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1 | Introduction

1.1 General introduction

In today’s life on Earth, DNA is almost exclusively the carrier of genetic information
although it is believed that RNA molecules were the first carriers of genetic informa-
tion [1]. In healthy cells, RNA molecules and proteins are produced in amounts that
are in balance with the demand. Due to mutations in the DNA, the transcriptome
and proteome may change and consequently, cells may not be able to properly main-
tain themselves and die or survive in a mutated state and behave differently. Cancer
finds its origin in changes in the DNA, with mutations in, and dysregulation of RNA
as a consequence [2, 3]. Understanding the consequences at the RNA level may be
helpful in the understanding of how cancer progresses, which eventually may be use-
ful for precision medicine. Mutations can be detected in DNA and RNA using Next
Generation Sequencing (NGS) technologies. NGS DNA analysis can reveal almost all
mutations, while analysing RNA gives more information about the type and state of
cells.

In the past few centuries, science in biology evolved from observations by eye, to the
microscope and to the molecular and digital world. The invention of the microscope
by Antoni van Leeuwenhoek has been of great importance in this process as it allowed
to study living organisms at a new resolution: the cell became visible. Nowadays it
is possible to look at atomic resolution with electron or atomic force microscopes,
NMR and X-Ray crystallography. What is remarkable about these techniques is that
they do not measure actual light. For example, the electron microscope measures
matter waves, which are converted to grey values and are at their turn projected as
a photograph. Such conversions make analysis dependent on computer models and
require analysis software for data processing. Similarly, for the analysis of RNA and
DNA sequencing data a revolution has taken place and currently the vast majority
is analysed with computer models. From this perspective the computer can be seen
as the modern microscope for DNA and RNA analysis. However, as the sequencing
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8 Introduction

techniques continue to be improved and more knowledge is gained, new and adapted
computer models are needed.

1.2 DNA- and RNA sequencing

The discoveries of Franklin, Wilkins, Watson and Crick in the early 1950s led to the
discovery of the DNA helix structure [4]. This was the starting point for unraveling
the hereditary characteristics encoded in DNA. However, it took until the beginning
of the 1970s before the first order of a DNA sequence was determined [5]. Due to the
rapid development in technology, the (almost) complete human reference genome has
been unraveled and made available in 2001 [6, 7], which is accessible to everybody
with a desktop pc and an internet connection today. Nevertheless, due to its static
nature, cellular DNA alone is insufficient to explain life, the behaviour of cells and
diseases. One of the complex challenges in understanding an organism’s DNA and
consequently in understanding genetic diseases is to identify all components encoded
within a genome [8]. There are multiple open access databases with annotations of
genes and transcribed loci, such as UCSC [9] and RefSeq [10]. Using such databases,
elements imprinted in a genome and higher order interactions can be studied further.

It was believed that beyond protein coding genes most genomic regions are junk
DNA and that most transcripts that do not code for protein sequences are non-
functional. Although there is still debate about which RNAs are functional [11], the
hypothesis that most transcribed regions of the genome have no function has been
revised since RNAs that do not code for protein (ncRNAs) turn out to be highly
abundant and involved in a variety of functions in the cell [12].

1.2.1 RNA

There are different types of RNA molecules, subdivided based on structure or function
(Figure 1.1). In the nucleus, pre-mRNA is transcribed from the DNA whereby the
pre-mRNA is immediately capped at the 5′-end. After transcription, the transcript is
elongated with a poly-A tail, resulting in mature mRNA. In a process named splicing,
certain regions named introns are excised from the pre-mRNA. Splicing can take place
both during- (co-transcritional splicing) and after transcription (post-transcriptional
splicing), but mainly co-transcritional. The mRNA is transported from the nucleus
to the cytoplasm. During the translation process mRNA functions as blueprint for
the synthesis of proteins. Beyond mRNA, the transcription process is also responsible
for non-coding RNAs (ncRNAs), subdivided in small (< 200 nt) and large ncRNAs
(lncRNAs; > 200 nt) [13, 14].

8
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Figure 1.1: Schematic overview of RNA processing. RNA is transcribed in the nucleus. Poly-
merase first caps the 5′-end and continues transcribing RNA from the DNA. During transcrip-
tion, introns are excised in a process named splicing. Some introns are further processed into
small ncRNAs such as snoRNAs. SnoRNAs are transported into the nucleolus, where it guides
rRNA modifications. After polymerase has completed, poly-A polymerase adds a poly-A tail
to the transcript. Mature polyadenylated transcripts can be host to both non-coding RNAs
(such as pre-miRNAs) and coding mRNA. Mature mRNAs are exported to the cytoplasm.
Ribosomes translate peptides from mRNAs, where tRNAs deliver the aminoacids. Mature
miRNAs are also exported to the cytoplasm and together with complementary mRNA and
specific proteins, the miRNA forms a RISC complex that prevents translation.

The ribosome is a combined protein RNA complex that synthesises proteins. In
human cells, the ribosome is composed of two subunits. The large subunit contains
3 RNAs (28S, 5S and 5.8S) whereas the small subunit contains 1 (18S) [15]. About
90% of the total RNA in human cells is rRNA [11].

In the nucleus, pri-miRNAs function as genes for miRNAs and are further pro-
cessed by Drosha into ∼60 nt long hairpin shaped pre-miRNAs. After the pre-miRNA
is exported to the cytoplasm, it is processed by Dicer into ∼22 nt long microRNAs
(miRNAs). Together with specific proteins, miRNAs form the RISC complex that
allows binding of a miRNA to a complementary target RNA molecule. This complex
may prevent translation of the target RNA or induce its degradation. As a result,
miRNAs typically reduce gene activity and function as negative regulators of gene
expression. Given their direct influence on translation and their involvement in feed-
back mechanisms, it is not surprising that certain dysregulated miRNAs are involved
in cancer [16, 17, 18].

Small nucleolar RNAs (snoRNAs) are non-coding RNAs that are located in the
nucleolus and Cajal bodies [19] and are involved in posttranscriptional modification
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10 Introduction

of rRNA [20]. H/ACA-box snoRNAs consist of a double hairpin structure and guide
pseudouridylation of rRNA, while C/D-box snoRNAs guide 2‘-O-methylation. Small
Cajal body-specific RNAs (scaRNAs) are hybrids and guide both types of post-
processing. SnoRNAs have been implicated with other roles such as gene silencing
and alternative splicing, while dysregulation has been associated with cancer [21].

Transfer RNAs (tRNAs) consist of three hairpin loops folded in a cloverleaf struc-
ture. They are involved in protein synthesis by carrying amino acids. The second loop
of a tRNA contains a three letter subsequence named the anticodon, that due to its
complementary binding determines which amino acid gets translated [22].

Recently, small RNAs (<35 nt) derived from many types of ncRNAs, including
rRNA [23], have been found in various organisms [24]. Initially, it was believed that
these were products of RNA degradation and turnover, but their high abundance
and consistent start and end positions contradicts this. The roles of many of these
RNAs are not fully understood. Different RNAs derived from tRNAs (tRFs) have
been reported, which are classified into two major groups [25]. The tRNA halves are
products of tRNA endonucleolytic cleavage near the anticodon resulting in fragments
of 30-35 nt. The second group consists of smaller fragments (∼20 nt) which often
span one single hairpin of the tRNA. Expression levels of 3′ tRFs show no correlation
with the copy number levels of tRNA isoacceptors [26]. Also, small ncRNAs derived
from snoRNAs have been found and roles have been ascribed, including miRNA-like
activity and involvement in certain diseases. However, their processing mechanisms
and putative function are not fully understood.

Although RNA molecules are typically linear and single stranded, recent studies
have reported circular RNAs (circRNAs) [27]. As all nucleotides of a circRNA are
covelently bound, it forms a loop with itself. They are more stable than linear RNA
because of this structure [28]. The role of circular transcripts is not fully understood.
Some circRNAs are found to work as miRNA sponge, while others others are protein
coding [29]. Besides circular RNAs, also double stranded RNA have been reported [30].

1.3 Fusion Genes

In healthy cells, DNA contains information that ensures a balance in regulation and
molecular organisation. When DNA gets damaged this balance may be disrupted,
which may lead to changes in cell proliferation and apoptosis. DNA damage can be
single base substitutions, insertions, deletions, amplifications, but also more complex
rearrangements such as translocations. DNA rearrangements may result in juxtaposi-
tion of genes. Such fusion genes are repeatedly found in cancer [31]. The consequence
of a fusion gene may be disruption of one or multiple genes, for example by introducing

10
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a frameshift in fused coding sequences. Fused coding sequences can also be in-frame,
resulting in chimeric proteins [32, 33]. Rearrangements involving regulatory elements,
like gene enhancers or promotors, can alter expression levels and cause changes in
regulation. If a DNA rearrangement does not change the cells functioning, it is called
a passenger mutations. Such mutations are called passenger mutations and are ex-
pected to be the majority of mutations found in cancer cells. On the contrary, if a
mutation does contribute to cancer progression, it is a driver mutation.

