training objective of

the given problem. The obtained cost vector was then integrated into a cost-sensitive

version of the Adaboost.M1 algorithm (Freund and Schapire, 1997), named AdaC2 (Sun

et al., 2005, 2007), which is able to process multi-class data sets. However, searching

the cost vector is very time-consuming due to the nature of GA. There is no existing

method that can deal with multi-class imbalance problems efficiently and effectively yet.

Chapter 6 of this thesis will first analyze why multi-class makes a problem harder and

then explore new approaches to tackling the difficulties.

2.2.3 Evaluation Criteria in the Presence of Multi-Class

We now turn our attention to the assessment metrics. While all the single-class perfor-

mance measures in section 2.1.3 are still suitable for multi-class problems, overall perfor-

mance measures have to be extended.

Sun et al. (Sun et al., 2006) adapt G-mean to multi-class scenarios. It is defined as

the geometric mean of recall values (Ri) of all classes. Given a c-class problem,

G−mean =

(
c∏
i=1

Ri

)1/c

. (2.4)

It is able to capture the balanced performance among classes effectively, as the recog-

nition rate of every class is equally taken into account.

A commonly accepted extension of AUC is proposed by Hand and Till (Hand and Till,
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2001), called M measure or MAUC. It is the average of AUC of all pairs of classes, and

defined as

M =
2

c (c− 1)

∑
i<j

A (i, j) , (2.5)

where A (i, j) = [A (i|j) + A (j|i)] /2 for class pair (i, j). A (i, j) measures the separa-

bility between classes. A (i|j) is the probability that a randomly drawn example of class

j will have a lower estimated probability of belonging to class i than a randomly drawn

example of class i. It should be noted that AUC = A (i|j) = A (j|i) in the two-class sce-

nario, but the equality does not hold when more than two classes exist. Although there

are other modifications of AUC (Provost and Domingos, 2000), MAUC has the merit that

it is insensitive to class distributions and error costs (Hand and Till, 2001; Fawcett, 2003,

2006; He and Garcia, 2009).

It is worth mentioning that, for the evaluation of learning algorithms based on class

decomposition, some works chose to take the average of any two-class performance mea-

sure for produced binary classifiers (Zhao et al., 2008; Liao, 2008; He and Garcia, 2009).

Finally, because of different importance and classifier performance among classes in class

imbalance learning, single-class and overall performance measures are always considered

simultaneously to evaluate different performance aspects and provide more insights into

learning algorithms.

2.3 Diversity in Classification Ensembles

Diversity of ensembles has been a hot topic in ensemble learning during the past few

years. It is commonly agreed that the success of ensembles is attributed to diversity – the

degree of disagreement within the ensemble (Kuncheva et al., 2002; Brown et al., 2004).

In the regression context, it has already been clearly quantified and measured in terms of

covariance between individual learners by decomposing the ensemble error (Brown et al.,

2005). In the classification context, the effect of diversity has also been recognized and
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exploited in algorithm design. For example, Bagging (Breiman, 1996) creates diversity by

bootstrapping different training subsets; AdaBoost (Freund and Schapire, 1996) achieves

diversity by altering the distribution of training examples for each classifier to avoid

making same errors. Both algorithms have shown great success in the ensemble learning

area. The underlying principle of creating a classification ensemble can be generally

described as “individual classifiers make errors on different examples” (Polikar, 2006; Ali

and Pazzani, 1995). However, there is no neat theory to rigorously define how differences

between individual classifiers contribute to overall classification accuracy, depending on

the type of error function and choice of combining methods. As such, it is hard to achieve

an agreed definition of diversity for classification ensembles.

In spite of the resulting benefits of diversity in dealing with classification problems,

some studies show counterintuitive empirical results due to its vague link to overall ac-

curacy. For example, Kuncheva et al. found a weak relationship between diversity and

overall accuracy through experimental discussions, and raised the doubt of the usefulness

of diversity measures in training classification ensembles (Kuncheva and Whitaker, 2003).

The similar observation also happened in Garcia et al.’s work (Garcia-Pedrajas et al.,

2005). They proposed an evolutionary multi-objective method for designing ensembles.

Their results showed that considering diversity as one of the objectives does not bring

a clear performance improvement. Chen stated that diversity highly correlates with the

classification error only when diversity is small, and its effect is reduced out of a specific

range (Chen, 2008).

The partial understanding of diversity in classification ensembles leads to various met-

rics proposed to quantify diversity and continuous research efforts in the role of diversity

in classification accuracy from different perspectives.

2.3.1 Diversity Measures for Classification

For quantitative assessment of diversity, several measures have been defined in two types,

pairwise and non-pairwise. Pairwise measures calculate the average similarity or disagree-
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ment between all possible pairs of classifiers in the ensemble. This similarity/disagreement

is expressed by a distance metric. Non-pairwise measures consider the voting distribu-

tion among classifiers and calculate the entropy or correlation. In particular, ten ex-

isting measures are frequently mentioned and studied in the majority of relevant liter-

ature (Kuncheva and Whitaker, 2003, 2001; Tang et al., 2006; Chen, 2008): Q-statistic

(Q), correlation coefficient (ρ), disagreement measure (Dis), double-fault (DF ), entropy

(Ent), Kohavi-Wolpert variance (KW ), interrator agreement (κ), difficulty measure (θ),

generalized diversity (GD) and coincident failure diversity (CFD). The first four belong

to pairwise measures, and the remaining ones are non-pairwise. All of them are based

on the oracle output (correct/incorrect decision) and the combining method of majority

vote. Their definitions will be given next.

Let F = {f1, f2, . . . , fL} be a set of learnt classifiers as committee members of an

ensemble, and Y = {ω1, ω2, . . . , ωc} be a finite label set. For any input xj belonging to an

instance space X, there is an expected label yj ∈ Y . For each classifier fi (i = 1, . . . , L),

we define Oj,i = 1 if fi recognizes xj correctly, and 0 otherwise. Similarly for the combined

model of those individuals, we define Oj,ens = 1 if the majority vote result is correct for

example xj, and 0 if xj is misclassified. This is known as the oracle type of output. The

measures based on the oracle output do not require any prior knowledge about data and

any specific base learners. They are only determined by the correct/incorrect decisions of

individuals. The oracle output provides a general model for analyzing various ensemble

learning methods (Tang et al., 2006). Taking two classifiers fi and fk, we define Nab

as the number of examples xj for which Oj,i = a and Oj,k = b within a labelled data

set Z = {(x1, y1) , (x2, y2) , . . . , (xN , yN)}. Table 2.4 presents the relationship between

classifiers fi and fk. Each entry can also be in the form of probability by calculating

Nab/N .

(1) Q-statistic (Q) (Yule, 1900)

The Q-statistic for classifiers fi and fk is defined as
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Table 2.4: A 2 × 2 table of the relationship between a pair of classifiers (Kuncheva and
Whitaker, 2003).

fk correct (1) fk wrong (0)
fi correct (1) N11 N10

fi wrong (0) N01 N00

Total: N = N00 +N01 +N10 +N11

Qi,k =
N11N00 −N01N10

N11N00 +N01N10
. (2.6)

Qi,k assesses the similarity between them. For a set of L classifiers, diversity is mea-

sured by the averaged Q-statistic

Q =
2

L (L− 1)

L−1∑
i=1

L∑
k=i+1

Qi,k. (2.7)

For statistically independent classifiers, the expectation of Qi,k is 0. It varies between

−1 and 1. It performs positive if classifiers tend to recognize the same input examples cor-

rectly, and negative if they commit errors on different examples (Kuncheva and Whitaker,

2003). Larger Q-statistic values indicate smaller diversity. It is the most widely discussed

diversity measure in the ensemble literature.

(2) Correlation coefficient (ρ) (Sneath and Sokal, 1973)

The correlation coefficient ρ is defined as

ρi,k =
N11N00 −N01N10√

(N11 +N10) (N01 +N00) (N11 +N01) (N10 +N00)
. (2.8)

Q and ρ have the same sign, and ρ ≤ Q. ρ = 0 indicates that the classifiers are

uncorrelated.

(3) Disagreement measure (Dis) (Skalak, 1996; Ho, 1998)

The disagreement measure is the ratio of the number of examples labelled by fi and fk
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differently (i.e. one is correct, and the other is incorrect) to the total number of examples.

It refers to the probability that two classifiers will disagree.

Disi,k =
N01 +N10

N11 +N10 +N01 +N00
. (2.9)

(4) Double-fault (DF ) (Giacinto and Roli, 2000)

The double-fault measure is the proportion of examples that are labelled incorrectly

by both classifiers,

DFi,k =
N00

N11 +N10 +N01 +N00
. (2.10)

The above four statistics belong to pairwise measures that express the (dis)similarity be-

tween any two classifiers. The following gives six non-pairwise measures that take the

ensemble’s decision into consideration. Let l (xj) denote the number of classifiers that

label xj correctly (i.e. l (xj) =
∑L

i=1 Oj,i).

(5) Entropy (Ent) (Cunningham and Carney, 2000)

The entropy measure assumes that the highest diversity happens when half of the

classifiers are correct and the remaining ones are incorrect. If the oracle outputs are all

1’s or 0’s, there is no diversity among the classifiers. It is defined as

Ent =
1

N

N∑
j=1

1

(L− dL/2e)
min {l (xj) , L− l (xj)} , (2.11)

where d.e is the ceiling operator. Ent varies between 0 and 1, where 0 indicates all

classifiers perform the same, and 1 indicates the highest diversity.

(6) Kohavi-Wolpert variance (KW ) (Kohavi and Wolpert, 1996)
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The Kohavi-Wolpert variance measures the variability of the predicted class label given

an input x for a specific classifier

variancex =
1

2

(
1−

c∑
i=1

P (y = ωi|x)2

)
(2.12)

and averages over the whole data set. In the case of oracle outputs, the variability is

estimated among the set of classifiers f1, f2, . . . , fL by

KW =
1

NL2

N∑
j=1

l (xj) (L− l (xj)) . (2.13)

It can be proved that KW differs from the averaged disagreement measure Dis by a

constant factor (Kuncheva and Whitaker, 2003),

KW =
L− 1

2L
Dis. (2.14)

(7) Interrator agreement (κ) (Fleiss, 1981)

It is a measure of classification reliability, indicating the level of agreement while

corrected by chance. Let p̄ denote the average individual classification accuracy

p̄ =
1

NL

N∑
j=1

l (xj) , (2.15)

then

κ = 1−
1
L

∑N
j=1 l (xj) (L− l (xj))

N (L− 1) p̄ (1− p̄)
. (2.16)

κ is related to KW and Dis as follows

κ = 1− L

(L− 1) p̄ (1− p̄)
KW = 1− 1

2p̄ (1− p̄)
Dis. (2.17)
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It should be noted that there is a pairwise κ statistic used in (Margineantu and Diet-

terich, 1997; Dietterich, 2000a). It is the agreement between two classifiers corrected by

chance. However, these two have no direct link.

(8) Difficulty measure (θ) (Hansen and Salamon, 1990)

A discrete random variable X ′ is defined as the proportion of classifiers in F that

classify an input x correctly: X ′ =
{

0
L
, 1
L
, . . . , 1

}
. It describes a pattern of classification

difficulty for all classifiers. The diversity measure θ depicts the distribution of difficulty

over the data set Z, captured by the variance of X ′: θ = V ar (X ′). The higher the value

of θ, the lower the ensemble diversity.

(9) Generalized diversity (GD) (Partridge and Krzanowski, 1997)

Partridge and Krzanowski argued that maximum diversity occurs when failure of one

of the L classifiers is accompanied by correct labeling by the other classifier; minimum

diversity occurs when one’s failure is always accompanied by failure of the other. If we

define pi as the probability that i out of L classifiers misclassify an input x simultaneously

and p (i) as the probability that i randomly chosen classifiers will misclassify x,

p (1) =
L∑
i=1

i

L
pi and p (2) =

L∑
i=1

i (i− 1)

L (L− 1)
pi. (2.18)

In the case with maximum diversity, there is p (2) = 0; in the case with minimum

diversity, p (2) = p (1) holds. Based on the assumptions, the generalization diversity is

defined as

GD = 1− p (2)

p (1)
. (2.19)

GD varies between 0 and 1.

(10) Coincident failure diversity (CFD) (Partridge and Krzanowski, 1997)
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The coincident failure diversity is a modification of GD. It is defined as

CFD =


0, p0 = 1.0

1
1−p0

∑L
i=1

L−i
L−1

pi, p0 < 1.0

(2.20)

It varies between 0 and 1. When all classifiers always produce correct labels or they

are correct or wrong simultaneously (minimum diversity), CFD will be 0. When all the

misclassifications happen to exactly one classifier (maximum diversity), 1 will be achieved.

Table 2.5 summarizes the ten measures, including the indication of their changing

directions in relation to diversity, the category they belong to (pairwise or not) and the

abbreviations used in this thesis.

Table 2.5: Summary of the 10 diversity measures. ‘↓/↑’ indicates greater diversity if the
measure gets lower/higher.

Name Abbr. Pairwise Direction
Q-statistic Q Yes ↓

Correlation coefficient ρ Yes ↓
Disagreement measure Dis Yes ↑

Double-fault DF Yes ↓
Entropy Ent No ↑

Kohavi-Wolpert variance KW No ↑
Interrator agreement κ No ↓

Difficulty measure θ No ↓
Generalized diversity GD No ↑

Coincident failure diversity CFD No ↑

Kuncheva and Whitaker studied the relationship between these diversity measures (Kuncheva

and Whitaker, 2003). Strong positive correlations were observed. They found no single

best measure. Similar results were also obtained in other papers (Shipp and Kuncheva,

2002a; Chen, 2008). Particularly, Q-statistic was recommended by the authors for its

simplicity and understandability (Kuncheva and Whitaker, 2003). Besides, Q-statistic

was shown to be the only measure, whose maximum, minimum and independence value
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do not depend on the individual accuracy for two classifiers with the same individual

accuracy (Kuncheva and Whitaker, 2001), and have little empirical relationship to the

averaged individual accuracy (Kuncheva and Whitaker, 2003). It could be an advantage

for studying class imbalance problems, considering that a diversity measure less correlated

to individual accuracy is expected to be less sensitive to class imbalance distributions.

Otherwise, it may result in inaccurate analysis.

2.3.2 Diversity and Generalization

In the regression context, diversity is clearly related to the covariance term of the ensemble

error. It explains the role of the differences between individual learners in generalization

performance based on two decompositions of the quadratic loss error function (Brown

et al., 2005) – the bias-variance-covariance decomposition (Ueda and Nakano, 1996) and

the ambiguity decomposition (Krogh and Vedelsby, 1995). They will be introduced in

section 2.4 as the theoretical grounding of negative correlation learning.

Unlike regression ensembles, there is no clear analogue of such decompositions in the

classification context. The misclassification rate is an appropriate and the most common

performance evaluation criterion in a classification task, as known as the zero-one error

function. A prediction for a given example can either be correct (0 error penalty) or

wrong (1 error penalty). The error rate is estimated based on the count of committed

misclassifications. Following the notations in the previous section, we let yj be the true

class of any example xj, and yf (xj) be the class label produced by the classifier f . yj

and yf (xj) belong to the output space {ω1, ω2, . . . , ωc}. Then the 0-1 error of f on xj is

defined as (Domingos and Pazzani, 1997)

L (f, xj) =


0 if yf (xj) = yj

1 if otherwise.

(2.21)

In general, if xj is associated with a vector of class probabilities, let P (ωi|xj) (i = 1, . . . , c)
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denote the true values of the posterior probabilities for the c classes from the target func-

tion y, and Pf (ωi|xj) denote the probability of f assigning class ωi to xj. The 0-1 error

can be more generally defined as (Kohavi and Wolpert, 1996; Domingos and Pazzani,

1997)

L (f, xj) = 1−
∑
ωi

Pf (ωi|xj)P (ωi|xj) (2.22)

based on the proposition that “labeling xj as ωi and xj belonging to ωi are conditionally

independent given the target function y and input xj” (Kohavi and Wolpert, 1996). The

second term is referred to as the accuracy of f on xj. This definition reduces to Eq. 2.21

when one class has probability 1.

There is no unique bias-variance decomposition for this type of loss (Kuncheva, 2004),

and thus no simple and clear accuracy-diversity breakdown has been achieved for classi-

fication ensembles. To study the role of diversity in generalization theoretically, existing

studies have given separate focuses on classifiers producing class probabilities (real-valued

outputs) and classifiers producing discrete class labels with their own assumptions and

achieved highly restricted theoretical results. Work on this topic is still progressing.

Real-Valued Outputs with a Linear Combination

When base classifiers can output real-valued numbers that approximate posterior proba-

bilities of each class, Tumer and Ghosh reformulated the added error rate above the Bayes

error of an ensemble with a simple averaging combination method (Tumer and Ghosh,

1996a, 1999). Bayes error is irreducible under the Bayes optimum decision. The added

error is the quantity made by a classifier beyond the Bayes error. The expected added

error of averaging L unbiased classifiers is

Eave
add = Eadd

(
1 + δ (L− 1)

L

)
, (2.23)

where Eadd is the expected added error of individual classifiers. δ is the average of the
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class-specific correlations among classifiers. When the individuals are identical, δ is equal

to 1. The ensemble error is just the individual error in this case. When the individuals

are statistically independent with δ = 0, the ensemble error is reduced by a factor L.

When the individuals are negatively correlated with a negative δ, the ensemble error is

lower than the average individual error. However, the derivation of Eq. 2.23 is based on

some strong assumptions. Some extension was done by Fumera and Roli for ensembles

with a weighted averaging combination (Fumera and Roli, 2003, 2005).

Discrete Outputs with a Majority Voting Combination

When classifiers can only output discrete labels, such as k-nearest neighbour, the relation-

ship between diversity and the ensemble error becomes more vague. Kuncheva et al. built

mathematical links for diversity measured by Q-statistic to the majority vote accuracy in

some special cases (Kuncheva et al., 2003). They proved that increasing diversity is not

always beneficial to overall accuracy. Two extreme patterns of ensembles with different

voting combinations were found. They were claimed to have the possible characteristics

of the “best” and “worst” combinations of individual classifiers when they hold the same

accuracy. In the “best” pattern, reducing Q-statistic (i.e. larger diversity) will improve

overall accuracy; in the “worst” pattern, it will result in worse accuracy. More details

of each pattern will be given in chapter 3, in which we exploit the idea of patterns to

study the relationship between diversity and single-class performance in class imbalance

learning.

Chung et al. established upper and lower bounds for the majority vote accuracy in

terms of average individual accuracy and the diversity measure of entropy (Chung et al.,

2007). They showed that the ensemble accuracy is an increasing function with respect to

the entropy measure when the individual accuracy is large enough.

So far, we have introduced the concept of diversity in the classification context, in-

cluding various definitions and its theoretical role in overall performance of ensembles

under different assumptions. The lack of a unified definition and theoretical framework
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of diversity for classification problems makes it less useful for designing a good ensemble

algorithm.

2.4 Negative Correlation Learning Algorithms

Negative correlation learning (NCL) is a successful neural network (NN) ensemble tech-

nique that manages ensemble diversity among the NN members explicitly in addition to

the individual accuracy during the learning procedure. The principle underlying NCL

can be justified by decomposing the generalization error of regression ensembles (Brown

et al., 2005). In addition to the error bias and variance of each individual learner, the

mean squared error (MSE) of ensemble critically depends on the covariance between the

individuals (Ueda and Nakano, 1996), corresponding to diversity. NCL captures this effect

with the aim of balancing covariance against bias and variance. Certain NCL algorithms

have been proposed to negatively correlate the errors made by each other and encourage

the interaction of individuals.

Liu and Yao’s cooperative ensemble learning system (CELS) (Liu and Yao, 1999b) is

a representative algorithm with the standard NCL paradigm. Unlike Bagging (Breiman,

1996) and Boosting (Freund and Schapire, 1996), the idea of CELS is to encourage the

individual networks to learn different aspects of a given data set cooperatively and si-

multaneously through the gradient descent procedure. It introduces a penalty term as a

regularization factor into the error function of each network. It contains the information

of error correlation in the ensemble by exploiting the well-known ambiguity decompo-

sition (Krogh and Vedelsby, 1995). Adding this penalty term fills the missing gradient

component in relation to variance and covariance terms in the ensemble MSE (Brown

et al., 2005). It achieved empirical success in both regression and classification problems.

The algorithm is described in Table 2.6.

The error function ei of network i in step 2 is formed by two terms. The first term

is its empirical training error. The second term pi is the correlation penalty function.

50



Table 2.6: The CELS algorithm (standard NCL paradigm) (Liu and Yao, 1999b).

Given: a training set Z = {(x1, y1) , (x2, y2) , . . . , (xN , yN)}; the number of neural
networks L; the learning rate η for backpropagation (BP); the penalty coefficient λ.
Initialize L neural networks f1, . . . , fL.

For each training example n = 1, 2, . . . , N :
Step 1. Calculate f̄ (xn) = 1

L

∑
i fi (xn).

Step 2. For each network i = 1, 2, . . . , L:
Update each weight w in network i using learning rate η by computing

(1) Individual error function ei (xn) = 1
2

(fi (xn)− yn)2 + λpi (xn),
where the penalty term pi (xn) =

(
fi (xn)− f̄ (xn)

)∑
j 6=i
(
fj (xn)− f̄ (xn)

)
,

(2) ∂ei(xn)
∂fi(xn)

= (fi (xn)− yn) + λ
∑

j 6=i
(
fj (xn)− f̄ (xn)

)
,

(3) ∆w = −η
[
(fi (xn)− yn)− λ

(
fi (xn)− f̄ (xn)

)] ∂fi(xn)
∂w

.
Repeat the above for desired iterations.

Output of the NCL ensemble for any new example x: f (x) = 1
L

∑
i fi (x).

Minimizing pi aims to negatively correlate network i’s error with the errors of the other

members. Parameter λ controls the trade-off between the two terms ranging in [0, 1].

CELS was found computationally expensive when dealing with large data sets due to

the pattern-by-pattern weight-updating strategy. To speed up the learning process, an-

other NCL algorithm, negative correlation learning via correlation-corrected data (NCCD),

was proposed by Chan and Kasabov (Chan and Kasabov, 2005b,a). The idea is to incor-

porate error correlation information into training data instead of every network’s error

function. The training data with adjusted outputs is called Correlation-Corrected data

(C-C data). Each network is provided with its own C-C data that are updated after every

certain training epochs. It reduces the updating times of information exchange and allows

parallel model implementation. The training strategy is summarized in Table 2.7.

The equation in step 2 is derived by making ∂ē
∂fi

= 0 to generate C-C data, where ē is

the ensemble error. The penalty coefficient λ varies in [0, 1). NCCD was shown to have

comparable performance to CELS and much less computation overhead.

Besides CELS and NCCD, there are other variations with the NCL paradigm. Islam

et al. proposed a constructive method for training cooperative neural network ensem-
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Table 2.7: The NCCD algorithm (Chan and Kasabov, 2005a).

Given: a training set Z = {(x1, y1) , (x2, y2) , . . . , (xN , yN)}; the number of neural
networks L; the penalty coefficient λ; the updating interval of C-C data g.
Initialize L neural networks f1, . . . , fL and train them individually for g epochs.

For network i:
Step 1. Calculate f̄ (xn) = 1

L

∑
i fi (xn).

Step 2. Create C-C data by updating the targets of training data y to y′:

y′ = y−λf̄
1−λ .

Step 3. Use C-C data {(xi, y′)} to train network i for g epochs.
Repeat the above until every network has trained for desired iterations.

Output of the NCL ensemble for any new example x: f (x) = 1
L

∑
i fi (x).

bles (Islam et al., 2003). It combines the architecture design of neural networks with

NCL training, in which the number of networks and the number of hidden nodes in each

individual are determined automatically. Further, they applied this strategy to Bagging

and Boosting (Islam et al., 2008). Dam et al. applied NCL to learning classifier systems

for compacting rules, where NCL was shown to improve ensemble generalization (Dam

et al., 2007). Chen and Yao found that NCL could suffer from the problem of overfitting

noise. They proposed regularized negative correlation learning (RNCL) algorithm that

introduces an additional regularization term into the error function of the whole ensemble,

along with a Bayesian interpretation (Chen and Yao, 2009).

The theoretical foundation of the “error correlation” term used in NCL comes from two

error decompositions in the regression context as we have mentioned before: bias-variance-

covariance decomposition (Ueda and Nakano, 1996) and ambiguity decomposition (Krogh

and Vedelsby, 1995). The ambiguity decomposition states that the quadratic error of the

ensemble is less than or equal to the average quadratic error of individual learners:

(
f̄ − y

)2
=
∑
i

αi (fi − y)2 −
∑
i

αi
(
fi − f̄

)2
, (2.24)

where f̄ is the weighted average of the individuals f̄ =
∑

i αifi. The second term
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on the right-hand side of the equation is referred to as the ambiguity term. It measures

the disagreement or prediction variability within the ensemble and guarantees that the

ensemble has a lower error than the average individual error.

The role of ensemble diversity in generalization can be explained by the bias-variance-

covariance decomposition (Ueda and Nakano, 1996). For a uniformly weighted ensemble

f̄ with L individual members, its mean squared error can be decomposed into

E
{(
f̄ − y

)2
}

= bias+
1

L
var +

(
1− 1

L

)
covar, (2.25)

where

bias = 1
L

∑
i (E {fi} − y), the averaged bias of the individuals;

var = 1
L

∑
iE
{

(fi − E {fi})2}, the averaged variance of the individuals;

covar = 1
L(L−1)

∑
i

∑
j 6=iE {(fi − E {fi}) (fj − E {fj})}, the averaged covariance be-

tween the individuals.

It tells us that in addition to the bias and variance from the individuals, the general-

ization error also depends on how they correlate to each other. Inspired by the decompo-

sitions, NCL divides the ensemble ambiguity and assigns each portion to every ensemble

member. This explains where the penalty term comes from. Brown et al. gave the exact

link between these two decompositions (Brown et al., 2005; Brown, 2004), showing that

we could not simply maximize the ambiguity without affecting the individual error term.

It implies a trade-off. The link can be found in the Appendix. A section.

Although NCL algorithms are theoretically supported in the regression context and

have been applied to classification problems, they are still theoretically unsound in the

classification context, because of the difficulty of achieving a clear accuracy-diversity

breakdown of the classification ensemble error, as we have reviewed in section 2.3.2. In

addition to an unclear theoretical framework for classification, existing NCL algorithms

confront some other known drawbacks. They are restricted to the use of neural networks

as the base learner based on gradient descent. The capability of processing real-valued

outputs is required. Other base learners, such as decision trees and k-NN, are obviously
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not suitable to this training paradigm. Poor flexibility and low efficiency hinder them

from being more widely used. With the aim of overcoming these problems, chapter 4

proposes a new NCL algorithm for classification ensembles, AdaBoost.NC.

2.5 Chapter Summary

This chapter reviewed the existing studies concerning class imbalance learning and en-

semble learning. We first reviewed the current research of learning from class imbalance

problems, including data-level, algorithm-level and ensemble-based methods and their

reported issues, from which we are motivated to search for a better solution and study

ensemble diversity for class imbalance problems. Meanwhile, we noticed that the majority

of class imbalance learning studies are restricted to the discussions of two-class problems

(i.e. data with one minority class and one majority class). However, many practical

applications that suffer from the classification difficulty of imbalanced distributions con-

tain more than two classes. We therefore reviewed the up-to-date progress in multi-class

imbalance learning. Among limited solutions for multi-class imbalance problems, most

efforts have been focused on class decomposition schemes. It is desirable to develop a

direct and effective approach. We highlighted the challenges on this topic that will be

looked into in the later chapter as a necessary part of class imbalance learning. How to

evaluate class imbalance learning algorithms in both two-class and multi-class scenarios

were included in this chapter.

In order to make best use of ensemble diversity in class imbalance learning, we need

a better understanding of this concept in the classification context. Thus, following the

introduction of class imbalance learning, we gave the definitions of diversity in classifica-

tion ensembles and explained its role in generalization performance, which will be used to

study the effect of diversity on the classification of class imbalance problems in chapter 3.

Finally, we described the idea of negative correlation learning as an important ensemble

technique that emphasizes diversity explicitly during learning, and introduced existing
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NCL algorithms in the literature. Under this topic, the identified research issues motivate

us to develop a better NCL algorithm for classification ensembles in chapter 4. This new

learning algorithm will be explored and exploited to tackle both two-class and multi-class

imbalance problems in chapters 5 and 6.
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CHAPTER 3

DIVERSITY ANALYSIS FOR CLASS IMBALANCE
LEARNING

In the previous chapter, we introduced a number of ensemble approaches to tackling class

imbalance problems. They adapt individual classifiers to emphasize the minority class

and utilize the difference among individuals to reduce the risk of overfitting and stabilize

the performance. In this chapter, we would like to understand the effect of ensembles

in depth, i.e. the contribution of diversity, in the context of class imbalance learning.

Section 3.1 gives a generic framework for defining class imbalance learning in terms of de-

cision theory to help us understand the learning task and objective precisely. Section 3.2

discusses the relationship between diversity and overall accuracy of ensembles in classifi-

cation patterns by providing theoretical links. It is extended to single-class performance

in section 3.3. Section 3.4 verifies the theoretical results of single-class performance and

studies the impact of diversity on overall performance through extensive experimental

work in class imbalance scenarios, followed by the chapter summary in section 3.5. The

research questions in section 1.3.1 are answered here.

3.1 Introduction

For a class imbalance problem, the learning objective is generally described as “obtaining a

classifier that will provide high accuracy for the minority classes without jeopardizing the
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accuracy of the majority classes (He and Garcia, 2009)”. It emphasizes two points. First,

minority classes deserve more attention. Misclassifying a minority class example has a

higher cost than misclassifying an example belonging to the majority class. Second, good

overall performance should be maintained while the focus is on the minority class. Based

on this understanding and Bayesian decision theory, we formulate the class imbalance

problem as follows.

Given an imbalanced data set with c possible class labels, denoted by Y = {ω1, ω2, . . . , ωc}

(c ≥ 2), we suppose that the first k classes {ω1, . . . , ωk} (1 ≤ k < c) of examples are heavily

under-represented in comparison with the other classes {ωk+1, . . . , ωc}. In most real-world

applications, this information is usually provided by domain experts as prior knowledge.

However, we may not know which minority classes suffer from severe classification diffi-

culties and what the exact misclassification costs are. The task is to assign one of the c

labels to any input example x. For clear presentation, we establish some notations here.

• p (ωi|x): the posterior probability of each class ωi produced by the ideal classifier

(the true class distribution).

• C (ωi, ωj): the cost of predicting class ωi when the true class of x is ωj.

• L (x, ωi): the loss of assigning label ωi to example x.

• R (x, ωi): the probability of predicting class ωi when the true class of x is ωi. When

the context is clear, Ri is used.

• P (x, ωi): the probability of x having the true class ωi when it is predicted as ωi.

When the context is clear, Pi is used.

Based on decision theory, the optimal prediction for example x should be class ωi that

minimizes (Elkan, 2001)

L (x, ωi) =
∑
j

p (ωj|x)C (ωi, ωj) . (3.1)
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In class imbalance learning, however, the costs are not often provided explicitly. We

need to reformulate C (ωi, ωj). C (ωi, ωj) is the cost of classifying an example x with real

label ωj to class ωi. When it happens, Rj and Pi are supposed to get lower. On one hand,

input x belonging to class ωj is misclassified, which implies smaller Rj. On the other

hand, a wrong-labelled example is added into the set with the predicted label of class ωi,

which indicates smaller Pi. Therefore, we re-express C (ωi, ωj) as a function of
(

1
Rj
, 1
Pi

)
,

C (ωi, ωj) = g

(
1

Rj

,
1

Pi

)
, (3.2)

where g is a monotone decreasing function of Rj and Pi. Correspondingly, the loss

function becomes

L (x, ωi) =
∑
j

p (ωj|x) g

(
1

Rj

,
1

Pi

)
. (3.3)

In order to minimize the misclassification cost, the optimal decision will be

ωopt = argmin
ωi

∑
j

p (ωj|x) g

(
1

Rj

,
1

Pi

)
. (3.4)

In class imbalance learning, therefore, the objective can be interpreted as “obtaining

a classifier that maximizes Rj’s and Pi’s”, when the cost is not available.

With this mathematical framework, let’s see how to make a decision for an imbalanced

problem. If ωj is one of the minority classes (j ≤ k), it is reasonable to assume that it

has a small Rj but a relatively good Pj, due to its poor representation in the data set.

Correspondingly, if ωi is one of the majority classes (i > k), it tends to have a relatively

small Pi and a high Ri, because most examples in this class are easier to identify. Referring

to the function g, C (ωi, ωj) should be larger than C (ωj, ωi), which tallies with the essential

understanding of class imbalance learning – again, misclassifying a minority class example

has a higher cost than misclassifying a majority class example. As a result, the loss of

predicting class ωi will become high. In fact, the misclassification cost in class imbalance

learning is associated with the relative classification difficulty of class pairs in this problem
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formulation framework. For some easy situations, the small size of minority class may not

be a problem. When the difficulty exists, the loss of producing the majority class label

for any input belonging to the minority class will be raised up by the cost function.

Ri and Pi correspond to recall and precision of class ωi, which are two important

single-class performance measures for classifier evaluation in class imbalance learning, as

we have introduced in section 2.1.3. Therefore, the ideal classifier should be the best at

balancing the recalls and precisions over all classes.

