
AN INVESTIGATION OF THE REGULATION OF BLIMP1  

BY THE EPSTEIN-BARR VIRUS IN B CELLS 

 

 

By Kateřina Vrzalíková 

 

 

 

A thesis submitted to the School of Cancer Sciences 

of the University of Birmingham 

for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

 

School of Cancer Sciences 

College of Medicine and Dental Sciences 

The University of Birmingham 

March 2011 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



ABSTRACT 

BLIMP1 is a transcription factor that regulates plasma cell differentiation. In this thesis I 

explore the regulation of BLIMP1 by EBV and by the EBV oncogene, latent membrane 

protein-1 (LMP1). 

In chapter 3, I show that BLIMP1α is down-regulated following the infection of germinal 

centre (GC) B cells with EBV. I also show that the ectopic expression of LMP1, was 

sufficient to decrease BLIMP1α expression in these cells and was accompanied by a 

partial disruption of the BLIMP1α transcriptional programme, including the aberrant 

induction of C-MYC. In chapter 4, I show that the ectopic expression of BLIMP1α in EBV-

transformed cells and in EBV-positive Burkitt’s lymphoma cells can induce the viral lytic 

cycle. Chapter 5 provides evidence that LMP1 drives a reciprocal regulatory loop in GC B 

cells involving BLIMP1α and C-MYC which ultimately leads to the activation of C-MYC and 

the repression of BLIMP1α. Finally, in chapter 6, I present preliminary evidence showing 

that the BLIMP1β isoform is up-regulated in EBV-transformed B cells and in Hodgkin’s 

lymphoma cells; an effect which appeared to be mediated by hypomethylation of the 

BLIMP1β specific promoter.  

In summary, my results suggest that EBV can subvert normal B cell differentiation by 

modulating expression of the different BLIMP1 isoforms. These effects appear to be 

important not only for the regulation of the viral lytic cycle in B cells, but also potentially 

for the block in differentiation characteristic of EBV-associated B cell lymphomas.    
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

 

 

 



INTRODUCTION 

1.1. THE PHYSIOLOGY OF GERMINAL CENTRE 

1.1.1. General introduction 

Germinal centres (GCs) are histologically defined areas which form in secondary lymphoid 

organs in response to the entry of exogenous antigen. They represent a highly dynamic 

microenvironment where B cells undergo somatic hypermutation (SHM) and class switch 

recombination (CSR). The following sections summarize the formation and evolution of 

GCs, outline cellular phenotypes present within and generated by GCs, and provide a 

description of the processes of SHM and CSR. 

 

1.1.2. Structure, development and function of germinal centres  

The initial step in B cell ontogeny occurs in the bone marrow; where the recombination of 

immunoglobulin (Ig) heavy (H) and light (L) chain genes takes place in order to generate a 

functional B cell receptor (BCR). This is mediated by the recombination-activating genes, 

RAG1 and RAG2, and is independent of antigen. Following antigen encounter, an 

immediate T cell-independent immune response results in the production of low affinity 

IgM antibodies. Subsequently, antigen-activated naïve B cells migrate into T cell rich areas 

of peripheral lymphoid tissues such as lymph nodes, tonsils, Peyer’s patches and spleen 

(MacLennan et al., 1990; Rajewsky, 1996; Hess et al., 1998), where they become fully 

activated with the co-stimulatory help of T cells and antigen presenting cells (MacLennan, 

1994). Some of the B cells develop into extrafollicular low affinity Ig-secreting cells, 



whereas others undergo rapid clonal expansion and together with follicular dendritic cells 

(FDCs) form primary follicles. Following 3-5 days of vigorous proliferation, the 

characteristic structures of secondary follicles appear: naive IgM+IgD+ B cells gathered in 

follicular mantles surrounding polarized GCs comprised of dark zones with cycling 

centroblasts (CD10+CD77+) and light zones with smaller non-dividing centrocytes 

(CD10+CD77-) situated within a mesh of FDCs, T cells and macrophages (Figure 1.1.1). It is 

now apparent that GC B cells can migrate bidirectionally between dark and light zones as 

well as within individual dark and light compartments (Camacho et al., 1998; Allen et al., 

2007; Schwickert et al., 2007; Hauser et al., 2007). The cycling patterns seem to depend 

upon gradients of chemokines, presumably established by stromal cells in the respective 

zones (Allen et al., 2004).  

 

1.1.3. Centroblasts and somatic hypermutation  

Centroblasts are characterized by a high proliferation rate with an average cell cycle time 

between 6 to 12 hours (MacLennan, 1994; Allen et al., 2007). GC B cells have high levels 

of telomerase activity, which prevents shortening of the telomeres in these highly 

proliferating cells (Hu et al., 1997). Centroblasts express pro-apoptotic molecules such as 

Fas/CD95, but lack expression of anti-apoptotic genes, including BCL2 and its family 

members. Centroblasts do not receive CD40-mediated NF-κB-signals (MacLennan, 1994; 

Klein et al., 2003; Liu et al., 1991; Martinez-Valdez et al., 1996; Basso et al., 2004).  

 



 

 

 

 

 

 

Figure 1.1.1. A fully developed GC in human tonsil. GC (black line) consists of dark zone 
(DZ) (white line) and light zone (LZ) comprises FDCs network (red). Cell nuclei are stained 
dark/blue. The GC is surrounded by follicular mantle (MZ) with high density of naïve B 
cells (figure provided by Kai-Michael Toellner). 

 

 

 



Centroblasts undergo somatic hypermutation (SHM), a process in which mutations are 

introduced into variable regions of Ig genes (IgV) resulting in a change in the amino-acid 

sequence and diversification of IgV genes (Goossens et al., 1998). These mutations are 

introduced into a region ~2 kb downstream of the transcriptional start site of the 

antibody genes, and include single nucleotide exchanges, deletions and duplications 

(Papavasiliou and Schatz, 2000; Bross et al., 2000). SHM involves DNA strand breaks, 

though it is not clear exactly how they contribute to this process. 

SHM is initiated by and requires the enzyme, activation-induced cytidine deaminase 

(AICDA also known as AID) (Revy et al., 2000; Muramatsu et al., 2000). AID deaminates 

cytosine (C) residues in DNA converting them to uracil (U); the resulting U:G (guanine) 

base pairs are subject to DNA mismatch repair (Chaudhuri et al., 2003; Dickerson et al., 

2003; Ramiro et al., 2003; Neuberger et al, 2005; Di Noia and Neuberger, 2007). 

Mutations can be generated either by C:G mutagenesis or by A:T mutagenesis  (Figure 

1.1.2) (Wilson et al., 2005; Neuberger et al., 2005). Several transcription factors regulate 

AID transcription in centroblasts including PAX5 (Gonda et al., 2003), E proteins (Sayegh 

et al., 2003) and IRF8 (Lee et al., 2006).  

Several transcription factors are involved in establishing the centroblast phenotype, these 

include BCL6, OBF1/POU2AF1, SPIB, BACH2 and IRF8 (Kosco-Vilbois et al., 1997; Su et al., 

1997; Muto et al., 2004; Lee et al., 2006).  

 

 

http://www.ncbi.nlm.nih.gov/pubmed/15710654
http://www.nature.com/embor/journal/v6/n12/full/7400582.html


 

 

Figure 1.1.2. The DNA deamination model of SHM. AID deaminates C to U. As the U 
residue is treated as a T residue by DNA polymerases, copying of this base by a high-
fidelity polymerase during chromosomal replication will cause a C:G (guanine) to T:A 
(adenine) transition (C:G mutagenesis type I). Alternatively, the U residues in DNA can be 
recognized by a uracil-DNA glycosylase (UNG) and excised (Larson and Maizels, 2004) to 
produce an apyrimidinic (AP) site. Such sites can be cleaved by several mechanisms 
involving an AP endonuclease in duplex DNA or an AP lyase activity in single-stranded 
DNA. During error-free base-excision repair, a gap of one or a few nucleotides is usually 
filled by DNA polymerase β. In SHM, error-prone base-excision repair can occur if other 
low-fidelity DNA polymerases are used in this step. Alternatively, mutations at C:G base 
pairs might arise (C:G mutagenesis type II) if a bypass DNA polymerase incorporates a 
base opposite an AP site before repair is initiated (taken from Seki et al., 2005). 

 



BCL6 is a transcriptional repressor which is required for the formation and maintenance 

of GCs (Ye et al., 1997; Dent et al., 1997). BCL6 recruits two co-repressor complexes; one 

composed of SMRT, NCoR and BCoR (Polo et al., 2004), the other is referred to as the 

nucleosome remodelling and deacetylase (Mi-2-NuRD) complex (Fujita et al., 2004, 

Parekh et al., 2007). BCL6 extinguishes apoptotic and cell-cycle arrest responses by two 

distinct mechanisms: by inhibiting the transcription of p53 (Phan and Dalla-Favera, 2004); 

and by binding to the transcriptional activator, MIZ-1 which suppresses MIZ-1 target 

genes including the cell cycle-arrest gene, p21 (Phan et al., 2005). BCL6 also represses 

DNA damage responses as well as the sensing of DNA damage by ATM and ATR proteins 

which allows centroblasts to tolerate the physiological DNA breaks required for SHM 

(Phan and Dalla-Favera, 2004; Ranuncolo et al., 2007). In response to increasing levels of 

genomic stress, ATM targets BCL6 for phosphorylation and ubiquitin-mediated 

degradation (Phan et al., 2007). BCL6 also prevents premature B cell activation induced in 

response to T cells, by down-regulating CD69, STAT1 and CD80 (Shaffer et al., 2000; Niu et 

al., 2003); the down-regulation of CD80 prevents interaction with the T cell ligand CD28, 

which should normally occur only in the light zone. BCL6 also blocks both plasma cell 

differentiation (by repressing the expression of BLIMP1) and memory cell differentiation 

(Parekh et al., 2007; Shaffer et al., 2000; Tunyaplin et al., 2004; Vasanwala et al., 2002; 

Kuo et al., 2007).  

 

 

 



1.1.4. Centrocytes and class switch recombination  

Following SHM, centroblasts enter the light zones of GCs where they differentiate into a 

more heterogeneous population of centrocytes. Here, the centrocytes which have 

modified their antigen receptors during SHM are tested and selected for improved 

binding to the immunizing antigen. Only those B cells with favourable mutations will 

receive BCR stimulation coupled with co-stimulatory signals from antigen-enriched FDCs 

and T helper cells and will be rescued from apoptosis (Rothstein, 2000). These co-

stimulatory signals include CD40 ligand, ICOS, TACI and BAFFR (Tafuri et al., 2001; 

McAdam et al., 2001; Castigli et al., 2005; Hancz et al., 2008).  

Selected centrocytes undergo class switch recombination (CSR), a process of DNA 

recombination between two different switch regions located upstream of the constant (C) 

regions of IgH genes (Figure 1.1.3). Replacement of the initial Cμ (IgM) or Cδ (IgD) region 

by a downstream Cγ (IgG), Cα (IgA) or Cε (IgE) region results in the production of 

antibodies of different isotypes and effector functions (IgG, IgA, and IgE) with the same 

variable IgV region and thus the same antigen specificity and affinity (Toellner et al., 

1996). CSR also requires AID, which in centrocytes is regulated by IRF4 in response to the 

CD40/NF-κB signaling pathway (Muramatsu et al., 2000; Klein et al., 2006; Sciammas et 

al., 2006). 



 

Figure 1.1.3. Mechanism of CSR. CSR involves DNA double-stranded breaks within 
conserved nucleotide motifs, called switch regions, which are upstream from gene 
segments that encode the C regions of IgH chains. This is catalysed by a series of enzymes 
including AID, UNG and AP-endonucleases, which introduce breaks into selected switch 
regions of DNA (Durandy, 2003; Casali and Zan, 2004). The free ends of the DNA are 
rejoined by non-homologous end-joining processes to link the variable domain exon to 
the desired downstream constant domain exon of IgH. The intervening DNA between the 
switch regions is deleted from the chromosome and forms an excision circle (Lieber et al., 
2006). With the exception of the μ and δ genes, only one antibody class is expressed by a 
B cell at any one point in time.  
(taken from http://en.wikipedia.org/wiki/Immunoglobulin_class_switching). 

 

 

 



1.1.5. Termination of the germinal centre transcriptional programme and post germinal 

centre B cell differentiation 

The key event which terminates the GC transcriptional programme is the down-regulation 

of BCL6 (Shaffer et al., 2000; Fearon et al., 2002; Tunyaplin et al., 2004). BCL6 down-

regulation is mediated by several mechanisms; these include the transcriptional 

repression of the BCL6 gene through NF-κB/IRF4 activation in response to CD40 triggering 

(Saito et al., 2007); proteasomal degradation of BCL6 following phosphorylation by 

mitogen-activated protein kinases (MAPKs) in response to BCR engagement (Niu et al., 

1998), and p300-mediated acetylation of BCL6 (Bereshchenko et al., 2002). BCR signalling 

also activates the PI3K/AKT pathway which in turn silences FOXO3A-dependent induction 

of BCL6 (Okkenhaug et al., 2007; Fernandez de Mattos et al., 2004; Omori et al., 2006). 

BCL6 can also be down-regulated by IL-2-dependent activation of STAT5 (Cattoretti et al., 

2005a), OBF-1, PAX5 (Corcoran et al., 2005), and MAD1; an E box protein which is highly 

expressed in plasma cells (Lee et al., 2006).  

Following the silencing of BCL6, GC B cells (CD10+, CD20+, CD38low) differentiate into 

either precursors of antibody-producing plasma cells (CD20-, CD38high, CD138+) or 

memory cells (CD20+, CD27+, CD138-). The signals which determine if a GC B cell will 

differentiate into to a plasma cell or into a memory cell are only poorly understood, but 

are governed by the activity of several transcription factors (described below), as well as 

the strength of the BCR signal (Phan et. al, 2006; Paus et. al, 2006).  

Plasma cell differentiation is regulated by at least three transcription factors: BLIMP1, 

IRF4 and XBP1 (Shapiro-Shelef et al., 2003; Klein et al., 2006; Sciammas et al., 2006; 



Reimold et al., 2001). The contribution of these transcription factors to plasma cell 

differentiation is described in detail below (section  1.2.).   

The processes which regulate memory cell differentiation are not fully understood and 

compared to plasma cell differentiation appear to be more stochastic, with a fraction of 

GC B cells constantly selected to enter the memory B cell pool (Blink et. al, 2005). 

Memory B cells retain high-level expression of B220, BCR, CD19, CD20, CD86, and MHC 

class II and can recirculate to peripheral lymphoid organs (Calame, 2006). There are two 

well described subsets of memory B cells: the more highly proliferative B220+ memory 

cells, and B220- pre-plasma memory cells which are capable of rapid differentiation into 

plasma cells in response to antigen re-challenge (McHeyzer-Williams et al., 2000; Driver 

et al., 2001). It has been suggested that these cells represent distinct stages along a linear 

path of differentiation (Shapiro-Shelef et al., 2003). The structure of GC is summarized in 

Figure 1.1.4. 

 

 

 

 

 

 

 



 

 

 

Figure 1.1.4. The GC reaction. GCs are highly organized anatomic structures essential for 
the clonal expansion of GC B cells. Naïve B cells activated by antigen differentiate to form 
centroblasts that proliferate in the dark zone and undergo SHM. Centroblasts develop 
into centrocytes in the light zone. Here, B cells are selected for their ability to bind 
antigen. Cells with high affinity BCR emerge as either long-lived memory cells or 
precursors of plasma cells. (de Vinuesa et al., 2000; Endres et al., 1999; Cyster et al., 
2000) (taken from Klein and Dalla-Favera, 2008). 

 

 

 

 

 



1.2. B LYMPHOCYTE INDUCED MATURATION PROTEIN 1 (BLIMP1) 

1.2.1. General introduction 

BLIMP1, encoded by the PRDM1 gene, is often described as the ‘master regulator’ of 

plasma cell differentiation. BLIMP1 was originally identified as a silencer of the human β-

interferon gene (Keller and Maniatis, 1991) that bound to the positive regulatory domain I 

(PRDI) of the β-interferon promoter and was therefore designated ‘positive regulatory 

domain I-binding factor 1’ (PRDIBF1). Davis and colleagues isolated a murine cDNA that 

was induced following the cytokine-dependent differentiation of the mouse lymphoma 

cell line, BCL1, and named this B lymphocyte induced maturation protein 1 (BLIMP1) 

(Turner et al., 1994; Blackman et al., 1986). The same group also demonstrated that 

ectopically expressed BLIMP1 was sufficient to drive plasma cell differentiation in BCL1 

cells (Turner et al., 1994). Later, Huang recognized BLIMP1 as the mouse homolog of 

human PRDIBF1 (Huang et al., 1994). Although the murine protein differs from the human 

protein by an additional 67 amino acids at the N terminus (Huang et al., 1994), both 

proteins are highly homologous and interchangeable in functional assays. Definitive proof 

of the indispensable role of BLIMP1 in plasma cell differentiation and Ig secretion was 

provided by the Calame group using a conditional knock-out of BLIMP1 in mice (Shapiro-

Shelef et al., 2003). 

 

 

 



1.2.2. Gene organization, protein domains, and biochemical function of BLIMP1 

Gene structure 

The human PRDM1 gene is located on chromosome 6q21-q22.1 (Mock et al., 1996) and 

encodes two major isoforms, designated BLIMP1α and BLIMP1β, which arise from 

alternate promoters (Györy et al., 2003). The full-length BLIMP1α protein is responsible 

for plasma cell differentiation (Shapiro-Shelef et al., 2003; Calame et al., 2003). In 

contrast, BLIMP1β is transcribed from a novel promoter and new exon, 1β, located 

upstream of exon 4 of the full-length gene (Györy et al., 2003) (Figure 1.2.1). The 

BLIMP1β protein lacks the first 101 amino acids of BLIMP1α and instead contains 3 novel 

amino acids fused to amino acids 102-789 of BLIMP1α. BLIMP1β, which lacks most of the 

PR domain, has a diminished capacity to repress target genes (Györy et al., 2003). Since 

BLIMP1β contains the DNA-binding domain but bears a disrupted regulatory domain, it 

has been suggested that it might inhibit BLIMP1α (Györy et al., 2003). In normal B cells, 

BLIMP1β mRNA levels are substantially lower relative to the full-length form (Györy et al., 

2003). 

In mice, alternative splicing of exon 7 of PRDM1 leads to production of the BLIMP1Δ7 

protein which lacks the first 3 zinc fingers and is therefore predicted to be non-functional 

(Tunyaplin et al., 2000). Despite having impaired DNA binding activity, the BLIMP1Δ7 form 

was shown to negatively regulate proliferation and cell survival when expressed in an 

immature B cell line and to interfere with the activity of full-length BLIMP1α, presumably 

by forming non-functional heterodimers (Schmidt et al., 2008). The BLIMP1Δ7 isoform is 

preferentially expressed in naïve B cells where it might regulate the levels of BLIMP1α 



(Schmidt et al., 2008). A similar alternatively spliced form of the human protein was 

described (BLIMP1Δ6) (Smith et al., 2010).  

 

 

Figure 1.2.1. Schematic of the genomic structure and α, β and Δ mRNAs of human 
BLIMP1. BLIMP1β lacks the first 3 exons and the amino-terminal 101 amino acids of 
BLIMP1α and has a new exon, 1β. BLIMP1β transcripts initiate from an alternative 
promoter between exons 3 and 4. Numbered open boxes represent the exons. BLIMP1Δ6 
lacks exon 6 and the first 3 zinc fingers (modified from Hangaishi and Kurokawa, 2010). 

 

Protein domains 

BLIMP1 is a member of PRDM gene family and is characterized by the presence of a PR 

domain so-called after it was identified in both the BLIMP1 (PRDIBF1) and the Rb-binding 

protein RIZ1 proteins (Keller and Maniatis, 1991; Huang et al., 1998). The PR domain is a 

subclass of the SET domain of histone methyl transferases (HMT) (Dillon et al., 2005). 

Human BLIMP1 contains 789 amino acids with a predicted molecular weight of 87.9 kDa. 

Murine BLIMP1 consists of 856 amino acids and is predicted to be 95.8 kDa. BLIMP1 



localises exclusively to the nucleus in both mouse and human cells (Angelin-Duclos et al., 

2000; Cattoretti et al., 2005b). BLIMP1 contains five Krüppel-type zinc finger DNA-binding 

domains located near its C-terminus; however, only the first two finger motifs appear to 

be required for binding to target loci (Keller and Maniatis, 1992). The consensus-binding 

site for BLIMP1, the PRDI site, is an 11-bp sequence (A/C)AG(T/C)GAAAG(T/C)(G/T) and is 

similar to the binding sites for IFN regulatory factor (IRF)1 and IRF2 (Kuo and Calame, 

2004). BLIMP1 also contains a proline-rich region and two acidic regions (one each at the 

N and C termini) (Figure 1.2.2). The proline-rich region and the first two zinc fingers of 

BLIMP1 are required for transcriptional repression.  

 

 

Figure 1.2.2. Domain structures of BLIMP1. The BLIMP1 protein harbors five zinc fingers 
involved in DNA binding and protein-protein interactions, two acidic regions, a PR domain 
and a proline rich region (taken from John and Garrett-Sinha, 2009).  

 

Mechanisms of BLIMP1-mediated repression of target genes 

BLIMP1 is a transcriptional repressor that uses different mechanisms to silence its target 

genes in a context-dependent manner. Individual domains of the BLIMP1 protein recruit 

specific co-repressor complexes or chromatin modifying enzymes to mediate 

transcriptional repression.  

Acidic           PR          Proline Rich       Zinc Finger     Acidic 



The proline-rich region and the zinc finger domains are involved in the recruitment of 

transcriptional co-repressors of the Groucho family (Ren et al., 1999). BLIMP1 complexes 

with the G9a histone methyltransferase through the first 2 zinc fingers resulting in 

methylation of lysine 9 on histone H3 (H3K9) and repression of the interferon-β promoter 

(Györy et al., 2004). The proline-rich region and the zinc finger domains also interact with 

histone deacetylases (HDAC)s 1/2 to deacetylate histone H3 (Yu et al., 2000) as well as 

with a lysine-specific demethylase, LSD1 (Su et al., 2009), that demethylates mono- or di-

methyl groups on H3K4 (Shi et al., 2004). It has been proposed that recruitment of HDACs 

1/2 and LSD1 is a prerequisite for H3K9 methylation and for the silencing of mature B cell 

gene expression program during plasma cell differentiation (Su et al., 2009). In addition, 

in primordial germ cells, BLIMP1 recruits an arginine-specific histone methyl transferase 

(Prmt5) that catalyzes the dimethylation of arginine 3 on histone H2A and H4 (Ancelin et 

al., 2006). Thus, BLIMP1 serves as a scaffold to recruit proteins or co-repressor complexes 

that modify histones (by deacetylation, H3K9 methylation, and arginine methylation) and 

is doing so assembles silent chromatin over the target loci. However, it remains to be 

determined how exactly chromatin is modified at specific BLIMP1 target genes and 

whether chromatin modification is the only mechanism by which BLIMP1 represses 

transcription. Figure 1.2.3. summarises the mechanisms of repression by BLIMP1.  

 

 

 



 

 

 

 

 

 

Figure 1.2.3. Mechanisms of BLIMP1-mediated gene repression. A) BLIMP1 target gene 
prior to BLIMP1 binding is transcriptionally active with open chromatin structure and 
acetylated histone tails. B) BLIMP1 recruits co-repressors Groucho, HDAC1/2, LSD1 and 
HMTs (G9a and Prmt5) to the target promoters. C) This results in histone modifications 
including the deacetylation and methylation of histone tails. D) The histone changes 
promote the adoption of a closed chromatin conformation to prevent gene transcription 
(modified from John and Garrett-Sinha, 2009).  
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1.2.3. BLIMP1 functions in B cells 

1.2.3.1. Expression of BLIMP1 in different B cell subsets 

BLIMP1 expression increases as plasma cell differentiation proceeds, so that levels are 

highest in long-lived plasma cells in the bone marrow (Kallies et al., 2004). Plasma cells 

generated from secondary responses express higher levels of BLIMP1 than plasma cells 

generated during the primary response (Gonzalez-Garcia et al., 2006). In GCs, BLIMP1 

protein is expressed by a subset of GC B cells (up to 15%) with a phenotype intermediate 

between GC B cells and plasma cells (BCL6-, CD20-, CD10+, CD138+, IRF4+). BLIMP1-positive 

GC B cells are non-apoptotic, some are proliferating and are probably centrocytes 

destined to leave the GC and become plasmablasts (Angelin-Duclos et al., 2000). In 

contrast, BLIMP1 protein is not found in memory cells of either human (Kuo et al., 2007) 

or murine (Blink et al., 2005) origin. 

 

1.2.3.2. BLIMP1 is required for plasma cell differentiation 

BLIMP1 is not required for B cell development in the bone marrow or for the maturation 

of peripheral naïve B cells. However, BLIMP1 expression is essential and sufficient for 

terminal differentiation of all types of naïve B cells (Shapiro-Shelef et al., 2003; Savitsky 

and Calame, 2006). The first indication of the importance of BLIMP1 in plasma cell 

differentiation was provided by the demonstration that ectopic expression of BLIMP1 in 

mouse B cell lines or in mouse primary splenocytes promoted a plasma cell-like 

phenotype (Turner et al., 1994; Schliephake and Schimpl, 1996). Knock-out mice with a 



conditional deletion in mature B cells of all five zinc finger domains of BLIMP1, showed 

normal B cell development and number (Shapiro-Shelef et al., 2003). However, following 

challenge with both T-independent (TI) and T-dependent (TD) antigens, these mice 

showed a virtual absence of plasma cells and diminished Ig secretion. Moreover, mice 

lacking BLIMP1 in the B cell lineage, generated normal numbers of peripheral B cell 

subsets which were capable of self-renewal, but in which the secretion of all Ig isotypes 

was severely reduced. GCs in these mice were enlarged, suggesting a developmental 

block at the late/post-GC stages (Savitsky and Calame, 2006).  

 

1.2.3.3. Plasma cell differentiation 

Naïve, mature B cells can be subdivided into four subsets that belong to either the B-1 

lineage- comprising B-1a (B220lowIgMhighCD11b+CD5+) and B-1b cells (B220low 

IgMhighCD11b+CD5-) or the B-2 lineage which can be further subdivided into follicular B 

cells (B220+CD23highCD21low) and marginal zone B cells (B220+CD23lowCD21high) (Martin et 

al., 2001). In response to diverse stimuli, each of these subsets can differentiate into 

plasma cells of distinct size, function, surface marker expression and location in lymphoid 

organs (Martin and Kearney, 2002).  

 

Follicular plasma cell differentiation 

Plasma cell differentiation of follicular B cells is a multi-step process, which occurs in GCs  

and critically depends on the interaction of B cells with CD4+ T cells (Hasbold et al., 2004).    



The initial step of plasma cell differentiation is BLIMP1-independent and occurs as a result 

of the functional inactivation of PAX5 in mature B cells by a so far unidentified stimulus 

(Kallies et al., 2007). PAX5 is a transcription factor that is essential for the commitment of 

lymphoid progenitors to the B cell lineage and for the maintenance of ‘B-cell identity’ 

(Cobaleda et al., 2007). Because memory B cells continue to express PAX5, it has been 

suggested that the silencing of PAX5 is the critical step which diverts terminal 

differentiation towards plasma cells. The experimentally induced down-regulation of 

PAX5 in mature B cells results in the establishment of a ‘pre-plasmablast’ stage 

characterised by the secretion of low amounts of antibodies (Kallies et al., 2007). The 

production of antibodies is mediated by the induction and splicing of XBP1, a 

transcription factor essential for plasma cell formation. XBP1 activates multiple genes 

which regulate antibody production, the ER stress response (the unfolded protein 

response), changes in cell size and protein synthesis (Reimold et al., 2001; Calfon et al., 

2002; Shaffer et al., 2004).  

Pre-plasmablast are primed for BLIMP1 expression. The induction of BLIMP1 in these cells 

in necessary to stabilize and maintain the plasma cell differentiation program (Shapiro-

Shelef et al., 2003; Kallies et al., 2007). Pre-plasmablasts are precursors of immature 

short-lived plasma cells, known as plasmablasts which have intermediate levels of 

BLIMP1, express Ig, and have a high rate of proliferation (Kallies et al., 2004) and 

apoptosis (Messika et al., 1998). Expression of IRF4 is induced in plasmablasts in response 

to NF-κB-mediated CD40 signalling or calcium-dependent activation of nuclear factor of 

activated T cells (NFAT) transcription factors (Grumont and Gerondakis, 2000; Lalmanach-

http://en.wikipedia.org/wiki/Unfolded_protein_response
http://en.wikipedia.org/wiki/Unfolded_protein_response


Girard et al., 1993; Berberich et al., 1994; Winslow et al. 2006). IRF4 expression is 

essential for plasma cell differentiation (Klein et al., 2006; Sciammas et al., 2006).  

The differentiation of plasmablasts to long-lived, post-mitotic plasma cells producing 

large amounts of antibodies is associated with a further increase in BLIMP1 expression 

(Kallies et al., 2004). Terminally differentiated plasma cells can migrate to survival niches 

in the bone marrow and spleen following chemotactic stimuli mediated by CXCR12 and 

CXCR4 (Kabashima et al., 2006). Here, plasma cells receive survival signals from IL-6, BAFF 

or APRIL (Minges Wols et al., 2002; O’Connor et al., 2004) allowing them to survive, 

independently of antigen or cell division, for periods up to the lifetime of the organism 

(Slifka et al., 1995; Manz et al., 1997; Manz et al., 1998; Hyland et al., 1994). The 

continued expression of BLIMP1 is required for the maintenance of plasma cells in 

survival niches (Shapiro-Shelef et al., 2005). BLIMP1 is not required for memory B cell 

formation (Shapiro-Shelef et al., 2003), but is required for the development of pre-plasma 

memory B cells (Blink et al., 2005; Driver et al., 2001; Bell and Gray, 2003). The individual 

steps of follicular plasma cell differentiation are shown in Figure 1.2.4. 

 

Extrafollicular plasma cell differentiation 

B-1 B cells and marginal zone B cells are located in extrafollicular sites; marginal zone B 

cells are found predominantly in the spleen, and B-1 B cells in the peritoneal and pleural 

cavities (Herzenberg, 2000; Hardy and Hayakawa, 2001). Extrafollicular B cells express 

increased levels of BLIMP1 mRNA and decreased levels of transcriptional repressors of 

BLIMP1 (compared to their follicular counterparts) and can therefore rapidly differentiate 



into plasma cells, which usually occurs independently of T cell help (Kuo et al., 2007; 

Fairfax et al., 2007). Extrafollicular B cells differentiate into short-lived plasma cells 

producing low affinity antibodies of predominantly IgM phenotype, which contribute 

mainly to the initial response against viral and bacterial infections (Manz et al., 2002; 

Martin et al., 2001).  

 

1.2.3.4. Regulation of BLIMP1 and plasma cell differentiation 

Transcriptional regulation of BLIMP1 

The induction of BLIMP1 in B cells triggers irreversible plasma cell differentiation. 

Therefore, the repression of BLIMP1 in the earlier stages of B cell differentiation is 

essential to prevent inappropriate differentiation. At the same time, the rapid induction 

of BLIMP1 must occur to ensure a rapid response to antigenic challenge. The induction of 

BLIMP1 in B cells simultaneously requires both the repression of BLIMP1 inhibitors and 

the induction of BLIMP1 activators (Martins and Calame, 2008). 

 

 

 

 

 



 

 

 

 

Figure 1.2.4. Termination of the GC transcriptional programme and post-GC B cell 
development. The stages of B cell differentiation from centroblasts to centrocytes and to 
terminally differentiated plasma and memory B cells following the stimulation of CD40 
and antigen are indicated. Centrocytes appear to be a common precursor for both plasma 
cells and memory B cells. The down-regulation of PAX5 activity represents the crucial step 
in the initiation of plasma cell differentiation. Pre-plasmablasts form independently of 
BLIMP1 and secrete low levels of antibodies. Plasmablasts are immature plasma cells that 
express intermediate levels of BLIMP1 and antibodies, rapidly proliferate and have 
migratory potential. The further increase (approximately 5 fold) in BLIMP1 expression 
generates plasma cells which are long-lived, post-mitotic and produce large amounts of 
antibodies. The levels of BLIMP1, IRF4, XBP1 and J chain (a down-stream target of XBP1) 
and Ig secretion gradually increase with the progress of plasma cell differentiation 
(modified from Klein and Dalla-Favera, 2008). 

 

 

 

 



Repression of BLIMP1  

Three major proteins are known to repress BLIMP1 in naïve B cells, these are, BACH2, 

PAX5 and MITF. De-repression of BLIMP1 is required for plasma cell differentiation (Kuo 

et al., 2007). 

BACH2 delays BLIMP1 expression and plasma cell differentiation in mouse lymphocytes, 

and mice lacking BACH2 display a hyper-IgM syndrome and spontaneous plasma cell 

differentiation (Muto et al., 2004; Muto et al., 2010). BACH2 has been shown to interact 

with MAFK, which can bind to the PRDM1 promoter and repress BLIMP1 transcription 

(Muto et al., 2004; Ochiai et al., 2006).  PAX5 represses BLIMP1 expression following its 

binding to a site in exon 1 of the PRDM1 gene (Mora-Lopez et al., 2007) and the loss of 

PAX5 has been shown to promote plasma cell differentiation (Nera et al., 2006). PAX5 can 

also down-regulate BLIMP1 expression by up-regulating BACH2 (Schebesta et al., 2007). 

MITF indirectly represses BLIMP1 by down-regulating IRF4. Consistent with this the loss of 

MIFT in mice induces spontaneous plasma cell differentiation (Lin et al., 2004). BCL6 is the 

main repressor of BLIMP1 and plasma cell differentiation in GC B cells (Shaffer et al., 

2000; Reljic et al., 2000). Thus, BCL6 knock-out mice show elevated levels of BLIMP1 

mRNA and accelerated plasma cell differentiation (Tunyaplin et al., 2004). MTA3, a cell 

type-specific subunit of the Mi-2-NuRD, acts as a co-repressor with BCL6 (Fujita et al., 

2004) and directly represses BLIMP1 by binding to sites in intron 3 (Parekh et al., 2007) 

and in intron 5 (Tunyaplin et al., 2004). BCL6 represses the activity of the AP-1 

transcription factor complex which has been shown to activate BLIMP1 (Vasanwala et al., 

2002). The transcription factors known to repress PRDM1 in GC B cells are summarised in 

Figure 1.2.5. 