Oncogenes are genes of which increased or adapted activity results in cancer pro-
gression. Activating missense mutations are often driver mutations. For example, in
receptor proteins a missense mutations may change the specificity for a ligand or the
mutation results in a protein of which the signaling is completely independently of
the ligand. Often in fusions involving an oncogene, a regulatory element of a highly
active gene becomes adjacent to the oncogene, resulting in increased activity of the
oncogene. For such fusion genes it is common that the oncogene stays intact in or-
der to keep fulfilling its function and that the regulatory element does not lose its
potential to induce transcription. This means that the DNA breakpoint is a major
determinant for the oncogenic potential of the fusion. A well known example is the
recurrent fusion gene in prostate cancer TMPRSS2-ERG, in which TMPRSS2 donates its
promotor to oncogene ERG [34].

Tumor suppressor genes often carry out functions like DNA damage repair, growth
control, cell cycle arrest and apoptosis. Consequently, reduced activity or loss of func-
tion of such genes is beneficial for progression of cancer. A fusion that involves a
tumor suppressor gene may contribute to cancer progression by reducing transcrip-
tion or by introducing a frameshift resulting in mutated or truncated proteins. It is
likely that some of these fusion genes are harder to detect at the RNA level because
of reduced expression. Hence, fusion genes can contribute to cancer progression via
various mechanisms [31, 35].

One of the hallmarks of cancer, sustaining proliferative signaling, is the require-
ment that cells can adjust their signaling to make them self-determinant with respect
to proliferation [36]. This typically involves changes in regulation of growth-factors,
receptors and corresponding pathways, which are often tissue specific. Certain fusion
genes are more common than others, and can be specific for a certain cancer type.
If a specific type of cancer is characterised by a recurrent fusion gene, a test for
the fusion gene may be used as indicator for the type of cancer. There are several
known recurrent fusion genes used as biomarker, such as BCR-ABL [37], EML4-ALK [38],
PML-RAR [39], and TMPRSS2-ERG [40].

The BCR-ABL fusion gene is recurrently found in chronic myelogenous leukemia
(CML) and typically results in transcripts that correspond to thee proteins (p190,
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12 Introduction

p210 and p230) [41]. Using probes designed against the fusion transcripts, the presence
of the fusion gene is tested with RT-PCR [42] and can function as clinical biomarker
for CML [43]. PML-RAR is an interchromosomal, reciprocal translocation between genes
PML and RAR [44], which causes acute promyelocytic leukemia. Screening for this fusion
gene is also performed with RT-PCR [39].

Although several fusion genes are used as biomarker for cancer, it would be ideal
use fusion genes as target for specific drugs for targeted treatment. There is ongoing re-
search to develop drugs targeting fusion-genes [45, 46]. For example, imatinib has been
approved as drug for Philadelphia-chromosome-positive chronic myeloid leukemia,
targeting BCR-ABL [47]. Thus, identifying and understanding fusion genes is of high
importance for diagnosis as well as therapy of cancer. Fusion genes can not only be
detected with DNA-seq but also with RNA-seq, of which the latter may also provide
expression levels, splice variants and which gene is donor or acceptor. Unfortunately,
the RNA-seq fusion gene detection tools are not highly accurate [48] and therefore
more research in this field is needed.

1.4 Developments in technology and RNA analysis

Analysing RNA has been helpful in understanding the processes that are taking place
in a cell. Traditionally, expression of specific RNA transcripts has been studied by
northern blot, qPCR and microarrays. The northern blot is used to quantitatively
detect a specific RNA sequence, whereas qPCR is used to quantitatively detect a
specific cDNA sequence. The microarray is a chip containing large numbers of pre-
determined probes (short sequences that are complementary to transcript sequences)
and made it possible to analyse expression levels in a high-throughput manner. Hence,
due to this scale enlargement, it became possible to look at gene expression of all genes
at the same time, without doing wet-lab experiments for each gene separately. Because
of the large number of datapoints, further statistical analysis needs to be performed
with computer frameworks accordingly. Because the probes are predefined, transcripts
for which no probes have been included on the chip are not interrogated.

1.4.1 Next Generation Sequencing (NGS)

Nowadays, it is possible to measure vast amounts of DNA sequences simultaneously,
with relative high speed [51]. By making a cDNA copy of RNA using reverse tran-
scription, also RNA sequences can be measured with this technology (RNA-seq). A

12
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Figure 1.2: Overview of the Illumina TruSeq protocol. mRNA is captured using magnetic
beads with poly-T sequences that are complementary to the poly-A tails. RNA is then frag-
mented and random primers are added to allow cDNA synthesis. The first cDNA strand is
synthesised with reverse transcriptase, the second with DNA polymerase. After both cDNA
strands have been synthesised, the 3′-ends are adenylated and 5′-ends repaired. Adapter se-
quences are ligated to the cDNA to allow them to hybridise onto a flow cell. In the sequencer,
cDNA molecules are iteratively extended with fluorescent nucleotides and during each iter-
ation these nucleotides are excited and emission at corresponding wavelengths is measured
in an imaging step [49, 50]. The corresponding imaging data is transformed into nucleotide
sequences.

TACGATCACGATCAGTCAGCTAG
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TACGATCACGATCAGTCAGCTAG
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Figure 1.3: Schematic overview of a typical NGS workflow. After sequencing data has been
obtained, the quality is assessed and controlled (QA/QC) where possible. During QA/QC
it is common to trim low quality bases, remove adapter sequences and discard reads with
low complexity sequences. The high quality data is often mapped to an organism’s reference
genome, into a file refered to as alignment. For certain organisms, the reference genome
may be missing, incomplete or the focus could be on complex variants. In these scenarios a
reference can be reconstructed using de-novo assembly. There are also techniques available
that skip both alignment and assembly, but measure only the k-mer (small subsequences)
content directly from the reads. Most features, such as expression, polymorphisms and fusion
genes are determined from alignments. These features are used to associate phenotypes with
differences. Results are presented in tables or figures that facilitate interpretation.
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14 Introduction

common way to prepare mRNA for sequencing is the Illumina TruSeq protocol1 (Fig-
ure 1.2). The resulting detected sequences in NGS are called reads. In the early days
of RNA-seq analysis, the preparation protocols produced non-strand-specific reads.
The sequence of these reads can correspond to the cDNA or its reverse complement,
and therefore loses the information whether the transcript was sense or anti-sense.
Nowadays, almost exclusively protocols are used in which information of the strand
is preserved (strand-specific).

The first step in computational RNA-seq analysis is usually estimating the qual-
ity of the dataset. Artifacts such as adapter sequences and bases of low quality are
removed from reads, or reads are removed from the dataset entirely. Although the
dataset will become smaller, the overall quality will be higher. From this data, certain
features will be extracted (Figure 1.3), such as gene expression levels, splice isoforms,
fusion genes or polymorphisms. After feature extraction, associations between these
features and certain conditions are examined. In most cases, the reads are first mapped
to a reference genome and features are extracted from this alignment. It is possible
that a reference genome of an organism does not meet the requirements or it is not
available. Under these circumstances it might be worthwile to first use the data to
build a reference transcriptome using de novo assembly. But using an alignment is
not always necessary. For example, expression levels can also be determined from
the k-mer content. However, when the reads have been aligned, expression levels are
estimated by counting the number of reads aligned to a given locus [52]. Further
analysis requires distinct statistical models [53, 54, 55]. Due to technical limitations,
the maximum length of a sequence that can be measured by the sequencing machine
is limited (50-300 consequent nucleotides per molecule), while the smallest human
chromosome has a length of 46,709,983 bp and the longest transcripts exceed 100,000
nt [56, 57]. Sequencing fragments rather than entire transcripts complicates determi-
nation of splice isoforms because exon junction spanning sequences are often missed.
There are, however, computer programs that take this into account and based on
mathematical models make predictions on splice isoforms and corresponding quan-
tities [58]. In the past few years, progress regarding the length issue has been made
and techniques have become available that can measure up to 40,000 consecutive
nucleotides [59] and even 900,000 [60].

In paired-end sequencing a fragment is sequenced from both ends and the link
between both sequenced ends is preserved. Combining sequence information from
both ends of the read pair with the expected fragment length, can be used to improve
alignment to a reference genome. Moreover, if an alignment indicates that the distance

1https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_doc
umentation/samplepreps_truseq/truseqrna/truseq-rna-sample-prep-v2-guide-15026495-f.pdf
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between the paired-end reads in the alignment does not fit the range of expected
fragment size, this may be evidence for structural variants or splicing. For instance, if
the distance between two reads of a pair in a genomic alignment is large (e.g. 10 Mb),
while the estimated DNA fragment size was no longer than 1 Kb, it is plausible the
reads span a deletion of ∼10 Mb. Reconstruction of transcripts using NGS data relies
heavily on computational analysis and the corresponding software largly determines
accuracy and processing time.