With a better understanding of class imbalance learning, we now divert our attention to

ensemble solutions for class imbalance problems and study if and how ensemble diversity

helps to achieve the learning objective. Most existing ensemble algorithms adjust the

learning bias of individual classifiers towards the majority class by manipulating training

data differently from the data level (Li, 2007; Liu et al., 2009; Chawla et al., 2003) or

by applying different costs from the algorithm level (Joshi et al., 2001) (Chawla and

Sylvester, 2007; Guo and Viktor, 2004; Fan et al., 1999). Combining multiple classifiers

can reduce the probability of overfitting (Perrone and Cooper, 1993). The interaction

among them is able to make up each other’s weaknesses (Kotsiantis et al., 2006; Kotsiantis

and Pintelas, 2003; Estabrooks et al., 2004; Seiffert et al., 2008a,b). Thus, an ensemble

should have better performance than any individual on average by making use of this

interaction (Estabrooks et al., 2004; Kotsiantis and Pintelas, 2003; Chawla and Sylvester,

2007). It is reflected in the covariance of the ensemble members, i.e. ensemble diversity

in ensemble learning. However, no study has actually investigated its effects in classifying

imbalanced data sets so far.

To date, existing studies have been attempting to relate diversity of classification

ensembles to overall accuracy by giving separate focuses on classifiers producing class

probabilities (real-valued outputs) (Tumer and Ghosh, 1996a, 1999, 1996b) and classifiers

producing discrete class labels (Kuncheva et al., 2003) under certain assumptions. In

class imbalance cases, however, the overall accuracy is not appropriate and less meaning-

ful (Kotsiantis et al., 2006). Single-class performance measures are adopted to evaluate
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how a classifier performs in the specific class we are concerned with. Recall, precision

and F-measure (Rijsbergen, 1979) are most widely used in the class imbalance learning

literature.

Accordingly, this chapter will provide answers to the following questions: 1) what is

the relationship between ensemble diversity and the performance measures used in class

imbalance learning? 2) Is introducing diversity beneficial to the minority/majority class

in the presence of imbalanced data?

To answer the first question, section 3.2 discusses when and why diversity measured

by Q-statistic (Yule, 1900) causes better overall accuracy based on several classification

patterns of ensembles by extending Kuncheva et al.’s study (Kuncheva et al., 2003). We

explain why diversity is not always beneficial to overall accuracy. Two arguments are

proposed in patterns accordingly for the minority and majority classes respectively of

a class imbalance problem. The pattern analysis is then utilized to relate Q-statistic to

single-class performance measures, including recall, precision and F-measure in section 3.3.

We show mathematically how these single-class measures behave as diversity varies. Six

possible situations with different changing behaviours are obtained and analyzed. The

relationship between diversity and overall performance measured by AUC and G-mean is

discussed empirically in section 3.4, where diversity is shown to be beneficial.

To answer the second question of how diversity affects single-class performance of

each type of classes in the presence of imbalanced data, comprehensive experiments are

carried out on artificial and real-world data sets with highly skewed class distributions

in section 3.4. We find strong correlations between diversity measured by the pairwise

measure Q-statistic and the non-pairwise measure GD and discussed performance mea-

sures. Diversity shows a positive impact on the minority class in terms of recall and

F-measure in general, which is achieved by making the ensemble produce broader and

less overfitting classification boundaries for the minority class. This chapter focuses on

binary classification problems.

In the following relationship study of this chapter, Q-statistic is chosen as the main
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diversity measure from various definitions for the following reasons: 1) strong positive

correlations among existing diversity measures have been found mathematically and em-

pirically. They share very high similarity. Q-statistic was particularly recommended for

its simplicity of calculation and understandability (Kuncheva and Whitaker, 2003). 2) Q-

statistic has shown little relationship to the individual accuracy (Kuncheva and Whitaker,

2001, 2003). It could be an advantage for studying diversity in the class imbalance learn-

ing context, because a measure depending on individual accuracy is likely to be sensitive

to imbalanced distributions and cause misleading conclusions. 3) All the mathematical

equations in the pattern analysis later on are derived in terms of Q-statistic. It would be

better to use it throughout the chapter for consistency. To confirm our correlation results

based on Q-statistic, we further examine a non-pairwise diversity measure “generalized

diversity (GD)” in the experimental analysis. The definitions of Q-statistic and GD can

be found in section 2.3.1.

3.2 Relationship Between Diversity and Overall Ac-

curacy

In this section, we explain the functional relationship between ensemble diversity and

overall accuracy in several patterns by extending Kuncheva et al.’s study (Kuncheva et al.,

2003), including two extreme patterns and a general pattern. A classification pattern

refers to the voting combinations of the individual classifiers that an ensemble can have.

The accuracy is given by the majority voting method of combining classifier decisions.

Two extreme patterns present different effects of diversity, which shows that diversity

is not always beneficial to the generalization performance. The reason is explained in a

general pattern. Based on the features of the patterns, we relate them to the classification

of each type of classes of a class imbalance problem, and two arguments are proposed

accordingly.
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3.2.1 Definitions and Notations

We give some notations first for the following discussions. Suppose a data set Z =

{z1, . . . , zN} (zj = (xj, yj) and cardinality |Z| = N) with two possible labels, positive

class “+1” and negative class “-1”. By convention, we treat the positive class “+1” as

the minority class that forms the minority-class subset Zmin. The remaining examples

with label “-1” form the majority-class subset Zmaj. Single-class measures discussed in

this chapter, recall, precision and F-measure, are denoted by ‘R’, ‘P’ and ‘F’ respectively.

Q-statistic is denoted by Q. We use a “min” subscript to denote a single-class measure

evaluated on the minority class, and a “maj” subscript to denote “majority”. For exam-

ple, Rmin and Rmaj indicate the recall measure of the minority class and majority class

respectively. For an ensemble f̄ composed of L individual classifiers {f1, f2, . . . , fL}, the

ensemble size L is restricted to an odd number for the convenience of calculation later.

Let l = bL/2c. We also define,

• θ: the imbalance rate of the given data set, defined as |Zmin|/|Z| (θ < 0.5). θ is

equal to 0.5 when data is balanced.

• Povr: the overall accuracy of the ensemble with the combination method of majority

vote from individual classifiers. Every classifier produces a class label and they

equally contribute to the final output.

• p: the overall accuracy of the individual classifier. A classifier has probability p of

giving the correct label to any input. In Kuncheva et al.’s two extreme patterns,

L ensemble members are assumed to have the same individual accuracy (Kuncheva

et al., 2003). All the patterns discussed in this chapter are based on this assumption.

• pab: the occurrence probability of the respective combination of correct and wrong

outputs for any pair of classifier fi and fk. ‘a’ and ‘b’ belong to {1 (correct label), 0

(incorrect label)}. For example, p01 stands for the probability of fi being incorrect

and fk being correct.
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3.2.2 Q-statistic and Overall Accuracy in Patterns

The relationship between Q-statistic and overall accuracy can be explained in two extreme

situations and is summarized into a general pattern. The two extreme situations refer to

a best pattern and a worst pattern (Kuncheva et al., 2003), which will be introduced first.

Explicit mathematical links between Q and Povr exist, and Q exhibits different impacts

on Povr in the patterns. Then, they will be analyzed in a more general context, in which

we provide a deeper understanding of why accuracy behaves differently with respect to Q

in different patterns. A good pattern and a bad pattern are defined accordingly.

Two Extreme Patterns

Kuncheva et al. defined and analyzed two probability distributions over the possible com-

binations of L votes from the ensemble members, referred to as “pattern of success” and

“pattern of failure” (Kuncheva et al., 2003). The two patterns were claimed to have the

possible characteristics of the “best” and “worst” combinations of L classifiers when they

hold the same accuracy p.

(1) Pattern of success (best pattern): In this pattern, no correct votes are “wasted”, which

means there are exactly l+1 classifiers giving correct answers to every correctly predicted

example, or all of the classifiers give wrong answers if the combined result is wrong. Any

extra correct vote will be a waste. To give a formal definition (Kuncheva et al., 2003),

• The probability of any combination with l + 1 correct and l incorrect votes is α0.

• The probability of all L votes being incorrect is β0.

• The probability of all other combinations is 0.

Theorem 3.1. Under the best pattern, the expression of Povr with respect to Q is (Kuncheva

et al., 2003)

Povr =
L

(l + 1)

(1−Q)

(2−Q)
. (3.5)
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Povr is a monotone decreasing function of the pairwise dependence Q. For any p > 2/3,

the value of Q will be -1.

(2) Pattern of failure (worse pattern): In this pattern, correct votes are “wasted” to the

maximum extent. All the classifiers give correct answers if the combined result is correct.

Otherwise, there are exactly l correct votes, which produce the wrong class label. It is

defined as (Kuncheva et al., 2003),

• The probability of all L votes being correct is αl.

• The probability of any combination with l correct and l + 1 incorrect votes is βl.

• The probability of all other combinations is zero.

Theorem 3.2. Under the worst pattern, the expression of Povr with respect to Q is (Kuncheva

et al., 2003)

Povr =
L

(l − 1)

1

(2−Q)
− l

(L− l)
, (3.6)

Povr is a monotone increasing function of Q. For any p > 0.5, the value of Q is positive.

The patterns show that diversity does not always produce a positive effect on ensem-

bles, which depends on how many correct votes from the individual classifiers are wasted.

When diversity is “good”, such as the best pattern, diversity causes a performance im-

provement. Otherwise, there is some “bad” diversity that harms the performance. The

worst pattern is one of such cases. It is a useful analysis since it finds when diversity

can be beneficial or harmful, and provides the possible factor (i.e. the number of wasted

correct votes) that is somehow related to its effect. However, the original paper did not

explain why the number of wasted correct votes with a corresponding voting pattern of

the ensemble is possible to discriminate ensembles with different impacts of diversity.

Let’s take a closer look of these patterns and corresponding functions. In fact, the

number of wasted correct votes is related to which voting combination low diversity resides

in. α and β decide the ensemble accuracy. In the best pattern, low diversity exists
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in the voting combination on misclassified examples, where every classifier agrees on

the wrong label. Increasing diversity makes the wrong voting combination with low

disagreement degree less likely to happen and enforces the correct voting combination

with high disagreement degree (i.e. higher α and lower β). Therefore, the overall accuracy

gets improved. On the contrary, low diversity results from the correct voting combination

in the worst pattern. Encouraging diversity increases the probability of occurrence of the

wrong voting combination β, thus worse accuracy obtained. This may provide us with

some clues of the link between the definition of the patterns and the impact of diversity.

General Pattern

To further understand the patterns in a general sense, we define a general pattern by

allowing more than two possible voting combinations of an ensemble. Although it is hard

to derive a neat expression for Q-statistic and accuracy under this pattern, it shows how

they are related through types of voting combinations and their possibilities. It is defined

as follows,

• Given a voting combination that provides the correct class label for an input, the

number of correct votes is l + 1 + i with probability αi (i = 0, 1, . . . l).

• Given a voting combination that provides the incorrect class label for an input, the

number of correct votes is j with probability βj (j = 0, 1, . . . l).

αi and βj determine the voting distribution of the ensemble. Their subscripts i and j

indicate the number of wasted correct votes in the corresponding voting combination. We

apply the same inferring method as in the extreme patterns (Kuncheva et al., 2003). Povr

is the sum of the probability of each correct voting combination. There are
(

L
l+1+i

)
ways

of having (l + 1 + i) correct out of L classifiers, each with probability αi. The majority

vote accuracy becomes

Povr =
l∑

i=0

(
L

l + 1 + i

)
αi (3.7)
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with condition
∑l

i=0

(
L

l+1+i

)
αi +

∑l
j=0

(
L
j

)
βj = 1.

Table 3.1: Pairwise table of the relationship between any two classifiers for the general
pattern.

fk
fi 1 0

1 p11 =
∑l

i=0

(
L−2
l−1+i

)
αi+ p10 =

∑l−1
i=0

(
L−2
l+i

)
αi+∑l

j=2

(
L−2
j−2

)
βj

∑l
j=1

(
L−2
j−1

)
βj

0 p01 =
∑l−1

i=0

(
L−2
l+i

)
αi+ p00 =

∑l−2
i=0

(
L−2
l+1+i

)
αi+∑l

j=1

(
L−2
j−1

)
βj

∑l
j=0

(
L−2
j

)
βj

The relationship between any two classifiers fi and fk can be visualized using a pairwise

table. In Table 3.1, the probability of every correct/incorrect combination is presented,

where “1” stands for the correct vote and “0” stands for the incorrect vote. The entries

in the table are obtained by following combinatorial reasoning. For example, when both

fi and fk are correct, the remaining (L− 2) classifiers either give (l − 1 + i) correct votes

with
(
L−2
l−1+i

)
ways if the majority vote is correct, or give (j − 2) correct votes with

(
L−2
j−2

)
ways if the majority vote is wrong. Thus, the probability of having fi and fk both correct

is
∑l

i=0

(
L−2
l−1+i

)
αi +

∑l
j=2

(
L−2
j−2

)
βj. Based on the assumption of all individuals holding the

same accuracy p, the pattern is symmetrical with respect to all classifiers, so that all

pairs of individual classifiers have the same pairwise tables, and therefore the same Q.

According to the definition of Q-statistic, it can be computed by substituting the four

probabilities in Eq. 3.8 with the expressions in Table 3.1,

Q =
p11p00 − p01p10

p11p00 + p01p10

. (3.8)

Due to too many α and β terms involved in Q, we derive an upper bound on Q-statistic

to simplify our discussions here.

Theorem 3.3. Q-statistic is upper bounded by the monotone decreasing functions of p01

(p10) under the assumption of individual classifiers having the same accuracy p.

66



Proof. Due to the same individual accuracy p, p01 = p10 holds. Q-statistic can be ex-

pressed as

Q =
p00p11 − p2

01

p00p11 + p2
01

.

Because the inequality p00p11 ≤
(
p00+p11

2

)2
holds and the four probabilities satisfy p00 +

p11 + p01 + p10 = 1 (p01 < 1/2), we obtain

Q ≤


1−4p01

4p201
if Q ≥ 0

1−4p01
4p201+(1−2p01)2

if Q < 0

by eliminating p00 and p11. The right-hand side functions of the inequality are mono-

tone decreasing with respect to p01 in [0, 1/2], which upper-bound Q.
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Figure 3.1: Q-statistic and its upper bound with respect to p01.

It is easy to understand Theorem 3.3 intuitively. It tells us that increasing the prob-

ability of making different decisions of pairs of classifiers can make the ensemble more

diverse. Fig. 3.1 plots the curves of Q-statistic and its upper bound with respect to p01.

When p01 is very small, the upper bound is much larger than the Q-statistic value and

less useful. As p01 gets larger, the upper bound becomes tighter. p01 >
1
4

guarantees a

negative Q. Therefore, by increasing p01, Q-statistic can be upper-bounded better and

a more diverse ensemble will be achieved. Now, we just concentrate on the expression

of p01 instead of Q, and see how it relates to Povr through the voting distribution of the

ensemble. It is reformulated in Eq. 3.9.
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p01 = (

(
L− 2

l − 1

)
α0︸ ︷︷ ︸

best

+

(
L− 2

l − 2

)
α1 . . .+

(
L− 2

0

)
αl−1)+

(

(
L− 2

l − 1

)
βl︸ ︷︷ ︸

worst

+

(
L− 2

l − 2

)
βl−1 . . .+

(
L− 2

0

)
β1)

(3.9)

Now we consider the best and worst patterns from the view of the general pattern.

According to the definition of the best pattern, p01 is reduced to
(
L−2
l−1

)
α0 as denoted in

Eq. 3.9. Increasing p01 means raising the probability of making the correct prediction

of the ensemble, in that only the α term exists. Similarly, p01 =
(
L−2
l−1

)
βl in the worst

pattern. Increasing p01 leads to higher probability of making the wrong prediction, and

thus worse overall accuracy. What does it suggest? If α terms dominate p01, then Povr

is positively related to p01, and encouraging diversity causes a performance improvement.

Otherwise, Povr is negatively related to p01 by β terms, and higher diversity reduces the

accuracy. Accordingly, we infer that the number of wasted correct votes of the ensem-

ble determines which types of voting combinations would be positively affected more by

diversity. Increasing diversity tends to make α-type voting combinations more likely to

happen when few correct votes are wasted. The analysis here helps us to understand the

impact of diversity on single-class performance for class imbalance problems next.

Before diverting our attention, we clearly define good and bad patterns for the fol-

lowing discussions. In general, if increasing diversity causes higher α’s and lower β’s (i.e.

better accuracy), we say that the ensemble has a good voting pattern; if the case of lower

α’s and higher β’s happens (i.e. worse accuracy), it has a bad voting pattern.

3.2.3 Patterns and Class Imbalance Learning

In this section, we take the classification characteristics of class imbalance learning into

consideration. We first give some insight into the class imbalance problem from the view

of base learning algorithms, such as decision trees and neural networks that are commonly

used to form an ensemble. For these kinds of learners, the classification difficulty caused
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by skewed class distributions and different misclassification costs is mainly reflect in the

overfitting to the minority class and the over-generalization to the majority class, because

the small class has less contribution to the classifier. Both decision trees and neural

networks have been reported to be biased toward the majority concept inherently (He and

Garcia, 2009; Weiss, 2004; Japkowicz and Stephen, 2002). A tree learner can result in very

specific branches for the minority class that cover very few training examples. A neural

network cannot learn the minority class sufficiently, because the majority class examples

overwhelm the minimization procedure of the squared error using gradient descent.

Considering an ensemble composed of many of such classifiers, each classifier tends to

label most of the data as the majority class. We can imagine that the ensemble has a

very low diversity. As an extreme situation, all individuals misclassify any minority class

example and assign the majority class label to all examples. Based on this understanding,

we propose two arguments for each class from the view of patterns.

(1) Minority class and good pattern: Recall the general pattern in the previous section,

where Q-statistic and the overall accuracy are linked through p01 expressed by α and β

terms. For the minority class, each individual classifier has a low recognition rate. It

corresponds to large β and small α values in the general pattern. Moreover, very little

disagreement degree among the individuals suggests that the number of wasted correct

votes is small. Increasing p01 in this situation is prone to cause larger α’s and smaller β’s.

We hence argue that the ensemble tends to have a good pattern over the minority class,

where encouraging diversity can improve its classification accuracy.

(2) Majority class and bad pattern: The majority class contains sufficient data informa-

tion for learners. Consequently, every individual tends to make the same correct decision.

Referring to the general pattern, it means large α and small β values, plus a lot of wasted

correct votes from the ensemble. Increasing p01 in this situation is very likely to reduce

α’s and increase β’s. In this regard, the ensemble tends to behave in a bad pattern over

69



the majority class, where diversity deteriorates the accuracy.

It is worth noting that the accuracy here is in the context of a single class. The two

arguments reflect the fact of classifying an imbalanced data based on the understanding

of base classifiers. Different effects of diversity between classes are expected in imbalanced

scenarios. The empirical evidence of how diversity affects the performance in each type

of classes will be given in section 3.4.

3.3 Relationship Between Diversity and Single-Class

Measures

The relationship discussed earlier is concerned with overall accuracy of majority vote. We

extend it to single-class performance in this section. Three frequently used single-class

measures are included here as we have reviewed in section 2.1.3: recall, precision and

F-measure. We will show how they behave in two extreme patterns as Q-statistic varies.

Six possible situations are obtained through mathematical analysis. It should be noted

that subscripts “min” and “maj” appearing in this section just stand for two classes of

a data set in general without discriminating the class size, so the obtained results of the

impact of diversity on single-class performance are applicable to both classes here.

For any input xj, two probabilities can be approximated: p {(xj, yj) ∈ Zmin} = θ and

p {(xj, yj) ∈ Zmaj} = 1 − θ, where again θ is the proportion of Zmin in Z. They are

constant values for a given problem. We denote two additional probabilities as follows,

ptp = p {Oj,ens = 1 ∩ (xj, yj) ∈ Zmin} , (3.10)

pfp = p {Oj,ens = 0 ∩ (xj, yj) ∈ Zmaj} . (3.11)

Oj,ens is the oracle output of the ensemble following the definition in section 2.3.1. ptp

indicates the probability of any minority class example predicted correctly by the ensem-
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ble. pfp is the probability of any majority class example misclassified by the ensemble.

According to the definitions of recall and precision, they can be re-expressed by

Rmin =
ptp
θ
, (3.12)

Pmin =
ptp

ptp + pfp
. (3.13)

3.3.1 Recall, Precision and F-measure with Independence As-
sumption

We consider a simple case first. We assume whether an input zj is classified correctly by

the ensemble is independent of its real class label. Under the assumption, Eq. 3.10 and

Eq. 3.11 can be simplified into

ptp = θPovr, (3.14)

pfp = (1− θ) (1− Povr) . (3.15)

Substituting them into Eq. 3.12 and Eq. 3.13, we obtain

Rmin = Povr, (3.16)

Pmin =
θPovr

θPovr + (1− θ) (1− Povr)
. (3.17)

Eq. 3.16 and Eq. 3.17 only contain Povr and the constant θ. By substituting Povr by

the monotonic functions in the best and worst patterns, we obtain clear links of recall and

precision to Q-statistic. The recall measure has the same functional relation as Povr, which

is monotone decreasing with respect to Q in the best pattern and monotone increasing in

the worst pattern. As to precision in the best pattern,

Pmin =
−Q (Lθ) + Lθ

−Q (3lθ + θ − l) + (2lθ + 1)
. (3.18)

It is a monotone decreasing function with respect to Q, because its derivative is always
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negative. In other words, increasing diversity can improve both recall and precision in

the best pattern, and thus a better F-measure is obtained.

In the worst pattern,

Pmin =
Q (lθ) (l − 1) + θ (5l + 1)

Q (3lθ + θ − L) (l − 1) + (2l2 − 2l2θ + 10lθ − 5l + 4θ − 3)
. (3.19)

It is a monotone increasing function with respect to Q. Rmin and Pmin will increase

as Q increases in the worst pattern. Therefore, enforcing diversity leads to the reduction

of recall, precision and F-measure in this case.

In summary, Q-statistic has the same impact on the single-class measures in each pat-

tern under the independence assumption. Recall, precision and F-measure get improved

or reduced simultaneously depending on “good” or “bad” Q. For class imbalance prob-

lems, however, this assumption is hard to hold, since the minority class data are more

likely to be misclassified in general than the data belonging to the majority class. As the

data set gets less imbalanced, the dependence between the class label and misclassification

should get smaller. To certain extent, we can regard this part of discussions to be suitable

for balanced data sets.

3.3.2 Recall, Precision and F-measure without Independence
Assumption

Without the above assumption, it is not easy to get such neat and separate expressions for

those single-class measures. They are related to each other and can behave in different

ways. Multiple situations must be considered. The overall accuracy (Povr) is utilized

to associate Q-statistic with single-class measures here. Povr can be re-expressed by

every two single-class measures according to their definitions through some mathematical

transformations:

Povr =
TP + TN

|Z|
=
|Zmin| ·Rmin + |Zmaj| ·Rmaj

|Z|
. (3.20)

72



The single-class measures in Eq. 3.20 are from different classes. To express Povr with

measures from the same class, we use Eq. 3.12 divided by Eq. 3.13, and get

Rmin

Pmin
= Rmin +

1− θ
θ

(1−Rmaj) . (3.21)

Eq. 3.21 presents the relation among Rmin, Pmin and Rmaj. Eliminating Rmaj from

Eq. 3.20 and Eq. 3.21, we obtain

Povr = (1− θ) + θ

(
2− 1

Pmin

)
Rmin. (3.22)

Similarly,

Povr = 1 + 2θRmin

(
1− 1

Fmin

)
. (3.23)

Povr = (1− θ) + θ

(
2Pmin − 1
2Pmin
Fmin

− 1

)
. (3.24)

Povr is expressed by every two single-class measures from one class. It is monotone

increasing with respect to Rmin/Pmin/Fmin. The changing behaviours of the measures

are concluded in Table 3.2 based on the above functional relations, including six possible

situations in good and bad patterns in terms of overall accuracy. In situation (3), for

example, if the ensemble performs in a good pattern (i.e. decreasing Q leads to better

Povr) and Rmin decreases, then Pmin will increase due to Eq. 3.22 and Fmin will increase

due to Eq. 3.23. Any two single-class measures from the same class will not get worse

simultaneously in the good pattern according to the links. Analogously, any two single-

class measures from the same class will not increase simultaneously in the bad pattern.

Table 3.2 is also applicable to Rmaj/Pmaj/Fmaj. The mathematical functions of the three

single-class measures derived in section 3.3.1 fall into situations (1) and (6) as special

cases.

The table answers the question of the relationship between ensemble diversity and
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Table 3.2: The possible changing direction of Rmin, Pmin and Fmin as Q-statistic decreases
(i.e. increasing diversity) in “good” and “bad” patterns in terms of Povr.

Q ↓ Povr Rmin Pmin Fmin Situation
Overall good ↑ ↑ ↑ (1)

pattern ↑ ↓ ↑ (2)
↓ ↑ ↑ (3)

Overall bad ↑ ↓ ↓ (4)
pattern ↓ ↓ ↑ ↓ (5)

↓ ↓ (6)

single-class measures through theoretical links, but it is still unclear about which situation

would happen in class imbalance scenarios. The next questions are: how does diversity

affect the classification performance of the minority and majority classes in real imbalanced

scenarios? Which situation does the ensemble have over each class? According to our

arguments in section 3.2.3, the impact of diversity tends to be different between classes. It

is expected to be beneficial to the recognition of minority class examples, but may cause

a negative effect to the majority class. Hence, different situations are anticipated.

3.4 Diversity Analysis for Class Imbalance Learning

To verify the obtained results so far, we examine the relationship between diversity and

classification performance empirically in class imbalance scenarios in this section. Arti-

ficial and highly imbalanced real-world benchmark data sets are included in the experi-

ments.

3.4.1 Impact of Diversity on Classification Performance on Ar-
tificial Imbalanced Data

To clearly observe the impact of diversity on balanced and imbalanced data sets and

investigate how the performance measures behave as diversity varies, we build ensembles

on three two-dimensional artificial data sets. We proceed with correlation analysis to
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show the relationship between Q-statistic and other performance measures, and present

corresponding decision boundary plots to explain the obtained results. The correlations

are further confirmed by discussing another non-pairwise diversity measure – generalized

diversity (GD). Then, we examine if the findings are also applicable to imbalanced data

with a larger training size and a larger feature space.

Experimental Setup

Artificial data is generated from two Gaussian distributions with equal covariance and a

small overlapping area close to the separating line. Three different data sizes are con-

sidered: one class always contains 200 training points, while the size of the other class

is set to 10 (very imbalanced), 50 (imbalanced) and 200 (balanced) respectively. They

are denoted by “200-10”, “200-50” and “200-200”. By applying the same method, a

corresponding testing file is created with 50 points in each class.

As we know, Bagging (Breiman, 1996) achieves diversity through resampling, where

each training subset is kept different from each other. In our experiments, we apply the

Bagging training strategy and manipulate diversity by tuning the sampling rate r%. A

smaller r means that fewer points join the training. Each training subset is less likely to be

similar to each other. Thus, the prediction becomes less stable and a larger diversity degree

is expected (Skurichina et al., 2002). Different from the conventional Bagging, a different

sampling rate is applied to each class of the imbalanced data set in our experiments.

Concretely, the majority class is randomly sampled with replacement at rate r%; the

minority class is randomly sampled with replacement at rate r (1− θ) /θ%, where θ is

the imbalance rate as defined before. By doing so, every training subset has a balanced

class distribution. This is to avoid the situation that the minority class is ignored by

the classifier, and thus affecting our experimental analysis with misleading results. Some

preliminary experiments showed that the recall of the minority class always remains 0

without rebalancing applied when the training data is highly skewed, which means that

no minority example is recognized. The training strategy is described in Table 3.3. A
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simple majority vote gives the final decision.

Table 3.3: Bagging-based training strategy (Wang and Yao, 2009b).

Training:
1. Given the training set Z with imbalance rate θ;

resampling rate at r%; number of classifiers L.
Zmin is the minority class subset of Z.
Zmaj is the majority class subset of Z.

2. Construct subset Zk by executing the following:
2a. Bootstrap Zmaj at rate r%

and add chosen examples into Zk;
2b. Bootstrap Zmin at rate r (1− θ) /θ%

and add chosen examples into Zk.
3. Train a classifier using Zk.
4. Repeat steps 2 and 3 until k equals L.

Testing on a new example: (majority voting)
1. Collect decisions from each classifier.
2. Return the class label that receives the most votes.

The training method is run 50 times for each setting of sampling rate, and the av-

erages are computed. The sampling rate r% is varied in the range of [3%, 1000%]. Ev-

ery ensemble consists of 15 classifiers. C4.5 decision trees are used as the base learner.

For the correlation analysis, we output 10 measures, including overall Q-statistic (Q),

minority-class Q-statistic (Qmin), majority-class Q-statistic (Qmaj), minority-class recall

(Rmin), minority-class precision (Pmin), minority-class F-measure (Fmin), majority-class

recall (Rmaj), majority-class precision (Pmaj), majority-class F-measure (Fmaj) and over-

all accuracy (Povr). Qmin and Qmaj assess the diversity degree of an ensemble only within

the minority and majority data subsets respectively.

Correlation Analysis of Q-statistic

We conduct correlation analysis to study the relationship between diversity and single-

class performance. We compute Spearman’s rank correlation coefficient between overall

diversity Q and the other nine measures. It is a non-parametric measure of statistical
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dependence between two variables, and insensitive to how the measures are scaled. It

ranges in [−1, 1], where 1 (or -1) indicates a perfect monotone increasing (or decreasing)

relationship. Table 3.4 summarizes the correlation coefficients in two sampling ranges. A

significance correlation is indicated in boldface at confidence level of 95%.

Table 3.4: Rank correlation coefficient (in %) between overall diversity Q and 9 measures
on 3 artificial data sets. Numbers in boldface indicate significant correlations.

r ∈ [3, 100] Qmin Qmaj Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr
200-200 93 52 27 -54 -9 -50 26 -22 -16
200-50 97 98 -98 54 -98 58 -98 -98 -98
200-10 6 98 -38 33 -36 33 -36 -36 -36

r ∈ [100, 1000] Qmin Qmaj Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr
200-200 98 89 -79 -89 -98 -81 -88 -98 -96
200-50 100 93 -81 58 -81 58 -81 -81 -81
200-10 99 27 -81 77 -61 77 -55 -55 -61

First, between Q and Qmin/Qmaj, we observe that all coefficients from the three data

sets are positive, which shows that ensemble diversity for each class has the same changing

tendency as the overall diversity, regardless of whether the data set is balanced. On one

hand, it guarantees that increasing the classification diversity over the whole data set

can increase diversity over each class. On the other hand, it confirms that the diversity

measure Q-statistic seems not to be sensitive to imbalanced distributions.

For the balanced data set “200-200”, the overall accuracy and most single-class mea-

sures do not present clear correlations with Q when r ∈ [3, 100]. In this range, increasing

diversity does not necessarily lead to better performance, due to the mutual effect of in-

dividual accuracy and diversity. When r varies in [100, 1000] with a low diversity range,

all 7 performance measures have strong negative correlations with Q. It suggests that

diversity is beneficial to both classes and the overall accuracy. This observation agrees

with the mathematical relations under the independence assumption in section 3.3.1. It

corresponds to the situation 1 in Table 3.2. Generally speaking, when ensemble diversity

is small, increasing diversity improves the classification performance of both classes in the

balanced case.
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Imbalanced data sets “200-50” and “200-10” present similar impacts of diversity on

each performance measure and more significant correlations than the balanced data set.

Overall accuracy Povr gets higher in both ranges of r as the ensemble becomes more diverse.

Single-class measures behave differently between classes. With respect to the minority

class, Rmin and Fmin have significant negative correlations with Q; Pmin has a significant

positive correlation with Q. It implies that increasing diversity can find more minority

class examples (i.e. better recall) but lose some classification precision, due to the trade-off

between recall and precision. Better F-measure indicates that the improvement of recall

is greater than the reduction of precision. The observation corresponds to the situation 2

in Table 3.2. As to the majority class, Rmaj has a significant positive correlation with Q;

Pmaj and Fmaj have significant negative correlations with Q. It means that the majority-

class recall gets smaller along with the increase of diversity, but precision and F-measure

are improved. The measure behaviours of the majority class correspond to the situation 3

in Table 3.2. It implies the performance trade-off between minority and majority classes.

Table 3.5 summarizes the measure tendencies for both balanced and imbalanced cases

along with the decrease of Q (i.e. the increase of ensemble diversity) and their corre-

sponding situations in Table 3.2.

Table 3.5: Changing directions of single-class measures and overall accuracy by increasing
diversity on artificial data sets and their corresponding situations in Table 3.2.

Class Povr R P F Situation
Single-class ↑ ↑ ↑ ↑ (1)
(200-200) (good pattern)
Minority ↑ ↓ ↑ (2)

(200-50,200-10) ↑
Majority (good pattern) ↓ ↑ ↑ (3)

(200-50,200-10)

Considering the learning objective in class imbalance learning and the importance of

the minority class, we conclude that diversity has a positive effect in classifying these

imbalanced data sets. The performance of both classes is better balanced between recall
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and precision with more minority class examples identified. Moreover, the different be-

haviours of recall between the minority and majority classes agree with the two arguments

in section 3.2.3.

Decision Boundary Analysis

To show the radical effects of diversity visually, we produce classification boundary plots

for data sets “200-200” and “200-10” at three specific sampling rates in Fig. 3.2: r = 1000

with a low diversity degree, r = 100 with a moderate diversity degree, and r = 20 with a

high diversity degree.
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Figure 3.2: Classification boundary plots produced by Bagging-based tree ensembles at
sampling rates 1000%, 100%, and 20% on data sets “200-200” (balanced) and “200-10”
(very imbalanced).