 

 

 

 

 

Figure 1.2.5. Repression of PRDM1 transcription in B cells. The approximate binding sites 
of the direct repressors are shown in red and that of the activator, IRF4, in green. Blue 
boxes indicate individual PRDM1 exons. The white box shows untranslated sequences 
(taken from Calame, 2008). 

 

 

 

 

 

 

 



Activation of BLIMP1 expression 

The removal of BLIMP1 repressors is not sufficient for plasma cell differentiation, but 

induces instead a memory-like phenotype suggesting a critical role in plasma cell 

differentiation, for those proteins which induce BLIMP1 expression (Kuo et al., 2007). The 

main inducers of BLIMP1 include cytokines, toll-like receptors and NF-κB signalling.  

Cytokines which induce BLIMP1 

Several cytokines, including IL-2, IL-5, IL-6, IL-10 and IL-21, can induce BLIMP1 mRNA. For 

example, IL-5 alone, or in combination with IL-2 has been shown to induce BLIMP1 mRNA 

in BCL1 cells (Horikawa and Takatsu, 2006; Turner et al., 1994). The addition of IL-2 and 

IL-10 to purified human GC B cells generates plasma cells (Arpin et al., 1995). In contrast, 

the combination of IL-2 and IL-4 promotes B cell proliferation rather than differentiation 

(Arpin et al., 1995). Furthermore, if human memory B cells are cultivated with IL-10, rapid 

plasmacytic differentiation occurs (Choe and Choi, 1998), accompanied by induction of 

BLIMP1 (Kuo et al., 2007). IL-6 is known to be essential for the maintenance of long-lived 

plasma cells in the bone marrow (Minges Wols et al., 2002) and has been shown to 

induce plasma cell differentiation in transformed human B cell lines (Chen-Kiang, 1995). 

IL-21 induces the expression of BLIMP1 mRNA as well as the differentiation of murine B 

cells to plasma cells (Ozaki et al., 2004).  

Many of these cytokines signal through JAK-STAT pathways (Shuai and Liu, 2003). For 

example, IL-2 activates STAT3 and STAT5 (Frank et al., 1995), IL-5 activates STAT5 (de 

Groot et al.; 1998), IL-6 activates STAT3 (Heinrich et al., 1998) and IL-10 activates STAT3 



and STAT1 (Riley et al., 1999). IL-21 mainly activates STAT3, but can activate STAT5 and 

STAT1 (Leonard et al., 2005). An IL-21 response element downstream of the PRDM1 

promoter which recruits STAT3 and IRF4 has recently been identified (Kwon et al., 2009). 

STAT3 is a strong inducer of BLIMP1 transcription. For example, the ectopic expression of 

a dominant negative form of STAT3 in BCL1 cells blocks BLIMP1 induction (Reljic et al., 

2000). Furthermore, STAT3-deficient mice lack IgG-expressing plasma cells (Fornek et al., 

2006). There is also evidence that STAT5 may induce BLIMP1 in an IL-2 and IL-5-

dependent manner (Moriggl et al., 1999; Horikawa and Takatsu, 2006). However, the 

activation of STAT5 in human B cells has been recently shown to block plasma cell 

differentiation (Scheeren et al., 2005).  

Toll-like receptors which induce BLIMP1 

Plasma cell differentiation can also be efficiently induced by stimuli that trigger the 

activation of certain Toll-like receptors (TLR) (Ruprecht and Lanzavecchia, 2006). 

Engagement of TLR4 by lipopolysacharide (LPS) (Hoshino et al., 1999) has been shown to 

induce plasma cell differentiation and BLIMP1 mRNA in murine B cells (Schliephake and 

Schimpl, 1996; Savitsky and Calame, 2006). The polysaccharides of Ganoderma lucidum 

(Reishi), which activate TLR4/TLR2, induced antibody production in purified murine 

splenic B cells as well as in human peripheral B cells; in both cases this was associated 

with the induction of BLIMP1 (Lin et al., 2006). Furthermore, unmethylated CpG 

containing DNA, which triggers TLR9 activation (Hemmi et al., 2001), has also been 

reported to induce plasma cell differentiation in vitro (Pasare and Medzhitov, 2005; 

Ruprecht and Lanzavecchia, 2006); an effect which could be mediated by PPARγ which 



enhances B cell differentiation and antibody production in response to TLR9 and BCR-

mediated stimulation of B cells (Garcia-Bates et al., 2009). PPARγ signalling also promotes 

CpG-induced expression of COX-2 and BLIMP1. The activity of COX-2 in B cells has been 

shown to be important for optimal antibody production (Ryan et al., 2005; Garcia-Bates 

et al., 2009; Bernard and Phipp, 2010). In addition, the VAV family of Rho guanine 

nucleotide exchange factors, which mediate signalling via TLR4 and TLR9, were shown to 

act up-stream of BLIMP1 in mouse marginal zone cells (Stephenson et al., 2006). 

Regulation of BLIMP1 by NF-κB 

NF-κB, which can be activated by various receptors on B cells including the BCR, TLRs, 

CD40, BCMA and BAFFR, can also induce BLIMP1 expression. In M12 and CH12 lymphoma 

lines, the induction of BLIMP1 mRNA which follows the activation of TLR4 by LPS, can be 

blocked by Helenalin, an inhibitor of the p65 subunit of NF-κB (Lyss et al., 1998; Johnson 

et al., 2005; Morgan et al., 2009). Helenalin also inhibited the NF-κB-dependent up-

regulation of BLIMP1 in response to stress stimuli in macrophages and in B cell lines 

(Doody et al., 2006). In the activated B cell-like form of diffuse large B cell lymphoma 

(DLBCL), the constitutive activation of NF-κB in GC B cells is associated with loss of BLIMP1 

expression, disruption of plasma cell differentiation and tumour development (Calado et 

al., 2010). 

Regulation of BLIMP1 by IRFs 

After LPS stimulation, B cells from IRF4-/- mice fail to induce BLIMP1 mRNA and are 

prevented from undergoing plasma cell differentiation. IRF4 appears to induce BLIMP1 



directly following its binding to a site situated between exons 5 and 6 of the PRDM1 gene 

(Sciammas et al., 2006).  However, although mice with a conditional deletion of IRF4 in GC 

B cells also fail to undergo plasma cell differentiation, it was observed in another study 

that BLIMP1 mRNA induction in these IRF4-/- cells was similar to that observed in wild-

type cells (Klein et al., 2006). The discrepancy between these two studies remains 

unresolved, but could be because of minor differences in the activation conditions 

between experiments or to the stage of B cell differentiation targeted by the knockout. 

IRF5 has also been shown to bind to the IRF site in the PRDM1 gene in mice and stimulate 

its expression (Lien et al., 2010). The transcription factors known to activate PRDM1 in B 

cells are summarised in Figure 1.2.6. 

 

 

Regulation of BLIMP1 by miRNA 

Although the regulation of BLIMP1 in B cells occurs primarily at the transcriptional level, a 

recent study showed that FDCs can induce BLIMP1 mRNA in B cells by down-regulating 

the expression of the miR-9 and let-7 families of miRNAs (Tunyaplin et al., 2000; Lin et al., 

2011).  At the same time, FDCs were shown to mediate the down-regulation of BCL6 by 

up-regulating expression of the miR-30 family. The down-regulation of BLIMP1 by miR-9 

and let-7 has also been reported in Hodgkin’s lymphoma (Nie et al., 2008) and by let-7 in 

DLBCL (Nie et al., 2010). BLIMP1 is also a target of let-7 in mouse embryonic stem (ES) 

cells and the inhibition of let-7 maturation by LIN28 and consequent induction of BLIMP1 

is required for the specification of ES cells into primordial germ cell (West et al., 2009).  



 

 

 

 

 

 

 

Figure 1.2.6. Activation of PRDM1 transcription in B cells. Transcriptional activators of 
PRDM1 are shown as green ovals, with mechanisms known to cause their induction or 
activation indicated above. The role for STAT5 is extrapolated from the effects of IL-2 and 
IL-5 (taken from Calame, 2008). 
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Induction of plasma cell differentiation 

The developmental stage of B cells and the nature, strength and duration of signals that B 

cells receive combine to regulate BLIMP1 expression and plasma cell differentiation. MZ B 

cells and B-1 B cells can differentiate into antibody secreting cells if stimulated only by 

TLR ligands (Genestier et al., 2007). In contrast, the T cell-dependent differentiation of 

follicular B cells requires synergistic signals delivered via antigen, T cells, TLRs and/or 

cytokines (Ruprecht and Lanzavecchia, 2006) (Figure 1.2.7.).  

Although CD40 activates NF-κB, it does not favour plasma cell differentiation (Callard, et 

al., 1995) and can inhibit BLIMP1 expression in vitro (Randall et al., 1998). For example, 

when purified human GC cells were cultured with IL-2, IL-10, and with cells expressing 

CD40 ligand, cells with the characteristics of memory B cells were generated. Removal of 

CD40 ligand resulted in cells with the characteristics of plasma cells (Arpin et al., 1995). 

Furthermore, the administration of CD40 to primary splenic B cells stimulated with LPS 

inhibited plasma cell differentiation in a dose-dependent fashion and was accompanied 

by reduction in the levels of intracellular BLIMP1 (Satpathy et al., 2010).  

Signals delivered following BCR ligation have been shown to either suppress or induce 

BLIMP1 expression and plasma cell differentiation (Kearney et al., 1976). For example, 

continuous BCR stimulation activated the RAS/MEK/ERK pathway and inhibited the LPS-

mediated induction of BLIMP1 and plasma cell dnifferentiation. Furthermore, in these 

experiments inactivation of ERK by the dual-specificity phosphatase 5 (DUSP5) restored 

BLIMP1 expression (Rui et al., 2006). The combination of CD40, BCR and IL-4 signals 

blocked the LPS-dependent induction of BLIMP1 in mouse B cells (Knödel et al., 2001). 



Furthermore, the cultivation of human B cells with CD40, IL-4 and IL-21 strongly 

promoted plasma cell differentiation; the effect was dramatically reduced in the presence 

of BCR signalling (Caven et al., 2007). 

In contrast, Desai et al. (2009) reported that the treatment of CA46 lymphoma cells with 

anti-IgM up-regulated BLIMP1 mRNA and protein levels. Furthermore, synergistic signals 

delivered by CD40, BCR and IL-10 were shown to induce plasma cell differentiation in 

human B cell lymphocytes (Rousset et al., 1992; Avery et al., 2005; Choe et al., 1996). 

Plasma cell differentiation was also observed when the BCR was stimulated with anti-IgM 

in human B cell cultures activated with anti-CD40 and IL-21 (Ettinger et al., 2005). 

 

1.2.3.5. BLIMP1 downstream targets  

BLIMP1 target genes have been identified in transformed human B cell lines (Shaffer et 

al., 2002) and in murine M12 cells (Sciammas and Davis, 2004) following their 

transfection with BLIMP1; and in BCL1 cells following their cytokine-induced 

differentiation (Sciammas and Davis, 2004).  

 

 

 

 

 



 

 

 

Figure 1.2.7. Model for the regulation of BLIMP1 expression during plasma cell 
differentiation. In comparison to extrafollicular B cells, GC B cells undergo prolonged 
ontogeny in order to create plasma cells secreting high-afinity antibodies. GC B cells 
express high levels of BCL6 which must be down-regulated prior to the terminal 
differentiation of the cells (taken from Johnson et al., 2005).  

 

 

 



BLIMP1 target genes controlling mature B cell functions and affinity maturation 

BLIMP1 silences genes which specify B cell identity, these include: surface B cell markers 

(CD19, CD20, CD22, CD45); B cell activation markers (CD69, MIP-1β, A1); B cell-associated 

transcription factors (BCL6, PAX5, SPIB, OCT-2, STAT6, EBF); BCR signalling components 

(BLNK, CD79A, SYK, BTK, PKCβ, LYN); and, genes induced by BCR signalling (A1, MIP-1β, 

CD69, CD83, and SPI-1/PU.1) (Shaffer et al., 2002). BLIMP1 also inhibits CSR by silencing 

genes essential for CSR and/or SHM (e.g. KU70, KU86, DNA-PKCs and AID) (Manis et al., 

1998; Muramatsu et al., 2000; Zelazowski et al., 1997; Shaffer et al., 2002). BLIMP1 also 

silences STAT6 expression (Shaffer et al., 2002), which can modulate the switch to the 

IgG1 phenotype (Linehan et al., 1998). CIITA is also repressed by BLIMP1 (Piskurich et al., 

2000; Shaffer et al., 2002), which leads to the down-regulation of MHC class II genes and 

antigen presentation in plasma cells (Silacci et al., 1994). 

 

BLIMP1 participates in several reciprocal regulatory loops with other transcription factors, 

including BCL6, PAX5 and IR4 (Shaffer et al., 2002; Lin et al., 2002; Sciammas and Davis, 

2004) (Figure 1.2.8.). 

 

 

 

 

 



 

Figure 1.2.8. BLIMP1 participates in reciprocal regulatory loops. GC B cells express BCL6 
and PAX5 which down-regulate BLIMP1. Upon plasma differentiation, BCL6 and PAX5 are 
silenced (as discussed earlier) and further down-regulated by BLIMP1 which makes the 
process of plasma cell differentiation irreversible. 

 

BLIMP1 target genes controlling cell cycle and apoptosis  

BLIMP1 has been shown to down-regulate genes involved in cell proliferation, partly by 

directly repressing C-MYC expression (Lin et al., 1997; Shaffer et al., 2002). Accordingly, 

many C-MYC target genes are also regulated by BLIMP1 (e.g. RCL, ODC, LDH-A, and DHFR) 

(Coller et al., 2000; Eilers, 1999; Shaffer et al., 2002). BLIMP1 also down-regulates genes 

involved in DNA synthesis and repair (PCNA, PMS4, KU70, KU86, MCM2, primase) and cell 

cycle progression (PLK, aurora kinase, CKSHS1, CKSHS2, CDC2, CDK2, E2F-1), perhaps as an 

indirect consequence of the cell cycle arrest due to the loss of C-MYC (Shaffer et al., 

2002). Although the repression of C-MYC transcription is necessary for the exit of B cells 



from the cell cycle and terminal differentiation of B cells, the removal of C-MYC activity is 

not sufficient to trigger plasma cell differentiation (Lin et al., 2000).  

The expression of BLIMP1 in B cell lymphomas representative of immature or partially 

activated B cells induces cell cycle arrest and apoptosis, in part by repressing the 

expression of C-MYC and of the anti-apoptotic BCL2 family member A1 (BCL2A1). In 

contrast, in fully activated B cells BLIMP1 expression promotes differentiation (Messika et 

al., 1998; Knödel et al., 1999). This has led to suggestion that BLIMP1 expression induces 

growth arrest and cell death at earlier stages of B cell development, but promotes 

maturation and Ig secretion at later stages of B cell differentiation.  

 

BLIMP1 target genes controlling immunoglobulin secretion and plasma cell functions 

BLIMP1 activates genes involved in antibody production and the stress response (Shaffer 

et al., 2002). This induction is in part is mediated by the inactivation of PAX5 and de-

repression of down-stream targets of PAX5 including XBP1 (Reimold et al., 1996; Lin et al., 

2002; Sciammas and Davis, 2004), J chain (Rinkenberger et al., 1996) and IgH chain gene 

(Singh and Birshtein, 1993). Accordingly, BLIMP1-expressing cells exhibit a dramatic 

increase of both total Ig mRNA as well as individual Ig mRNA isoforms (Sciammas and 

Davis, 2004). BLIMP1 also up-regulates the expression of CXCR4 and the integrin receptor 

VLA4 (Sciammas and Davis, 2004), both of which have been shown to participate in the 

migration of plasma cells to specialized niches in the bone marrow (Kabashima et al., 

2006).  



 

 

Figure 1.2.9. Transcriptional regulation that inhibits terminal B cell differentiation in the 
GCs and promotes it in plasma cells. Green arrows represent activation and red bars 
indicate repression (taken from Lin et al., 2003).  

 

 

 

 

 



1.2.4. BLIMP1 is a tumour suppressor gene 

The region encompassing the PRDM1 gene (6q21–q22.1) is frequently deleted in B cell 

lymphomas (Jackson et al., 2000; Thelander et al., 2008). Inactivation of the PRDM1 gene 

was found in a subset of diffuse large B cell lymphoma (DLBCL) of the activated B-cell type 

(ABC) and is believed to contribute to lymphomagenesis by blocking post-GC B cell 

differentiation (Tam et al., 2006; Pasqualucci et al., 2006; Mandelbaum et al., 2010). 

Although PRDM1 mutations occur in only 25% of ABC-DLBCL biopsies; the majority of 

other cases of this subtype lack BLIMP1 protein, suggesting that additional mechanisms 

may inhibit BLIMP1 translation or stability (Pasqualucci et al., 2006). For example, a role 

for the microRNA let-7 family in mediating the translational down-regulation of BLIMP1 in 

DLBCL has been proposed (Nie et al., 2010). Alternatively, reciprocal translocations 

resulting in aberrant expression of BCL6 could contribute to the pathogenesis of DLBCL 

(Pasqualucci et al., 2006). The malignant Hodgkin/Reed–Sternberg (HRS) cells of classical 

Hodgkin lymphoma (cHL) have BLIMP1 mRNA (Garcia et al., 2006). However, several 

studies show that in most cases BLIMP1 protein is only weakly expressed by HRS cells 

(Buettner et al., 2005; Cattoretti et al., 2005b; Garcia et al., 2006; Natkunam et al., 2007). 

This could indicate that plasma cell differentiation is initiated in a fraction of HRS cells but 

remains abortive (Buettner et al., 2005). The absence of BLIMP1 protein in HRS cells could 

be due to the overexpression of miR-9 and let-7a miRNA (Nie et al., 2008). The malignant 

lymphoplasmacytic cells found in patients with Waldenstrom's macroglobulinemia also 

express lower levels of BLIMP1 compared to normal plasma cells (Gutierrez et al., 2007). 

Deleterious mutations of PRDM1 associated with loss of BLIMP1 protein have also been 

reported in primary central nervous system lymphoma (Courts et al., 2008). Finally, ETS-1, 



the transcription factor, which is amplified in certain leukemias, physically interacts with 

BLIMP1 leading to a block in BLIMP1 DNA binding activity and a reduction in the ability of 

BLIMP1 to repress target genes (Rovigatti et al., 1986; Crossen et al., 1999; Yoshida et al., 

1999; Sait et al., 2002; John et al., 2007).  

In contrast, the over-expression of the BLIMP1β isoform has been reported in multiple 

myeloma, DLBCL and in some T cell lymphomas (Györy et al., 2003; Ocana et al., 2006; Liu 

et al., 2007; Zhao et al., 2008). BLIMP1β over-expression is associated with advanced Ann 

Arbor stage and a high-risk International Prognostic Index in T cell lymphomas and with a 

shorter patient survival in both DLBCL and T cell lymphoma patients (Liu et al., 2007; Zhao 

et al., 2008). In both B and T cell lymphomas, BLIMP1β expression is also associated with 

in vitro resistance to chemotherapeutic agents (Liu et al., 2007; Zhao et al., 2008). 

Interestingly, the up-regulation of the BLIMP1β isoform in T cell lymphomas was 

associated with high C-MYC levels (Zhao et al., 2008). A recent study by Zhang et al. 

(2010) demonstrated that the up-regulation of the PRDM1β isoform was associated with 

hypomethylation of the PRDM1β specific promoter in a subset of DLBCL with aggressive 

behaviour.  

 

 

 

 

 

 

 



1.3. THE EPSTEIN-BARR VIRUS 

1.3.1. General introduction 

Epstein-Barr virus (EBV) infects more than 90% of humans and in most individuals is 

carried life-long as a silent passenger (Rickinson and Kieff, 2001). Primary infection usually 

occurs in early childhood and is often asymptomatic (Fleisher et al., 1979). EBV is orally 

transmitted and is believed to replicate in epithelial cells of the oropharynx (Allday and 

Crawford, 1988), leading to the release of high titres of infectious virions into the throat 

(Sixbey et al., 1984). In order to achieve long-term persistence in vivo, EBV establishes a 

latent infection with approximately 1 in 106 B cells carrying the virus in a latent state, 

where the viral genome is maintained (Thorley-Lawson, 2001). During its life cycle, the 

virus also periodically enters the replicative (lytic) cycle when the viral DNA is amplified 

and numerous viral lytic cycle genes are expressed to generate infectious virus for 

transmission to other susceptible hosts (Kieff, 1996).  

When primary infection with EBV is delayed until adulthood, it can result in acute 

infectious mononucleosis (IM) (Henle and Henle, 1979) with clinical features of fever, sore 

throat, headache, malaise, fatigue, weakness, enlarged tonsils, lymphadenopathy, 

hepato-splenomegaly and mononuclear leukocytosis (Ebell, 2004).  

EBV is also associated with a number of cancers arising in both lymphoid and epithelial 

tissues. EBV-positive tumours have characteristic phenotypes and patterns of EBV gene 

expression, suggesting that EBV might contribute to the pathogenesis of each tumour 

type in different ways (Landais et al., 2005). Some diseases, such as endemic Burkitt’s 



lymphoma (BL), are almost always EBV-positive, indicating an essential role for EBV. 

Others, for example, Hodgkin´s lymphoma (HL) and gastric carcinoma, have smaller 

fractions associated with EBV.  

1.3.2. Classification and structure 

EBV is a lymphotropic virus of the γ-herpesvirinae subfamily of the Lymphocryptovirus 

(LCV) genus. EBV has been found exclusively in humans and like other LCV, EBV has the 

capacity to drive autonomous B cell growth (Davison et al., 2002; Marr-Belvin et al., 

2008).   

The viral genome consists of 172 kilobase (kb) of linear double-stranded DNA, which 

enfolds an icosahedral nucleocaspid composed of 162 capsomeres surrounded by an 

inner and outer envelope and a toroid-shaped protein core. A 152 kDa protein tegument 

is found between the nucleocaspid and an inner envelope as well as glycoprotein spikes 

on the surface of the outer membrane structure (Johannsen et al., 2004).  

The EBV genome has been cloned and sequenced (Baer et al., 1984). Because the 

genomic viral DNA was digested with the Bam HI restriction enzyme; open reading 

frames, genes and sites for transcription or RNA processing are referenced to specific 

Bam HI fragments, in descending order of fragment size, from A to Z (Figure 1.3.1b). EBV 

genome consists of 0.5 kb unique segments composed of 60% guanine or cytosine with 

relatively short terminal direct repeats (TR) sequences (Hayward and Kieff, 1977) and 

connecting internal repeat (IR) sequences dividing the genome into short or long 

sequence domains (Given and Kieff, 1979).  



 

 

 

 

Figure 1.3.1. Schematic representation of the EBV genome. A) Transcription map of the 
EBV latent genes on the double-stranded viral DNA episome. The origin of plasmid 
replication (oriP) and lytic replication (ori lyt) are shown in orange. The large solid blocks 
(in purple) represent coding exons for each of the latent proteins and the arrows indicate 
the direction in which they are transcribed. The TR region is formed as the linear DNA 
joins at each end to produce the circular viral episome (indicated in pink). B) The location 
of open reading frames for each of the EBV latent proteins on a Bam HI restriction 
endonuclease map of the original B95.8 EBV genome (modified from Murray and Young, 
2001). 
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1.3.3. Epstein-Barr virus latency and growth transformation in vitro 

EBV can infect resting B lymphocytes in vitro through binding of viral glycoproteins gp350 

and gp42 to the CD21 receptor and human leukocyte antigen (HLA) class II molecules on 

surface of B cells (Nemerow et al., 1987; Borza and Hutt-Fletcher, 2002). This results in 

the establishment of permanently growing immortalised lymphoblastoid cell lines (LCLs), 

which express a number of viral genes including the Epstein-Barr nuclear antigens (EBNAs 

1, 2, 3A, 3B, 3C and -LP), latent membrane proteins (LMPs 1, 2A and 2B), the BamHI A 

rightward transcripts (BARTs) and the small non-polyadenylated RNAs (EBERs 1 and 2) 

(Kieff and Rickinson, 2001). The relative positions and orientation of the latent EBV genes 

are shown in Figure 1.3.1a.  

In LCL, all EBNA mRNAs are generated by differential splicing of the same primary 

transcript expressed from either the Cp or Wp promoter (Speck and Strominger, 1985). 

The LMP1 gene can be transcribed from two separate promoters; the proximal ED-L1 and 

the distal TR-L1. The LMP1 promoters are regulated by different viral and cellular factors 

(Chang et al., 2004, Chen et al., 2001a; Goormachtigh et al., 2006). For example, EBNA1 

can stimulate LMP1 transcription from both ED-L1 and TR-L1 through a distal enhancer 

(Gahn and Sugden, 1995). In contrast, EBNA2 can only activate ED-L1 (Johannsen et al., 

1995). ED-L1 can also be activated by cellular proteins including NOTCH1, IRF7, STATs, 

upstream stimulatory factor (USF), and ATF-1/cAMP responsive element binding protein 

(CREB)-1 (Chang et al., 2004). TR-L1 is activated by cellular transcription factors which 

include SP1/SP3 and STATs (Tsai et al., 1999).  



LMP2A and LMP2B are transcribed under the control of two separate promoters 

separated by 3 kb and differ only in their first exons; exon 1 of LMP2A encodes a 119-

amino-acid N-terminal tail, while exon 1 of LMP2B is non-coding (Laux et al., 1988; Laux et 

al., 1989; Longnecker and Kieff, 1990; Sample et al., 1989). The promoter of LMP2A lies 

directly upstream of the first exon, while LMP2B shares a bidirectional promoter with 

LMP1 (Laux et al., 1989; Sample et al., 1989). Both are transcribed across the fused 

terminal repeats of the EBV episome. More recently, a novel LMP2 transcript originating 

in the TRs and expressed in NK/T cell lymphomas has been described (Fox et al., 2010). 

LCLs express high levels of the B cell activation markers CD23, CD30, CD39 and CD70 and   

the cellular adhesion molecules LFA1 (CD11a/18), LFA3 (CD58) and ICAM1 (CD54) (Rowe 

et al., 1987; Gregory et al., 1988). These markers are usually found at such high levels 

only on activated B cells (Young et al., 2000) suggesting that EBV-induced immortalisation 

can be achieved through the constitutive activation of cellular pathways that normally 

drive physiological B cell proliferation. 

The viral growth program described in LCLs is also found in post-transplant 

lymphoproliferative disease and is referred as latency III. Two other major forms of EBV 

latency, latency I and II, are described. Latency I, observed in EBV-positive BL tumours, is 

typified by expression of EBNA1, EBERs and BARTs (Gregory et al., 1990; Rickinson and 

Kieff, 2001; Rowe et al., 1987; Nonkwelo et al., 1996). In contrast, latency II, found in EBV-

positive HL and in a proportion of NPCs (Brooks et al., 1992; Deacon et al., 1993; Pallesen 

et al., 1991; Young et al., 1988), is characterized by expression of the EBERs, EBNA1 and 

BARTs transcripts along with LMP1 and LMP2A/B. Some studies have defined a fourth 



form of latency in peripheral B cells referred to as ‘latency 0’, here only the EBERs and 

possibly LMP2 are expressed (Chen et al., 1995).  

Following B cell infection, the first viral genes to be expressed are EBNA-LP and EBNA2 

(Alfieri et al., 1991); followed by EBNA2-driven expression of LMP1, LMP2 and other viral 

genes (Wang et al., 1990). The EBNAs are transcribed either from Cp or Wp promoters 

located in the Bam HI C and W fragment of EBV genome (Woisetschlaeger et al., 1991). 

The Wp promoter is used during the initial phase of EBV infection and is subsequently 

replaced by the Cp promoter which is transactivated by EBNA2 (Schlager et al., 1996). In 

latency I and II, EBNA1 is transcribed from the Qp promoter located in the Bam HI Q 

region. 

 

1.3.4. Epstein-Barr virus infection and persistence in vivo  

Although EBV persists in B cells, it has been suggested that epithelial cells of the 

oropharynx are the initial target of primary infection and that these cells replicate the 

virus which then spreads to B cells (Morgan et al., 1979). CD21 is not expressed on most 

epithelial cells suggesting that infection of epithelial cells involves mechanisms distinct 

from those required for B cell infection (Shannon-Lowe et al., 2009).  

Newly-infected B cells expressing the growth programme can be recognized by NK cells 

and latent-antigen-specific CTLs and CD4 T helper cells (Williams et al., 2005; Hislop et al., 

2007). However, a fraction of these cells can down-regulate expression of most viral 

antigens to evade immune recognition, and establish a stable pool of resting EBV-positive 



memory B cells (Young and Rickinson, 2004) (Figure 1.3.2). Two models of how the virus 

achieves this have been suggested. In the first model, EBV directly infects already 

established memory B cells. In the second model, EBV infects naïve B cells and activates 

them through the coordinated expression of all nine latent proteins of the growth latency 

III programme. The EBV-activated B blasts then enter GCs of secondary follicles and 

switch into the viral latency II programme. Through surrogate T cell help (LMP1) and BCR 

engagement (LMP2A), the EBV infected cells receive the signals necessary for antigen-

independent proliferation in the GC and subsequently for memory B cell differentiation 

(Caldwell et al., 1998; Caldwell et al., 2000; Roughan and Thorley-Lawson, 2009). In 

memory B cells viral antigen expression is down-regulated (latency 0). Alternatively, GC B 

cells can undergo plasma cell differentiation which is associated with the induction of 

viral lytic cycle (Thorley-Lawson, 2001).  

It is proposed that EBV-positive peripheral memory B cells remain under the control of 

the normal physiological mechanisms that regulate memory B cell migration and 

differentiation (Laichalk et al., 2002), and occasionally enter GC reaction to differentiate 

into plasma B cells or replenish the reservoir of memory cells (Young and Rickinson, 

2004).  

 

 

 

 



 

 

 

 

 

 

 

 

 

Figure 1.3.2. Primary infection of EBV in vivo. EBV establishes initial lytic replication in 
the oropharynx and subsequently spreads to B cells. Two possible mechanisms of B cell 
infection are shown: EBV infects naïve B cells and drives them through GC reaction to 
produce memory B cells or EBV might directly infect already established memory B cells. 
Numbers of virus infected cells are controlled by the host immune response, where a 
fraction of the cells down-regulate antigen expression to escape immune recognition and 
establish a stable reservoir of resting EBV-positive memory B (modified from Young and 
Rickinson, 2004). 

 

 

 

 



1.3.5. Epstein-Barr virus latent proteins 

Epstein-Barr nuclear antigen 1 (EBNA1) 

EBNA1 binding to OriP, the plasmid origin of viral replication, is essential for virus 

replication during latency (Lupton and Levine 1985; Yates et al 1985). EBNA1 also tethers 

viral episomes to host chromosomes ensuring the partitioning of viral genomes during 

cell division (Marechal et al. 1999; Sears et al., 2004). EBNA1 transactivates the Cp and 

LMP1 promoters and can bind Qp to negatively regulate its own expression (Kieff, 1996; 

Nonkwelo et al., 1996). More recently, EBNA1 was shown to regulate EBERs expression by 

increasing pol III transcription following its binding to and activation of ATF2, C-MYC and 

TFIIIC genes (Owen et al., 2010).  

Although originally thought to be indispensable for EBV-induced transformation of B cells, 

more recently it has been shown that LCLs can be generated from an EBNA1-deficient 

EBV mutant, albeit with an efficiency several thousand-fold less than with wild-type EBV 

(Humme et al., 2003). 

There are conflicting reports of the role of EBNA1 in oncogenesis. Although, it was 

originally reported that EBNA1 expression in B cells could induce lymphomas in transgenic 

mice, other studies have not been able to reproduce this effect (Wilson et al., 1996; Kang 

et al., 2005; Kang et al., 2008; Tsimbouri et al., 2002). Expression of EBNA1 in EBV 

negative Akata BL cells demonstrated that EBNA1 alone is not sufficient to confer 

tumourigenic potential (Komano et al., 1998; Ruf et al., 2000). Furthermore, a dnEBNA1 

did not affect the growth of a LCL carrying an integrated EBV genome (Kang et al., 2001). 



In contrast, EBNA1 expression in HL cells was shown to enhance tumour formation in 

NOD-SCID mice (Kube et al., 1999), whereas its down-regulation either by introduction of 

a dnEBNA1 or by RNAi reduced the proliferation and survival of EBV-positive BL cells 

(Kennedy et al., 2003; Hong et al., 2006). EBNA1 expression was also shown to increase 

tumour formation and metastasis of NPC and breast carcinoma cells following their 

transplantation into nude mice (Sheu et al., 1996; Kaul et al., 2007). Some of the apparent 

tumour promoting effects of EBNA1 are likely to be mediated by the ability of EBNA1 to 

bind to cellular DNA and to modulate cellular gene expression through transcription 

factors which include AP-1 and NF-κB (Wood et al., 2007; Canaan et al., 2009; O‘Neil et 

al., 2008; Valentine et al., 2010). EBNA1 was also shown to disrupt PML nuclear bodies 

which impaired DNA repair and apoptosis in NPC cells (Sivachandran et al., 2008).  

The EBNA1 protein contains a repetitive sequence of glycine-alanine amino acids which 

makes it relatively resistant to ubiquitin-proteosome mediated degradation and therefore 

epitopes from EBNA1 cannot be efficiently processed through the MHC class I pathway 

(Levitskaya et al., 1995). In contrast, EBNA1 generally elicits strong CD4-positive T cell 

responses and contains several well-defined CD4-positive epitopes. However, 

endogenous presentation of some CD4 T cell epitopes from EBNA1 requires autophagy, a 

process restricted to the cytoplasm (Leung et al., 2010).  

 

 

 



Epstein-Barr nuclear antigen 2 (EBNA2) 

EBNA2 is required for EBV induced transformation as demonstrated by the inability of the 

P3HR-1 virus strain, in which the EBNA2 gene is deleted, to transform B cells in vitro (King 

et al., 1982; Kieff and Rickinson, 2001). The restoration of the EBNA2 gene into P3HR-1 by 

homologous recombination retrieves the transformation ability of EBV (Hammerschmidt 

and Sugden, 1989; Cohen et al., 1989).  