Besides expression analysis, RNA-seq can be used to look at RNA from various
new angles because sequences are measured independent of pre-defined probes. It
allows discovery of novel transcripts, gene structures, splice isoforms, circular RNAs,
mutations, RNA-editing and fusion genes. These analyses are typically performed
using different software modules connected together into computational pipelines. A
schematic overview of the structure of a typical RNA-seq experiment is presented in
Figure 1.3. Each module has usually many different parameters [61] and modules can
often be replaced with comparable software modules. Choosing the modules as well as
the corresponding parameter settings is an important requirement of a computational
environment because this allows adjustments for specific use-cases.

1.4.2 Small RNA-seq

Illumina’s TruSeq mRNA preparation protocol specifically selects polyadenylated
mRNA, but because miRNAs are not polyadenylated, they require a different prepa-
ration protocol [62]. After total RNA is extracted, RNA molecules are size seleceted
in a range of ∼18-30 nt [63]. Since the molecules are selected to be smaller than the
maximum read size, there is no need for further fragmentation. PCR- and sequencing
adapters are ligated and the small RNAs are sequenced in a single-end and strand-
specific manner. Small RNA-seq can be used to investigate and quantify annotated
miRNAs and to detect novel miRNAs [64]. Although miRNAs are annotated as single
sequences with exact genomic start and end positions, sequencing data shows that
there is variation in these start and end positions [65]. These variants, called isomiRs,
arise because cleavage is not precise up to the nucleotide. Apart from cleavage, it is
also possible that nucleotides are ligated or substituted. This variation complicates
determination of miRNAs since the boundaries of a miRNA need to be determined
using reads derived from different isomiRs. In small RNA-seq data, expression profiles
can be determined and be used to study differential expression. Although small RNA-
seq was designed to study miRNAs in particular, this method is applicable to many
types of small RNA [24], including PIWI-interacting RNAs (piRNAs) [66] as well as a
variety of small non-coding RNAs derived from rRNAs, tRNAs, snoRNAs/scaRNAs
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and snRNAs [24]. For miRNAs, their well understood 2D hairpin structure plays a
major role in prediction and annotation [67]. Because these models do not apply to the
other small non-coding RNAs, annotations of small RNAs other than miRNAs and
piRNAs are lacking. The lack of such annotations complicates analysis and therefore
a method accurately annotating small RNAs in small RNA-seq data is needed.

1.4.3 Fusion genes and RNA-seq

DNA rearrangements may result in fusion genes and if they are expressed, they may
result in fusion transcripts. Therefore, fusion genes can not only be observed and
detected in DNA-seq but also at the RNA level [68], using RNA-seq. In DNA-seq, the
distribution of reads across the genome is almost uniform and expression independent.
This facilitates thorough detection and minimises the chance of missing fusion events.
In contrast, fusion gene loci must be expressed in order to be observable in RNA-seq.
However, using RNA-seq for fusion gene detection can provide several advantages over
DNA-seq. It allows to deconvolve the fused splice isoforms and reveal the (fusion)
gene structure, including potential novel exons. Also, the direction of transcription
and altered expression levels are detectable. Such information helps to understand
the role and impact of a fusion gene. There are also fusion transcripts that do not
find their origin in genomic rearrangements but only exist at RNA level, including
readthrough events and trans-splice isoforms [69], which can not be detected with
DNA-seq.

Genomic breakpoints of fusion genes are unique per individual event, while at
mRNA level they typically result in a limited number of fusion transcripts. Results
found in RNA-seq can therefore more easily be used to develop PCR assays for screen-
ing. For example, BCR-ABL fusions are typically responsible for transcripts resulting in
three distinct proteins. When only the first susceptible intron of both genes is taken
into consideration (BCR intron 1: 70 Kb and ABL intron 1: 120 Kb), there are theoret-
ically ∼8,4 billion possible DNA translocations that would result in the same fusion
transcripts.

Although there are many software packages available to detect fusion genes in
RNA-seq data [68, 70, 71, 72, 73, 74, 38], there is not a tool that is superior in per-
formance [75]. More strikingly, the overlap of results generated with different tools is
limited, which requires the use of multiple tools to find the full repertoire of fusion
genes within a sample [76, 77, 75, 78]. A logical next step in RNA-seq fusion gene
analysis is to prioritise the identified fusion events, for example by applying filters [48]
or by predicting functional impact. The variety in available software is also an advan-
tage. Different tools are developed to solve specific problems and have unique qualities
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Figure 1.4: At the beginning of the transcription process, an RNA molecule is capped
at the 5′-end. RNA polymerase makes the RNA molecule longer and longer. During co-
transcriptional splicing, a spliceosome can be formed and the introns (and skipped exons)
will be spliced out only after the entire intron and corresponding splice recognition site have
been transcribed. This results in truncation of RNA molecules, illustrated with the shorter
snapshots at the beginning of exons 2 and 4. Polymerase will continue and the pre-mRNA is
further extended until the next spliceosome can be formed. Eventually, only exon sequences
remain. The RNA is cut at the poly-A signal and a poly-A tail is attached, resulting in
mature mRNA.

that distinguish them from others, which might be a reason why the overlap between
tools is limited. For example, JAFFA is designed to cope with relatively long read
lengths. SOAPfuse is implemented to return results quickly. INTEGRATE minimises
the number of false positives [79], whereas FusionCatcher focuses on data-cleaning
by removing viral, bacterial and ribosomal contamination sequences. It has been rec-
ommended to choose a detection tool based on its properties in relation to the data,
rather than on benchmarking based on artificial data [78]. However, a combination of
tools with an appropriate way of aggregating data has the potential to improve the
overall results, for example by a majority vote [75, 80, 81]. A complicating factor is
that each tool reports its results in its own way. There is no generic file format for
describing fusion genes, comparable to what the VCF format means for single nu-
cleotide polymorphisms. Besides a standardised format, there is a clear need to have
software that integrates the results of each of these tools and report overlap.

Fusion genes and pre-mRNA

The majority of RNA-seq fusion gene detection tools focus on detection at the mRNA
level. During mRNA processing, introns are spliced out of pre-mRNA. Splicing takes
mostly place co-transcriptionally, but can also take place post-transcriptionally [82].
During transcription, pre-mRNA is synthesised from the 5′-end to the 3′-end and
protected by a 5′-end cap (Figure 1.4). In co-transcriptional splicing, as soon as the
end of an intron is transcribed, a spliceosome will be formed and introns are spliced
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out, even before the entire pre-mRNA is transcribed and before the poly-A tail is at-
tached [83]. Because splicing has finished before the poly-A tail has been attached, the
poly-adenylated transcripts are free of introns. However, as result of intron-retention
and post-transcriptional splicing, it is possible that poly-adenylated transcripts con-
tain introns. In poly-A+ RNA-seq protocols, RNA is extracted based on the poly-A
tails and predominantly mature mRNA is sequenced. This means that the data con-
tains only few reads that correspond to introns (intronic reads) and that it specifically
targets mature polyadenylated mRNAs. There are multiple pitfalls with respect to
fusion gene analysis of such data:

• There are various transcripts that are non-polyadenylated such as circular RNAs
and certain ncRNAs. These types of RNA are excluded from the sequencing
library.

• Poly-A selection introduces a so called 3′ coverage bias. Due to this bias there is
a significant higher coverage of sequencing reads near the 3′-end compared to the
5′-end [84, 85]. For fusion gene detection, the consequence is that breakpoints
closer to the 5′-end are underrepresented with sequencing data and thus harder
to predict.

• Genomic breakpoints that fall within intron sequences cannot be detected. Be-
cause introns are relatively long, the vast majority of the fusion gene break-
points are located within introns. Because intronic reads are mostly lacking,
corresponding genomic breakpoints cannot be detected.

It is possible to circumvent these pitfalls by using an RNA-seq protocol that is not
purifying the library targeting the poly-A tails. This can be done by sequencing total
RNA, of which the high abundant rRNA is depleted first. Then random hexamer
primers are used as complementary primers to synthesise cDNA [86]. The currently
available RNA-seq fusion gene detection tools are not fully designed to cope with
ribo-depleted total RNA, as intronic reads are often discarded [38]. There are two
exceptions: gfuse is particularly designed to analyse FFPE material [87], but the
actual software is not publicly available, and Tophat-Fusion, which is able to find
intronic breaks but is restricted to gene regions [70].

