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ABSTRACT 

The fields of DNA chemistry and electrochemical sensing were combined in an attempt to 

synthesise a ferrocene modified nucleobase, which could replace two nucleotides in a DNA 

sequence. 

 

Two modified ferrocene monomers were attempted to be incorporated into oligonucleotide 

strands, using solid state phosphoramidite DNA synthesis techniques, and characterised using 

MALDI-ToF Mass Spectrometry. CD and Tm studies were also carried out.  

 

Synthesis of a modified ferrocene, with two functional groups on each of the cyclopentadienyl 

rings (four in total) was attempted, using a protected alcohol, to allow the necessary 

functionalisation for a ferrocene nucleobase.   

 

Progress was made towards synthesising a precursor of the ferrocene nucleobase, using a 

procedure for the preparation of a chiral bis-amine. 
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1 INTRODUCTION 
 

 

Ferrocene can be (simply) defined as: 

An “iron sandwich,” in which the iron is the filling and the slices of bread are the aromatic cyclopentadienyl rings 

- Geoffrey Wilkinson 

1.1 Background 

 
Ferrocene was first discovered in 1951 (called dicyclopentadienyl iron) and reported 

separately by the groups of Kealy and Pauson (who published the first paper on it)1 and 

Miller, Treboth and Tremaine.2 It was the first of the metallocenes to be synthesised. The 

structure was identified as a so called “sandwich” compound in 1952 by Fischer (from 

preliminary X-Ray data)3 and by Wilkinson (using IR data and diamagnetism),4 who 

proposed calling the compound ferrocene. It was hypothesised that the cyclopentadienyl (Cp) 

rings of the ferrocene had aromatic character and sat above and below the iron atom. This 

proposed structure was confirmed by X-Ray Crystallography by Orgel and Dunitz,5 Eiland 

and Repinsky6 and Moffitt.7 It also became apparent that there was indeed aromaticity in the 

compound when aromatic electrophilic substitution reactions, such as Friedel-Crafts 

acylation, were successfully carried out.8 In the solid state, the Cp rings were found to be most 

stable in the anti-prismatic or staggered form, unlike the other metallocenes of the same group 

(osmocene and ruthocene), which sit in the prismatic, or eclipsed conformation (Figure 1). It 

has been suggested that this is because there is a smaller distance between the cp rings in 

ferrocene and therefore more interannular repulsion. The staggered form allows the non-

bonded interactions between heteroannular carbons to be minimised.9 However, the energy 
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barrier for rotation of the rings is very low and so they may rotate freely around the five-fold 

symmetry axis (allowing for both eclipsed and staggered forms to be observed).   

 

 

Figure 1. Ferrocene in the staggered (left) and eclipsed (right) forms 

 

The Cp rings are parallel plane regular pentagons and held together by sp2 σ- bonds, which 

are slightly bent. The C 2p orbitals can form molecular orbitals extending around the ring 

(delocalisation), which can then be involved in π- bonding to the metal.  

 

Ferrocene is remarkably stable for an organometallic substance: with heating up to 470 °C 

and to acids and alkalis,10 which was unprecedented at the time of discovery (it had been 

typically thought that transition metals would not form stable bonds to hydrocarbons). This 

stability is attributed to the aromaticity of the Cp rings. There are six electrons in the π-

orbitals of each ring, thus giving aromatic character (as in benzene). The iron atom in 

ferrocene is considered to be in the +2 oxidation state, and the Cp rings assumed to carry a 

single negative charge each, giving them six electrons per ring. This brings the total electron 

count to 18 (krypton noble gas configuration), which contributes to the stability and accounts 

for the diamagnetic behaviour. The Cp rings can be said to occupy three co-ordination sites of 

the iron atom, and this allows for octahedral geometry.11   

 

F e F e 
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The iron atom is bonded to the Cp via its d-orbitals and the π-orbitals on the rings. The C-H 

bonds appear as a singlet stretch in the IR spectrum, which indicates that they are all 

equivalent, as in benzene. This means that there are no carbon-carbon double bonds, as there 

would be in cyclopentadienyl, which can also be seen in the C-C bond lengths, which are all 

1.40 Å.11 

 

 It can be seen that ferrocene has some interesting properties; indeed, it is still a much-studied 

molecule and earned the people who first elucidated the structure a Nobel Prize.12 In 

particular, it has some interesting and useful redox chemistry; the iron atom can be oxidised 

from the +2 to +3 state in a reversible one electron transfer process. The blue cation is known 

as a ferricenium ion.13 

 

1.2 Ferrocene in Biology and Medicine 

 

As it is so stable in such varied conditions, ferrocene can be used for such varied purposes as 

electrochemical sensing, polymers and materials, in the field of medicine and as catalysts for 

organic reactions.  Its stability in aqueous, aerobic media and the large number of derivatives 

that are easily accessible has prompted speculation about the potential for biological 

applications, and the field of bioorganometallic chemistry has flourished in recent years.14 

 

It is thought that derivatives of ferrocene could be used in the treatment of various diseases, 

including malaria (ferroquine, currently in clinical trials)15 and cancer (anti-tumour agents,16 

such as an analogue of tamoxifen).17  
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Another area in which ferrocene could be utilised is in biomolecule sensing. It is desirable to 

undertake biomolecule sensing in order to make detection and understanding of problems in 

the body more simple and effective, which would allow them to be treated earlier and more 

successfully. An example of this is the detection of glucose to monitor blood sugar levels in 

diabetics with glucose sensors.12 The more accurate the sensor, the earlier a problem can be 

detected, and the greater the control the patient has over their condition. Attaching ferrocene 

to proteins, or DNA would allow defects in their make up to be identified and the molecule 

could be tracked by electrochemical sensing to study binding. This could lead to a better 

understanding of genetic defects, as well as practical uses in monitoring bodily processes, as 

described above.  

 

1.3 The Structure and Properties of DNA 

 

DNA is a polyanionic double helix, consisting of two polymeric strands (Figure 2). 

 

 

Figure 2. B DNA – the most common form encountered. 

Taken From http://commons.wikimedia.org/wiki/Image:A-DNA,_B-DNA_and_Z-DNA.png 
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 Each strand consists of repeating units called nucleotides and runs in either the 3’ or 5’ 

(numbering of carbons of the sugar) direction. The nucleotides are composed of a 2-

deoxyribose sugar, covalently linked to a negatively charged phosphate group, which 

connects the sugars, acting as a backbone, and a pyrimidine or purine derived base, also 

attached to the sugar. There are four bases available for attachment to the sugar and they form 

complementary hydrogen bonds to bases on another strand to give the familiar two stranded 

duplex (Figure 3). These bases are Adenine, Cytosine, Thymine and Guanine (A, C, T and G).  

 

 

Figure 3. The purine bases A and G and the respective nucleotides (left) and pyrimidines C and T with 

respective nucleotides. 

 

A is complementary to T, forming two hydrogen bonds, and C to G, forming three hydrogen 

bonds (Figure 4). G and A are purines with two heterocyclic rings (one five-membered and 

one six-membered) and C and T are pyrimidines, with a six membered heterocyclic ring 

structure.  
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Figure 4. Non-covalent bonding in the DNA base pairings CG and AT 

 

As well as interacting across the strands, the bases also engage in base stacking behaviour, 

with the rings all lying with the flat faces parallel to each other. As the bases consist of 

aromatic rings, non-covalent π-π interactions can occur, adding to the stability of the duplex.  

 

The spacing between the stacking base pairs in B-DNA (the right handed helix most 

commonly encountered) is 3.4 Å, with ten base pairs per helical turn.18   

 

1.4 DNA Sensing 

 

There has been much research aimed at sensing defects in DNA in recent years. This is 

because it is thought that the ability to detect the likelihood of inheriting certain diseases 

could lead to a more personalised healthcare plan, which in turn could increase the probability 
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of a successful outcome to any treatment. This has been very much in the public 

consciousness recently, with geneticists discovering genes that contribute towards the 

susceptibility of an individual to certain health problems, such as heart disease, or of their 

tolerance to certain therapeutic drugs. 

 

Molecular sensors rely on a specific recognition event to detect the desired target and give a 

measurable signal. Thus, the most important things to include in design of biosensors are a 

molecular recognition layer and a signal transducer, which can be coupled to an appropriate 

readout device.19  

 

The previously mentioned redox properties of ferrocene (section 1.1) have been utilised for 

electrochemical sensing purposes with respect to DNA; conjugating ferrocene with 

oligonucleotides to detect genetic mutations, as elaborated below, is a much researched area. 

The mutations that could be investigated include deletions (removal of a base), insertions 

(extra bases on the DNA strand) or polymorphisms (replacement of one base with another), 

the presence of which can result in diseases which can markedly affect quality of life. 

 

Single Nucleotide Polymorphisms (SNPs) are the most common type of mutation, and 

identification of these may help to locate particular disease risk factors, such as heart disease 

or diabetes in individuals. This in turn could lead to personalised medical care, dependent on 

genetics. SNPs can also be a direct cause of genetic disorders. Examples include cystic 

fibrosis (CF), where the mutation (of which many, including polymorphisms, can cause the 

disease) causes misfolding of protein channels which carry chloride ions across cell 

membranes20 and thalassemia, which alters the red blood cells in the body, making them less 
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able to take up iron.21 If the mutations can be detected, then in theory a method of treatment 

can be evolved.  

 

There are various methods, either utilising enzymes or not, that can be used to determine 

whether any genetic mutations are present.22 The design of techniques to detect mutations can 

be approached from the biology or chemistry standpoint. Much of the research being done 

from a chemical, as opposed to biological, perspective utilises fluorescent and electrochemical 

methods. Many of these are based on the fact that bonding of the complementary base pairs 

between the DNA strands is very stable. The complementary base pairs hold the two strands 

of DNA together, to make the familiar duplex structure (As seen in Figure 2 and described 

above). If the complementary base is replaced by a non-complementary one, the bonding in 

the duplex is different and a change in signal from whatever type of sensor is being used can 

be observed, although some of the mismatches are only a little less stable than the 

complementary pair. The stability of the DNA is measured by studying the melting 

temperature (Tm) of the duplex. The less stable the DNA (with fewer non-covalent 

interactions), the lower the Tm.  

 

There are numerous ways of detecting mismatches electrochemically. One example involves 

disruption of base stacking in DNA, which in turn reduces the efficiency of charge transport 

through the DNA, giving a reduced signal.23 There are five main types of electrochemical 

sensing platforms. These are direct DNA electrochemistry, indirect DNA electrochemistry, 

DNA-specific redox indicator detection, nanoparticle-based electrochemistry amplification 

and DNA-mediated charge transport.19  
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The advantages of using an electrochemical sensor are that they are inexpensive (due to being 

conducted on a variety of electrode substrates), easy to use and very sensitive (to femtomole 

concentrations). This is especially true if a fully digital “on-off” signal response can be 

engineered. The fluorescence based optical devices are also very sensitive  and allow parallel 

analysis of target DNA sequences, but are rather expensive techniques, which require 

numerical algorithms to interpret the data, possibly limiting the methods to use in research.14   

 

The end aim is to have a “lab-on-a-chip” device, with an array of electrodes. This has already 

been established with fluorescence techniques, and is being researched as regards 

electrochemical methods. There is currently a 14 microelectrode disposable chip being 

developed, based on thiolated capture probes and gold microelectrodes.14   

 

The idea behind having a lab on a chip is to have many ferrocene probes clustered together 

onto a single surface to create something akin to a microchip, which can be used in 

diagnostics for quick, simple and effective DNA testing. For this to be as simple as possible, 

the detection methods need to be very sensitive, so that amplification of the DNA (by PCR) is 

not required beforehand. The results must also be reproducible, and ideally analysed in 

biological media, as this is where DNA in its native state is found. 