EBNA2 functions as a transcriptional activator of both viral and cellular genes (Kieff and 

Rickinson, 2001). For example, EBNA2 up-regulates LMP1 (Tsang et al., 1991), LMP2 

(Zimber-Strobl et al., 1991), CD21 (Wang et al., 1990) and CD23 (Cordier et al., 1990) and 

also initiates the switch from Wp to Cp promoter early in B cell infection (Rooney et al., 

1992). EBNA2 interacts with a sequence-specific DNA-binding protein, RBP-Jκ (Grossman 

et al., 1994). In Drosphilia, the RBP-Jκ homologue is involved in signal transduction from 

the NOTCH receptor, a pathway that is important in determining cell fate, and which has 

also been linked to the development of T cell tumours in humans (Artavanis-Tsakonas et 

al., 1995). EBNA2 can functionally replace the intracellular region of NOTCH (Sakai and 

Honjo, 1997; Strobl et al., 2000; Hsieh et al., 1997) leading to the transactivation of its 

viral and cellular down-stream targets. The cellular C-MYC, cyclin D2 and cyclin-

dependent kinase (cdk)-4 are also transcriptional targets of EBNA2 and are likely to be 

important for EBV-induced B cell proliferation (Jayachandra et al., 1999; Kaiser et al., 

1999). 

 



Epstein-Barr nuclear antigen 3 (EBNA3) family 

The EBNA3 family members are the least abundant EBNA mRNAs in latently infected cells. 

Their distribution is similar to that of EBNA2, with large clumps localised in the nucleus, 

nuclear matrix and chromatin (Petti et al., 1990). All three proteins interact with RBP-Jκ 

which can lead to disruption of its binding to DNA and to EBNA2, thus repressing EBNA2-

mediated transactivation (Robertson and Ambinder, 1997). In vitro studies show that 

both EBNA3A and EBNA3C (Tomkinson et al., 1993), but not EBNA3B (Robertson, 1997) 

are essential for B cell transformation, although more recently EBNA3A deleted EBV has 

been used to transform B cells albeit with reduced efficiency (Hertle et al., 2009). All the 

EBNA3 proteins have repressive activities when targeted to DNA which can be explained 

by their interaction with several cellular factors involved in transcriptional repression or 

silencing, including histone deacetylases and C-terminal binding protein (CtBP) 

(Hickabottom et al., 2002; Radkov et al., 1999). EBNA3A and EBNA3C can co-operate with 

oncogenic ras to transform embryonic rat fibroblasts (Parker et al., 1996). EBNA3C is 

required for cell cycle progression in LCLs, can mediate the degradation of the 

retinoblastoma protein pRb and can stimulate cyclin A dependent kinase activity (Knight 

et al., 2004; Knight et al., 2005; Maruo et al., 2006). Consistent with its ability to override 

cell cycle check points, EBNA3C is thought to contribute to increased genomic instability 

in infected cells (Gruhne et al., 2009). EBNA3C has been shown to activate expression of 

some cellular (e.g. CD21) and viral genes (e.g. LMP1) (Wang et al., 1990; Allday and 

Farrell, 1994). Although it has been shown that EBNA3A and EBNA3C can contribute to 

apoptosis protection in BL cells, another study showed no effect of the EBNA3 family on 

BL cell survival (Kelly et al., 2009; Anderton et al., 2008). 



Epstein-Barr nuclear antigen leader protein (EBNA-LP) 

EBNA-LP is not absolutely essential for in vitro transformation of B cells, but is required 

for the efficient outgrowth of LCLs (Allan et al., 1992). EBNA-LP is diffusely localised in cell 

nuclei with some concentrated areas assembling small nuclear granules (Petti et al., 1990) 

which are assumed to contribute to EBV RNA processing (Jiang et al., 1991). EBNA-LP is 

encoded by the leader of each of the EBNA mRNAs generating proteins of variable size 

depending on the number of Bam HI W repeats present in each specific EBV isolate 

(Bodescot et al., 1984). EBNA-LP in cooperation with EBNA2 induces cyclin D2 expression 

resulting in G0 to G1 transition and cell cycle progression in B cells (Sinclair et al., 1994). 

EBNA-LP also enhances the ability of EBNA2 to transactivate its down-stream targets 

including LMP1 (Harada and Kieff, 1997; Nitsche et al., 1997). 

 

Latent membrane protein 1 (LMP1) 

LMP1 is essential for the EBV-induced transformation of B cells, and can transform rodent 

fibroblasts and induce tumours in transgenic mice (Kaye et al., 1993; Wang et al., 1985; 

Moorthy and Thorley-Lawson, 1993; Wang et al., 1985; Kulwichit et al., 1998; Stevenson 

et al., 2005). In B cells, LMP1 induces expression of the cell-surface adhesion molecules, 

ICAM1, LFA1 and LFA3 and genes associated with B cell activation, including CD23, CD30 

and CD40 (Wang et al., 1990). LMP1 also induces IL-6, IL-8 and IL-10 expression 

(Eliopoulos et al., 1999;  Eliopoulos et al., 1997; Nakagomi et al., 1994), and up-regulates 

several anti-apoptotic proteins, including MCL-1, A20 and BCL2 (Wang et al., 1996; 

Laherty et al., 1992; Henderson et al., 1991).   



LMP1 is a membrane protein that has a long cytoplasmic C-terminal domain, six 

hydrophobic membrane-spanning domains and a cytoplasmic N-terminal domain 

(Liebowitz et al., 1986). The N-terminal domain orientates LMP1 in the cell membrane; 

the six transmembrane loops promote self aggregation and oligomerisation; and the C-

terminal domain possesses most of LMP1´s signalling activity (Wang et al., 1988). The C-

terminus contains at least two distinct functional regions: the membrane-proximal C-

terminal activating region 1 (CTAR1) and the distal CTAR2. The CTAR1 domain contains an 

essential motif that recruits several members of the TNFR associated factor (TRAF) family, 

including TRAF1, TRAF2, TRAF3 AND TRAF5 (Mosialos et al., 1995; Brodeur et al., 1997). 

The CTAR2 domain associates with the TNF receptor associated death domain (TRADD) 

protein and the receptor-interacting protein (RIP), which are involved in TNFR-I signalling 

(Izumi et al., 1999). Whereas CTAR1 has been shown to be essential for EBV-mediated 

transformation, CTAR2 is required for long-term growth of EBV-infected cells (Izumi and 

Kieff, 1997).  

Functionally, LMP1 resembles an activated CD40 receptor (Bishop et al., 2001; Lam and 

Sugden, 2003; Panagopoulos et al., 2004) (Figure 1.3.3). However, in contrast to CD40, 

LMP1 provides a constitutive signal in the absence of ligand binding, which is mediated by 

the oligomerization of the transmembrane domains (Gires et al., 1997; Kilger et al., 1998; 

Kaykas et al., 2001).  

LMP1 activates several signalling pathways, which include NF-κB, p38/MAPK, JAK/STAT, 

PI3K/AKT and JNK/AP-1 pathways (Kieser et al., 1997; Dawson et al., 2003; Huen et al., 

1995; Gires et al., 1999; Roberts and Cooper, 1998). Activation of the canonical (classical) 



NF-κB pathway follows the degradation of IκBα by IκB kinase (IKK)-β, and results in the 

release and subsequent translocation of free p50/p65 to the nucleus (Wu et al., 2006). 

The non-canonical (alternative) NF-κB pathway is activated by the phosphorylation of 

p100 by IKKα and results in the generation of free p52/RelB heterodimers (Hayden and 

Ghosh, 2004). Both CTAR1 and CTAR2 can activate NF-κB; CTAR1 stimulates mainly the 

non-canonical pathway and CTAR2 the canonical pathway (Atkinson et al., 2003; Wu et 

al., 2006). Both CTAR1 and CTAR2 activate STAT proteins directly (Brennan et al., 2001), 

although the region between CTAR1 and CTAR2 might enhance the tyrosine 

phosphorylation of JAK3 which in turn activates STAT1 and STAT3 (Gires et al., 1999). 

LMP1 also engages the p38 pathway through both CTAR1 and CTAR2 (Eliopoulos et al., 

1999) and the AP-1 transcription factor complex through CTAR2 (Blake et al., 2001). LMP1 

can also activate the PI3K/AKT pathway in epithelial cells resulting in cell survival, actin 

polymerisation and cell motility (Dawson et al., 2003).  

Several studies have compared CD40 and LMP1 signalling in vivo. For example, when 

transgenic mice expressing LMP1 under the control of the Ig promoter and enhancer 

were crossed with CD40-⁄- mice, it was shown that although LMP1 could rescue some of 

the humoral defects in these mice, it failed to restore the production of high affinity IgG1 

and also blocked GC formation (Uchida et al., 1999). However, in two separate studies 

LMP1 transgenic mice expressing a CD40/LMP1 chimera consisting of the extracellular 

and transmembrane domains of CD40 and the cytoplasmic tail of LMP1, showed 

remarkable similarities to normal CD40 signalling (Stunz et al., 2004; Rastelli et al., 2008). 

For example, these mice had normal numbers of B cell subsets, GC formation, responses 

against TD antigen, isotype switching and affinity maturation. In contrast, the B cells of 



transgenic mice expressing an LMP1/CD40 chimera, in which the C-terminus of LMP1 is 

replaced by the C-terminus of CD40, display an activated phenotype, prolonged survival 

and increased proliferation (Hömig-Hölzel et al., 2008). Furthermore these mice develop 

B cell lymphomas after 12 months of age, a finding that is consistent with the late onset 

of lymphomas arising in LMP1 transgenic mice (Kulwichit et al., 1998). These data 

demonstrate that it is likely to be the constitutive nature of the LMP1 signal which 

promotes oncogenesis.  

 

Latent membrane protein 2 (LMP2) 

The LMP2 gene encodes two separate proteins, LMP2A and LMP2B (Longnecker and 

Miller, 1996). The N-terminus of LMP2A contains two tyrosine residues (Tyr74 and Tyr85) 

that form an immunoreceptor tyrosine-based activation motif (ITAM) that is homologous 

to the ITAM motif in the BCR (Fruehling and Longnecker, 1997) (Figure 1.3.4.). 

In un-infected primary B cells, cross-linking of the BCR by antigen aggregates the BCR into 

glycosphingolipid-rich microdomains (lipid rafts) in the plasma membrane (Cheng et al., 

2001b). These lipid rafts contain an increased concentration of the protein kinases, Lyn 

and Syk which can phosphorylate the ITAM motif found in the Igα and Igβ signaling 

subunits of the BCR (Johnson et al., 1995; Kurosaki, 1999; Pleiman et al., 1994). 

 

 

 



 

 

 

Figure 1.3.3. Signalling relationship between LMP1 and CD40. LMP1 contains 
cytoplasmic N-terminal and C-terminal domains joined by six transmembrane sequences. 
The C-terminal domain has extensive functional homology with CD40. Both LMP1 and 
CD40 contain consensus (TRAF)-binding domains and interact with multiple members of 
that family. The downstream signalling from LMP1 and CD40 causes activation of NF-κB, 
STATs, p38/MAPK, and AP-1 (taken from Thorley-Lawson, 2001). 

 

 

 

 

 



When phosphorylated, the LMP2A ITAM competes with the BCR for the recruitment of 

the Src family of protein tyrosine kinases (PTK) and the Syk PTK. LMP2A also recruits 

Nedd4 ubiquitin ligases resulting in the degradation of Lyn (Fruehling and Longnecker, 

1997; Ikeda et al., 2000; Ikeda et al., 2001; Winberg et al., 2000). As a result, LMP2A can 

inhibit BCR signal transduction and block calcium mobilisation and tyrosine 

phosphorylation (Miller et al., 1995). The LMP2A-mediated block in BCR-induced 

signalling appears to be important for the maintenance of virus latency since it 

suppresses induction of the viral lytic cycle (Miller et al., 1994). However, in the absence 

of BCR signalling, LMP2A can induce the EBV lytic cycle, albeit less efficiently (Schaadt et 

al., 2005).  

Expression of LMP2A in B lymphocytes of transgenic mice causes the appearance of Ig-

negative B cells in lymphoid organs, suggesting that LMP2A drives their proliferation in 

the absence of BCR signalling (Caldwell et al., 1998). LMP2A has also been shown to be 

essential for the EBV-induced growth transformation of GC B cells which do not express a 

functional BCR because of deleterious somatic hypermutations in their Ig genes (Mancao 

and Hammerschmidt, 2007). Interestingly, in this study it was also shown that the survival 

and continued proliferation of both EBV-transformed BCR-negative and BCR-positive B 

cells was also dependent upon LMP2A (Mancao and Hammerschmidt, 2007).  

LMP2B, the other isoform of the LMP2 gene, has not been well studied, and as a result the 

function of LMP2B in B cells is less well understood. Recently, it was shown that LMP2B 

could bind to LMP2A, preventing its phosphorylation and restoring normal signal 

transduction after BCR cross-linking (Rovedo and Longnecker, 2007). Consistent with a 



role for LMP2B in inhibiting LMP2A signalling, it was also shown that LMP2B increases the 

susceptibility of BL cells to induction of the EBV lytic cycle following BCR cross-linking 

(Rechsteiner et al., 2007).  

In epithelial cells, both LMP2A and LMP2B were shown to promote cell spreading and 

migration on extracellular matrix (Allen et al., 2005). Furthermore, LMP2A- and LMP2B-

expressing epithelial cells also show decreased responsiveness to interferon IFN-α and 

IFN-γ; an effect mediated by the accelerated turnover of IFN receptors and resulting in 

global inhibition of IFN-stimulated gene expression (Shah et al., 2009). 

 

1.3.6. Epstein-Barr virus lytic cycle 

The cascade of events in the EBV lytic cycle is divided into three phases: immediate-early, 

early and late. The immediate-early phase is characterized by the activation of 

transactivator proteins which subsequently stimulate expression of early lytic genes 

including enzymes required for viral DNA replication. During the late phase of the lytic 

cycle, the viral structural proteins are produced and assembled into virus particles 

enclosing newly synthesised DNA; prior to their release as infectious virions. In vitro, EBV 

replication can be triggered by treatment with phorbol esters, such as 12-O-

tetradecanoylphorbol 13-acetate (TPA) (Hudewentz et al., 1980); the demethylating 

agent, 5-Azacytidine (Ben-Sasson and Klein, 1981) or by crosslinking of surface Ig (Miller 

et al., 1994). 

 



 

 

 

 

 

Figure 1.3.4. Comparison of LMP2A and BCR signalling. LMP2A consists of cytoplasmic N-
terminal and C-terminal domains linked by 12 transmembrane sequences. The N-terminal 
tail contains two tyrosine residues which form an ITAM motif similar to that found in the 
α- and β-chains of the BCR. Both LMP2A and BCR bind the Lyn tyrosine kinase that 
mediates the phosphorylation of other tyrosine residues. The phosphorylated ITAM 
recruits members of the Src family of PTKs and the Syk tyrosine kinase resulting in 
downstream BCR signalling events including entry into lipid rafts (shown in red), the 
production of lipid second messengers by PI3K, and the PLC-γ2-dependent hydrolysis of 
phosphatidylinositol 4,5-bisphosphate (PIP2) to yield diacylglycerol (DAG) and 1,4,5-
inositoltrisphosphate (IP3). DAG activates the protein kinase C (PKC), whereas IP3 
promotes Ca2+ signalling (taken from Thorley-Lawson, 2001). 

 

 



Immediate-early lytic genes 

The activation of two immediate-early lytic genes BZLF1 (ZEBRA) and BRLF1 (Rta), triggers 

the switch from latency to lytic cycle (Biggin et al., 1987; Countryman and Miller et al., 

1985; Hardwick et al., 1988; Rooney et al., 1989). BZLF1 and BRLF1 are induced 

simultaneously (Sinclair et al., 1991) from the Z-promoter (Zp) and the R-promoter (Rp) of 

bicistronic R-Z RNA. These two proteins transactivate many viral promoters of early, and 

subsequently, late genes (Kudoh et al., 2003; Gradoville et al., 1990; Tsurumi et al., 2005). 

While some genes are activated either by BZLF1 or by BRLF1, others are induced by the 

synergistic effects of both BZLF1 and BRLF1 (Feederle et al., 2000; Ragoczy and Miller et 

al., 1999).  

The BZLF1 protein is a homolog of the AP-1 transcription factors (Kieff and Rickinson, 

2007) and binds into the lytic origin of replication (ori-lyt) (Hammerschmidt and Sugden, 

1988) which alone is sufficient to trigger the entire lytic cascade (Rooney et al., 1989). 

Recently, it has been shown that BZLF1 is expressed early after EBV infection of B cells. In 

this initial phase during which time viral DNA is unmethylated, BZLF1 drives the 

proliferation of newly infected cells, but does not induce the virus lytic cycle. Following 

the methylation of the viral genome, BZLF1 preferentially binds to methylated viral target 

genes and activates their transcription (Kalla et al., 2010). 

 

 

 



Early lytic genes 

The products of early lytic genes constitute the serologically defined early antigen (EA) 

complex which has been used as a diagnostic marker for nasopharyngeal carcinoma 

(Henle et al., 1970; Zeng et al., 1983). At least 30 mRNAs encoding early lytic genes, 

independent of cellular protein and viral DNA synthesis, have been identified (Biggin et 

al., 1987).  

For example, BMRF1 is a transcriptional activator which has activities of a viral DNA 

polymerase (Holley-Guthrie et al., 2005). The BMLF1 protein acts as a mRNA export factor 

and shuttles unspliced EBV lytic mRNAs. It is also required for the assembly of infectious 

virions (Hiriart et al., 2003). EBV encodes two BCL2 homologues, BHRF1 and BALF1. 

BHRF1 is expressed in the first few days following B cell infection and is important for 

optimal transformation efficiency (Altmann et al., 2005). BALF1 is a 182 amino-acid 

polypeptide that seems to counteract the anti-apoptotic function of BHRF1 (Bellows et 

al., 2002). The single-stranded DNA-binding protein encoded by BALF2 gene is believed to 

be essential for EBV DNA replication as suggested by in vitro experiments in Raji cells 

(Tsurumi et al., 1996; Polack et al., 1984; Decaussin et al., 1995).  The BGLF5 protein 

enhances mRNA turnover leading to the reduced synthesis of host proteins including HLA 

class I and II molecules, thereby providing a possible mechanism of immune recognition 

escape (Rowe et al., 2007). BNLF2a inhibits HLA class I antigen presentation by blocking 

TAP-mediated peptide transport (Hislop et al., 2007).  

 



Late lytic genes 

The late lytic genes are expressed 48-72 hours after induction of the lytic cycle and 

encode two major classes of protein: glycoproteins and non-glycoproteins.  

The glycoproteins include BLLF1, BILF1, BILF2, BDLF3, BALF4, BMRF2 and BXLF2. Some of 

them are present in the classical membrane antigen (MA) complex (Edson and Thorley-

Lawson, 1981).  

The BLLF1 gene encodes the most abundant viral glycoprotein gp350/220, which 

mediates the binding of EBV to its B cell receptor, CD21 (Torrisi et al., 1989; Fingeroth et 

al., 1984; Nemerow et al., 1989). This interaction induces the penetration of B 

lymphocytes by EBV (Tanner et al., 1987) as well as activation of the Wp promoter 

(Sinclair and Farell, 1995; Sugano et al., 1997). The gp350/220 protein is a major target of 

host neutralising antibodies (Thorley-Lawson and Poodry 1982). BXLF2 (gH) forms a 

heterotrimeric complex with two more glycoproteins, BKRF2 (gL) and BZLF2 (gp42), which 

participate in the endocytosis of EBV into B cells using HLA class II as co-receptor. In 

epithelial cells, EBV infection does not involve BZLF2 since these cells do not generally 

express HLA II molecules (Borza and Hutt-Fletcher, 2002). The highly conserved BALF4 is 

thought to be involved in the egress of virions from infected cells (Herrold et al., 1996).  

The non-glycoprotein group is composed of structural proteins, such as BcLF1, BNRF1 and 

BXRF1 that make up the viral nucleocaspid (Kieff, 1996). Some of these are part of the 

immunologically defined viral capsid antigen (VCA) complex.  

 



1.4. EPSTEIN–BARR VIRUS ASSOCIATED DISEASES 

In this section, I describe two EBV-associated cancers, Hodgkin’s lymphoma and Burkitt’s 

lymphoma, as these are subject of this thesis. 

 

1.4.1. Hodgkin's lymphoma  

General introduction 

Hodgkin’s lymphoma (HL) was first described by Thomas Hodgkin in 1832 (Hodgkin, 1832) 

and is characterised by the disruption of normal lymph node architecture and the 

presence of malignant mononuclear ‘Hodgkin’ and multinuclear ‘Reed/Sternberg’ cells 

with bilobed nuclei (resembling an "owl's eye" appearance) (Sternberg, 1898; Reed, 

1902). Hodgkin-Reed Sternberg (HRS) cells represent only 1-2% of the total tumour mass 

and are surrounded by a non-malignant reactive infiltrate including T and B cells, 

eosinophils, neutrophils, plasma cells, histiocytes and fibroblasts (Harris et al., 1994) 

(Figure 1.4.1). HRS cells can communicate with the surrounding infiltrate via a complex of 

cytokines and cell contact dependent interactions; these are likely to include proliferative 

and anti-apoptotic signals favouring the expansion and survival of HRS cells (Pinto et al., 

1998).  

  

Histological classification  

About 95% of HL cases belong to the classical form of disease (cHL), while the remaining 

5% represent nodular lymphocyte predominance HL (NLPHL) (Harris et al., 1994). cHL and 

http://en.wikipedia.org/wiki/Cell_nucleus


NLPHL are immunophenotypically distinct; HRS cells of cHL are typically CD30 and CD15 

positive, but usually lack expression of B cell lineage genes such as CD20 (Drexler, 1992). 

In contrast, HRS cells of the NLPHL form so-called lymphocytic and histiocytic (L&H) cells, 

regularly express B cell markers, but are usually negative for CD30 and CD15 (Mason et 

al., 1994). Based on the nature of the surrounding infiltrate and the morphology of HRS 

cells, cHL is further subdivided into four subcategories: nodular sclerosis, mixed 

cellularity, lymphocyte depleted and lymphocyte-rich forms (Jaffe et al., 2001). 

 

Epidemiology 

With an incidence of about 3 new cases per 100,000 persons per year in the Western 

World, HL is one of the most frequent lymphomas (Kuppers, 2009). Epidemiological 

studies of HL in the 1960s identified an unusual bimodal age distribution in the USA with 

one peak in incidence in young adults between 15-34 years and a second peak occurring 

after 50 years of age (MacMahon, 1966). In 1971, three epidemiological patterns of HL 

were characterised. The type I pattern prevails in developing countries and is 

characterised by two peaks in incidence, one in male children and the other in the elderly 

with only low incidence in young adults. The type III pattern is the opposite of the type I, 

being most common in developed countries with a significant peak in incidence in young 

adults with only low rates in children and the elderly. The type II pattern is observed 

mainly in rural parts of some developed countries and has features which are 

intermediate between the type I and III patterns (Correa and O’Conor, 1971).  

 



 

 

 

                                                           

   

Figure 1.4.1. Histological features of HL. A) Haematoxylin and eosin (H&E) stain of HL 
with HRS cells (arrowed) typically constituting less than 1-2% of the total tumour mass (x 
400 magnification). B) Immunostaining of a HRS cell using CD30 antibody (x 600 
magnification). 
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The cellular origin of the HRS cell 

Because HRS cells aberrantly express markers of several hematopoietic lineages, early 

studies using immunohistochemistry incorrectly identified the cell origin as histiocytes 

(Kadin et al., 1978), dendritic cells (Curran and Jones, 1978) and granulocytes (Stein et al., 

1982). However, sequence analysis of Ig genes of single HRS cells revealed rearranged IgV 

and IgL chain genes; demonstrating that these cells are of B cell origin (Kuppers et al., 

1994). Furthermore HRS cells show evidence of SHM suggesting they are derived from GC 

or post-GC cells (Kuppers, 2009). Furthermore HRS cells from the same case carry 

identical IgV gene rearrangements which demonstrate their monoclonal nature (Kanzler 

et al., 1996).   

In about one quarter of cHL, HRS cells carry non-functional (crippled) IgV genes (for 

example as a consequence of nonsense mutations) and are incapable of expressing a 

functional BCR. Since Fas-induced apoptosis is the normal fate of such cells, HRS cells are 

presumed to derive from pre-apoptotic GC B cells (Kanzler et al., 1996). The proximal 

negative regulator of CD95-induced apoptosis, c-FLIP, is highly expressed in HRS cells and 

might contribute to escape from Fas-induced death (Re et al., 2000; Thomas et al., 2002; 

Mathas et al., 2004; Dutton et al., 2004). Nearly all cases carrying these destructive Ig 

gene mutations are EBV positive, suggesting that EBV is required to prevent the apoptosis 

of BCR negative HRS-cell precursors (Bräuninger et al., 2006). This has been substantiated 

by the demonstration that LCLs can be derived from human GC B cells harbouring 

crippled Ig genes or BCR-negative B cells can be rescued by EBV from cell death, giving 

rise to LCLs (Bechtel et al., 2005; Chaganti et al., 2005; Mancao et al., 2005). The 

proposed origin of HRS cells is illustrated in Figure 1.4.2. 



 

 

 

Figure 1.4.2. HRS cells may originate from pre-apoptotic GC B cells. Naive B cells enter 
GCs and undergo somatic hypermutation of the V region genes. Cells which acquire 
favourable BCR mutations leave the GC as memory or plasma cells. Cells which acquire 
unfavourable BCR mutations undergo apoptosis. EBV-infected GC B cells with non-
functional BCR might be rescued from apoptosis. Such cells may be the progenitors of 
HRS cells (taken from Kapatai and Murray, 2007). 

 

 



Other mechanisms could account for the loss of surface BCR expression on HRS cells. 

These include loss of Ig-specific transcription factors such as BOB-1, OCT-2 and PU.1 (Re 

et al., 2002; Jundt et al., 2001; Torlakovic et al., 2001; Marafioti et al., 2000; García-Cosío 

et al., 2004), SHM in the octamer region of the Ig gene promoter or epigenetic silencing 

(Re et al., 2001; Ushmorov et al., 2004). 

HRS cells also show a striking loss of their B cell phenotype (Schwering et al., 2003). This 

may result from the down-regulation or functional impairment of several B cell specific 

transcription factors and from the aberrant induction of non-B cell lineage genes. For 

example, the key transcription factor for the B cell differentiation programme, EBF1, is 

expressed in HRS cells only at low levels (Mathas et al., 2006; Hertel et al., 2002). The 

helix-loop-helix transcription factors, E12 and E47, which are generated by splicing of the 

E2A gene, are expressed in HRS cells, but their function is impaired by two inhibitors: 

ABF1 and ID2 (Mathas, et al., 2006; Kuppers et al., 2003; Renné et al., 2006). ID2 also 

negatively regulates PAX5 (Renné et al., 2006) which explains why PAX5 is expressed, but 

apparently not functional, in HRS cells (Cobaleda et al., 2007). Other factors implicated in 

the down-regulation of B cell genes include STAT5A and STAT5B (Scheeren et al., 2008). 

In contrast, the main T cell transcription factor NOTCH1, is highly expressed in HRS cells 

(Jundt et al., 2002). NOTCH1 can inhibit the B cell programme by down-regulating E2A, 

EBF1, PAX5 and by inducing ABF1 (Jundt et al., 2008). Aberrant expression of key 

transcription factors of haematopoietic stem cells, for example GATA2 or Polycomb group 

genes may further contribute to the reprogramming of HRS cells (Schneider et al., 2004; 

Dukers et al., 2004; Sanchez-Beato et al., 2004). It has been speculated that the down-



regulation of B cell identity might allow HRS cells or their progenitors to escape the 

apoptosis that should occur in the absence of functional BCR (Kuppers and Hansmann, 

2005).  

In contrast to cHL, L&H cells of NLPHL frequently express Ig genes (Stoler et al., 1995) 

with intraclonal IgV gene diversity due to ongoing mutations, indicating that they 

originate from antigen-selected GC B cells (Schmitz et al., 2009).  

 

Deregulated transcription factor networks and signalling in Hodgkin’s lymphoma 

A number of cell signalling pathways that are normally only transiently activated in B cells, 

such as NF-κB, JAK-STAT and PI3K-AKT, have been shown to be aberrantly activated in 

HRS cells. 

Constitutive activation of the NF-κB pathway in HRS cells can result either from genetic 

alterations in several members of the NF-κB family or from increased CD40, CD30, TACI, 

BCMA and RANK receptor signalling on HRS cells, mediated by ligands expressed on cells 

in the microenvironment (Bargou et al., 1997; Cabannes et al., 1999; Emmerich et al., 

1999; Jungnickel et al., 2000; Carbone et al., 1995; Chiu et al., 2007; Fiumara et al., 2001). 

Similarly, signals from the micro-environment can activate the PI3K-AKT and ERK 

pathways (Dutton et al., 2005; Georgakis et al., 2006; Zheng et al., 2003). The aberrant 

activation of NOTCH1 in HRS cells is most likely mediated by its binding to JAGGED1, 

expressed by cells in the microenvironment (Jundt et al., 2008). STAT3, STAT5A, STAT5B 

and STAT6 have also been reported to be constitutively active in HRS cells, in some cases 

this is a consequence of JAK2 amplification (Scheeren et al., 2008; Baus and Pfitzner, 



2006; Kube et al., 2001; Skinnider et al., 2002; Joos et al., 2003). HRS cells also show 

deregulated signalling of AP-1 dimers, c-Jun and JunB (Mathas et al., 2002) and the 

aberrant activation of multiple RTKs, including PDGFRA, DDR2, MSPR, TRKA and TRKB 

(Renné et al., 2005).  

 

The Hodgkin’s lymphoma microenvironment 

cHL is characterized by the presence of various cell types such as T cells, B cells and 

plasma cells that infiltrate the lymphoma microenvironment and which are believed to 

support the growth and survival of HRS cells (Figure 1.4.3.). These cells are attracted to 

the tumour by multiple cytokines and chemokines secreted by HRS cells. The importance 

of the microenvironment for HRS cell survival is underscored by the difficulty in growing 

primary HRS cells (in culture and in immunodeficient mice), by the rare occurrence of HRS 

cells in the peripheral blood of patients with HL, and by the observation that the 

microenvironment is maintained in non-lymphoid metastases of HL (Kapp et al., 1994).  

CD4+ T cells are the most frequent cell type in HL. HRS cells secrete CCL5 (RANTES), CCL17 

(TARC), CCL20 and CCL22 which can attract helper and regulatory CD4+ T cells (Skinnider 

and Mak, 2002; Aldinucci et al., 2008; Fischer et al., 2003; Baumforth et al., 2008). CCL5 

also attracts eosinophils and mast cells. The secretion of IL-8 by HRS cells presumably 

recruits neutrophils (Skinnider and Mak, 2002). HRS cells can also activate fibroblasts 

which in turn produce eotaxin and CCL5, thus further contributing to the attraction of 

eosinophils and T regulatory cells (Aldinucci, et al., 2004; Jundt et al., 1999). As described 

above, the microenvironment can provide survival signals to HRS cells mediated by 



various ligand-receptors interactions which include CD40-CD40L, CD30-CD30L, APRIL-

BCMA and NGF-TRKA (Carbone et al., 1995; Chiu et al., 2007).  

HRS cells produce various immunosuppressive factors including IL-10 (Marshall et al., 

2004), galectin 1 (Juszczynski et al., 2007; Gandhi et al., 2007), TGFβ and PD1L, all of 

which can potentially inhibit cytotoxic T cell responses directed to HRS cells (Newcom and 

Gu, 1995; Chemnitz et al., 2007; Yamamoto et al., 2008).  

 

Contribution of EBV to the pathogenesis of Hodgkin’s lymphoma  

EBV can be detected in approximately 40% of cases of cHL in the Western world and more 

frequently in tumours occurring in developing populations and in up to 100% of patients 

with AIDS (Glaser et al., 1997; Dolcetti et al., 2001). In EBV-associated cHL, the virus 

episome is monoclonal suggesting that all HRS cells arise from a single EBV-infected 

progenitor (Anagnostopoulos et al., 1989). EBV positive HRS cells exhibit a type II pattern 

of virus gene expression. In some EBV positive tumours, the virus has also been detected 

at relapse suggesting that EBV is required for tumour maintenance (Meyer et al., 2004). In 

contrast to cHL, NLPHL is considered an EBV negative disease (Chan, 1999). It has been 

suggested that the expression of LMP1 and LMP2A might contribute to the survival of 

HRS progenitors in the GC (Eliopoulos et al., 1999; Kilger et al., 1998; Mancao and 

Hammerschmidt, 2007). LMP2A induces a global down-regulation of B cell lineage genes 

when expressed in mouse B cells (Portis et al., 2003). LMP1 induces a similar loss of B cell 

identity when expressed in primary human GC B cells (Vockerodt et al., 2008). Thus, 

LMP2A and LMP1 when expressed in normal B cells induce global alterations in gene 

transcription which are similar to those seen in HRS cells.  



 

 

 

Figure 1.4.3. Cellular interactions in the HL microenvironment.  

(taken from Kuppers, 2009). 

 

 



1.4.2 Burkitt's lymphoma  

General introduction 

Burkitt’s lymphoma (BL) was first described by Denis Burkitt in 1958 (Burkitt, 1958). All 

forms of BL display a similar histological appearance, with a malignant population of 

medium to large monomorphic B cells with large vacuolated basophilic cytoplasm and 

multiple small central nucleoli. BL is characterized by unusually high rates of proliferation 

and apoptosis with solid sheets of interspersed debris containing macrophages, giving the 

tumor histology a “starry sky” pattern. The detection of ongoing Ig gene mutations and 

the cellular phenotype (CD10+, CD38+, CD77+, BCL6+) suggests that BL cells are derived 

from GC B cells (Kieff and Rickinson, 2007).  

 

Epidemiology of Burkitt's lymphoma 

Three epidemiologically distinct forms of BL are recognized, these are the endemic, 

sporadic and AIDS-associated forms. The high-incidence endemic form is restricted to 

areas of equatorial Africa and Papua New Guinea (Burkitt et al., 1961; Booth et al., 1967), 

where Plasmodium falciparum malaria infection is holoendemic. This form of BL is almost 

always EBV positive, typically presents in young children and affects extranodal sites 

including the jaw, abdomen and endocrine organs. Sporadic BL is less common, also 

occurs mainly in children, but only 15% of tumours are EBV positive. AIDS-associated BL 

often presents as the first AIDS-associated illness in relatively immunocompetent 

patients; 30-40% of these cases are EBV-positive (Kieff and Rickinson, 2001).  