For the balanced case in Fig. 3.2(a), we can see that the main effect of diversity is

to make the ensemble less overfit the training data close to boundaries. Hence, diversity

improves the performance of both classes. For the imbalanced case in Fig. 3.2(b), in

addition to a less overfitting boundary, diversity expands it towards the majority class
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side. A broader boundary is obtained for the minority class. It explains why more

minority class examples are identified with majority-class recall sacrificed to some extent.

Table 3.6 presents the raw outputs of Q-statistic and the other performance measures for

the above cases, to give a clear idea of how they change at different sampling rates.

Table 3.6: Means of Q-statistic and the other performance measures on data sets “200-
200” and “200-10” at sampling rates 1000%, 100% and 20%.

200-200 Q Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr
1000% 0.982 0.877 0.958 0.916 0.961 0.887 0.922 0.919
100% 0.922 0.908 0.975 0.941 0.977 0.914 0.945 0.943
20% 0.819 0.903 0.985 0.943 0.985 0.907 0.944 0.943

200-10 Q Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr
1000% 0.977 0.571 1.000 0.725 1.000 0.701 0.824 0.785
100% 0.974 0.659 1.000 0.794 1.000 0.746 0.855 0.830
20% 0.960 0.836 1.000 0.911 1.000 0.860 0.924 0.918

Correlation Analysis of Non-Pairwise Diversity Measure

To confirm our results of the impact of diversity measured by Q-statistic, we carry out

the same correlation analysis based on a popular non-pairwise diversity measure – gener-

alized diversity (GD), which has been defined in chapter 2. It assumes that the maximum

diversity occurs when misclassification of one classifier is accompanied by correct predic-

tion from the other classifier, and minimum diversity occurs when one’s misclassification

is always accompanied by failure of the other. Unlike Q-statistic where a small value

implies a more diverse ensemble, higher GD indicates greater diversity. Spearman’s rank

correlation coefficients between GD and the other performance measures are computed.

The results are shown in Table 3.7.

Similar observations are obtained compared to Table 3.4: 1) for the balanced data

set, not all correlations with GD are significant when r ranges in [3, 100]. In the higher

sampling range of [100, 1000], all 7 performance measures are positively correlated with

GD, which shows the positive role of diversity in both classes. 2) for the two imbalanced
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Table 3.7: Rank correlation coefficient (in %) between GD and the other performance
measures on artificial data sets “200-200”, “200-50” and “200-10”. Numbers in boldface
indicate significant correlations.

r ∈ [3, 100] Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr
200-200 -17 51 27 47 -9 35 31
200-50 99 -40 99 -48 99 99 99
200-10 72 6 72 6 72 72 72

r ∈ [100, 1000] Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr
200-200 67 94 98 93 73 98 98
200-50 96 -68 99 -70 96 96 96
200-10 40 -50 40 -50 39 39 39

data sets, increasing diversity improves Rmin, Fmin, Pmaj, Fmaj and Povr accompanied by

some reduction of Pmin and Rmaj. It shows that diversity is beneficial to the performance

of both classes in terms of F-measure and more minority class examples are identified.

Larger Training Data and Larger Feature Space

We have investigated the impact of ensemble diversity on single-class performance mea-

sures in depth on three small artificial data sets. To obtain a complete understanding, we

consider imbalanced training data with a larger size and a larger feature space here. Two

more training data sets are generated and discussed: “2000-100” data set with 2 dimen-

sions, where the majority class contains 2000 examples and the minority class contains

100; “200-10” data set with 20 dimensions, where the majority class contains 200 exam-

ples and the minority class contains 10. Each dimension follows a Gaussian distribution.

The correlation coefficients of the single-class measures and overall accuracy with both

Q-statistic and GD are calculated and shown in Tables 3.8 - 3.9.

For data set “2000-100”, the results in Table 3.8 show that increasing diversity reduces

Rmin, Fmin, Pmaj, Fmaj and Povr when r ∈ [3, 100], which is opposite to the observation in

the earlier case of the small training set “200-10” with 2 dimensions. When r ∈ [100, 1000],

diversity presents a positive impact on them, which also happens to the small training set.

It suggests that diversity may not always benefit the minority class if the training data
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Table 3.8: Rank correlation coefficient (in %) between Q/GD and the other performance
measures on data set “2000-100” with 2 dimensions. Numbers in boldface indicate signif-
icant correlations.

Q Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr
r ∈ [3, 100] 74 -48 74 -48 74 75 75

r ∈ [100, 1000] -23 42 -22 42 -22 -22 -22
GD Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr

r ∈ [3, 100] -89 68 -89 68 -89 -88 -88
r ∈ [100, 1000] 87 67 87 67 87 87 87

is large enough. Making full use of available training data seems to be more important

when the ensemble keeps certain degree of diversity. Diversity plays a better role when

the ensemble has a relatively low diversity degree.

Table 3.9: Rank correlation coefficient (in %) between Q/GD and the other performance
measures on data set “200-10” with 20 dimensions. Numbers in boldface indicate signifi-
cant correlations.

Q Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr
r ∈ [3, 100] -82 79 -2 79 -68 16 8

r ∈ [100, 1000] -78 -77 -78 -77 -77 -77 -78
GD Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr

r ∈ [3, 100] 83 -76 4 -77 70 -13 -5
r ∈ [100, 1000] 85 84 84 84 84 84 85

For data set “200-10” with 20 dimensions, the imbalanced data are more sparsely

distributed in the larger feature space and overfitting is more likely to happen than the

data set “200-10” with only 2 dimensions. As shown in Table 3.9, diversity appears to

be useful for the high-dimensional imbalanced case. Increasing diversity improves Rmin

in both ranges of r, so more minority class examples are identified. Diversity is beneficial

to precision and F-measure of both minority and majority classes in the higher range

of r. When r varies in the smaller range, Pmin is decreased by increasing diversity, and

F-measure and overall accuracy do not present significant correlations.
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3.4.2 Impact of Diversity on Classification Performance on Real-
World Imbalanced Data

So far, we have shown the positive impact of diversity on single-class performance in

depth through artificial data sets. Now we ask whether the results are applicable to real-

world domains. In this section, we report the results for the same research question on

fifteen highly imbalanced real-world benchmarks. The data information is summarized

in Table 3.10. Particularly, the first ten data sets come from the PROMISE data reposi-

tory (Boetticher et al., 2007), which are collected from real software engineering projects.

The task of this group of data is to predict defects existing in programming codes. There

are two classes in each data set, defect and non-defect. They are highly imbalanced in

nature, because defect examples are much less likely to occur than non-defect ones. The

“insurance” data set comes from CoIL data mining competition (Putten and Someren,

2004). The goal is to predict who would be interested in buying a specific insurance prod-

uct. The last four data sets are chosen from the UCI repository (Frank and Asuncion,

2010) that are frequently discussed in the class imbalance learning literature. It is worth

mentioning that the UCI data sets originally have more than two classes. We adapt them

into two-class data problems by selecting a small class as the minority and merging the

others as the majority.

The same Bagging-based training strategy is applied as in the previous subsection

(Table 3.3). The relationship is studied through correlation analysis using Spearman’s

rank correlation coefficient. The sampling rate r% is varied in [3%, 100%] with interval 2.

At each sampling rate, 15 decision trees are built to form an ensemble. “Insurance” has

a separate testing file, and each setting is repeated 30 times. A 5-fold cross validation is

applied to the other data sets with 10 runs.

Single-Class Performance

Table 3.11 shows the correlations between diversity measured by Q and GD and the other

performance measures for each data set, including three single-class measures R/P/F of
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Table 3.10: Summary of real-world data sets.

Data Size Attributes Imbalance Rate
mc2 161 39 32.29%
mw1 403 37 7.69%
kc3 458 39 9.38%
cm1 498 21 9.83%
kc2 522 21 20.49%
pc1 1109 21 6.94%
pc4 1458 37 12.20%
pc3 1563 37 10.23%
kc1 2109 21 15.45%
pc2 5589 36 0.41%

insurance 5822 85 5.98%
glass 214 9 7.94%
ecoli 336 7 10.42%

balance 625 4 7.84%
car 1728 6 3.99%

both classes and overall accuracy Povr. Strong correlations are found.

Different from the artificial cases, diversity harms the overall accuracy according to its

significant positive correlation with Q in 14 data sets and negative correlation with GD

in 13 data sets. Larger diversity causes worse Povr. Referring it to the pattern analysis in

section 3.2, an ensemble tends to perform in a good pattern in artificial scenarios, whereas

it’s more likely to behave in a bad pattern in real-world imbalanced domains. The reason

could be the more complex data distributions and noisy examples in practical tasks.

More importantly, single-class performance should be the focus. For the minority

class, recall has a very strong negative correlation with Q in all cases and a strong positive

correlation with GD in 14 cases; precision has a very strong positive correlation with Q

in 12 cases and a strong negative correlation with GD in 11 cases; the coefficients of

F-measure do not show a consistent relationship. The observation suggests that more

minority-class examples are identified with some loss of precision by increasing diversity.

When the improvement of recall is larger than the drop of precision, F-measure gets

better. Otherwise, it gets worse. Both directions could happen to Fmin. Their behaviours
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Table 3.11: Rank correlation coefficient (in %) between diversity measured by Q/GD and
the other performance measures on real-world imbalanced data sets. Numbers in boldface
indicate significant correlations.

Q Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr
mc2 -86 70 -11 89 -40 84 76
mw1 -96 86 31 98 -94 97 96
kc3 -98 96 31 99 -96 99 99
cm1 -98 59 -89 99 -97 98 98
kc2 -98 -4 -92 94 -97 59 10
pc1 -99 96 47 99 -98 98 98
pc4 -97 94 8 96 -97 93 93
pc3 -99 97 -22 99 -98 99 99
kc1 -99 97 -7 99 -99 99 98
pc2 -62 -12 -34 83 -62 82 82

insurance -100 97 -72 100 -99 100 100
glass -88 83 43 95 -84 93 93
ecoli -77 77 48 80 -77 80 79

balance -77 -77 -77 90 31 90 90
car -84 81 66 83 -84 75 74

GD Rmin Pmin Fmin Rmaj Pmaj Fmaj Povr
mc2 78 -56 4 -81 38 -68 -53
mw1 95 -83 23 -92 95 -92 -91
kc3 80 -73 46 -82 79 -81 -80
cm1 15 1 31 -15 16 -15 -15
kc2 90 51 92 -83 90 -19 45
pc1 96 -80 24 -92 95 -88 -87
pc4 78 -57 80 -72 78 -56 -51
pc3 83 -82 74 -89 83 -88 -87
kc1 96 -89 81 -95 96 -93 -92
pc2 33 12 19 -86 29 -86 -86

insurance 97 -95 96 -97 97 -97 -97
glass 91 -88 -53 -92 86 -92 -91
ecoli 84 -66 6 -74 83 -68 -65

balance 75 75 75 -88 -67 -88 -88
car 86 -81 -74 -83 86 -81 -81
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correspond to the situation 4 in Table 3.2, except that Fmin does not consistently follow

the mathematical link in practice. For the majority class, recall and F-measure have very

strong positive correlations with Q and negative correlations with GD; precision has a

very strong negative correlation with Q and a positive correlation with GD. It indicates

that although diversity helps to predict majority class examples more accurately, recall is

sacrificed more than the improvement of precision. The result corresponds to the situation

5 in Table 3.2.

Generally speaking, diversity is helpful for recognizing minority class examples in real-

world scenarios. A better balance between recall and precision of the minority class is

achieved in partial cases. Diversity degrades the classification performance of the majority

class in terms of recall and F-measure. The behaviours of recall of two classes tally with

the arguments in section 3.2.3. Table 3.12 summarizes the measure behaviours along

with the increase of ensemble diversity and the corresponding situations of each class in

Table 3.2.

Table 3.12: Changing directions of single-class measures and overall accuracy by increasing
diversity on 15 real-world data sets and their corresponding situations in Table 3.2. ‘-’
indicates an unclear changing behaviour obtained.

Class Povr R P F Situation
Minority ↓ ↑ ↓ - (4)
Majority (bad pattern) ↓ ↑ ↓ (5)

Overall Performance

We have analyzed the correlations of overall accuracy and single-class performance mea-

sures with respect to diversity. Why do we need to discuss overall performance here? As

we have explained in previous chapters, accuracy is not a good overall performance mea-

sure for class imbalance problems, which is strongly biased to favor the majority class.

Although the single-class measures reflect better the performance information for one

class, it is still necessary to evaluate how well a classifier can balance the performance
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between classes.

Class imbalance learning uses better indicators to show the performance trade-off

between classes. As overall performance measures, G-mean (Kubat et al., 1997; Kubat

and Matwin, 1997) and AUC (Swets, 1988; Bradley, 1997) are most widely used and

insensitive to class distributions (He and Garcia, 2009). G-mean is the geometric mean

of recalls of the minority and majority classes, which is defined as
√
Rmin ·Rmaj. It shows

that to what extent accuracy on the majority class drops with the error reduction on the

minority class. AUC is the area under the ROC curve, a two-dimensional graph between

TP rate and FP rate. The best algorithm should produce the dominant curve, which also

has the largest AUC. It has been proved that AUC is statistically consistent and more

discriminating than accuracy (Ling et al., 2003).

Table 3.13: Rank correlation coefficient (in %) between diversity measured by Q/GD and
overall performance measures including G-mean and AUC on real imbalanced data sets.
Numbers in boldface indicate significant correlations.

data Q-statistic GD
G-mean AUC G-mean AUC

mc2 5 60 -3 -36
mw1 -94 -61 91 90
kc3 -97 -76 80 91
cm1 -96 -68 16 44
kc2 -95 -96 90 91
pc1 -97 -70 95 94
pc4 -92 -57 79 79
pc3 -98 -75 84 77
kc1 -97 -81 96 87
pc2 -61 -90 33 89

insurance -100 -98 97 97
glass -71 -5 86 40
ecoli -62 -56 83 80

balance -77 -32 75 4
car -43 14 65 -5

Table 3.13 reports the correlations of G-mean and AUC with respect to Q-statistic and

GD. Even though Table 3.11 shows reduced overall accuracy as diversity increases, both
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G-mean and AUC present strong negative correlations with Q and positive correlations

with GD in most cases. It means that increasing diversity leads to better G-mean and

AUC. Therefore, we can say that diversity is beneficial to the overall performance, which

better balances the performance between classes. The results answer the question of the

relationship between ensemble diversity and overall performance in the class imbalance

learning context, where a positive effect of diversity is found.

Additional Remarks

Comparing Table 3.5 and Table 3.12, we notice some differences of diversity’s impact

between artificial and real-world data sets. In practice, the positive effect of diversity

seems to get weaker on overall accuracy and F-measure. More complex data distributions

and feature correlations could be the reasons. As diversity helps to find more minority

class examples, the majority class could suffer from great accuracy reduction.

Regarding the question of whether diversity is beneficial to the classification of the

minority/majority classes in the presence of imbalanced data, the answer depends on

the performance measures. Diversity improves minority-class recall on all artificial and

real-world data sets, and minority-class F-measure on all artificial data sets and some real-

world data sets. Diversity is generally harmful to minority-class precision. An opposite

effect of diversity happens to the majority class.

The findings in this section are quite meaningful. Even if several authors found very

little empirical relationship between overall accuracy and diversity of classification en-

sembles (Kuncheva and Whitaker, 2003; Garcia-Pedrajas et al., 2005), we obtain strong

correlations of single-class performance, G-mean and AUC with respect to two diver-

sity measures. It may suggest that different types of classification problems should be

considered for better understanding and exploiting the role of ensemble diversity in the

future.
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3.5 Chapter Summary

This chapter studies the relationships between ensemble diversity and performance mea-

sures for class imbalance learning in depth, aiming at the following questions: what is

the impact of diversity on the classification performance? Does diversity have a posi-

tive effect on the classification of minority/majority class? We choose Q-statistic as the

main diversity measure and consider three single-class performance measures including

recall, precision and F-measure. The relationship to overall performance is also discussed

empirically by examining G-mean and AUC for a complete understanding.

To answer the first question, we derive mathematical links between Q-statistic and

the single-class measures. This part of work is based on Kuncheva et al.’s pattern anal-

ysis (Kuncheva et al., 2003). We extend it to the single-class context under specific

classification patterns of ensembles and explain why we expect diversity to have different

impacts on minority and majority classes in class imbalance scenarios. Six possible be-

having situations of these measures with respective to Q-statistic are obtained. As the

second contribution of this chapter, we verify the measure behaviours empirically on a set

of artificial and real-world imbalanced data sets. We examine the impact of diversity on

each type of classes through correlation analysis. Strong correlations between diversity

and classification performance are found, in which diversity is measured by Q-statistic and

GD. We show the positive effect of diversity in recognizing minority class examples and

balancing the trade-off between recall and precision of the minority class. It degrades the

classification performance of the majority class in terms of recall and F-measure on real-

world data sets. Diversity is beneficial to the overall performance evaluated by G-mean

and AUC.

Significant and consistent correlations and the positive effect of diversity found in this

chapter encourage us to develop novel ensemble learning algorithms for class imbalance

learning in the following chapters that can make best use of our diversity analysis here,

so that the importance of the minority class can be better considered.
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CHAPTER 4

NEGATIVE CORRELATION LEARNING FOR
CLASSIFICATION ENSEMBLES

This chapter proposes a new ensemble algorithm, named “AdaBoost.NC”, by combining

ideas of negative correlation learning (NCL) (Liu and Yao, 1999b,a; Liu et al., 2000)

and Boosting (Freund and Schapire, 1997). It aims at an effective, flexible and efficient

NCL algorithm for classification problems. Existing NCL algorithms perform well in

generalization by considering diversity explicitly during the training process, but suffer

from some known drawbacks as we explained in section 2.4. To address their issues

and extend to classification, two questions need to be answered in the algorithm design:

how to express diversity and how to introduce diversity into training in the classification

context. Section 4.2 derives an ambiguity measure based on the 0-1 error function for

the first question. Section 4.3 proposes the AdaBoost.NC algorithm incorporating the

ambiguity measure, which answers the second question. Experimental evaluation of its

generalization performance and parameter setting is included. Section 4.4 provides more

theoretical and empirical evidences to show its effectiveness. Section 4.5 summarizes the

chapter. This chapter focuses on general classification problems.
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4.1 Introduction

Since diversity was recognized as a main reason for the success of an ensemble algorithm,

a number of researchers are encouraged to develop negative correlation learning (NCL)

algorithms and work on related theoretical studies. Aiming at better generalization, NCL

is an ensemble learning technique that takes into account ensemble diversity explicitly

during training (Liu and Yao, 1999a), so as to achieve a better balance between indi-

vidual performance and error correlation among the ensemble members. A typical NCL

algorithm introduces a penalty term containing error correlation information into the er-

ror function of each individual learner, which is usually a neural network, so that they

can be trained interactively.

However, the theoretical support of NCL is only valid in the regression context. There

is no single theoretical framework or agreed definition of diversity for classification (Brown,

2010). It is still a challenging problem of considering diversity in the training of classifi-

cation ensembles. Besides, existing NCL algorithms, such as CELS (Liu and Yao, 1999b),

NCCD (Chan and Kasabov, 2005a) and RNCL (Chen and Yao, 2009), require base learn-

ers that are capable of producing posterior probabilities. So far, only neural networks

have been applied in the literature as we have shown in section 2.4. Its computational

cost can be high for large data sets and large ensembles. A more flexible and efficient

NCL algorithm is desirable.

To overcome the above problems and obtain a flexible and efficient NCL algorithm

for classification tasks with good generalization ability maintained, this chapter proposes

an ensemble algorithm, called AdaBoost.NC, which incorporates an ambiguity term with

the diversity information of the classification ensemble into the training framework of Ad-

aBoost (Freund and Schapire, 1996). Different from the one derived from the quadratic er-

ror of regression ensembles and used in other NCL algorithms (Krogh and Vedelsby, 1995),

the ambiguity term in AdaBoost.NC is decomposed from the 0-1 error function (Chen,

2008). The effectiveness and efficiency of AdaBoost.NC are analyzed thoroughly on some

general classification data sets in this chapter, including the parameter setting issue. Its
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generalization is further studied in terms of error correlation by providing theoretical and

empirical evidences. If and how it can benefit class imbalance problems will be discussed

in the following chapters.

4.2 An Ambiguity Measure for Classification Ensem-

bles

In the standard NCL training paradigm that incorporates a penalty term to encourage

diversity in the procedure of minimizing the quadratic error function (Liu and Yao, 1999b),

this penalty is derived from the ambiguity decomposition for regression ensembles (Krogh

and Vedelsby, 1995):

(
f̄ − y

)2
=
∑
i

αi (fi − y)2 −
∑
i

αi
(
fi − f̄

)2
, (4.1)

where y is the target of a data input, αi is the weight of the i-th learner fi with the

constraint
∑

i αi = 1, and f̄ is the linear combination of individuals f̄ =
∑

i αifi. The

quadratic error of the ensemble is composed of two terms. The first term is the weighted

average of individual errors. The second term is the ambiguity, expressing the prediction

variability within the ensemble. In other words, ambiguity can be viewed as the difference

between average individual error and ensemble error, i.e. ambiguity = average individual

error - ensemble error. With this understanding, the idea was applied to the 0-1 error

function for binary classification problems in (Chen, 2008). We extend it to general cases

here based on the oracle output.

Given a data set Z = {(x1, y1) , (x2, y2) , . . . , (xN , yN)} with c possible class labels

Y = {ω1, ω2, . . . , ωc}, we assume that fi (xj) is the actual output of the i-th classifier for

any data input xj. We define the output of the ensemble with L components as

f̄ (xj) = arg max
ŷ∈Y

L∑
i=1

αi [fi (xj) = ŷ] , (4.2)
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where
∑L

i=1 αi = 1. [π] is equal to 1 if π holds and 0 otherwise. Without loss of

generality, we assume that
∑L

i=1 αi [fi (xj) = yj] ≥
∑L

i=1 αi [fi (xj) 6= yj] is a necessary

condition for the ensemble to produce a correct label. When the context is clear, ‘xj’ will

be omitted in the following equations for brevity of notation. Based on the definition of

the 0-1 loss function, the error of a classifier f can be formulated as

error (f) = 1− [f = y] , (4.3)

where f = fi, f̄ (i = 1, 2, . . . , L) and y is the expected output. The difference between

the average individual error and ensemble error is

L∑
i=1

αierror (fi)− error
(
f̄
)

=
L∑
i=1

αi
([
f̄ = y

]
− [fi = y]

)
. (4.4)

The obtained term on the right-hand side of Eq. 4.4 is defined as the ambiguity for

the 0-1 error function and denoted by amb in the following discussions. It measures the

disagreement degree among individual classifiers in terms of correct and incorrect votes.

Two ambiguity terms in Eq. 4.1 and Eq. 4.4 present a similar effect on generalization

performance – a large classification ambiguity with individual performance maintained

ensures a low ensemble error. The difference between them is that, the ambiguity in

Eq. 4.4 can be negative, depending on whether the combined output of the ensemble is

correct. If f̄ is correct, amb will be positive, varying in range [0, 1/2]; otherwise, it will

be negative, varying in range [−1/2, 0]. If all classifiers produce correct or incorrect votes

(no disagreement), amb will be 0.

Ambiguity and Margin

Schapire et al. (Schapire et al., 1998) introduced the concept of margin associated with

examples for the combined classifier. It is defined as the difference between the sum of

the weights of individual classifiers assigned to the correct label and the maximum sum

of the weights assigned to any single incorrect label. If we define a ψ function as
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ψ (f) =


1, if f = y

−1, if f 6= y

(4.5)

then for a binary classification task, the margin of the ensemble on example x can be

expressed as

m (x) =
L∑
i=1

αiψ (fi (x)) . (4.6)

It is a number in range [−1, 1]. An example is correctly labelled if and only if its

margin is positive. It measures the “confidence” of the classifications. Schapire et al.

proved that a larger margin on the training data set guarantees an improvement in the

upper bound on the generalization error of the ensemble. Both Bagging and Boosting

methods have been shown to increase the margins and converge to a margin distribution

in which most examples have large margins (Schapire et al., 1998). Especially, Boosting

is aggressive in this effect.

Following the definition of ψ, the amb term can be reformulated as

amb =
1

2

L∑
i=1

αi
(
ψ
(
f̄
)
− ψ (fi)

)
, (4.7)

which is equivalent to Eq. 4.4. The equation ψ
(
f̄
)

= sign (m) holds, indicating if the

ensemble produces the correct label. Therefore, we obtain the relationship between the

margin and ambiguity:

amb =
1

2
(sign (m)−m) . (4.8)

It is not hard to understand this equation. The margin expresses the classification

confidence, while the ambiguity measures how ambiguous the classification is. When

sign (m) is unchanged, the more confidence, the less ambiguity.
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Ambiguity and Entropy

We find a connection between amb and the diversity measure of entropy (Ent) (Cunning-

ham and Carney, 2000) introduced in section 2.3.1, when the individual classifiers are

uniformly weighted. Let l (x) be the number of correct votes from the individuals on any

input x (i.e.
∑L

i=1 [fi = y]). The entropy on x is

Ent =
min {l, L− l}
L− dL/2e

. (4.9)

According to Eq. 4.9 and Eq. 4.4,

amb =
L ·
[
f̄ = y

]
− l

L
=


Ent(L−dL/2e)

L
if f̄ is correct

−Ent(L−dL/2e)
L

if f̄ is wrong

(4.10)

In other words,

|amb| = Ent (L− dL/2e)
L

. (4.11)

|amb| and Ent are discriminated by a constant. The magnitude of amb expresses the

absolute difference among the ensemble members. Again, its sign indicates whether an

example is correctly classified by the ensemble.

4.3 A New NCL Algorithm – AdaBoost.NC

To overcome the problems of poor flexibility and high computational cost of exiting NCL

algorithms, a new ensemble learning algorithm, AdaBoost.NC, is proposed by exploiting

the training framework of AdaBoost (Freund and Schapire, 1996). It is regarded as a

NCL algorithm for the reason that the amb term is introduced into training to encourage

ensemble diversity, which is the essential idea of NCL. In this section, we first describe

the algorithm in detail, including the explanations of the effect of amb in the algorithm

and why it is expected to be effective and efficient. Then, its performance is investi-
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gated through extensive experiments on some general benchmark classification problems.

Finally, we discuss how the accuracy of AdaBoost.NC gets affected by its parameters.

4.3.1 The AdaBoost.NC Algorithm

The key point of AdaBoost.NC is to emphasize the training examples that cause the en-

semble to present low voting disagreement among the individual classifiers during learning,

in addition to the examples misclassified by the current classifier. This is accomplished by

applying a penalty term involving amb in the sequential training procedure of AdaBoost.

The classification difference measured by amb for each training example is combined into

its weight at each iteration. The weight-updating rule of AdaBoost is modified, such that

both classification errors and low diversity will be penalized by rising weights. Table 4.1

presents the pseudo-code of AdaBoost.NC following the AdaBoost.M1 procedure (Freund

and Schapire, 1996).

In step 3 of the algorithm, a penalty term pi is calculated for each training example

at the i-th iteration, in which the magnitude of ambi assesses the “pure” disagreement

degree within current ensemble f̄i composed of the existing i classifiers. Uniform weights

(1
i
) are simply assigned to the individuals for the calculation, i.e.

ambi =
1

i

i∑
t=1

([
f̄i = y

]
− [ft = y]

)
. (4.12)

pi is introduced into the weight-updating step (step 5). The main effect of applying

pi is that, the misclassified examples by the current classifier that receive more same

votes from existing individual classifiers will get a larger weight increase; the correctly

classified examples that get more different votes will get a larger weight decrease. Thus,

both accuracy and diversity are considered during training.

The pre-defined parameter λ controls the strength of applying pi. The choice of αi

in step 4 is decided by using the same inferring method in (Schapire and Singer, 1999;

Sun et al., 2007) to bound the overall training error. From the form of αi, we can see
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Table 4.1: The AdaBoost.NC algorithm (Wang et al., 2010).

Given training data set {(x1, y1) , . . . , (xj, yj) , . . . , (xN , yN)}
with labels yj ∈ Y = {ω1, . . . , ωc} and penalty strength λ,
initialize data weights D1 (xj) = 1/N ; penalty term p1 (xj) = 1.

For each training epoch i = 1, 2, . . . , L:
Step 1. Train weak classifier fi using distribution Di.
Step 2. Get weak classifier fi: X → Y .
Step 3. Calculate the penalty value for every example xj:

pi (xj) = 1− |ambi (xj)|.
Step 4. Calculate fi’s weight αi according to error and penalty:

αi = 1
2

log

(P
j,yj=fi(xj)

Di(xj)(pi(xj))
λ

P
j,yj 6=fi(xj)

Di(xj)(pi(xj))
λ

)
Step 5. Update data weights Di and obtain new weights Di+1

according to error and penalty:

Di+1 (xj) =
(pi(xj))

λDi(xj)exp(−αi[fi(xj)=yj ])
Zi

,

where Zi is a normalization factor.

Output the final ensemble:

f̄ (x) = arg max
ŷ∈Y

∑L
i=1 αi [fi (x) = ŷ] .

(Define [π] to be 1 if π holds and 0 otherwise.)

that the classifier having fewer misclassified examples, which receive larger classification

ambiguity from the current ensemble members, will obtain a higher weight. It agrees

with the common understanding about diversity in classification that we would not want

ensemble members to make the same wrong decision. The details of how to choose αi are

given in the Appendix. B section.

Here are some additional points to explain the choice of the penalty term. Why do

we use |amb| to encourage diversity instead of using amb? As we have explained above,

the sign of amb indicates whether an example is correctly classified by the ensemble.

This accuracy information is already reflected in the original weight-updating rule of

AdaBoost. There is no point to consider it repeatedly in pi. For the same reason, the

individual classifier is uniformly weighted for the calculation of amb instead of using α

terms. The αi’s are already included in the exponential term of the weight-updating rule
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in step 5. In addition, we would not know fi’s weight αi until step 4 when calculating pi

in step 3.

AdaBoost.NC can be viewed as the first NCL algorithm developed specifically for

classification problems. Its training strategy is much simpler than existing NCL algo-

rithms. It is free of choosing any base learning methods, whereas others are restricted

to neural networks. The error correlation information is introduced into the weights of

training examples, rather than the error function of the learners such as in the CELS al-

gorithm (Liu and Yao, 1999b) or the training examples themselves such as in the NCCD

algorithm (Chan and Kasabov, 2005a). In this way, diversity is considered from the ensem-

ble level without modifying the base learner that makes the algorithm learner-dependent

and training examples that can cause undesirable noise. All these features help to create

a flexible ensemble training framework with improved efficiency and accuracy.

Finally, it is worth explaining why AdaBoost.NC is possible to outperform the con-

ventional AdaBoost. Although AdaBoost attempts to enforce classifiers to make different

errors by focusing on misclassified examples sequentially, the overfitting problem has been

reported empirically (Quinlan, 1996; Opitz and Maclin, 1999; Dietterich, 2000a), especially

when the processing data is noisy. In some cases, the weight vectors can become very

skewed, which may lead to undesirable bias towards some limited groups of data. It is

also found that AdaBoost can produce a diverse ensemble at the first few training epochs,

but diversity drops as more classifiers are built (Shipp and Kuncheva, 2002b). So, it is

suggested to stop the training progress early for performance enhancement with proper

diversity maintained.

From a theoretical point of view, Schapire et al. derived an upper bound on the

generalization error of AdaBoost (Schapire et al., 1998). They proved that AdaBoost is

aggressive at increasing margins of the training examples, which contributes to the reduc-

tion of generalization error even after the training error reaches zero. However, this bound

is rather weak (Schapire, 2002). Breiman found that a better margin distribution does not

lead to a lower test error necessarily. If they tried too hard to make the margins larger,
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then overfitting set in (Breiman, 1999). Murua presented an improved error bound for the

linear classifier combination by introducing “mutual weak dependence” (Murua, 2002).

As an important progress, it is shown that both the low dependence between classifiers

and large margins play an important role in achieving low error rates, and there is a trade-

off between them. It provides the evidence that only considering margins is not sufficient.

It is worth looking for a training procedure that can keep the dependence between the

classifiers low with large margins. AdaBoost.NC works for this purpose. It is expected to

alleviate the overfitting problem of AdaBoost, because the penalty term boosts not only

the most difficult misclassified examples, but also the easiest examples that have been

correctly labelled. Easy examples are more likely to be chosen to help the classification

on difficult examples in AdaBoost.NC than in AdaBoost. It reduces the chance of focus-

ing on the same group of misclassified examples. Both theoretical and empirical studies

have provided justifications for AdaBoost.NC to achieve good performance.

4.3.2 Experimental Studies

In this section, we compare AdaBoost.NC to the conventional AdaBoost, CELS (Liu and

Yao, 1999b) and NCCD (Chan and Kasabov, 2005a). CELS and NCCD are two typical

NCL algorithms with different means to encourage diversity, which have been introduced

in section 2.4.

Experimental Design

In our experiments, we choose MLP neural networks (NN) and C4.5 decision trees as

the base learner. CELS and NCCD are designed for neural networks. It is necessary to

discuss neural network ensembles. Each network is trained by 250 epochs. The updating

epoch of NCCD is set to 20, which is a rough estimate, because the optimal update

interval is problem-dependent. The decision tree is recognized as the “ideal” learner with

AdaBoost, since its accuracy can be boosted dramatically. Therefore, we also examine
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the performance of AdaBoost.NC using C4.5 base learners.