1.4.4 Standards in bioinformatics software and genetic data

Software in the field of bioinformatics varies so heavily in quality that scientific reports
have been written in which the best-practices of software engineering, development
and distribution are highlighted [88, 89]. These include basic rules such as provide
a help option and provide warnings on missing input, but also more sophisticated
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development disciplines such as parameter validation, test-driven development and
continuous integration. There is debate on open access of source code for at least the
peer-review process of software-based publications [90]. There are multiple research
projects that investigate and resolve shortcomings in bioinformatics software, for ex-
ample by defining [91, 92] or implementing [93] standards or providing corresponding
code libraries [94, 91, 95, 96]. Such libraries are robust building blocks that make
modularity possible, prevent re-inventing the wheel and enforce to respect standards
by considering deviant, invalid, files as incompatible. Hence, besides the quality of an
algorithm, it is important to write software in a manner that will help other scientists
using and improving it.

Most software packges in the field of bioinformatics are written as command line
utilities and lack a graphical user interface (GUI), which makes using them rather com-
plicated. There are commercial software packages available that contain all modules
needed for a pipeline and are “plug and play” after installation. CLC-bio (CLC-bio,
Aarhus, Denmark) and Partek (Partek Inc., Chesterfield, USA) are examples of such
commercial packages and provide a user-friendly graphical interface and a compre-
hensive list of corresponding modules. They are in particular designed for microarray
and sequencing analysis, but for instance CLC-bio also has the option to analyse
RNA 2D structures. These workbenches have strict and often expensive commercial
licenses, provide closed source software and often lack in-depth descriptions of their
computational methods. This is a complicating factor for the reproducibility of an ex-
periment, that for instance prevents rerunning analyses by peer reviewers unless they
have a commercial license for the same software. It prevents computer scientists to
build further on these methodologies as the source code is explicitly kept secret. From
the end-user perspective it would be convenient that free (as in freedom) command-
line software also becomes available with an easy to use GUI and integrates evenly
well as the common commercial workbenches. Although several of these workbenches
have been set up [97, 98, 99, 100], like the UEA small RNA Workbench [101], they
are not as complete and extensive as commercial ones. Often, incorporated tools are
implemented in a non-modular way and the workbenches lack plug-in systems, which
requires much more maintenance of the framework in order to keep it up-to-date and
complicate adding new tools. In Galaxy, many free command-line bioinformatics tools
are given a graphical user interfaces [102]. The project tries to make as many tools as
possible available via an application store and makes the tools accessible via a web
interface [95]. In addition, bioinformatics-specific data formats such as VCF, BAM
and BED are integrated within the system. Due to the numerous tools available and
the broad scale of applications they comprise, a Galaxy server is typically initiated as
a bare bone system with a small number of operational tools included, rather than an

19



In
tr

od
uc

ti
on

20 Introduction

over featured system. Consequently, a Galaxy system needs to be dressed-up to fit its
needs, by installing tools and/or workflows and including corresponding data libraries.
There are various pre-selected Galaxy workbenches available, that have a predefined
set of related tools incorporated from scratch. There are for example pre-configured
Galaxy workbenches specific for proteomics, metagenomics, imaging and epigenetics.

Modularity is necessary to integrate tools into pipelines and into such workbenches,
which requires mutual agreements on the information flow. For example, agreements
are required on file formats, transmission protocols, indexing and metadata. In ad-
dition, it is important that such agreements are robust enough to be used for future
problems. For example, reference genomes are currently stored as FASTA files. Al-
though FASTA files are widely used as consensus for different research applications,
they have barely space to describe genomic variation. A FASTA file stores all chro-
mosomes as linear sequences and storing nucleotides only in sequential order is not
designed to describe genomic variability. Small variants are then typically stored in
separate VCF files, which uses a coordinate system to link the small variants to the
FASTA file. In more recent versions of the reference genome, common large variations
were added as separate entries isolated from the remainder of their chromosomes. In
the very last version of the reference genome, hg38, there are more than 250 alternative
loci2. It is a logical next step to work out a system to store a reference genome in a way
that also allows storage of genomic variation. The first steps into this direction were
implemented in de-novo assembly algorithms using de Bruijn Graph structures, in
which variations are represented by branches or nodes in a graph data structure [103].
This, from an evolution point of view more natural representation, seems to be ev-
ident for storing and describing genomes. Recently, it was made public that Global
Alliance for Genomics and Health (GA4GH) is working on the fundamentals of such
reference genomes by outlining standards on corresponding data formats [104]. The
VG project3 (variation graphs) is making progress in using graph data structures as
reference genome.

Directly related is the way genetic data itself is accessible. Genome, gene and
protein annotations have been available for many years and are still instantly updated.
These types of data are typically privacy in-sensitive as they apply to the human
population in general. Data of a more personal nature are found in SNP and fusion
gene databases such as COSMIC [105], of which the presence of a genetic variant
is often associated with a phenotype. Increasingly more raw biomolecular data is
becoming available, in particular results of NGS. Sharing such information as open
data is essential to allow experiments to be reproduced and to further elaborate

2https://www.ncbi.nlm.nih.gov/grc/human/data
3https://github.com/vgteam/vg
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and improve analysis methods. However, genetic data also allows determination of a
personal unique genetic footprint, which may potentially lead to privacy infringement
if data is published with too much phenotype information. The European Genome-
Phenome Archive [106] (EGA) is a repository of genetic data in which data access
is controlled by data committees that review formal data requests and determine
whether access is justified.

The Cancer Genome Atlas (TCGA) [107] examplifies the importance of publicly
available genetic and combined phenotypic data. This resource, containing NGS and
phenotype data of 30 types of tumors from many patients, has been citated more than
1600 times since its publication. Using this database, various recurrent dysregulated
and mutated genes for several types of cancer have been identified, (sub-)classifications
have been proposed [108] and differences and similarities between different types of
cancer have been investigated [109]. In addition, the TCGA database is often used to
independently validate findings discovered in other datasets.

Unfortunately, the availability of the increasing amount of NGS data also has
a downside. Of the bulky and highly redundant data, a large increase of datasets
has resulted in a data explosion which makes storage and transfer an increasing
challenge [110]. To overcome this, new data formats such as CRAM are needed.
These formats greatly reduce the filesize by also compressing relative to a reference
genome [111]. In addition, sequencing techniques that increase the read length are
investigated [59, 60, 112], which allow sequencing in a less redundant manner.

1.5 Prostate cancer

Prostate cancer (PCa) is one of the most common types of cancer in men [113] and
after lung cancer, the most frequent cancer-related cause of death in men in west-
ern countries [114]. Although there has been significant research in diagnostic and
prognostic biomarkers for prostate cancer, there is a lack of biomarkers that are both
sensitive and specific [115]. Common genetic changes in PCa are TP53mutations [116],
PTEN loss [117], changes in AR signalling by point mutations, indels and deletions [118],
and various structural rearrangements involving genes of the ETS gene family, includ-
ing the TMPRSS2-ERG fusion [119]. Although such genetic changes can be detected
by RNA-seq or DNA-seq, these are typically not tested for after biopsies or radical
prostatectomy for the purpose of targeted treatment because there is no significant
improved value. In PCa, approximately 50% of the diagnosed patients have the fusion
gene TMPRSS2-ERG [120, 121], most often formed by an intrachromosomal deletion
of ∼3 Mb on chromosome 21 between TMPRSS2 and ERG. TMPRSS2 is an androgen-
regulated gene and particularly highly expressed in prostate epithelial cells. ERG is
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a proto-oncogene that encodes a transcription factor which regulates hematopoiesis.
Due to the recombination, the promotor of TMPRSS2 causes androgen-regulated ele-
vated expression of ERG [34]. The DNA breaks are most often found in the first two
introns of TMPRSS2 and the third and fourth intron of ERG. At a transcript level, the
most frequent exon-to-exon boundaries are TMPRSS2-exon 1/ERG-exon 4 and TMPRSS2-
exon 1/ERG-exon 5 [122, 123]. The fusion transcripts either encodes an in-frame fusion
protein that contains 4 amino acids from exon-2 of TMPRSS2 fused to ERG, or short
ERG proteins starting at alternative start codons in ERG exons 3, 4 or 5 [123]. Although
this fusion gene is a highly specific marker for PCa [40], it is due to its occurrence rate
of 50% not highly sensitive. Developing drugs targeting TMPRSS2-ERG turns out to be
complicated as ERG is a transcription factor with many homologues family members.
Nevertheless, progress in this direction is being made [124].
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1.6 Scope of the thesis

Human cells contain different types of RNA, which vary in structure, function and
quantities. Different mechanisms such as mutations, RNA-editing, fusion genes and
changes in expression can affect the transcriptome of a cell. Alterations of the tran-
scriptiome by these mechanisms have the potential to contribute to cancer progres-
sion. This diversity makes RNA more complex, but also more challenging to analyse
than DNA. RNA-seq allows to investigate RNA at a sequence level but requires com-
puter programs for analysis. Therefore, RNA seems ideal for biomarker research by
means of computational analysis. PCa has an unmet need of diagnostic and prognos-
tic biomarkers, and is therefore relevant as model system for the development of new
analysis methods. Computational analysis methods need to meet certain conventions
for compatibility, and need to be publicly accessible so that they can be used by other
researchers. Therefore, the overall purpose of this thesis is to facilitate finding new
PCa markers in RNA-seq data by using (new) software, which ultimately is integrated
in a software toolbox specific for RNA analysis.