Genetic changes in pathogenesis of Burkitt's lymphoma 

A consistent feature of all forms of BL is the presence of characteristic chromosome 

translocations. These always involve a reciprocal translocation of the long arm of 

chromosome 8 (8q24) in the region of the C-MYC oncogene and either chromosome 14 in 

the region of the IgH gene or, less frequently, chromosomes 2 or 22 in the region of the 

IgL genes (Magrath, 1990). These translocations result in high levels of C-MYC expression, 

ultimately affecting cell proliferation, growth and apoptosis.  

In normal B cells, the pro-proliferative effects of C-MYC are counterbalanced by several 

checkpoints including the ARF-MDM2-p53 pathway and the pro-apoptotic protein, BIM, 

which combine to deliver a cumulative apoptotic signal. In contrast, in BL these apoptotic 

signals are inhibited for example by p53 mutations, MDM2 over-expression and ARF or 

BIM inactivation (Li et al., 2003; Lindstrom and Wiman, 2002; Hemann et al., 2005). Two 

mutant C-MYC alleles, P57S and T58A have been described, which can in an adoptive 

transfer mouse model, accelerate tumour onset compared with wild-type C-MYC (Chang 

et al., 2000; Hemann et al., 2005). In this model, both p53 and p19ARF were wild-type in 

the mutant MYC tumors, but the MYC mutants were unable to activate the pro-apoptotic 

BH3-only protein, BIM (Hemann et al., 2005).  

 

Contribution of EBV to the pathogenesis of Burkitt's lymphoma  

Serological studies indicate that EBV infection occurs before the clinical onset of disease 

and children with high titres of EBV have increased susceptibility to BL (Henle et al., 1969; 

de-The et al., 1978; Geser et al., 1982). Monoclonal episomes are present in BL tumours 



and express a latency I pattern of virus gene expression (Neri et al., 1991). The use of Qp 

in most BL cells might result from selection of a Wp/Cp-driven LCL-like progenitor (Kelly et 

al., 2002), where the absence of the EBNA2 and the LMPs comes from T cell surveillance 

or from a presumed incompatibility with the high levels of C-MYC (Pajic et al., 2001). An 

alternative form of latency, known as Wp-restricted latency, has been described is some 

BL cells. This form of latency is characterised by Wp-driven EBNA expression in absence of 

EBNA2 and the EBNA2-induced LMP proteins (Kelly et al., 2006). A variant has also been 

described in which EBNA2 is expressed, but the LMPs are not. This is consistent with 

previous studies which suggest that the expression of LMP1 is incompatible with the C-

MYC-driven growth program (Floettmann, et al., 1996; Polack et al., 1996; Pajic et al., 

2001).  

Experimental evidence suggested that EBV might contribute to the pathogenesis of BL by 

complementing for the activity of C-MYC, presumably by ablating the apoptotic activity of 

this oncoprotein. This could be achieved by the down-regulation of BIM which occurs in 

normal B cells following their transformation with EBV in vitro. A role for viral mediators, 

BHRF1 and EBNA3A/EBNA3C, in the down-regulation of BIM has been suggested 

(Clybouw et al., 2005; Anderton et al., 2008; Rowe et al., 2009). 

It has also been suggested that EBV might contribute to the pathogenesis of EBV-negative 

sporadic BLs by initially infecting and transforming the progenitor cells followed by loss of 

the virus during the later stages of tumour progression (‘hit and run’ mechanism) 

(Razzouk et al., 1996).  

 



1.5. PROJECT AIMS  

The Epstein-Barr virus (EBV) is associated with several types of lymphoma originating 

from germinal centre B cells. An important pathogenic event in these lymphomas is the 

suppression of virus replication which would otherwise result in tumour cell death. 

Because the induction of virus replication in EBV-infected B cells appears to be intimately 

linked to their differentiation towards plasma cells this thesis examines if the 

physiological signals which drive normal B cell differentiation are altered in EBV-

transformed B cells and in EBV-associated lymphoma cells. I have focussed on BLIMP1α, a 

transcription factor that is required for plasma cell differentiation. 

The specific objectives are to: 

1) Investigate if the EBV-encoded LMP1 can regulate BLIMP1α expression in primary 

human germinal centre B cells and in doing so disrupt the BLIMP1α transcriptional 

programme. 

2) Study the effects of the ectopic expression of BLIMP1α on the regulation of the 

viral lytic cycle in EBV positive B cells. 

3) Investigate the mechanisms responsible for the regulation of BLIMP1α by LMP1 in 

B cells. 

4) Determine if EBV can also regulate expression of the BLIMP1β isoform in EBV 

transformed germinal centre B cells and in Hodgkin’s lymphoma cells. 
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MATERIALS AND METHODS 

2.1. Collection and preparation of tonsil specimens and cell lines  

2.1.1. Tonsil specimens 

Fresh tonsils were obtained with informed consent from pediatric patients under local 

ethics committee approval (Ref No.06/Q2702/50) and transported in cold phosphate 

buffered saline (PBS) on ice. 

2.1.2. Cell lines 

Cell lines were maintained at 37°C in 5% carbon dioxide (CO2) in RPMI 1640 (Sigma-

Aldrich Ltd., Gillingham, UK) supplemented with 10% fetal calf serum, 2mM L-glutamine 

(all Invitrogen Ltd., Paisley, UK) and 1% penicillin-streptomycin solution (Sigma-Aldrich 

Ltd., Gillingham, UK). 

KMH2 was originally established from the pleural effusion of a 37-year-old man with 

mixed cellularity Hodgkin lymphoma (HL) (Kamesaki et al., 1986). KMH2 EBV was derived 

from EBV-negative KMH2 cells infected with Akata-derived recombinant virus and 

maintained under geneticin selection (Invitrogen Ltd., Paisley, UK; 1 mg/mL) (Baumforth 

et al., 2005). L591 was established from the pleural effusion of a 31-year-old woman with 

histologically confirmed HL (nodular sclerosis; stage IVB) (Diehl et al., 1982). L428 was 

derived from the pleural effusion of a 37-year-old woman with HL (stage IVB, nodular 

sclerosis) (Schaadt et al., 1980). L1236 was established from the peripheral blood of a 34-

year-old man with HL (mixed cellularity, stage IV) (Wolf et al., 1996). Akata is an EBV 



positive cell line established from a Japanese patient with Burkitt's lymphoma (BL) with 

typical BL-type chromosome translocation (t8q-; 14q+) (Rowe et al., 1992). BL2 cells were 

established from the bone marrow of a 7-year-old Caucasian boy with non endemic BL 

(stage III) (Cohen et al., 1987). DG75 was derived from the pleural effusion of a 10-year-

old boy with sporadic BL (Ben-Bassat et al., 1977). MUTU I and MUTU III are EBV positive 

BL cell lines derived from the same patient, but are phenotypically distinct: MUTU I has 

retained a latency I form of infection and expresses only EBNA1 but not the other EBV-

encoded EBNAs; whereas MUTU III is a subclone of the same line that has drifted to the 

latency III type of infection in which all six EBNAs and three latent membrane proteins are 

expressed (Gregory et al., 1990). Rael is a latency I EBV-positive cell line which was used 

as a negative control of BLIMP1 expression (Klein et al., 1972). U266 was established from 

the peripheral blood of a 53-year-old man with IgE-secreting myeloma. This cell line 

served as a positive control for BLIMP1 (Nilsson et al., 1970). X50-7 is a lymphoblastoid 

cell line generated by EBV-immortalization of cord blood B cells (Miller et al., 1984). B95-8 

was established from peripheral blood lymphocytes of a cotton-top tamarin (cotton-top 

marmoset) monkey (Saguinus oedipus); cells were described to release high titres of EBV 

(Klein et al., 1974). SL1-LCL, SL2-LCL, SL3-LCL cell lines (kindly provided by Dr. Sarah 

Leonard, University of Birmingham, Birmingham, UK) were established by infecting GC B 

cells isolated from three separate donors with 2089 wild-type EBV (based on the genome 

of the EBV strain B95.8). The cells were maintained in culture for six weeks. OKU-LCL and 

SAL-LCL (kindly provided by Dr. Gemma Kelly, University of Birmingham, Birmingham, UK) 

were generated in vitro by transforming normal peripheral B cells from an adult EBV 

seronegative donor with virus rescued from atypical group I BL lines OKU and SAL lines. 



PER213 and HK-LCL (kindly provided by Dr. Heather Long, University of Birmingham, 

Birmingham, UK) were established from normal peripheral B cells using the reference EBV 

strain B95.8.  

A tetracycline regulatable expression system in DG75 BL cells (kindly provided by 

Professor Martin Rowe, University of Birmingham, Birmingham, UK) (Floettmann et al., 

1996) was used to study the effects of LMP1 expression on the regulation of BLIMP1. In 

this system LMP1 was cloned into the pUHD10-3 plasmid downstream of a promoter 

containing binding sites for a hybrid tetracycline-regulated transactivator (tTA) that is 

constitutively expressed from a second, co-transfected plasmid, pUHD15-1 (Gossen and 

Bujard, 1992). Tetracycline binds to the tTA and prevents binding to the promoter which 

remains silent, but upon removal of tetracycline the tTA binds to the LMP1 promoter and 

activates its transcription. Stock cultures of DG75-LMP1 cells were maintained under drug 

selection with 2 mg/ml of geneticin (Invitrogen Ltd., Paisley, UK, 1 mg/mL); 500 µg/ml of 

hygromycin B (Roche Diagnostics Ltd., West Sussex, UK) and 1 µg/ml of tetracycline 

(Sigma-Aldrich Ltd., Gillingham, UK) until required. To induce LMP1 expression, cells were 

centrifuged, washed three times in PBS, incubated in growth media for 15 minutes at 

37°C, washed again with PBS and re-cultured in the presence or absence of 2 mg/ml of 

tetracycline for a period of 24, 48 or 96 hours.   

Cell counts were determined using a haemocytometer (Marienfeld, Harsewinkel, 

Germany). Cell suspensions were diluted, mixed with Trypan blue 1:1 (Sigma-Aldrich Ltd., 

Gillingham, UK) and pipetted into a counting chamber of a haemocytometer. Using an 

inverted light microscope, only living cells (determined by uptake of Trypan blue) 



contained within 16 zones of the chamber were counted. This number was then divided 

by four to obtain an average count of cell number per zone. This average value was then 

multiplied by 104 and a dilution factor to obtain the number of cells per ml of culture 

medium.  

2.2. Plasmid preparation 

2.2.1. Agar preparation 

L-broth agar (LBA) was prepared using 2 g of L-broth powder and 1.5 g selected agar (both 

Invitrogen Ltd., Paisley, UK) in 100 ml distilled water and autoclaved. Ampicillin (Sigma-

Aldrich Company Ltd., Gillingham, UK) was added at a final concentration of 100 µg/ml 

once the LBA cooled down. LBA was then poured into Petri dishes (Bibby Sterilin Ltd., 

Stone, UK) and left to set at room temperature. Sealed plates were stored at 4°C until 

required.  

L-broth buffer (LB) was prepared using 2 g L-Broth powder in 100 ml distilled water, 

autoclaved and stored at room temperature. Ampicillin was added prior to use at a final 

concentration 100 µg/ml. 

2.2.2. Transformation 

TOP10 Competent E.Coli cells (Invitrogen Ltd., Paisley, UK) were thawed on ice and 

plasmid DNA was added to each tube at a ratio of 1:10. The bacteria were then incubated 

on ice for 30 minutes, heat shocked at 42°C in a water bath for 60 seconds and 

immediately returned on ice for 2 minutes. 250 µl of broth medium without antibiotics 



was added to each reaction tube and gently mixed and incubated at 37°C for one hour. 

The bacteria were then transferred onto pre-warmed LBA plates and spread across the 

whole of the agar surface. The LBA plates were placed upside down in the 37°C incubator 

overnight.  

2.2.3. EndoFree plasmid purification  

To bulk up plasmids from bacterial cells, EndoFree Plasmid Maxi Kit (Qiagen Ltd, Crawley, 

UK) was used according to manufacturer’s instructions. Briefly, a single colony from a 

freshly streaked LBA plate was incubated in a starter culture of 2 ml of LB buffer with 

ampicillin for 8 hours at 37°C with vigorous shaking. The starter culture was then diluted 

in 100 ml of LB and further incubated at 37°C for 16 hours (overnight). Following the 

incubation, bacteria were harvested by centrifugation at 6000 g for 15 minutes at 4°C. 

Cell pellets were then resuspended and lysed under alkaline conditions. Cell lysates were 

further neutralised and genomic DNA, proteins and cell debris were retained on a 

QIAfilter Maxi Cartridge. At this stage, the Endotoxin Removal Buffer was added to the 

filtered lysate in order to remove endotoxins which could significantly reduce transfection 

efficiencies or induce nonspecific activation of immune cells.  Following incubation on ice 

for 30 minutes, the cleared lysate was loaded onto the anion-exchange tips to selectively 

bind plasmid DNA under appropriate low-salt and pH conditions. RNA, proteins, 

metabolites, and other low-molecular-weight impurities were removed by a medium-salt 

wash, and ultrapure plasmid DNA was eluted in high-salt buffer. DNA was then 

concentrated and desalted by isopropanol precipitation and collected by centrifugation at 

15000 g for 30 minutes. Pelleted DNA was washed in 70% ethanol in order to remove 



precipitated salt and further centrifuged at 15000 g for 10 minutes. Air dried pellets were 

resuspended in TE buffer (10 mM Tris-Cl pH 8.0, 1 mM EDTA); DNA was measured using a 

NanoDrop ND 1000 (NanoDrop Technologies, Wilmington, DE, USA) and stored at 4°C. 

Details of plasmids used the study are given in Appendix 1. 

 

2.3. RNA detection and analysis  

2.3.1. RNA extraction from cultured cells 

Culture media with cells were pelleted at 900 rpm for 5 minutes. Total RNA was isolated 

from cells using the QIAGEN RNeasy™ MINI or MICRO (<5x105 cells) kit according to 

manufacturer’s instructions (Qiagen Ltd, Crawley, UK). Briefly, cells were disrupted in RLT 

lysis buffer containing a denaturant guanidinium isothiocyanate. β-mercaptoethanol was 

added to inactivate RNAse enzymes by reducing disulfide bonds in their native 

conformation. Cell lysates were then homogenized on a QIAshredder spin column (Qiagen 

Ltd, Crawley, UK) or by vigorous vortexing for 1 minute. Samples were thoroughly mixed 

with 1 volume of 70% ethanol to provide ideal binding conditions and loaded onto the 

RNeasy silica membrane of MINI/MICRO spin columns. This was followed by 

centrifugation at 10000 rpm and washing of the spin column membrane with RWI buffer. 

If required, samples were incubated for 15 minutes with DNAse solution (RNase-Free 

DNase Set; QIAGEN Ltd., West Sussex, UK) at room temperature to remove contaminating 

bound DNA. Salts, metabolites and cellular components were washed off in several 

washing steps with RWI, RPE and RPE (or 80% ethanol) buffers. Finally, the spin columns 



were centrifuged with their lids open in order to completely dry column membranes and 

RNA was eluted with DNase/RNase-free. To obtain RNA concentration and quality (ratio 

260/280) for each sample, eluted RNA was measured on a NanoDrop ND 1000 (NanoDrop 

Technologies, Wilmington, DE, USA) and stored at -80°C. 

2.3.2. Reverse transcription (RT) reaction 

Complementary DNA was synthesized from 400 ng (or less) of total RNA extracted from 

each sample. RNA was transferred into sterile thin walled 0.2 ml PCR tubes and the 

volume was made up to 11 µl using DNase/RNase-free water. A negative (no RNA) control 

was set up in parallel, consisting of 11 µl DNase/RNase-free water alone. 1 µl of 250 ng of 

random hexamer primers (Promega UK Ltd, Hampshire, UK) and 1 µl of 10 mM dNTP Mix 

(dATP, deoxyadenosine triphosphate; dCTP, deoxcytosine triphosphate; dGTP, 

deoxyguanosine triphosphate and dTTP, deoxythymidine triphosphate; all Roche 

Diagnostics Ltd., West Sussex, UK) were added to RNA. The mixture was heated to 65°C 

for 5 minutes followed by incubation on ice for at least 1 minute. Tubes were briefly 

centrifuged to collect all liquid and 1 µl of 0.1 M DTT, 4 µl of 5x First-Strand buffer, 1 µl of 

DNase/RNase-free water and 1 µl of SuperScript® III Reverse Transcriptase (all Invitrogen 

Ltd., Paisley, UK) were added to each sample. Tubes were further incubated in an 

Eppendorf Thermal Cycler for 5 minutes at 25°C; followed by 60 minutes at 50°C. The 

reaction was terminated by heating to 70°C for 15 minutes.  c-DNA was stored at 4°C for 

short term or at -20°C. If required, cDNA was cleaned-up using GenEluteTM PCR Clean-Up 

kit following the protocol supplied by the manufacturer (Sigma-Aldrich Company Ltd., 

Gillingham, UK). 



2.3.3. Polymerase chain reaction (PCR) of cDNA 

Primers used in the studies were supplied by Alta Biosciences (University of Birmingham, 

Birmingham, UK) and prepared according to the data sheet supplied. Appendix 2 shows 

details of the primers used in these studies. 

For each PCR reaction sample the following master mix was prepared in thin walled 0.2 

ml PCR tubes: 12.5 µl of premixed 2x PCR Master Mix (Promega UK Ltd, Hampshire, UK) 

containing 50 units/ml of Taq DNA polymerase, 400 μM dNTPs (dATP, dGTP, dCTP and 

dTTP), 3 mM MgCl2 and reaction buffers at optimal concentrations for efficient 

amplification of DNA templates by PCR; 2.5 µl of each 3’ and 5’ primers (2.5 µM) and 

DNase/RNase-free water - up to a total volume of 25 µl per reaction after the addition of 

cDNA. PCR amplification was then performed in an Eppendorf Thermal Cycler using ‘hot 

start’ whereby all samples were denaturated for 2 minutes at 94°C; followed by 40 cycles 

consisting of a denaturation step for 30 seconds at 94°C, an annealing step for 1 minute at 

temperatures specific to individual primers used; and an extension step for 1 minute at 

72°C. PCR products were stored at 4°C (short term) or -20°C until required. 

Agarose gel electrophoresis of PCR products 

Amplified samples were analysed by electrophoresis through agarose gels. 2% agarose 

gels were made by melting 4 g of agarose (Eurogentec Ltd., Southampton, UK) in 200 ml 

of 1 x tris-borate buffer solution (TBE; 45 mM tris, 1 mM EDTA pH 8.3 and 45 mM boric 

acid; Fisher Scientific UK Ltd., Loughborough, UK). Solution was microwaved on full power 

until the liquid became transparent. Once the solution cooled, ethidium bromide was 



added at a final concentration of 1 µg/ml (Sigma-Aldrich Ltd., Gillingham, UK). The 

solution was then poured into a standard gel casting tray (Fisher Scientific UK Ltd., 

Loughborough, UK) sealed with masking tape. The gel was allowed to stand at room 

temperature for 1 hour to harden. The comb and tray barriers were then removed and 

the gel was submerged into 1 x TBE in a mini-gel electrophoresis unit (Fisher Scientific UK 

Ltd., Loughborough, UK). 

6x Blue/Orange Loading Dye (Promega UK Ltd, Hampshire, UK) containing 0.4% orange G, 

0.03% bromophenol blue, 0.03% xylene cyanol FF, 15% Ficoll® 400, 10 mM Tris-HCl pH 7.5 

and 50 mM EDTA pH 8.0) was added to each 15 μl of PCR product samples at 1:5 dilution. 

Samples were then loaded onto the gel and electrophoresed at 100 V for an appropriate 

length of time in parallel with 100 bp DNA Ladder (Promega UK Ltd, Hampshire, UK). 

Amplified products were visualized on a UV transilluminator and the gel was 

photographed using Polaroid 667 film (Fisher Scientific UK Ltd., Loughborough, UK).  

 

2.3.4. Real-time PCR 

Primer and probe design 

Primer/TaqMan probe combinations to detect expression of EBV genes were designed 

using the Primer Express package (Applied Biosystems, Warrington, UK) and were chosen 

to hybridize across exon-exon junction sequences. Probes were labeled with 6-

carboxyfluorescein phosphoramidite (FAM) fluorophore at the 5’ end and 6-

carboxytetramethylrhodamine (TAMRA) quencher at the 3’ end. All primers were 



purchased from Alta Bioscience (University of Birmingham, Birmingham, UK); TaqMan 

probes were obtained from Eurogentec (Southampton, UK). BRLF1, BMLF1, BNLF2A and 

BALF4 primers and probes were also kindly provided by Dr. Andrew Bell (University of 

Birmingham, Birmingham, UK), their sequences are listed in Appendix 3.  

The probe targeting BLIMP1β isoform was published elsewhere (Ocaña et al., 2006), but 

for our study it was re-labeled with MGB™ (minor groove binder) reporter dye at the 5’ 

end and non-fluorescent quencher (NFQ) at the 3’ end and purchased from Applied 

Biosystems.  

Target gene expression assays containing FAM(6-carboxyfluorescein)/NFQ-labeled probes 

were all designed and generated by Applied Biosystems and are listed in Appendix 4.   

Expression of endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA 

and β-2-microglobulin (β2m) was quantified using pre-developed house-keeping assays 

containing VIC/TAMRA(Carboxytetramethylrhodamine)-labeled probes (both Applied 

Biosystems). 

Real-time PCR conditions 

All real-time PCR assays were performed using an ABI Prism 7700 sequence detection 

system (Applied Biosystems, Warrington, UK). The reactions were set up in MicroAmp 

Fast optical 96-well reaction plates covered with MicroAmp Optical Adhesive Film 

(Applied biosystems). A final reaction volume of 25 µl contained 1× TaqMan universal PCR 

mastermix (Applied Biosystems) or FastStart Universal Probe Master Mix (Roche 



Diagnostics Ltd., West Sussex, UK), 2.5-25.0 pmol primers, 5 pmol probe, 0.5 µl of 20x 

house-keeping assay and 5 µl cDNA (equivalent to required ng input RNA).  

Thermal-cycling conditions were: initial uracil/N-glycosylase incubation (2 minutes at 

50°C), AmpliTaq Gold activation step (12 minutes at 95°C) and 40 rounds of amplification 

(denaturation for 15 seconds at 95°C, annealing and extension for 1 minute at 60°C). All 

test samples were run in triplicate and template-negative reactions served as controls. 

Real-time PCR data analysis 

Relative quantification of gene expression was performed as recommended by the 

manufacturer. Briefly, amplification of target genes and the endogenous controls were 

monitored continuously by changes in FAM, MGB or VIC fluorescent intensities, using the 

ABI 7700 software. The resulting amplification plots were used to determine the 

threshold cycle (Ct) value, defined as the number of PCR cycles taken for fluorescent 

intensity to reach a fixed threshold for each signal. The Ct values were inversely 

proportional to the amount of gene present. Finally, transcript levels of target gene were 

normalized to amount of endogenous control in the same samples. The normalized values 

were then expressed relative to the appropriate reference sample, which was assigned an 

arbitrary value of 1. 

 

 

 



2.4. Protein detection and analysis 

2.4.1. Western blotting 

Cell lysis 

Culture media with cells were pelleted at 900 rpm for 5 minutes and supernatant was 

decanted. Cell pellets were washed in cold PBS to ensure complete removal of culture 

media and centrifuged again. Pellets were then lysed in appropriate volume of lysis buffer 

which consisted of 50 mM Tris HCL (pH 8.0); 150 mM NaCl; 1 mM EDTA; 1% Nonidet P40 

(NP40; Roche) and supplemented with protease inhibitors (complete Protease Inhibitor 

Cocktail Tablets, Roche Diagnostics Ltd., West Sussex, UK). Lysates were incubated on ice 

for 30 minutes and then centrifuged at 13000 rpm at 4°C for 15 minutes; the protein 

supernatants were stores at -20°C.  

Determination of protein concentration 

Protein concentration was quantified using the BioRad DC Protein Assay Kit (Bio-Rad 

Laboratories Ltd., Hemel Hempstead, UK). Five standards composing different 

concentrations of bovine serum albumin (BSA; Sigma-Aldrich Company Ltd., Gillingham, 

UK): 0, 0.1, 0.2, 0.4, 0.8 and 1.5 mg/ml were used. An aliquot of each sample was diluted 

1:20 with sterile distilled water. 100 µl of BioRad DC Protein Assay Reagent A was added 

to each standard and sample, vortexed, followed by addition of 800 µl BioRad DC Protein 

Assay Reagent B, vortexed again and incubated at room temperature for 15 minutes. 

Absorbance of standards were read on a Thermo Spectronic BioMate 3 

spectrophotometer (Thermo Electron Corporation, Basingstoke, UK) at 750 nm and were 



used to plot a calibration curve from which the protein content of the samples was read. 

Sample concentrations were calculated by multiplying by dilution factor; typically 30 µg of 

protein lysates were used.  

Gel electrophoresis 

Protein lysate samples were mixed 1:1 with 2x Laemmli sample buffer, containing 4% SDS, 

20% glycerol, 10% 2-mercaptoethanol, 0.004% bromphenol blue and 0.125 M Tris/HCl 

(pH  6.8). Samples were then boiled for 2 minutes at 97°C in a heat-block, centrifuged and 

loaded on 10% SDS-polyacrylamide gels which were made fresh and left to harden prior 

each electrophoresis (Appendix 5). 

Gels were submerged in running buffer consisting of 0.25 M TRIS, 1.92 M glycine (Fisher 

Scientific UK Ltd., Loughborough, UK) and 1% SDS in distilled water. Pre-stained standards 

were prepared and run alongside samples (Kalidoscope Marker, Bio-Rad, UK; SeeBlue® 

Plus2 Pre-Stained Standard, Invitrogen, Paisley, UK). Samples were separated by 

electrophoresis at 100 V for 1.5 hours in an XCell Surelock Mini-Cell (Invitrogen Ltd., 

Paisley, UK). 

Protein transfer 

Proteins were transferred from the gel to a 0.45 µm nitrocellulose transfer membrane 

(Protran BA85 membrane; Schleicher & Schuell UK Ltd., London, UK). Membranes, 

sponges and filter papers (Whatman® chromatography paper; Sigma-Aldrich Ltd., 

Gillingham, UK) were cut to the gel size and soaked in transfer buffer (30 g tris, 144 g 

glycine, 2 L methanol in 8 L distilled water) for at least 5 minutes. The ‘transfer sandwich’ 



was then set up in a XCell II Blot Module (Invitrogen Ltd., Paisley, UK), in the following 

order: 2 sponges, 3 pieces of filter paper, first gel, membrane, 2 sponges, 3 pieces of filter 

paper, second gel, membrane, 3 pieces of filter paper and 2 sponges. The transfer module 

was placed into the XCell Surelock Mini-Cell, filled with transfer buffer and surrounded 

with ice to avoid overheating during the transfer. Proteins were transferred at 30 V for 2 

hours. 

Labeling of specific protein 

After blotting, membranes were washed in PBS-Tween-20 (0.1%) and transferred protein 

visualized with Ponceau S (Sigma-Aldrich Ltd., Gillingham, UK). Blots were then incubated 

for 1 hour at room temperature on a shaker in blocking solution (5% non-fat milk powder 

in PBS-Tween-20) to prevent unspecific binding. Primary antibodies were diluted to the 

appropriate concentration with blocking solution (see Appendix 6 for details on primary 

antibodies) and applied overnight at 4°C. Following day, membranes were rinsed in PBS-

Tween-20 (0.1%) for 1 hour at room temperature with washes changed every 10 minutes. 

HRP-conjugated secondary IgG antibodies (DakoCytomation Ltd., Cambridgeshire, UK) 

were diluted in blocking solution and applied for 1 hour at room temperature. Finally, the 

membranes were again rinsed in PBS-Tween-20 (0.1%) for 1 hour. 

Visualisation of proteins 

Proteins were visualized using the enhanced chemiluminescence (ECL) technique (all; 

Amersham Biosciences UK Ltd., Buckinghamshire, UK). Membranes were incubated with 

ECL mixture for 1 minute, covered with clean film and placed in a Hypercassette™ 



autoradiography cassette in a dark room. A sheet of Hyperfilm™ was placed on top of 

membranes for appropriate length of time. Hyperfilm™ was then removed from the 

Hypercassette™ and developed in a Kodak X-OMAT 1000 processor (Kodak Limited, 

Hemel Hempstead, Herts, UK).  

Stripping membranes for re-probing with primary antibody 

To facilitate re-probing of membranes with different primary antibodies after western 

blotting, previous blotting reagents were removed using Re-Blot Plus Mild Antibody 

Stripping Solution (Chemicon International, Hampshire, UK). Firstly, membranes were 

washed in PBS-Tween-20 (0.1%) for 10 minutes followed by gentle mixing in stripping 

solution for 15 minutes at room temperature. The membranes were further washed in 

PBS-Tween-20 (0.1%) and incubated for 1 hour in blocking solution (5% non-fat milk 

powder in PBS-Tween-20). 

 

 

 

 

 

 

 



2.4.2. Immunohistochemistry 

Cytospin preparation for immunohistochemistry 

2 x 106 cells were centrifuged, washed in PBS (pH 7.6), resuspended in 1 ml of PBS with 

10% formal-saline and stored at 4°C. Cells were attached on X-tra Adhesive micro slides 

(Surgipath Europe, Peterborough, UK) in Cytospin3 cytocentrifuge (Shandon, Runcorn, 

UK) using Cytofunnel® disposable sample chambers, filter cards and Cytoclips™ (all 

Thermo Electron Corporation, Basingstoke, UK). Following centrifugation at 1000 rpm for 

5 minutes, monolayers of cells were air dried, fixed in 10% formal-saline solution (Genta 

Medical, York, UK) for 10 minutes and then air dried again. Cytospin preparations were 

stored in aluminum foil at -20°C. When required, slides were thawed and washed in 

running tap water. 

Blocking of endogenous peroxidase activity and antigen retrieval 

Endogenous peroxidase activity was blocked by incubating slides in 3% hydrogen peroxide 

(Sigma-Aldrich Company Ltd., Gillingham, UK) in distilled water for 15 minutes. Following 

this, the slides were rinsed thoroughly in running tap water.  

Low temperature antigen retrieval  

Low temperature antigen retrieval was performed by incubating slides in 1 mM EDTA (pH 

8.0), Tween-20 (0.1%) on a hotplate stirrer at 65°C for 16 hours (overnight). Agitation was 

achieved by using a magnetic bar with the stirrer set to 600 rpm. Sections were washed in 

tap water and then in PBS-Tween-20 (0.1%) (pH 7.6).  



Detection of a single antigen 

All slides were mounted onto a Sequenzer (Shandon, Runcorn, UK) or placed in a metal 

microscope slide staining tray (Richardsons of Leicester Ltd., Leicester, UK) and covered 

with a lid to minimize evaporation. Samples were washed with PBS-Tween-20 (0.1%) for 5 

minutes and incubated with 100 µl of primary antibody appropriately diluted in PBS-

Tween-20 (0.1%) for 1 hour at room temperature (see Appendix 6 for details on primary 

antibodies). Following incubation, samples were washed with PBS-Tween-20 (0.1%) for 5 

minutes and incubated with 2 drops of DAKO Envision secondary antibody (Dako UK Ltd., 

Cambridgeshire, UK) for 30 minutes at room temperature. Visualization was carried out 

using the ImmPact diaminobenzidine (DAB) substrate system (Vector Laboratories Ltd., 

Peterborough, UK) for 1 minute which generated a brown product that is insoluble in 

water and organic solvents. Slides were further rinsed with distilled water and 

counterstained with Harris’ haematoxylin (Sigma-Aldrich Ltd., Gillingham, UK) for 10 

seconds and washed under running tap water for 5 minutes. Slides were again 

dehydrated in IMS and xylene and mounted under cover slips with DPX mounting medium 

(Sigma-Aldrich Ltd., Gillingham, UK) for microscopic examination.  

Detection of two antigens (double immunohistochemistry) 

All steps were performed as described above (page 92- 93); except that first visualization 

was carried out using Vector® NovaRED™ Substrate (Vector Laboratories Ltd., 

Peterborough, UK) which developed a red product. To achieve detection of the second 

antigen, slides were immediately washed with PBS-Tween-20 (0.1%) for 5 minutes and 

the second primary antibody was applied for 1 hour. Following further washing with PBS-



Tween-20 (0.1%) and incubation with Dako secondary antibodies, visualization of the 

second antigen was carried out using Vector® SG Substrate (Vector Laboratories Ltd., 

Peterborough, UK) which developed grey/black product. Slides were again dehydrated in 

IMS and xylene and mounted under cover slips with DPX mounting medium (Sigma-

Aldrich Ltd., Gillingham, UK) for microscopic examination.  

 

2.5. Primary B cell studies 

2.5.1. Purification of tonsillar mononuclear cells (TMCs) 

Tonsils were minced with a scalpel in cold RPMI 1640 medium (Sigma-Aldrich Ltd., 

Gillingham, UK) without foetal calf serum, supplemented with 2mM L-glutamine 

(Invitrogen Ltd., Paisley, UK), 0.5% ciprofloxacin (Bayer, Newbury, UK) and 1% penicillin-

streptomycin solution (Sigma-Aldrich Ltd., Gillingham, UK). Mononuclear cells were then 

isolated by Ficoll-Isopaque centrifugation. 15 ml of Lymphoprep® solution (Axis-Shield 

Diagnostics Ltd. UK, Dundee, UK) was pipetted into universal tubes and carefully overlaid 

with media containing a mixture of tonsillar cells. Tubes were then centrifuged at 2200 

rpm at room temperature for 30 minutes creating the following visible layers: plasma and 

other constituents (top), mononuclear cells (middle), Ficoll-Paque, and erythrocytes and 

granulocytes debris (pellet). The layer of mononuclear cells was transferred to a fresh 

tube, washed twice with cold media and once with cold autoMACS™ Rinsing Solution 

(autoMACS; Miltenyi Biotec Ltd, Surrey, UK) supplemented with 1% penicillin-

streptomycin solution (Sigma-Aldrich Company Ltd., Gillingham, UK), 0.5% ciprofloxacin 



(Bayer, Newbury, UK) and 5% MACS® BSA Stock Solution (Miltenyi Biotec Ltd, Surrey, UK); 

each time centrifuged at 900 rpm at 4°C for 10 minutes. 