Regarding the parameter λ in NCL algorithms that controls the strength of encour-

aging diversity, it is required to lie inside the range [0, 1] in CELS and [0, 1) in NCCD.

In our experiments, we set it to {0.25, 0.5, 1} for CELS and {0.5, 0.8} for NCCD. Both of

them use the “winner-take-all” strategy to combine the individual outputs as demanded

by the original papers. The range of λ in AdaBoost.NC is not theoretically bounded.

Based on some preliminary experiments showing that the performance of AdaBoost.NC

is not very sensitive to the change of λ, we vary λ within the range [0.25(conservatively),

12(aggressively)]. The best result produced by each of these algorithms joins the follow-

ing comparisons. Every ensemble consists of 9 individual classifiers, where setting an odd

number is to avoid even voting. More parameter discussions for AdaBoost.NC will be

included in the next section.

The experiments are conducted on a collection of UCI classification tasks (Frank and

Asuncion, 2010), including 10 two-class data sets and 4 multi-class data sets. Some data

sets are provided with a separate test set. For the others, we randomly sample 80% of the

data used for training. The rest are for the test. The data information is summarized in

Table 4.2, ordered by the training set size. Reported results are the averages over 10 runs

of each algorithm. Student T-test with 95% confidence level is performed for significance

analysis.

Performance Analysis

We output the test error rate and computation time produced by AdaBoost.NC (abbr.

NC), AdaBoost (abbr. Ada), CELS and NCCD in Tables 4.3 - 4.6. The computation

environment is windows Xp with Intel Core 2 Duo 2.13GHz and 1G RAM. All the algo-

rithms are implemented in Java.

(1) Generalization error

Tables 4.3 and 4.4 present the results on the two-class benchmarks for MLP and C4.5
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Table 4.2: Summary of benchmark data sets (‘d’ denotes a discrete attribute; ‘c’ denotes
a continuous attribute).

Data Train Test Attributes Classes
promoter 84 22 57d 2

sonar 166 42 60c 2
ionosphere 280 71 34c 2

house-votes-84 348 87 15d 2
crx 489 201 9d+6c 2

breast-w 559 140 9d 2
pima 614 154 8c 2

german 800 200 13d+7c 2
hypothyroid 2530 633 18d+7c 2

insurance 5822 4000 85c 2

soybean-large 307 376 35d 19
vowel 528 462 10c 11

segmentation 1848 462 19c 7
satimage 4435 2000 36c 6

ensembles respectively. The lowest error rate among the four methods is in boldface. If

there is a statistically significant difference between AdaBoost.NC and one of the other

algorithms, the latter will be marked with a ‘*’.

When MLP is the base learner, AdaBoost.NC gives lower error rates than AdaBoost

on the 10 data sets consistently, 5 of which are significant. When comparing to CELS,

AdaBoost.NC produces better generalization performance on 5 out of 10 data sets, where

3 wins are significant; CELS wins twice significantly and the other three are ties. When

comparing to NCCD, AdaBoost.NC wins on 7 data sets significantly, and the remaining

three are ties. NCCD does not perform well among the four methods. The reason could be

that it adjusts training data directly, which may induce noise and lead to very inaccurate

classifiers. When C4.5 is the base learner, similar to the results of MLP, AdaBoost.NC

outperforms AdaBoost in the last 6 data sets significantly, and the remaining 4 cases are

ties.

For these two-class problems, generally speaking, AdaBoost.NC presents very promis-

ing generalization performance. It improves AdaBoost and outperforms NCCD signifi-
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Table 4.3: “Mean ± standard deviation” of test error rate (abbr. Err %) and mean
computation time (in seconds) of AdaBoost.NC (abbr. NC), AdaBoost (abbr. Ada),
CELS and NCCD on two-class data sets with MLP as the base learner. The lowest error
rate for each data set is in boldface. The significant difference between AdaBoost.NC and
one of the other algorithms is indicated by ‘*’.

Data NC Ada CELS NCCD
promoter Err 17.727±4.520 24.091±4.312* 12.727±1.917* 15.000±9.103

Time 19.6 19.5 1666.4 267.3
sonar Err 10.952±2.300 12.381±3.214 7.619±1.004* 22.857±15.681*

Time 43.2 43.1 267.1 271.4
ionosphere Err 4.647±0.950 5.211±0.950 4.366±0.445 4.084±2.523

Time 26.5 26.5 174.6 25.0
house-votes Err 2.528±0.484 3.218±0.726* 3.333±0.363* 4.023±1.817*

Time 9.9 10.0 72.3 9.8
crx Err 15.671±0.853 19.055±1.502* 16.667±0.586* 18.358±1.454*

Time 12.1 12.0 426.9 69.7
breast-w Err 1.071±0.505 1.286±0.451 3.214±1.398* 33.071±28.081*

Time 7.2 7.1 1939.6 298.5
pima Err 24.025±1.960 25.130±1.437 23.246±1.396 49.221±17.987*

Time 7.5 7.4 60.1 8.4
german Err 24.900±1.776 26.900±1.744* 25.250±1.585 31.850±6.200*

Time 31.7 31.7 1351.2 209.1
hypothyroid Err 2.227±0.157 2.275±0.260 2.432±0.388 2.796±0.372*

Time 137.7 137.6 957.6 185.0
insurance Err 6.450±0.177 8.080±0.171* 6.293±0.228 6.407±0.271

Time 2874.4 2852.7 17930.0 3742.2

cantly on more than half of the data sets. AdaBoost.NC and CELS are quite competitive

with each other.

We further compare their performance on the multi-class data sets. The results are

shown in Tables 4.5 and 4.6. AdaBoost.NC shows slightly better performance than Ad-

aBoost. Except the soybean-large data set where NCCD wins the other three methods,

AdaBoost.NC outperforms CELS and NCCD significantly on data sets vowel and segmen-

tation. Besides, we notice that CELS does not show any advantages over these multi-class

data sets. In fact, its ability to solve multi-class problems has not been fully investigated

in the literature to date. It would be interesting to compare AdaBoost.NC and CELS

with existing multi-class approaches in future work.

In summary, performance improvements are observed in both types of learners by us-

ing AdaBoost.NC, especially on the two-class data sets. Because AdaBoost.NC enforces
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Table 4.4: “Mean ± standard deviation” of test error rate (abbr. Err %) and mean
computation time (in seconds) of AdaBoost.NC (abbr. NC) and AdaBoost (abbr. Ada)
on two-class data sets with C4.5 as the base learner. The lower error rate for each data set
is in boldface. The significant difference between AdaBoost.NC and AdaBoost is indicated
by ‘*’.

Data NC Ada
promoter Err 10.454±4.815 10.909±6.843

Time 0.014 0.01
sonar Err 21.667±5.318 21.190±5.435

Time 0.212 0.206
ionosphere Err 1.831±0.680 2.253±0.984

Time 0.225 0.205
house-votes Err 3.793±1.217 3.563±1.006

Time 0.059 0.051
crx Err 16.069±1.050 18.109±0.943*

Time 0.111 0.127
breast-w Err 1.357±0.710 2.143±0.588*

Time 0.035 0.028
pima Err 20.649±1.779 23.961±2.340*

Time 0.20 0.25
german Err 25.400±1.926 27.600±2.389*

Time 0.21 0.26
hypothyroid Err 0.553±0.083 0.948±0.235*

Time 0.81 1.43
insurance Err 6.225±0.079 8.120±0.225*

Time 52.3 52.5

misclassified examples receiving a low disagreement within the current ensemble to get the

largest weight increase and the correctly classified examples receiving a high disagreement

to get the largest weight decrease, both of the “more difficult” and “easier” examples are

emphasized through the penalty term. We infer that the superiority of AdaBoost.NC is

attributed to the focus of “easier” examples that facilitates the classification on “more

difficult” examples, instead of only boosting the misclassified ones.

(2) Computation time

According to Tables 4.3 - 4.6, AdaBoost.NC is the winner in training time among

all the NCL algorithms with no doubt. Computing the penalty term does not bring

much extra computational cost compared to AdaBoost on these data sets. It saves a

large amount of training effort compared to CELS and NCCD. The running time of
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Table 4.5: “Mean ± standard deviation” of test error rate (abbr. Err %) and mean
computation time (in seconds) of AdaBoost.NC (abbr. NC), AdaBoost (abbr. Ada),
CELS and NCCD on multi-class data sets with MLP as the base learner. The lowest error
rate for each data set is in boldface. The significant difference between AdaBoost.NC and
one of the other algorithms is indicated by ‘*’.

Data NC Ada CELS NCCD
soybean-large Err 10.080±1.124 10.665±1.281 10.505±0.258 7.952±0.714*

Time 71.2 68.8 1251.5 226.3
vowel Err 44.826±1.834 46.147±1.679 47.792±2.456* 49.329±1.846*

Time 23.2 23.1 150.1 45.7
segmentation Err 2.575±0.387 2.489±0.371 3.463±0.478* 3.376±0.423*

Time 107.8 107.8 717.8 374.2
satimage Err 9.735±0.382 10.175±0.408* 9.850±0.309 9.785±0.233

Time 607.4 606.5 3702.5 2225.4

Table 4.6: “Mean ± standard deviation” of test error rate (abbr. Err %) and mean
computation time (in seconds) of AdaBoost.NC (abbr. NC) and AdaBoost (abbr. Ada)
on multi-class data sets with C4.5 as the base learner. The lower error rate for each
data set is in boldface. The significant difference between AdaBoost.NC and AdaBoost
is indicated by ‘*’.

Data NC Ada
soybean-large Err 7.553±1.457 8.244±1.795

Time 0.17 0.15
vowel Err 51.428±2.217 53.030±2.105

Time 0.40 0.38
segmentation Err 2.099±0.323 2.316±0.250

Time 1.3 1.2
satimage Err 10.315±0.395 10.700±0.297*

Time 9.7 9.6

AdaBoost.NC is primarily determined by the ensemble size and the size of the given

classification task, which is the same as every other ensemble algorithm. From Table 4.3,

in which the data sets are in the order of the training set size, we observe that the training

time of AdaBoost.NC increases along with the increasing numbers of training examples

and attributes of the data set. For example, “insurance” has the longest training time

due to its largest data size. “Ionosphere” has shorter training time than “sonar” because

it has fewer data attributes. The same happens to CELS and NCCD. Differently, their

computation time further depends on the type of attributes. CELS and NCCD take much
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longer time in training if the data set has more discrete attributes. Every possible value of

a discrete attribute corresponds to an input node in the network whereas each continuous

attribute only creates one in our current algorithm implementation. Data with more

discrete attributes thus makes the NN have a larger structure and contain more training

parameters. It increases the efforts of calculating penalty for the diversity and updating

weights greatly. In AdaBoost.NC, the penalty calculation is independent of the structure

of the base learner. Therefore, AdaBoost.NC seems robust to whether the attribute is

discrete or real-valued. For example, the training time of CELS and NCCD on “breast-w”

is longer than on “pima” for all discrete attributes of “breast-w”, which is not observed

in AdaBoost.NC. Because any base learning algorithm is applicable to AdaBoost.NC, the

training time can be further reduced by using simple learners. It would be useful to do

complexity analysis theoretically here in the future.

Based on the results and analysis, we conclude that AdaBoost.NC inherits the advan-

tages of NCL methods with good generalization performance. Meanwhile, it has a more

flexible training framework and requires much less training time.

4.3.3 Parameter Discussions

In this section, we investigate how AdaBoost.NC’s performance gets affected by two pre-

defined parameters involved in the algorithm, i.e. penalty strength λ and ensemble size

L. We observe the changing tendency of test error by varying one parameter and fixing

the other shown in plots. AdaBoost is compared as the baseline method. The analysis

here provides guidance for choosing appropriate parameter values for AdaBoost.NC.

The experiments are conducted on the ten two-class data sets in Table 4.2. As before,

we randomly sample 80% of the data as the training set and use the rest for testing, if

no testing file is provided. All results in the following graphs are averages over 30 runs of

the algorithm for each parameter setting.
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Penalty Strength λ

To observe the effect of λ, we fix L = 9 and vary λ in the range of [0, 12]. When λ equals

to 0, AdaBoost.NC is reduced to AdaBoost. Fig. 4.1 presents the changing tendency of

test error along with λ for each data set. The first point on the curve indicates the number

of errors made by AdaBoost. Each plot includes two curves: one is produced by MLP

ensembles; the other is produced by C4.5 tree ensembles.

According to Fig. 4.1, we have the following observations: 1) AdaBoost.NC with a

proper λ can generally improve the classification performance in both tree and MLP

cases, especially on the last six data sets with larger sizes (Fig. 4.1(e)-(j)). However, the

best λ is domain-dependent. For example, the best performance is achieved when λ is

approximately 4 for “crx”; the error keeps decreasing until λ reaches 12 for “insurance”.

2) The best λ is also related to the base learner. In the plot of “german” (Fig. 4.1(h)), the

lowest error is achieved at λ = 2 on the tree curve, but λ = 9 on the MLP curve. 3) There

is no evidence to show which base learner works consistently better with AdaBoost.NC.

The tree ensemble seems more sensitive to the change of λ. It is more likely to suffer from

a performance reduction by increasing λ, such as in “promoter”, “house-votes-84” and

“breast-w”. 4) In most cases, tree-based AdaBoost.NC presents a fast drop of classification

error when λ is small than 4. Therefore, λ ≤ 4 is deemed to be a conservative range of

setting λ. As λ becomes larger, there could be either a further performance improvement

(such as in “insurance”) or a performance degradation (such as in “german”).

Generally speaking, AdaBoost.NC can achieve better generalization than AdaBoost

by choosing an appropriate λ. However, the optimal λ depends on problem domains and

base learners. The tree ensemble seems more sensitive to λ than the MLP ensemble. Only

an approximate range of λ is obtained here based on how it affects the effectiveness of

AdaBoost.NC. Some remaining issues are: when would a large λ cause a performance

degradation and how large would it be? A theoretical range of λ would be very useful for

wider application of the algorithm. It will be discussed as possible future work.
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Figure 4.1: Performance behaviour of AdaBoost.NC by varying λ. Ensemble size L is set
to 9. (X-axis: penalty strength λ ∈ [0, 12]; Y-axis: number of misclassified examples.)
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Ensemble Size L

Now, let’s see the changing tendency of test error by varying ensemble size L from 5 to

201. Each plot in Fig. 4.2 depicts two curves produced by AdaBoost and AdaBoost.NC

respectively with tree base learners. λ in AdaBoost.NC is set to the optimal value obtained

in Fig. 4.1.

According to Fig. 4.2, we have the following observations: 1) the performance of both

AdaBoost and AdaBoost.NC is not reduced by increasing L. No overfitting phenomenon

is observed. 2) The performance of both AdaBoost and AdaBoost.NC becomes stable

when L gets approximately 41-51. A fast drop of error usually happens when L is smaller

than 41. The error reduction slows down when L is larger than 51. 3) AdaBoost.NC seems

to be more effective than AdaBoost when L is relatively small (L ≤ 21 in general), such as

in “ionosphere”, “crx”, “breast-w” and “german”. 4) As L becomes larger, AdaBoost.NC

and AdaBoost tend to reach a comparable performance level in some cases, such as “crx”,

“breast-w” and “german”. In some other cases, AdaBoost.NC outperforms AdaBoost

consistently, which is not affected by L, such as in “pima”, “hypothyroid” and “insurance”.

The underlying reason needs a further investigation. Generally speaking, increasing the

ensemble size does not reduce the performance of AdaBoost.NC, which becomes stable as

more classifiers are built. It is more effective when the size is relatively small.

4.4 AdaBoost.NC and Error Correlation

Since AdaBoost.NC is claimed to be a “negative correlation” learning algorithm, it should

be able to reduce the error correlation within the ensemble. We look into the AdaBoost.NC

algorithm in terms of error correlation from both theoretical and experimental aspects in

this section. We will prove how the error correlation among classifiers relates to classi-

fication accuracy, and show if AdaBoost.NC can reduce this correlation with improved

performance.
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Figure 4.2: Performance behaviour of AdaBoost and AdaBoost.NC by varying L. Penalty
strength λ is set to the optimal value obtained in Fig. 4.1. (X-axis: ensemble size L ∈
[5, 201]; Y-axis: number of misclassified examples.)
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Error Correlation and Classification Accuracy

Before discussions, we need to define error correlation precisely. Given any data point

(x, y) with a noise-free target, the degree of error correlatedness for any pair of classifiers

fi and fk can be defined as (Ali and Pazzani, 1995)

cov (fi 6= y, fk 6= y) = p (fi 6= y, fk 6= y)− p (fi 6= y) p (fk 6= y) . (4.13)

p (fi 6= y, fk 6= y) denotes the probability that fi and fk make errors simultaneously.

p (fi 6= y) p (fk 6= y) is the likelihood that would be obtained if they make errors in a statis-

tically independent manner. It is not hard to get cov (fi 6= y, fk 6= y) = cov (fi = y, fk = y).

If cov (fi = y, fk = y) is positive (negative), then the classifiers make errors in a positively

(negatively) correlated way. A value of 0 indicates that they are uncorrelated.

A more important question here is: how is “cov” related to classification accuracy?

To simplify our problem, we focus our attention on the sequential training context of

AdaBoost with the majority voting combination for binary classification. In addition, we

make the assumption that any individual classifier fi at the i-th training iteration is only

correlated with its previous one fi−1 in making errors, considering that the weights of

examples for selecting training examples for the next classifier in AdaBoost are updated

only based on the accuracy of the current classifier without taking other existing ones

into account. In other words, for any t < i − 1, we have cov (fi = y, ft = y) = 0. With

these conditions, Theorem 4.1 is obtained to describe how the accuracy of ensemble f̄i

composed of the first i classifiers is related to the error correlation between classifier fi

and ensemble f̄i−1 composed of the first (i− 1) classifiers (i > 2).

Theorem 4.1. In the sequential training context with the majority voting combination,

reducing the error correlation between fi and f̄i−1 can improve the classification accuracy

of f̄i under the assumption of cov (fi = y, ft = y) = 0 (t < i− 1).

Proof. For clear presentation, we establish some notations first. Imagine that we are

building the i-th classifier fi currently. To make the first i classifiers produce a correct

110



combined result based on majority vote, we assume that they need to provide at least n

correct votes. We define:

• f̄i represents the combination of the first i classifiers; “f̄i = yn” means that these i

classifiers contain at least n correct votes.

• f̄i−1 represents the combination of the first (i− 1) classifiers; “f̄i−1 = yn” means

that these (i− 1) classifiers contain at least n correct votes.

• f̄n−1
i−1 represents any possible combination of (n− 1) classifiers randomly chosen from

the first (i− 1) classifiers; “f̄n−1
i−1 = yn−1” means that all the chosen classifiers give

the correct label, i.e. (n− 1) correct votes.

With these notations, the accuracy of f̄i can be expressed as

p
(
f̄i = yn

)
= p

(
f̄i−1 = yn

)
+

( i−1
n−1)∑
t=1

[
p
(
fi = y, f̄n−1

i−1(t) = yn−1
)
− p

(
fi = y, f̄n−1

i−1(t) = yn−1, f̄i−1 = yn
)]
,

(4.14)

Eq. 4.14 considers majority voting accuracy in two separate situations. To have f̄i

make a correct decision, one possibility is that the first (i− 1) classifiers already contain

at least n correct votes (the first term on the right-hand side). The other probability is

that the first (i− 1) classifiers produce exactly (n− 1) correct votes and the i-th classifier

fi is correct (the terms in the summation).

Now we focus on the expression inside the summation that involves fi. According to

the definition of cov, we obtain

p
(
fi = y, f̄n−1

i−1 = yn−1
)
− p

(
fi = y, f̄n−1

i−1 = yn−1, f̄i−1 = yn
)

= Ω + cov
(
fi = y, f̄n−1

i−1 = yn−1
)
− cov

(
fi = y; f̄n−1

i−1 = yn−1, f̄i−1 = yn
)
, (4.15)

where Ω = p (fi = y)
[
p
(
f̄n−1
i−1 = yn−1

)
− p

(
f̄n−1
i−1 = yn−1, f̄i−1 = yn

)]
. By applying the

above assumption of error correlation in sequential training, f̄n−1
i−1 in the cov terms is

111



reduced to fi−1, if fi−1 is contained in f̄n−1
i−1 . Otherwise, cov

(
fi = y, f̄n−1

i−1 = yn−1
)

= 0.

Thus, Eq. 4.15 can be reformulated into two possible cases:

• If fi−1 /∈ f̄n−1
i−1 ,

Ω− cov
(
fi = y, f̄i−1 = yn

)
. (4.16)

• If fi−1 ∈ f̄n−1
i−1 ,

Ω + cov (fi = y, fi−1 = y)− cov
(
fi = y; fi−1 = y, f̄i−1 = yn

)
. (4.17)

Due to the positive property of term
[
p
(
f̄n−1
i−1 = yn−1

)
− p

(
f̄n−1
i−1 = yn−1, f̄i−1 = yn

)]
,

p (fi = y) should be kept as high as possible. Meanwhile, p
(
f̄i = yn

)
is negatively related

to cov
(
fi = y, f̄i−1 = yn

)
and cov

(
fi = y; fi−1 = y, f̄i−1 = yn

)
. It implies that reducing

the error correlation between fi and f̄i−1 can improve the ensemble accuracy of f̄i. In

other words, it makes fi play a better role in the ensemble. This proof also suggests a

trade-off between individual accuracy and error correlation.

It can be imagined that the training examples receiving all correct/wrong votes from

the first (i− 1) classifiers tend to cause higher cov
(
fi = y, f̄i−1 = yn

)
than those that

get partially correct/wrong votes. According to the training strategy of AdaBoost.NC,

it boosts the group of data with larger cov through the penalty term. Meanwhile, the

accuracy of each classifier is not overlooked, because the examples misclassified by the

current classifier will get the attention back immediately in the next round through the

exponential term inside the weight-updating rule. Each classifier in AdaBoost.NC is

enforced to balance individual accuracy and error correlation sequentially.

Empirical Evidence of Error Correlation for AdaBoost.NC

To verify our theoretical result and further illustrate how AdaBoost.NC works, we track

its error correlation and test error during training on a two-class artificial data set in

comparison with the conventional AdaBoost. The artificial data set is generated from
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two Gaussian distributions with equal covariance and a small overlapping area close to

the separating line. Each class contains 200 training examples. A separate testing data

set is produced by using the same generation method and settings, in which each class

has 50 points.

In the experiments, we build 51 C4.5 decision trees to form an ensemble. Penalty

strength λ is set to 0, 2, and 9 respectively. When λ = 0, AdaBoost.NC is reduced

to AdaBoost. Each setting is repeated 30 times. At each iteration of building a new

classifier, we output the average cov
(
fi = y, f̄i−1 = yn

)
value and error rate on testing

data in Fig. 4.3, where x-axis presents the training epoch increasing from 2 to 51 and

y-axis indicates the correlation and test error rate respectively.
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Figure 4.3: Error correlation and test error rate (in %) during sequential training.

According to Fig. 4.3, the correlation values on the λ = 9 curve are generally smaller

than values at λ = 0, especially during the first few training iterations. Correspondingly,

AdaBoost.NC with λ = 9 produces the lowest error rate among the three settings. This

observation agrees with Theorem 4.1 and confirms the ability of AdaBoost.NC to reduce

error correlation.

Ali and Pazzani mentioned an error rearrangement procedure to explain how negatively

correlated errors can be beneficial to an ensemble’s performance (Ali and Pazzani, 1995).

Basically, their analysis claimed that, if a classifier has to make an error, then make the

error on a different example. Sorting errors in a negatively dependent way can minimize
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the number of ensemble errors. The training mechanism of AdaBoost.NC can be viewed as

an automatic error rearrangement procedure. The least ambiguous and correctly classified

training examples are boosted, to reduce the chance for classifiers to make same errors.

So, we believe that AdaBoost.NC encourages both classification accuracy and negatively

correlated errors.

Next, we illustrate the classification boundaries produced by AdaBoost.NC on the

same artificial data, in order to understand how the performance improvement hap-

pens graphically. Fig. 4.4 presents three classification boundary plots produced by Ad-

aBoost.NC with λ set to {0, 2, 9} respectively.
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Figure 4.4: Classification boundaries of AdaBoost.NC with λ ∈ {0, 2, 9}.

As λ gets larger, AdaBoost.NC produces smoother boundaries and less overfits the

overlapping region that is supposed to contain the most difficult data points. When λ = 0,

the boundary includes many small squares and spiky regions, because the algorithm keeps

boosting examples from these areas. Although they are more likely to be selected to join

the next training session, they are still hard to separate on their own. When λ = 2, the

situation is relieved to some extent. Fewer small squares are produced. When λ = 9,

more “easier” examples are selected to help the training of each classifier, which results

in less overfitting boundaries further and thus the best generalization performance.

In summary, the analysis in this section tells us that AdaBoost.NC is capable of

reducing error correlation during the sequential training. The effect is reflected in a lower

error rate and less overfitting classification boundaries.

114



4.5 Chapter Summary

In this chapter, we propose a NCL algorithm for classification ensembles, called “Ad-

aBoost.NC”, in order to overcome the problems of poor flexibility and high computational

cost of existing NCL algorithms. It combines the strength of NCL and Boosting. First, an

ambiguity term is derived from the 0-1 error function, which describes the classification

difference within the ensemble and provides theoretical support to adapt the traditional

NCL based on the squared error function in regression for classification. Then, the am-

biguity term containing diversity information is introduced into the training framework

of AdaBoost, where the weight-updating rule is modified, so that both accuracy and

diversity are encouraged during the sequential training procedure.

The effectiveness and efficiency of AdaBoost.NC are evaluated through extensive ex-

periments in comparison with two typical NCL algorithms (i.e. CELS and NCCD) and

the conventional AdaBoost on a group of benchmark classification problems. It achieves

better accuracy than NCCD and AdaBoost, and shows competitive results with CELS.

It uses much less training time than both CELS and NCCD. Besides, any base learners

can be applied to AdaBoost.NC.

Next, we examine the performance behaviour of AdaBoost.NC along with two pre-

defined parameters, i.e. penalty strength λ and ensemble size L. The optimal λ depends on

problem domains and base learners. Tree-based AdaBoost.NC presents higher sensitivity

to a large λ than the one using neural networks. AdaBoost.NC’s performance is not

reduced by a large L. It is more effective when L is comparatively small.

The effectiveness of AdaBoost.NC is further investigated with more theoretical and

empirical evidences provided in terms of error correlation. We prove that reducing the

error correlation between the currently-built classifier and the ensemble composed of the

already-existing ones sequentially can improve final classification accuracy of the whole

ensemble. AdaBoost.NC shows the ability to reduce this error correlation and achieves a

lower test error than AdaBoost by providing less overfitting classification boundaries.

Generally speaking, AdaBoost.NC is a promising ensemble algorithm that inherits
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the good generalization ability of NCL and the flexible training strategy of AdaBoost.

This chapter only discussed some general classification tasks without considering data

distributions. How it performs in class imbalance problems will be investigated in the

following chapters.
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CHAPTER 5

NEGATIVE CORRELATION LEARNING FOR
TWO-CLASS IMBALANCE PROBLEMS

Many ensemble methods have been proposed to deal with class imbalance problems. Their

common strategy is to rebalance the training subsets or make base classifiers cost-sensitive.

However, finding a proper parameter setting is always a crucial and problem-dependent

issue, such as the resampling rate and an optimal cost matrix, without which overfitting

and over-generalization are likely to occur. Therefore, it is desirable to develop an al-

ternative method to address “imbalance”. In chapter 3, we showed the positive effect

of ensemble diversity in solving class imbalance problems with theoretical and empirical

evidences, which suggested a potential solution. Following on from this part of work, we

proposed a NCL algorithm called AdaBoost.NC for classification problems in chapter 4.

It encourages ensemble diversity explicitly during training and shows good generalization

performance in general classification problems. We are thus motivated to find out if and

how we can take advantage of ensemble diversity to better deal with class imbalance in

this chapter. An associated question is, if NCL methods including AdaBoost.NC can be

good solutions to the class imbalance problem.

To answer these questions, section 5.2 investigates the generalization ability of Ad-

aBoost.NC in depth under some artificial imbalanced scenarios and discusses the factors

that may affect its effectiveness. Section 5.3 compares it with other NCL algorithms and

state-of-art ensemble methods in class imbalance learning through comprehensive exper-
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iments on a set of real-world data sets with highly skewed class distributions. Finally,

section 5.4 concludes the chapter. This chapter focuses on two-class imbalance problems.

5.1 Introduction

Since many standard machine learning algorithms were found to suffer from classification

difficulties when tackling class imbalance problems, a number of data-level and algorithm-

level algorithms have been proposed to help to recognize minority class examples accu-

rately and achieved varying degrees of success in generalization. In particular, ensemble

learning has drawn growing attention in this field. Some ensemble solutions have been

widely discussed with empirical success, such as BEV (Li, 2007), SMOTEBoost (Chawla

et al., 2003), JOUS-Boost (Mease et al., 2007), RareBoost (Joshi et al., 2001), etc. They

are often integrated with data-level and cost-sensitive strategies, in which individual clas-

sifiers are adapted for emphasizing the minority class, and combining multiple classifiers

are used to lower down the risk of overfitting and reduce the error variance. However,

data-level strategies manipulate training data directly, and thus need extra care in choos-

ing proper parameters before use. Both overfitting and over-generalization issues have

been reported in oversampling and undersampling techniques (Chawla et al., 2002; Mease

et al., 2007; He and Garcia, 2009). Besides, it is always a problem of deciding which

resampling method to use with ensembles, depending on the given task and performance

evaluation method. Cost-sensitive ensemble methods demand explicit cost information of

classes prior to learning, which is hard to obtain in many real-world situations. Therefore,

we would like to explore an alternative method to overcome these problems. Meanwhile,

it should have good generalization performance especially in the minority class.

In our earlier work in chapter 3, we studied the role of ensemble diversity in the classifi-

cation of class imbalance problems. A positive effect of diversity was found, which inspires

the idea of using ensemble diversity to solve our problem. It leads our focus to NCL (Liu

and Yao, 1999b), an effective ensemble learning technique that explicitly manages the
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accuracy-diversity trade-off during training. In chapter 4, we proposed a new ensemble

algorithm AdaBoost.NC using the idea of NCL for classification tasks. In addition to

its simplicity and efficiency, it shows very promising generalization performance. Taking

this step further, we study how NCL algorithms perform in class imbalance problems

including AdaBoost.NC in this chapter. The potential advantage of using NCL is that it

improves generalization without giving up any data information from the majority class

or generating new data points for the minority class. Hence, inappropriate choices of

resampling techniques and sampling rates can be avoided. Besides, all NCL-related works

only focus on the effectiveness in terms of overall accuracy to our best knowledge. It is

obviously not appropriate for imbalance learning scenarios. Instead, AUC and single-class

performance measures are examined as another interesting point in this chapter.

NCL is investigated on both artificial and real-world imbalanced data sets with com-

prehensive experimental discussions. Three NCL methods (i.e. AdaBoost.NC (Wang

et al., 2010), CELS (Liu and Yao, 1999b), NCCD (Chan and Kasabov, 2005a)) and three

training strategies (i.e. learning from the original imbalanced data, random oversam-

pling, random undersampling) are integrated and compared. The results suggest that the

combination of the random oversampling strategy and NCL can improve the prediction

for the minority class without losing the overall performance compared to other class

imbalance learning methods. The aim of applying oversampling is simply to maintain

sufficient number of minority class examples for the NCL algorithm to increase diversity.

Moreover, we show that AdaBoost.NC performs the best with decision tree base learn-

ers, which presents high AUC and minority-class measures by producing broader and less

overfitting classification boundaries for the minority class. This chapter concentrates on

two-class imbalance problems, where only one majority class and one minority class exist

in the data set. Multi-class cases will be included in the next chapter.
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5.2 AdaBoost.NC for Two-Class Imbalance Problems

Before we move on to our main work, it is worth explaining why we believe that NCL might

be helpful for class imbalance learning. A major reason for the difficulty in identifying rare

examples is that the classification boundaries are too tight around them. The majority

class takes over the data space. In other words, ignoring or overfitting the minority class

is very likely to happen to each individual classifier in an ensemble. The individuals tend

to make the same errors on the minority class and thus a low diversity degree within

the ensemble can be imagined. The unbalanced distribution diminishes the effect of

ensemble techniques (Chawla and Sylvester, 2007). Generated classification rules can be

very specific and useless for the future prediction (He and Garcia, 2009; Chawla et al.,

2002). To overcome this problem, existing ensemble algorithms adjust class distributions

by either applying different over/under-sampling techniques to every ensemble member or

assigning higher costs to rare examples during training. The boundaries are thus expanded

towards the majority class space (Monard and Batista, 2002; Chawla et al., 2002). From

a different view of the ensemble level, a reasonable conjecture would be that diversity

was introduced into the classification of the minority class or both classes indirectly by

applying those techniques, since the same errors are less likely to occur.

To make the ensemble less overfit training data and achieve better generalization

performance, one way is to increase diversity. Overfitting is associated with the error

variance in terms of the bias-variance decomposition of the generalization error (Sun

et al., 2007; Cunningham, 2000). If overfitting happens, predictions will vary between

examples. Encouraging ensemble diversity can reduce this variance (Brown et al., 2005).