 

1.5 Ferrocene and DNA Sensing 

 

Conjugation of ferrocene derivatives to DNA is a relatively immature field, compared to that 

of protein and amino acid conjugation with ferrocene, but it is one that has the potential to 
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produce accurate and simple gene sensors. This could allow mutations on DNA to be 

detected, which would indicate the presence of inherited diseases.14  

 

Of the five methods mentioned above for electrochemically detecting mismatches, two 

involve using the electrochemical properties of DNA, one tagging the DNA with a redox 

active molecule, one uses nanoparticles and the last an intercalator. The intercalator attaches 

to the duplex via the major or minor groove, but the ferrocene moiety is not used to tag the 

DNA sequence, like the redox indicator type sensor.  

 

A direct DNA sensor utilises the electrochemical properties of guanine (it can be 

electrochemically oxidised).24 However, these require high potentials, and as such, give a high 

background current.  

 

Indirect sensors use electrochemical mediators, such as polypyridyl ruthenium and osmium 

complexes. In this method, the reduced metal complexes are oxidised and then come into 

contact with the purine DNA bases, which can reduce the complex. The signal shows how 

much guanine is available for oxidation.19 

 

The ferrocene can be incorporated by attachment of a functionalised molecule to a nucleotide, 

which is then integrated into an oligonucleotide strand. This is also known as a hybridisation 

assay (Figure 5). The modified nucleotide generally attaches at the end of the DNA strand 

(probe or target) by solid state reactions or Polymerase Chain Reactions (PCR).25 This is a 

DNA-specific redox indicator type sensor, an early example of which is seen in the work of 

Ihara and colleagues from 1996.26 This particular sensor had a sensitivity of femtomolar 

concentrations to DNA and RNA strands.  
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Figure 5.  Example of a hybridisation assay of a 15-mer oligonucleotide.  

Taken From:  http://www.iom-berlin.de/html/eng/produkte/reader/2.04.1.4-nanoscan.htm  

 

Another variation of this detection method is the “sandwich assay,” using three DNA strands. 

Here, a capture probe is immobilised onto a gold surface, and the target DNA will only bind if 

the complementary DNA sequence is present. The target DNA possesses a sequence 

complementary to that of the ferrocene probe. This gives a ferrocene labelled target DNA. If 

the target binds to the immobilised probe, the ferrocene is brought in close proximity to the 

electrode and is oxidised, giving a significant peak, as shown by Figure 6. A mismatch results 

in weaker binding, and a smaller peak is observed. This is because there are fewer ferrocene 

molecules being held close to the electrode.14 The redox label is attached to a synthetic 

sequence designed to bind an overhanging section of the probe-target sequence.19  

 



 

 12 

 

Figure 6. Schematic of a sandwich assay, as used in an IVD technology eSensor microarray. 

Taken From: www.devicelink.com/ivdt/archive/08/05/007.html 

 

Nanoparticle amplification involves depositing silver metal onto gold nanoparticles to amplify 

an electrical signal. A sandwich assay may be carried out to recruit the gold nanoparticles to a 

magnetic bead by means of the target DNA. Silver can then be deposited. However, this 

method destroys the sample and requires many development steps. Reliability can also be an 

issue, although this is a very sensitive technique and could be suited to identifying more than 

one target strand simultaneously.19 

 

Alternatively, a hybridisation indicator, or intercalator (DNA-mediated charge transport 

sensor), can be used, which contains the ferrocene molecule. The intercalator will be a 

molecule which, binds preferentially to double stranded DNA. This means that it will bind to 

the dsDNA formed from complementary strands of DNA (one strand containing the probe) 



 

 13 

without mismatches more often than to single strands. An example of this is the 

ferrocenylnaphthalene diimide threading intercalator from the group of Takenaka,27,28 which 

binds much more quickly and strongly  to a duplex than to a single strand (Figure 7).  

 

 

Figure 7. Example of a ferrocenylnaphthalene diimide intercalator28.  

 

The intercalators are sequence independent, and so can be used for a variety of 

oligonucleotides. 

 

An electrochemical sensor consists of the sensing molecule, in this case ferrocene, 

incorporated into a known sequence of nucleotides to form a modified oligonucleotide. This 

strand is called a capture probe, and will interact with the strand of DNA that is being 

investigated (the target), as shown in Figure 8. 
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Figure 8. Schematic of electrochemical sensing of matched and mismatched ferrocene modified oligonucleotide 

sequences on a gold electrode surface29.  

 

The first reports of ferrocene incorporated into DNA were solution phase sensors. A ferrocene 

with a flexible linker was attached to the 5’ end of an oligonucleotide, which in turn was 

hybridised to a complementary oligonucleotide strand, and this electrochemically active 

double stranded (ds) DNA was detected using HPLC-ECD.14   

 

The ferrocene gene sensors currently being studied are generally supported on a surface, or 

hybridised to an unmodified oligonucleotide strand, which is attached to a solid surface. This 

allows the redox response of the ferrocene group to be easily detected.25 The immobilisation 

process is important, as this will, to some extent, affect the reproducibility, sensitivity and 

selectivity of the sensor. As hybridisation of the probe and target occurs, both must be able to 

coil around each other, so the immobilisation of the probe must allow some configurational 

freedom for this to happen.24 
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 The probe is generally immobilised onto a gold surface via a thiol linkage. The first group to 

immobilise the ferrocene on a gold surface created a ferrocenyl amidite, which was coupled to 

a thymidine modified controlled pore glass bead. This was followed by a 14 thymidine strand 

attached to the monomer and a thiol modified (on the 3’ end) monomer, which was adsorbed 

onto a gold surface. Gold is a good surface for adsorption of monolayers, because it can be 

made atomically flat and adsorption of thiols onto gold surfaces is a very well researched 

process. Gold can also be used as an electrode to characterise the redox active DNA strands.30  

 

The gold electrode surface can also be coated with a self assembled monolayer, consisting of 

the DNA capture probes, which allows electron transfer between the immobilised ferrocenes 

and the gold surface.31 This can be seen in Figure 7. 

 

All of the probes modelled on ferrocene are amperometric (they function by measuring the 

current associated with the oxidation of ferrocene at a constant potential) 

 

1.6 Metal-based DNA Constructs 

 

As well as investigating the possibilities of ferrocene electrochemical sensors, we have 

become interested in the possibility of extending the theory of attaching a ferrocene moiety 

onto a strand of DNA, to fully incorporating one into the structure of the DNA helix. This 

would allow mismatch sensing to take place and could also facilitate construction of DNA 

nanoarchitectures or molecular electronic devices based on DNA. The redox properties of 
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ferrocene point to the prospect of facilitating charge transport through DNA, potentially even 

making the theory of DNA based molecular wires possible. 

 

 There are already examples of metals incorporated into oligonucleotides, for a number of 

purposes. Metals have been covalently attached to oligonucleotides for energy transfer, 

electron transfer through DNA, construction of synthetic endonucleases and as nodes for the 

assembly of artificial DNA constructs.32 

 

There are numerous examples of metals co-ordinating to base pairs, the first suitable ligand 

(palladium) being reported in 1999 by Tanaka and Shionoya for metal assisted base pairing.33 

More recently, mixed metal stacks have been demonstrated, with up to ten metal atoms per 

duplex.32 

 

Mercury can bind to thymine and form T-Hg-T mismatches, with inter- and intrastrand 

crosslinks, sitting in the centre of the duplex (Figure 9). Initially, only three mercury ions 

could be inserted into the duplex. Other divalent ions that may form complexes include zinc, 

cobalt and nickel.32 

 

As yet, there are no examples of a ferrocene molecule with suitably appended DNA bases 

being incorporated into the backbone of DNA, although attachment of ferrocenes to DNA is 

fairly common (as described in the previous section), with the closest examples seen in the 

work of Brisset.34 
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Figure 9. Example of a T-Hg-T base pair, with multiple mercury atoms incorporated into the duplex32. 

 

Work by Inouye and Takase35 from 2001 shows the functionalisation of the two ferrocene Cp 

rings with diaminopyridine moieties, which can then bind non-covalently to a thymine based 

dinucleotide (Figure 10). The diamino pyridine moieties were coupled to the ferrocene via an 

iodine on each Cp. This work shows that such modified ferrocenes can be complexed to 

nucleotides in a fashion reminiscent of complementary base pairing in DNA. 

 

It was noted in this publication that the distance between the ferrocene Cp rings was 0.33 nm. 

This is very similar to the distance between base pairs in a B DNA strand (as mentioned in 

section 1.3), giving the idea that a suitably functionlaised ferrocene might replace two DNA 

bases in the helix.  
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Figure 10. Ferrocenes with diaminopyridine moieties attached to a thymine based dinucleotide35.  

 

In addition, A. E. Beilstein and M. W. Grinstaff synthesised an oligonucleotide with ferrocene 

attached to uridine (the RNA replacement for T) or adenosine in the centre of the strand as 

tagging molecules,36 showing the possibilities of incorporating ferrocene modified bases into 

DNA and Yu et al. attached a ferrocene to a deoxyribose sugar nucleotide (A and C) via a 

butoxy linkage.37 

 

1.7 DNA synthesis 

 
Many of the examples given in this section use automated DNA synthesis techniques to 

incorporate the ferrocene derivatives that have been synthesised into an oligonucleotide 

strand. The most commonly used automated DNA synthesis technique is that using 

phosphoramidite chemistry, as developed by Caruthers and McBride.38 This has replaced 

older methods, as it requires less particular conditions.  

 

The generic DNA synthesis cycle is shown below (Figure 11).  
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Figure 11. General DNA synthesis cycle. Image courtesy of Dr. J. Vyle, Chemistry Department, Queens 

University Belfast 

 

This modern synthesis takes place on a solid support (controlled pore glass bead, CPG), 

proceeds in the 3’- 5’ direction and uses protected phosphoramidite base monomers (A, C, T, 

G) and tetrazole catalysis. The steps involved in the synthesis of an oligonucleotide are as 

follows: 

Detritylation involves removing the dimethoxytrityl group from the 5’ OH of the first base, 

which is attached to the solid support. 

 

During the coupling stage, the phosphate group of a nucleotide is activated by tetrazole, 

allowing it to couple (by condensation) to the detritylated 5’OH base and form a phosphite 

linkage, which is rather unstable. The tetrazole forms a tetrazolyl phosphoramidite 
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intermediate with the monomer, which reacts with the hydroxyl group, forming a 5’-3’ 

linkage. The use of tetrazole increases the coupling efficiency to greater than 99%. 

 

Capping prevents unreacted nucleotides (coupling failures) from reacting further, by 

attachment of an acetylating protecting group to the unreacted 5’ hydroxyl of the base. The 

column is then washed to remove any excess reagent before the next step in the cycle. 

 

Oxidation stabilises the phosphite linkage between the two bases, converting it into a 

phosphate linkage. This is achieved using iodine as an oxidant. The iodine forms an adduct 

with the phosphite, which can then be decomposed by water, leaving the stable phosphate39. 