 

2.5.2. Purification of GC B cells 

GC B cells (CD10+) were isolated from TMCs by positive enrichement of CD10+ cells using 

magnetic separation with anti-CD10-Phycoerythrin (PE) (eBioscience, San Diego, CA, USA), 

anti-PE microbeads and LS columns (both Miltenyi Biotec Ltd, Surrey, UK). Magnet and 

autoMACS buffer were pre-cooled at 4°C and all purification steps performed on ice to 

prevent rapid apoptosis of GC B cells and unspecific antibody binding. First, 107 TMCs 

were resuspended in 100 µl of autoMACS and CD10-PE antibody was added at 1:50 

dilution. Following incubation at 4°C for 15 minutes, cells were washed with 10 volumes 

of autoMACS and centrifuged at 900 rpm at 4°C for 10 minutes. 107 CD10-PE-labelled 

TMCs were then resuspended in 80 µl of autoMACS and 20 µl of anti-PE beads were 

added. Following incubation at 4°C for 15 minutes, cells were washed with 10 volumes of 

autoMACS and centrifuged at 900 rpm at 4°C for 10 minutes. Finally, 108 CD10-PE-anti-PE-

beads-labelled TMCs were resuspended in 500 µl of autoMACS and transferred on pre-

washed filters (Partec UK Limited, Canterbury, UK) placed on LS columns. When the cells 

passed through; columns and filters were washed three times with 3 ml of autoMACS. 

Finally, columns were removed from the magnet and retained population of CD10+ 

positive GC B cells was eluted with 5ml of autoMACS.  

 

 



2.5.3. Purification of naïve and memory B cells 

Naïve B cells used for PCR to assess the levels of BLIMP1 isoforms were isolated from 

TMCs indirectly by depletion of all non-naïve cells using a cocktail of antibodies to CD10, 

CD2, CD16, CD27, CD36, CD43 and CD235a (Miltenyi Biotec Ltd, Surrey, UK) following the 

protocol of the manufacturer. Memory B cells were purified from TMCs first by negative 

depletion using antibodies against CD2, CD14, CD16, CD36, CD43 and CD235a, and then 

by positive selection with CD27 microbeads (Miltenyi Biotec Ltd, Surrey, UK) following 

manufacturer’s instructions. 

 

2.5.4. Transfection of GC B cells by nucleofection 

LMP1, BLIMP1α, C-MYC or control plasmid (pcDNA3.1-LMP1 or pSG5-LMP1; pcDNA3.1-

BLIMP1α; pcDNA3.1-MYC; pcDNA3.1 or pSG5) were transiently transfected into GC B cells 

using non-viral Nucleofector technology with the Nucleofector II device (amaxa GmbH, 

Cologne, Germany). For each reaction, 107 cells were pelleted by centrifugation in 

universal tubes at 636 rpm at room temperature for 10 minutes. Supernatant was 

completely removed and the cell pellets were resuspended in 100 μl of Nucleofector 

reaction mix consisting of Cell Line Nucleofector Solution B mixed with Supplement I 

(both components of Cell Line Nucleofector Kit B; amaxa GmbH, Cologne, Germany). 

7 μg of each plasmid were mixed with 3 μg of pMACS LNGFR. The pMACS LNGFR vector 

encodes the truncated human low-affinity nerve growth factor receptor surface molecule 

that served as a marker to track transfected cells. Both plasmids were combined with the 

cell suspensions and transferred to a 0.1cm cuvette (component of Cell Line Nucleofector 



Kit B; amaxa GmbH, Cologne, Germany). The cuvette was placed in to the Nucleofector II 

device and U-15 program was selected. Following the pulse, the entire contents of the 

cuvette were immediately transferred into 24-well plates (Nalge Europe Ltd., Hereford, 

UK) using plastic pipettes and a small amount of pre-warmed RPMI. The 24-well plates 

were prepared in advance and filled with 2 ml of RPMI containing supplemented with 

20% of foetal calf serum.  Cells were then incubated at 37°C in 5% CO2 for 16 hours 

(overnight) prior to MoFlo enrichment of transfected cells.   

 

2.5.5. MoFlo enrichment of transfected GC B cells  

Following incubation, transfected GC B cells were pooled together, washed twice with 

cold autoMACS and pelleted at 636 rpm at 4°C for 10 minutes. The cell pellets were 

resuspended in 250 µl of autoMACS and 25 µl anti-LNGFR-Allophycocyanin (APC) antibody 

(Miltenyi Biotec Ltd, Surrey, UK) was added. Following 10-minute incubation at 4°C in the 

dark, cells were washed with 6 ml of autoMACS and centrifuged again at 636 rpm at 4°C 

for 10 minutes. Cells were passed through pre-washed filters into sorting tubes and kept 

on ice in the dark. The APC-labelled cells were collected by FACS on a MoFlo sorter (Dako 

Cytomation, Colorado, USA) using propidium iodide (Sigma-Aldrich Ltd., Gillingham, UK) 

to separate living cells. In some cases, CD10+ cells were further separated into CD77+ and 

CD77- subpopulations using anti-CD77-fluorescein isothiocyanate (FITC) antibody (BD 

Biosciences PharMingen). The transfection efficiency of the living cells was generally 

between 10%-20% and purity of the collected cells was >95%. Western blotting or real-

time PCR were performed to validate successful gene expression in transfected cells. 



2.5.6. Immunofluorescence analysis  

To detect cell-surface marker expression, 105cells/ml were twice washed with autoMACS, 

pelleted and resuspended in 50 µl of autoMACS and 5 µl of antibody of interest. Following 

10-minute incubation on ice and two more washes, cells were resuspended in 200 µl of 

autoMACS and kept on ice in the dark. Propidium iodide was added to all stained samples 

immediately before measurement. Cells were analysed by flow cytometry using a FACS-

Calibur (Becton Dickinson, Franklin Lakes, NJ). The CellQuest software was used for 

acquisition and Flow Jo software was used for analysis of the samples. Only the viable 

cells were considered for analysis based on their light scatter (FSC/SSC) characteristics. 

Data are presented within individual result chapters as the mean of linear fluorescent 

intensity after subtraction of background staining with isotype-matched control. 

 

2.5.7. Gene expression array of GC B cells 

2.5.7.1. RNA amplification  

RNA was extracted using RNeasy Mini Kit (QIAGEN Ltd., Crawley, UK) following 

manufacturer’s instructions (see section 2.3.1. for details). RNase-Free DNase Set 

(QIAGEN Ltd., Crawley, UK) was included to remove any genomic DNA which could 

interfere with amplification. Two carriers, N-Carrier and P-Carrier, were also combined 

with the RNA isolation and served as precipitation carriers to protect against RNA 

degradation and loss due to unspecific surface adsorption. Extracted RNA was 

precipitated with 0.1 volume of 3 M sodium acetate and 2.5 volumes of absolute ethanol. 



Following 10-minute incubation on ice, RNA was recovered by spinning at 14000 g at 4°C 

for 20 minutes. Supernatant was then removed, RNA pellet was washed with 80% 

ethanol, centrifuged again, air dried for 5 minutes and dissolved in DNase/RNase-free 

water. The quality of the isolated RNA was determined with a NanoDrop ND 1000 

(NanoDrop Technologies, Wilmington, DE, USA) and a Bioanalyzer 2100 (Agilent, 

Waldbronn, Germany). Only those samples with a 260/280 nm ratio between 1.8-2.1 and 

a 28S/18S ratio within 1.5-2.0 were processed further. The RNA amplification was carried 

out with ExpressArt® mRNA Amplification Kits Nano version & Nano plus Version (AmpTec 

GmbH, Germany). 

 

First Round Amplification  

First strand cDNA Synthesis  

First strand cDNA was synthesised by combining 5 μl of RNA (input of total RNA: 1-700ng) 

with First strand cDNA Mix 1 (2.5 μl of DEPC-H2O, 1 μl dNTP-Mix and 1.5 μl Primer A). 

Samples were incubated for 4 minutes at 65°C in a thermocycler and cooled to 37°C. The 

First Strand cDNA Synthesis Mix 2 (4 μl of DEPC- H2O, 4 μl 5x RT Buffer, 1 μl RNase 

Inhibitor and 1 μl RT Enzyme) was added to each sample and mixed well by gently flicking 

the tubes. Samples were then incubated in a thermocycler, using the following incubation 

conditions: 37°C for 5 minutes, 42°C for 50 minutes, 45°C for 10 minutes, 50°C for 10 

minutes and 70°C for 15 minutes; and immediately placed on ice.  

 



RNA removal  

RNA was removed by adding 5 μl of RNase Mix 3 (3 μl of DEPC-H2O, 1 μl of 5x Extender 

Buffer and 1 μl of RNase) and incubating at 37°C for 20 minutes. 

Second strand cDNA Synthesis  

Second strand cDNA was synthesised by combining the Second strand cDNA Mix 4 (14 μl 

of DEPC-H2O, 4 μl of 5x Extender Buffer, 1 μl of Primer B and 1 μl of dNTP-Mix) with the 

First Strand cDNA Reaction and placing in a thermocycler for 1 minute at 96°C and then 1 

minute at 37°C. 5 μl of Extender Enzyme A Mix 5 (3 μl of DEPC-H2O, 1 μl of 5x Extender 

Buffer and 1 μl of Extender Enzyme A) was added to the reaction, followed by 30 minutes 

at 37°C, adding Primer Erase Mix 6 (3 μl of DEPC-H2O, 10 μl of 5x Extender Buffer and 1 μl 

of Primer Erase) and placing samples at 37°C for 5 minutes and 96°C for 6 minutes. All 

samples were then immediately placed on ice, 5 μl of Primer C was added and samples 

were incubated again for 1 minute at 96°C and then 1 minute at 37 °C. Finally, the 

Extender Enzyme B Mix 7 (2 μl of DEPC-H2O, 2 μl of 5x Extender Buffer and 1 μl of 

Extender Enzyme B) was added and samples were incubated for 30 minutes at 37°C, 15 

minutes at 65°C and placed on ice.  

cDNA purification and ethanol precipitation of the purified cDNA  

cDNA purification was achieved by adding 350 μl of Binding buffer and 3 μl of Carrier DNA 

to the Second Strand cDNA Reaction. The samples were transferred into cDNA 

Purification Spin Columns in Collection Tubes and centrifuged for 1 min at maximum 

speed and washed twice with 500 μl and with 200 μl of Washing Buffer. Samples were 



eluted into fresh 1.5 ml reaction tubes twice with 50 μl of Elution Buffer. Purified cDNA 

was precipitated with Precipitation Mix 9 (2 μl of Precipitation Carrier and 10 μl of Sodium 

Acetate) and 220 μl of absolute ethanol and centrifuged at maximum speed for 10 

minutes. The pink pellet was washed with 200 μl of 70% ethanol, centrifuged again and 

air dried for about 5 minutes.  

Amplification by in vitro Transcription 

cDNA for each sample was dissolved in 8 μl of Solubilisation Buffer and amplified by in 

vitro Transcription. In 0.5ml RNase-free PCR tubes, in vitro-Transcription Mix 10 (8 μl of 

NTP-Mix, 2 μl of 10x Buffer and 2 μl of RNA Polymerase) was combined with 8 μl cDNA 

and incubated overnight at 37°C. 1 μl of DNase I was then added to each reaction and 

incubated further at 37°C for 15 minutes. 

RNA-Purification using RNeasy Mini Kit 

Amplified RNA was purified using the RNeasy Mini Kit (QIAGEN Ltd., Crawley, UK) as 

follows: 80 μl of RNase-free water, 350 μl of RLT (Lysis Buffer) were added to each in 

vitro-Transcription Reaction and mixed thoroughly with 250 μl of absolute ethanol. The 

mixture was transferred onto spin columns, centrifuged for 15 seconds at 10000 rpm, 

washed twice with 500 μl of RPE and eluted into new 1.5 ml RNase-free reaction tubes 

twice with 50 μl of RNase-free water.  

 

 



Ethanol precipitation of purified antisense RNA 

The eluted purified antisense RNA was precipitated with 10 μl of sodium acetate, 2 μl of 

Precipitation Carrier and 220 μl of absolute ethanol. Following 2-minute incubation at 

room temperature, RNA was recovered by centrifugation at maximum speed for 10 

minutes. After supernatant was discarded, pink-coloured pellet was washed with 70% 

ethanol, centrifuged again, air dried for 5 minutes and dissolved in 6 μl of DEPC-water. 

Quality and quantification of purified antisense RNA were assessed using 

spectrophotometric analysis of samples. 

 

Second Round Amplification  

During this step, amplified RNA was again reverse transcribed into cDNA to produce high 

yields of antisense RNA via a second round of amplification. 

First strand cDNA Synthesis  

To synthesise the First strand cDNA, 500-800 ng of RNA for each sample was combined 

with the First Strand Mix 12 (1 μl of NTP-Mix, 2 μl of Primer D and 2 μl of Reaction 

Additive) and incubated for 4 minutes at 65°C in a thermocycler. First Strand cDNA 

Synthesis Mix 2 (4 μl of DEPC-H2O, 4 μl of 5x RT Buffer, 1 μl of RNase Inhibitor and 1 μl of 

RT Enzyme) was added following incubation at 45°C for 30 min, 70°C for 15 minutes and 

placing the samples immediately on ice.  

 



RNA removal  

RNA removal was achieved by adding RNase Mix 3 (3 μl of DEPC-H2O, 1 μl of 5x RT Buffer 

and 1 μl of RNase) to the First Strand cDNA Reaction followed by incubation at 37°C for 20 

minutes.   

Second strand cDNA Synthesis  

Second strand cDNA was synthesised by adding the Second Strand cDNA Synthesis Mix 13 

(10 μl of DEPC-H2O, 5 μl of Primer C, 4 μl of 5x Extender Buffer and 1 μl of dNTP-Mix) to 

the First Strand cDNA Reaction and incubating as follows: 1 minute at 96°C and 1 minute 

at 37°C. Finally, the Extender Enzyme B Mix 14 (3 μl of DEPC-H2O, 1 μl of 5x RT Buffer and 

1 μl of Extender Enzyme B) was added to each sample, mixed well, incubated at 37°C for 

30 minutes, 65°C for 15 minutes and placed on ice. 

cDNA purification and ethanol precipitation of the purified cDNA 

cDNA purification was achieved by adding 275 μl of Binding buffer and 3 μl of Carrier DNA 

to the Second Strand cDNA Reaction and continued by RNA-Purification using RNeasy 

Mini Kit and ethanol precipitation of purified antisense RNA as described on page 100-

101. cDNA for each sample was dissolved in 8 μl of Solubilisation Buffer. 

 

Third Round Amplification  

If required, the third round amplification was performed by repeating the same steps as 

described for the second round of amplification.  



2.5.7.2. Synthesis of cRNA-in vitro transcription (IVT) 

The purified double-stranded cDNA was in vitro-transcribed in the presence of biotin-

labelled nucleotides using an IVT labelling kit (Affymetrix, Santa Clara, CA, USA). The cDNA 

for each sample was mixed with IVT master mix (12 μl of DEPC-H2O, 4 μl of (10x) IVT 

labelling Buffer, 12 μl of IVT labelling NTP mix, 4 μl of IVT labelling enzyme mix) and 

incubated overnight at 37°C. The biotinylated cRNA was purified using a Sample Cleanup 

Module (Affymetrix, Santa Clara, CA, USA). The IVT reaction for each sample was mixed 

with 60 μl of RNase-free water, 350 μl of cRNA binding buffer, 250 μl of absolute ethanol 

and each time mixed thoroughly. The mixture was transferred to IVT cRNA cleanup 

columns and centrifuged at full speed for 15 seconds. The columns were then washed 

with 500 μl of cRNA wash buffer, 500 μl of 80% ethanol and eluted twice with 10 μl of 

RNase-free water. The quality and quantity of eluted cRNA was determined using 

NanoDrop ND 1000 (NanoDrop Technologies, Wilmington, DE, USA) and a Bioanalyzer 

2100 (Agilent, Waldbronn, Germany). 

 

2.5.7.3. cRNA fragmentation 

25 μg of biotin-labelled cRNA for each sample was mixed with 10 μl of (5x) Fragmentation 

buffer (Santa Clara, CA, USA) and topped up to 50 μl with DEPC-treated water. Samples 

were then subjected to random fragmentation in a PCR block at 94°C for 35 minutes. 

Finally, 1-2 μg of fragmented cRNA was run on 1.2% agarose gel and fragments were 

found to be approximately 35-200 bp.  

 



2.5.7.4. Hybridisation and analysis of hybridisation signal 

Biotinylated cRNA was hybridized to Affymetrix (Santa Clara, CA, USA) HG-U133 Plus2 

microarrays. Scanned images of microarray chips were analyzed using Affymetrix 

GeneChip Operating Software (GCOS). Gene expression signal was calculated using the 

MicroArray Suite 5 (MAS5) algorithm of GCOS with the default settings except the target 

signal was set to 100. For two separate patients, the gene expression profiles of LMP1-

transfected or BLIMP1α-transfected cells were compared with that of the control 

pcDNA3.1-transfected GC B cells. Differentially expressed genes were identified using the 

GCOS pairwise analysis with the default settings.  

 

2.5.8. Identification of differential gene expression in B cell subsets using a published 

data set 

Differentially expressed genes among centrocytes, plasma cells and memory cells were 

identified using statistical analysis of microarrays (SAM) (Tusher et al., 2001) analysis with 

a fold-change threshold of 1.5 and a q-value threshold of 5%, following robust multi-array 

average (RMA, Irizarry et al., 2003) reprocessing of the raw data of Brune et al. (2008) 

under GEO series no GSE12453.  

 

 

 

 



2.6. Cell line studies 

2.6.1. Transfection of cell lines by electroporation 

Electroporation 

Cell lines were transfected using a Bio-Rad Gene Pulser® II electroporator (Bio-Rad 

Laboratories Ltd., Hemel Hempstead, UK). Cells were seeded at a concentration of 5 x 

105/ml 24 hours prior to transfection and then pelleted by centrifugation at 900 rpm for 

10 minutes. 107 cells were used for each transfection, although the conditions of each 

experiment differed for individual cell lines and are summarized in Appendix 7. Cells were 

twice washed with washing buffer or media (specified in Appendix 7), pelleted by 

centrifugation and resuspended in transfection media containing individual plasmids. In 

some experiments, pMACS CD4.1 vector (Miltenyi Biotec Ltd., Surrey, UK) was co-

transfected with a plasmid of interest at ratio 9:1. Electroporation of cells was then 

carried out in cuvettes with a 4-mm gap between electrodes (GENEFLOW INC., 

Alexandria, USA) at a voltage and high capacity dependent upon the cell line. Following 

the pulse, the content of the cuvette was immediately transferred into 8 ml of pre-

warmed cultivation media and placed at 37°C in 5% CO2 for the required length of time. 

Details specific to individual transfection experiments are specified in result chapters. 

Purification of viable lymphocytes 

In the case that transfection of individual cell lines led to the death of substantial 

percentage of electroporated cells, viable cells were isolated using Lymphoprep® 

centrifugation. Lymphoprep® solution (Axis-Shield Diagnostics Ltd. UK, Dundee, UK) was 



pipetted into universal tubes and carefully overlaid with media containing transfected 

cells. Tubes were then centrifuged at 2200 rpm at room temperature for 30 minutes. The 

layer of viable cells which formed between the lower layer (media) and upper layer 

(lymphoprep) was transferred to a fresh tube and washed with PBS. 

Magnetic enrichment of transfected cells 

In the case that transfection with a plasmid of interest was carried out in the presence of 

pMACS CD4.1 vector, expression of pMACS CD4.1 was used to positively enrich 

transfected cells. Media with transfected cells were diluted in three volumes of ice-cold 

autoMACS™ Rinsing Solution (autoMACS; Miltenyi Biotec Ltd, Surrey, UK) supplemented 

with 1% penicillin-streptomycin solution (Sigma-Aldrich Company Ltd., Gillingham, UK), 

0.5% ciprofloxacin (Bayer, Newbury, UK) and 5% MACS® BSA Stock Solution (Miltenyi 

Biotec Ltd, Surrey, UK) and centrifuged at 900 rpm and 4°C for 10 minutes. Following two 

more washes, 107 cells were resuspended in 80 µl of cold autoMACS and 20 µl of CD4 

multisort beads (Miltenyi Biotec Ltd, Surrey, UK) and incubated at 4°C for 15 minutes. 

Following the incubation, cells were washed with ten volumes of cold autoMACS and 

pelleted by centrifugation at 900 rpm at 4°C for 10 minutes. The cell pellets were 

resuspended in 500 µl of cold autoMACS and transferred onto filters (Partec UK Limited, 

Canterbury, UK) placed on Mini-MACS MS columns fitted into a magnet (both Miltenyi 

Biotec Ltd, Surrey, UK). When the cells passed through, columns and filters were washed 

three times with 500 µl of cold autoMACS. Columns were removed and retained cells 

eluted with 500 µl of cold autoMACS. Transfection efficiency of electroporated cells was 

determined by Immunofluorescence using anti-CD4 antibody; Immunotech, Marseille, 



France (as described in section 2.5.6.), real-time PCR, Western blotting or 

immunohistochemical analysis (see sections 2.1., 2.3. and 2.4.) and is specified in the 

individual result chapters. 

 

2.6.2. Luciferase assays 

To measure activity of BLIMP1α and BLIMP1β promoters, the Dual-Luciferase® Reporter 

(DLR™) Assay System (Promega UK Ltd, Hampshire, UK) was used. In this assay, the 

activity of firefly (Photinus pyralis) and Renilla (Renilla reniformis) luciferases were 

measured sequentially from the same samples. The firefly luciferase signal was quantified 

first by adding Luciferase Assay Reagent II (LAR II). After the reaction was quenched, the 

Renilla luciferase signal reaction was simultaneously initiated by adding Stop & Glo® 

Reagent to the same tube. The luminescence produced by Renilla luciferase was then 

used as an internal control to which expression of the experimental firefly luciferase 

reporter gene was normalized. 

Briefly, all cells were electroporated as described on page106-107. In each reaction, 1 x 

107 cells were co-transfected with 100 ng of pcDNA3.1 or pcDNA3.1-LMP1 vector 

together with 10 µg of either BLIMP1α or BLIMP1β promoter construct. All transfections 

were carried out in triplicate and in the presence of 0.5 µg pRL-null Vector. Cells were 

then incubated at 37°C in 5% CO2 for 24 or 48 hours. Following incubation, cells were 

pelleted by centrifugation at 4°C and 1200 rpm for 10 minutes. The cell pellets were 

resuspended in 100 µl of 1x passive lysis buffer (part of the DLR™ Assay System), vortexed 



and placed at -80°C for at least 24 hours. When required, cell lysates were vortexed and 

centrifuged again to remove cell debris. 10 µl of supernatant for each sample was 

transferred into 96 well plates and luciferase assay performed using Orion L Microplate 

Luminometer (Geneflow Ltd, Staffordshire, UK) according to manufacturer’s instructions. 

All data were presented as relative luciferase units (RLU), which were calculated by 

dividing the firefly luciferase activity by the renilla luciferase activity. 

 

2.6.3. Chromatin Immunoprecipitation  

Preparation of cross-linked chromatin 

To determine if BLIMP1 protein directly binds into BZLF1 promoter of EBV, Chromatin 

Immunoprecipitation (ChIP) was performed. B95.8 and SL3-LCL cells were electroporated 

with 20 µg of pcDNA3.1 or pcDNA3.1-BLIMP1α plasmids (see Appendix 7) and cultivated 

at 37°C in 5% CO2 for 48 hours prior to ChIP (see Appendix 7). Untransfected B95.8 cells 

were split 24 hours prior to ChIP.  

4 x 106 cells from each sample were harvested and washed twice in ice cold PBS/5 mM 

sodium butyrate. To reversibly cross-link, 54 µl of formaldehyde was added and cells were 

incubated for 15 minutes at room temperature on a rotator. The fixation reaction was 

then quenched with 228 µl of 1.25 M glycine for 8 minutes at room temperature. Cells 

were centrifuged at 470 g at 4°C for 10 minutes and washed twice with PBS/5 mM sodium 

butyrate. Cell pellets for each sample were lysed in 520 µl of lysis buffer (50 mM Tris-HCl, 



pH 8.1, 10 mM EDTA, 1% SDS, 5 mM sodium butyrate, and protease inhibitors) and 

incubated on ice for 1 hour. 

Fragmentation of the chromatin  

Cell lysates were sonicated in a water bath BioruptorTM sonicator (Diagenode, Liege, 

Belgium). The sheared chromatin was centrifuged at 10000 g at 4°C for 10 minutes to 

remove cell debris, measured using a NanoDrop ND 1000 (NanoDrop Technologies, 

Wilmington, DE, USA) and stored at -80°C.  

Checking for correct fragmentation  

2.5 µg of chromatin was topped up to 150 µl with lysis buffer and 2 µl of proteinase K 

(final concentration 50 µg/ml; Sigma-Aldrich Ltd., Gillingham, UK) was added. The mixture 

was incubated in a thermomixer at 68°C and 1300 rpm for 16 hours (overnight). DNA was 

extracted with ChIP DNA Clean & Concentrator™ kit (Cambridge Bio Science, Cambridge, 

UK) and 1 µg of extracted DNA run on 1.5% agarose gel to check shearing of the 

chromatin (as described on pages 84-85).  

Immunoprecipitation of resulting chromatin fragments 

Protein G Dynabeads® (Invitrogen Ltd., Paisley, UK) were resuspended and washed three 

times with RIPA buffer (10 mM Tris-HCl, pH 7.5, 1 mM EDTA, 0.5 mM EGTA, 1% Triton, 

0.1% SDS, 0.1% sodium deoxycholate and 150 mM NaCl). All beads were resuspended in 

RIPA buffer and divided into 100 µl aliquots. 2.4 µg of antibody was added to the beads 

and incubated on a rotator at 4°C for 16 hours (overnight). The antibodies used were: 



BLIMP1 R21 rabbit polyclonal antibody and anti-HA (Y-11) rabbit polyclonal antibody; 

normal rabbit IgG antibody and no antibody (water) were used alongside as negative 

controls (Appendix 6). Following incubation, beads with bound antibody were captured 

on a magnet, the supernatant removed and 10 µg of chromatin in 100 µl of RIPA buffer 

was added to the antibody bound beads. Immune complexes were incubated on a rotator 

at 4°C for 8 hours (during day). Following the incubation, beads were captured on a 

magnet, washed three times with RIPA buffer for 4 minutes and resuspended in TE buffer 

(pH 8.0).  

DNA elution, cross-link reversal, proteinase K digestion 

Immune complexes were eluted with 150 µl of elution buffer (20 mM Tris-HCl, pH 7.5, 5 

mM EDTA, 5 mM sodium butyrate, 50mM NaCl and 1% SDS). The cross-links were 

reversed by incubation on a thermo-mixer at 68°C and 1300 rpm for 16 hours (overnight) 

in the presence of and 2 µl of proteinase K (final concentration 50 µg/ml; Sigma-Aldrich 

Ltd., Gillingham, UK). Following the incubation, DNA was extracted with ChIP DNA Clean 

& Concentrator™ kit (Cambridge Bio Science, UK) and measured using a NanoDrop ND 

1000 (NanoDrop Technologies, Wilmington, DE, USA).   

Sybr green real-time PCR 

1 µl aliquots of purified DNA were analysed by sybr green real-time PCR using primers 

designed to amplify 3 different regions of the BZLF1 promoter. The real-time PCR assays 

were performed using an ABI Prism 7700 sequence detection system (Applied 

Biosystems, Warrington, UK). All reactions were set up in MicroAmp Fast optical 96-well 



reaction plates covered with MicroAmp Optical Adhesive Film. A final reaction volume of 

25 μl contained 12.5 µl of QuantiTect SYBR Green PCR master mix (Qiagen, Crawley, UK), 

5 µl of BZLF1 primers at concentration 10 pmol/µl (see Appendix 8 for details on primer 

sequences used in ChIP), 6.5 µl of PCR grade water and 1 µl of DNA. Thermal-cycling 

conditions were: initial 95°C incubation for 15 minutes and 50 rounds of amplification 

(denaturation for 15 seconds at 95°C, annealing for 30 seconds at 58°C and extension for 

1 minute at 72°C). All test samples were run in triplicate.  

 

2.6.4. DNA methylation analysis by pyrosequencing 

The methylation status of CpG islands in the BLIMP1β promoter region was analysed by 

pyrosequencing. DNA was extracted from a panel of HL cell lines and B95.8 cells and 

bisulfite converted. This treatment led to deamination of cytosines and their conversion 

to uracils, while 5-methylcytosines remained unchanged. After bisulfite treatment and 

PCR amplification, the proportion of methylated/unmethylated CpGs in the BLIMP1β 

promoter sequence was assessed using PyroMark ID sequencer (Biotage UK Ltd., 

Hertford, UK).  

Phenol extraction and ethanol precipitation of DNA 

2 x 106 cells per each cell line were harvested, washed in 1 ml of PBS and centrifuged at 

3000 rpm for 5 minutes. Cell pellets were resuspended in 400 µl of lysis buffer (40 µl of 

10x PCR buffer, 360 µl of PCR grade water and 2 µl of 1% Tween) and 13 µl of proteinase 

K (Sigma-Aldrich Ltd., Gillingham, UK) was added. Samples were incubated at 55°C on a 



heat block for 16 hours (overnight). 400 µl of phenol was added and samples vortexed 

until they had a milky appearance. Following centrifugation at 13000 rpm for 5 minutes, 

the upper phase was aspirated and transferred into a new eppendorf containing 400 µl of 

phenol and 400 µl of chloroform. Samples were vortexed and centrifuged again, upper 

phase aspirated, transferred into a new eppendorf containing 400 µl of chloroform only, 

vortexed and centrifuged. The upper phase was mixed with precipitation solution (1 ml of 

absolute ethanol, 40 µl of sodium acetate, pH 5.2 and 1 µl of glycogen) and stored at -

80°C. When required, samples were centrifuged at 13000 rpm at 0°C for 20 minutes. DNA 

pellets were washed with 800 µl of cold 70% ethanol, centrifuged at 13000 rpm at 4°C for 

20 minutes, washed with 400 µl of 70% ethanol at room temperature and centrifuged at 

13000 rpm and 4°C for 10 minutes. Eppendorfs with precipitated DNA were placed on a 

heat block at 37°C with lids open until the ethanol evaporated. DNA pellets were then 

reconstituted with PCR grade water and stored at -20°C. 

Bisulfite modification and PCR reaction 

Bisulphite conversion of DNA was performed using EZ DNA Methylation-GoldTM Kit 

(Cambridge Bio Science, UK). Briefly, 20 µl of DNA (corresponding to 1 µg of DNA) was 

mixed with 130 µl of CT Conversion Reagent and incubated in a thermal cycler at 98°C for 

10 minutes and then at 64°C for 2.5 hours. A water sample was also included as a 

negative control. All samples were loaded onto Zymo-SpinTM IC Columns containing 600 µl 

of M-binding buffer and centrifuged at full speed for 30 seconds. 100 µl of M-Wash buffer 

was added and columns were centrifuged again. 200 µl of M-Desulphonation Buffer was 

added to columns and allowed to stand for 15-20 minutes at room temperature. After the 



incubation, samples were washed twice with 200 µl of M-Wash buffer and eluted into 

fresh eppendorfs with 10 µl of M-Elution buffer. The eluted volume was topped up to 50 

µl with PCR grade water and subjected to PCR. PCR mix consisted of 25 µl of Thermostart 

Mastermix (Fisher Scientific UK Ltd., Loughborough, UK), 2 µl of non biotinylated and 1 µl 

of biotinylated primer both at concentration 10 pmol/µl (see Appendix 9 for details on 

primer sequences used in pyrosequencing analysis), 10 µl of bisulfite modified DNA and 

12 µl of PCR grade water. Cycling conditions were: 95°C for 15 minutes, followed by 70 

rounds of amplification (denaturation for 15 seconds at 95°C, annealing for 30 seconds at 

51°C and extension for 30 seconds at 72°C) and terminated at 72°C for 10 minutes. 

Following PCR, 5 µl of product per each cell line was run on a 2% agarose gel (see pages 

84-85 details) at 120 V for 1 hours resulting in one single band appearing.  

Pyrosequencing 

40 µl of PCR products were loaded onto a 96 well plate (Applied Biosystems, Warrington, 

UK). 40 µl of mastermix consisting of 3 µl of streptavidin beads and 37 µl of binding buffer 

was added into each well. The 96 well plate was incubated at 4°C for at least 1 hour 

followed by agitating at 1300 rpm for 5 minutes. A sequencing plate (Biotage UK Ltd., 

Hertford, UK) was loaded with sequencing mastermix (containing 1.5 µl of sequencing 

primer and 38.5 µl of annealing buffer) in the exactly same order as the 96 well plate. The 

following controls were also run on each plate: 1 µl of biotinylated primer, 1.5 µl of 

sequencing primer and a control with both 1 µl of biotinylated primer + 1.5 µl of 

sequencing primer. Samples were run on the PyroMark pyrosequencer (Biotage UK Ltd., 

Hertford, UK) according to the manufacturer’s instructions. 
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AN INVESTIGATION OF THE INFLUENCE OF EBV AND THE EBV-ENCODED LMP1 ON             

THE EXPRESSION OF BLIMP1α AND ITS DOWN-STREAM TARGETS 

3.1. Introduction 

In normal carriers, EBV persists in memory B cells (Babcock et al., 1998; Thorley-Lawson 

and Gross, 2004; Souza et al., 2007). However, the exact mechanism by which EBV gains 

access to the memory compartment is controversial, the most widely held model is that 

the virus drives newly infected B cells into a GC reaction, and then subsequently induces 

their differentiation into memory cells (Thorley-Lawson and Gross, 2004). EBV-infected B 

cells may also differentiate into plasma cells, an event associated with induction of the 

EBV lytic cycle (Anagnostopoulos et al., 1995; Crawford and Ando, 1986; Niedobitek et al., 

1997; Niedobitek et al., 2000; Laichalk and Thorley-Lawson, 2005).  

The importance of the GC reaction in the life cycle of EBV is supported by studies which 

show that tonsils from persistently infected individuals contain EBV-infected cells 

expressing the GC marker, CD10 (Babcock et al., 2000); in these cells virus gene 

expression is limited to a subset of latent genes including the latent membrane proteins, 

LMP1 and LMP2 (Thorley-Lawson and Gross, 2004; Roughan and Thorley-Lawson, 2009). 

LMP1 and LMP2 have been shown to possess, respectively, the CD40 and BCR signalling 

functions necessary for the survival of GC B cells. Indeed, studies in vitro and from 

transgenic mice suggest that LMP1 and LMP2 alone might be capable of driving the GC 

process in the absence of antigen (Gires et al., 1997; He et al., 2003; Panagopoulos et al., 

2004; Caldwell et al., 1998; Casola et al., 2004; Swanson-Mungerson et al., 2005).  