Since NCL promotes diversity explicitly among ensemble members, it is believed to

alleviate the classification difficulty of class imbalance problems to some extent. Using

NCL could be an implicit way of emphasizing the minority class. Besides, Chawla and

Sylvester have noticed that the classification performance on imbalanced data sets can be

improved by exploiting ensemble diversity in making different types of errors, which can

be viewed as one of the earliest studies on this issue (Chawla and Sylvester, 2007).
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In this section, we examine the effectiveness of AdaBoost.NC in identifying rare cases

in depth on several two-dimensional artificial data sets with different imbalance rates.

We focus on the algorithm itself and investigate the effect of penalty term that controls

diversity. Decision boundaries are presented to illustrate if and how it can improve the

classification performance. Considering that it is also a variation of Boosting, AdaBoost

is compared as the baseline method in our analysis. Both single-class and overall perfor-

mance measures are discussed. In order to show the advantages of using AdaBoost.NC

to handle class imbalance problems, we perform an effect analysis of parameters in Ad-

aBoost.NC through the ANOVA experiment (short for “ANalysis Of VAriance”). More

comparisons with state-of-art ensemble methods will be given in the next section.

5.2.1 Artificial Data Sets and Experimental Settings

Two-class artificial data are generated from two Gaussian distributions with equal covari-

ance and a small overlapping area close to the separating boundary. Three imbalanced

degrees are discussed. Concretely, one class always keeps 200 training points, while the

size of the other class is varied in {10 (very imbalanced), 50 (imbalanced), 200 (balanced)}.

They are denoted as “200-10”, “200-50” and “200-200”. We also generate a testing file

by using the same method, in which each class has 50 points.

In addition to AdaBoost.NC, a single classifier model and AdaBoost are built for the

comparison. Every ensemble consists of 51 base classifiers, which is an appropriate size

for an ensemble to produce stable performance based on the observation in section 4.3.3.

An odd number is to avoid even voting. The C4.5 decision tree and MLP neural network

(NN) are chosen as the base learner and reported in separate subsections. Each type is

implemented in Weka (Witten and Frank, 2005), an open source data mining tool. The

default Weka parameters are used to train C4.5. MLP (Ripley, 1996) is built with one

hidden layer. The training epoch for MLP is set to 250. Other parameters use the default

settings in Weka.

The penalty strength λ in AdaBoost.NC is set to 2 and 9. Based on the findings in
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section 4.3.3 (Wang and Yao, 2010), λ = 2 is a relatively conservative setting to show

if AdaBoost.NC can make a performance improvement, and λ = 9 encourages diversity

aggressively. For a full understanding of the feasibility of using ensemble diversity to

facilitate class imbalance learning, both values are discussed here.

Three training strategies are applied to the learning methods before the training starts

for imbalanced cases “200-50” and “200-10”: learning from the original imbalanced data

directly, random oversampling and random undersampling. The aim of considering re-

sampling is simply to eliminate the negative effect of the imbalanced distribution and

avoid the minority class being ignored during training. For oversampling, a new training

set is formed by sampling from the minority class randomly with replacement until it

reaches the same size as the majority class. Undersampling downsizes the majority class

randomly without replacement until both classes are of equal size. Every experiment

under each setting is repeated 30 times, and the averages are recorded. Student T-test

with 95% confidence level is conducted for significance analysis.

In summary, the experiment considers two types of base learners, three training data

sets and three training strategies. Four models are constructed for each combination

of the above settings, including a single classifier, AdaBoost, AdaBoost.NC with λ = 2

(encourage diversity conservatively) and AdaBoost.NC with λ = 9 (encourage diversity

aggressively). For brevity of notation, we use “NC” to denote AdaBoost.NC, “Ada”

to denote the conventional AdaBoost and “Single” to denote a single classifier in the

following analysis.

In regard to the evaluation criteria, we use AUC (Bradley, 1997) as the overall perfor-

mance measure, and recall and precision to evaluate the performance for each class. AUC

has proved to be robust to the class distribution. It is computed by altering a threshold

value for labeling an example (Fawcett, 2003). Classification boundaries are presented

graphically for a visual understanding of the obtained results.
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5.2.2 AdaBoost.NC Tree Ensembles

Tables 5.1 - 5.2 present the measure outputs from tree ensembles on the three artificial

data sets. The significantly best values among the four models are in boldface. Each

entry presents the mean followed by the standard deviation.

Table 5.1: “Mean ± standard deviation” of AUC and single-class performance measures
on “200-200” by tree-based models. The significantly best value is in boldface. (R-pos:
recall of positive class; P-pos: precision of positive class; R-neg: recall of negative class;
P-neg: precision of negative class.)

200-200 Trees
Single Ada NC with λ = 2 NC with λ = 9

AUC 0.950±0.000 0.978±0.006 0.979±0.003 0.985±0.005
R-pos 0.940±0.000 0.894±0.017 0.911±0.018 0.923±0.025
P-pos 0.959±0.000 0.951±0.009 0.969±0.012 0.972±0.015
R-neg 0.960±0.000 0.954±0.009 0.970±0.012 0.973±0.015
P-neg 0.941±0.000 0.900±0.014 0.916±0.016 0.927±0.021

For the balanced case “200-200” in Table 5.1, an arbitrary class is tagged as “positive”.

The other is treated as the “negative” class. “R-pos” and “P-pos” denote recall and

precision from the positive class respectively. “R-neg” and “P-neg” are those from the

negative class. NC shows significantly better AUC than the single tree and AdaBoost.

NC with λ = 9 makes a further improvement than NC with λ = 2. Within each class,

NC attains higher recall and precision than Ada. The single tree is not bad at recall and

precision to some extent, but the AUC measure is not satisfactory.

Now let’s see the imbalanced cases. Table 5.2 organizes the measures into three groups

according to the training strategy. “Origin” are the results produced by the models of

learning from the imbalanced data without rebalancing. “Over” and “Under” groups

are from those applying random oversampling or undersampling respectively before the

training starts. “min” and “maj” are short for the minority and majority classes.

Among the four models, NC is capable of improving the overall performance measure

AUC, which achieves the significantly highest values in all 6 cases when λ = 9. The single

tree always gives the worst AUC.
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Table 5.2: “Mean ± standard deviation” of AUC and single-class performance measures
on “200-50” and “200-10” by tree-based models with three training strategies (Origin:
original data; Over: oversampling; Under: undersampling). The significantly best value
is in boldface. (R-min: recall of minority class; P-min: precision of minority class; R-maj:
recall of majority class; P-maj: precision of majority class.)

200-50 Trees
Origin Single Ada NC with λ = 2 NC with λ = 9
AUC 0.893±0.000 0.941±0.009 0.956±0.010 0.960±0.011
R-min 0.840±0.000 0.712±0.014 0.726±0.012 0.829±0.024
P-min 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
R-maj 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000
P-maj 0.862±0.000 0.777±0.008 0.785±0.007 0.854±0.017
Over Single Ada NC with λ = 2 NC with λ = 9
AUC 0.888±0.030 0.941±0.009 0.949±0.010 0.962±0.006
R-min 0.777±0.043 0.710±0.013 0.735±0.012 0.856±0.019
P-min 1.000±0.000 1.000±0.000 1.000±0.000 0.996±0.011
R-maj 1.000±0.000 1.000±0.000 1.000±0.000 0.996±0.011
P-maj 0.819±0.029 0.775±0.008 0.790±0.007 0.874±0.014
Under Single Ada NC with λ = 2 NC with λ = 9
AUC 0.923±0.019 0.957±0.009 0.964±0.010 0.963±0.011
R-min 0.865±0.039 0.826±0.040 0.837±0.034 0.882±0.019
P-min 0.981±0.019 0.972±0.023 0.980±0.019 0.975±0.021
R-maj 0.982±0.018 0.976±0.021 0.983±0.017 0.977±0.019
P-maj 0.880±0.028 0.850±0.029 0.858±0.025 0.893±0.013

200-10 Trees
Origin Single Ada NC with λ = 2 NC with λ = 9
AUC 0.890±0.000 0.899±0.014 0.910±0.012 0.932±0.012
R-min 0.460±0.000 0.602±0.038 0.609±0.030 0.421±0.195
P-min 1.000±0.000 0.991±0.014 0.998±0.007 0.966±0.182
R-maj 1.000±0.000 0.994±0.008 0.999±0.005 1.000±0.000
P-maj 0.649±0.000 0.715±0.019 0.719±0.014 0.643±0.085
Over Single Ada NC with λ = 2 NC with λ = 9
AUC 0.808±0.003 0.902±0.016 0.909±0.015 0.927±0.013
R-min 0.616±0.007 0.614±0.026 0.633±0.020 0.785±0.025
P-min 1.000±0.000 0.995±0.011 0.992±0.020 0.994±0.018
R-maj 1.000±0.000 0.997±0.006 0.995±0.013 0.995±0.015
P-maj 0.723±0.003 0.721±0.013 0.731±0.011 0.823±0.017
Under Single Ada NC with λ = 2 NC with λ = 9
AUC 0.911±0.030 0.943±0.039 0.944±0.043 0.953±0.029
R-min 0.837±0.080 0.822±0.050 0.809±0.043 0.747±0.102
P-min 0.985±0.020 0.994±0.014 0.986±0.068 0.999±0.007
R-maj 0.985±0.019 0.994±0.012 0.981±0.098 0.999±0.007
P-maj 0.863±0.060 0.850±0.035 0.838±0.028 0.802±0.053
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When oversampling is applied, NC with λ = 9 produces the best minority-class recall

for both data sets without losing any performance in the majority class. More minority

class examples are found by setting a large λ, which shows the effect of having a high

diversity level.

In the “Origin” group, NC does not show any consistent improvement. Especially for

the very imbalanced case “200-10”, the minority-class recall gets even lower by using a

large λ. The minority-class precision and majority-class recall remain very high, most of

which reach 1. It implies that NC does not improve the generalization of recognizing the

minority class examples. It turns out that considering diversity alone without emphasizing

the rare class in the NCL training is not enough. The imbalanced distribution weakens

the effect of the penalty term in AdaBoost.NC, because the large number of majority

class examples takes over the attention of the learning algorithm.

When undersampling is applied, the improvement brought by AdaBoost.NC is not as

significant as that in the oversampling group. Our explanation is that undersampling itself

has caused some classification diversity indirectly by removing some data information from

the majority class. Increasing the diversity further with fewer training examples seems

not to be helpful.

To sum up, AdaBoost.NC tree ensembles can improve AUC and find minority class

examples effectively without sacrificing the performance on the majority class, when com-

bined with the oversampling strategy. The algorithm itself is sensitive to the imbalance

distribution. Undersampling and AdaBoost.NC seem not to work well together, due to

the lost data information through undersampling.

To further understand the above observations and illustrate how AdaBoost.NC can

be useful, corresponding boundary plots are presented in Figs. 5.1 - 5.7. For the case

“200-200” in Fig. 5.1, AdaBoost apparently overfits the examples near the boundaries

with some small regions. Boundaries produced by AdaBoost.NC are much simpler, which

are smoothed further by increasing λ. AdaBoost.NC with λ = 9 least overfits the training

examples. The boundary produced by the single tree is too simple to be as accurate as
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AdaBoost.NC. Hence, we can say that AdaBoost.NC with λ = 9 yields the closest decision

boundaries to the real one in this balanced scenario, which is consistent with the results

in Table 5.1. The main role of the penalty term is to make the ensemble less overfit, such

that better generalization performance is achieved.
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Figure 5.1: Classification boundaries on “200-200” by tree-based models.

For the two imbalanced data sets in Figs. 5.2 - 5.7, in addition to simpler boundaries,

AdaBoost.NC produces broader space for the minority class towards the majority class

side in “oversampling” plots (Fig. 5.3 and Fig. 5.6), which are closer to the real boundary.

The effect of oversampling is to make the algorithm not overlook the classification diversity

on the minority class. It is a meaningful result, since it breaks the overfitting problem

of oversampling and makes use of the replicates of the rare examples to produce less

overfitting boundaries. It is worth noting that this behaviour is not observed in the

“original data” (Fig. 5.2 and Fig. 5.5) and “undersampling” (Fig. 5.4 and Fig. 5.7) plots.

The boundaries may get even tighter.

The plots reveal that AdaBoost.NC tree ensembles are capable of improving both

overall and minority-class performance measures for class imbalance problems, when used

with random oversampling. It is achieved by generating less overfitting and broader

classification boundaries for the minority class. In accordance with Table 5.2, it is not

necessary to use AdaBoost.NC with undersampling, where the produced boundaries in

the corresponding plots (Figs. 5.4 and 5.7) are quite simple and similar to each other.
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Figure 5.2: Classification boundaries on “200-50” by tree-based models using original
data.
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Figure 5.3: Classification boundaries on “200-50” by oversampling + tree-based models.
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Figure 5.4: Classification boundaries on “200-50” by undersampling + tree-based models.
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Figure 5.5: Classification boundaries on “200-10” by tree-based models using original
data.
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Figure 5.6: Classification boundaries on “200-10” by oversampling + tree-based models.
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Figure 5.7: Classification boundaries on “200-10” by undersampling + tree-based models.

128



5.2.3 AdaBoost.NC Neural Network (NN) Ensembles

The same analysis is carried out for AdaBoost.NC NN ensembles. The experimental

results are quite different from the ones produced by tree-based models. For the balanced

data in Table 5.3, the single NN produces the best AUC. AdaBoost.NC does not bring

any significant and consistent performance improvement. Fig. 5.8 plots the corresponding

classification boundaries. The boundaries produced by the single NN and AdaBoost seem

smoother than the ones produced by AdaBoost.NC.

Table 5.3: “Mean ± standard deviation” of AUC and single-class performance measures
on “200-200” by NN-based models. The significantly best value is in boldface. (R-pos:
recall of positive class; P-pos: precision of positive class; R-neg: recall of negative class;
P-neg: precision of negative class.)

200-200 NNs
Single Ada NC with λ = 2 NC with λ = 9

AUC 0.993±0.001 0.984±0.004 0.990±0.002 0.988±0.004
R-pos 0.891±0.017 0.886±0.018 0.937±0.034 0.912±0.022
P-pos 0.977±0.004 0.972±0.015 0.928±0.033 0.954±0.023
R-neg 0.979±0.005 0.974±0.015 0.925±0.037 0.955±0.024
P-neg 0.900±0.015 0.896±0.015 0.938±0.030 0.916±0.018
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Figure 5.8: Classification boundaries on “200-200” by 4 NN-based models.

Performance results for the imbalanced cases are presented in Table 5.4. Unlike tree-

based models where NC always gives the highest AUC, a single NN classifier attains the

best AUC in all six settings under the imbalanced scenarios. On data set “200-10”, the
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Table 5.4: “Mean ± standard deviation” of AUC and single-class performance measures
on “200-50” and “200-10” by NN-based models with three training strategies (Origin:
original data; Over: oversampling; Under: undersampling). The significantly best value
is in boldface. (R-min: recall of minority class; P-min: precision of minority class; R-maj:
recall of majority class; P-maj: precision of majority class.)

200-50 NNs
Origin Single Ada NC with λ = 2 NC with λ = 9
AUC 0.991±0.000 0.980±0.008 0.983±0.003 0.969±0.012
R-min 0.861±0.008 0.799±0.051 0.778±0.026 0.778±0.067
P-min 1.000±0.000 1.000±0.000 0.999±0.004 0.997±0.008
R-maj 1.000±0.000 1.000±0.000 0.999±0.003 0.997±0.006
P-maj 0.878±0.006 0.834±0.035 0.818±0.017 0.820±0.045
Over Single Ada NC with λ = 2 NC with λ = 9
AUC 0.991±0.002 0.965±0.012 0.983±0.005 0.976±0.012
R-min 0.880±0.000 0.874±0.022 0.798±0.032 0.790±0.081
P-min 0.986±0.010 0.994±0.009 0.999±0.004 0.984±0.016
R-maj 0.987±0.009 0.994±0.008 0.999±0.003 0.986±0.015
P-maj 0.891±0.000 0.888±0.017 0.832±0.022 0.828±0.049
Under Single Ada NC with λ = 2 NC with λ = 9
AUC 0.993±0.001 0.976±0.011 0.986±0.004 0.977±0.011
R-min 0.891±0.016 0.860±0.044 0.844±0.041 0.898±0.045
P-min 0.981±0.009 0.974±0.018 0.988±0.011 0.960±0.033
R-maj 0.982±0.008 0.976±0.017 0.990±0.010 0.961±0.036
P-maj 0.900±0.013 0.876±0.032 0.865±0.030 0.906±0.036

200-10 NNs
Origin Single Ada NC with λ = 2 NC with λ = 9
AUC 0.993±0.000 0.969±0.012 0.956±0.008 0.947±0.006
R-min 0.631±0.023 0.685±0.028 0.758±0.030 0.811±0.023
P-min 1.000±0.000 1.000±0.000 1.000±0.000 0.996±0.008
R-maj 1.000±0.000 1.000±0.000 1.000±0.000 0.996±0.007
P-maj 0.731±0.013 0.761±0.016 0.806±0.019 0.841±0.015
Over Single Ada NC with λ = 2 NC with λ = 9
AUC 0.992±0.003 0.952±0.016 0.953±0.007 0.940±0.003
R-min 0.880±0.000 0.816±0.067 0.808±0.044 0.789±0.039
P-min 0.981±0.007 0.997±0.007 1.000±0.000 0.999±0.004
R-maj 0.982±0.006 0.997±0.006 1.000±0.000 0.999±0.003
P-maj 0.891±0.000 0.847±0.047 0.840±0.031 0.827±0.026
Under Single Ada NC with λ = 2 NC with λ = 9
AUC 0.991±0.003 0.979±0.011 0.980±0.011 0.978±0.013
R-min 0.918±0.034 0.898±0.050 0.894±0.043 0.902±0.044
P-min 0.958±0.031 0.966±0.026 0.964±0.029 0.959±0.030
R-maj 0.958±0.036 0.967±0.027 0.965±0.033 0.960±0.031
P-maj 0.923±0.029 0.908±0.040 0.904±0.035 0.909±0.034
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single NN suffers from some difficulty in finding minority class examples with low recall,

but it is amended by the resampling strategies. The NC models, however, do not show

a consistent improvement in any performance measure. Using resampling and varying

λ are not very helpful. Figs. 5.9 - 5.10 further illustrate the results. It’s hard to tell

which boundary is consistently better. Generally speaking, “undersampling + a single

NN” seems good enough to have good AUC and minority-class performance, where the

NN guarantees a high AUC value and the undersampling helps to identify more minority

class examples. The AdaBoost.NC NN ensemble does not show much benefit on these

artificial data sets.
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Figure 5.9: Classification boundaries on “200-50” by 4 NN-based models for three training
strategies.
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Figure 5.10: Classification boundaries on “200-10” by 4 NN-based models for three train-
ing strategies.

Comparing the measures between tree-based and NN-based models, although the tree-
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based NC with λ = 9 achieves the best AUC over the other tree-based models, it is

still not as good as the NN-based ones. According to the boundary plots, the reason

could be that the NN is able to produce a smoother and simpler classification boundary

than the tree learner. This shows an advantage when the processing task is easy. The

boundary generated by the NN is closer to the real one, and better AUC is achieved.

However, the artificial data in this section only represent a limited class of imbalanced

cases. Japkowicz has shown that the sensitivity of NN to the class imbalance increases

with the complexity of the domain (Japkowicz, 2000b). More complex data distributions

exist in real-world applications, which could be very noisy at the same time. Therefore,

the performance between base learners will be further examined over a set of real-world

problems in section 5.3.

5.2.4 The Analysis of Parameter Effects

The experimental results so far show that, to tackle class imbalance problems effectively,

AdaBoost.NC requires the use of random oversampling, and a large λ value is preferable.

In the current section, we provide an analysis of the impact of the oversampling rate and

λ across different base learners and data sets. The analysis suggests that, even though

AdaBoost.NC has two parameters to be tuned (oversampling rate and λ), it is robust to

the choice of oversampling rate; the choice of λ does not depend on the imbalance rate of

training data. So, the substantial advantage of our approach still holds.

We perform a mixed (split-plot) factorial analysis of variance (ANOVA) (Montgomery,

2004). The factors analyzed are the oversampling rate, λ, the base learner and the im-

balance rate of training data. A mixed design is necessary because the oversampling

rate, λ and the base learner are within-subject factors (their levels vary within a data

set), whereas the imbalance rate is a between-subjects factor (its levels vary depending

on the data set being used). The factorial design is a commonly adopted method for

effect analysis, when there is more than one factor. It allows the effects of a factor to be

estimated at several levels of the other factors. In most factorial experiments, two levels
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are considered for each factor. In our cases, artificial data sets “200-50” and “200-10” are

used as training data with different imbalance rates. The oversampling rate is set to 100%

and 150% respectively, which is the size ratio of the minority class to the majority class

after oversampling is applied. λ is set to 2 (conservative level) and 9 (aggressive level) as

before. The C4.5 decision tree and MLP neural network are chosen as the base learner.

The effects of the factors on both AUC and minority-class recall are analyzed. These per-

formance measures are referred to as responses in the context of ANOVA. AdaBoost.NC

composed of 51 classifiers is repeated 30 times for each combination of factor level.

The ANOVA results are presented in Table 5.5, including the p-value and eta-squared

(η2). A p-value smaller than 0.05 indicates a significant difference by rejecting the null

hypothesis under the significance level of 5%. η2 is a measure in the range of [0, 1]

describing the effect size (Pierce et al., 2004). The larger the η2, the greater the effect of

the factor.

Table 5.5: ANOVA results: factor effects and interaction effects on AUC and minority-
class recall involving the oversampling rate (abbr. over) and λ in terms of the base learner
(abbr. learner) and training data (abbr. data). The symbol “*” indicates the interaction
between two factors.

AUC p-val η2 Minority-class p-val η2

recall
over .955 .000 over .087 .002

over*learner .385 .000 over*learner .207 .001
over*data .166 .000 over*data .062 .003

over*learner .952 .000 over*learner .034 .004
*data *data

λ .032 .006 λ .000 .176
λ*learner .000 .140 λ*learner .000 .286
λ*data .233 .000 λ*data .010 .005
λ*learner .003 .006 λ*learner .025 .004

*data *data

The results show that the oversampling rate does not have a significant effect on AUC

and minority-class recall in general. The effects of “over” and interactions involving “over”

are not significant in 7 out of 8 cases, where the p-value is larger than 0.05. Even though
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the interaction between “over”, “learner” and “data” has a significant effect on minority-

class recall, its effect size is very small (η2 = 0.004). The weak interactions here imply

that the oversampling rate always has very little effect on AdaBoost.NC regardless of

what base learner and training data are used. This is a reasonable behaviour, as random

oversampling is the most conservative sampling technique without losing or generating

any data information. Data replication does not cause the change of decision boundaries.

As long as the minority class draws comparable attention of the learning algorithm with

the majority class, the oversampling rate should not affect AdaBoost.NC’s performance

significantly.

Different observations are obtained on λ. It presents a significant effect in terms of

both AUC and minority-class recall, when varying from low to high. Especially, the

interaction effect of λ*learner appears to be quite strong with a much higher η2 value

than the others (0.140 and 0.286). It means that the impact of λ depends on the base

learner. However, the interaction effect of λ*data is rather weak, which is not significant

on AUC and has a very small η2 value (0.005) on minority-class recall. So, the effect

of λ is not affected by the training data much. For a clear understanding of λ’s effect,

we further draw the plots of marginal means of performance for λ*learner and λ*data

in Fig. 5.11. The plots for λ*learner*data are similar to the 2-factor ones due to its low

effect size, and were omitted here for space considerations.

Fig. 5.11(a) shows different effects of λ in AdaBoost.NC between base learners. As λ

varies from low to high, the tree-based AdaBoost.NC improves AUC and minority-class

recall, whereas the NN-based AdaBoost.NC reduces them. The NN-based AdaBoost.NC

presents better AUC than the tree-based one at both λ values. The tree-based Ad-

aBoost.NC with a large λ improves minority-class recall greatly, which shows even better

ability to recognize minority class examples than the NN-based AdaBoost.NC.

To explain why the effectiveness of AdaBoost.NC varies between base learners, a

possible reason could be that a NN is less sensitive to the change of number of training

data than a decision tree, which has been observed in (Japkowicz and Stephen, 2002;
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(a) λ*learner

(b) λ*data

Figure 5.11: Marginal means of responses for λ*learner and λ*data.
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Khoshgoftaar et al., 2010) and confirmed in our experiments. Neural networks can be

thought of as a less global approach to partitioning the data space than decision trees

since they get modified by each data point or a batch of data points sequentially and

repeatedly through the error function (Japkowicz and Stephen, 2002). With a different

training strategy, a decision tree grows based on the whole training set by counting the

class frequency at each node. We conjecture that the sensitivity of a classifier to the

characteristics of training examples affects the effectiveness of AdaBoost.NC in handling

imbalanced data sets. This point will be further discussed in the next section by providing

more empirical evidences.

From the view of training data, two response lines in each plot of Fig. 5.11(b) are

nearly parallel to each other, which further confirms the weak interaction between λ and

the imbalance rate of training data previously pointed out by the low η2 value. The result

is reasonable, because λ does not operate on training data directly, so its impact should

not depend on the given data set greatly.

In summary, the ANOVA results suggest that AdaBoost.NC is insensitive to the over-

sampling rate if the minority class draws relatively equal attention of the learning al-

gorithm to the majority class. λ is the main factor that decides the generalization of

AdaBoost.NC. Its effect depends on the base learner. When the decision tree is used as

the base learner, a large λ is recommended. Its effect is not affected much by the training

data we tested on, because λ does not work on the data level. As a remarkable improve-

ment over other resampling-based ensemble methods, AdaBoost.NC simply learns from

the original imbalanced data without generating new minority class data or removing

majority class data. It reduces the dependence of the algorithm on resampling techniques

and training data, which is supported by the ANOVA experiment in this section. Re-

maining questions for future are the behaviour of AdaBoost.NC using other base learning

algorithms and how large λ could be.
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5.3 Comparisons with Other NCL Algorithms and

Class Imbalance Learning Methods

So far, we have discussed the effectiveness of AdaBoost.NC under some artificial imbal-

anced scenarios. It is necessary to compare its performance with other state-of-art meth-

ods in real-world domains. In this section, more experiments are set up to investigate NCL

algorithms, including AdaBoost.NC, CELS (Liu and Yao, 1999b) and NCCD (Chan and

Kasabov, 2005b), in terms of their capabilities in dealing with class imbalance problems.

Three popular Boosting-based solutions for class imbalance learning, RareBoost (Joshi

et al., 2001), SMOTEBoost (Chawla et al., 2003) and JOUS-Boost (Mease et al., 2007),

join the comparison.

5.3.1 Real-World Data Domains and Experimental Settings

We continue our study on fifteen real-world imbalanced data sets, which are the same as

the ones discussed in chapter 3. Data information is summarized in Table 5.6. The first

ten are from software engineering projects in the PROMISE data repository (Boetticher

et al., 2007). The last five data sets are frequently discussed in the class imbalance learning

literature.

In our experiments, we still employ C4.5 decision trees and MLP neural networks as

base learners, following the settings in the previous section. We implement 7 ensemble

algorithms plus a single classifier model. The seven ensemble algorithms include three

NCL methods (i.e. AdaBoost.NC, CELS, NCCD), three imbalance learning methods

(i.e. SMOTEBoost (Chawla et al., 2003), JOUS-Boost (Mease et al., 2007), RareBoost-

1 (Joshi et al., 2001)) and the conventional AdaBoost. As before, three training strategies

are applied to NCL methods, AdaBoost and the single classifier: learning from the origi-

nal data, random oversampling, and random undersampling, which are denoted as “Or”,

“Ov” and “Un” respectively in the following tables and analysis to simply our notations.

It is worth mentioning that CELS and NCCD are not applicable to tree ensembles. λ in
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Table 5.6: Summary of real-world data sets.

Data Size Attributes Percentage of minority class(%)
mc2 161 39 32.29
mw1 403 37 7.69
kc3 458 39 9.38
cm1 498 21 9.83
kc2 522 21 20.49
pc1 1109 21 6.94
pc4 1458 37 12.20
pc3 1563 37 10.23
kc1 2109 21 15.45
pc2 5589 36 0.41
glass 214 9 7.94
ecoli 336 7 10.42

balance 625 4 7.84
car 1728 6 3.99

insurance 5822 85 5.98

AdaBoost.NC is set to 2 and 9, to consider both cases of encouraging diversity conserva-

tively and aggressively. To sum up, 21 NN-based models and 15 tree-based models are

constructed in total for every data set. Their settings are described as follows.

• 1-3) Single tree or NN: train a single classifier using 3 different strategies. (abbr.

OrSg, OvSg, UnSg)

• 4-6) AdaBoost (Freund and Schapire, 1996): train 51 trees or NNs using AdaBoost

with 3 different strategies. (abbr. OrAda, OvAda, UnAda)

• 7-12) AdaBoost.NC (Wang et al., 2010): train 51 trees or NNs using AdaBoost.NC

with 3 different strategies. The penalty strength λ is set to 2 and 9. (abbr. OrNC,

OvNC, UnNC followed by the λ value)

• 13-15) CELS (Liu and Yao, 1999b): train 9 NNs simultaneously using CELS (abbr.

OrCELS, OvCELS, UnCELS). The scaling coefficient λ is set to 1, to allow a signif-

icant effect of diversity. Trees are not applicable. To reduce the computation cost,

the ensemble size is limited to 9. Besides, it becomes more difficult to achieve smaller
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correlations when more networks are added in (Brown and Yao, 2001). “Winner-

take-all” is used to combine the outputs as demanded by the original paper.

• 16-18) NCCD (Chan and Kasabov, 2005a): train 9 NNs using NCCD (abbr. OrNCCD,

OvNCCD, UnNCCD). The scaling coefficient λ is set to 0.8. Trees are not applica-

ble. “Winner-take-all” is used to combine the outputs as demanded by the original

paper.

• 19) SMOTEBoost (Chawla et al., 2003) (abbr. SMB): it uses SMOTE (Chawla

et al., 2002) to generate new minority class examples in each training epoch. The k

nearest neighbour parameter is five as recommended by the original paper. Without

knowing the “right” class distribution, the amount of new data in each iteration is

roughly set to |Nmaj| − |Nmin|, where |Nmaj| and |Nmin| denote the numbers of

majority and minority class examples respectively in the training set. This is to

ensure fair comparison, considering that our method also adjusts the class ratio to

one. 51 trees or NNs are built sequentially.

• 20) JOUS-Boost (Mease et al., 2007) (abbr. JSB): noise is introduced into each

Boosting training epoch by applying jittering to repeated training examples. Noise

with i.i.d. uniform (−δσj, δσj) is added to each of the continuous attributes, where

σj is the standard deviation of the j-th attribute, and δ is the tuning parameter to

adjust the noise level. δ is fixed at 1, as suggested by the authors (Mease et al.,

2007). 51 trees or NNs are built sequentially.

• 21) RareBoost-1 (Joshi et al., 2001) (abbr. RAB): it is a cost-sensitive but cost-free

method. The rare class is emphasized by distinguishing TN from FN, and TP from

FP at each iteration. The balance between recall and precision is thus achieved. 51

trees or NNs are built sequentially. If the conditions of TP > FP and TN > FN

are not satisfied, the training procedure will stop early.

For an easy access, the methods and their settings are summarized in Table 5.7. A

10-fold cross-validation (CV) is performed with 10 runs.
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Table 5.7: Summary of experimental methods, their acronyms and parameter settings.

No. Acronym Method Parameter
1 OrSg build a single classifier 51 trees or NNs
2 OvSg oversampling+single classifier 51 trees or NNs
3 UnSg undersampling+single classifier 51 trees or NNs
4 OrAda original AdaBoost.M1 Freund and Schapire (1996) 51 trees or NNs
5 OvAda oversampling+AdaBoost.M1 51 trees or NNs
6 UnAda undersampling+AdaBoost.M1 51 trees or NNs
7 OrNC2 original AdaBoost.NC Wang et al. (2010) 51 trees or NNs; λ = 2
8 OrNC9 original AdaBoost.NC 51 trees or NNs; λ = 9
9 OvNC2 oversampling+AdaBoost.NC 51 trees or NNs; λ = 2
10 OvNC9 oversampling+AdaBoost.NC 51 trees or NNs; λ = 9
11 UnNC2 undersampling+AdaBoost.NC 51 trees or NNs; λ = 2
12 UnNC9 undersampling+AdaBoost.NC 51 trees or NNs; λ = 9
13 OrCELS original CELS Liu and Yao (1999b) 9 NNs; λ = 1
14 OvCELS oversampling+CELS 9 NNs; λ = 1
15 UnCELS undersampling+CELS 9 NNs; λ = 1
16 OrNCCD original NCCD Chan and Kasabov (2005a) 9 NNs; λ = 0.8
17 OvNCCD oversampling+NCCD 9 NNs; λ = 0.8
18 UnNCCD undersampling+NCCD 9 NNs; λ = 0.8
19 SMB SMOTEBoost Chawla et al. (2003) 51 trees or NNs; k = 5;

N = |Nmaj | − |Nmin|
20 JSB JOUS-Boost Mease et al. (2007) 51 trees or NNs; δ = 1
21 RAB RareBoost-1 Joshi et al. (2001) 51 trees or NNs
N: the amount of generated data; λ: penalty strength; δ: noise level.

5.3.2 Results and Analyses

We compare AUC, minority-class recall and precision for each pair of learning models, and

output their win-tie-lose numbers based on T-test at confidence level of 95% over the 15

data sets. For a clear observation, we further calculate the percentages of win-tie-lose cases

on average for each model compared with the others based on the paired comparison. The

full results of paired comparison can be found in the Appendix. C section. AUC describes

the general ability of a learning algorithm to separate the minority and majority classes.