 

This sequence of steps is repeated to obtain an oligonucleotide strand of the desired length 

and succession of bases. In the case of the ferrocene phosphoramidite monomers, they were to 

be placed on the end of the sequence and in the middle. Once the desired oligonucleotide has 

been completed, it must be cleaved from the solid support using methylamine, and 

deprotected before being characterised by mass spectrometry.  

 

At this point, it is still possible that there are undesirable by products, such as unreacted base 

monomers, present.  

 

1.8 General and Specific Aims  

The overall aim of this research project was to develop a ferrocene derivative for 

incorporation into DNA via the established method of phosphoramidite solid state DNA 
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synthesis and for use of the resulting redox-active oligomucleotides as sensors for 

mismatched DNA bases.  

 

Figure 12. A standard TT dinucleotide (left) for comparison with the ferrocene nucleotide (right). Image 

courtesy of Dr. J. H. R. Tucker 

 

Initially, the aim was to find a suitable synthetic route that would enable the functionalisation 

of ferrocene in such a way as to facilitate the synthesis of a metallocene nucleobase suitable 

for incorporation into DNA. It was thought that this could be achieved by creating a tetra-

substituted ferrocene derivative (as shown in Figure 12), and one objective was to create a 

synthetic route towards this. 

 

The spacing between the Cp rings is 3.3 Å; sufficiently similar to that of B-DNA for it to 

seem feasible that the stability of the double helix would not be compromised, assuming that 

the normal hydrogen bonds and stacking interactions can take place. Figure 13 is a schematic 

of the DNA strands with the ferrocene nucleotide incorporated, showing the potential for a 

redox triggered hybridisation process.  
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Figure 13. Schematic of the ferrocene nucleotide incorporated into the duplex and the redox-switching 

possibilities. 

 

Figure 14. Computer modelled image of a ferrocene (pictured in green) nucleobase incorporated into DNA with 

functionalisation at the 1 and 2 positions. The sequence from the 5’ end is ATTT. x here is equal to three, and y 

is equal to one, with regards to figure 12. Image courtesy of Dr. T. Walsh, Department of Chemistry, Centre for 

Scientific Computing, University of Warwick 

 

Preliminary computer modelling by Dr. Walsh at Warwick (Figure 14) has shown that the 

TFcT structure above where x = 3 and y = 2  (Figure 12) could be integrated into the B DNA 

duplex structure. The bases and the phosphate groups in the 1 and 2 positions of the rings 
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would provide minimum disruption compared to attachment at the 1 and 3 positions of the cp 

ring. 

 

As the tetra-substituted TFcTstructure is quite complex and would require many synthetic 

steps, it was thought prudent to also attempt to insert simpler disubstituted ferrocene 

derivatives into an oligonucleotide strand to see how feasible the concept was and to readily 

assess the effect of factors such as chain length on DNA stability. As mentioned earlier, some 

researchers have already successfully inserted ferrocene moieties into DNA strands, using 

alkyl chains as spacers between the ferrocene and the phosphate linkage 34. This group did 

not, however introduce any molecules into the middle of the strand, which would be most 

useful for the proposed outcome of this project. This is in contrast to other groups, who have 

attached ferrocene onto (rather than into) DNA strands, as discussed previously (in section 

1.5) with respect to electrochemical sensing of base mismatches.  

 

The synthetic process was therefore set out to involve synthesis of disubstituted ferrocenes, 

which would be incorporated into the DNA backbone, and then eventually to move onto 

adding another two functional groups (i.e. DNA bases), giving a tetra-substituted ferrocene, 

which could be the desired ferrocene nucleotide, TFcT. The target disubstituted ferrocenes 1, 

2 and 3 containing either amide or ether linkages are set out below in Figure 15. 
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Figure 15 Target compounds for the project. Compounds 1, 2 and 3 are simple phosphoramidites for 

incorporation into an oligonucleotide strand. 

 
Amides have been previously used successfully in relation to DNA attachment with 

naphthyl40 and pyrene41 fluorescent detection compounds. There has also been research on 

ferrocene polyamide compounds as redox active DNA binding molecules42 (Figure 16). 

 

The amide functional group was chosen because it affords some rigidity with the CONH 

bond, but has the more flexible alkyl spacer between the amide bond and the alcohol. The 

amide chemistry is also already established and should not provide solubility problems under 

biological conditions. 
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Figure 16. Structure of ferrocene polyamide compounds. Image from Mizuta, M., et al., Nucleic Acids 

Symposium Series, 2004. 48, 237. 

 

Although there is little flexibility in the system containing the hydroxy methyl group 

(compound 3), and the chain length would make it rather short to fit well into a DNA duplex 

without distorting it, the diol precursor is commercially available and it was thought this 

would provide a relatively easy synthetic route to DNA incorporation 

 

The stability of the strands was to be tested to verify the feasibility of replacing a nucleotide 

unit with the ferrocene monomer described. Using different types of molecule would mean 

that there could be a comparison between a range of DNA strands of varying duplex stability, 

allowing the best functional groups and linker lengths to be identified and compared with 

modelling studies. Successful insertion of a ferrocene molecule would also provide some 

evidence that it would be possible to synthesise an oligonucleotide strand containing units 

such as TFcT. Once this was achieved, a complementary strand would then be synthesised 

and the non-covalent interactions and stability studied, as compared to the wild type strand 

(no modifications). The possibility of redox-switchable DNA could then also be investigated.  
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As described in subsequent chapters, the complete incorporation of a ferrocene-based 

nucleotide into DNA was not achieved within the time boundaries of this project, although it 

is the final aim, and further projects will hopefully go on to achieve this.  
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2 EXPERIMENTAL 
 

 

 
Note: References listed as University of Birmingham Chemistry Department are experimental 

procedures taken from the undergraduate teaching labs.  

 

2.1 Solvent and Reagent Pre-treatment 

 

All experiments were carried out using Schlenk Techniques and under nitrogen, with the 

exception of the oligonucleotide synthesis, where all reactions were completed under argon. 

Anhydrous diethyl ether and DCM were distilled over calcium hydride and the diethyl ether 

was stored over molecular sieves of 4Å diameter. THF was distilled over sodium and 

benzophenone. 

 

2.2 Instrument Methods 

 

Mass Spectrometry was carried out using Electrospray techniques on a Waters/Micromass 

ZMD Electrospray Quadrupole Mass Spectrometer. MALDI-TOF was carried out using 

Bruker Biflex IV Maldi Time of Flight Mass Spectrometer. NMR was carried out using an 

AC300  (1H) and AV300 Bruker NMR Spectrometer (13C, 31P and 2D COSY). DNA synthesis 

was carried out using an Applied Biosystems Expedite 8900 Nucleic Acid Synthesis System, 

with desalting performed with Waters single use Sep-Pak® cartridges. HPLC was performed 
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using a Merck Hitachi Interface D-7000, pump L-7100 with a La Chrom diode array detector 

L-7455. UV quantification was carried out using a Shimadzu UV3101PC spectrophotometer.  

 

2.3 Synthesis of Monomers for Insertion into Oligonucleotides 

2.3.1 Preparation of 1'-((O-DMT-ethyl)amino)carbonyl)1’-((2-cyanoethyl-N,N-

diisopropylphosphoramiditylethyl)amino)carbonyl) ferrocene43 Compound 1) 

2.3.1.1 Preparation 1,1’-dilithioferrocene  

 

A 3-necked round bottomed flask with a pressure equalised dropping funnel with stopper, 

septum and nitrogen inlet adaptor, was connected to a schlenk line. TMEDA (10 ml) and dry 

hexane (10 ml) were added via the septum and stirred under nitrogen. BuLi (42 ml) was then 

added and the mixture stirred to form the BuLi adduct (15 minutes, r.t.). Ferrocene (5.10 g, 

0.027 mol) was dissolved in dry hexane (240 ml) and added to the reaction flask via the 

dropping funnel over a period of 30 minutes. The mixture was then left for 18 hours (under 

nitrogen) and the carboxylation carried out without purification 

 

2.3.1.2 Preparation of 1,1’- ferrocenedicarboxylic acid  

 

Dry diethyl ether (500 ml) and an excess of crushed dry ice were placed into a beaker and the 

dilithioferrocene from 2.3.1.1 added with rapid stirring to precipitate a yellow/ orange salt of 

the dicarboxylic acid (precipitate). The mixture was warmed to room temperature and filtered, 

washed with dry diethyl ether (100 ml) and dried. The solid was dissolved in NaOH (600 ml, 
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0.1 M) and washed with dichloromethane (2 x 50 ml). The aqueous layer was retained and 

acidified by dropwise addition of HCl (conc. 37%, 9.61M) giving an orange precipitate. The 

solid was filtered and washed with water (100 ml), before being heated gently with toluene 

(100 ml) to remove any ferrocene monocarboxylic acid . The mixture was filtered once more, 

dried and weighed. The product weighed 4.34 g and a yield of 58% was recorded. The 

product was used without further purification in the next step. 

 

2.3.1.3 Preparation of 1,1’- bis(chlorocarbonyl)ferrocene
44

 

 

The ferrocene dicarboxylic acid (4.34 g, 0.016 mol) and dry DCM (50 ml) were stirred under 

nitrogen and cooled to 0 °C using an ice bath.  Excess Oxalyl Chloride (11.0 g) in dry DCM 

(20 ml) was added dropwise over a 30 minute period. DMF (4 drops) was added and the 

reaction warmed and left overnight under nitrogen. The solvent was removed in vacuo and the 

product weighed. The product was purified using a soxhlet extractor setup and pentane (200 

ml) to extract. The solution was left for 18 hours under nitrogen. The resulting solution was 

evaporated to give a dark red, crystalline solid, weighed and stored under nitrogen in the 

freezer. The product weighed 1.37 g and a yield of 28% was recorded and 1H NMR analysis 

was carried out. The data corresponded to that in the literature and was used without further 

purification. 

1H NMR ( 300 MHz, CDCl3): δ = 5.05- 4.65 (m, 8H)  
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2.3.1.4 Preparation of 1,1'-([bis(2-hydroxyethyl)amino]carbonyl)ferrocene
44

 

 

1, 1’-bis-(chlorocarbonyl ferrocene (1.00 g, 3.22 mmol) was dissolved in dry THF (35 ml).  

2-aminoethanol (0.01 mol, 0.6 ml) and triethylamine (0.01 mol, 5 ml) were added via a 

dropping funnel, and the reaction stirred overnight under nitrogen at room temperature. A 

brown precipitate was formed. The solution was filtered and washed with DCM (5 x 10 ml). 

The precipitate was washed with methanol (3 x 10 ml). The solvents were removed in vacuo. 

The precipitate was purified by column chromatography, using basic alumina and a gradient 

of methanol in DCM (5-8%). The product was removed as an orange band and the DCM was 

evaporated. 1H and 13C NMR analysis was carried out. The product weighed 0.52 g and a 

yield of 33% was recorded.  