1.6.1 Small RNA-seq

Small RNA-seq data does not only consist of reads derived from miRNAs but also
from other small ncRNAs such as fragments of tRNAs, rRNAs and snoRNAs. Software
scanning for miRNAs throughout a reference genome as well as corresponding miRNA
annotations are publicly available. For most other types of small ncRNAs there is no
such software, which complicates high-troughput analysis of such molecules because of
lacking annotations. In chapter 2, we propose FlaiMapper, a method that addresses
this issue.

FlaiMapper allows to annotate the small ncRNAs content in small RNA-seq data.
To assess if biologcally relevant molecules can be found, we are interested from which
precursors the small ncRNAs originate and how abundant they are compared to miR-
NAs. Small ncRNAs derived from snoRNAs had been reported to be upregulated in
PCa. A better understanding of how they are processed might help explain their role
in cancer. Also, if it becomes clear how their expression relates to the expression of
their host, and from which locations they are derived, this might reveal which pro-
cessing mechanisms are involved. Using the proposed method, many new molecules
may be discovered, of which each has the potential to be correlated with cancer. In
chapter 3, the scientific relevance of FlaiMapper is demonstrated by investigating
the small ncRNA content of prostate and prostate cancer, focusing in particular on
those derived from snoRNAs.
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1.6.2 Fusion genes

The current generation of tools that allow detection of fusion-genes in RNA-seq are
limited in either sensitivity or specificity [76]. Therefore, indicating whether multiple
tools have detected a fusion may increase confidence. In order to find fusion genes
across samples, for example to find those that are recurrent in a certain disease, it may
also be useful to have a report of duplicate fusion gene entries. Therefore, a method
capable of making integrative reports of the outcome of such fusion gene detection
tools is needed. In chapter 4, the issue of integrating such results is addressed.

RNA-seq experiments that focus on fusion gene detection often use of poly-A+
RNA-seq data, in which intronic reads are rare and can consequently not be used to
detect genomic breakpoints located in introns. By making use of random hexamer
primers in the RT-step in ribo-depleted total RNA, pre-mRNA can be sequenced
and corresponding intronic reads provide additional information for fusion gene de-
tection. Currently available tools are not designed for this purpose and can therefore
not distinguish genomic breakpoints from exon-to-exon splice junctions and are not
designed to investiage intergenic regions [38]. The challenges of fusion gene discovery
in ribo-depleted total RNA-seq data taking this into account, are further addressed
in chapter 5.

1.6.3 The toolbox

To let software be a valuable contribution to the scientific community, it is important
that it, apart from a scientifically valuable methodology, complies with recently es-
tablished principles that promote use and reuse [125]. Apart from these principles, the
ease of use is important, which in bioinformatics software is often limited. Therefore,
a more generic goal is to ensure that the software presented in this thesis follows re-
cently proposed guidelines [89]. In chapter 6, we show the added value of integration
of RNA related software, including tools used in chapters 2, 4 and 5.
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Abstract

Motivation: Recent discoveries show that most types of small non-coding RNAs
(sncRNAs) such as miRNAs, snoRNAs and tRNAs get further processed into
putatively active smaller RNA species. Their roles, genetic profiles and underlying
processing mechanisms are only partially understood. To find their quantities and
characteristics, a proper annotation is essential. Here, we present FlaiMapper,
a method that extracts and annotates the locations of sncRNA-derived RNAs
(sncdRNAs). These sncdRNAs are often detected in sequencing data and observed
as fragments of their precursor sncRNA. Using small RNA-seq read alignments,
FlaiMapper is able to annotate fragments primarily by peak detection on the start
and end position densities followed by filtering and a reconstruction process.

Results: To assess performance of FlaiMapper, we used independent publicly
available small RNA-seq data. We were able to detect fragments representing puta-
tive sncdRNAs from nearly all types of sncRNA, including 97.8% of the annotated
miRNAs in miRBase that have supporting reads. Comparison of FlaiMapper-
predicted boundaries of miRNAs with miRBase entries demonstrated that 89% of the
start and 54% of the end positions are identical. Additional benchmarking showed
that FlaiMapper is superior in performance compared with existing software. Further
analysis indicated a variety of characteristics in the fragments, including sequence
motifs and relations with RNA interacting factors. These characteristics set a good
basis for further research on sncdRNAs.

Availability and implementation: The platform independent GPL licensed
Python 2.7 code is available at:
https://github.com/yhoogstrate/flaimapper
Corresponding Linux-specific scripts and annotations can be found in the same
repository.
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2.1 Introduction

Sequencing of small non-coding RNAs (sncRNAs) aiming at the quantification and
discovery of microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), transfer RNAs
(tRNAs) and vault RNAs (vtRNAs) has revealed that most types of sncRNAs get pro-
cessed into smaller RNAs [126]. Initially, it was suggested that these smaller RNAs
are degradation products of the turnover of their precursors. Nevertheless, evidence
accumulating over the last years demonstrates that some RNA fragments are func-
tional and have specific maturation mechanisms indicating their importance and nov-
elty [126, 127, 128]. Such fragments find their origin in tRNAs, vtRNAs and snoRNAs
and are assumed to have a variety of functions. Most importantly, deregulation and
involvement of different types of fragments have been demonstrated in different types
of cancer [24]. A description of commonly detected fragments and their precursors is
given below:

• A pre-miRNA is an approximately 75 nt long RNA molecule produced from
its primary precursor transcript (pri-miRNA) by Drosha [129]. Pre-miRNAs
adopt a hairpin structure recognized by Dicer that cleaves the terminal loop
to release an approximately 22 nt long double-stranded miRNA duplex. One
of the strands (miRNA) is loaded into AGO to generate the functional miRISC
complex [130, 131]. The remaining strand (miRNA*) is usually degraded. Often
both strands are found as fragments in small RNA-seq [132].

• Fragments originating from mature tRNAs are commonly classified into two
subgroups [127], tRNA halves and tRNA-derived RNA fragments (tRFs):

– tRNA halves are most probably produced by angiogenin that cleaves the
tRNA near its anticodon, resulting into halve tRNAs (∼35 nt). It is believed
that some tRNA halves contribute to translational repression and cell stress
response [133, 134].

– The smaller (∼20 nt) tRFs are derived from the tRNAs 5′- and 3′-end and
from the pre-tRNAs 3′-end. It is not completely understood which proteins
are involved in the production of tRFs, although evidence for associations
with both Dicer and RNaseZ are reported [126, 127]. Although the puta-
tive functions of the majority of tRFs are unclear, evidence suggests that
some are involved in RNA interference, with effects on cell proliferation
and gene regulation [126].

• snoRNA are (60-250 nt) small RNAs found in the nucleolus. They comprise the
subtypes H/ACA-box, C/D-box and small Cajal body-specific RNAs (scaR-
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28 FlaiMapper

NAs) [135]. Putative functions such as regulation of alternative splicing, post-
transcriptional regulation of gene expression and associations with cancer have
been proposed for their fragments [128, 136, 137, 138, 139, 140, 141, 142].

Currently, studies on fragments other than miRNA and miRNA* are restricted to
(often visual) interpretation of alignments. Consequently, the data are inspected only
at a global ncRNA level. Not making use of the annotation of exact fragment coordi-
nates is a shortcoming, since it restricts analysis at the level of individual fragments.
Additional benefit of such analysis is the gained statistical power.

Here, we describe Fragment Location Annotation Mapper (FlaiMapper) that pre-
dicts the locations of sncRNA fragments in small RNA-seq alignments. Prediction
is based on the densities of start and end positions of aligned reads. It is impor-
tant to state that the goal is not to predict any particular subtype of fragment but
to annotate data for subsequent quantitative analysis, by making use of sequencing
data only. Therefore, FlaiMapper does not use 2D structure prediction or classifica-
tion based on heuristics of previous discoveries as often is used for the prediction of
pre-miRNAs [132].

2.2 Methods

Fragments are measured with small RNA-seq, where the corresponding variable-sized
sequences, called reads, are aligned back to a reference sequence. The reference se-
quence is used to determine the reads origin. This reference can be the genome, the
transcriptome or specific regions (e.g. miRNA or tRNA databases). The library used
for our analysis was manually composed (Supplementary Data). Pre-processing and
alignment for each dataset are further discussed in the Supplementary Data.