Minority-class recall and precision provide information of which performance aspect is

improved or reduced on the minority class. Separate discussions are given to tree-based

and NN-based models next.
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Tree-Based Models

Table 5.8 shows the average percentages of win-tie-lose cases of tree-based models in total

210 pairs of comparison (15 data sets * 14 pairs of learning methods). According to the

table, we have following observations:

Table 5.8: Percentages of win(w)-tie(t)-lose(l) cases (in ‘%’) for each experimental method
in 210 pairs of comparison using tree base learners, including AUC, minority-class recall
and minority-class precision. The results are based on student T-test with confidence
level of 0.95. The highest percentage of win is in boldface.

Method AUC Minority-class Minority-class
recall precision

w t l w t l w t l
OrSg 12 9 79 16 31 53 39 35 26
OvSg 6 8 86 39 22 39 32 29 39
UnSg 18 12 70 74 20 6 12 14 74

OrAda 35 40 25 14 33 53 51 40 9
OvAda 33 43 24 30 29 41 43 38 19
UnAda 44 35 21 78 17 5 17 18 65
OrNC2 52 36 12 8 24 68 60 30 10
OrNC9 42 39 19 2 7 91 28 20 52
OvNC2 54 34 12 28 25 47 51 40 9
OvNC9 61 30 9 67 11 22 39 23 38
UnNC2 49 34 17 81 19 0 19 20 61
UnNC9 36 26 38 80 19 1 16 17 67
SMB 37 43 20 47 17 36 48 33 19
JSB 20 14 66 10 26 64 38 28 34
RAB 32 34 34 12 30 58 44 41 15

1) OvNC9 is superior to the other learning models in terms of AUC with the highest

win rate of 61% and the lowest lose rate of 9%.

To understand how OvNC9 can achieve a high AUC score, let’s see recall and precision

for the minority class. It’s not surprising that models using undersampling always produce

the highest recall values, since some data information is abandoned from the majority

class. However, their classification precision is sacrificed greatly, where their win rates

are all lower than 20%. It means that more majority class examples are misclassified.

Therefore, they do not perform well in AUC, even though more minority class examples
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are labelled correctly. Among the models without using undersampling, OvNC9 attains

the highest win rate (67%) of minority-class recall without losing too much precision.

Thus, it shows the best AUC. In other words, it balances the between-class performance

very well with improved recognition rate of minority class examples.

2) Regarding other methods, OvSg presents the worst AUC with the lowest win rate,

which implies that oversampling could reduce the single tree’s performance. JSB does not

perform well either, which is only better than the single tree models and worse than the

others. SMB is better than RAB and JSB, but still worse than OvNC ones.

3) Regarding the training strategy of resampling, we can see that random oversam-

pling does not really improve AUC of the single tree and the conventional AdaBoost.

However, AdaBoost.NC integrated with oversampling improves AUC and minority-class

recall greatly, especially when λ is high. It tallies with our results on the artificial data.

It suggests that this combination can discriminate the minority class from the majority

class better by encouraging diversity on the minority class aggressively. The overfitting

problem is lessened. Random undersampling does not work well on AdaBoost.NC, be-

cause undersampling itself is able to tackle overfitting by introducing some randomness

into data space. Undersampling tends to cause over-generalization with low minority-class

precision obtained.

4) For the ten defect prediction data sets in our experiment, it is useful to know

that, the average rate of finding defects ≈ 60% was reported at the 2002 IEEE Metrics

panel (Shull et al., 2002) in the software engineering community. A recent work (Menzies

et al., 2007) had the average recall reach 71% over some PROMISE data sets with data

cleaning and feature selection applied. In our experiments, OvNC9 produces recall for

the defect class higher than 60% in 5 out of 10 data sets, 2 of which exceed 71%. For the

space consideration, the raw outputs were omitted here.

In summary, when the decision tree is used as the base learner, AdaBoost.NC using

random oversampling is more effective than other “resampling+ensemble/single” learn-

ing methods and the state-of-art solutions for class imbalance learning. It shows better
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separability between the minority and majority classes and less overfits the minority class

without modifying training data. A large λ is preferable.

NN-Based Models

According to Table 5.9, we have following observations for the NN-based models in total

300 pairs of comparison (15 data sets * 20 pairs of learning methods):

Table 5.9: Percentages of win(w)-tie(t)-lose(l) cases (in ‘%’) for each experimental method
in 300 pairs of comparison using NN base learners, including AUC, minority-class recall
and minority-class precision. The results are based on student T-test with confidence
level of 0.95. The highest percentage of win is in boldface.

Method AUC Minority-class Minority-class
recall precision

w t l w t l w t l
OrSg 43 44 24 9 18 73 45 25 30
OvSg 39 34 27 56 19 25 43 38 29
UnSg 43 36 21 70 19 11 25 26 49

OrAda 40 35 25 24 23 53 58 34 8
OvAda 41 38 21 39 23 38 54 33 13
UnAda 39 42 19 76 18 6 24 24 52
OrNC2 38 33 29 26 17 57 49 37 14
OrNC9 28 39 33 8 11 81 24 35 41
OvNC2 54 29 17 40 18 42 52 31 17
OvNC9 43 33 24 46 19 35 45 27 28
UnNC2 34 37 29 74 16 10 21 22 57
UnNC9 25 32 43 70 20 10 18 21 61
OrCELS 39 28 33 18 18 64 47 29 24
OvCELS 36 39 25 64 17 19 39 28 33
UnCELS 37 35 28 64 20 16 29 25 46
OrNCCD 26 28 46 9 15 76 16 23 61
OvNCCD 19 21 60 41 16 43 33 24 43
UnNCCD 30 31 39 77 11 12 11 16 73

SMB 23 30 47 20 19 61 36 37 27
JSB 2 8 90 11 16 73 38 29 33
RAB 33 36 31 22 21 57 48 38 14

1) OvNC2 presents better AUC with the highest win rate of 54% and the lowest lose

rate of 17%. A large λ tends to reduce AUC, which is also observed on the artificial data

143



sets.

2) With respect to the single NN and NN-based AdaBoost models, they show less

sensitivity to the class imbalance than the tree-based ones. For example, the NN-based

OrSg wins in AUC with the rate of 43%, whereas the tree-based OrSg only has the rate

of 12%. It agrees with our results on the artificial data sets and the existing findings in

the literature (Japkowicz and Stephen, 2002; Khoshgoftaar et al., 2010).

3) AdaBoost.NC seems more effective in improving AUC on the real-world data sets

than on the artificial ones. In section 5.2, the single NN is generally better than Ad-

aBoost.NC, but this is not the case here. As we have explained, although the NN is less

affected by the class imbalance than the decision tree, its robustness gets weaker as the

training data becomes more complex (Japkowicz, 2000b). Hence, the single NN may be

more suitable for simpler data sets, such as the artificial data we have shown, whereas

AdaBoost.NC is a better choice for real-world problems.

4) As to the CELS and NCCD models, the CELS ones present better AUC than the

NCCD ones, but are still worse than OvNC2 and OvNC9. An unexpected observation

is that OvCELS achieves very good minority-class recall, which is competitive with Un-

CELS and better than the other methods without using undersampling. It supports our

initial idea of using NCL to better recognize rare examples. CELS is more effective in

improving minority-class recall than AdaBoost.NC. The possible reason is that ensem-

ble diversity is encouraged through the error function of the neural network, which is

more straightforward for training a NN than modifying the weights of training data in

AdaBoost.NC.

5) For the three class imbalance learning solutions, SMB, JSB and RAB do not show

any advantage in both AUC and minority-class performance. Especially, JSB appears to

be the worst.

The above observations suggest that AdaBoost.NC using random oversampling can

produce better overall performance than other methods, when the neural network is used

as the base learner. A small λ is preferable. CELS using oversampling is very effective
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in finding minority class examples, which means that it less overfits the minority class

without removing any data information.

5.3.3 Additional Remarks

Based on the results obtained from the real-world data, we have following remarks re-

garding AUC and minority-class performance for tree-based and NN-based models.

1) Combining random oversampling and NCL can improve recall of the minority class

significantly without removing any data information or generating any new data. It is

observed in both tree-based and NN-based models. Although random oversampling itself

could cause overfitting in general, the NCL method can exploit the replicates of rare

examples to tackle this issue successfully by increasing diversity of the ensemble on the

classification of the overfitted class. Without applying it, the relatively small quantity of

the minority class data may diminish the effect of NCL, when compared with the large

size of the majority class.

2) The NCL methods seem not to work well with undersampling, because undersam-

pling does not provide sufficient data points for NCL to generate appropriate diversity.

Undersampling itself is able to make the ensemble diverse, but sacrifices the precision of

predicting the minority class greatly.

3) Between two base learners, we compare OvNC9 tree ensembles and OvNC2 NN

ensembles based on T-test with confidence level of 95% in Table 5.10. Both attain the

best AUC values in paired comparison among the models using the same base learner.

We are interested in which base learner can have the ensemble better deal with class

imbalance problems. According to the table, OvNC9 produces better AUC in 10 out of

15 data sets (3 cases are significant), better minority-class recall in 13 data sets (4 cases

are significant) and better minority-class precision in 7 data sets (3 cases are significant).

Therefore, we conclude that the OvNC9 tree ensemble is generally a better choice than

the OvNC2 NN ensemble on real-world data sets.

Another point suggested by the table is that, AdaBoost.NC enhances the learning
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Table 5.10: “Mean ± standard deviation” of AUC and minority-class performance mea-
sures by OvNC9 tree ensembles and OvNC2 NN ensembles. The significantly better value
is in boldface.

AUC Minority-class recall Minority-class precision
OvNC9 trees OvNC2 NN OvNC9 trees OvNC2 NN OvNC9 trees OvNC2 NN

mc2 0.696±0.145 0.744±0.135 0.555±0.240 0.513±0.238 0.502±0.221 0.578±0.225
mw1 0.767±0.160 0.725±0.169 0.529±0.287 0.338±0.267 0.319±0.194 0.307±0.278
kc3 0.819±0.104 0.735±0.104 0.612±0.230 0.312±0.204 0.331±0.143 0.271±0.178
cm1 0.783±0.089 0.730±0.111 0.517±0.219 0.369±0.236 0.254±0.099 0.220±0.131
kc2 0.801±0.076 0.674±0.139 0.728±0.144 0.578±0.195 0.502±0.090 0.389±0.150
pc1 0.874±0.057 0.841±0.064 0.515±0.165 0.520±0.193 0.385±0.121 0.250±0.079
pc4 0.930±0.022 0.929±0.027 0.892±0.074 0.663±0.122 0.495±0.057 0.588±0.098
pc3 0.842±0.048 0.825±0.051 0.659±0.127 0.456±0.124 0.334±0.067 0.368±0.086
kc1 0.802±0.035 0.684±0.070 0.650±0.077 0.610±0.109 0.370±0.039 0.279±0.063
pc2 0.803±0.169 0.749±0.152 0.098±0.180 0.076±0.169 0.075±0.162 0.035±0.102
glass 0.858±0.089 0.905±0.064 0.470±0.286 0.340±0.293 0.300±0.219 0.370±0.280
ecoli 0.929±0.043 0.945±0.033 0.820±0.172 0.651±0.221 0.518±0.115 0.653±0.161

balance 0.433±0.066 0.918±0.051 0.122±0.100 0.504±0.182 0.038±0.027 0.579±0.159
car 0.986±0.007 0.988±0.001 0.975±0.068 0.959±0.065 0.539±0.092 0.948±0.056

insurance 0.704±0.007 0.682±0.015 0.251±0.012 0.238±0.015 0.165±0.010 0.184±0.018

ability of trees more than that of NNs. It could be attributed to the way of encouraging

diversity of AdaBoost.NC. It emphasizes diversity by adjusting the training subsets in

essence through the penalty term that changes the weights of training examples. An

indirect effect is thus made on base learners. However, NNs tend to be more tolerant to

the change of training data than trees (Japkowicz and Stephen, 2002; He and Garcia, 2009;

Khoshgoftaar et al., 2010), as we have already shown in the earlier analysis. Therefore,

AdaBoost.NC seems less effective in dealing with class imbalance problems when using

neural networks as the base learner.

The observations we have made on real-world imbalanced tasks are quite encouraging,

which support our idea of using NCL to handle class imbalance problems at the beginning

of this chapter. It balances the performance between classes well without losing any

data information or generating new training data. Particularly, the AdaBoost.NC tree

ensemble with a large λ could be a good choice.
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5.3.4 Correlation Between Diversity and Generalization Perfor-
mance

This subsection discusses the relationship between diversity and classification performance

produced by our training methods in order to understand the role of diversity in en-

semble learning better. Spearman’s rank correlation coefficient is used for correlation

analysis. It is a non-parametric measure of statistical dependence between two variables.

Q-statistic (Yule, 1900) is used to evaluate diversity, as one of the most popular diversity

measures for classification ensembles.

Table 5.11 presents the correlation coefficient ρ between Q-statistic (Q) and AUC/minority-

class recall (R)/minority-class precision (P) evaluated on testing data for the 12 tree

ensembles we have built in our experiments. A negative value indicates that the corre-

sponding performance tends to decrease when ensemble diversity reduces (equivalent to

an increasing Q). In other words, there is a positive effect of diversity.

Table 5.11: Rank correlation coefficients (in ‘%’) between Q-statistic (Q) and
AUC/minority-class recall (R)/minority-class precision (P) for the 12 tree ensembles on
15 real-world data sets. “avg” is the average over all data sets.

Data Q-R Q-P Q-AUC
mc2 -29 -60 -57
mw1 -36 16 21
kc3 -10 -27 46
cm1 -31 -41 39
kc2 -22 27 34
pc1 -54 11 18
pc4 -5 -15 -21
pc3 -29 -41 17
kc1 -26 11 -8
pc2 -38 -43 -6
glass -52 -33 7
ecoli 5 16 -27

balance -41 -42 7
car -61 -13 -4

insurance -40 11 23
avg -31 -15 6

According to Table 5.11, most correlation coefficient ρ’s of minority-class recall present

negative. It implies that a larger Q (less diversity) tends to find fewer examples from
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the minority class. No consistent relationship is observed in AUC and minority-class

precision from the table. It could be attributed to the nature of the experiment. First,

the improvement of the performance measure is small, which cannot be reflected well by

the diversity measure. Second, only twelve ensembles with limited range of Q-statistic are

considered in the correlation analysis. Using different learning methods may not cause a

significant change of Q-statistic. In addition, the range of diversity measures could be a

factor of affecting the role of diversity (Chen, 2008). Considering more ensemble methods

may be useful.

5.4 Chapter Summary

This chapter presents a comprehensive experimental study of ensemble methods for class

imbalance learning. The effectiveness of negative correlation learning (NCL) algorithms is

explored and exploited, as a type of ensemble learning techniques that encourages diversity

explicitly. The objective is to find a better solution that less depends on the settings of

data-level techniques and is easier to use than algorithm-level methods. AdaBoost.NC,

a newly proposed NCL algorithm in chapter 4, is studied thoroughly on both artificial

and real-world imbalanced data, in order to understand the effect of diversity and how it

facilitates class imbalance learning. Two other NCL algorithms (CELS and NCCD) and

some state-of-art ensemble solutions for class imbalance problems are also investigated

and compared to AdaBoost.NC.

Our experimental results suggest that integrating random oversampling with NCL

methods can find more minority class examples without losing the overall performance

when compared with other existing methods. This is achieved by producing broader and

less overfitting boundaries for the minority class. Particularly, the AdaBoost.NC tree

ensemble with a large λ could be a good solution with improved AUC and minority-class

recall. It is not recommended to use undersampling with NCL. Apparently, our method

has following merits: no data information is lost in the majority class; no data generation
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method is involved. Therefore, it reduces the dependence of the algorithm on resampling

techniques and training data. It is empirically supported by the results in the ANOVA

experiment. Besides, it works on the ensemble level, so there is no need to modify the

base learning algorithm.

So far, we find a new way to deal with class imbalance problems effectively. It shows

the usefulness of ensemble diversity in this type of classification tasks. This chapter

only examines two-class imbalance learning problems. It is important and interesting to

study multi-class tasks and see if the effectiveness of NCL would still be maintained when

multiple minority and/or majority classes exist in data.
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CHAPTER 6

NEGATIVE CORRELATION LEARNING FOR
MULTI-CLASS IMBALANCE PROBLEMS

All the analyses and discussions so far are focused on two-class imbalance problems. How-

ever, many real-world applications that suffer from the class imbalance difficulty have more

than two classes. Multi-class brings new challenges to class imbalance learning that have

not caused much attention in the literature. Performance degradation in two-class imbal-

ance learning techniques has been observed. Therefore, more investigations are necessary

to explain what problems multi-class can cause and how it affects the classification per-

formance in the presence of imbalanced data. Moreover, there is no direct and effective

method specializing in multi-class imbalance problems. We would like to explore new

approaches to tackling this problem.

This chapter addresses the “multi-class” issue in class imbalance learning. Section 6.2

studies the impact of multi-class on the performance of two simple resampling techniques

in class imbalance scenarios. Section 6.3 extends the solving scope of AdaBoost.NC that

has shown great benefits in two-class imbalance problems in chapter 5 to multi-class cases.

Section 6.4 summarizes this chapter.
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6.1 Introduction

Although the efforts in the class imbalance learning literature are focused on two-class

problems, two-class is not the only scenario where the class imbalance problem prevails.

In practice, many problem domains have more than two classes with uneven distributions,

such as protein fold classification (Zhao et al., 2008; Chen et al., 2006; Tan et al., 2003) and

weld flaw classification (Liao, 2008). Multi-class imbalance problems pose new challenges

that are not observed in two-class problems. Zhou et al. (Zhou and Liu, 2006b) showed

that dealing with multi-class tasks with different misclassification costs of classes is more

difficult than with two-class ones. Further investigations are necessary to explain what

problems multi-class can cause to existing class imbalance learning techniques and how

it affects the classification performance. Such information helps us to understand the

multi-class issue better, and can be utilized to develop better solutions.

Most existing imbalance learning techniques are only designed for and tested in two-

class scenarios. They have been shown to be less effective or even cause a negative effect

in dealing with multi-class tasks (Zhou and Liu, 2006b). Some methods are not applicable

directly. Among limited solutions for multi-class imbalance problems, most attention in

the literature has been devoted to class decomposition – converting a multi-class problem

into a set of two-class sub-problems (Ou and Murphey, 2007). Given a c-class problem

(c > 2), a common decomposing scheme is to choose one class labelled as positive and

merge the others labelled as negative for forming a sub-problem. Each class becomes the

positive class once, and thus c binary classifiers are produced for a final decision (known

as one-against-all, one-vs-others) (Rifkin and Klautau, 2004). However, it aggravates

imbalanced distributions (Tan et al., 2003), and combining results from classifiers that

learnt from different problems can cause potential classification errors (Jin and Zhang,

2007; Valizadegan et al., 2008), as we have explained in section 2.2. It is desirable to

develop a more effective method to handle multi-class imbalance problems.

Aiming at the above unclear issues (relating to research questions in section 1.3.2),

this chapter gives a deeper insight into multi-class imbalance problems. First, we study
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the impact of multi-class on the performance of random oversampling and undersampling

techniques commonly used in class imbalance learning, by discussing “multi-minority”

and “multi-majority” cases separately. It shows that both “multi-minority” and “multi-

majority” negatively affect the overall and minority-class performance. Particularly, the

“multi-majority” case tends to be more harmful. Random oversampling does not help

the classification and suffers from overfitting. The effect of random undersampling is

weakened as there are more minority classes. It can cause a great performance reduction

to majority classes when multiple majority classes exist. Neither strategy is satisfactory.

Based on the results, we propose to make use of our NCL study for two-class imbal-

ance problems in chapter 5 to handle multi-class imbalance problems. AdaBoost.NC

algorithm is shown to have good performance under two-class imbalance scenarios by ex-

ploiting ensemble diversity without losing any data information. Random oversampling

is integrated to guarantee sufficient number of minority class examples. As a new study

of multi-class imbalance problems, the experiments in this chapter reveal that “oversam-

pling+AdaBoost.NC” keeps the ability to better recognize minority class examples and

better balances the performance across multiple classes with high G-mean without using

any class decomposition schemes.

6.2 Challenges of Multi-Class Imbalance Learning

Two types of multi-class could occur to an imbalanced data set: one majority and multiple

minority classes (multi-minority cases); one minority and multiple majority classes (multi-

majority cases). A problem with multiple minority and multiple majority classes can be

treated as the case when both types happen. For a clear understanding, we give a formal

definition for each type:

• For the multi-minority case, one class has a much larger size than the average size of

all classes. This class is treated as the majority class and the others are the minority

classes. In other words, |Zmaj| � |Z|
c

.
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• For the multi-majority case, one class has a much smaller size than the average

size of all classes. This class is treated as the minority class and the others are the

majority classes. In other words, |Zmin| � |Z|
c

.

Several interesting research questions are raised here: Are there any differences between

multiple minority and multiple majority classes? Would these two types of problem pose

the same or different challenges to a learning algorithm? Which one would be more

difficult to tackle? For such multi-class imbalance problems, which aspects of a problem

would be affected the most by the multi-class? Would it be a minority class, a majority

class or both?

With these questions in mind, we will give separate discussions for each type under a

set of artificial scenarios. For a clear understanding, two kinds of empirical analyses are

conducted: 1) Spearman’s rank correlation analysis, which shows the relationship between

the number of classes and every evaluated performance measure, provides the evidence

of the classification difficulty brought by “multi-minority” and “multi-majority”. It will

answer the question of if the difficulties exist. 2) Performance pattern analysis, which

presents the performance changing tendencies of all existing classes as more classes are

added into training, reveals the performance behaviours of each class by applying different

training strategies. It will tell us what kinds of difficulties are caused to the recognition

of each class and what the differences between the two types of multi-class are.

6.2.1 Artificial Data Sets and Experimental Settings

To have sufficient number of classes for our study, we generate some artificial imbalanced

data sets by using the method in (Zhou and Liu, 2006a). In multi-minority cases, the

number of minority classes is varied from 1 to 20, and only one majority class exists.

Similarly, the number of majority classes is varied from 1 to 20 in multi-majority cases,

and only one class is generated as the minority. Every data set is two-dimensional. Data

points in each class are generated randomly from a Gaussian distribution, where the
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mean and standard deviation of each attribute are random real values in [0,10], and the

coefficient is a random real value in [-1, +1]. In every training data set, each minority class

has 10 examples, and each majority class has 100 examples. In the corresponding testing

data set, each class contains 50 examples. The data generation procedure is randomly

repeated 20 times for each setting with the same numbers of minority and majority classes.

In the experiments, three ensemble training methods are compared: the conventional

AdaBoost that is trained from the original imbalanced data and used as a default bench-

mark method (abbr. OrAda); random oversampling + AdaBoost (abbr. OvAda), where

all the minority classes get their examples replicated randomly until each of them has the

same size as the majority class before training starts; random undersampling + AdaBoost

(abbr. UnAda), where all the majority classes get rid of some examples randomly until

each of them has the same size as the minority class before training starts. Every method

is run 10 times on the current training data. Therefore, the result of the ensemble in

the following comparisons is the average of 200 output values (20 training files*10 runs).

51 decision trees are constructed to form an ensemble. For a clear understanding of the

impact of multi-class on the training methods themselves, no class decomposition scheme

is applied. The tree base learner itself is able to process “multi-class” data. Applying

resampling aims to understand the impact of “multi-class” on the basic strategies of deal-

ing with imbalanced data sets and examine their robustness to “multi-class”. Other class

imbalance learning techniques will be considered in our future work.

As regard to the performance assessment in multi-class imbalance learning, single-

class metrics can be applied directly to evaluating the performance in each class. Recall,

precision, and F-measure are included in the following discussions as single-class measures.

To evaluate the overall performance over all classes, the most widely used measures, AUC

and G-mean, which are originally designed and used for two-class problems, have to be

adapted to multi-class scenarios. Their extensions, MAUC (Hand and Till, 2001) and

extended G-mean (Sun et al., 2006) are computed in our experiments accordingly.
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6.2.2 Multi-Minority Cases

The correlation analysis and performance pattern analysis are conducted on the multi-

minority cases in this subsection. The number of minority classes is varied from 1 to

20. The impact of multi-minority on the performance of oversampling and undersampling

techniques is illustrated and analyzed in depth.

Correlation Analysis

Five performance measures and three ensemble training methods permit 15 pairwise cor-

relations with respect to the number of minority classes. They show if multi-minority de-

grades the classification performance of the three ensemble training methods and which

performance aspects are affected. The three single-class measures are recorded for the

minority class that joins all the training sessions from 1 to 20. Table 6.1 summarizes the

correlation coefficient values. The coefficient ranges in [−1, 1], where a positive (negative)

value indicates a monotone increasing (decreasing) relationship.

Table 6.1: Rank correlation coefficients (in %) between the number of minority classes
and 5 performance measures for 3 ensemble methods. Recall, precision and F-measure
are calculated for the minority class.

Recall Precision F-measure MAUC G-mean
OrAda -89 -94 -91 -92 -97
OvAda -88 -93 -91 -94 -98
UnAda -93 -93 -93 -91 -99

All pairs present very strong negative correlations. Especially, G-mean is approaching

-1. It implies a strong monotone decreasing relationship between the measures and the

number of minority classes. All of them are decreasing as more minority classes are added

into the training data, regardless of whether resampling is applied. In other words, multi-

minority reduces the performance of these ensembles consistently. Next, we will give a

further investigation into the performance degradation caused by multi-minority classes.
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Performance Pattern Analysis

To have a deeper insight, we illustrate the changing tendencies of single-class measures

for all classes as the class number increases in Fig. 6.1. The presented pattern reveals

detailed information about how the classification performance of each class is affected

and the differences among ensemble methods and evaluated measures. All the following

pattern plots are scaled in the same range.
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(a) Recall: OrAda
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(b) Recall: OvAda
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(c) Recall: UnAda
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(d) Precision: OrAda
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(e) Precision: OvAda
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(f) Precision: UnAda
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(g) F-measure: OrAda
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(h) F-measure: OvAda
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(i) F-measure: UnAda

Figure 6.1: Single-class performance patterns among classes in multi-minority cases (x-
axis: number of minority classes, y-axis: performance output).
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According to Fig. 6.1, every class’s performance is decreasing. No evidence shows

which class suffers from more performance degradation than other classes. The classifi-

cation gets equally difficult on all classes. For each class, corresponding to one curve in

the plot, the measure value drops faster at the first few steps, when the minority-class

number is approximately smaller than 10. As it gets larger, the reduction slows down.

Among the three performance measures, the drop of precision (Fig. 6.1(d)(e)) is more

severe than that of recall (Fig. 6.1(a)(b)) in OrAda and OvAda. Precision is the main

cause of the decrease in F-measure. The reason is that multi-minority increases the risk

of predicting an example into a wrong class. As to recall, it seems that the difficulty of

recognizing examples within each class is less affected by multi-minority as compared to

precision, because the proportion of each class of data in the whole data set is hardly

changed by adding a small class. For OvAda, although oversampling increases the quan-

tity of minority class examples to make every class have the same size, the class distri-

bution in data space is still imbalanced, which is dominated by the majority class. In

UnAda, each class is reduced to have a small size. Adding minority classes changes the

proportion of each class significantly. It explains the observation that UnAda’s recall

(Fig. 6.1(c)) presents higher sensitivity to multi-minority than the recall produced by

OrAda and OvAda (Fig. 6.1(a)(b)).

Among the three ensemble methods, OrAda and OvAda have similar performance

patterns, where the majority class obtains higher recall and F-measure than the minority

classes, but lower precision values. Oversampling does not alleviate the multi-class prob-

lem. In UnAda, undersampling counteracts the performance differences among classes.

During the first few steps, UnAda presents better recall and F-measure on minority classes

(Fig. 6.1(c)(i)) than those of OrAda and OvAda (Fig. 6.1(a)(b)(g)(h)). From this point of

view, it seems that using undersampling might be a better choice. However, its advantage

is weakened as more minority classes join the training. When the class number reaches

20, three ensemble algorithms have very similar minority-class performance. The reason

could be that undersampling explicitly empties some space for classifying minority classes
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by removing examples from the majority class region. When there is only one minority

class, a classifier is very likely to assign the space to this class. When there are many

minority classes, they have to share the same space. Hence, the effect of undersampling

is reduced. Undersampling seems to be more sensitive to multi-minority. For this con-

sideration, it would be better to expand the classification area for each minority class,

instead of shrinking the majority class. To achieve this goal, advanced techniques should

be applied to improving classification generalization over minority classes.

6.2.3 Multi-Majority Cases

We proceed with the same analyses for the multi-majority cases, where the number of

majority classes is varied from 1 to 20. The impact of multi-majority is studied.

Correlation Analysis

Table 6.2 summarizes the correlation coefficients in multi-majority cases. Single-class

performance measures are recorded for the only minority class of each data set. Simi-

lar to the multi-minority cases, all coefficient values between five performance measures

and the number of majority classes suggest strong negative correlations, which indicate

a monotone decreasing relationship. All three ensemble training methods suffer from

performance reduction caused by “multi-majority”.

Table 6.2: Rank correlation coefficients (in %) between the number of majority classes
and 5 performance measures for 3 ensemble methods. Recall, precision and F-measure
are calculated for the minority class.

Recall Precision F-measure MAUC G-mean
OrAda -79 -89 -85 -92 -97
OvAda -84 -93 -86 -92 -97
UnAda -92 -94 -94 -95 -99
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Performance Pattern Analysis

To gain more information, the changing tendencies of single-class measures for each class

along with the increase of the number of majority classes are shown in Fig. 6.2 within the

same axis scale.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of majority classes

AdaBoost

R
ec

al
l

 

 
minority
majorities

(a) Recall: OrAda
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(b) Recall: OvAda
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(c) Recall: UnAda
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(d) Precision: OrAda

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of majority classes

P
re

ci
si

on

Oversampling+AdaBoost

 

 
minority
majorities

(e) Precision: OvAda
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(f) Precision: UnAda
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(g) F-measure: OrAda
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(h) F-measure: OvAda
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(i) F-measure: UnAda

Figure 6.2: Single-class performance patterns among classes in multi-majority cases (x-
axis: number of majority classes, y-axis: performance output).

Among the classes in each plot, adding majority classes makes the recognition of

examples of each class (i.e. recall presented in Fig. 6.2(a)-(c)) equally difficult. In
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OrAda and OvAda, minority-class precision drops faster than that of the majority classes

(Fig. 6.2(d)(e)), because the large quantity of new majority class examples overwhelm

the minority class even more. Minority class examples are more likely to be misclassified

than before compared to majority class examples.

All performance measures present a drastic decrease. Especially in recall plots of

OrAda and OvAda (Fig. 6.2(a)(b)), more and more majority class examples take the

recognition rate of the minority class down to nearly 0. For every existing majority class,

adding more majority classes can make it appear to be in minority. Therefore, the recall

of majority classes also shows a fast drop.

Among the three ensemble methods, UnAda produces better minority-class F-measure

than OrAda and OvAda, but the recall of majority classes is sacrificed greatly. It causes

the concern that using undersampling will lose too much data information when multiple

majority classes exist, and can lead to severe performance reduction in majority classes.

In summary, 1) between multi-minority and multi-majority, the multi-majority case

seems to cause more difficulties to OrAda and OvAda than the multi-minority case. They

present much worse minority-class performance in Fig. 6.2(g)(h) compared to Fig. 6.1(g)(h).

This is because adding majority class examples aggravates the imbalanced situation. 2)

In OrAda and OvAda, no new information is introduced into the minority class to fa-

cilitate the classification. Overfitting minority-class regions happens with low recall and

high precision values when compared with those measures obtained from the majority

classes. Oversampling does not help. 3) UnAda performs the same under multi-minority

and multi-majority cases due to undersampling. In the multi-minority case, it can be

sensitive to the class number; in the multi-majority case, there is a high risk of sacrificing

too much majority-class performance.
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6.3 AdaBoost.NC for Multi-Class Imbalance Prob-

lems

Armed with a better understanding of multi-class imbalance problems, this section intro-

duces a simple and effective ensemble learning method without using class decomposition.

To make it effective, the fundamental issue that needs to be resolved is the discrimination

difficulty between and within minority and majority classes. The presence of multiple

minority classes increases the data complexity. In addition to more complex data distri-

butions, the presence of multiple majority classes makes a data set even more imbalanced.

Balancing the performance among classes appropriately is important. Suggested by the

analysis in section 6.2, we aim at a method that can improve the generalization per-

formance of oversampling by focusing on minority classes, instead of shrinking majority

classes through undersampling, so that less data information will be lost and it will be

less sensitive to multi-minority.

In chapter 5, we found that the “random oversampling + AdaBoost.NC” tree ensemble

is effective in handling two-class imbalance problems. It shows a good recognition rate for

the minority class and balances the performance between minority and majority classes

well. Besides, its training strategy is flexible and simple without removing any training

data. For the above reasons, we extend the study to multi-class cases in this section. The

main research question here is whether AdaBoost.NC is still effective in solving multi-class

imbalance problems. In order to answer the question and find out if class decomposition

is necessary, we compare it with several ensemble methods in cases of using and not using

class decomposition.

6.3.1 Data Sets and Experimental Settings

In the experiments, we evaluate AdaBoost.NC, the conventional AdaBoost and SMOTE-

Boost methods on 12 classification benchmark problems from the UCI repository (Frank

and Asuncion, 2010). Each data set has more than two classes. At least one of them is
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significantly smaller than one of the others. The data information with class distributions

is summarized in Table 6.3.