1H NMR ( 300 MHz, CD3CN): δ = 5.48 (s, 2H), 4.61-4.41 (m, 8H), 3.77-3.35 (m, 10H) 

13C NMR ( 300 MHz, CDCl3): δ = 75.79, 75.37, 74.95, 68.98, 68.21, 66.56, 61.39, 41.03 

 

2.3.1.5 Preparation of 1-((O-DMT-ethyl) amino)carbonyl)1’-((hydroxyethyl) amino) 

carbonyl) ferrocene
34

 

 

DMAP (0.34 mmol, 0.041g) and the amide from 2.3.1.4 (0.52 g, 1.44 mmol) were co-

evaporated with dry THF (2 x 10ml). Dry THF (10 ml) was added to the residue along with 

DMT (0.65 g, 1.88 mmol,) and DIPEA (0.3 ml, 1.727 mmol) and the mixture stirred 

overnight under nitrogen at room temperature. The reaction was quenched with methanol (4 

ml). The crude product was dissolved in DCM (25 ml) and the organic phase washed with 

saturated NaHCO3 in water (5 x 25 ml) before being dried over magnesium sulphate. The 
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solvents were removed and the product purified by silica gel chromatography (neutralised by 

2% TEA) with a gradient of methanol in DCM (0.5 – 5%). The product was analysed by 1H 

and 13C NMR and Mass Spectrometry. The product weighed 0.29 g and a yield of 30% was 

recorded.  

1H NMR (300 MHz, CD3CN): δ = 7.53-6.83 (m, 18H), 5.45 (s, 1H), 4.90 (1H), 4.59- 4.31 (s, 

8H), 3.75 (s, 6H), 3.18-3.14 (t, J = 5.5 Hz, 2H), 1.29-1.24 (t, J = 7.0 Hz, 2H) 

m/z (ES+) calcd for C37H38FeN2O6 ([M + Na]+) 662.55, found 662.30  

 

2.3.1.6 Addition of phosphoramidite to 1-((O-DMT-ethyl) amino) carbonyl) 1’-

((hydroxyethyl) amino) carbonyl) ferrocene
34

 (Compound 1) 

 

Dry DCM (1.4 ml) was added to the product from 2.3.1.5 (0.17 g, 0.28 mmol) and the mixture 

stirred under argon at room temperature. DIPEA (98 µl, 0.56 mmol) and  

2-cyanoethyldiisopropylchlorophosphoramidite (77 µl, 0.31 mmol) were then added and the 

mixture was stirred for 15 minutes before being concentrated in vacuo without heating. The 

product was identified using 31P, 1H and and ES mass spectrometry, although it started to 

degrade before 1H and 13C NMR analysis could be carried out. 

31P NMR ( 300 MHz, CD3CN): δ = 149.25, 147.83   

 m/z (ES+) calcd for C46H55FeN4O7P ([M + Na]+) 862.78, found 862.3.  
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2.3.2 Preparation of (1-O-Dimethoxytrityl-2-hydroxy)diethylamine
34

 

 

Procedure as for 2.3.1.5, replacing 1-((O-DMT-ethyl) amino) carbonyl) 1’-((hydroxyethyl) 

amino) carbonyl) ferrocene with diethanolamine.  

 

Diethanolamine (0.14 g, 1.32 mmol) and DMAP (0.033 g, 0.26 mmol) were co-evaporated 

with dry THF (2 x 10 ml). Dry THF (10 ml) was added to the residue along with DMT (0.50g, 

1.46 mmol) and DIPEA (1.32mmol, 0.23 ml) and the mixture stirred overnight under nitrogen 

at room temperature. The reaction was quenched with methanol (4 ml). The crude product 

was dissolved in DCM (25 ml) and the organic phase washed with saturated NaHCO3 in water 

(5 x 25 ml) before being dried over magnesium sulphate. The solvents were removed and the 

product purified by silica gel chromatography (neutralised by 2% TEA) with a gradient of 

methanol in DCM (0.5 – 5 %). The crude product weighed 0.76 g and a yield of greater than 

100% was recorded.  The product was analysed by 1H NMR and Mass Spectrometry. 

1H NMR (300 MHz, CD3CN): δ =  7.41-6.83 (m, 13H), 3.76-3.75 (d, J = 4.8 Hz, 4H), 3.53-

3.49 (t, J = 5.5 Hz, 1H), 3.35-3.33 (m, 1H), 3.13-3.10 (t, J = 5.5 Hz), 2.96 (s, 1H), 2.81-2.74 

(m, 1H), 2.67-2.63 (t, J = 5.5 Hz, 1H) 

m/z (ES+) calcd for C25H29O4 ([M + Na]+) 407.50, found  407.20 

 



 

 33 

2.3.3 Preparation of  1-(O-Dimethoxytritylmethyl)-1’-(O-(2-cyanoethyl-N,N-

diisopropylphosphoramidityl)methyl)ferrocene (Compound 3) 

2.3.3.1 Preparation of 1-(O-Dimethoxytritylmethyl)-1’-(hydroxymethyl) ferrocene
34

 

 

The procedure followed was the same as for 2.3.1.5, but with 1, 1’- ferrocenedimethanol (0.16 

g, 0.66 mmol). Column chromatography could not separate the mono- and bis- products 

sufficiently. A second column was prepared with a 3:1 mix of hexane to ethyl acetate 

respectively. The product weighed 0.28 g and a yield of 77% was obtained. The fractions 

were analysed by 1H NMR and Mass Spectrometry analysis.  

1H NMR (300 MHz, CD3CN): δ =  7.46- 6.83 (m, 13H), 4.13-3.97 (m, 12H), 3.80 (s, 1H) 3.74 

(s, 6H) 

m/z (ES+) calcd for C33H32FeO2  ([M + Na]+) 548.45, found 548.2   

 

2.3.3.2 Preparation of 1-(O-Dimethoxytritylmethyl)-1’-(O-(2-cyanoethyl-N,N-

diisopropylphosphoramidityl)methyl)ferrocene
34

 

 

The procedure followed was as for 2.3.1.6, using the product from 2.3.3.1 (0.28 g, 0.50 

mmol), DIPEA (130 µl, 1.01 mmol) and 2-cyanoethyldiisopropylchlorophosphoramidite (187 

µl, 0.55 mmol). The product was identified by 31P NMR spectroscopy. 

31P NMR ( 300 MHz, CDCl3): δ = 149.19-148.26 
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2.4 Synthesis of oligonucleotide strands with ferrocenes from section 2.3 

incorporated 

 

Note: Procedures for synthesis of DNA strands supplied by Dr. J. Vyle, Chemistry 

Department, Queens University Belfast 

 

2.4.1 Addition of phosphoramidite to ferrocenes 

2.4.1.1 Preparation of 1-(O-dimethoxytritylmethyl),1’-(O-(2-cyanoethyl-N,N-

diisopropylphosphoramidityl)methyl)ferrocene
34

 (Compound 3) 

 

1-(O-Dimethoxytritylmethyl)-1’-(hydroxymethyl) ferrocene (0.58 g, 1.067 mmol) was dried 

under vacuum overnight. DCM (13 ml) was then added and a sample taken for TLC. THF 

(2.3 ml) and DIPEA (0.76 ml, 4.38 mmol) were added to the solution, along with the 

phosphoramidite (0.26 ml, 1.17 mmol). The mixture was stirred under argon for 30 minutes, 

whereupon a sample was taken to run a TLC plate. TLCs were run in a mixture of DCM 

(3ml), Hexane (14 ml), ethyl acetate (2 ml) and TEA (1 ml) on silica gel plates. When the 

reaction was judged to have reached completion, the solution was quenched with benzyl 

polymer beads (0.68 g, 0.21 mmol),  which had been dried overnight under vacuum. The 

mixture was then left stirring for 1 hour. After this time the solution was poured into ethyl 

acetate (30 ml, washed in Na2CO3), washed with Na2CO3 (2 x 10 ml) and dried over sodium 

sulphate before being reduced in vacuo. A mixture of dry DCM and dry hexane (30:70, 20 

ml) and activated basic alumina were added to the residue and the resulting mixture stirred for 

30 minutes, then filtered through activated basic alumina and washed with the dry DCM/ 
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hexane solution. The filtrate solution was reduced in vacuo, and then co-evaporated twice 

with dry acetonitrile (10 ml) before being dried on a high vacuum line. A 31P NMR was used 

to identify the desired product was present and 0.29 g of product was obtained, with a yield of 

39% recorded  

31P NMR ( 300 MHz, D2O): δ = 150.79- 149.45 
 

2.4.1.2 Preparation of 1-((((O-dimethoxytritylpropyl)amino) carbonyl))-1’-((O-(2-

cyanoethyl-N, N-diisopropylphosphoramiditylpropyl)amino) carbonyl) 

ferrocene
34

 (Compound 2) 

 

This molecule was not prepared for this project, but as it was of the same family of 

compounds, was used for incorporation into an oligonucleotide sequence. It was synthesised 

at the University of Birmingham by Jean-Louis Duprey. 

 

The procedure was the same as for 2.4.1.1, replacing the 1-(O-Dimethoxytritylmethyl)-1’ 

(hydroxymethyl)ferrocene with 1-((O-Dimethoxytritylpropyl)amino)carbonyl)1’-

((hydroxypropyl)amino)carbonyl)ferrocene (0.50 g, 0.74 mmol). DIPEA (0.53 ml, 3.03 

mmol) and the phosphoramidite (0.18 ml, 0.81 mmol) were added. The filtration through 

activated basic alumina was omitted for this compound. The solution was instead washed with 

saturated NaCl (20 ml), after being poured into ethyl acetate and washed with Na2CO3. To 

facilitate the drying of the compound, a dry DCM/hexane (1:1) mixture was filtered through 

activated basic alumina and added to the residue at the co-evaporation stage. A 31P NMR was 

used for identification of the product. The product weighed 0.65 g and a yield of 100% was 

recorded. 
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31P NMR ( 300 MHz, D2O): δ = 150.420- 149.077  
 

2.4.2 Attempted Synthesis of oligonucleotide sequences 

 

Synthesis was carried out using a DNA synthesiser for the main strands at Queens University, 

Belfast. 

 

The ferrocene was attached at the relevant position in the sequence via an off-column 

coupling using BTT. The ferrocene phosphoramidite compounds were dissolved in anhydrous 

acetonitrile. After the oligonucleotide synthesis (DMT on), the CPG support was treated with 

methylamine (50% aqueous) for 1 hour at 65°C, the supernatant recovered and evaporated. 

The oligonucleotide was then purified by reverse phase HPLC and detritylated. The 

oligonucleotides were eluted using a linear gradient of triethylammonium acetate buffer (5-

40%) in aqueous triethylammonium acetate (100 µM, pH 6.5). The procedure for making 

buffer A is detailed in appendix 1, with details on desalting for mass spectrometry, UV 

quantification and Tm studies. The main peaks were eluted at around 25 minutes and 

characterisation by MALDI-ToF mass spectrometry carried out, showing that the synthesis 

was unsuccessful.  
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2.5 Synthesis of Nucleobase Precursor 

2.5.1 Protection of 1,1’- ferrocenedimethanol with TBDMSCl
45

 

 

1,1’-ferrocenedimethanol (1.00g, 4.06 mmol) was placed into a flask fitted with a reflux 

condenser along with TBDMSCl (1.40 g, 2.4 equivalents) and DMF (2 ml), with imidazole 

(0.69 g, 2.5 equivalents) as a catalyst. The mixture was left stirring for 48 hours at 40°C and 

then washed with sodium bicarbonate (2 x 25 ml), distilled water (2 x 25 ml) and brine (2 x 

25 ml). The product was then dried over MgSO4. A brown oil was obtained, which solidified. 

The product weighed 1.30 g and a yield of 67% was recorded. TLCs were carried out to 

determine whether the reaction had reached completion and 1H and 13C NMR and Mass 

Spectrometry allowed identification of the product.  