Analysis was applied to two different publicly available datasets with SRA acces-
sion numbers SRP002175 [64] and SRP006788 [129]. Dataset SRP002175 contains 12
small RNA-seq samples, taken from human pigment cells. The reads are 18-23 nt long
and processed on the Illumina’s Genome Analyzer II platform. Dataset SRP006788,
processed on the same platform, contains 18-30 nt long reads, taken from six sam-
ples from a HeLa cell line. In this dataset, the samples have undergone the following
treatments [129]:

• SRR207111 Total cellular RNA was extracted from HeLa cells.

• SRR207112 Total cellular RNA was extracted after RRP40 core subunit depletion;
RRP40 has 3′ → 5′ exonucleolytic activity.
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Figure 2.1: 1468 reads aligned to SNORD74 (black line) in dataset SRP006788 (total RNA). The
contours of the aligned reads (grey) form three separate clusters. This may be an indicator
for the presence of multiple fragments.
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Figure 2.2: Relation between noise and sequencing depth. Under the assumption that the
variability of reads near a boundary is normally distributed with a standard deviation of 3,
we illustrate effects of noise by binned sampling of this distribution at different resolutions.
The horizontal axes give the offset to a fragment’s true position and the vertical axes the
number of times an (artificial) intensity is sampled from the distribution. The dashed line
represents the distribution used for sampling. A sequencing technology with an infinite res-
olution (top left; by approximation) would result into one single peak in the vertical axis.
As the sequencing depth decreases, the sampled distribution deviates further from the true
distribution and more peaks in the vertical axis may appear by chance (top right and bot-
tom). Each illustration belongs to the same simulated fragment boundary, derived from the
same distribution. Because FlaiMapper expects only one peak per boundary, the remaining
peaks, caused by the deviation from their original distribution, are referred to as noise.
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5' 3'
(1Parsing

(2Metrics

(3Peak detection

(4Filtering

(5Reconstruction

Figure 2.3: Schematic overview of the five steps that FlaiMapper performs per sncRNA. (i)
Parsing : alignment file is parsed; reads (thin lines) are aligned to a sncRNA (bold line). (ii)
Metrics: acquire alignment statistics; for all positions in the sncRNA: I : find the number of
aligned start (red) and end (blue) positions (referred to as intensity) and II : find the average
length of mapped reads (not illustrated). (iii) Peak detection: predict candidate start and
end positions (vertical lines) upon the intensity vectors using peak detection. (iv) Filtering :
remove candidate start and end positions expected to be detected due to noise. In the example
above, a candidate start position is discarded (grey cross) because it is an artefact of the
noise of its neighbour. The remaining positions are considered as actual start and ends. (v)
Reconstruction: reconstruct predicted fragments (grey bars) by finding corresponding start
and end positions using a balance (purple triangle) between expected distance and intensity.

• SRR207113 RNA pool-down obtained from non-treated HeLa cells after AGO1

and AGO2 immunoprecipitation.

• SRR207114 RNA pool-down obtained from RRP40-depleted HeLa cells after AGO1
and AGO2 immunoprecipitation.

• SRR207115 Total cellular RNA was extracted after XRN1 and XRN2 depletion;
XRN has 5′ → 3′ exonucleolytic activity.

• SRR207116 RNA was extracted from the nucleus.

2.2.1 Formal problem

For convenience, we use the term boundary to describe either a start or an end position
of a fragment, without being specific to one of them. If an alignment of a fragment is
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inspected in more detail, its boundaries are indicated by the corresponding start and
end positions of the aligned reads. Fragment boundaries are variable, as indicated by
the aligned reads (Figure 2.1). Read starts and ends are located at variable positions,
but close to the boundaries. This results in peaks in the densities of aligned start and
end positions, near the boundaries. Therefore, it seems more convenient to estimate
fragments using the most common start and end positions instead of the most com-
mon read. The number of read starts or ends at a certain position in the sequence
(intensity) decreases rapidly and symmetrically with respect to the position with the
highest intensity. As a result, the peaks have characteristics compatible to a normal
distribution, with its expected value being the position with the highest intensity.
Because of the variability in the alignments and the limited sequencing depth, the
data contain noise (Figure 2.2). In FlaiMapper, a fragment is defined as:

Definition 1. The region in a precursor ncRNA in-between the most common start
and most common end position, as defined by aligned reads.

Consequently, the problem of finding such fragments is defined as:

Definition 2. Given a set of aligned reads to a precursor ncRNA, the challenge is to
estimate a fragment by: (i) finding the correct candidate start and end positions, (ii)
taking the optimal proportion of noise into account and (iii) relating the corresponding
start and end positions that belong to the same fragment back to each other.

2.2.2 Algorithm

The FlaiMapper algorithm is divided into five sequential steps (Figure 2.3): (i) parsing,
(ii) metrics, (iii) peak detection, (iv) filtering and (v) reconstruction.

1. Parsing

For every ncRNA, alignments are parsed from input files. There is no preference
towards a specific alignment algorithm as long as its output is in BAM format.

2. Metrics

Given an ncRNA with a length of n nt, the following corresponding vectors are de-
termined:

• Start and stop position densities

1. p5′ =
(
p5′

1 , p
5′

2 , . . . , p
5′

n

)
; here, p5′

i is the total number of reads that have
their start position (5′-end) aligned to position i of the precursor ncRNA,
where 1 ≤ i ≤ n.
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Figure 2.4: Illustration of the filter. Vector cd = {16, 20, 28} contains three predicted peaks
referred to as peak A, B and C. For each peak, the intensity is indicated with vertical
solid lines, at positions 16, 20 and 28 in green, purple and blue, respectively. Peak A (350
corresponding reads) has the highest intensity, followed by C (100) and B (85). Using a top-
down approach in terms of intensity, the algorithm starts with filtering the noise artefacts
that belong to peak A. The borders that separate noise from true fragments are indicated
with dashed lines. Peaks within the coloured areas are marked as noise. For peak A, this
is the light-green area. Any other peak within this region (peak B; solid purple line) gets
discarded. Thus, B is expected to noise of peak A. In the next iteration, the noise of next
top peak C is taken into account. Because no other peaks fall in its corresponding blue area,
none will be discarded. Since peak B is discarded already, only peak A and C remain.

2. p3′ =
(
p3′

1 , p
3′

2 , . . . , p
3′

n

)
; here, p3′

i is the total number of reads that have
their end position (3′-end) aligned to position i of the precursor ncRNA,
where 1 ≤ i ≤ n.

• Read lengths

1. l5
′

=
(
l5
′

1 , l
5′

2 , . . . , l
5′

n

)
; here, l5

′

i is the average read length of reads that have
their start position (5′-end) aligned to position i of the precursor ncRNA,
where 1 ≤ i ≤ n. If no reads have their start position aligned to nucleotide
i, l

5′

i = 0.

2. l3
′

=
(
l3
′

1 , l
3′

2 , . . . , l
3′

n

)
; here, l3

′

i is the average read length of reads that have
their end position (3′-end) aligned to position i of the precursor ncRNA,
where 1 ≤ i ≤ n. If no reads have their end position aligned to nucleotide
i, l3

′

i = 0.
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3. Peak detection

Candidate start and end positions are characterized by peaks in the intensity vectors.
Therefore, candidate positions are estimated independently in directions d = 5′ (start)
and d = 3′ (end) on vector pd. The methodology of independence between start and
end positions used by FlaiMapper is different from methods that rely on (i) the most
common read or (ii) distributions of read density. Because of this, candidate start and
end positions loose their one-to-one relationship. The purpose of peak detection is to
find all positions that have an intensity higher than its adjacent positions. Because of
noise in the intensities, the difference in intensity with respect to the adjacent values
must be above a certain threshold. For direction d, the algorithm detects peaks upon
corresponding vector pd of length n. Vector pd should be extended with a 0 at the
end, to ensure that a peak at the very last position can be called. To avoid confusion
about the lengths, we denote qd = {pd, 0} and as consequence its length n′ = n+ 1.
For every ith position in the vector, the intensity qdi is compared with the previous
highest value.

• If the intensity is larger, it becomes the highest value, and is therefore the (new)
candidate to become a peak.

• If the intensity is smaller, a drop in intensity is observed. If the drop is more
than 90%, the jth peak is called by putting the location in cdj . Subsequently, the
candidate position will be reset and iterator j is increased with 1.

The formal description of peak detection is given in algorithm 1 and per ncRNA, the
following vectors are added:

1. c5′ =
(
c5
′

1 , c
5′

2 , . . . , c
5′

k

)
; for a number of k candidate start positions, the ith

start position is located at nucleotide c5
′

i of the ncRNA, where 1 ≤ i ≤ k and
1 ≤ c5′i ≤ n.