Work from our laboratory has shown that LMP1 expression in primary human GC B cells 

induces a global down-regulation of B cell-associated genes (Vockerodt et al., 2008). This 

observation is consistent with the ability of LMP1 to drive B cell differentiation towards 

the post-GC stages, which are characterized by the loss of B cell identity. However, it is 

not clear if LMP1 drives B cell differentiation in the direction of memory cells, plasma 

cells, or both.  

Plasma cell differentiation is regulated by a small number of essential transcription 

factors which include BLIMP1. The full-length BLIMP1α isoform orchestrates plasma cell 

differentiation by repressing genetic programs associated with the GC stages, while at the 

same time activating those programs associated with plasma cell functions (Shapiro-

Shelef et al., 2003; Calame et al., 2003). Forced expression of BLIMP1 alone is capable of 

driving mature B cells to differentiate into plasma cells (Turner et al., 1994). BLIMP1 is 

essential to extinguish many aspects of the mature B cell gene-expression program, 

including the silencing of C-MYC, PAX5 and BCL6, and for the exit from the cell cycle 

characteristic of terminal differentiation (Shaffer et al., 2002; Lin et al., 1997; Lin et al., 

2000; Lin et al., 2002; Sciammas et al., 2004). BLIMP1 also activates IRF4 which is required 

for the completion of plasma cell differentiation (Shaffer et al., 2002; Klein et al., 2006). 

Furthermore, BLIMP1 can apparently prime plasma cells for apoptosis by down-regulating 

the expression of anti-apoptotic genes (e.g. BCL2A1) (Shaffer et al., 2002). 

In this chapter, I have focused on the possibility that the EBV-encoded LMP1 might 

regulate BLIMP1α in GC B cells. There are several reasons to believe that LMP1 might 

influence BLIMP1α expression. First, LMP1 is a functional homologue of CD40 which is 



known to down-regulate BLIMP1 expression and to suppress plasma cell differentiation 

(Bishop and  Hostager, 2001; Lam and Sugden, 2003; Panagopoulos et al., 2004; Callard, 

et al., 1995; Randall et al., 1998; Satpathy et al., 2010). Second, LMP1 is known to 

suppress induction of EBV lytic cycle, an event which is associated with plasma cell 

differentiation (Adler et al., 2002; Prince et al., 2003). Third, LMP1 is expressed in several 

GC-derived EBV positive lymphomas including HL which has previously been shown to 

express only low levels of BLIMP1 (Pallesen et al., 1991; Murray et al., 1992; Buettner et 

al., 2005).  

 

 

 

 

 

 

 

 

 

 



3.2. Results 

3.2.1. Loss of BLIMP1α expression in EBV-transformed germinal centre B cells 

I first compared the expression of BLIMP1α in a panel of EBV-transformed LCLs derived 

from GC B cells, with that in purified, but un-infected, GC B cells. These LCLs were 

previously generated by Dr. Sarah Leonard from the GC B cells of three separate donors 

by infection with a recombinant wild-type EBV. Analysis of the Ig gene rearrangements in 

these LCLs six weeks post-infection confirmed their polyclonal nature. For one of these 

LCL (SL1-LCL) RNA from matched un-infected GC B cells was available. The other two GC B 

samples were isolated previously by other group members and are not matched to the 

LCLs.  

I used a commercially available qRT-PCR assay for the detection of BLIMP1α mRNA having 

first shown BLIMP1α expression in the positive control cell line, U266 and its low level 

expression in BL and HL cell lines (Figure 3.1A). I then showed that compared to GC B 

cells, BLIMP1α was decreased in all three GC-derived LCLs (Figure 3.1B).  

Immunohistochemistry was then performed to study protein expression in these cells. To 

do this, I used a monoclonal antibody which recognizes both BLIMP1α and BLIMP1β 

isoforms. Figure 3.1C shows that as expected this antibody stained a sub-population of 

the un-infected GC B cells (15-20%). In contrast, and in agreement with the qRT-PCR data, 

the GC-derived LCLs showed homogenously weaker BLIMP1α expression (Figure 3.1C).  



 

 



3.2.2. The EBV-encoded LMP1 suppresses BLIMP1α expression in germinal centre B 

cells. 

Having shown that EBV infection of GC B cells was followed by the down-regulation of 

BLIMP1α; I next investigated if LMP1 was responsible for this effect. I chose to study the 

influence of LMP1 on the expression of BLIMP1α in primary GC B cells. 

Tonsils from children were collected from Birmingham Children's Hospital, United 

Kingdom with informed consent and under appropriate ethical approval (ref No 

06/Q2702/50). Tonsils were transported on ice, minced and tonsillar mononuclear cells 

isolated by Ficoll-Isopaque centrifugation. I used MACS technology and anti-CD10-

microbeads to separate CD10+ GC B cells. It has previously been shown by Dr. Martina 

Vockerodt in our laboratory that this isolation procedure gives a purity >95% (Vockerodt 

et al., 2008). I confirmed that the isolated cells contained less than 2% of CD3+ cells 

(Figure 3.2A). I also showed that the isolated CD10+ cells contained both centroblasts 

(CD77+) and centrocytes (CD77-) and had a viability greater than 90% (Figure 3.2A).  

CD10+ cells were nucleofected with either pcDNA3.1 (control) or pcDNA3.1-LMP1 

together with LNGFR vector. Western blotting was later used to demonstrate the 

expression of LMP1 in CD10+ cells prior to the enrichment (Figure 3.2B). Following a 16-

hour incubation LNGFR-positive cells were sorted on the MoFlo sorter. The transfection 

efficiency of the viable cells (PI negative) was generally between 5%-20% and the purity of 

cells co-expressing CD10 and LNGFR was >95% (Figure 3.2C). The viability of LMP1-

expressing GC B cells was similar to that of empty vector transfected cells (Figure 3.3). 



RNA was extracted from at least 1x104 transfected and purified cells. In some cases, the 

isolated RNA was amplified using two rounds of amplification (as indicated in individual 

figures). Prior to amplification, the RNA quality was determined on an Agilent 2100 

Bioanalyzer (performed by Sim Sihota). Only RNA of sufficient quantity and with a RNA 

Integrity Number (RIN) value of 7.0 or above was amplified. 

 qRT-PCR analysis showed that in CD10+ cells from six separate donors the transfection of 

LMP1 was followed by the down-regulation of BLIMP1α mRNA expression (Figure 3.4). 

Given that in the GC BLIMP1α protein is predominantly expressed by centrocytes, I 

repeated this experiment, but this time the transfected CD10+ cells were separated on a 

MoFlo sorter into CD77+ (centroblasts) and CD77- (centrocytes) subpopulations. I 

observed that LMP1 down-regulated BLIMP1α in both sub-populations (Figure 3.5A).   

It is generally not possible in a single experiment to detect protein changes using 

immunoblotting, due to the low numbers of GC B cells obtained after transfection and 

enrichment. For these reasons, I investigated the expression of BLIMP1α protein in the 

B95.8 cell line which I had shown in preliminary experiments to be unusual in so far as it 

expresses both BLIMP1α and LMP1. I performed dual immunohistochemistry for BLIMP1α 

and LMP1 on cytospin preparations of these cells. This analysis revealed that the 

expression of BLIMP1α and LMP1 is mutually exclusive in B95.8 cells (Figure 3.5B).  

 



 



 



 

 

 

 

 

 

 



 

 

 

 

 



3.3.3. Differential regulation of BLIMP1α target genes by LMP1 in germinal centre B 

cells 

BLIMP1α is known to regulate plasma cell differentiation by modulating the transcription 

of key B cell transcription factors. Therefore, I investigated if the LMP1-mediated down-

regulation of BLIMP1α also influenced the expression of important BLIMP1α target genes 

in GC B cells. Four B cell-associated transcription factors, C-MYC, BCL6, PAX5 and IRF4 

were selected. BLIMP1α has been shown to down-regulate C-MYC, BCL6, PAX5 and to up-

regulate IRF4 in transformed B cells; the silencing of C-MYC, BCL6 and PAX5, and the up-

regulation of IRF4 are necessary for plasma cell differentiation (Lin et al., 1997; Shaffer et 

al., 2002; Lin et al., 2002; Sciammas et al., 2004). 

I used qRT-PCR to study the expression of these transcription factors following the 

transfection of GC B cells with either pcDNA3.1-BLIMP1α, pcDNA3.1-LMP1 or pcDNA3.1 

(control) vector.  

To express BLIMP1α in GC B cells, I used the same approach as described above for LMP1. 

I used qRT-PCR to confirm the expression of BLIMP1α and RT-PCR to show LMP1 

expression in transfected cells (Figure 3.6). I also showed that in some cases, the viability 

of BLIMP1α-transfected GC B cells was reduced as compared to control-transfected cells 

(Figure 3.6B). However, the analysis of the effects of BLIMP1α in GC B cells was restricted 

to viable transfected cells.  



I observed that both BLIMP1α and LMP1 down-regulated BCL6 and PAX5, and up-

regulated IRF4. However, whereas C-MYC was down-regulated by BLIMP1α, it was up-

regulated by LMP1 in GC B cells (Figure 3.7).  

 

3.3.4. Identification of genes differentially regulated by LMP1 and BLIMP1α in germinal 

centre B cells 

I next explored the influence of LMP1 and BLIMP1α on the global transcriptional 

programme of GC B cells using genome-wide expression profiling. CD10+ GC B cells 

isolated from two donors were transfected with either pcDNA3.1-LMP1, pcDNA3.1-

BLIMP1α or pcDNA3.1 (control) vector as described above. Isolated RNA was amplified 

using three rounds of amplification and hybridised to Affymetrix GeneChip Human 

Genome U133 Plus 2.0 arrays. Differentially expressed genes were identified using the 

GCOS pairwise analysis with the default settings using the criteria set out in Materials and 

Methods (page 105). The gene expression profiles of LMP1-transfected or BLIMP1α-

transfected cells were compared with that of the control vector-transfected GC B cells 

from both patients.  

Transfection of GC B cells with LMP1 was followed by the up-regulation of 365 genes and 

the down-regulation of 1094. Transfection of GC B cells with BLIMP1α was followed by 

the up-regulation of 321 genes and the down-regulation of 654.  

 



 



 

 

 

 

 

 



3.3.5. LMP1 partially disrupts the BLIMP1α transcriptional programme in germinal 

centre B cells.  

When the LMP1 and BLIMP1α transcriptional targets identified in GC B cells were 

compared, 230 genes were found to be concordantly regulated by LMP1 and BLIMP1α 

(Figure 3.8). However, 57 genes were found to be down-regulated by BLIMP1α and up-

regulated by LMP1, or vice versa (Figure 3.8 and Table 3.1).   

 

Table 3.1: LMP1 and BLIMP1α overlapping targets in GC B cells. 230 genes were found to 
be concordantly regulated by LMP1 and BLIMP1α. However, 57 genes were found to be 
down-regulated by BLIMP1α and up-regulated by LMP1, or vice versa. For a complete list 
of differentially expressed genes see Appendix 10, 11 and 12.  

 

qRT-PCR was used to confirm the transcriptional changes in selected genes (Figure 3.9). I 

observed that BCL2A1, CIITA, CCL22 and RFX5 were down-regulated by BLIMP1α, but up-

regulated by LMP1 in the same GC B cells. However, both LMP1 and BLIMP1α up-

regulated HSPA1A and down-regulated CD20.   

 



 

 

 

 

 

 

 



 

 

 



3.3.6. Validation of LMP1 and BLIMP1α target genes in germinal centre B cells  

I next compared the transcriptional targets of LMP1 and BLIMP1α identified in GC B cells 

with the transcriptional targets of LMP1 and BLIMP1α which have been previously 

reported in the literature.  

 

Comparison of LMP1 transcriptional targets  

Transcriptional targets of LMP1 in primary human GC B cells have been previously 

reported by Vockerodt et al. (2008). In this study, LMP1 was expressed in GC B cells 

isolated from three different donors, extracted RNA was amplified using two runs of 

amplification and hybridised on Affymetrix GeneChip Human Genome U133 Plus 2.0 

arrays. Comparison of LMP1 transcriptional targets identified in the present study with 

those identified by Vockerodt et al. (2008) revealed a remarkable overlap (Table 3.2). 

 

Table 3.2: Concordantly and discordantly regulated genes in LMP1 GC B cell arrays.  

 

 

 



Comparison of BLIMP1 transcriptional targets  

Two studies have indentified BLIMP1 target genes in B cells. In the first of these, 260 

genes were significantly changed following the transfection of transformed human B cell 

lines with BLIMP1. The transcriptional targets of BLIMP1 were identified using a 

lymphochip (Shaffer et al., 2002). In the second, 378 named genes were significantly 

changed following transfection of the mouse M12 cell line with BLIMP1 and following 

cytokine-induced differentiation of mouse BCL1 cells (Sciammas et al., 2004). The gene 

lists were abstracted from the supplemental data accompanying these published reports 

and re-annotated using the gene symbol provided on the NCBI database (performed by 

Prof. Ciaran Woodman). The BLIMP1 target genes identified in transformed B cell lines 

were compared with the BLIMP1α target genes identified in human GC B cells (Table 3.3). 

The overlap between these three arrays is extremely modest and may well reflect the fact 

that BLIMP1 has been transfected into very different cell backgrounds. 

 



 

Table 3.3: BLIMP1 down-stream targets in primary and transformed B cells. Comparison 
of the transcriptional changes induced by BLIMP1α in GC B cells with those induced by 
BLIMP1 in transformed human B cell lines (Shaffer et al., 2002) and in transformed mouse 
cell lines (Sciammas et al., 2004). 

 

3.3.7. Identification of genes differentially expressed among centrocytes, plasma and 

memory cells 

I next wished to re-interpret the BLIMP1α- and the LMP1-induced transcriptional changes 

in GC B cells in the context of the global transcriptional changes which occur during post-

GC B cell differentiation into plasma and memory cells. 

To do this, I took advantage of a previous study which compared gene expression in 

centrocytes, plasma cells and memory cells using the same array platform as I used above 

(Brune et al., 2008). This dataset is held on GEO database under GEO series no GSE12453. 

Re-analysis of the raw data of Brune et al. (2008) (performed by Dr. Wenbin Wei and Prof. 



Ciaran Woodman), identified 4,403 genes to be significantly changed in memory cells or 

plasma cells, or both, compared with centrocytes. 11 genes were excluded from further 

analyses because they were listed as both up-regulated and down-regulated either in the 

arrays comparing plasma cells with centrocytes, or in those comparing memory cells with 

centrocytes. 

The genes were disaggregated into groups based on the following criteria: 

Genes considered to be differentially expressed during plasma cell differentiation but not 

memory cell differentiation were: 

• significantly changed in plasma cells compared with centrocytes 

• not significantly changed in memory cells compared with centrocytes 

• significantly changed in plasma cells compared with memory cells 

Genes considered to be differentially expressed during memory cell differentiation but 

not plasma cell differentiation were: 

• significantly changed in memory cells compared with centrocytes 

• not significantly changed in plasma cells compared with centrocytes 

• significantly changed in memory cells compared with plasma cells 

Genes considered up-regulated or down-regulated significantly in both plasma cells and 

memory cells compared with centrocytes were considered components of both 

programmes irrespective of whether their expression varied significantly between plasma 



cells and memory cells. Table 3.4 reveals an unexpectedly large overlap between the 

plasma and memory cell differentiation programmes.  

 

Table 3.4: Number of genes differentially expressed during plasma and memory cell 
differentiation. Genes differentially expressed between centrocytes and plasma cells (PC) 
and between centrocytes and memory cells (MC) were identified using a GEO dataset 
describing gene expression profiles of B cell subsets (GEO series no GSE12453; Brune et 
al., 2008). 

 

Comparison of BLIMP1 transcriptional targets indentified in different cellular backgrounds 

Having defined the genes differentially expressed during plasma cell differentiation, I next 

compared BLIMP1α target genes identified in primary human GC B cells or transformed B 

cell lines (Table 3.3) with the genes found to be differentially expressed in plasma cells 

when compared with centrocytes (Table 3.4).  

Table 3.5 suggests that transfection with BLIMP1α alone is insufficient to reveal the full 

plasma cell differentiation programme in all three cell backgrounds. However, BLIMP1α 



transcriptional targets identified in GC B cells clearly recapitulate more of the plasma cell 

differentiation programme than do those experiments performed in transformed cell 

lines.  

 

Table 3.5: BLIMP1 down-stream targets in primary and transformed B cells. Comparison 
of the transcriptional changes induced by BLIMP1α in GC B cells, or in transformed B cell 
lines (Shaffer et al., 2002; Sciammas et al., 2004) with those genes differentially expressed 
when plasma cells were compared with centrocytes. 

 

3.3.8. BLIMP1α-induced transcriptional changes in germinal centre B cells recapitulated 

many of those observed during plasma cell, but not memory cell differentiation. 

To measure the extent to which the plasma cell and memory cell differentiation 

programme is recapitulated following the expression BLIMP1α in GC B cells, 

transcriptional targets of BLIMP1α were compared to the genes identified in the study of 

Brune et al. (2008) and disaggregated into groups as shown in Table 3.4.  

Figure 3.10 demonstrates that 30% of the genes down-regulated in plasma cells 

compared with centrocytes are also down-regulated following transfection of GC B cells 

with BLIMP1α. In keeping with the role of BLIMP1α as a transcriptional repressor and 



with previous reports, this overlap was mainly restricted to genes down-regulated during 

plasma cell differentiation. No gene up-regulated by BLIMP1α in GC B cells was down-

regulated in plasma cells compared with centrocytes. A small proportion of those genes 

up-regulated in plasma cells compared with centrocytes are also up-regulated by 

BLIMP1α in GC B cells.  

In contrast, only a small number of genes which are differentially expressed in memory 

cells but not in plasma cells compared with centrocytes were also found to be de-

regulated following transfection of GC B cells with BLIMP1α.  

These observations demonstrate the ability of BLIMP1α to induce transcriptional changes 

associated with plasma cell differentiation in GC B cells and confirm the validity of this 

comparative approach. 

 

3.3.9. LMP1-induced transcriptional changes in GC B cells recapitulated many of those 

observed during plasma cell and memory cell differentiation. 

The overlap between LMP1-induced transcriptional changes in GC B cells and the plasma 

and memory cell transcriptional programmes was also considered. Given the substantial 

overlap between LMP1 down-stream targets identified in the recent study and in the 

study by Vockerodt et al. (2008) (Table 3.2), it appeared reasonable to include LMP1 

down-stream targets identified in both studies in next analyses, to allow use of all of the 

available evidence. 



Figure 3.11 shows how often LMP1-induced changes in GC B cells overlap distinct and 

shared components of the plasma and memory cell transcriptional programmes. LMP1 

concordantly and discordantly de-regulates in GC B cells, a substantial proportion of those 

genes which are down-regulated in plasma cell compared with centrocytes. There is also 

an overlap albeit less substantial between those genes up-regulated by LMP1 in GC B cells 

and those up-regulated in plasma cells compared with centrocytes. However, LMP1 also 

down-regulates genes which are up-regulated during plasma cell differentiation. 

However, unlike BLIMP1α, LMP1-induced transcriptional changes also substantially 

overlapped with those gene expression changes observed when memory B cells were 

compared with centrocytes. In conclusion, LMP1 and BLIMP1α regulate subset of genes 

associated with plasma cell differentiation, but that LMP1 also induces transcriptional 

changes in GC B cells that are characteristic of memory B cells. 

 



 



 

 



3.3. Discussion 

In this study I have shown that BLIMP1α, a key regulator of plasma cell differentiation, is 

down-regulated in primary GC B cells by the EBV oncogene, LMP1. In this respect, LMP1 

would appear to mimic closely the effects of CD40, which can direct the differentiation of 

GC B cells towards memory B cells while at the same time suppressing plasma cell 

differentiation, an effect associated with the down-regulation of BLIMP1 (Arpin et al., 

1995; Randall et al., 1998; Knödel et al., 2001). CD40 also contributes to the NF-κB/IRF4-

mediated down-regulation of BCL6, which is necessary to terminate the GC 

transcriptional programme (Saito et al., 2007). However, it should be noted that the LMP1 

signal is constitutive, whereas that induced by CD40 is regulated by the availability of 

ligand. Furthermore, although CD40 is expressed in GC B cells, its activation occurs only in 

a subset of centrocytes at the final stages of the GC reaction (Basso et al., 2004). It 

remains to be established how the nature and timing of these signals influence the 

eventual outcome of post-GC B cell differentiation.  

When interpreting the results of the LMP1 transfection experiments it is important to 

remember that in unsorted GC B cells the proportion of BLIMP1α-positive cells is only 

around 15-20% (own immunohistochemistry data and Angelin-Duclos et al., 2000; 

Högerkorp and Borrebaeck, 2006). Therefore, one possible explanation of these data is 

that LMP1 preferentially induces the death of BLIMP1α-expressing GC B cells. Were this is 

the case then I might have expected LMP1 to reduce the viability of GC B cells 

accordingly. However, I consistently observed no change in the viability of LMP1-

expressing GC B cells compared to empty vector transfected cells.  



I also observed that BLIMP1α was down-regulated following the infection of GC B cells 

with EBV suggesting that LMP1 might at least initiate the silencing of BLIMP1α in EBV-

infected B cells. However, an alternative interpretation is that during the establishment of 

the LCL there is selective immortalisation of BLIMP1α-negative GC B cells. This could 

result from 1) viral replication in BLIMP1α-positive cells followed by cell death. 2) 

differentiation of BLIMP1α-positive cells and their gradual loss from the culture. 3) the 

EBV induced de-differentiation of BLIMP1α-positive cells, a possibility supported by a 

study which shows that infection of BLIMP1α-positive multiple myeloma cells with EBV 

leads to the down-regulation of BLIMP1 and to a partial reprogramming of these cells to a 

mature B cell phenotype (Anastasiadou et al., 2009).  

Consistent with a role for LMP1 in hijacking the B cell transcriptional programme I found a 

striking overlap between the LMP1 and BLIMP1α transcriptional programmes in GC B 

cells. Although I have not investigated this further, the commonality between the 

transcriptional programmes of BLIMP1α and LMP1 is probably best explained by their 

concordant regulation of transcription factors including BCL6, IRF4 and PAX5 all of which 

are important in regulating post-GC B cell differentiation (Shaffer et al., 2002; Lin et al., 

1997; Lin et al., 2000; Lin et al., 2002; Reljic et al., 2000; Klein et al., 2006; Panagopoulos 

et al., 2004; Cahir-McFarland et al., 2004). However, I observed that the down-regulation 

of PAX5 and BCL6 that followed the ectopic expression of both LMP1 and BLIMP1α in GC 

B cells, although reproducible, was relatively modest when compared to the effects on C-

MYC. These observations suggest that BLIMP1α and LMP1 are alone insufficient to 

mediate the complete repression of PAX5 and BCL6 in GC B cells. This is consistent with 

previous studies which show that the repression of PAX5 that occurs during plasma cell 



differentiation is dependent not only on BLIMP1α but also on the presence of other 

signals which suppress PAX5 independently of BLIMP1α (Angelin-Duclos et al., 2000). In 

particular, it has been shown that the repression of PAX5 and BCL6 that occurs early after 

the initiation of plasma cell differentiation in pre-plasmablasts does not require BLIMP1α 

(Angelin-Duclos et al., 2000; Kallies et al., 2007). Furthermore, in other experiments I 

observed that LMP1 expression in GC B cells up-regulated ID2 (data not shown), which 

acts to suppress PAX5 function (Renné et al., 2006; Vockerodt et al., 2008). Therefore, 

LMP1 apparently acts to suppress PAX5 by two distinct mechanisms.  

The microarray analysis also revealed other genes that were repressed by BLIMP1α, but 

induced by LMP1, including several genes that are known to be down-regulated during 

plasma cell differentiation (e.g. BCL2A1, CIITA; Piskurich et al., 2000; Martins and Calame, 

2008) as well as C-MYC, the suppression of which has been shown to be essential for 

plasma cell differentiation (Lin et al., 2000). These findings suggest that LMP1 can 

partially disrupt the BLIMP1α transcriptional programme in GC B cells and in doing so 

prevent plasma cell differentiation.  

Of the four transcription factors I originally showed to be regulated by both LMP1 and 

BLIMP1α by qRT-PCR analysis (figure 3.7), only BCL6 was shown to be a target of both 

LMP1 and BLIMP1α on array analysis, suggesting that the array is less sensitive than qRT-

PCR. Furthermore, it is also possible that heterogeneity between GC B cells isolated from 

different donors could have contributed to the failure to detect transcriptional targets in 

some experiments (Angelin-Duclos et al., 2000).  



Although I found a substantial overlap between the plasma and memory cell 

differentiation programmes, transcriptional changes specific to each of these 

programmes could be identified. I found that a third of those genes down-regulated in 

plasma cells compared with centrocytes were also down-regulated following the 

transfection of GC B cells with BLIMP1α. However, transfection with BLIMP1α alone was 

not sufficient to induce the full plasma cell differentiation programme. The limitation of 

this approach is that I was comparing changes which occur following the expression of 

BLIMP1α in GC cells on average 16 hours after transfection. Whereas, the differentiation 

of GC B cells into terminally differentiated memory or plasma cells occurs after several 

days. Therefore, some gene expression changes between centrocytes and plasma or 

memory cells might have not been observed in my experiments. 

I also found that the LMP1 transcriptional programme in GC B cells substantially 

overlapped with that of the plasma and memory cell differentiation programmes. LMP1 

concordantly and discordantly regulated many genes which are modulated during plasma 

and memory cell differentiation.  

These results suggest that LMP1 expression in GC B cells might initiate post-GC 

differentiation. However, it is not clear if LMP1 can complete this process. Failure to do so 

would be compatible with the notion that LMP1-mediated arrest of B cell differentiation 

might allow time for the accumulation of pathogenic mutations (Thorley-Lawson, 2001).  

The observation that LMP1 can promote post-GC differentiation might help explain the 

contribution of this viral oncogene to the pathogenesis of HL, a GC B cell-derived 



malignancy which is characterised by an abortive plasma cell differentiation programme 

and a loss of B cell identity (Schwering et al., 2003; Buettner et al., 2005).  

Inactivation of the PRDM1 gene encoding BLIMP1 has been detected in DLBCL of the 

activated B cell type (Tam et al., 2006; Pasqualucci et al., 2006). Translocations de-

regulating the BCL6 gene have not been found in DLBCL which carry BLIMP1 mutations, 

but are restricted to un-mutated cases, suggesting that BCL6 de-regulation and BLIMP1 

inactivation might represent alternative pathogenic mechanisms, both leading to a block 

in post-GC differentiation and, ultimately, to lymphomagenesis (Tam et al., 2006). Our 

observations suggest that LMP1 expression in progenitor GC B cells might provide an 

alternative mechanism to block terminal B differentiation in EBV-positive lymphomas.  

Finally, preliminary data generated recently in our laboratory suggest that BLIMP1α can 

also be down-regulated by another EBV-encoded latent membrane protein, LMP2A, 

which is also expressed in EBV-associated HL (Vockerodt et al., unpublished). I showed in 

another experiment which is not presented in this thesis that in contrast to the LMPs the 

EBV maintenance protein EBNA1 up-regulates BLIMP1α in GC B cells. It remains to be 

established if switching between different forms of EBV latency can determine the fate of 

an EBV-infected GC B cells. In the absence of the LMPs (latency I), EBV infected GC B cells 

may be preferentially driven to differentiate into plasma cells. However, when the LMPs 

are expressed (e.g. in latency II), the infected cells may be prevented from undergoing 

plasma cell differentiation, but instead differentiate into memory B cells. 
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AN INVESTIGATION OF THE INFLUENCE OF BLIMP1α ON THE EBV LYTIC CYCLE IN B CELLS 

4.1. Introduction 

As well as maintaining latency in B lymphocytes, EBV can also induce its replicative cycle 

in these cells. Thus, at any one time a small proportion of cells in an LCL may 

spontaneously enter the lytic cycle, or be induced to do so by treatment with chemical 

agents such as phorbol esters, or by ligation of surface Ig (Kieff and Rickinson, 2001). The 

replicative cycle of EBV is induced by BZLF1, the immediate-early protein critical for 

triggering the switch from latency to lytic cycle in EBV infected B cells. BZLF1 is alone 

sufficient to activate downstream lytic genes and complete viral replication in a 

permissive cell type (Countryman et al., 1985; Takada et al., 1986).  

A number of studies suggest that EBV replicates in terminally differentiated plasma cells 

(Anagnostopoulos et al., 1995; Crawford and Ando, 1986; Niedobitek et al., 1997; 

Niedobitek et al., 2000; Laichalk and Thorley-Lawson, 2005). For example, it has been 

shown that the BZLF1 promoter is active in memory cells only after they have been 

differentiated into plasma cells (Laichalk and Thorley-Lawson, 2005).  

The intimate association between terminal differentiation and EBV replication in B cells 

suggests that the switch from latency to the lytic cycle is controlled by factors which 

normally regulate plasma cell differentiation. Given that BLIMP1α expression in GC B cell 

induces plasma cell differentiation and that plasma cell differentiation is associated with 

induction of the EBV lytic cycle, I have investigated if BLIMP1α can induce the viral lytic 

cycle.  



4.2. Results 

4.2.1. Ectopic expression of BLIMP1α induces BZLF1 in LCLs. 

I first studied if BLIMP1α could induce the lytic cycle in EBV-transformed B cells. I 

transfected two established LCLs, OKU-LCL and SAL-LCL, with either BLIMP1α (pcDNA3.1-

PRDM1α) or control (pcDNA3.1) vector together with CD4.1 vector (9:1). Cells were 

cultivated for 24 hours before the enrichment of CD4.1-expressing cells. The expression 

of BLIMP1α in transfected cells was confirmed by qRT-PCR (Figure 4.1A) and by 

immunohistochemistry for HA-tag of BLIMP1α (Figure 4.1D, shown for OKU-LCL). I then 

demonstrated that in both cell lines the ectopic expression of BLIMP1α was accompanied 

by increased levels of BZLF1 mRNA (Figure 4.1B). I next used immunohistochemistry to 

study if the ectopic expression of BLIMP1α in these LCLs was associated with a change in 

BZLF1 protein expression. Figure 4.1C and Table 4.1 show an increase in the number of 

BZLF1-expressing cells in BLIMP1α transfected cells compared to control transfected cells. 

I also used immunohistochemistry to demonstrate HA expression in transfected cells. 

Surprisingly, I observed that HA was expressed only in a fraction of the transfected and 

enriched cells (Table 4.1). This suggests that transfection with the larger BLIMP1α 

expression vector is less efficient than with the CD4.1 expression vector. However, I 

observed that in most cases the increase in the number of BZLF1-expressing cells that 

followed BLIMP1α transfection correlated with the number of HA-positive cells. The 

obvious exception to this was B95.8 cells where the increase in the number of BZLF1-

expressing cells was substantially higher than the number of HA-expressing cells. One 



explanation for this discrepancy might be that the HA staining fails to detect transfected 

cells expressing low amounts of BLIMP1α. 

I repeated this experiment in three more LCLs and in the B95.8 cell line. In all these cells I 

observed an increase in the number of BZLF1 expressing cells in BLIMP1α transfected cells 

compared to controls (Table 4.1 and Figure 4.2).  

Cell line No. of BZLF1 + cells in 
control-transfected 

cells (%) 

No. of BZLF1 + cells in 
BLIMP1α-transfected 

cells (%) 

No. HA-tag + cells in 
BLIMP1α-transfected 

cells (%) 

HK-LCL 3.56 8.12 6.96 

OKU-LCL 1.02 7.14 11.36 

SL1-LCL 0.0 6.32 9.9 

PER213 3.02 5.68 2.25 

SAL-LCL 1.22 2.55 4.13 

B95.8 14.69 28.2 3.72 

 

Table 4.1: Increased frequency of BZLF1-expressing cells following expression of 
BLIMP1α in LCLs. Immunohistochemistry was used to measure the frequency of BZLF1-
expressing cells in BLIMP1α-transfected cell lines. At least 1000 cells were counted in 
each sample. Staining for the HA-tag provided an estimate of the transfection efficiency.  

 



 



 

 

 

 

 

 

 



4.2.2. Ectopic expression of BLIMP1α induces the EBV lytic cycle in LCLs. 

Having shown that BLIMP1α was able to induce BZLF1 expression in LCLs, I next 

investigated if BLIMP1α could also induce the expression of other EBV lytic cycle genes. 

For this analysis I chose to study four genes representative of the different stages of the 

EBV lytic cycle; BRLF1 (immediate-early), BMLF1 and BNLF2a (early) and BALF4 (late). 

OKU-LCL was transfected as described before and cultivated for 24 and 48 hours prior to 

enrichment. I then performed qRT-PCR for each of the viral genes. Figure 4.3 shows that 

the expression of BLIMP1α in OKU-LCL was followed by the increased expression of all 

these lytic cycle genes. The expression of BRLF1 was highest 24 hours after transfection 

and appeared to decline at 48 hours. BMLF1 and BNLF2a were up-regulated at both 24 

and 48 hours. However, BALF4, showed only a modest induction following BLIMP1α 

transfection. I observed similar results following the transfection of both SAL-LCL and 

B95.8 cells (Figure 4.4).  

I also used dual immunohistochemistry to study the expression of the late lytic gene 

products, gp350/220 and viral capsid antigen (VCA). Consistent with the modest induction 

of BALF4, I observed expression of gp350 and VCA in only a minor fraction of the BLIMP1α 

transfected cells. For example, VCA expression could be detected in only 0.16% of 

BLIMP1α-expressing cells (data not shown). 

I next used immunohistochemistry to study the co-expression of either gp350 or VCA with 

endogenous BLIMP1α in B95.8 cells. Figure 4.5 shows that whereas late lytic gene 

products, VCA and gp350 were rarely detectable in BLIMP1α-negative B95.8 cells (0.4% 



and 0.6%, respectively) they were commonly present in BLIMP1α-positive B95.8 cells 

(36.9% and 55.5%, respectively).  