1H NMR ( 300 MHz, CD3CN): δ = 4.44 (s, 4H), 4.15-4.08 (m, 8H), 0.89 (s, 18 H), 0.06 (s, 

12H) 

13C NMR (300 MHz, CD3CN): δ = 68.77, 68.32, 61.10, 25.29, -5.96 

m/z (ES+) calcd for C24H42FeO2Si2 ([M + Na]+) 474.61, found 474.4   

 

2.5.2 Attempted Lithiation of protected ferrocene 

2.5.2.1 Method 1
43

 

 

The same method as described in section 2.3.1 was utilised, but using the TBDMS protected 

1,1’-ferrocenedimethanol (0.25 g, 0.53 mmol). The reaction mixture dried out overnight and 

did not lithiate successfully, as evidence by 1H NMR and mass spectrometry. The reaction 
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was repeated with more solvent to prevent the reaction drying out. Lithiation did not occur, 

although a fine suspension was seen after the addition of the dry ice. 1H NMR and mass 

spectroscopy spectra revealed this to be non-ferrocene based. 

 

2.5.2.2 Method 2
46

 

 

TMEDA (5.3 equivalents, 0.17 ml) and n-BuLi (0.70 ml, 5.3 equivalents) in dry hexane (10 

ml) were stirred at r.t. for ten minutes with the exclusion of moisture under nitrogen. The 

protected ferrocene synthesised using the procedure laid out in section 2.5.1 (0.1 g, 0.21 

mmol) was added and the mixture stirred for 6 hours. The solution was expected to become 

darker as the reaction progressed, but this did not happen. After 6 hours, the mixture was 

cooled and chlorodiphenylphosphine (0.09 ml, 2.53 equivalents) added and refluxed 

overnight at 69° C. After this time, the reaction was quenched with distilled water (15 ml) and 

the organic layer separated and washed with more distilled water, before being dried over 

magnesium sulphate. The solvents were removed and samples analysed by 1H and 31P NMR 

and ES Mass Spectrometry analysis. The desired product was not present in the sample.  

 

2.5.2.3 Method 3
47

 

 

Protected ferrocene synthesised using the procedure laid out in section 2.5.1 (0.57g, 1.00 

mmol,) was dissolved in dry hexane and n-BuLi (1.95 ml, 3.12 mmol) added dropwise. This 

was stirred for 2.5 hours before an excess of dry ice and diethyl ether were added as in 1.1. 

The product was analysed with ES Mass Spectrometry and 1H NMR, but the desired 

compound was not present.   
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2.5.3 Attempted Preparation of 1,1’-dimethylaminoethylferrocene 

2.5.3.1 Attempted Acetylation of ferrocene (Method 1)
48

 

 

Ferrocene (0.500 g, 1.56 mmol) was dissolved in DCM (40 ml) and added dropwise over a 1 

hour period to aluminium chloride (0.63 g, 4.68 mmol) and acetyl chloride (0.34 ml, 4.7 

mmol) in DCM (40 ml). The solution was then refluxed for 20 hours. After this time, the 

reaction was hydrolysed with deionised water and the aqueous hydrolysate extracted into 

chloroform. The majority of the solvent was removed in vacuo and the solution left to form 

crystals. The crystals were dissolved in toluene, washed with sodium bicarbonate, dried over 

sodium sulphate and filtered with the remaining solvent being removed in vacuo.  

A column was run on silica, with ethyl acetate and hexane (1:1). This literature preparation 

was unsuccessful, resulting in formation of mainly mono- acetyl ferrocene. 

 

2.5.3.1.2 Acetylation of ferrocene (Method 2)
43

 

 

Ferrocene (3 g, 0.016 mol) was dissolved in dry DCM (15 ml) and added dropwise over a 

period of 15 minutes to a solution of aluminium chloride (5.5 g, 0.04 mol) and acetyl chloride 

(1.167 ml, 0.015 mol) in dry DCM (20 ml). The solution was then stirred for 2 hours at r.t. 

The mixture was then cooled to 0° C and ice added. The resulting mixture was then filtered 

and the solid residue washed until colourless with DCM (5 x 10 ml). The red solution was 

transferred to a separating funnel and separated from the aqueous phase, which was then 

washed with DCM (3 x 10 ml).  The combined red phases were then dried over anhydrous 

magnesium sulphate and reduced to a volume of approximately 20 ml, after which point 
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cyclohexane (10 ml) was added. The solution was concentrated again to 20 ml and allowed to 

cool slowly. The crystals formed were collected by filtration and air-dried. The product 

weighed 4.60 g and a yield of 74% was recorded. 1H and 13C NMR and ES Mass 

Spectrometry spectra were obtained to confirm the product. 

1H NMR (300 MHz, CDCl3) δ:  4.77 (s, 4H), 4.51 (s, 4H), 2.35 (s, 6H) 

 13C NMR (CDCl3 , 300 MHz) δ = 198.88, 79.25, 71.82, 69.14, 25.17 

m/z (ES+) calcd for C14H14FeO2 ([M + Na]+) 270.1, found 270.1 

Literature values49:1H NMR (200 MHz, CDCl3): δ = 4.73-4.72 (m, 4H), 4.47-4.46 (m, 4H). 

2.31 (s, 6H) 

 13C NMR (CD3CN, 50 MHz) δ = 201.10, 80.55, 73.49, 70.85, 27.54. 

 

 2.5.3.2.1 Reduction of 1,1’-diacetylferrocene giving 1,1'-Bis(a-hydroxyethyl)ferrocene 

(Method 1)
50

 

 

Lithium aluminium hydride (0.13 g, 7.51 mmol) in anhydrous ether (5ml) was added 

dropwise to a solution of diacetylferrocene (0.91 g, 3.38 mmol) dissolved in anhydrous ether 

(10 ml) and heated for 2 hours under reflux. Excess lithium aluminium hydride was destroyed 

with ethyl acetate (5ml) and ammonium chloride (0.90 g) in water was added. The mixture 

was stirred at 0 ºC for 30 minutes before being filtered and separated. The organic layer was 

washed with water before being dried and filtered. The solvent was removed in vacuo. The 

product weighed 0.47 g and a yield of 51% was recorded. Analysis by mass spectrometry and 

1H and 13C NMR confirmed reduction was successful.  

1H NMR (300 MHz, CD3CN) δ: 4.56-4.54 (m, 2H), 4.22-4.08 (m, 8H), 3.89 (s, 2H), 1.34- 

1.32 (dd, 6H) 
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13C NMR (300 MHz, CDCl3): δ = 95.54, 80.98, 79.68, 77.02, 70.32, 70.32, 69.27, 68.23, 

67.81, 66.98, 66.65, 66.59, 66.57, 66.33, 63.86, 26.07, 25.62, 25.70, 21.23 

m/z (ES+) calcd for C14H18FeO2 ([M + Na]+) 274.14, found 274.0  

 

2.5.3.2.2. Method 2 
51

   

 

Anhydrous ether (25 ml) and 1,1’-diacetylferrocene (0.75 g, 2.79 mmol) were heated to slow 

reflux with stirring. Lithium aluminium hydride (0.11 g, 2.79 mmol) in anhydrous ether (10 

ml) was added dropwise and the solution was then refluxed for 15 minutes. Excess lithium 

aluminium hydride was destroyed with ethyl acetate, ice and water and the solution cooled to 

0 ºC. An aqueous solution of ammonium chloride (1.10g in 10 ml water) was added and the 

reaction mixture stirred for 15 minutes, after which any solid lithium aluminium hydride by-

products were removed by filtration. The aqueous phase of the solution was removed, and the 

organic phase washed with water (2 x 15 ml), before being dried over magnesium sulphate, 

filtered and the solvent removed. Orange/yellow oil was obtained, which was suitable for use 

without further purification. The product weighed 0.78 g and a yield of 100% was recorded. 

1H and 13C NMR and ES Mass Spectrometry spectra confirmed the presence of the required 

product, which consisted of a mixture of diastereomers. 

1H NMR (300 MHz, CDCl3): δ= 4.93 (s, 2H), 4.70-4.58 (m, 2H), 4.27-4.06 (m, 8H), 1.46-

1.37 (m, 6H)  

13C NMR (300 MHz, CDCl3): δ = 94.18, 76.49, 76.06, 75.64, 67.29, 66.89, 66.77, 66.61, 

66.52, 66.36, 65.52, 65.14, 64.94, 64.51, 64.19, 24.62, 24.24  

m/z (ES+) calcd for C14H18FeO2 ([M + Na]+) 274.14, found  274.0 
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Literature values for mixture of isomers49: 1H NMR (300 MHz, CDCl3): δ= 5.15 (s, 1H) 5.12 

(s, 1H), 4.64 (q, J =6 .2 Hz, 1H), 4.60 (q, J = 6.2 Hz, 1H), 4.25-4.11 (m, 8H), 1.39- 1.36 (dd, J 

= 6.6 Hz, 6H) 

 13C NMR (300 MHz, CDCl3): δ = 95.20, 67.74, 67.57, 67.48, 67.32, 66.52, 66.13, 65.92, 

65.50, 65.40, 65.06, 25.56, 25.16 

2.5.3.2 Attempted Preparation of 1,1’-bis(α-acetoxyethyl)ferrocene
52

 

 
1,1’-Bis(1-hydroxyethyl)ferrocene (0.31g, 1.12 mmol) was dissolved in dry toluene (20 ml) 

with glacial acetic acid (0.23 ml) and set up with a water separator (Dean and Stark trap) and 

reflux condenser. The solution was refluxed and more toluene (40 ml) added to assist the 

water separation. The solution was refluxed until no more water separated, then cooled and 

the solvent removed in vacuo. Samples were analysed using 1H and 13C, HSQC and COSY 

NMR, Mass Spectrometry and IR. The product was not conclusively found to be present. 

 

2.5.3.3.2 Method 2
49

 

 

Acetic anhydride (0.5. ml, 5.29 mmol) was added to 1,1’-bis(1-hydroxyethyl)ferrocene 

(0.20 g, 0.74 mmol) in pyridine (7 ml) and the solution stirred at r. t. for 12 hours. After this 

time, the removal of the volatile matter under vacuum was attempted unsuccessfully. The 

mixture was then separated with water and extracted into DCM, dried over magnesium 

sulphate and the solvent was removed in vacuo. Purification was carried out by columning on 

silica gel neutralised with triethylamine (2%) and a 1:1 mix of ethyl acetate and hexane 

eluent. However, the product was not present on analysis of the fractions by 1H NMR and ES 

Mass Spectrometry.   
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2.5.3.3.3 Method 3
53  

 

Procedure as above, but the solution was quenched with water and extracted into diethyl 

ether, before being dried over magnesium sulphate and the solvent removed in vacuo. The 

compound obtained was analysed using 1H NMR and ES Mass Spectrometry and found not to 

be the desired product. 

 

2.5.3.3.4 Preparation of 1,1’-bis(α-acetoxyethyl)ferrocene (Method 4)
49

 

Procedure was repeated as above, but the reaction was poured into saturated aqueous 

NaHCO3 (20 ml) and extracted into diethyl ether (40ml) after stirring. The organic phase was 

washed with water (20 ml) and brine (20 ml), then dried over magnesium sulphate and solvent 

evaporated to produce a yellow oil, which was used in the next step with no further 

purification. Product obtained was a mixture of diastereomers weighing 0.28 g and the yield 

was 43%. The product was analysed by ES Mass Spectrometry and 1H and 13C NMR.  