2. c3′ =
(
c3
′

1 , c
3′

2 , . . . , c
3′

m

)
; for a number of m candidate end positions, the ith

end position is located at nucleotide c3
′

i of the ncRNA, where 1 ≤ i ≤ m and
1 ≤ c3′i ≤ n.

4. Filtering

Per fragment, multiple candidate start and end positions are frequently found due to
noise. A target peak may be derived from the same fragment as surrounding peaks
(Figure 2.2). For each target peak at position i, a filter tests whether the remaining
peaks at i′, are indeed noise of the target. The intensity around a boundary has
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Algorithm 1 Peak detection

qd ← {pd, 0} . Input
n′ = n+ 1
α← 0.1 . Noise threshold
val_previous, val_max, pos_max← 0 . Init
cd ← {} . Output
j ← 1 . Output iterator
for 1 ≤ i ≤ n′ do

if qdi > val_previous then
if qdi > val_max then

pos_max← i
val_max← qdpos_max

end if
else if qdi < val_previous then

if pos_max > 0 and (α× qdi ) < val_max then
cdj ← pos_max . Call peak
val_max← 0 . Reset for next peak
j ← j + 1

end if
end if
val_previous← qdi

end for

characteristics of a normal distribution and decreases as the distance to the true start
or stop position increases. Peaks caused by noise will have similar characteristics and
therefore their intensity is expected to be (i) a function of the distance (between the
positions i and i′), and (ii) proportional to the targets intensity, pdi . The filter uses
these characteristics to separate peaks derived from noise, from peaks derived from
other fragments. The distance ∆ (in nt) between a target and noise candidate position
is defined in equation 2.1, where | . . . | is the absolute value operator. ∆ will always
be larger than 0 because a target is not compared with itself.

∆ = |i− i′|, if i 6= i′ (2.1)

Because intensities of noise artefacts are proportional to the intensity of the target,
a weight matrix is used to define the area border (Figure 2.4). The weights are de-
rived from the probability density function of a normal distribution with a standard
deviation of 3, for all integer values 0 ≤ x ≤ 15. To rescale densities to weights, the
densities were divided through the density for x = 0 (0.1329808). To improve perfor-
mance for peaks with a very low number of corresponding reads, the densities for a ∆

of 1, 2, 3 and 4 were changed to 1.0. The complete weight matrix ω is available in the
source code. For each target peak, the filter evaluates whether any other peaks fall
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within the range that can be expected by noise in both directions (d = 5′ or d = 3′)
as follows (Figure 2.4):

A Sort cd on corresponding intensities in descending order.

B For each i ∈ cd target peak, remove corresponding noise artefacts:

B.i For all i′ ∈ cdi′ 6=i noise candidate peaks, find ω∆ and define whether the
candidate is noise or belongs to a separate fragment by evaluating equa-
tion 2.2. If the equation is true, the candidate peak is considered to be a
noise artefact of the target; immediately discard candidate cdi′ . If it is false,
the candidate peak is not considered to be a noise artefact and must be
retained.

pdi′ ≤ (ω∆ × pdi ) (2.2)

As a result of the filter, c5′ and c3′ may have shrunk and their respective lengths k
and m may have become smaller.

5. Reconstruction

The peaks are expected to be the actual boundaries of fragments. Because start and
stop positions do not have a direct one-to-one relationship with each other, a trace
back is required to reconstruct the fragments. Because the number of predicted start
(k) and end (m) positions is not necessarily equal, it is convenient to start reconstruc-
tion from direction d with min(k,m) candidate positions, and find for each position
the most likely corresponding position d′. Direction d is defined in equation 2.3, and
d′ is its complement.

d =

5′ (start positions) if k ≤ m

3′ (end positions) if m > k
(2.3)

Important information required for reconstruction is the expected length of reads that
were used for detecting a peak, given in l5

′
and l3

′
.

Indeed:

• A fragment that starts at position i is expected to have its end i∗ close to:
i∗ ≈ i+ l5

′

i .

• A fragment that ends at position i is expected to have its start i∗ close to:
i∗ ≈ i− l3′i .
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36 FlaiMapper

The number of reads that correspond to a start position is expected to be close to
the number of reads that define the end position: pdi ≈ pd

′

i′ . Thus, the reconstruction
process needs a balance between (i) the expected position and (ii) the expected
intensity of the counter position. This is achieved by conjoining an associated start
and end position into a fragment as follows:

A Sort cd based on corresponding intensities in descending order.

B For all i ∈ cd candidate positions find expected counter position i∗

B.i For all candidate counter positions i′ ∈ cd
′
, the goal is to determine the

counter position which has the optimal trade-off between a small distance
with the expected counter position and a small difference in intensity. This
is achieved by solving of equation 2.4. In the equation 0.09 is an arbitrary
chosen weight that forms the linear balance between distance and inten-
sity. A predicted fragment is determined with its start position: min (i, j)

and end position: max (i, j). After reconstruction, positions i and j are
discarded from cd and cd

′
, respectively.

j = max
i′

((1− 0.09× |i∗ − i′|)× pd
′

i′ ), for all i′ ∈ cd
′

(2.4)

2.3 Results

2.3.1 Validation of FlaiMapper performance

miRBase

To get an impression of FlaiMapper’s performance, its predictions for corresponding
miRNAs detected in dataset SRP002175 were compared with miRNA annotations
in miRBase 20 [146]. Because all experiments in this dataset are generated under
the same conditions, alignments to the same ncRNA from all 12 experiments were
merged, to maximize resolution. Of the 1037 miRNAs annotated in miRBase, 169
lacked supporting reads, and were not included in the quality assessment (because
they would influence the outcome negatively without assessing the algorithm itself).
Of the remaining 868 miRNAs, FlaiMapper was not able to predict a fragment that
overlaps an annotated miRNA only 21 times, with a corresponding sensitivity of
847/868 = 0.98.

A detailed assessment was performed by measuring the offset between a predicted
fragment and a miRNA annotation in miRBase (Figure 2.5, top). We assume that
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miRBase provides the “ground truth” in terms of miRNA annotations. The results
show that the majority of FlaiMapper predictions are identical to miRBase annota-
tions. Also, the decrease of the offset bars (Figure 2.5, top) is symmetrical, indicating
no systematic inconsistency. 89% of the predicted start positions are identical to the
reference. When an offset of 1 nt is allowed, the ratio correctly predicted start posi-
tions increases to 95%. In contrast, 54% of the end positions are predicted identical
to the reference. When an offset of 1 nt is allowed, this increases to 82%. In addition,
their offset-bars descend slower. This indicates that estimation of start positions is
more precise.

To get an impression of the influence of sequencing depth on accuracy of start
and end positions corresponding to miRNA and miRNA* predictions, the number
of corresponding reads (intensity) was plotted as a function of the offset for dataset
SRP002175. Figure 2.6 illustrates that with the increase of sequencing depth, the
offset for both start and end positions decreases. However, at identical intensity, end
positions have higher offset than start positions and require deeper sequencing to
achieve the same accuracy.

In addition, we analysed the performance of FlaiMapper on three Supplemen-
tary Data generated on other sequencing platforms. Performance was similar to the
performance described above.

Existing software

Previous research reported a comparable method [147]. Its goal is to detect miRNA-
offset-RNAs (moRNAs), fragments adjacent to pre-miRNAs. The authors also used
the method to demonstrate its ability to discover miRNAs. The algorithm has no
restrictions to a certain type of fragment, so its outcome should be comparable to
FlaiMapper and therefore their performances can be compared with each other.

In contrast to our method, BlockBuster relies on the overall aligned read density of
a fragment and transforms this into a normal distribution. Consequently, the predic-
tion of the start and end positions are dependent on each other since they are derived
from the same distribution. This implies that the alignments near a fragment’s start
and end position should have a symmetrical shape. BlockBuster’s performance was
tested on dataset SRP002175 and the alignments of the 12 corresponding experiments
were merged and converted into the BED format for compatibility. BlockBuster was
used with a variety of parameters where its scale parameter of 0.05 and distance of
26 were found to be rough estimates for the optimum. Optimum is defined by the
lowest amount of root squared error of all predicted miRNAs where error is defined
as the offset between a predicted miRNA and its miRBase annotation. The following
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Figure 2.5: Comparison between the predictions of miRBase 20 and FlaiMapper (top) and
between miRBase and BlockBuster (bottom) on dataset SRP002175, indicating the offset of
the start positions (left) and end positions (right). The vertical axes reflect the amount of
predictions that correspond to a particular offset. The horizontal axes represent the offset
between a predicted fragment and an annotated miRNA; exact matches are located at 0,
offsets < 0 are predicted upstream the miRNA’s boundaries and offsets > 0 - downstream.
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Figure 2.6: Relation between sequencing depth and offset in predicted miRBase annotations
for dataset SRP002175. The horizontal axis represents the offset for the start (left) and end
(right) positions between a miRNA annotation and a predicted fragment. Predictions with
exact matches are located at 0, offsets < 0 are predicted upstream the miRNA’s boundaries
and offsets > 0 - downstream. The vertical axis represents the number of reads corresponding
to a start (left) or end (right) position. The figure indicates that the higher the number of
corresponding reads, the lower the offset. Overall, the predicted start positions have a lower
offset than the end positions, for the same sequencing depth.
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is observed (Figure 2.5, bottom):

• A lower sensitivity: 745/868 = 0.86 (compared with 0.98 in FlaiMapper).