Table 6.3: Summary of benchmark data sets.

Data Class Size Distribution
New-thyroid 3 215 150/35/30

Balance 3 625 49/288/288
Car 4 1728 1210/384/69/65

Nursery 4 12958 4320/328/4266/4044
Glass 6 214 70/76/17/13/9/29

Annealing 5 898 8/99/684/67/40
Solarflare2 6 1066 147/211/239/95/43/331

Page 5 5473 4913/329/28/88/115
Ecoli 5 327 143/77/52/35/20

Cleveland 5 303 164/55/36/35/13
Yeast 10 1484 463/429/244/163/51/44/35/30/20/5

Satimage 6 6435 1533/703/1358/626/707/1508

We construct 12 ensemble models for comparison for each data set. Six of them

are trained directly from the multi-class data, including AdaBoost (OrAda) used as the

baseline model, “random oversampling + AdaBoost” (OvAda)”, “random undersampling

+ AdaBoost” (UnAda), “random oversampling + AdaBoost.NC” with λ = 2 (OvNC2),

“random oversampling + AdaBoost.NC” with λ = 9 (OvNC9) and SMOTEBoost (Chawla

et al., 2003) (SMB). The other six models use exactly the same ensemble algorithms,

but work with the “one-against-all” (OAA) scheme of class decomposition – the most

frequently used scheme in the multi-class imbalance learning literature. In this group of

models, each trains a set of binary classifiers for every class, which will then be combined

for a final decision. We adopt the combining strategy used in (Liao, 2008), which outputs

the class whose corresponding binary classifier produces the highest value of belongingness

among all. These models are denoted by “-d”, to indicate that OAA is used.

With respect to parameter settings, λ in AdaBoost.NC controls the strength of en-

couraging diversity. Our earlier study in chapter 4 showed that λ = 2 is a relatively

conservative setting to show if AdaBoost.NC can make a performance improvement, and

162



λ = 9 boosts diversity aggressively (Wang and Yao, 2010). For a full understanding, both

values are considered. Applying random oversampling is necessary for AdaBoost.NC not

to ignore the minority class based on our results in chapter 5. For SMOTEBoost, the

nearest neighbour parameter k is set to 5, the most accepted value in the literature. The

amount of new data for a class c is roughly the size difference between the largest class

and class c, considering that other models also adjust the ratio between classes to one.

C4.5 decision tree is employed as the base learner. Each ensemble consists of 51 trees.

We perform a 5-fold cross-validation (CV) with 10 runs instead of the traditional 10-fold

CV, to avoid the situation where a fold of data does not contain any examples from the

minority class.

Regarding the model assessment, MAUC (Hand and Till, 2001) and extended G-

mean (Sun et al., 2006) are used to evaluate the overall performance of the 12 ensemble

models as in the previous section. In terms of each class, recall and precision are recorded

as the single-class performance measures, for a better understanding of how an overall

performance improvement or degradation happens. Student T-test with 95% confidence

level is conducted for the significance analysis.

6.3.2 Ensemble Algorithms for Multi-Class Imbalance Problems

In this section, we study the performance of ensemble algorithms without using OAA and

the ones using OAA with respective discussions. Based on the observations and analysis,

an improved combination strategy for OAA-based ensembles is then proposed. Finally,

we show whether class decomposition is necessary for multi-class imbalance learning.

Ensemble Models without Using OAA

Tables 6.4 - 6.6 summarize the paired comparison results of the ensemble models without

using OAA. Each entry in the tables is in a win-tie-lose form over 12 data sets for a

pair of models. Table 6.4 compares the overall performance measures MAUC and G-
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mean. According to the MAUC results (upper triangle), AdaBoost.NC does not show

much advantage over other methods. Concretely, OrAda performs the best with more

“win” cases in each pair of comparisons. UnAda performs the worst with the most “lose”

cases. OvNC2 and OvAda are comparable to each other, which are better than OvNC9

but worse than SMB. However, different observations are obtained in G-mean (lower

triangle): OrAda is the worst with the most “lose” cases; OvNC9 achieves the most wins.

Table 6.4: Ensembles without using OAA: paired comparison of MAUC (upper triangle)
and G-mean (lower triangle) based on T-test with confidence level of 0.95 over 12 data
sets. Each entry presents the amount of win-tie-lose of a method in a row comparing with
the method in a column.

OrAda OvAda UnAda OvNC2 OvNC9 SMB
OrAda - 5-7-0 11-0-1 4-8-0 10-2-0 6-4-2
OvAda 2-9-1 - 9-1-2 2-9-1 9-3-0 2-6-4
UnAda 6-3-3 4-5-3 - 2-0-10 3-0-9 0-2-10
OvNC2 3-8-1 1-11-0 4-4-4 - 8-2-2 1-5-6
OvNC9 6-4-2 5-5-2 4-5-3 5-5-2 - 0-5-7
SMB 5-7-0 4-8-0 4-6-2 4-8-0 2-7-3 -

It is interesting to observe that the conventional AdaBoost without using any specific

rebalancing technique is good at MAUC and bad at G-mean. It is known that AdaBoost

itself cannot handle class imbalance problems very well. It is sensitive to imbalanced

distributions (Joshi et al., 2002; Sun et al., 2007). Meanwhile, our experiments in the

previous section show that it suffers from multi-class difficulties significantly. It means

that low G-mean of AdaBoost results from its low recognition rates on the minority classes

and high MAUC is probably attributed to the relatively good discriminability between

the majority classes. The other ensemble methods, AdaBoost.NC, SMOTEBoost and

resampling-based AdaBoost, seem to improve G-mean more than MAUC.

To explain this observation, let’s review the definitions of MAUC and G-mean. G-

mean is the geometric mean of recall over all classes. If any single class receives very

low recall, it will take the G-mean value down. It can tell us how well a classifier can

balance the recognition among different classes. A high G-mean guarantees that no class

164



is ignored. MAUC assesses the average ability of separating any pair of classes. A high

MAUC implies a classifier is good at separating most pairs, but it is still possible that

some classes are hard to be distinguished from each other. G-mean is more sensitive to

single-class performance than MAUC. From this point of view, it may suggest that those

ensemble solutions for class imbalance learning, especially OvNC9, can better recognize

examples from the minority classes, but are not good at discriminating between some

majority classes. To confirm our explanations, we look into single-class performance

next.

Considering the existence of multiple minority and majority classes, we only discuss

recall and precision for the smallest class and the largest class, which should be the most

typical ones in the data set. The win-tie-lose results are presented in Tables 6.5 and 6.6.

Table 6.5: Ensembles without using OAA: paired comparison of recall (upper triangle)
and precision (lower triangle) of the smallest class based on T-test with confidence level
of 0.95 over 12 data sets. Each entry presents the amount of win-tie-lose of a method in
a row comparing with the method in a column.

OrAda OvAda UnAda OvNC2 OvNC9 SMB
OrAda - 0-10-2 0-4-8 0-9-3 0-3-9 0-7-5
OvAda 0-10-2 - 0-2-10 0-11-1 0-3-9 0-10-2
UnAda 2-2-8 3-1-8 - 9-3-0 5-7-0 7-5-0
OvNC2 0-9-3 1-10-1 8-2-2 - 0-5-7 1-10-1
OvNC9 2-5-5 4-1-7 6-4-2 2-5-5 - 7-5-0
SMB 0-9-3 3-9-0 8-3-1 2-10-0 6-4-2 -

Table 6.5 shows the comparison for the smallest class. Not surprisingly, UnAda per-

forms the best in recall but produces the worst precision because of the loss of a large

amount of data information. OvNC9 comes the second in recall with more wins and pro-

duces better precision than UnAda. SMB’s recall is competitive with that of OvNC2, but

worse than OvNC9’s. SMB has better precision than OvNC9. OvNC9 produces better

recall than OvNC2, which implies that a large λ can further generalize the performance of

AdaBoost.NC on the minority class, so that more minority class examples are identified.

Table 6.6 shows the comparison for the largest class. Because of the performance
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Table 6.6: Ensembles without using OAA: paired comparison of recall (upper triangle)
and precision (lower triangle) of the largest class based on T-test with confidence level of
0.95 over 12 data sets. Each entry presents the amount of win-tie-lose of a method in a
row comparing with the method in a column.

OrAda OvAda UnAda OvNC2 OvNC9 SMB
OrAda - 4-7-1 10-2-0 4-7-1 9-3-0 5-7-0
OvAda 1-8-3 - 10-2-0 0-11-1 10-2-0 4-8-0
UnAda 3-4-5 4-3-5 - 0-2-10 0-3-9 0-2-10
OvNC2 1-10-1 1-11-0 5-4-3 - 10-2-0 4-7-1
OvNC9 3-8-1 4-7-1 5-5-2 4-7-1 - 0-4-8
SMB 4-7-1 4-8-0 5-6-1 5-7-0 2-6-4 -

trade-off between minority and majority classes, OrAda performs the best in recall and

UnAda performs the worst, which is opposite to the observation on the smallest class.

OvNC9 and SMB are not good at recall of this class, which are only better than UnAda

and worse than the others. Due to the trade-off between recall and precision, OvNC9 and

SMB presents comparatively better precision values than the others. Between OvNC9

and SMB, the former presents worse recall than the latter, but slightly better precision

with more wins.

The observations on the smallest and largest classes explains that the good G-mean

of OvNC9 results from the greater improvement in recall of the minority classes than the

recall reduction of the majority classes. Its ineffectiveness in MAUC should be caused

by the relatively poor performance in the majority classes. Based on the above results,

we conclude that AdaBoost.NC with a large λ is helpful for recognizing more minority

class examples with high recall and capable of balancing the performance across different

classes with high G-mean. From the view of MAUC and majority-class performance, it

could lose some learning ability to separate majority classes. In addition, SMOTEBoost

presents quite stable overall performance in both MAUC and G-mean, and is not bad at

minority-class performance.
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Ensemble Models Using OAA

The experimental results of the ensembles using OAA are summarized in Tables 6.7 - 6.9.

Table 6.7 compares the overall performance. We observe that except SMB-d presenting

better MAUC than the others with more wins, no single class imbalance learning method

actually outperforms the conventional AdaBoost (i.e. OrAda-d) consistently in both

MAUC and G-mean. UnAda-d shows the worst MAUC and G-mean. OvAda-d, OvNC2-

d and OvNC9-d are comparable to OrAda-d in terms of MAUC. OrAda-d, OvAda-d,

OvNC2-d and SMB-d show competitive G-mean with each other and better G-mean

than OvNC9-d. These results are different from what we have observed in the cases

without using OAA, where OvNC9 yields the best G-mean. It seems that class imbalance

techniques are not very effective when working with the OAA scheme. SMOTEBoost

appears to be relatively stable with good MAUC and G-mean compared to AdaBoost.NC

and resampling techniques.

Table 6.7: Ensembles using OAA: paired comparison of MAUC (upper triangle) and G-
mean (lower triangle) based on T-test with confidence level of 0.95 over 12 data sets.
Each entry presents the amount of win-tie-lose of a method in a row comparing with the
method in a column.

OrAda-d OvAda-d UnAda-d OvNC2-d OvNC9-d SMB-d
OrAda-d - 6-1-5 11-0-1 5-1-6 6-1-5 3-2-7
OvAda-d 0-12-0 - 10-0-2 2-3-7 5-3-4 2-3-7
UnAda-d 3-3-6 2-3-7 - 1-1-10 4-0-8 2-0-10
OvNC2-d 1-11-0 0-11-1 7-2-3 - 6-1-5 3-2-7
OvNC9-d 2-5-5 2-4-6 3-5-4 2-4-6 - 3-3-6
SMB-d 1-11-0 1-10-1 6-3-3 2-9-1 6-4-2 -

As to the single-class performance in the smallest class presented in Table 6.8, UnAda-d

performs the best in recall but the worst in precision. The other five models are com-

parable to each other. They do not show much advantage in identifying minority class

examples. Similar observations are obtained for the largest class according to Table 6.9.

It is not clear which method is significantly better than any of the others on the majority-

class performance. The above results tell us that AdaBoost.NC, SMOTEBoost and re-
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sampling techniques exhibit ineffectiveness in both minority and majority classes when

compared with the conventional AdaBoost. Neither type of classes is better recognized.

When the OAA scheme is applied to handling multi-class, they do not bring a consistent

improvement.

Table 6.8: Ensembles using OAA: paired comparison of recall (upper triangle) and pre-
cision (lower triangle) of the smallest class based on T-test with confidence level of 0.95
over 12 data sets. Each entry presents the amount of win-tie-lose of a method in a row
comparing with the method in a column.

OrAda-d OvAda-d UnAda-d OvNC2-d OvNC9-d SMB-d
OrAda-d - 0-11-1 3-2-7 0-11-1 4-5-3 0-12-0
OvAda-d 1-11-0 - 3-2-7 1-9-2 4-5-3 1-10-1
UnAda-d 1-3-8 2-1-9 - 7-1-4 7-3-2 7-1-4
OvNC2-d 1-10-1 0-11-1 8-2-2 - 4-6-2 0-12-0
OvNC9-d 2-5-5 1-6-5 7-5-0 1-7-4 - 2-5-5
SMB-d 1-10-1 0-12-0 8-2-2 2-10-0 5-6-1 -

Table 6.9: Ensembles using OAA: paired comparison of recall (upper triangle) and pre-
cision (lower triangle) of the largest class based on T-test with confidence level of 0.95
over 12 data sets. Each entry presents the amount of win-tie-lose of a method in a row
comparing with the method in a column.

OrAda-d OvAda-d UnAda-d OvNC2-d OvNC9-d SMB-d
OrAda-d - 2-9-1 8-4-0 4-7-1 9-2-1 4-8-0
OvAda-d 1-9-2 - 8-4-0 1-10-1 9-2-1 4-8-0
UnAda-d 4-5-3 4-5-3 - 1-4-7 4-4-4 2-4-6
OvNC2-d 1-11-0 2-10-0 3-6-3 - 9-2-1 4-8-0
OvNC9-d 4-6-2 4-6-2 2-6-4 4-5-3 - 1-3-8
SMB-d 1-10-1 1-10-1 3-5-4 0-11-0 2-6-4 -

According to our results here, AdaBoost.NC does not show any significant improve-

ment in minority-class and overall performance when working with the class decomposition

scheme in multi-class imbalance scenarios, although it showed good classification ability

in dealing with two-class imbalance problems (Wang and Yao, 2011). A possible reason

for its poor performance could be that the combining step of OAA messes up the individ-

ual results. Without using OAA, AdaBoost.NC receives and learns from complete data
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information of all classes, which allows the algorithm to consider the difference among

classes during learning with full knowledge. The OAA scheme, however, decomposes the

whole problem, which makes AdaBoost.NC learn from multiple binary sub-problems with

partial data knowledge. The relative importance between classes could not be taken into

consideration. Even if AdaBoost.NC can be good at handling each sub-problem, their

combination does not guarantee good performance for the whole problem. Therefore, it

may be not a wise idea to integrate class decomposition with class imbalance techniques

without considering the class distribution globally. A better combining method for class

decomposition schemes is needed.

Ensemble Models Using OAA with an Improved Combination Method

To take into account the class information of the whole data set, we improve the com-

bination method of OAA in this section by using a weighted combining rule. Instead of

the traditional way of treating the outputs of binary classifiers equally (Liao, 2008), we

assign them different weights, decided by the size of each class. For any example x, its

belongingness value of class i from the i-th binary classifier is multiplied by the inverse

of its imbalance rate. The imbalance rate is defined as the proportion of this class of

data within the whole data set. The final decision of OAA will be the class receiving the

highest belongingness value among all after adjusted by the weights.

We apply the same ensemble methods in the previous sections on the 12 UCI data

sets. Six ensemble models are constructed. They are denoted by “-dw”, indicating that

class decomposition with a weighted combination is used. The win-tie-lose comparison

among the six models is summarized in Tables 6.10 - 6.12.

It is encouraging to observe that the ineffectiveness of AdaBoost.NC used with OAA

is rectified by the weighted combination method in terms of G-mean and minority-class

recall. The results are similar to the ones without using OAA: 1) OrAda and SMB perform

the best in MAUC, and UnAda performs the worst. 2) OvNC9 produces the best G-mean

with the most wins. UnAda gives the worst G-mean which is a different observation from
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Table 6.10: Ensembles using OAA with the weighted combination: paired comparison
of MAUC (upper triangle) and G-mean (lower triangle) based on T-test with confidence
level of 0.95 over 12 data sets. Each entry presents the amount of win-tie-lose of a method
in a row comparing with the method in a column.

OrAda-dw OvAda-dw UnAda-dw OvNC2-dw OvNC9-dw SMB-dw
OrAda-dw - 6-4-2 12-0-0 6-2-4 6-1-5 3-4-5
OvAda-dw 0-11-1 - 12-0-0 5-1-6 7-0-5 5-0-7
UnAda-dw 2-2-8 2-1-9 - 0-1-11 2-0-10 0-1-11
OvNC2-dw 0-12-0 0-12-0 9-1-2 - 7-0-5 4-0-8
OvNC9-dw 6-3-3 5-4-3 9-1-2 4-5-3 - 4-1-7
SMB-dw 1-11-0 0-12-0 9-1-2 0-12-0 3-4-5 -

Table 6.11: Ensembles using OAA with the weighted combination: paired comparison
of recall (upper triangle) and precision (lower triangle) of the smallest class based on
T-test with confidence level of 0.95 over 12 data sets. Each entry presents the amount of
win-tie-lose of a method in a row comparing with the method in a column.

OrAda-dw OvAda-dw UnAda-dw OvNC2-dw OvNC9-dw SMB-dw
OrAda-dw - 0-11-1 1-0-11 0-10-2 0-4-8 0-10-2
OvAda-dw 0-12-0 - 1-0-11 0-11-1 0-6-6 0-10-2
UnAda-dw 2-0-10 2-0-10 - 11-0-1 8-3-1 10-1-1
OvNC2-dw 0-10-2 0-10-2 10-0-2 - 0-7-5 1-9-2
OvNC9-dw 3-2-7 3-1-8 9-2-1 3-4-5 - 7-5-0
SMB-dw 0-10-2 0-9-3 9-1-2 2-8-2 6-3-3 -

Table 6.12: Ensembles using OAA with the weighted combination: paired comparison
of recall (upper triangle) and precision (lower triangle) of the largest class based on T-
test with confidence level of 0.95 over 12 data sets. Each entry presents the amount of
win-tie-lose of a method in a row comparing with the method in a column.

OrAda-dw OvAda-dw UnAda-dw OvNC2-dw OvNC9-dw SMB-dw
OrAda-dw - 2-8-2 11-1-0 4-7-1 10-2-0 9-3-0
OvAda-dw 1-9-2 - 11-1-0 2-9-1 10-2-0 7-5-0
UnAda-dw 5-4-3 4-5-3 - 0-1-11 0-3-9 0-2-10
OvNC2-dw 1-11-0 2-10-0 3-4-5 - 10-2-0 4-7-1
OvNC9-dw 4-8-0 5-7-0 3-6-3 4-8-0 - 0-4-8
SMB-dw 2-8-2 2-9-1 3-4-5 3-7-2 0-6-6 -
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the cases without using OAA. 3) Except UnAda, OvNC9 produces better minority-class

recall than the other models. It has better minority-class precision than UnAda. 4)

OvNC9 loses some performance on the majority class with a lower recall than the others

except UnAda.

In summary, AdaBoost.NC with a large λ can find more minority class examples

with a higher recall and better balance the performance across different classes with a

higher G-mean than other methods. Its performance on the majority class is sacrificed to

some extent, leading to unsatisfactory MAUC. SMOTEBoost is a comparatively stable

algorithm with good overall and minority-class performance.

Is Class Decomposition Necessary?

The discussions in this subsection aim to answer the question of whether it is necessary

to use class decomposition for handling multi-class imbalance problems. We compare

the overall and minority-class performance produced by AdaBoost.NC with λ = 9 and

SMOTEBoost methods without using OAA (i.e. OvNC9 and SMB) with the performance

produced by those using OAA with the weighted combination method (i.e. OvNC9-dw

and SMB-dw). We choose OvNC9 and SMB, because AdaBoost.NC is better at G-mean

and minority-class recall and SMOTEBoost is better at MAUC. Raw performance outputs

from 12 data sets are shown in Table 6.13. Values in boldface indicate “significantly

better” between OvNC9 (SMB) and OvNC9-dw (SMB-dw).

According to the table, no consistent difference is observed between OvNC9 and

OvNC9-dw in all three performance measures. In most cases, they present competi-

tive measure values with each other. OvNC9-dw shows slightly better G-mean with more

wins. The same happens between SMB and SMB-dw. It suggests that whether to apply

OAA, the most commonly used technique in the literature, does not affect class imbalance

learning methods much. Learning from the whole data set directly is sufficient for them

to achieve good MAUC and G-mean and find minority-class examples effectively. There-

fore, we conclude that using class decomposition is not necessary to tackle multi-class
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Table 6.13: “Mean ± standard deviation” of MAUC, G-mean and minority-class recall by
AdaBoost.NC with λ = 9 and SMOTEBoost without using OAA (i.e. OvNC9 and SMB)
and using OAA with the weighted combination (i.e. OvNC9-dw and SMB-dw). Recall is
computed for the smallest class of each data set. Values in boldface indicate “significantly
better” between OvNC9 (SMB) and OvNC9-dw (SMB-dw).

MAUC
OvNC9 OvNC9-dw SMB SMB-dw

New-thyroid 0.983±0.013 0.973±0.003 0.988±0.014 0.988±0.003
Balance 0.704±0.037 0.703±0.003 0.703±0.027 0.633±0.004

Car 0.982±0.005 0.980±0.001 0.994±0.003 0.997±0.000
Nursery 0.995±0.001 0.998±0.000 0.999±0.000 0.999±0.000
Glass 0.876±0.037 0.881±0.009 0.925±0.030 0.924±0.009

Annealing 0.986±0.009 0.975±0.003 0.984±0.018 0.981±0.004
Solarflare2 0.866±0.020 0.901±0.003 0.890±0.015 0.891±0.002

Page 0.989±0.004 0.984±0.001 0.989±0.005 0.973±0.002
Ecoli 0.952±0.020 0.957±0.002 0.954±0.019 0.963±0.004

Cleveland 0.727±0.046 0.766±0.004 0.764±0.040 0.767±0.007
Yeast 0.810±0.020 0.857±0.004 0.831±0.021 0.847±0.003

Satimage 0.984±0.002 0.990±0.000 0.991±0.001 0.992±0.000
G-mean

OvNC9 OvNC9-dw SMB SMB-dw
New-thyroid 0.927±0.052 0.915±0.056 0.934±0.060 0.940±0.057

Balance 0.321±0.173 0.319±0.180 0.000±0.000 0.000±0.000
Car 0.924±0.024 0.897±0.038 0.928±0.033 0.944±0.031

Nursery 0.954±0.006 0.967±0.006 0.992±0.004 0.996±0.003
Glass 0.571±0.278 0.578±0.249 0.561±0.343 0.508±0.344

Annealing 0.823±0.310 0.895±0.191 0.764±0.341 0.854±0.258
Solarflare2 0.486±0.112 0.540±0.096 0.520±0.120 0.514±0.094

Page 0.912±0.031 0.920±0.026 0.860±0.048 0.871±0.052
Ecoli 0.776±0.069 0.790±0.062 0.798±0.052 0.803±0.059

Cleveland 0.117±0.160 0.075±0.144 0.009±0.066 0.000±0.000
Yeast 0.237±0.270 0.190±0.257 0.140±0.240 0.060±0.164

Satimage 0.872±0.011 0.881±0.009 0.895±0.011 0.898±0.010
Minority-Class Recall

OvNC9 OvNC9-dw SMB SMB-dw
New-thyroid 0.897±0.134 0.910±0.117 0.900±0.121 0.906±0.135

Balance 0.144±0.112 0.150±0.112 0.000±0.000 0.000±0.000
Car 0.980±0.043 0.997±0.021 0.967±0.058 0.973±0.057

Nursery 0.985±0.020 0.992±0.018 0.983±0.017 0.993±0.012
Glass 0.990±0.070 0.930±0.202 0.910±0.218 0.860±0.248

Annealing 0.790±0.351 0.870±0.263 0.730±0.380 0.850±0.307
Solarflare2 0.400±0.193 0.456±0.190 0.275±0.142 0.353±0.169

Page 0.974±0.076 0.985±0.052 0.881±0.161 0.822±0.187
Ecoli 0.820±0.182 0.860±0.176 0.870±0.169 0.880±0.153

Cleveland 0.167±0.212 0.197±0.246 0.030±0.119 0.030±0.104
Yeast 0.097±0.117 0.070±0.101 0.056±0.092 0.023±0.058

Satimage 0.721±0.042 0.800±0.037 0.692±0.050 0.709±0.040
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imbalance problems.

6.4 Chapter Summary

This chapter aims to address the multi-class issue in class imbalance learning and obtain

a more effective and direct solution. First, we have studied the new challenges posed by

multi-class to understand what problems it can cause. Two types of multi-class imbalance

problems, i.e. the multi-minority and multi-majority cases, are analyzed in depth. For

each type, we examine overall and minority-class performance of three ensemble meth-

ods based on the correlation analysis and performance pattern analysis. Both types

show strong negative correlations with five performance measures, i.e. MAUC, G-mean,

minority-class recall, minority-class precision and minority-class F-measure. It implies

that the performance decreases as the number of imbalanced classes increases. The re-

sults from the performance pattern analysis show that the multi-majority case tends to

cause more performance degradation than the multi-minority case, because the imbalance

rate gets more severe. Oversampling does not help the classification, and causes overfit-

ting to the minority classes with low recall and high precision values. Undersampling is

sensitive to the number of minority classes, and suffers from performance loss on major-

ity classes. It suggests that a good solution should overcome the overfitting problem of

oversampling but not by cutting down the size of majority classes.

Based on the first part of analysis, we have investigated the generalization ability of

ensemble algorithms including AdaBoost.NC to deal with multi-class imbalance data, with

the aim of tackling multi-class imbalance problems effectively. Extensive experiments are

carried out on a set of benchmark data sets with multiple minority and/or majority classes.

When the ensembles are trained without using class decomposition, our experimental

results show that AdaBoost.NC working with random oversampling can produce better G-

mean and minority-class recall than the others, which indicates good generalization for the

minority class and the superior ability to balance the performance across different classes.
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Our results also show that using class decomposition (the one-against-all scheme in our

experiments – OAA) does not provide any advantages in multi-class imbalance learning.

For AdaBoost.NC, its G-mean and minority-class recall is even weakened significantly by

the use of class decomposition. The reason for this performance degradation seems to be

the loss of global class distribution information in the process of class decomposition. An

improved combination method for the OAA scheme is therefore proposed in this chapter,

which assigns different weights to binary classifiers learnt from the sub-problems after

the decomposition. The weights are decided by the proportion of the corresponding class

within the data set, which delivers the distribution information of each class. By doing

so, the effectiveness of AdaBoost.NC in G-mean and minority-class recall is improved

significantly.

In regard to other methods, SMOTEBoost shows quite stable performance with good

MAUC and G-mean in general. Oversampling itself does not bring much benefit to

AdaBoost. Undersampling harms majority-class performance greatly.

Finally, we compare the ensembles without using OAA to the ones using OAA with

the weighted combination method. The result suggests that it is not necessary to use

class decomposition, and learning from the whole data set directly is sufficient for class

imbalance learning techniques to achieve good performance.

Future work of this study includes: (a) an in-depth study of conditions, including

parameter values, under which an ensemble approach, such as AdaBoost.NC, is able to

improve the performance of multi-class imbalance problems; currently, the parameter of λ

in AdaBoost.NC is pre-defined, and a large λ shows greater benefits; (b) investigation of

other class imbalance learning methods into how their effectiveness is affected by multi-

class; (c) a detailed analysis of why AdaBoost.NC seems to perform well in terms of G-

mean and minority-class recall while SMOTEBoost is good at MAUC; (d) investigation of

new ensemble algorithms that combine the strength of AdaBoost.NC and SMOTEBoost;

(e) a theoretical framework for analyzing multi-class imbalance problems since it is unclear

how an imbalance rate could be more appropriately defined.
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We have ended our investigations concerning ensembles for class imbalance learning

up to this point. The conclusions of this thesis and directions for the future work will be

explained systematically in the following chapter.

175



CHAPTER 7

CONCLUSIONS AND FURTHER WORK

The primary questions that this thesis has answered are “Is ensemble diversity helpful for

class imbalance learning? How can we exploit diversity to improve the classification of

class imbalance problems?”. They are important questions for two reasons. First, many

ensemble approaches have been proposed with empirical success in various class imbalance

applications. It is useful to understand why they believe that ensemble learning is a good

choice and the role of diversity in class imbalance learning as the most important feature

of an ensemble model. Second, most existing ensemble solutions work on the data level by

manipulating training data to correct the uneven class distribution or on the algorithm

level by making models cost-sensitive, which often require a good understanding of data

and careful parameter settings. It is meaningful to address class imbalance from the new

angle of making use of diversity, to simplify the learning procedure and achieve better

or at least competitive performance. This chapter summarizes the contributions of the

thesis as the answers to the research questions stated in the Introduction chapter and

gives directions for future work.

7.1 Conclusions

The focal point of this thesis is ensemble diversity for class imbalance learning. With

this in mind, we investigated the theoretical and empirical role of ensemble diversity in
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dealing with class imbalance problems, and discovered that it has a significant and positive

effect. To better consider the minority class of a class imbalance problem and better

balance the overall performance by making use of diversity, we studied an important

ensemble learning technique, negative correlation learning (NCL), since it encourages

diversity explicitly during training. We proposed an ensemble algorithm for classification

using the idea of NCL, named AdaBoost.NC, to overcome the problems of poor flexibility

and efficiency of existing NCL algorithms. Its effectiveness in class imbalance learning was

then investigated and exploited in both two-class and multi-class scenarios. The details

of the contributions and significance of this thesis are explained as follows.

7.1.1 Role of Ensemble Diversity in Class Imbalance Learning

Ensemble learning has become a major technique of dealing with class imbalance problems.

The interaction effect of ensemble members, termed diversity, is claimed to be helpful.

However, no study has investigated the role of ensemble diversity in class imbalance

learning before the thesis. Therefore, the thesis starts with the following questions stated

in section 1.3.1: what is the relationship between ensemble diversity and the performance

measures used in class imbalance learning? Is introducing diversity beneficial to the

classification of the minority/majority classes in the presence of imbalanced data?

Chapter 3 gave a systematic and in-depth study of the relationship between ensemble

diversity and generalization from both single-class and overall performance aspects (Wang

and Yao, 2009a). To answer the first question, we derived mathematical links between

single-class measures and diversity based on several classification patterns of ensembles.

Diversity is measured by Q-statistic. The single-class measures include recall, precision

and F-measure. We found that their changing behaviours along with Q-statistic are

correlated to each other and fall into six possible situations. Based on the understanding

of classification patterns and characteristics of classifying a class imbalance problem, we

explained that diversity is expected to have a positive effect on the minority class and a

negative effect on the majority class.
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For the second question, we verified the results of how the single-class measures behave

by varying the diversity degree of ensembles on a set of artificial and real-world imbal-

anced data sets. We investigated the impact of diversity based on correlation analysis

with comprehensive experimental discussions. Strong correlations were found. Diversity

showed a positive impact on the minority class in terms of recall and F-measure in general,

which is achieved by making the ensemble produce broader and less overfitting classifi-

cation boundaries for the minority class. A performance reduction on the majority class

caused by diversity was observed in term of recall and F-measure on real-world data sets.

The relationship between diversity and overall performance, including G-mean and

AUC, was studied empirically. Strong correlations existed. Diversity was shown to be

beneficial to both measures.

Unlike the weak correlation found in the current literature between diversity and

overall accuracy, we obtained strong correlations for single-class and overall performance

measures in class imbalance scenarios. It is a meaningful result, suggesting the usefulness

of diversity in this type of classification problems. The positive role of diversity suggests

an alternative way of handling class imbalance problems, which can be used to develop

better solutions. In addition, the results here help us to understand how the major

performance measures are affected by ensemble diversity.

7.1.2 A New NCL Method for Classification

Aiming at a better solution for class imbalance problems by making use of ensemble

diversity, chapter 4 focused on the ensemble learning technique of negative correlation

learning (NCL), which considers the accuracy-diversity trade-off explicitly and is well-

known for its good generalization ability. We pointed out two main issues of existing

NCL algorithms for classification ensembles: their theoretical grounding is only valid in

the regression context, not in classification; they require limited types of base learners

and can be computationally expensive.

To overcome these problems relating to the research questions in section 1.3.3, we
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proposed a new ensemble algorithm, called AdaBoost.NC, combining the ideas of NCL

and AdaBoost (Wang et al., 2010). It was shown to be more efficient than other NCL

algorithms and exhibit better generalization performance than AdaBoost on general clas-

sification tasks. It allows wider choice of base learners. The “diversity-encouraging”

term (i.e. ambiguity) used in AdaBoost.NC was obtained from the 0-1 error function. It

describes the classification difference within the ensemble and provides theoretical sup-

port to adapt the traditional NCL based on the squared error function in regression for

classification. AdaBoost.NC can be viewed as the first NCL algorithm specializing in

classification problems.

As another contribution, the effectiveness of AdaBoost.NC was associated with error

correlation of the ensemble in the sequential training context with theoretical and empir-

ical explanations (Wang and Yao, 2010). We proved how reducing error correlation could

benefit the classification accuracy. AdaBoost.NC was shown to produce smaller error

correlation and thus a lower test error than AdaBoost with less overfitting classification

boundaries. It explains how error correlation contributes to accuracy from a whole new

angle.