  1H NMR (300 MHz, CDCl3): δ = 5.80-5.78 (q, J = 6.3 Hz, 2H), 4.23-4.12 (m, 8H) 2.03 (s, 

6H), 1.541- 1.510 (m, 6H) 

13C NMR (300MHz, CDCl3) : δ = 172.66, 172.63, 91.01, 90.93, 79.91, 79.48, 79.06, 75.84, 

73.23, 71.46, 71.20, 71.10, 70.80, 68.94, 68.91, 23.63, 22.57, 22.37 

m/z (ES+) calcd for C18H22FeO4 ([M + Na]+) 358.21, found  358.2 

Literature values (after stereoselective reduction)49:  1H NMR (300 MHz, CDCl3): δ = 5.72 (q, 

J = 6 Hz, 2H), 4.17-4.14 (m, 2H), 4.10-4.08 (m, 2H), 4.06-4.04 (m, 4H), 1.95 (s, 6H), 1.46-

1.45 (m, 6H) 

 13C NMR (75MHz, CDCl3) : δ = 169.86, 169.84, 88.50, 88.43, 68.80, 68.56, 68.46, 68.14, 

68.11, 66.34, 66.32, 20.97, 20.04, 19.84 
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2.5.3.3 Attempted Preparation of 1,1’-bis(α- N,N-dimethylaminoethyl)ferrocene 

(Compound 4)
49

 

 

The acetate from 2.5.3.3 (0.28g, 0.79 mmol) was dissolved in methanol (10 ml) and an excess 

of dimethylamine (2 ml, 40% in water) and water (2 ml) added. The mixture was stirred 

overnight and then poured into saturated aqueous ammonium chloride (50 ml) and extracted 

into ether (100 ml). The organic layer was washed with water (2 x 50 ml) and brine (50 ml), 

then dried over magnesium sulphate and the solvent removed. Purification was carried out by 

column chromatography on silica, with diethyl ether and triethylamine (95:5)  

No product was present, as determined by ES Mass Spectrometry and 1H NMR 

 

The experiment was repeated, but left for 48 hours and then heated for three hours. No 

product was present, as ascertained by 1H NMR and ES mass spectrometry. 

 

2.5.4 Preparation of 1,1’-bis-(dimethylaminomethyl)ferrocene
49

 

2.5.4.1 Preparation of 1,1’-bis-(acetoxymethyl)ferrocene 

 

Procedure as 2.5.3.3, replacing the 1,1’-bis-(1-hydroxyethyl)ferrocene with 1,1’-

ferrocenedimethanol (0.719 g. 2.92 mmol). The product was analysed by ES Mass 

Spectrometry and 1H and 13C NMR. 

1H NMR (300 MHz, CDCl3): δ = 4.77 (s, 4H), 4.19-4.106 (m, 8H), 1.89 (s, 6H) 

13C NMR (300 MHz, CDCl3): δ = 79.24, 78.82, 78.39, 71.86, 71.20, 64.30, 22.76 

m/z (ES+) calcd for C16H18FeO4 ([M + Na]+) 330.16, found 330.0  
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2.5.4.2 Attempted Preparation of 1,1’-bis-(dimethylaminomethyl)ferrocene 

 

Procedure as 2.5.3.4, using 1,1’-bis-(acetoxymethyl)ferrocene (0.3597 g, 1.09 mmol)  

No product was present, as determined by ES Mass Spectrometry and 1H NMR 

Procedure as above, but THF (10 ml) used instead of methanol. 

No product was present, as determined by ES Mass Spectrometry and 1H NMR   
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3 RESULTS AND DISCUSSION 
 

3.1 Phosphoramidite Monomer Synthesis 

 

One of the first things to consider for synthesis of a ferrocene nucleotide, such as TFcT, was 

whether the ferrocene could be feasibly integrated into the DNA strand. This had been 

successfully achieved a number of times where the ferrocene was attached to the end of a 

strand, and also in the centre of a strand, although less often, as described in section 112, 23-27, 

34, 35. Amides (with only one of the Cp rings functionalised and with a 6 carbon chain)54 and 

alkyl chain ferrocenes34 (albeit with longer chains than synthesised here) have been 

previously inserted into DNA, with the latter being the closest example of incorporation into 

the backbone. This suggested that the molecules chosen here could also be successfully 

integrated.  

 

The simpler phosphoramidite targets were two different ferrocene compounds, one with an 

amide and an hydroxy ethyl group on each Cp (compound 1), and one with a hydroxy methyl 

group (no amide, compound 3) on each Cp ring. A third molecule, an amide identical to 

compound 1, but with an extra carbon in the alkyl chain, had been previously synthesised in 

the group (compound 2,55 all shown below in Figure 17). This molecule was deemed relevant 

to the project, and was also included for subsequent oligonucleotide synthesis.  

 

One of the alcohol functional groups was coupled to a phosphoramidite molecule (Figure 17), 

which acts in a similar fashion to the phosphate on a standard nucleotide and allows for 
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incorporation into the oligonucleotide sequence, using automated DNA synthesis (as 

described in section 1.7), while the other alcohol was protected with a dimethoxytrityl 

chloride (DMT) group. This is a common protecting group in DNA synthesis, and one that is 

used for standard oligonucleotide strand synthesis.  
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Figure 17. Phosphoramidite molecules for insertion into oligonucleotides. Compounds 2 and 3 were inserted 

into sequences, but 1 was not, although the phosphoramidite was synthesised. 

 

Although time constraints meant that an oligonucleotide strand of the amide with a linker of 

two carbons (compound 1, above) could not be synthesised, the other two molecules were 

incorporated into DNA using a combination of off and on column coupling with a DNA 
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synthesiser. These were purified by HPLC and the melting temperature of the duplexes (Tm) 

was measured.  

 

3.2 Synthesis of phosphoramidite monomers for insertion into an 

oligonucleotide strand. 

3.2.1 Compound 1 

 

Initially, 1,1'-([bis(2-hydroxyethyl)amino]carbonyl)ferrocene was synthesised from ferrocene, 

using a well-established procedure. The ferrocene was lithiated using n-butyllithium and dry 

ice used to turn it into 1,1’-ferrocenedicarboxylic acid. This compound was then converted to 

1,1’-bis(chlorocarbonyl)ferrocene using oxalylchloride. This synthetic scheme is shown in 

Figure 18.  

 

A DMT moiety was then attached, via one of the alcohols, as a protecting group for the DNA 

synthesis, using the procedures laid out by Navarro et al.34  
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Figure 18. Schematic for the synthesis of the bisamide (shown here for n=2, compound 1) 

 

The phosphoramidite was added to the ethyl amide to test whether the reaction would work. A 

positive result was identified by 31P NMR, giving compound 1 and proving that it would be 

possible to attach a phosphoramidite to these molecules and use them for DNA synthesis. The 

NMR was used for identifying whether the product was present, with a peak at approximately 

150 ppm. This was not used to confirm the purity of the product, as it degraded very quickly 

and degradation products were prominent on the spectrum. This was true for all the 

phosphoramidites synthesised. The compound was synthesised in quantitative yield and the 

intermediate steps were characterised, using a range of spectroscopic techniques.  

 

This particular molecule was not incorporated into an oligonucleotide due to time restraints, 

and it is expected that it will be attempted in future work. 
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3.2.2 Compound 2 (n3 on experimental data) 

 

The phosphoramidite was added to this molecule and the product identified by 31P NMR, 

which showed a peak at approximately 150 ppm, where it was expected to be found. The diol 

had been prepared previously using the same protocol as above to give a quantitative yield, 

with the DMT group added prior to the phosphoramidite, again using the same procedure as  

for compound 1.  

 

3.2.3 Compound 3  (n1 on experimental data) 

 

A DMT moiety was attached to one of the alcohol groups on 1,1’-ferrocenedimethanol, as 

described previously, for the compounds mentioned above. The phosphoramidite was then 

attached to the  alcohol on the other Cp ring, as with the other compounds and characterised 

by 31P NMR, which showed that the desired product was present. A quantitative yield was 

obtained. 

 

3.3 Synthesis of Metallocene Nucleobase Precursor. 

 

Having successfully synthesised the simpler phosphoramidite compounds, a synthetic route to 

the target ferrocene nucleobase could be developed. One idea was to protect an alcohol group 

and lithiate the Cp rings, giving the tetra-substituted ferrocene, to which a DNA base could be 

added, and the phosphoramidite chemistry (demonstrated previously) attempted. This route 

did not require synthesising a chiral amine precursor prior to lithiation. The second idea was 
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to take an amine pre-cursor (both chiral and achiral) and derivatise it (as seen in Figure 19) to 

give the target. The chiral amine shown below, compound 4, can be synthesised from 1,1’-

diacetylferrocene43. The Cp rings could then be further substituted to give the ferrocene 

nucleotide, TfcT.  

 

 

Figure 19. Reaction scheme showing the planned steps for synthesis of the ferrocene nucleotide, from the chiral 

amine (compound 4), to give the x = 3, y = 2 compound, modelled and described in section 1.8. The diol may 

also be obtained by lithiation of a protected alcohol and subsequent iodination. 

 

The first idea, following on from the methods of synthesising the amides was to lithiate a 

ferrocene which already had a group attached to each ring (Figure 20).  
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As 1,1’-ferrocenedimethanol was available, it was decided to protect the alcohol and attempt 

to lithiate the ferrocene, which could then be functionalised with the relevant DNA bases. 

This would put the required four functional groups on the ferrocene, and the alcohol would 

need little further functionalising, once deprotected, except to add the DMT and 

phosphoramidite moieties. The protecting group tertbutyldimethylsilylchloride (TBDMS) was 

used, as it has the generally desirable properties of being easily introduced, stable to a variety 

of reactions and can be removed under conditions which do not attack other functional 

groups56. These properties would come in useful when further functionalising the Cp ring and 

for removal, once the required chemistry was completed. 

 

 

Figure 20. Schematic for the lithiation the protected ferrocene, with possible expected outcomes. Lithiation did 

not take place in practice. 

 

The ease of introduction and removal of TBDMS is influenced by steric factors.56 As the 

preferred steric arrangement of the final molecule was not at this time established, it was 

thought that the functional groups being further apart might be more desirable, giving more 

flexibility regarding the orientation of the molecule in the DNA strand. This was thought to be 
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a possibility with such a bulky protecting group. It was also desirable to take into account 

what would be compatible with the addition and cleavage of the DMT group in the 

oligonucleotide strand synthesis. 

 

The 1,1’-dimethanol alcohol was relatively easily protected using the preparations detailed by 

Corey.45 Unfortunately, subsequent lithiation of this molecule proved unsuccessful with n-

butyllithium. Ferrocene has long been known to undergo directed diastereoselective ortho-

metallation with butyllithium. This reaction was utilised in the synthesis of the 

phosphoramidite precursors described previously, and was considered appropriate for addition 

of further functional group to the ferrocene, albeit in a non-directed manner. It is also 

possible, using lithiation to make a 1,3-substituted ferrocene. This has been shown by Steurer 

et al..57 

 

Three slightly modified protocols were used to lithiate the protected ferrocene. The standard 

method, as used for undergraduate experiments was the first to be tried, but there was no 

precipitate formed, indicating that there was no reaction whatsoever.  