 

4.2.3. BLIMP1α induces EBV lytic cycle in Akata Burkitt’s lymphoma cells.  

I next investigated if BLIMP1α could activate the lytic cycle in the Akata BL cell line 

(Takada and Ono, 1989). These cells were co-transfected with either BLIMP1α (pcDNA3.1-

PRDM1α) or control (pcDNA3.1) vector together with CD4.1 vector and cultivated for 72 

hours prior to enrichment of transfected cells. Figure 4.6 demonstrates that the ectopic 

expression of BLIMP1α in Akata cells increased the transcription of BZLF1, BRLF1, BNLF2a, 

BMLF1 and BALF4. As before, I observed that only a minority of transfected and enriched 

Akata cells expressed the HA tagged protein. However, I was able to show using dual 

immunohistochemistry that VCA was expressed in 70.6% of BLIMP1α-expressing Akata 

cells and gp350 in 52.1%.  

 

 



 

 



 



 



 



4.2.4. BLIMP1α does not induce EBV lytic cycle in L591 Hodgkin’s lymphoma cells.  

I next studied if BLIMP1α could also induce the lytic cycle in L591 cells, the only naturally 

occurring EBV positive HL cell line.  These cells were co-transfected with either BLIMP1α 

(pcDNA3.1-PRDM1α) or control (pcDNA3.1) vector together with CD4.1 vector and 

cultivated for 48 hours prior to enrichment. The ectopic expression of BLIMP1α in L591 

cells was confirmed by qRT-PCR (Figure 4.7A) and by immunohistochemistry for the HA-

tag of BLIMP1α (data not shown). Figure 4.7B demonstrates that the ectopic expression 

of BLIMP1α in L591 cells did not induce the expression of BRLF1 or BMLF1. The levels of 

BZLF1 transcript in transfected cells were below the limit of detection (assessed by qRT-

PCR) and therefore these data are not shown. Immunohistochemical staining showed no 

BZLF1, VCA or gp350 protein expression. These data suggest that BLIMP1α is not 

sufficient to trigger the viral lytic cycle in EBV-positive HL cells.  

 

 

 

 

 

 

 



 

 

 

 

 

 



4.2.5. BLIMP1α does not bind to the BZLF1 promoter in SL3-LCL and B95.8 cells. 

I next explored the possibility that BLIMP1α regulated BZLF1 expression directly by 

binding to BZLF1 promoter. To do this, I performed chromatin immunoprecipitation (ChIP) 

on extracts of BLIMP1α-transfected and control-transfected SL3-LCL and B95.8 cells using 

either a rabbit polyclonal antibody directed to BLIMP1α and which has previously been 

used in ChIP experiments (gift of Dr. Reuben Tooze, St James’s University Hospital, Leeds, 

UK), or an antibody which recognizes the HA-tag of BLIMP1α (Tooze et al., 2006). An 

isotype control (IgG) antibody or no antibody were used as negative controls. ChIP was 

followed by qPCR to amplify three overlapping regions (referred to as regions 1-3) 

encompassing the BZLF1 promoter. The ectopic expression of BLIMP1α and induction of 

BZLF1 was confirmed in both cell lines by immunohistochemistry (Figure 4.8 and data not 

shown).  

Figure 4.9 shows that when compared to isotype control or no antibody control, none of 

the three regions of the BZLF1 promoter examined were found to be enriched for 

BLIMP1α binding in either SL3-LCL or B95.8 cells. I repeated this experiment in 

untransfected B95.8 cells using the BLIMP1α antibody. Although I observed an apparent 

enrichment of BLIMP1α across all three regions of the BZLF1 promoter, I also observed an 

enrichment of BLIMP1α at the Cp promoter which I used as a negative control in this 

experiment (Figure 4.10).  

 



 

 

 

 

 

 

 

 

 

 

 



 



 



4.3. Discussion 

I have shown that the ectopic expression of BLIMP1α in EBV-transformed B cells and in 

EBV-positive BL cells induces the viral lytic cycle. For herpesviruses, viral replication 

leading to the production of infectious virions ultimately results in cell death. Therefore, 

both terminal B cell differentiation and lytic replication are likely to be incompatible with 

the transformed state.  

Expression of the immediate-early genes BZLF1 and BRLF1 was used to demonstrate 

induction of the viral lytic cycle in both LCLs and BL cell lines following BLIMP1α 

expression. Analysis of BLIMP1α and BZLF1 protein expression using 

immunohistochemistry suggested that the majority of BLIMP1α-expressing cells probably 

induced the virus lytic cycle. However, I observed only a modest increase in the 

expression of the late lytic cycle gene, BALF4 in OKU-LCL. Furthermore, the late lytic 

proteins, gp350/220 and viral capsid antigen (VCA) were expressed in only a fraction of 

these cells. These results suggest that, at least in this cell line, progression to the late lytic 

cycle occurs only in a minority of BLIMP1α-expressing cells. These data are consistent 

with a previous report suggesting that viral replication is abortive in most plasma cells 

(Laichalk and Thorley-Lawson, 2005). However, an alternative explanation of my results is 

that these cells were analysed at a point in time when the majority of cells had not yet 

entered into the late lytic cycle.   

However, two observations suggested that the efficiency with which BLIMP1α-expressing 

cells can enter the late lytic cycle might be dependent upon cell type. First, I observed in 

untransfected B95.8 cells that whereas the late lytic cycle genes products, VCA and gp350 



were rarely detectable in BLIMP1α-negative B95.8 cells they were commonly present in 

BLIMP1α-positive B95.8 cells. Second, I showed that the majority of BLIMP1α-expressing 

Akata BL cells also expressed VCA and gp350. However, the induction of the viral lytic 

cycle by BLIMP1α does not seem to be a universal feature of B cells since I was not able to 

induce lytic cycle gene expression in L591 HL cells following ectopic BLIMP1α expression. 

This observation is in contrast to a more recent study which showed a constitutive 

expression of BZLF1 in L591 cells which was only moderately increased following TPA 

treatment (Uphoff et al., 2010). The observation that EBV positive HL tumours 

consistently lack BZLF1 expression suggests that these tumours might be inherently more 

resistant to lytic cycle induction (Herbst et al., 1996). However, this possibility requires 

further investigation.  

An important question is how BLIMP1α induces the EBV lytic cycle in B cells. One 

mechanism might involve an acute reactivation in which B cells respond to cellular stress 

by initiating virus replication thereby allowing the virus to escape quickly before the cell 

dies (Takada and Ono, 1989). However, it is more likely that BLIMP1α induces B cells into 

lytic cycle because it drives their differentiation towards plasma cells (Laichalk and 

Thorley-Lawson, 2005). This is supported by my observation that in GC B cells BLIMP1α 

expression induced changes characteristic of plasma cell differentiation. I did not observe 

direct binding of BLIMP1α to the BZLF1 promoter suggesting that the activation of BZLF1 

by BLIMP1α is indirect. This latter mechanism might be mediated by XBP1, a transcription 

factor known to be induced by BLIMP1α and which has been shown to bind to the BZLF1 

promoter and to activate the EBV lytic cycle (Takada and Ono, 1989; Sun and Thorley-

Lawson, 2007; Bhende et al., 2007; Vallabhapurapu et al., 2006). Consistent with this it 



has been shown that the expression of XBP1 in EBV latently infected cell lines leads to the 

induction of the virus lytic cycle (Reimold, et al., 2001; Bhende et al., 2007).  

My data are also consistent with previous reports showing that in B cells, LMP1 can block 

entry into the lytic cycle, and that it does so primarily by suppressing BZLF1 expression at 

the transcriptional level (Adler et al., 2002; Prince et al., 2003). Interestingly, it has 

previously been shown that CD40 ligation can also suppress induction of the EBV lytic 

cycle in B cells (Adler et al., 2002).  

Identification of the cellular factors that regulate the switch from latency to lytic cycle in B 

cells is important for a better understanding of the pathogenesis of EBV-associated 

lymphomas, such as BL and HL, in which the lytic cycle is apparently suppressed. My 

results identify BLIMP1α as one such factor. The ability of BLIMP1α to activate the EBV 

lytic cycle would seem to represent a hitherto undescribed tumour suppressor 

function for BLIMP1α in the context of EBV-associated lymphomas.  
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AN INVESTIGATION OF THE CONTRIBUTION OF C-MYC                                                                     

TO THE REGULATION OF BLIMP1α BY LMP1 

5.1. Introduction 

Work presented in chapter 3 showed that LMP1 can down-regulate BLIMP1α expression 

in primary human germinal centre B cells. In the next part of the study, I investigated the 

mechanism responsible for this effect. I considered the possibility that the up-regulation 

of C-MYC by LMP1 might be responsible for the down-regulation of BLIMP1α. This 

seemed a reasonable proposition given that I had already shown that LMP1 could up-

regulate C-MYC expression in GC B cells and that BLIMP1α is known to form reciprocal 

regulatory loops with other transcription factors involved in B cell differentiation, 

including BCL6, PAX5 and IRF4. It should be noted the experiments presented in this 

chapter were not performed in the order described. Therefore, while the first section 

considers the repression of BLIMP1α by C-MYC, the second half presents experiments in 

which no discrimination was made between the expression of the different isoforms 

following LMP1 transfection.  

5.2. Results 

5.2.1. C-MYC represses BLIMP1α in untransformed and transformed GC B cells. 

I first attempted to confirm the up-regulation of C-MYC by LMP1 in primary GC B cells. To 

do this I performed qRT-PCR for C-MYC expression using RNA from two of the GC B cell 

samples I had previously used to demonstrate the down-regulation of BLIMP1α by LMP1 



(Tonsil 1 and Tonsil 2, Figure 3.4, page 124). Figure 5.1A shows that in both samples, 

LMP1 up-regulated C-MYC expression. I also performed qRT-PCR analysis for C-MYC 

expression using RNA isolated from the LMP1 transfected CD77-positive and CD77-

negative GC B cells described in Figure 3.5A (page 125). I observed that LMP1 up-

regulated C-MYC in both GC B cell subsets (Figure 5.1B). 

I next compared the expression of C-MYC in GC-derived LCLs with that in primary 

uninfected GC B cells. I used RNA taken from a previous experiment in which I had shown 

that EBV infection of GC B cells was followed by the down-regulation of BLIMP1α (Figure 

3.1B, page 119). Figure 5.1C shows that C-MYC mRNA levels were elevated following the 

infection of GC B cells with EBV.  

Having shown that LMP1 could up-regulate C-MYC expression in GC B cells, I next 

investigated if C-MYC regulated BLIMP1α expression in these cells. To do this, primary GC 

B cells isolated from three separate donors were transfected with either pcDNA3.1-C-

MYC or pcDNA3.1 (control) together with LNGFR vector (these experiments were 

performed by Alexandra Schrader in our laboratory). After confirming the expression of C-

MYC in transfected GC B cells (Figure 5.2A), qRT-PCR was used to show that the ectopic 

expression of C-MYC in GC B cells was followed by the down-regulation of BLIMP1α 

expression (Figure 5.2B). 

 



  



 

 

 

 

 

 



5.2.2. Regulation of C-MYC and BLIMP1 by LMP1 in Burkitt’s lymphoma cells 

I next investigated if LMP1 could also regulate C-MYC and BLIMP1 in BL cells. I first 

compared the expression of BLIMP1 in the EBV-positive BL cell lines, MUTU I and MUTU 

III. The MUTU I line expresses a latency I viral gene expression programme in which LMP1 

is not detectable.  In contrast, MUTU III, which is derived from MUTU I, expresses a 

latency III viral gene expression programme in which LMP1 is present and C-MYC is down-

regulated. I confirmed the expression of LMP1 in MUTU III and its absence in MUTU I cells 

(data not shown). Figure 5.3A shows the down-regulation of C-MYC in MUTU III cells. 

Figure 5.3B shows that BLIMP1 mRNA levels were higher in MUTU III compared with 

MUTU I cells.  

I next studied if LMP1 could regulate BLIMP1 and C-MYC in two EBV negative BL cell lines, 

BL2 and DG75. Figure 5.4 shows that the transient transfection of BL2 cells with LMP1 

was followed by the up-regulation of BLIMP1 and the down-regulation of C-MYC. To study 

the effects of LMP1 in DG75 cells, I took advantage of a system already established in our 

laboratory in which DG75 cells are stably transduced with a tetracycline-regulatable LMP1 

construct (Floettmann et al., 1996). These cells were maintained in the continuous 

presence of tetracycline to prevent LMP1 expression. Removal of tetracycline from the 

culture induced LMP1 expression (Figure 5.5A) and was followed by the up-regulation of 

BLIMP1 (Figure 5.5B,C) and by the down-regulation of C-MYC (Figure 5.5C). The small 

induction of BLIMP1 observed in DG75 cells carrying the LMP1 expression vector in the 

presence of tetracycline is almost certainly due to leaky expression of LMP1 from this 



vector and is consistent with the low levels of LMP1 mRNA present in these cells (Figure 

5.5A).  

 

5.3.3. LMP1 does not regulate BLIMP1 or C-MYC expression in L428 Hodgkin’s 

lymphoma cells.  

Finally, I studied if LMP1 could also regulate C-MYC and BLIMP1 expression in L428 HL 

cells. However, I did not observe any consistent change in the expression of either 

BLIMP1 or C-MYC following the transient transfection of L428 cells with LMP1 (Figure 

5.6).  

 

 

 

 

 

 

 

 

 



 

 

 



 

 

 

 

 



 



 

 

 



5.3. Discussion  

In this chapter, I have shown that the ectopic expression of LMP1 in primary GC B cells 

leads not only to the down-regulation of BLIMP1, but also to the up-regulation of C-MYC. I 

observed this effect in both CD77-positive and CD77-negative GC B cells. Furthermore, I 

observed that the down-regulation of BLIMP1 that occurs following the infection of GC B 

cells with EBV is also accompanied by the up-regulation of C-MYC. These data are 

consistent with observations made in chapter 3, in which I showed that in two separate 

GC B cell samples LMP1 up-regulated C-MYC expression.  

I explored if the up-regulation of C-MYC might account for the down-regulation of BLIMP1 

that follows the ectopic expression of LMP1 in GC B cells. I observed that the transfection 

of C-MYC into GC B cells down-regulated BLIMP1 expression. It has already been shown 

that BLIMP1 can repress C-MYC in both transformed human B cells and in primary mouse 

B cells (Lin et al., 1997; Shaffer et al., 2002).  Furthermore, I showed in chapter 3 that 

BLIMP1 can also repress C-MYC in primary untransformed GC B cells. Therefore, BLIMP1 

and C-MYC are capable of negatively regulating each other’s expression. Further evidence 

in support of this has been provided elsewhere by the demonstration that the knock-

down of C-MYC in BL cells leads to the up-regulation of BLIMP1α (Vrzalikova et al., 2011).   

Because the repression of C-MYC is required for terminal B cell differentiation (Lin et al., 

2000), my data suggest that LMP1 may antagonize plasma cell differentiation by up-

regulating C-MYC which then represses plasma cell differentiation by suppressing 

BLIMP1α. This not only provides a plausible explanation for the down-regulation of 

BLIMP1α by LMP1 but also a potentially novel mechanism which might explain the 



impaired differentiation characteristic of B cell lymphomas harbouring C-MYC 

abnormalities. Alternatively, it is possible that LMP1 initially drives the down-regulation of 

BLIMP1α which then leads to the up-regulation of C-MYC. In either case LMP1 would 

drive a reciprocal regulatory loop involving BLIMP1α and C-MYC which would ultimately 

lead to the activation of MYC and the repression of BLIMP1α. Figure 5.7 shows a 

schematic illustration of the proposed regulation of this loop by LMP1. 

During the course of this study, I was also able to confirm previous reports that LMP1 

suppresses C-MYC expression in BL cells (Floettmann et al., 1996). However, I also 

observed that the suppression of C-MYC by LMP1 was accompanied by the induction of 

BLIMP1 expression, a finding independently verified by Dr. Gemma Kelly in our Institute 

(personal communication). These observations may provide an explanation for the 

consistent lack of LMP1 expression in EBV-positive BL, since expression of this viral 

oncogene would lead not only to the loss of the proliferative effects of C-MYC, but also to 

the induction of plasma cell differentiation and potentially to the activation of the viral 

lytic cycle. It is not clear why BLIMP1 is up-regulated by LMP1 in BL cells, but down-

regulated by this viral protein in GC B cells. However, one explanation might be that a 

translocated C-MYC gene present in BL cell is regulated differently from the normal C-

MYC gene present in GC B cells.  
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AN INVESTIGATION OF BLIMP1β EXPRESSION IN EBV-TRANSFORMED GERMINAL 

CENTRE B CELLS AND HODGKIN’S LYMPHOMA CELLS 

6.1. Introduction 

The PRDM1 gene encodes at least two isoforms, designated BLIMP1α and BLIMP1β, 

which are expressed from alternate promoters (Györy et al., 2003). The full-length 

BLIMP1α protein orchestrates plasma cell differentiation by repressing genetic programs 

associated with the germinal centre (GC) stages, while at the same time activating those 

programs associated with plasma cell functions (Shapiro-Shelef et al., 2003; Calame et al., 

2003). In contrast, BLIMP1β is transcribed from a different promoter and exon located 

upstream of exon 4 of the gene (Györy et al., 2003). The BLIMP1β protein lacks the first 

101 amino acids of BLIMP1α and instead contains 3 novel amino acids fused to amino 

acids 102–789 of BLIMP1α. BLIMP1β, which lacks most of the proline rich (PR) domain, 

has a diminished capacity to repress target genes (Györy et al., 2003). Since BLIMP1β 

contains the DNA-binding domain but bears a disrupted regulatory domain it has been 

suggested to behave as an inhibitor of BLIMP1α (Györy et al., 2003).  

Other members of the PRDM family, including PRDM2 (RIZ), PRDM3 (MDS1-EVI1) and 

PRDM16 (MEL1) can also express a full length protein containing the PR domain as well as 

a truncated protein missing the PR domain (Morishita et al., 2007). The balance of 

expression of these different PRDM isoforms is disrupted in many cancers and results 

from both the over-expression of the truncated proteins as well as the loss of expression 

of the full length proteins (Huang et al., 1999; Chadwick et al., 2000; Steele-Perkins et al., 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=655&_origin=article&_zone=art_page&_targetURL=http%3A%2F%2Fwww.scopus.com%2Finward%2Frecord.url%3Feid%3D2-s2.0-0037443482%26partnerID%3D10%26rel%3DR3.0.0%26md5%3Dbce3dd46841592b8a8c6ac3941bfae2d&_acct=C000010083&_version=1&_userid=122868&md5=bf31a0ecacb3a0d2152d8f097cbffa0e
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WFC-4V2NP49-5&_user=122868&_coverDate=04%2F15%2F2009&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1464500463&_rerunOrigin=google&_acct=C000010083&_version=1&_urlVersion=0&_userid=122868&md5=e15ca28a2e1971554f697fb58b736eb2&searchtype=a


2001; Sasaki et al., 2002; He et al., 1998; Cuenco et al., 2000; Soderholm et al., 1997; 

Kurokawa et al., 1998a). For example, the transcript of the long form of the MDS1-

EVI1/PRDM3 gene is expressed at very low levels in leukaemia cells, whereas the short 

form of the EVI1 gene is over-expressed in human leukaemias with chromosome 3q 

abnormalities (Soderholm et al., 1997; Kurokawa et al., 1998a; Kurokawa et al., 1998b; 

Nucifora, 1997; Sood et al., 1999). Likewise, the human MEL1/PRDM16 also has two 

alternative protein forms, a long form, MEL1, and a short form, MEL1S. The latter is over-

expressed in leukaemia cells carrying the t(1;3) translocation (Barjesteh van Waalwijk van 

Doorn-Khosrovani et al., 2003; Mochizuki et al., 2000). In some cases, the full length 

PRDM proteins have been shown to have tumour supressive functions, whereas the 

truncated variants can have tumour promoting activity. For example, the product of 

PRDM2, RIZ1, is a tumour suppressor protein because it demonstrates a loss of function 

in many types of human cancers with genomic deletions or point mutations and because 

RIZ1-deficient mice have been shown to develop DLBCL (Huang, 1999; Chadwick et al., 

2000; Steele-Perkins et al., 2001). In contrast, RIZ2 which lacks the PR domain is over-

expressed in breast cancer and in acute lymphoblastic leukaemias (Sasaki et al., 2002; He 

et al., 1998).  

The over-expression of BLIMP1β has been reported in multiple myeloma, DLBCL and in 

some T cell lymphomas (Györy et al., 2003; Ocana et al., 2006; Zhao et al., 2008; Liu et al., 

2007). BLIMP1β over-expression is associated with advanced Ann Arbor stage and a high-

risk International Prognostic Index in T cell lymphomas and with a shorter patient survival 

in both DLBCL and T cell lymphoma patients (Zhao et al., 2008; Liu et al., 2007). In both B- 

and T-cell lymphomas, BLIMP1β expression is also associated with in vitro resistance to 



chemotherapeutic agents (Zhao et al., 2008; Liu et al., 2007). Here I have investigated the 

expression of the BLIMP1β isoform in EBV-transformed GC B cells and in HL cells.  

 

6.2. Results 

6.2.1. BLIMP1β levels are low in normal tonsillar B cells. 

I first compared the expression of BLIMP1α and BLIMP1β mRNA in normal tonsillar B cells 

using qRT-PCR. I found that BLIMP1α mRNA levels were low in naive B cells and in CD77-

positive GC B cells, but higher in CD77-negative GC B cells and in memory B cells (Figure 

6.1A). Although BLIMP1β levels appeared to follow a similar trend (Figure 6.1B), 

comparison of the relative amounts of transcript within each subset revealed that the 

levels of BLIMP1β mRNA in all cells were substantially lower than those of BLIMP1α 

(Figure 6.1C). I was not able to differentiate between BLIMP1α and BLIMP1β protein 

expression in these cells since all available BLIMP1 specific antibodies recongnize either 

only the BLIMP1α isoform or both.  

 

6.2.2. BLIMP1β expression is up-regulated following EBV infection of primary human 

germinal centre B cells. 

Having shown that the levels of BLIMP1β mRNA are very low in normal B cell subsets, 

including GC B cells, I next explored the expression of this isoform following the in vitro 

infection of B cells with EBV. To do this I measured expression of the BLIMP1β isoform in 

the three GC-derived LCLs and in the uninfected GC B cells previously described in chapter 



3 in which I had demonstrated the down-regulation of BLIMP1α by EBV (Figure 3.1, page 

119). Figure 6.2 shows that compared to un-infected GC B cells, the GC-derived LCL 

showed increased expression of the BLIMP1β isoform. Figure 6.3 shows that the up-

regulation of BLIMP1β and the down-regulation of BLIMP1α reduced the 

BLIMP1α:BLIMP1β ratio in the EBV infected cells. For example, in the matched pair, GC#1 

and SL1-LCL, the BLIMP1α:BLIMP1β ratio fell from 25 (1/0.04) in normal GC B cells to 1.47 

(1/0.68) in EBV-transformed GC B cells. However, it should be noted that Figure 6.3 

describes the expression of BLIMP1β relative to BLIMP1α in each cell type and does not 

necessarily reflect the modest increase in BLIMP1β levels compared to the pronounced 

down-regulation of BLIMP1α. 

 

6.2.3. Over-expression of BLIMP1β in Hodgkin’s lymphoma cells 

I next studied the expression of the two BLIMP1 isoforms in GC B cells and HL cell lines. I 

found that in 3/4 HL cell lines, BLIMP1β levels were increased and those of BLIMP1α 

unchanged compared to GC B cells (Figure 6.4A,B). The exception was the KMH2 cell line 

in which BLIMP1β levels were unchanged, but those of BLIMP1α increased. However, I 

also observed that EBV infection increased the levels of BLIMP1β mRNA in KMH2 cells. 

These changes in the expression of the different BLIMP1 isoforms in HL cells resulted in a 

decreased BLIMP1α:BLIMP1β ratio (Figure 6.5). U266 was used as a ppositive control in 

these experiments. 

 



 

 

 

 



 

 

 

 

 

 

 

 



 

 



 

 



 

 



6.2.4. Increased expression of BLIMP1β in Hodgkin’s lymphoma cells is associated with 

hypomethylation of the BLIMP1β-specific promoter. 

Previous studies in our laboratory have shown that when compared to uninfected GC B 

cells the BLIMP1β-specific promoter is hypomethylated in EBV-transformed GC B cells 

(Leonard et al., unpublished). I explored if the increased expression of BLIMP1β in HL cell 

lines was associated with a change in the methylation status of the BLIMP1β-specific 

promoter. To do this I performed pyrosequencing on 8 of the 11 CpGs located within the 

hypomethylated region previously defined by Leonard et al. (Figure 6.6A) and compared 

this to pyrosequencing data already available from the isolated GC B cells (Figure 6.6B). 

Figure 6.6C shows that relative to GC B cells, all 8 CpGs were hypomethylated in the HL 

cell lines.  

 

 

 

 

 

 

 

 



 

 



6.2.5. Regulation of the BLIMP1 isoforms by LMP1  

Finally, I explored if LMP1 could also regulate the expression of the BLIMP1β isoform in 

GC B cells. To do this, I transfected GC B cells with LMP1 as described previously (page 

120).  Figure 6.7 shows that even though the levels of BLIMP1β are very low in normal GC 

B cells, they were further decreased following LMP1 expression.  

I next studied if LMP1 could regulate BLIMP1β in BL cell lines. To do this, I measured the 

levels of both BLIMP1α and BLIMP1β using RNA from the experiment described in chapter 

5 (page 172) in which I had shown that LMP1 up-regulated BLIMP1 expression in BL2 and 

DG75 cells. Figure 6.8 shows that the mRNA levels of both BLIMP1α and BLIMP1β were 

increased following the expression of LMP1 in these BL cell lines. Consistent with this I 

showed that in luciferase reporter assays, the ectopic expression of LMP1 in BL2 cells 

increased the activity of both the BLIMP1α and BLIMP1β promoters.  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 



6.3. Discussion 

I have shown here that the BLIMP1β isoform is up-regulated in EBV-transformed GC B 

cells and in HL cell lines. This could be important because previous studies have suggested 

that BLIMP1β may function to counteract the transcriptional repressive activities of the 

BLIMP1α isoform.  

Although a dominant negative function for BLIMP1β is not yet firmly established, it is 

known that other truncated PRDM family members over-expressed in cancer cells can act 

as inhibitors of their respective full length isoform. For example, the effects of MDS1-

EVI1, a PR domain containing form of the MDS1-EVI1 gene, can be overcome by over-

expressing EVI1, the PR lacking isoform (Soderholm et al., 1997). Furthermore, EVI1 has 

been shown to repress TGF-β signalling through interaction with Smad3, while MDS1-EVI1 

augments the response to the growth inhibitory effect of TGF-β (Kurokawa et al., 1998a; 

Kurokawa et al., 1998b; Nucifora, 1997; Sood et al., 1999). Moreover, the truncated form 

of the PRDM2 gene (RIZ2) which lacks the PR domain has been shown to inhibit 

transactivation activity of the oestrogen receptor by RIZ1, the full length product of 

PRDM2 (Steele-Perkins et al., 2001).  

For two main reasons the significance of the increased levels of BLIMP1β transcripts 

observed in both EBV transformed GC B cells and in HL cells remains unclear. First, 

although elevated, the levels of BLIMP1β mRNA still remained very low in the EBV 

transformed GC B cells and HL cell lines (for example they remained substantially lower 

than those observed in the U266 multiple myeloma cell line). Second, I have not studied 

BLIMP1β protein expression either in the EBV transformed GC B cells or in the HL cell 



lines, in part due to the lack of suitable antibody reagents which can differentiate 

between the different BLIMP1 isoforms. Furthermore, previous studies have shown that 

BLIMP1β protein expression is virtually undetectable in DLBCL cell lines in which BLIMP1β 

mRNA levels are elevated (Tam et al., 2008). It has also been shown that despite the 

relatively high levels of BLIMP1β mRNA in U266 cells, BLIMP1β protein is only weakly 

expressed in this cell line, suggesting that PRDM1β is not translated efficiently (Tam et al., 

2008). It should also be noted that the PRDM1 gene is subject to regulation by microRNAs 

which might further account for the discrepancy observed between the RNA and protein 

levels of BLIMP1 (Nie et al.,2008).  

Transfection of GC B cells with LMP1 down-regulated BLIMP1β expression suggesting that 

another EBV gene(s) mediates the up-regulation of BLIMP1β observed in the EBV infected 

GC B cells. An alternative explanation for the up-regulation of BLIMP1β in the GC-derived 

LCLs is that this isoform is induced in proliferating cells. To investigate this possibility it 

will be necessary to study the expression of BLIMP1β in B cells which are induced into cell 

cycle by other stimuli for example by the addition of CD40 ligand and IL-4.  

I observed that the increased expression of BLIMP1β in HL cell lines was accompanied by 

hypomethylation of the BLIMP1β-specific promoter. Previous work from our laboratory 

has shown that the BLIMP1β promoter is hypomethylated in the EBV-transformed GC B 

cells used in this study. Furthermore, it has also been shown that in DLBCL, the increased 

BLIMP1β mRNA levels are accompanied by hypomethylation of the BLIMP1β-specific 

promoter (Zhang et al., 2010). The mechanism responsible for the hypomethylation of the 

BLIMP1β-specific promoter remains to be established but might involve the down-



regulation of the DNA methyltransferases, DNMT3B and DNMT1 which is observed in 

both EBV-infected GC B cells and in HL cell lines (Leonard et al., unpublished data). 

In experiments not presented in this thesis and performed in collaboration with Prof. 

Qian Tao (Chinese University of Hong Kong), the methylation status of the BLIMP1β-

specific promoter has been studied in microdissected primary HRS cells isolated from 

seven cases of HL. We observed that the BLIMP1β promoter was completely 

unmethylated in three cases and only weakly methylated in a further three, while both 

strong methylated and unmethylated bands on MSP analysis were detected in normal GC 

B cells micro-dissected from reactive lymph nodes. These data show that 

hypomethylation of the BLIMP1β-specific promoter also occurs in primary HRS cells.  
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FUTURE WORK 

Work presented in this thesis has suggested a number of areas for future study. 

Although I have shown that the ectopic expression of BLIMP1α induces the virus lytic 

cycle in B cells, the mechanism responsible for this effect has yet to be established. In 

preliminary work not presented in this thesis, I have shown that the ectopic expression of 

BLIMP1α in GC-derived LCL, Akata BL cells and B95.8 cells increases XBP1 transcription. 

This could be important because XBP1 has been shown to bind to the BZLF1 promoter 

and induce its expression. To establish if this mechanism is involved in the induction of 

the viral lytic cycle by BLIMP1α it will be first necessary to show that BLIMP1α expression 

is followed by binding of XBP1 to the BZLF1 promoter.  

Establishing that the induction of the virus lytic cycle by BLIMP1α is a consequence of 

plasma cell differentiation will be an important objective for future studies. In certain 

cellular environments, BLIMP1α can induce apoptosis. Therefore, an alternative 

explanation for my results is that the induction of the virus lytic cycle I observed occurs in 

response to this apoptosis. However, to determine if BLIMP1α -mediated viral replication 

is dependent upon plasma cell differentiation is challenging. This is because plasma cell 

differentiation takes several days to complete and because it is not possible in vitro to 

fully recapitulate the complexity of the signals received by a differentiating B cell in vivo. 

One approach might be to generate EBV-infected cell lines stably transduced with an 

inducible BLIMP1α vector or alternatively to attempt to induce plasma cell differentiation 

in EBV infected cells following their in vitro stimulation with cytokines such as IL-2 and IL-

10. A further complication of these studies is that many of the in vitro models of plasma 



cell differentiation use transformed B cells which might not accurately mirror the 

processes that occur during normal B cell differentiation.  

During the course of this investigation I was able to confirm previous reports of low levels 

of BLIMP1α in HL and BL cells, suggesting that the loss of BLIMP1α expression contributes 

to a differentiation block in these lymphomas. Previous studies have shown that the 

ectopic expression of BLIMP1 in BL cells can induce many of the transcriptional changes 

characteristic of plasma cells even in a background of high C-MYC levels. However, it is 

not known if the ectopic expression of BLIMP1α can induce plasma cell differentiation in 

HL cells. This will be an important objective of future studies.  

Although my observations show that BLIMP1α can regulate certain aspects of the virus 

life cycle. However, it is not known if BLIMP1α has a role in EBV-induced B cell 

immortalization. In preliminary data not presented in this thesis, I have shown that the 

infection of peripheral blood B cells with EBV is followed in the first few days of infection 

by the transient up-regulation of BLIMP1α mRNA which is followed soon after by its 

down-regulation. It is tempting to speculate that the up-regulation of BLIMP1α in newly 

infected B cells might contribute to the induction of BZLF1 expression and the virus 

replication which has shown to be important for efficient EBV-induced transformation. 

The use of recombinant viruses lacking the ability to express individual latent genes could 

be used to determine which genes regulate BLIMP1α expression in the early phases of B 

cell infection.  

Finally, the role of the BLIMP1β isoform in normal B cell differentiation and its 

contribution to B cell lymphomagenesis remain enigmatic. In part, this is a consequence 



of the lack of suitable antibody reagents which can detect the BLIMP1β protein. The 

generation of a monoclonal antibody which can recognize the region encompassing the 

three unique amino acids present in BLIMP1β will be required before meaningful studies 

of its expression in primary tumours can be undertaken. Only when this has been 

obtained can studies proceed to investigate the potential oncogenic activities of BLIMP1β 

in B cells.   
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Appendix 1: Plasmids used in the study 

The pcDNA3.1-PRDM1α/BLIMP1α plasmid was kindly provided by Dr. Kenneth L. Wright 

(University of South Florida, Tampa, FL) and its map is displayed. 

Map of PRDM1α/BLIMP1α plasmid 

 



The pcDNA3.1 and pcDNA3.1-LMP1 plasmids were kindly provided by Dr. Georgia 

Kapatai (University of Birmingham, UK). The pSG5 and pSG5-LMP1 plasmids were kindly 

provided by Prof. Elliott D. Kieff (Brigham and Women's Hospital and Harvard Medical 

School, Boston, MA). I began working with pSG5 (map below) as a vector to express LMP1 

and then switched to use pcDNA3.1 (map below) to express LMP1 or BLIMP1α in GC B 

cells. Using the same plasmid to express these genes ensured that differences in gene 

expression I observed after either transient transfection with LMP1 or BLIMP1α were not 

due to a plasmid effect.  

Map of pSG5 plasmid 

 

 



Map of pcDNA3.1plasmid 

 

 

The pcDNA3.1-C-MYC plasmid was kindly provided by Prof. Georg W. Bornkamm (GSF-

Institut fur Klinische Molekularbiologie und Tumorgenetik GSF-Forschungszentrum fur 

Umwelt und Gesundheit, Munich, Germany).  