7.1.3 How to Better Deal with Two-Class Imbalance Problems?

Based on the results from chapters 3 and 4, NCL algorithms including AdaBoost.NC were

applied to tackling two-class imbalance problems in chapter 5. Because most existing en-

semble methods in the literature suffer from overfitting and over-generalization problems

depending on the selected training strategies and corresponding parameter settings, the

study here aims at the following questions stated in section 1.3.2: if and how we can take

advantage of ensemble diversity to better deal with class imbalance; if NCL methods in-

cluding AdaBoost.NC can be good solutions to class imbalance problems. The compelling

advantages of considering diversity in class imbalance learning are: no data information

is lost; no data generation method is involved in training. It reduces the dependence

of the algorithm on resampling techniques and training data. In addition, manipulating
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ensemble diversity is independent of the base learning algorithm, so it is free of choosing

any base learner and more flexible than algorithm-level solutions.

AdaBoost.NC was studied thoroughly on both artificial and real-world imbalanced

data, in order to understand the effect of its “diversity-encouraging” term in imbalanced

scenarios and exploit this effect to improve the performance. Two other typical NCL

algorithms (i.e. CELS and NCCD) and some state-of-art ensemble solutions for class

imbalance problems were also investigated and compared through comprehensive exper-

iments. The results suggested that NCL methods integrated with random oversampling

are effective in finding minority class examples without losing the overall performance

compared to other methods. This was achieved by providing broader and less overfitting

classification boundaries for the minority class. The oversampling level and imbalance

rate of training data were shown not to be crucial factors to influence the effectiveness.

Particularly, AdaBoost.NC tree ensembles presented very promising generalization results

in terms of AUC and minority-class performance.

The research here shows the usefulness of ensemble diversity in solving class imbalance

problems, and opens up a novel way to deal with real-world applications that suffer from

class imbalance difficulties. It is worth mentioning that our methods were also tested and

presented good results on a set of software engineering tasks, which is a new application

to this field and worthy of further investigation.

7.1.4 Challenges and Potential Solutions for Multi-Class Imbal-
ance Problems

As an important extension to two-class cases, multi-class imbalance problems pose new

challenges that have not drawn much attention. The ineffectiveness of two-class imbalance

learning techniques caused by multi-class has been reported. In chapter 6, we aimed to find

out what problems multi-class can cause and how it affects the classification performance

in the presence of imbalanced data. Two types of multi-class imbalance problems, i.e. the

multi-minority and multi-majority cases, were studied by applying random oversampling
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and undersampling techniques. Both types showed strong negative correlations with the

performance measures, which implied that the performance decreases as the number of

imbalanced classes increases. The multi-majority case was shown to be more harmful

than the multi-minority case, because the imbalance rate became more severe. Regarding

the class imbalance learning techniques, oversampling did not help the classification and

caused overfitting; undersampling was sensitive to the number of minority classes and

suffered from great performance loss on majority classes. This is the first systematic study

of multi-class for class imbalance learning by providing separate and in-depth discussions

of multi-minority and multi-majority cases. The results reveal possible issues that a class

imbalance learning technique could confront when dealing with multi-class tasks, and

provide guidance for designing better solutions.

Following the multi-class investigation and the promising results of AdaBoost.NC on

two-class imbalance problems in chapter 5, chapter 6 continued the NCL study with the

aim of tackling multi-class imbalance problems effectively and directly. AdaBoost.NC

was applied to a set of benchmark data sets with multiple minority and/or majority

classes. It was shown to have good generalization for the minority class and balance the

performance across different classes well in terms of G-mean without applying any class

decomposition, when working with random oversampling. This work provides a direct and

effective way of dealing with multi-class imbalance problems from both minority-class and

overall performance aspects.

7.2 Further Work

This section describes several directions for future research that may improve and extend

the work in this thesis.
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7.2.1 Sensitivity of Diversity Measures to Class Imbalance

In chapter 3, we studied the impact of diversity measured by Q-statistic on the classifica-

tion performance of class imbalance problems. One reason for choosing Q-statistic is its

less sensitivity to imbalanced distributions according to our empirical results and existing

studies (Kuncheva and Whitaker, 2001, 2003). It is reflected in the observation that the

members of an ensemble with overall high diversity tend to make diverse decisions on

each class regardless of whether the class is minority or majority. For the consideration

that there are other diversity measures available to assess the disagreement degree of

classification ensembles, the work here arouses our interest in their sensitivity to class im-

balance: which diversity measures are sensitive to class imbalance? Which ones are not?

How do they behave in different imbalanced scenarios? Such investigation can help us to

understand the role of diversity in class imbalance learning further and its relationship to

overall and single-class performance from different perspectives.

7.2.2 Discrimination Between “Good” diversity and “Bad” Di-
versity

In the classification pattern analysis of chapter 3, we explained that diversity can be either

beneficial or harmful to classification accuracy depending on which pattern the ensemble

belongs to. We defined “good” diversity if it improves the performance; otherwise, it

was treated as “bad” diversity. However, it is hard to judge whether good or not for a

real-world problem in most cases. It would be very helpful to derive a measure or develop

a method that can discriminate between “good” and “bad” diversity in the future, and

guide the ensemble about when to consider diversity. We could start from the definitions

of the classification patterns in this chapter, which have suggested some possible factors

that the “quality” of diversity might rely on.
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7.2.3 The AdaBoost.NC Algorithm

The ensemble algorithm proposed in chapter 4, AdaBoost.NC, employed a penalty term

to balance the trade-off between accuracy and diversity explicitly and was shown to have

good generalization performance. There is still a lot of room to further discuss and

improve the algorithm:

1) The penalty currently utilizes the ambiguity term decomposed from the 0-1 error

function to express the disagreement degree within the ensemble. In the future, we would

like to consider other loss functions from which we may obtain different forms of ambiguity

to substitute the one used in this algorithm. In addition, we found a direct relation of

ambiguity to the diversity measure of entropy in section 4.2. In fact, we may consider

other existing diversity measures to encourage diversity in AdaBoost.NC and see if and

how its performance gets affected, although ambiguity has been shown to have stronger

correlation with generalization error than others (Chen, 2008).

2) In section 4.3, we discussed how AdaBoost.NC’s performance is affected by the pa-

rameter of penalty strength λ. We found that the best λ varies with the solving problems

and base learning algorithms. The performance of AdaBoost.NC based on decision trees

appeared to be more sensitive to λ than that based on neural networks. Besides, a large

λ did not degrade the performance necessarily, depending on data domains. It would

be very meaningful to give a specific range for setting λ in the future to guide the use

of AdaBoost.NC. It would be also interesting to explore how it performs by using other

types of base learners.

3) In section 4.3, we discussed the computational cost of AdaBoost.NC compared with

other NCL algorithms, where AdaBoost.NC showed much less training time. Most of the

data sets we used in the current study are quite small. We would like to consider real large

data sets in the future. A theoretical complexity analysis for AdaBoost.NC’s scalability

would be also useful.

4) As an improved version of Boosting integrated with the idea of NCL, AdaBoost.NC

was compared with the conventional AdaBoost and NCL algorithms in chapter 4. For
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a further study and a complete understanding, we would like to compare AdaBoost.NC

with other improved Boosting algorithms in the literature, such as BrownBoost (Freund,

2001), Modest AdaBoost (Vezhnevets and Vezhnevets, 2005), FloatBoost (Li and Zhang,

2004), etc., which have achieved varying degrees of success in specific problems.

7.2.4 Error Correlation in Sequential Training

In section 4.4, we proved how error correlation benefits classification accuracy in the

sequential training context to explain the effectiveness of AdaBoost.NC. The main as-

sumption of this proof is based on is that the individual classifier at the i-th training

iteration is only correlated with its previous one built at the (i-1)-th iteration in mak-

ing errors. It is based on the fact that the weights of training examples in AdaBoost

are updated according to the accuracy of the current classifier rather than the ensemble.

However, it is still not clear whether an indirect correlation exists between classifiers that

are not next to each other through the example weights. In the future work, we would like

to analyze this error correlation in depth between individual classifiers for the ensembles

with a sequential training framework and study how it changes along with the training

process. It may provide more information to explain the performance of AdaBoost and

AdaBoost.NC in terms of error correlation.

7.2.5 Conditions of Using AdaBoost.NC in Class Imbalance Learn-
ing

In chapters 5 and 6, we investigated the generalization ability of AdaBoost.NC to solve

class imbalance problems. We showed that AdaBoost.NC tree ensembles are good at

identifying minority class examples and balancing the performance across classes when

working with random oversampling. It is worthy of more discussions about the effec-

tiveness of AdaBoost.NC with different settings, such as considering other base learning

algorithms. Currently, the key parameter λ in AdaBoost.NC is pre-defined. A large λ is
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preferable. How large λ could be is another important issue to study in the future.

7.2.6 Analysis of Multi-Class Imbalance Learning

With respect to multi-class imbalance learning, we studied the classification difficulties

caused by multi-class and potential solutions in chapter 6 of this thesis. The negative

effects of multi-class were found and analyzed based on random oversampling and random

undersampling. We would like to investigate how other class imbalance learning methods

are affected by multi-class. For example, is there any method that is less sensitive to

multi-class? Would they present similar behaviours to oversampling/undersampling, as

the number of imbalanced classes increases?

Second, there is still a lack of theoretical framework to define this problem properly.

For example, how should we define the imbalance rate when there exist multiple minority-

majority pairs of classes? In two-class cases, it can be simply expressed by the proportion

of the only minority class in the whole data set. In addition, not all minority classes suffer

from recognition difficulties in some cases. How should we judge and handle this kind of

situations?

Regarding the evaluation criteria for multi-class imbalance learning, we had some

interesting observations from the experimental section in chapter 6. We noticed that an

ensemble method with relatively high MAUC could be quite bad at recognizing examples

of minority classes. It may imply a weak point of MAUC. Similarly, G-mean captures

minority-class performance better, but may overlook the performance among majority

classes. A better evaluation metric might be desirable that combines the strength of

MAUC and G-mean. A related observation in the same section was that no single method

produced consistently better G-mean and MAUC at the same time. We would like to find

out the reasons and investigate new approaches that are good at both in the future.
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7.2.7 Application of Class Imbalance Learning Methods to Soft-
ware Engineering

In chapter 5, we solved a set of software engineering problems with the task of defect

prediction by using class imbalance learning methods. All these data sets are very im-

balanced, because defects are much less likely to occur than non-defects. Our method

showed great potential of recognizing defects. In the field of software engineering, al-

though some machine learning techniques were shown to be helpful for checking software

quality automatically (Menzies et al., 2007, 2004), no prior work has considered class im-

balance learning methods to facilitate this practical problem. In the future, we would like

to explore the usefulness of class imbalance learning methods systematically for tackling

this problem, in comparison with other representative methods adopted in the field of

software engineering. Moreover, it would be interesting to utilize domain knowledge of

software engineering, such as some data preprocessing and feature selection techniques,

to further improve our methods.
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APPENDIX A

CONNECTION BETWEEN AMBIGUITY AND
BIAS-VARIANCE-COVARIANCE

DECOMPOSITIONS FOR REGRESSION
ENSEMBLES

The ambiguity decomposition (Krogh and Vedelsby, 1995) and the bias-variance-covariance

decomposition (Ueda and Nakano, 1996) provide theoretical groundings for NCL algo-

rithms in the regression context. In the ambiguity decomposition, the squared error of a

regression ensemble with a linear combination rule is broken into two components

(
f̄ − y

)2
=
∑
i

αi (fi − y)2 −
∑
i

αi
(
fi − f̄

)2
. (A.1)

The first term on the right hand side is the average of individual errors. The second

is referred to as “ambiguity”, the amount of variability among the ensemble members. It

guarantees that the ensemble squared error is always less than or equal to the average

individual error for any data point.

With respect to all possible training data sets, the bias-variance-covariance decompo-

sition shows the expected squared error of an ensemble f̄ as follows

E
{(
f̄ − y

)2
}

= bias+
1

L
var +

(
1− 1

L

)
covar. (A.2)

It explains the role of diversity in generalization in terms of the covariance between
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learners. It can become negative. In order to improve generalization, it would be ideal

to decrease the covariance without causing any increases of the average bias or variance

terms.

Brown gave the exact link between these two decompositions to show what portions

of the bias-variance-covariance decomposition correspond to the ambiguity term (Brown,

2004; Brown et al., 2005). By calculating the expectation of the ambiguity decomposition

with uniformly weighted learners, we can obtain

E

{
1

L

∑
i

(fi − y)2

}
= bias

2
+ Ω (A.3)

E

{
1

L

∑
i

(
fi − f̄

)2

}
= Ω− 1

L
var −

(
1− 1

L

)
covar, (A.4)

where Ω reflects the interaction between the two components of the ambiguity decom-

position,

Ω = var +
1

L

∑
i

(
E {fi} − E

{
f̄
})2

. (A.5)

It is the average variance of the individual learners, plus the average squared deviation

of the expectations of the individuals from the expectation of the ensemble. Due to the

existence of Ω, we cannot maximize the ambiguity without affecting other parts of the

error.
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APPENDIX B

CHOICE OF CLASSIFIER WEIGHT αi IN
ADABOOST.NC

We show how we determine the form of αi as the weight of each individual classifier in

the AdaBoost.NC algorithm in this section. Assuming the notation in Table 4.1, we first

derive the upper bound on the training error of f̄ . By unraveling the updating rule, we

have

DL+1 (xj) =

(∏L
i=1 (pi (xj))

λ
)

exp
(
−
∑L

i=1 αi [fi (xj) = yj]
)

N
∏L

i=1 Zi
, (B.1)

with
∑N

j=1 DL+1 (xj) = 1 holding. If fi (xj) 6= yj, we have

L∑
i=1

αi [fi (xj) = yj] ≤
L∑
i=1

αi [fi (xj) 6= yj] . (B.2)

Thus, the training error is upper bounded by

1

N

∑
j

[
f̄ (xj) 6= yj

]
≤ 1

N

∑
j

exp

(
L∑
i=1

αi [fi (xj) 6= yj]−
L∑
i=1

αi [fi (xj) = yj]

)

≤ 1

N

∑
j

exp

(
1−

L∑
i=1

αi [fi (xj) = yj]

)

= e

(
L∏
i=1

Zi

)∑
j

DL+1 (xj)∏L
i=1 (pi (xj))

λ
(according to Eq. B.1).
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Since the penalty term pi ranges in [1/2, 1], the bound can be further relaxed by

1

N

∑
j

[
f̄ (xj) 6= yj

]
≤ e

(
L∏
i=1

Zi

)
2λL

∑
j

DL+1 (xj)

= e

(
L∏
i=1

Zi

)
2λL.

In order to minimize training error, the learning objective on each Boosting iteration is

to find αi so as to minimize Zi. The penalty (pi (xj))
λ can be treated as a misclassification

cost Cj associated with the example xj. From this point of view, AdaBoost.NC has the

cost-sensitive Boosting framework AdaC2 proposed in (Sun et al., 2007), in which αi is

uniquely selected as

αi =
1

2
log

(∑
j,yj=fi(xj)

CjDi (xj)∑
j,yj 6=fi(xj) CjDi (xj)

)
(B.3)

to minimize the training error bound greedily. It leads to the choice of αi for Ad-

aBoost.NC given in Table 4.1.
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APPENDIX C

PAIRED COMPARISON OF ALGORITHMS ON
TWO-CLASS IMBALANCE PROBLEMS

This section shows all the results of paired comparison on fifteen real-world data sets

between algorithms discussed in chapter 5. Three tables are included for comparing

AUC, minority-class recall and minority-class precision respectively. The upper triangle

of each table presents the results of NN-based models, and the lower triangle presents the

results of tree-based models. Each entry is the amount of win-tie-lose of the method in a

row compared with the method in a column.
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Table C.1: Paired comparison of AUC based on T-test with confidence level of 0.95 on 15
data sets. The upper triangle shows the results of NN-based models, and the lower triangle
shows the results of tree-based models. Each entry presents the amount of win-tie-lose of
a method in a row comparing with the method in a column.

OrSg OvSg UnSg OrAda OvAda UnAda OrNC2
OrSg - 4-8-3 2-9-4 7-2-6 5-3-7 5-5-5 6-3-6
OvSg 2-6-7 - 3-8-4 5-4-6 5-3-7 5-5-5 4-5-6
UnSg 10-3-2 11-4-0 - 6-4-5 6-4-5 3-9-3 6-2-7

OrAda 14-0-1 14-0-1 12-2-1 - 0-14-1 2-9-4 2-11-2
OvAda 14-0-1 14-0-1 12-2-1 0-14-1 - 2-11-2 4-10-1
UnAda 13-1-1 15-0-0 15-0-0 5-8-2 5-9-1 - 5-6-4
OrNC2 13-1-1 14-1-0 12-2-1 7-8-0 6-9-0 10-1-4 -
OrNC9 14-0-1 15-0-0 13-2-0 5-8-2 5-8-2 4-8-3 1-10-4
OvNC2 14-0-1 14-0-1 12-2-1 8-6-1 7-7-1 7-4-4 2-12-1
OvNC9 13-1-1 15-0-0 13-2-0 9-4-2 9-4-2 9-4-2 4-8-3
UnNC2 13-1-1 14-1-0 15-0-0 6-6-3 7-6-2 2-12-1 5-4-6
UnNC9 11-1-3 12-2-1 12-1-2 5-4-6 4-5-6 1-7-7 4-2-9
SMB 14-0-1 14-0-1 12-2-1 2-11-2 0-13-2 4-8-3 1-9-5
JSB 8-3-4 9-2-4 6-2-7 2-2-11 2-2-11 1-4-10 2-1-12
RAB 12-2-1 13-1-1 12-1-2 1-11-3 1-11-3 2-7-6 1-6-8

OrNC9 OvNC2 OvNC9 UnNC2 UnNC9 OrCELS OvCELS
OrSg 6-5-4 5-2-8 4-6-5 5-6-4 9-4-2 5-7-3 4-8-3
OvSg 5-7-3 2-6-7 3-7-5 6-3-6 8-3-4 5-6-4 5-6-4
UnSg 6-5-4 4-3-8 3-7-5 4-7-4 9-5-1 6-4-5 5-8-2

OrAda 5-10-0 3-4-8 6-3-6 7-4-4 8-4-3 6-2-7 9-2-4
OvAda 5-10-0 3-5-7 5-4-6 6-7-2 8-5-2 5-4-6 7-4-4
UnAda 4-8-3 3-5-7 4-8-3 4-10-1 8-7-0 6-3-6 5-8-2
OrNC2 5-9-1 0-10-5 6-3-6 5-6-4 7-4-4 5-4-6 6-3-6
OrNC9 - 0-7-8 3-6-6 3-9-3 5-7-3 5-3-7 5-3-7
OvNC2 6-8-1 - 6-8-1 7-6-2 8-6-1 7-3-5 6-5-4
OvNC9 6-9-0 4-8-3 - 5-7-3 8-6-1 6-5-4 4-7-4
UnNC2 4-8-3 3-6-6 1-7-7 - 5-9-1 6-2-7 2-9-4
UnNC9 4-5-6 3-4-8 0-6-9 0-7-8 - 6-2-7 1-8-6
OrCELS - - - - - - 3-6-6

SMB 3-9-3 1-8-6 2-6-7 3-7-5 7-5-3 - -
JSB 2-1-12 2-1-12 2-1-12 1-2-12 3-3-9 - -
RAB 2-6-7 1-5-9 2-3-10 2-5-8 6-2-7 - -

UnCELS OrNCCD OvNCCD UnNCCD SMB JSB RAB
OrSg 4-9-2 9-5-1 10-3-2 8-6-1 11-3-1 14-1-0 7-3-5
OvSg 5-7-3 8-4-3 9-3-3 8-4-3 7-7-1 14-1-0 6-5-4
UnSg 5-10-0 10-3-2 10-3-2 8-5-2 9-5-1 14-1-0 7-5-3

OrAda 6-3-6 8-3-4 9-4-2 7-5-3 10-4-1 13-1-1 2-13-0
OvAda 6-3-6 8-4-3 10-3-2 7-4-4 10-4-1 14-1-0 3-12-0
UnAda 5-6-4 8-4-3 10-3-2 8-4-3 8-6-1 15-0-0 6-8-1
OrNC2 7-2-6 7-2-6 9-3-3 7-3-5 8-3-4 12-2-1 3-8-4
OrNC9 5-4-6 6-5-4 10-1-4 6-4-5 7-4-4 12-2-1 3-8-4
OvNC2 8-2-5 8-4-3 10-3-2 8-2-5 11-2-2 14-1-0 10-3-2
OvNC9 6-5-4 8-5-2 10-2-3 7-3-5 10-4-1 14-0-1 7-3-5
UnNC2 6-4-5 7-4-4 9-3-3 7-4-4 7-5-3 14-1-0 5-5-5
UnNC9 3-5-7 7-5-3 9-3-3 4-5-6 5-4-6 15-0-0 3-5-7
OrCELS 2-8-5 6-7-2 10-2-3 4-7-4 7-4-4 13-1-1 7-3-5
OvCELS 3-9-3 7-7-1 10-4-1 5-8-2 7-8-0 15-0-0 5-5-5
UnCELS - 8-5-2 10-3-2 4-10-1 7-4-4 14-1-0 6-4-5
OrNCCD - - 8-6-1 3-5-7 5-5-5 13-1-1 5-2-8
OvNCCD - - - 2-5-8 3-3-9 10-4-1 2-3-10
UnNCCD - - - - 5-5-5 14-1-0 4-4-7

SMB - - - - - 13-2-0 2-7-6
JSB - - - - 2-1-12 - 0-2-13
RAB - - - - 1-8-6 11-3-1 -
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Table C.2: Paired comparison of recall of the minority class based on T-test with con-
fidence level of 0.95 on 15 data sets. The upper triangle shows the results of NN-based
models, and the lower triangle shows the results of tree-based models. Each entry presents
the amount of win-tie-lose of a method in a row comparing with the method in a column.

OrSg OvSg UnSg OrAda OvAda UnAda OrNC2
OrSg - 0-0-15 0-0-15 1-4-10 1-2-12 0-0-15 1-6-8
OvSg 9-6-0 - 1-4-10 12-3-0 8-7-0 1-2-12 13-1-1
UnSg 15-0-0 15-0-0 - 13-2-0 12-2-1 0-12-3 14-0-1

OrAda 2-12-1 0-5-10 0-1-14 - 1-6-8 0-0-15 3-8-4
OvAda 6-8-1 1-8-6 0-0-15 6-9-0 - 0-1-14 10-4-1
UnAda 15-0-0 15-0-0 3-12-0 15-0-0 15-0-0 - 14-1-0
OrNC2 0-8-7 0-5-10 0-0-15 0-8-7 0-4-11 0-0-15 -
OrNC9 0-2-13 0-1-14 0-0-15 0-2-13 0-1-14 0-0-15 0-4-11
OvNC2 7-7-1 2-4-9 0-0-15 5-10-0 0-11-4 0-0-15 12-3-0
OvNC9 14-1-0 13-1-1 1-5-9 14-1-0 13-2-0 0-4-11 15-0-0
UnNC2 15-0-0 15-0-0 5-10-0 15-0-0 15-0-0 4-11-0 15-0-0
UnNC9 15-0-0 15-0-0 4-11-0 14-1-0 15-0-0 6-8-1 15-0-0
SMB 11-3-1 5-8-2 0-1-14 14-1-0 6-8-1 0-0-15 13-2-0
JSB 2-8-5 1-4-10 0-2-13 2-7-6 1-4-10 0-1-14 3-8-4
RAB 1-10-4 0-4-11 0-0-15 0-13-2 0-5-10 0-0-15 6-8-1

OrNC9 OvNC2 OvNC9 UnNC2 UnNC9 OrCELS OvCELS
OrSg 7-4-4 0-2-13 0-1-14 0-0-15 0-0-15 3-6-6 0-1-14
OvSg 15-0-0 11-4-0 9-5-1 2-3-10 1-4-10 13-2-0 3-5-7
UnSg 15-0-0 13-2-0 13-2-0 3-7-5 1-12-2 14-1-0 8-2-5

OrAda 11-2-2 1-4-10 1-4-10 0-1-14 1-1-13 9-0-6 1-3-11
OvAda 15-0-0 5-7-3 3-4-8 1-3-11 1-2-12 10-4-1 1-5-9
UnAda 15-0-0 15-0-0 14-1-0 4-9-2 3-12-0 13-2-0 8-2-5
OrNC2 13-1-1 1-2-12 1-2-12 1-0-14 1-0-14 9-1-5 0-3-12
OrNC9 - 0-1-14 0-0-15 0-0-15 0-0-15 1-7-7 0-0-15
OvNC2 14-1-0 - 2-7-6 0-0-15 0-1-14 10-4-1 1-3-11
OvNC9 15-0-0 15-0-0 - 0-1-14 0-2-13 11-4-0 1-6-8
UnNC2 15-0-0 15-0-0 12-3-0 - 4-9-2 14-1-0 7-4-4
UnNC9 15-0-0 15-0-0 13-2-0 0-14-1 - 14-1-0 8-2-5
OrCELS - - - - - - 0-3-12

SMB 14-1-0 10-4-1 1-1-13 0-1-14 0-1-14 - -
JSB 10-2-3 0-4-11 0-1-14 0-1-14 0-2-13 - -
RAB 13-2-0 0-9-6 0-1-14 0-0-15 0-0-15 - -

UnCELS OrNCCD OvNCCD UnNCCD SMB JSB RAB
OrSg 0-0-15 5-7-3 2-3-10 0-1-14 1-6-8 5-6-4 1-4-10
OvSg 2-6-7 13-1-1 7-5-3 2-2-11 14-1-0 13-1-1 13-2-0
UnSg 6-5-4 14-1-0 10-2-3 5-3-7 15-0-0 15-0-0 14-1-0

OrAda 1-2-12 11-3-1 4-0-11 2-0-13 5-8-2 9-5-1 2-13-0
OvAda 1-4-10 13-1-1 6-4-5 2-0-13 9-5-1 11-3-1 9-5-1
UnAda 8-5-2 14-1-0 11-2-2 4-4-7 15-0-0 15-0-0 15-0-0
OrNC2 0-1-14 12-2-1 4-2-9 2-0-13 5-6-4 8-6-1 5-5-5
OrNC9 0-0-15 7-3-5 1-4-10 0-1-14 1-4-10 5-5-5 2-2-11
OvNC2 0-3-12 13-1-1 6-4-5 1-1-13 9-5-1 14-0-1 12-3-0
OvNC9 1-5-9 13-1-1 7-5-3 1-1-13 13-1-1 14-0-1 11-4-0
UnNC2 8-5-2 14-1-0 12-1-2 5-2-8 15-0-0 14-1-0 15-0-0
UnNC9 5-8-2 14-0-1 12-0-3 3-5-7 15-0-0 14-1-0 14-1-0
OrCELS 0-2-13 7-6-2 3-5-7 0-1-14 6-1-8 7-2-6 4-2-9
OvCELS 6-3-6 13-1-1 10-2-3 4-1-10 13-2-0 14-1-0 13-1-1
UnCELS - 14-0-1 11-1-3 2-6-7 15-0-0 14-1-0 12-3-0
OrNCCD - - 1-5-9 0-0-15 2-3-10 4-4-7 1-3-11
OvNCCD - - - 1-1-13 10-1-4 13-0-2 10-2-3
UnNCCD - - - - 13-1-1 13-2-0 14-0-1

SMB - - - - - 7-6-2 3-6-6
JSB - - - - 1-2-12 - 1-5-9
RAB - - - - 0-2-13 6-8-1 -
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Table C.3: Paired comparison of precision of the minority class based on T-test with
confidence level of 0.95 on 15 data sets. The upper triangle shows the results of NN-based
models, and the lower triangle shows the results of tree-based models. Each entry presents
the amount of win-tie-lose of a method in a row comparing with the method in a column.

OrSg OvSg UnSg OrAda OvAda UnAda OrNC2
OrSg - 8-2-5 10-1-4 4-5-6 5-4-6 9-2-4 4-6-5
OvSg 1-7-7 - 10-5-0 1-6-8 0-10-5 13-2-0 2-5-8
UnSg 1-1-13 1-0-14 - 1-1-13 0-4-11 2-11-2 2-3-10

OrAda 7-7-1 9-6-0 13-1-1 - 4-10-1 13-1-1 4-11-0
OvAda 5-8-2 9-6-0 13-1-1 0-10-5 - 14-1-0 4-8-3
UnAda 1-2-12 1-1-13 9-6-0 1-1-13 1-1-13 - 1-3-11
OrNC2 9-5-1 10-4-1 12-1-2 6-8-1 7-7-1 12-1-2 -
OrNC9 4-4-7 4-3-8 6-2-7 4-2-9 3-4-8 5-3-7 1-6-8
OvNC2 7-6-2 9-6-0 13-1-1 1-14-0 6-9-0 12-2-1 1-9-5
OvNC9 2-6-7 5-7-3 13-1-1 1-5-9 2-6-7 13-1-1 2-3-10
UnNC2 1-3-11 1-3-11 8-7-0 1-1-13 1-1-13 4-10-1 2-1-12
UnNC9 1-2-12 1-3-11 6-5-4 1-1-13 1-1-13 5-5-5 2-1-12
SMB 4-10-1 10-5-0 14-0-1 0-9-6 3-10-2 14-0-1 1-6-8
JSB 6-5-4 7-4-4 9-2-4 1-7-7 4-5-6 9-2-4 2-5-8
RAB 5-7-3 8-6-1 12-2-1 0-13-2 4-10-1 11-3-1 1-7-7

OrNC9 OvNC2 OvNC9 UnNC2 UnNC9 OrCELS OvCELS
OrSg 6-7-2 5-4-6 7-3-5 9-1-5 10-0-5 5-5-5 6-4-5
OvSg 6-6-3 3-3-9 4-4-7 14-1-0 11-4-0 3-4-8 7-3-5
UnSg 5-5-5 2-2-11 1-5-9 7-3-5 7-6-2 2-5-8 5-2-8

OrAda 12-2-1 5-9-1 9-5-1 12-2-1 13-1-1 8-5-2 7-7-1
OvAda 9-4-2 5-7-3 7-6-2 14-1-0 15-0-0 6-4-5 8-6-1
UnAda 4-6-5 1-2-12 1-5-9 4-9-2 8-3-4 2-4-9 5-2-8
OrNC2 9-4-2 3-11-1 7-5-3 11-3-1 12-2-1 5-7-3 7-5-3
OrNC9 - 2-4-9 4-4-7 6-7-2 6-6-3 1-7-7 3-3-9
OvNC2 9-3-3 - 6-7-2 13-2-0 13-2-0 5-5-5 8-5-2
OvNC9 8-3-4 2-3-10 - 13-2-0 13-2-0 4-4-7 5-6-4
UnNC2 7-2-6 1-2-12 1-1-13 - 5-6-4 2-3-10 3-4-8
UnNC9 7-2-6 1-2-12 1-2-12 2-7-6 - 2-3-10 2-3-10
OrCELS - - - - - - 7-3-5

SMB 8-3-4 1-9-5 9-5-1 14-0-1 14-0-1 - -
JSB 8-3-4 2-7-6 8-2-5 9-2-4 9-2-4 - -
RAB 9-2-4 0-12-3 8-4-3 11-3-1 12-2-1 - -

UnCELS OrNCCD OvNCCD UnNCCD SMB JSB RAB
OrSg 8-2-5 7-7-1 7-5-3 10-2-3 6-6-3 4-6-5 5-4-6
OvSg 9-5-1 10-2-3 7-3-5 14-1-0 3-8-4 5-3-7 2-6-7
UnSg 6-4-5 9-3-3 5-4-6 9-5-1 2-3-10 5-3-7 2-3-10

OrAda 10-4-1 11-2-2 9-4-2 14-0-1 8-7-0 6-8-1 2-13-0
OvAda 9-6-0 11-3-1 7-5-3 15-0-0 6-8-1 6-4-5 3-9-3
UnAda 5-4-6 10-2-3 6-2-7 9-5-1 2-3-10 5-3-7 2-3-10
OrNC2 10-4-1 11-3-1 7-6-2 13-1-1 6-8-1 5-6-4 3-9-3
OrNC9 6-4-5 6-6-3 4-6-5 9-4-2 1-9-5 4-5-6 1-5-9
OvNC2 10-4-1 11-3-1 7-4-4 15-0-0 7-6-2 6-4-5 3-8-4
OvNC9 10-3-2 10-3-2 8-2-5 15-0-0 4-6-5 6-4-5 2-6-7
UnNC2 5-2-8 9-3-3 6-1-8 9-5-1 2-3-10 5-3-7 1-4-10
UnNC9 2-5-8 8-4-3 5-2-8 6-7-2 2-2-11 5-3-7 1-3-11
OrCELS 8-4-3 10-5-0 9-3-3 12-1-2 6-6-3 6-4-5 2-6-7
OvCELS 7-3-5 9-4-2 6-5-4 12-2-1 4-8-3 6-4-5 4-5-6
UnCELS - 11-1-3 7-1-7 11-2-2 2-7-6 5-4-6 1-6-8
OrNCCD - - 4-5-6 5-4-6 3-3-9 2-4-9 2-2-11
OvNCCD - - - 8-4-3 4-5-6 4-3-8 3-3-9
UnNCCD - - - - 1-2-12 4-2-9 1-2-12

SMB - - - - - 4-5-6 1-7-7
JSB - - - - 4-5-6 - 1-9-5
RAB - - - - 5-7-3 6-8-1 -
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