 

The second method used was relatively similar, but with a shorter reaction time before 

addition of chlorodiphenylphosphine with refluxing. However, 1H and 31P NMR and mass 

spectrometry showed no evidence of product 

 

The third method was again very similar, but TMEDA was not used. It was postulated that the 

TBDMS ligand, being bulky, might hinder the formation of the TMEDA adduct required for 
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the previous methods. All other reagents and conditions were kept constant, however, this 

also gave no result. 

 

Directed lithiation was not demanded of these reactions. The purpose of the reaction was 

purely to see whether tri- or tetra- substituted compounds could be made from the protected 

alcohol, but there was no evidence of any metallation at all. When the computer modelling 

suggested that a product with substitutions in the 1 position (relative to the protected alcohol) 

would be the optimal orientation for the ferrocene nucleobase, with minimal disruption to the 

duplex, directed lithiation became more of a concern. As the TBDMS ether is non-directing 

and bulky (thereby not assuring lithiation in the 1 position) and not particularly effective, it 

was decided that a different approach might prove more suitable to reach the desired product, 

as outlined below.  

 

If this route had been continued, the next step would have been to try a stronger lithiating 

agent, such as tert-BuLi or sec-BuLi. However, this would again not be directed by the 

TBDMS ether, which was now a requirement to avoid lengthy separations of isomers.  

 

It has been shown that compounds with hydroxyl groups next to the ferrocenyl moiety can be 

substituted and converted to the corresponding amines, with full retention of configuration. 

Ugi demonstrated this in 197058 when the so-called Ugi’s amine was first synthesised. Ugi’s 

amine is shown in Figure 21. Once this was successfully made, it was then extended to 1,1’-

disubstituted systems, as shown by Schwink and Knochel.49 This gave a product with two 

chiral amines attached to the ferrocene. The substitution of an alcohol for an amine, allows  

ortho-directed lithiation to take place, as the amine is a good directing group for the reaction. 
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This reaction has been carried out before, as seen in Schwink and Knochel’s work, and so 

established protocols are available.  

 

Fe

NMe2

 

Figure 21. Ugi’s amine.58 

 

It is from this chiral bis-amine compound that the finished product can be synthesised (Figure 

19). Once lithiated and iodinated, a coupling reaction from the literature could be performed 

to attach a base to each of the Cp rings.34 The bis-amine functionality would then be 

converted a bis-alcohol, with literature procedures followed, to give the TFcT target. This 

compound could then be functionalised with DMT and phosphoramidite groups, as described 

earlier.  

 

This synthesis was chosen to follow on from the protected 1,1’-ferrocenedimethanol trials, as 

it gives the chiral amine product, which can then be separated for insertion into DNA. Ideally, 

the amine would be enantiomerically pure, so that the lithiation would be stereoselective, 

resulting in the formation of only one bis-iodo stereoisomer, instead of three.  

 

The separation of the stereoisomers means that there is only one product, which can be 

incorporated into the DNA. As DNA itself is chiral (having a right-handed helix), a particular 
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isomer may need to be incorporated to preserve the integrity of the helical twist and maintain 

the stability of the duplex. A mixture of isomers would not give the best yield and may result 

in problems with synthesis and purification. Using an enantiomerically pure compound would 

provide some insight into this issue. 

 

The synthesis of the amine involved acylation of ferrocene and then reduction of the resulting 

ketone group to an alcohol, giving a chiral molecule. An acetate was then attached to the 

alcohol and dimethylamine used to substitute the O-Acetyl group (Figure 22).  

 
 

 

Figure 22. Schematic of the reaction steps attempted to get to the NMe2 functionalised ferrocene for use in 

preparation of the ferrocene nucleobase.  
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The initial step in this synthesis is the Friedel-Crafts acylation of ferrocene, to yield 1,1’-

diacetylferrocene. This was done using a method set out by M. D. Rausch48 in 1960. This 

method however, yielded mostly monoacetylferrocene. An alternative method was found,59 

and this gave the diacetyl ferrocene in high purity.  

 

The next step was to reduce the ketone to the chiral alcohol, and this was done using lithium 

aluminium hydride as the reducing agent, as shown by F. S. Arimoto and A. C. Haven50. This 

was relatively successful, although the yields were not very high, and the product had to be 

purified by column chromatography. An optimised version of this experiment was found51, 

which yielded better results and required no purification steps. 

 

The next step in the synthesis was the acetylation of the reduced ketone. Initially, this was 

done by using acetic acid and a Dean and Stark water trap52. However, the analysis proved 

inconclusive, and the small quantities of compound being used made this an impractical 

method. 

 

The next attempt was done following Schwink and Knochel49, although there were some 

problems with this procedure. The product required isolation by column chromatography, as 

the purity was low, but this resulted in all of the product being lost. It also proved difficult to 

remove the pyridine after the reaction, and so a suitable work up was searched for, as 

extraction into DCM and washing with water was not productive. The best result was 

obtained from a procedure used in the same paper for a slightly different compound, requiring 

more forcing conditions, and so a different work up. The reaction was poured into sodium 

hydrogen carbonate and extracted into ether, before being washed with water and brine. This 
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made it much easier to remove all the pyridine and  resulted in successful isolation of the 

acetate, which could then be used to make the amine without further purification.  

 

The substitution of the alcohol was also carried out following Schwink and Knochel’s work.49 

However, the reaction did not yield any product. An alternative solvent system was tried for a 

slightly different compound, and this was also unsuccessful. It was therefore not tried with 

this compound.  

 

A silica chromatography column containing diethyl ether and triethylamine was run to 

attempt to separate the products and ascertain if a small amount of the amine was present. The 

NMR results showed that there was no amine present. 

 

An alternative route was then proposed using the 1,1’-ferrocenedimethanol, following the 

same steps as above, from the acetylation of the alcohol (Figure 23). 

 

Using the 1,1’-ferricenedimethanol approach, the isomers would be separated  after the 

iodination and synthesis would then continue as with the 1,1’-dimethylaminoethylferrocene 

molecule.  
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Figure 23. Schematic of attempted amine synthesis from 1,1’-ferrocenedimethanol for synthesis of ferrocene 

nucleobase 

 

This would give a non-chiral bis-amine product which, after the lithiation and iodination 

steps, would give three different stereoisomers, which would require separation.  

 

The acetylation of this molecule was successful, but the amine substitution was again 

ineffective. The products recovered were mainly the 1,1’-ferrocenedimethanol, with a small 

amount of the acetate. As the acetylation reaction for the chiral alcohol was made successful 

by a small change in the protocol, it was decided to try changing the solvent system to that 

used for the more reactive substituted ferrocenes in the paper.49 The methanol system (used on 

both compounds) can give a methoxy derivative instead of the desired amine, and the mass 

spectrometry showed masses more similar to this than to the desired amine. The solvent 

system was changed to THF/water, from methanol/water.  
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However, this was again unsuccessful, as determined by 1H NMR and mass spectrometry. 

Although study of the reaction by TLC showed that a reaction had occurred, this was the 

compound returning to the 1,1’-ferrocenedimethanol starting material. 

 

Due to time limitations, no more could be done with the synthesis of either the chiral or non-

chiral bis-amine ferrocene nucleobase precursor. 

 

The initial steps of this synthetic route are based on established chemistry, and proved more 

successful than the previous trial with the protected alcohol. There were some difficulties in 

obtaining the products, and various methods were attempted to procure the acetoxyethyl 

group before a successful method was found. A similar problem was encountered with the 

next step, and time limitations meant that the project could go no further on this point.  

 

If the amine49 could be obtained however, the three isomers may be separated to give a single 

chiral product. This stereoisomer could then be lithiated in a stereoselective fashion (as shown 

in Figure 19) and subsequently iodinated.  

 

Having two possible points of enantiomeric separation means that the easiest step at which to 

separate the isomers can be determined.  
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3.4 Insertion into oligonucleotides and DNA synthesis 

 

The phosphoramidite compounds described above were inserted into oligonucleotide 

zzsequences using automated DNA synthesis techniques. The amide with a 3-carbon chain 

(Compound 2) is referred to as n3 in the sequences and the 1 carbon chain (no amide, 

Compound 3) is referred to as n1. The first on-column coupling of the ferrocene to the 

oligonucleotide was not successful, so the coupling was done off column, once the required 

sequence had been synthesised, using the BTT activator and the phosphoramidite dissolved in 

anhydrous acetonitrile. The coupling was done using two syringes and the CPG with the 

desired oligonucleotide sequence and mixing was done for ten minutes and repeated twice.  

 

The sequences chosen for attachment to the ferrocene molecule were very similar, to allow for 

easy comparison of stability by Tm and UV/ Vis measurements. This made it easier to tell 

how much more stable a ferrocene on the end of a strand was compared to one placed in the 

middle of the sequence, or indeed, multiple ferrocenes next to each other in the middle of the 

sequence. 

 

Various sequences were attempted to be coupled to the phosphoramidites, including 

ferrocenes inserted into the middle of the sequence, between two guanine bases, and at the 

end of the sequence, in 3’ and 5’ positions. The sequences used are shown in Table 1, with a 

description of where the ferrocene was inserted.  

 

 



 

 62 

Table 1. Sequences for oligonucleotide synthesis, where the ferrocene was to be attached and how they are 

referred to in the text. n1 and n3 fer6 were test couplings to the 3’ phosphate and are not included in the table 

Sequences attempted 

Referred to 

as 

Position of Ferrocene 

N1 fer1 
5' FeTGGACTCTCTCAATG 

N3 fer1 

5' end 

N1 fer2 
5' FeCATTGAGAGTGTCCA 

N3 fer2 

5' end 

N1 fer3 
5' CATTGAGFeGTCCA 

N3 fer3 

Inserted between two G 

N1 fer4 
5' TGGACTCFeCTCAATG 

N3 fer4 

Inserted between two C 

N1 fer5 
5' CATTGAGAGTGTCCAFe 

N3 fer5 

3' end 

N1 fer7 
5' TGGACTFeFeCTCAATG 

N3 fer7 

2 Fc inserted between T and 

C 

5' TGGACTCACTCAATG Tar MA Unmodified Strand 

5' CATTGAGAGAGTCCA Tar A1 Unmodified Strand 

5' TGGACTCTCTCAATG Tar MT Unmodified Strand 

 

Examples of oligonucleotides as strands are shown in Figure 24 and Figure 25. 
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Figure 24. Oligonucleotide strand n1 fer3 with the 1,1’- ferrocenedimethanol phosphoramidite in the centre of 

the sequences. 

 

 

Figure 25. Oligonucleotide strand n3 fer3 with the n=3 amide phosphoramidite in the centre of the sequences. 
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The sequences were purified by reverse phase HPLC. In general, a compound was eluted 

between 0 and 16 minutes, shown as a broad peak on the traces. This was the DMT off, 

deprotected, form of unfinished oligonucleotide sequences and by-products, which indicated a 

failed coupling. The appearance of two main peaks, as seen in some of the traces, shows the 

broad peak at 12 to 16 and then a sharper, narrower one between 20 and 25 minutes, which 

was assumed to be the desired oligonucleotide (Figure 26). Another reason for multiple peaks 

is probably that some of the oligonucleotide remained unmodified after the off column 

coupling, and this was also eluted.  
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Figure 26. HPLC trace showing the main peaks at 15 and 23 minutes.  