PRDM1α/BLIMP1α and PRDM1β/BLIMP1β promoter constructs were kindly provided by 

Dr. Kenneth L. Wright (University of South Florida, Tampa, FL) and were described 

previously (Györy et al., 2003).  



The pRL-null Vector (map bellow) was purchased from Promega UK Ltd. (Hampshire, UK). 

This vector contains cDNA encoding Renilla luciferase (Rluc) cloned from the anthozoan 

coelenterate Renilla reniformis (sea pansy).  

Map of pRL-null Vector  

 

 

The pMACS CD4.1 vector (map bellow) uses the truncated human CD4 molecule which 

can be used in virtually all CD4-negative cell lines and primary cells as a marker to select 

transfected cells.  

Map of pMACS CD4.1 vector 

 
 



The pMACS LNGFR vector (map bellow) uses the truncated human low-affinity nerve 

growth factor receptor (LNGFR) molecule as a marker to select transfected cells. It can be 

used in LNGFR-negative cell lines and primary cells. The LNGFR molecule is expressed in 

the central and peripheral nervous system, on bone marrow fibroblasts, follicular 

dendritic cells, and some mesenchymal cells. 

Map of LNGFR vector  

 

 

 

 

 

 

 

 

 

 



Appendix 2: RT-PCR primers used in the study 

Gene name Forward Primer Reverse Primer 

GAPDH 5’-GGTGAAGGTCGGAGTCAACGGA-3’ 5’-GAGGGATCTCGCTCCTGGAAGA-3’ 

LMP1 5’-AATTTGCACGGACAGGCATT-3’ 5’-AAGGCCAAAAGCTGCCAGAT-3’ 

 

Appendix 3: qRT-PCR primers and probes used in the study 

Gene name Forward Primer Reverse Primer 

BLIMP1β 5’-CCGAACATGAAAAGACGATAAAACTGA-3’ 5’-CCGTCAATGAAGTGGTGAAGCT-3’ 

LMP1 5’-AATTTGCACGGACAGGCATT-3’ 5’-AAGGCCAAAAGCTGCCAGAT-3’ 

BZLF1 5’-ACGACGCACACGGAAACC-3’ 5’-CTTGGCCCGGCATTTTCT-3’ 

BRLF1 5’-TTGGGCCATTCTCCGAAAC-3’ 5’-TATAGGGCACGCGATGGAA-3’ 

BMLF1 5’-CCCGAACTAGCAGCATTTCCT-3’ 5’-GACCGCTTCGAGTTCCAGAA-3’ 

BLNF2a 5’-TGGAGCGTGCTTTGCTAGAG-3’ 5’-GGCCTGGTCTCCGTAGAAGAG-3’ 

BALF4 5’-CCAGCTTTCCTTTCCGAGTCT-3’ 5’-ACACTGGATGTCCGAGGAGAA-3’ 

 

Gene name Probe 

BLIMP1β 5’-CTCTGGAATAGATCTTTTC-3’ 

LMP1 5’-TCCAGATACCTAAGACAAGTAAGCACCCGAAGAT-3’ 

BZLF1 5’-GCATTCCTCCAGCGATTCTGGCTGTT-3’ 

BRLF1 5’-AGACGGGCTGAGAATGCCGGC-3’ 

BMLF1 5’-AACGAGGATCCCGCAGAGAGCCA-3’ 

BLNF2a 5’-CCTCTGCCTGCGGCCTGCC-3’ 

BALF4 5’-TCCAGCCACGGCGACCTGTTC-3’ 

 



Appendix 4: Applied Biosystem Gene expression assays used in the study 

Gene name Gene expression assay number 

BCL2A1 Hs00187845_m1 

BCL6 Hs00277037_m1 

CD20 Hs01585412_m1 

CCL22 Hs99999075_m1 

CIITA Hs00172106_m1 

RFX5 Hs00230841_m1 

BLIMP1 (PRDM1) total Hs00153357_m1 

BLIMP1 (PRDM1) α isoform Hs01068508_m1 

IRF4 Hs01056534_m1 

C-MYC Hs99999003_m1 

GAPDH 4310884E 

β2m 4310886E 

 

Appendix 5: Western blotting gels 

Stacking gel (10%) mL Separating gel (10%) mL 

30% Polyacrylamide 0.83 30% Polyacrylamide 6.7 

1M Tris(pH 6.8) 0.63 1.5M Tris(pH 8.8) 5 

10% Ammonium persulfate 0.05 10% Ammonium persulfate 0.2 

10% SDS 0.05 10% SDS 0.2 

TEMED 0.005 TEMED 0.008 

H2O 3.4 H2O 7.9 

Total volume 5 Total volume 25 

 

https://products.appliedbiosystems.com/ab/en/US/direct/ab?cmd=ABAssayDetailDisplay&assayID=Hs00187845_m1&Fs=y&SearchRequest.Common.PageNumber=1&assayType=ge&chkBatchQueryText=false&SearchRequest.Common.QueryText=Bcl2A1&srchType=keyword&catID=601267&kwfilter=all&%20
https://products.appliedbiosystems.com/ab/en/US/direct/ab?cmd=ABAssayDetailDisplay&assayID=Hs00277037_m1&Fs=y&SearchRequest.Common.PageNumber=1&assayType=ge&chkBatchQueryText=false&SearchRequest.Common.QueryText=Bcl6&srchType=keyword&catID=601267&kwfilter=all&%20
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs01585412_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=CD20&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs99999075_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=ccl22&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/direct/ab?cmd=ABAssayDetailDisplay&assayID=Hs00172106_m1&Fs=y&SearchRequest.Common.PageNumber=1&assayType=ge&chkBatchQueryText=false&SearchRequest.Common.QueryText=CIITA&srchType=keyword&catID=601267&kwfilter=all&%20
https://products.appliedbiosystems.com/ab/en/US/direct/ab?cmd=ABAssayDetailDisplay&assayID=Hs00230841_m1&Fs=y&SearchRequest.Common.PageNumber=1&assayType=ge&chkBatchQueryText=false&SearchRequest.Common.QueryText=RFX5&srchType=keyword&catID=601267&kwfilter=all&%20
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs00153357_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=prdm1&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs01056534_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=irf4&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=ABAssayDetailDisplay&assayID=Hs99999003_m1&Fs=y&adv_phrase3=EXACT&adv_phrase2=EXACT&adv_phrase1=EXACT&assayType=GE&catID=601267&adv_kw_filter3=ALL&srchType=keyword&adv_kw_filter2=ALL&SearchRequest.Common.QueryText=c-myc&kwdropdown=ge&adv_kw_filter1=ALL&adv_query_text3=&searchType=keyword&adv_query_text2=&adv_query_text1=&uploadType=ID+List&adv_boolean3=AND&adv_boolean2=AND&adv_boolean1=AND&chkBatchQueryText=false&kwfilter=ALL&SearchRequest.Common.PageNumber=1&msgType=ABGEKeywordResults


Appendix 6: Primary and secondary antibodies used in the study 

Antigen Species (clone) Company & cat. no Dilution 

BLIMP1 (recognizes 
BLIMP1α isoform 

only) 

Rabbit polyclonal  
(R21) 

 

King gift of Dr.Reuben Tooze         
(St James’s University Hospital, 

Leeds, UK) 

1:1000 

BLIMP1 (recognizes 
both BLIMP1α and 
BLIMP1β isoforms) 

Mouse monoclonal Kind gift of Prof. Teresa Marafioti 
(Oxford, UK) 

neat 

LMP1 Mouse monoclonal 
(CS1-4) 

Dako 1:1000 

C-MYC Mouse monoclonal 
(9E10) 

Santa Cruz Biotechnology, ING. 1:500 

BZLF1 Mouse monoclonal 
(BZ-1)                

(culture supernatant) 

University of Birmingham 
(Birmingham, UK) 

1:50 

VCA Mouse monoclonal 
(L2) 

Kind gift of Dr. Claire-Shannon 
Lowe (Birmingham, UK) 

1:1000 

gp350 Mouse hybridoma 
(72a.1) 

Kind gift of Dr. Claire-Shannon 
Lowe (Birmingham, UK) 

1:500 

HA Rabbit polyclonal      
(Y-11) 

Santa Cruz Biotechnology (sc-805) 1:50 

mcm-7 Mouse (M7931) Sigma-Aldrich 1:2000 

α-tubulin Mouse Sigma-Aldrich 1:1000 

Β-actin Mouse monoclonal 
(c-2) 

Santa Cruz (Sc-8432) 1:1000 

Mouse IgG Goat polyclonal 
(HRP) 

Dako (P0447) 1:3000 

Rabbit IgG Goat polyclonal 
(HRP) 

Dako (P0448) 1:1000 

IgG antibody Rabbit polyclonal Insight Biotechnology Ltd ChIP 

 

BLIMP1 R21 is a purified rabbit IgG polyclonal antibody raised against GST fusion protein 

of full-length of human BLIMP1. This antibody was used in ChiP. 



Appendix 7: Conditions used to electroporate individual cell lines 

Cell line °C Washing 
media 1 

Washing 
media 2 

Electroporation media 
and volume 

Pulse Cultivation 
media 

BL2 4 °C RPM1 
10%FCS     

4°C 

RPMI/10%FCS
/10mM 

HEPES, 4°C 

RPMI/10%FCS/25mM 
HEPES, 4°C, 250µl 

250V 
950µF 

RPMI        
10% FCS 

Akata RT PBS         
RT 

OptiMEM         
RT 

OptiMEM, RT, 300µl 230V 
975µF 

RPMI       
10% FCS 

L428 4°C RPM1 
10%FCS     

4°C 

RPMI/10%FCS
/10mM 

HEPES, 4°C 

RPMI/10%FCS/25mM 
HEPES, 4°C, 500µl 

250V 
1350µF 

RPMI       
10% FCS 

L591 4°C RPM1 
10%FCS     

4°C 

RPMI/10%FCS
/10mM 

HEPES, 4°C 

RPMI/10%FCS/25mM 
HEPES, 4°C, 500µl 

250V 
975µF 

RPMI       
10% FCS 

OKU-LCL RT PBS       
RT 

OptiMEM     
RT 

OptiMEM, RT, 300µl 230V 
975µF 

RPMI       
10% FCS 

SAL-LCL  RT PBS        
RT 

OptiMEM     
RT 

OptiMEM                             
RT, 300µl 

230V 
975µF 

RPMI       
20% FCS 

B95.8 RT PBS         
RT 

OptiMEM      
RT 

OptiMEM                             
RT, 300µl 

230V 
975µF 

RPMI       
20% FCS 

SL1-LCL 

SL3-LCL 

RT PBS         
RT 

OptiMEM     
RT 

OptiMEM                            
RT, 300µl 

230V 

975µF 

RPMI          
20% FCS 

HK-LCL RT PBS           
RT 

OptiMEM     
RT 

OptiMEM                           
RT, 300µl 

230V 

975µF 

RPMI       
20% FCS 

PER213 RT PBS        
RT 

OptiMEM     
RT 

OptiMEM                           
RT, 300µl 

230V 

975µF 

RPMI       
20% FCS 

 

OptiMEM® is a serum-free media which was purchased from Invitrogen Ltd., Paisley, UK. 

 

 



RPMI/10%FCS/10mM HEPES contains RPMI 1640 (Sigma-Aldrich Ltd., Gillingham, UK) 

supplemented with 10% fetal calf serum, 2mM L-glutamine (all Invitrogen Ltd., Paisley, 

UK), 1% penicillin-streptomycin solution (Sigma-Aldrich Ltd., Gillingham, UK) and 25 mM 

HEPES (Sigma-Aldrich Ltd., Gillingham, UK). 

RPMI/10%FCS/25mM HEPES contains RPMI 1640 (Sigma-Aldrich Ltd., Gillingham, UK) 

supplemented with 10% fetal calf serum, 2mM L-glutamine (all Invitrogen Ltd., Paisley, 

UK), 1% penicillin-streptomycin solution (Sigma-Aldrich Ltd., Gillingham, UK) and 25 mM 

HEPES (Sigma-Aldrich Ltd., Gillingham, UK). 

 

Appendix 8: Primer sequences used in ChIP 

primer sequence 

BZLF1 forward (region 1) 5’-TTGTGGTCAGTTCGTCCAAA-3’ 

BZLF1 reverse (region 1) 5’-GTCAGCCAAAGAGGATCAGG-3’ 

BZLF1 forward (region 2) 5’-GAGACTGGGAACAGCTGAGG-3’ 

BZLF1 reverse (region 2) 5’-GCCACCTTTGCTATCTTGG-3’ 

BZLF1 forward (region 3) 5’-GAAGCCACCCGATTCTTGTA-3’ 

BZLF1 reverse (region 3) 5’-TCCCAGTCTCCGAGATAACC-3’ 

Cp forward 5’-AAATGTTGGAGGGACCTAAGAGATG-3’ 

Cp reverse 5’-TGGCTTTAATTGTCATGTATGCTT-3’ 

All BZLF1 and Cp primers were designed using Primer 3 program. The BZLF1 primers cover 

the whole BZLF1 gene including a promoter. Cp primers cover an area within the Cp gene, 

upstream of the Cp promoter. The viral sequences were obtained from ENSMBL. The 

primers were kindly provided by Dr. Sarah Leonard (University of Birmingham, UK). 



Appendix 9: Primer sequences used in pyrosequencing analysis 

primer sequence 

PCR forward biotinylated primer (region 1) 5’-TAGGTTTGGTTAGTGA-3’ 

PCR reverse non biotinylated primer (region 1) 5’-CACTTTTATCTTTCCA-3’ 

Sequencing primer (region 1) 5’-TTTTATCAATTTTTCC-3’ 

PCR forward non biotinylated primer (region 2) 5’-GGTGGAGGATAGTTGA-3’ 

PCR reverse biotinylated primer (region 2) 5’-AAATAAACCAAATTCC-3’ 

Sequencing primer (region 2) 5’-TGTATAGTTGTTTGGG-3’ 

 

The BLIMP1β primers were designed for pyrosequencing using Biotage primer design 

software, this software in silico bisulphite converts the sequence so all primers (FWD, REV 

and SEQ) were then designed on the bisulphite modified DNA. Sequences were obtained 

from UCSC. The primers were kindly provided by Dr. Sarah Leonard (University of 

Birmingham, UK). 

 

 

 

 

 

 

 

 

 

 



Appendix 10: List of genes up-regulated by BLIMP1α and LMP1 in GC B cells 

 

BLIMP1 LMP1 full name

LGALS1 increased increased Blimp1 target Shaffer,lectin, galactoside-binding, soluble, 1 (galectin 1)
RTN4 increased increased reticulon 4
EIF1 increased increased eukaryotic translation initiation factor 1
LAPTM4B increased increased lysosomal associated protein transmembrane 4 beta 
NSUN6 increased increased NOL1/NOP2/Sun domain family, member 6
DGAT2 increased increased diacylglycerol O-acyltransferase homolog 2
SLC7A11 increased increased solute carrier family 7, (cationic amino acid transporter, y+ system) member 11
AKR1A1 increased increased aldo-keto reductase family 1, member A1 (aldehyde reductase)
BRI3 (I3) increased increased brain protein I3
C6orf145 increased increased chromosome 6 open reading frame 145
CRIP1 increased increased cysteine-rich protein 1 (intestinal)
DNAJB1 (HSP40) increased increased DnaJ (Hsp40) homolog, subfamily B, member 1
EIF4A1 increased increased eukaryotic translation initiation factor 4A, isoform 1
GADD45B increased increased growth arrest and DNA-damage-inducible, beta
GALNT2 increased increased UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 
HSPA1A increased increased heat shock 70kDa protein 1A
HSPA9 increased increased heat shock 70kDa protein 9 (mortalin)
ID2 /// ID2B increased increased inhibitor of DNA binding 2
ING3 increased increased inhibitor of growth family, member 3
KLHL21 increased increased kelch-like 21
PDXK increased increased pyridoxal (pyridoxine, vitamin B6) kinase
PHACTR1 increased increased phosphatase and actin regulator 1

PPIF (cyclophilin E) increased increased peptidylprolyl isomerase F (cyclophilin F)
PPP1R10 increased increased protein phosphatase 1, regulatory (inhibitor) subunit 10
PPP1R15A (GAD34) increased increased protein phosphatase 1, regulatory (inhibitor) subunit 15A
PRO1073 increased increased PRO1073 protein 
PTCD3 increased increased Pentatricopeptide repeat domain 3
QKI increased increased quaking homolog, KH domain RNA binding
RPL10A increased increased ribosomal protein L10a
SFRS8 increased increased splicing factor, arginine/serine-rich 8
SQSTM1 (p60,p62) increased increased sequestosome 1
TCP1 increased increased chaperonin containing TCP1, subunit 6A (zeta 1)
TRIM73 increased increased tripartite motif-containing 73
ZFAND2A (AIRAP) increased increased zinc finger, AN1-type domain 2A
ZNF260 increased increased zinc finger protein 260
ZNF420 increased increased zinc finger protein 420



Appendix 11: List of genes differentially regulated by BLIMP1α and LMP1 in GC B cells

 

BLIMP1 LMP1 full name

IGHM (MU) increased decreased immunoglobulin heavy constant mu
PTPN7 increased decreased protein tyrosine phosphatase, non-receptor type 7
C3orf37 increased decreased chromosome 3 open reading frame 37
FLJ20186 increased decreased hypothetical protein FLJ20186 
RASSF6 increased decreased Ras association (RalGDS/AF-6) domain family 6
SAT1 increased decreased spermidine/spermine N1-acetyltransferase 1
ZBP1 increased decreased Z-DNA binding protein 1
CCDC88A increased decreased coiled-coil domain containing 88A
CENTD2 (ARAP1)increased decreased centaurin, delta 2
EHBP1L1 increased decreased EH domain binding protein 1-like 1
GAPDH increased decreased
IGHA1 (IgA) increased decreased immunoglobulin heavy constant alpha 1
KIAA1618 increased decreased
KIAA1833 increased decreased hypothetical protein KIAA1833 
LONP2 increased decreased lon peptidase 2, peroxisomal
MGC29506 increased decreased
MTG1 (GTP) increased decreased mitochondrial GTPase 1 homolog (S. cerevisiae)
MYO9B increased decreased myosin IXB
NLRP1 increased decreased NLR family, pyrin domain containing 1
OASL increased decreased 2'-5'-oligoadenylate synthetase-like
PCGF3 (RNF3) increased decreased polycomb group ring finger 3
PDCD4 increased decreased programmed cell death 4 (neoplastic transformation inhibitor)
PRIC285 increased decreased peroxisomal proliferator-activated receptor A interacting complex 285
PTPRS increased decreased protein tyrosine phosphatase, receptor type, S
SLC44A2 increased decreased solute carrier family 44, member 2
SOX4 increased decreased SRY (sex determining region Y)-box 4
TMEM142B increased decreased transmembrane protein 142B
WDR61 increased decreased WD repeat domain 61
C4orf34 decreased increased chromosome 4 open reading frame 34
COCH decreased increased coagulation factor C homolog, cochlin (Limulus polyphemus)
LACTB decreased increased lactamase, beta
ALCAM decreased increased activated leukocyte cell adhesion molecule
ANKRD10 decreased increased ankyrin repeat domain 10
BCAT1 decreased increased branched chain aminotransferase 1, cytosolic
BCL2A1 decreased increased BCL2-related protein A1
CCL22 decreased increased chemokine (C-C motif) ligand 22

CD80 decreased increased CD80 molecule
CD86 decreased increased CD86 molecule
CEP135 decreased increased centrosomal protein 135kDa
CIITA decreased increased class II, major histocompatibility complex, transactivator
DDEF1 decreased increased development and differentiation enhancing factor 1
FAM49A decreased increased family with sequence similarity 49, member A
FNBP1 decreased increased formin binding protein 1
HECTD2 decreased increased HECT domain containing 2
IRF2BP2 decreased increased interferon regulatory factor 2 binding protein 2
KSR1 decreased increased kinase suppressor of ras 1
KYNU decreased increased kynureninase (L-kynurenine hydrolase)
MCOLN2 decreased increased mucolipin 2
NAP1L1 decreased increased nucleosome assembly protein 1-like 1
NDE1 decreased increased nudE nuclear distribution gene E homolog 1 (A. nidulans)
PLAGL1 (ZAC, LOT)decreased increased pleiomorphic adenoma gene-like 1
PRRG4 decreased increased proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane)
PTGER4 decreased increased prostaglandin E receptor 4 (subtype EP4)
RFX5 decreased increased regulatory factor X, 5 (influences HLA class II expression)
RUFY3 decreased increased RUN and FYVE domain containing 3
TFDP1 (DP1) decreased increased transcription factor Dp-1
TJP2 decreased increased tight junction protein 2 (zona occludens 2)



Appendix 12: List of genes down-regulated by BLIMP1α and LMP1 in GC B cells 

 

BLIMP1 LMP1 full name

ALOX5 decreased decreased arachidonate 5-lipoxygenase
ATP8A1 decreased decreased ATPase, aminophospholipid transporter (APLT), Class I, type 8A, member 1
BCL11A decreased decreased B-cell CLL/lymphoma 11A (zinc finger protein)
ITPR2 (IP3R2 )decreased decreased inositol 1,4,5-triphosphate receptor, type 2
LPP decreased decreased LIM domain containing preferred translocation partner in lipoma
LRMP (JAW1) decreased decreased lymphoid-restricted membrane protein
MEF2C decreased decreased myocyte enhancer factor 2C
MS4A1 (CD20)decreased decreased membrane-spanning 4-domains, subfamily A, member 1 CD20
PRKCB1 decreased decreased protein kinase C, beta 1
STX7 decreased decreased syntaxin 7
SYPL1 decreased decreased synaptophysin-like 1
VNN2 decreased decreased vanin 2
ZNF85 decreased decreased zinc finger protein 85
CYP1B1 decreased decreased cytochrome P450, family 1, subfamily B, polypeptide 1
MAD2L1 decreased decreased MAD2 mitotic arrest deficient-like 1
PIGF decreased decreased phosphatidylinositol glycan anchor biosynthesis, class F
SMARCA2 decreased decreased SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2
B3GALNT1 decreased decreased beta-1,3-N-acetylgalactosaminyltransferase 1
BCL6 decreased decreased B-cell CLL/lymphoma 6 (zinc finger protein 51)
BRWD1 decreased decreased bromodomain and WD repeat domain containing 1
CASC5 decreased decreased cancer susceptibility candidate 5
DCK decreased decreased deoxycytidine kinase
DHRS9 decreased decreased dehydrogenase/reductase (SDR family) member 9
DNAJC10 decreased decreased DnaJ (Hsp40) homolog, subfamily C, member 10
ELL3 decreased decreased elongation factor RNA polymerase II-like 3
ETS1 decreased decreased v-ets erythroblastosis virus E26 oncogene homolog 1 (avian)
FCRL1 decreased decreased Fc receptor-like 1
FCRL2 decreased decreased Fc receptor-like 2
HS2ST1 decreased decreased heparan sulfate 2-O-sulfotransferase 1
KLHL5 decreased decreased kelch-like 5 (Drosophila)
KLHL6 decreased decreased kelch-like 6 (Drosophila)
MAP4K4 decreased decreased mitogen-activated protein kinase kinase kinase kinase 4
MCTP2 decreased decreased multiple C2 domains, transmembrane 2
NAPSB decreased decreased napsin B aspartic peptidase pseudogene
NCOA3 (TRAM1)decreased decreased nuclear receptor coactivator 3
ANXA4 decreased decreased annexin A4

STAT1 decreased decreased signal transducer and activator of transcription 1, 91kDa
ACAA2 decreased decreased acetyl-Coenzyme A acyltransferase 2 (mitochondrial 3-oxoacyl-Coenzyme A thiolase)
AKAP2 decreased decreased PALM2-AKAP2 protein 
AMIGO2 decreased decreased adhesion molecule with Ig-like domain 2
ANAPC4 decreased decreased anaphase promoting complex subunit 4
AP2B1 decreased decreased adaptor-related protein complex 2, beta 1 subunit
ARMC1 decreased decreased armadillo repeat containing 1
ATAD2 decreased decreased ATPase family, AAA domain containing 2
BICD1 decreased decreased bicaudal D homolog 1 (Drosophila)
BMP7 decreased decreased bone morphogenetic protein 7
BMPR2 decreased decreased bone morphogenetic protein receptor, type II (serine/threonine kinase)
BPTF decreased decreased bromodomain PHD finger transcription factor
C14orf142 decreased decreased chromosome 14 open reading frame 142
C14orf143 decreased decreased chromosome 14 open reading frame 143
C14orf145 decreased decreased chromosome 14 open reading frame 145
C15orf41 decreased decreased chromosome 15 open reading frame 41
C1orf80 decreased decreased chromosome 1 open reading frame 80
C20orf19 decreased decreased chromosome 20 open reading frame 19
C5orf33 decreased decreased chromosome 5 open reading frame 33
C9orf64 decreased decreased chromosome 9 open reading frame 64
CBX1 decreased decreased chromobox homolog 1 (HP1 beta homolog Drosophila )



 

BLIMP1 LMP1 full name

CCDC109B decreased decreased coiled-coil domain containing 109B
CCDC128 decreased decreased coiled-coil domain containing 128
CCDC131 decreased decreased coiled-coil domain containing 131
CCDC88A decreased decreased coiled-coil domain containing 88A
CCDC98 decreased decreased coiled-coil domain containing 98
CCNG1 (cyclin G1)decreased decreased cyclin G1
CD164 decreased decreased CD164 molecule, sialomucin
CDC2 (CDK1) decreased decreased cell division cycle 2, G1 to S and G2 to M
CDC7 decreased decreased cell division cycle 7 homolog (S. cerevisiae)
CDCA7 decreased decreased cell division cycle associated 7
CDV3 decreased decreased CDV3 homolog (mouse)
CLCC1 decreased decreased chloride channel CLIC-like 1
COMMD10 decreased decreased COMM domain containing 10
CSTF2 decreased decreased cleavage stimulation factor, 3' pre-RNA, subunit 2, 64kDa
DECR1 decreased decreased 2,4-dienoyl CoA reductase 1, mitochondrial
DHFR decreased decreased dihydrofolate reductase
DLD decreased decreased dihydrolipoamide dehydrogenase
DMD decreased decreased dystrophin
DOCK9 decreased decreased dedicator of cytokinesis 9
EBPL decreased decreased emopamil binding protein-like
EGLN1 decreased decreased egl nine homolog 1 (C. elegans)
EIF4E2 decreased decreased eukaryotic translation initiation factor 4E family member 2
ENDOGL1 decreased decreased endonuclease G-like 1
ENPP5 decreased decreased ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative function)
EXOC5 decreased decreased exocyst complex component 5
FAM129C decreased decreased family with sequence similarity 129, member C
FAM135A decreased decreased family with sequence similarity 135, member A
FAM72A decreased decreased family with sequence similarity 72, member A
FAM82A decreased decreased family with sequence similarity 82, member A
FAM91A2 decreased decreased family with sequence similarity 91, member A2
FBXO22 decreased decreased F-box protein 22
FBXO7 decreased decreased F-box protein 7
FCRLA decreased decreased Fc receptor-like A
FLJ32312 decreased decreased coiled-coil domain containing 139
FLJ90709 decreased decreased hypothetical protein FLJ90709
FUNDC1 decreased decreased FUN14 domain containing 1

GALNT12 decreased decreased UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 12 (GalNAc-T12)
GMNN decreased decreased geminin, DNA replication inhibitor
HAT1 decreased decreased histone acetyltransferase 1
HDAC4 decreased decreased histone deacetylase 4
HERC4 decreased decreased hect domain and RLD 4
HNRPD decreased decreased heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa)
HPS3 decreased decreased Hermansky-Pudlak syndrome 3
HSD17B6 decreased decreased hydroxysteroid (17-beta) dehydrogenase 6 homolog (mouse)
IDH1 decreased decreased isocitrate dehydrogenase 1 (NADP+), soluble
IFT80 decreased decreased intraflagellar transport 80 homolog (Chlamydomonas)
IGF2BP3 decreased decreased insulin-like growth factor 2 mRNA binding protein 3
IKZF1 (IKAROS)decreased decreased IKAROS family zinc finger 1 (Ikaros)
INPP5B decreased decreased inositol polyphosphate-5-phosphatase, 75kDa
ITGB1 (CD29) decreased decreased integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12)
ITGB3BP decreased decreased integrin beta 3 binding protein (beta3-endonexin)
ITPR1 decreased decreased inositol 1,4,5-triphosphate receptor, type 1
JAK2 decreased decreased Janus kinase 2 (a protein tyrosine kinase)
KIAA0672 decreased decreased Rho-type GTPase-activating protein RICH2
KIAA1815 decreased decreased endoplasmic reticulum metallopeptidase 1
KIAA1913 decreased decreased
KIF23 decreased decreased kinesin family member 23



 

 

BLIMP1 LMP1 full name

KIF4A decreased decreased kinesin family member 4A
KMO decreased decreased kynurenine 3-monooxygenase (kynurenine 3-hydroxylase)
LAP3 decreased decreased leucine aminopeptidase 3
LMNB1 decreased decreased lamin B1
LOC116143 decreased decreased WD repeat domain 92
LOC220930 decreased decreased
LOC641845 decreased decreased
LOC731292 (PTEN) decreased decreased phosphatase and tensin homolog (mutated in multiple advanced cancers 1)
LRBA decreased decreased LPS-responsive vesicle trafficking, beach and anchor containing
LYN decreased decreased v-yes-1 Yamaguchi sarcoma viral related oncogene homolog
MAP4K5 decreased decreased mitogen-activated protein kinase kinase kinase kinase 5
MDM1 decreased decreased Mdm4, transformed 3T3 cell double minute 1, p53 binding protein (mouse)
MFAP3 decreased decreased microfibrillar-associated protein 3
MFN1 decreased decreased mitofusin 1
MIA3 decreased decreased
MKI67 (Ki67) decreased decreased antigen identified by monoclonal antibody Ki-67
MNS1 decreased decreased meiosis-specific nuclear structural 1
MRE11A decreased decreased MRE11 meiotic recombination 11 homolog A (S. cerevisiae)
MSH2 decreased decreased mutS homolog 2, colon cancer, nonpolyposis type 1 (E. coli)
MUTED decreased decreased muted homolog (mouse)
NCOA4 decreased decreased nuclear receptor coactivator 4
NFU1 decreased decreased NFU1 iron-sulfur cluster scaffold homolog (S. cerevisiae)
OCC-1 decreased decreased overexpressed in colon carcinoma-1
PARP15 (BAL)decreased decreased poly (ADP-ribose) polymerase family, member 15
PGM2 decreased decreased phosphoglucomutase 2
PHF14 decreased decreased PHD finger protein 14
PPP2R3C decreased decreased protein phosphatase 2 (formerly 2A), regulatory subunit B'', gamma
PPP2R5E decreased decreased protein phosphatase 2, regulatory subunit B', epsilon isoform
PRKAR2B decreased decreased protein kinase, cAMP-dependent, regulatory, type II, beta
PRUNE decreased decreased prune homolog (Drosophila)
PTEN decreased decreased phosphatase and tensin homolog (mutated in multiple advanced cancers 1)
PTK2 decreased decreased PTK2 protein tyrosine kinase 2
RAB14 decreased decreased RAB14, member RAS oncogene family
RAB18 decreased decreased RAB18, member RAS oncogene family
RAC1 decreased decreased ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1)
RANBP6 decreased decreased RAN binding protein 6

RASA1 decreased decreased RAS p21 protein activator (GTPase activating protein) 1
RBM35B decreased decreased RNA binding motif protein 35B
RECQL5 decreased decreased RecQ protein-like 5
RFC1 (A1) decreased decreased replication factor C (activator 1) 1, 145kDa
RGS16 decreased decreased regulator of G-protein signalling 16
RP2 decreased decreased retinitis pigmentosa 2 (X-linked recessive)
RRM1 decreased decreased ribonucleotide reductase M1 polypeptide
RTCD1 decreased decreased RNA terminal phosphate cyclase domain 1
SCP2 decreased decreased sterol carrier protein 2
SEC23IP decreased decreased SEC23 interacting protein
SERPINB1 decreased decreased serpin peptidase inhibitor, clade B (ovalbumin), member 1
SETD2 (HIF-1) decreased decreased SET domain containing 2
SETX decreased decreased senataxin
SH3BGRL decreased decreased SH3 domain binding glutamic acid-rich protein like
SKAP2 decreased decreased src kinase associated phosphoprotein 2
SLC7A6 (LAT3)decreased decreased solute carrier family 7 (cationic amino acid transporter, y+ system), member 6
SNTB2 decreased decreased syntrophin, beta 2 (dystrophin-associated protein A1, 59kDa, basic component 2)
SNX10 decreased decreased sorting nexin 10
SNX3 decreased decreased sorting nexin 3
SOAT1 decreased decreased sterol O-acyltransferase (acyl-Coenzyme A: cholesterol acyltransferase) 1
TBC1D5 decreased decreased TBC1 domain family, member 5



 

 

 

 

 

 

 

 

 

BLIMP1 LMP1 full name

TCEAL8 decreased decreased transcription elongation factor A (SII)-like 8
TCF19 decreased decreased transcription factor 19 (SC1)
TCP11L1 decreased decreased t-complex 11 (mouse)-like 1
TMF1 decreased decreased TATA element modulatory factor 1
TNFSF10 decreased decreased tumor necrosis factor (ligand) superfamily, member 10
TOP2A (Apo-2L)decreased decreased topoisomerase (DNA) II alpha 170kDa
TOPBP1 decreased decreased topoisomerase (DNA) II binding protein 1
TPK1 decreased decreased thiamin pyrophosphokinase 1
TRIM5 decreased decreased tripartite motif-containing 5
TRIOBP decreased decreased TRIO and F-actin binding protein
TYMS decreased decreased thymidylate synthetase
UBE1L2 decreased decreased ubiquitin-activating enzyme E1-like 2
UCHL5 decreased decreased ubiquitin carboxyl-terminal hydrolase L5
VTA1 decreased decreased Vps20-associated 1 homolog (S. cerevisiae)
WDHD1 decreased decreased WD repeat and HMG-box DNA binding protein 1
WDR32 decreased decreased WD repeat domain 32
WDR41 decreased decreased WD repeat domain 41
WIPF1 decreased decreased WAS/WASL interacting protein family, member 1
XRN1 decreased decreased 5'-3' exoribonuclease 1
ZMYND8 decreased decreased zinc finger, MYND-type containing 8
ZNF397 decreased decreased zinc finger protein 397
ZNF404 decreased decreased zinc finger protein 404
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