 

The main fractions were collected and desalted for the purposes of MALDI mass 

spectrometry. 
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Mass Spectrometry is a useful technique, as it can provide structural information about a 

product. It involves ionisation of the compound being studied, an analyser through which the 

ionised compound passes and a detector. However, the particular ionisation method needs to 

be chosen carefully, as it can be difficult to transfer large biological molecules into the 

gaseous phase without degrading the sample so much as to render it useless. There are various 

ionisation methods, under two categories: soft and hard ionisation methods. Hard ionisation 

methods use a lot of energy and tend to result in fragmentation of the molecule, whereas the 

soft ionisation methods are less destructive, giving fewer fragmentation patterns. 

 

 Molecules such as DNA and proteins can be denatured at relatively low vapour pressures and 

with little variation in pH, making it difficult to get a sufficient amount of the molecule 

(which must also be an ion) into the vacuum.18 

 

Matrix Assisted Laser Desorption Ionisation (MALDI) is an ionisation method better suited to 

biological molecules, as it is a soft ionisation method (non-destructive). With this technique, 

the molecule is embedded into a crystal of a matrix (a weak organic acid). The matrix is 

vaporised by a short laser pulse, and carries some of the molecule embedded into it into the 

gaseous phase (without excess degradation). Exchange of electrons and/ or protons with the 

matrix causes ionisation of the target molecule, which can then be analysed18. This technique 

is used in conjunction with a time-of-flight (TOF) analyser, in which heavier molecules take 

longer to arrive at the detector. 

 

UV quantification was carried out to determine the concentration of the purified modified 

oligonucleotides. UV quantification of the ferrocene monomers before incorporation into the 
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oligonucleotide sequences was performed, so that the concentration of each strand could be 

estimated from the absorbance at 260 nm. This allowed comparison before and after 

incorporation to ascertain if the UV profile was different after coupling to the strand (Figure 

27). Concentrations can be calculated from the absorbance data by using the Beer-Lambert 

Law (Equation 1). The molar extinction coefficient needed to be calculated to obtain a 

concentration and the absorbance was measured at 260nm, as this is where DNA absorbs. 

From this, the percentage yields of the oligonucleotide synthesis could be calculated (Table 

2). 

A= εcl  

Equation 1. The Beer-Lambert Law. Where A is absorbance, ε is the molar extinction coefficient, c is 

concentration and l is path length (usually 1cm) 

 

Unmodified strands were also synthesised and quantified for comparison, to better judge 

whether the synthesis of the modified oligonucleotide was successful.  
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Figure 27. The UV profile of the n3 ferrocene monomer (with DMT), ε = 7987.665, before addition of 

phosphoramidite and insertion into an oligonucleotide strand. 
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The samples were then made up to a known concentration for Tm studies (melting curves are 

shown in Figure 28), where comparison with the unmodified strands would give an idea of 

the effect of a ferrocene phosphoramidite on the stability of the strand (see Appendix 1).  
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Figure 28. Graph showing a melting curve for the n3 fer5 oligonucleotide strand. The two lines show the two 

melting temperatures measured for the run (ramp 1 and ramp 3). 

 

Of the sequences attempted, n1 fer3, n1 fer5, n3 fer1, n3 fer2, n3 fer4, n3 fer5 and n3 fer7 

were deemed most likely to have been successfully modified, from HPLC. The sequences, 

with the position of the ferrocene in the strand, are listed above (Table 1) with UV and Tm 

data shown below in Table 2 and Table 3. The Tm of unmodified oligonucleotide duplex was 

calculated to be 52.6 °C. The stability of all the modified strands was only slightly affected by 

the insertion of the ferrocene phosphoramidites into the sequence, with the most stable being 

the amides n3 fer4 and n3 fer1 (also with the best yield) annealed with an unmodified strand,  

although these were more stable than the unmodified DNA. This is unexpected, as there are 
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no π- interaction contributions from the ferrocenes in the strands. However, there may be 

some hydrogen bonding interactions from the amide.   

 

Table 2. Table showing UV data and concentrations determined using it. Samples were dissolved in acetonitrile. 

Oligonucleotide 

strand 

Abs 5 µl 

(@260nm) 

Abs 10 µl 

(@260nm) 

Average 

Abs 

(@260nm) 

ε /    M-

1cm-1
 

concentration/ 

µmol/ L 

Yield/ 

% 

Tar A1 96.86 165.78 131.32 153900 853.27 43 

Tar MA 51.66 54.43 53.05 142300 372.78 19 

Tar MT 28.93 29.82 29.37 138000 212.86 11 

n=3 Fe 1 138.85 117.74 128.30 145988 878.81 44 

n=3 Fe 2 0.00 65.98 32.99 157388 209.59 10 

n=3 Fe 4 18.40 21.70 20.05 137888 145.39 7 

n=3 Fe5 15.86 13.17 14.52 157388 92.24 5 

n=1 Fe1 12.70 0.00 6.35 684102.1 9.280906 0.5 

n=1 Fe 3 38.86 45.40 42.13 N/A N/A N/A 

 

Table 3. Table showing the Tm values for the modified oligonucleotides attached to complementary strands. 

Temperature range is between 15-85 °C 

Strand 1 Strand 2 Tm 1/ °C 
Tm 2/ 

°C 

Average 

Tm / °C 

n3 fer 5 Tar MA* 51.1 N/A 51.1 

n3 fer1 Tar A1* 60.1 60.1 60.1 

n3 fer 1 n3 fer5 49.2 50.2 49.7 

n3 fer4 Tar A1* 59.3 59.3 59.3 

n3 fer5 Tar MA8 49.9 N/A 49.9 

*TarA1 and Tar MA are unmodified strands 
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Circular dichroism studies were also carried out. Circular dichroism is a spectroscopic 

technique, measuring the absorptions of left-handed polarised and right-handed polarise light 

and comparing the differences in the two (usually very small). Nucleic acids have distinct 

spectra for certain types of secondary structure, and so structural information can be found 

using this method18.  

 

The studies showed some evidence of a chiral signal from the ferrocene, and a definite shift 

from the unmodified, fully matched strands. The most prominent difference was with an n3 

fer4 + TarA1 duplex, which showed a signal from the ferrocene and a definite shift to the left 

of the spectrum. This indicates that there may be a slight change in the secondary structure of 

the duplex when a strand is modified with DNA. The spectra are shown in Figure 29. 
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Figure 29. Graph showing the CD spectra of unmodified and modified (with one Fe and target and with two 

modified strands) oligonucleotides. TarA1+TarMT is a fully matched duplex. 
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Despite appearing to have been successful, the MALDI results for the modified strands were 

lower than expected, corresponding more closely with the molecular weights of the 

unmodified strands. This suggests that the incorporation of the ferrocene phosphoramidite 

monomers was not achieved.  

 

However, the monomers were successfully synthesised, and further attempts to incorporate 

them could prove more successful, with different chain lengths maybe providing better 

results. 

  

If the strands were successfully synthesised and used to form a duplex with a complementary 

strand, also modified, it would be thought that there would be some loss of stability, as the cp 

rings were not functionalised with DNA bases, or anything that would be able to contribute 

non-covalent interactions similar to those of the other nucleotides. The measure of stability 

was attempted, with only one set of strands, due to time constraints, and showed little loss of 

stability (49.4 °C Tm). This would be expected if the strands were actually unmodified. An 

anthracene-modified strand was also paired with one of the ferrocene-modified 

oligonucleotides and showed, again, only a small loss in stability, although there were two 

peaks on the spectrum. This could introduce some interesting possibilities with fluorescent 

and electrochemical sensing methods, and the use of an anthracene-modified strand provides 

another type of modification to compare the ferrocene with. It is theoretically possible to put 

more ferrocene moieties in, as the rest of the strand would be able to form hydrogen bonds 

with the complementary bases on the other strand as normal, but at a certain point, it would 

become unstable, as there would be too few non-covalent interactions.  
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4 CONCLUSION 
 

Phosphoramidite monomers for incorporation into an oligonucleotide strand were 

successfully synthesised and incorporated into a DNA sequence. Automated DNA synthesis 

techniques were used to synthesise oligonucleotide strands, although there was limited 

evidence of successful modification of the strands 

 

Future work will build upon this and move closer to the successful synthesis of a ferrocene 

nucleotide. There are many directions in which this can go, with variations in the bases 

attached, the number of molecules incorporated into an oligonucleotide sequence, synthesis of 

an RNA strand and even the metallocene used as the backbone of the molecule.  

 

Although initial attempts to synthesise a ferrocene with four functional groups attached by 

following a protection chemistry protocol were unsuccessful, they made it possible to move 

onto the next route. This initial protection approach was relatively simplistic, and so worth 

trying. However, having ruled out this method, the second approach, using diacetyl ferrocene 

as a starting material, was devised. This would appear to be more feasible as it allows for a 

more directed lithiation of the Cp rings. 

 

The reactions completed in the project have been repeated and the conditions altered to 

optimise them, improving yields and giving a solid base to build on in the future.  

 

Although incorporation of a ferrocene dinucleic acid was not achieved in this project, 

significant steps have been taken towards completing the aim. 
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5 FUTURE WORK 
 

Initially, to follow on from the work done this year, iodination of the 1,1’-bis(α- N,N-

dimethylaminoethyl)ferrocene molecule and progression to the addition of bases can be 

researched. This will continue the progression towards the final molecule.  

 

In tandem with this, different chain lengths and types of spacers attached to a ferrocene can be 

researched, to tailor the molecule for incorporation into a sequence. The synthesised modified 

strands could then also be hybridised to the complementary strand to suggest the feasibility of 

a duplex forming with ferrocene modified oligonucleotide strands. This research will include 

stability studies and also, possibly, electrochemical studies.  

 

Once the final molecule has been synthesised and the reaction optimised to give better yields 

and good incorporation,  it may be possible to attach a variety of bases to the ferrocene and do 

a comparison study of the stability and redox properties of the different molecules. This could 

then be further extended to comparison of the bases in an RNA type oligonucleotide and of 

the U and T bases in RNA and DNA strands. 
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7 APPENDIX 
 

7.1 DNA Synthesis 

7.1.1 Preparation of Buffer A  

 

The triethylammonium acetate buffer (Buffer A) used was made up of milliQ water (800 ml), 

acetonitrile (50 ml) and acetic acid (5.72 ml). This was made up to pH 6.5 and more milliQ 

water added to make 1 litre of buffer. 

 

7.1.2 De-salting of oligonucleotide sequences 

 

Anhydrous acetonitrile (10 ml) was pushed through a Sep-Pak® cartridge, followed by buffer 

A (20 ml) to prepare the column. The purified oligonucleotide (in buffer A) was then loaded 

onto the column and allowed to pass through. More buffer A (5 ml) was pushed through, 

followed by a wash of water (10 ml). The oligonucleotide was eluted with a 60% aqueous 

methanol solution (1.5 ml). The solvent was removed in a vacuum centrifuge. 

 

7.1.3 UV Quantification, CD and Tm Measurements 

 

The concentrations were determined by UV quantification, which was done by making up a 

buffer solution (880 µl water, 100 µl phosphate buffer and 20 µl sodium chloride (100 µM) in 

the cuvette). 
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The samples were made up to a 5 µM concentration in 10 µM phosphate buffer, at pH 7.0 

with 100 µM NaCl.  

 

5 µl of the buffer, with 10 µl of the oligonucleotide, was taken into a microlitre syringe, with 

5µl then being dispensed into the cuvette. A reading was taken and the value at 260 nm noted. 

The rest of the solution in the syringe was added to the cuvette and a second measurement 

taken and the value at 260nm noted  

 

CD samples were made up as the UV samples.  

 