• A lower accuracy:

– The number of start positions identical to miRBase is 78% compared with
FlaiMapper’s 89%. When an offset of 1 nt is allowed, both tools show
comparable accuracy of 95%.

– The number of end positions identical to miRBase is 34% compared with
FlaiMapper’s 54%. When an offset of 1 nt is allowed, 79% is predicted
correctly compared with 82% using FlaiMapper.

• The offset bars of the start position decrease asymmetrically.

• The predictions are shifted; for the start positions, there is an overhang towards
the pre-miRNAs 5′-end and for the end positions there is an overhang towards
the pre-miRNAs 3′-end, indicating that the predicted fragments are on both
sides systematically longer than the miRBase annotations.

2.3.2 Fragment analysis

We used FlaiMapper to detect fragments originating from sncRNAs other than pre-
miRNAs on datasets SRP002175, SRP006788 and supplementary datasets SRP028959,
SRP034013 and SRP041082. To maximize resolution, alignments of dataset SRP002175,
SRP034013 and SRP041082 were merged. For SRP006788 and SRP028959, experiments
were analysed individually to investigate possible influence of specific RNA processing-
related treatments. The numbers of predicted fragments, categorized per type of pre-
cursor, are given in Table 2.2. The ratios of predicted fragments per precursor type
were used for principal component analysis (Figure 2.7). The largest difference be-
tween fragment profiles was observed between datasets SRP002175, SRP034013 and
SRP041082. Since they are from different tissues and experiments, this is expected.
Sub-conditions within dataset SRP006788 that are taken from AGO pool-downs showed
nearly identical fragment profiles. In addition, samples of which nuclear RNA was ex-
tracted from independent HeLa experiments processed on different sequencers, also
show very similar fragment profiles.

Table 2.2 shows that the AGO-pool down samples of dataset SRP006788 have a
relatively high proportion of fragments derived from pre-miRNAs compared with the
other samples in the dataset. This observation is consistent with the known associ-
ation of miRNAs with AGO proteins [131]. On the same time, it also suggests that
fragments derived from other precursor types than pre-miRNAs are not associated
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Figure 2.7: The first two components of principal component analysis applied on percent-
ages of predicted fragments (Table 2.2 comprise 92% of the variance. The circle represents
the profile of merged dataset SRP002175 (pigment cells, Illumina GA II); squares individual
experiments of dataset SRP006788 (HeLa cells, Illumina GA II); diamonds individual experi-
ments of SRP028959 (HeLa cells, Ion Torrent PGM); triangle pointing up dataset SRP034013
(B cells, Illumina HiSeq2000) and the triangle pointing down dataset SRP041082 (prostate
cells, Illumina HiSeq2000). The last three datasets are addressed in the Supplementary Data.
Datasets corresponding to separate tissue types demonstrate unique fragment profiles. Ex-
periments with HeLa cells taken under similar circumstances group together; total RNA
samples from independent datasets SRP006788 and SRP028959 cluster closely together.
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Figure 2.8: Sequence logos [148] of the fragments located on the 5′- (left) and the 3′-end
(right) of the precursor ncRNA from the predictions on dataset SRP002175. Only fragments
with their centre located at ≤ 40% of the precursor are used for prefix analysis and fragments
located at ≥ 60% for suffix analysis. (top) Pre-miRNA fragments: no common prefix or suf-
fix motif (based on 520 prefixes and 427 suffixes). (middle) C/D-box snoRNA fragments:
(middle left) the prefix motif UGAUGA is found more often around the sixth and seventh nu-
cleotide (based on 130 prefixes). (middle right) The suffix UGAUG is found more often around
the −eighth nucleotide (based on 72 suffixes). (bottom) H/ACA-box snoRNA fragments:
(bottom left) the fourth nucleotide of the prefix appears to be G/C enriched, although the
bit score is mild (based on 37 prefixes). (bottom right) The suffixes are enriched with the
motif ACA from the −sixth until the −fourth nucleotide (based on 19 suffixes).

with AGO to the same extent. Taken together, this supports the biological context of
the FlaiMapper-derived fragment profiles.

2.3.3 Sequence logos

To show that the outcome of FlaiMapper can be used to explore characteristics of
sncdRNAs like sequence motifs, fragments were analysed for over-represented pre-
or suffixes using sequence logo plots [148] (Figure 2.8). The analysis on pre-miRNA-
derived fragments did not indicate over-represented motifs. Although it must be stated
that the number of predicted fragments derived from C/D-box snoRNAs is lower than
for pre-miRNAs, the analysis confirms that the C-box is over-represented [138]. It also
shows that sequences of H/ACA-box snoRNA-derived fragments located at the 3′-half
of the precursor, most often contain the suffix ACANNN, where ACA is the precursor’s
ACA-box and N can represent any nucleotide. On the 5′-half of the H/ACA box the
fourth is preferentially occupied by a G/C. However, due to the mild bit score and the
low number of used fragments, this observation should be interpreted with caution.
Because of the highly conserved sequences and the high number of genomic copies,
tRNAs were excluded from motif analysis.
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2.4 Discussion

We set out a method able to extract and annotate ncRNA fragments, because such
annotations can be helpful in further high-throughput research. We designed FlaiMap-
per, a computer program to predict ncRNA fragments using small RNA-seq align-
ments. Benchmarking indicated that FlaiMapper is able to predict 97.8% of the miR-
NAs with corresponding reads. 95% of the miRNAs 5′-end and 82% of the 3′-end pre-
dictions were concordant with miRBase annotations. For this analysis, data from the
Illumina Genome Analyser II was used. A similar accuracy was observed for sequenc-
ing data derived from the Ion Torrent PGM and Illumina HiSeq2000 (Supplementary
Data), indicating FlaiMapper can perform well on data from different platforms. We
demonstrated that FlaiMapper performs better than existing similar software [147].

FlaiMapper predicts fragments by looking at the most common start and end
positions in alignments. It can be argued whether the most common start and end
positions should indeed provide the evidence for the prediction of a fragment, since the
most common read could be used instead. However, the most common start and end
positions should usually be covered by a higher number of reads. This corresponds to
a higher resolution, which is especially advantageous for the prediction of fragments
with a low read coverage, and should therefore also be more robust towards noise.
Together with the demonstrated high performance, this implies that predictions based
on start and end position densities provide a more appropriate solution for fragment
annotation.

The weights used in the filtering step are based on a normal distribution with
an arbitrary chosen σ. These parameters probably find their optimum in relation
with sequencing protocols, 5′/3′-end-specific processing factors or different families
of fragments. Therefore, once there is a better understanding of the processing of
fragments, it is recommended to spend effort in optimizing these parameters.

Additional analysis indicated that FlaiMapper’s performance in miRNA annota-
tion is positively correlated to sequencing depth. Predicted 3′-ends of miRNAs have a
larger offset compared with miRBase annotations than the 5′-ends, even for the same
sequencing depth. The higher variability of the miRNAs 3′-ends has earlier been re-
ported [146]. In addition, research on the classification of sncRNAs indicated that
metrics corresponding to the variability in the alignment are indeed higher for the
3′-end in miRNAs [149]. They were able to indicate that different levels of variabil-
ity correspond to specific types of sncRNAs. Possible explanations could be RNA
post-processing or RNA editing. This means that alignments over the entire frag-
ment can be asymmetrical because of a larger variation observed at miRNAs 3’-ends.
Since BlockBuster assumes reads to be symmetrically distributed over a fragment,
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this might explain why (i) its accuracy is lower, (ii) its predictions are longer and (iii)
shifted with respect to miRBase.

Although it seems counter-intuitive that an ncRNA can produce different frag-
ments that originate from an overlapping region, there are situations where over-
lapping fragments can be expected. This can be stressed by recalling the not fully
understood tRNA processing mechanism(s), where tRNA halves and tRFs spanning
similar regions have been reported. Therefore, FlaiMapper has no restriction to the
prediction of overlapping fragments, similar to the method of [147].

Sequence logos indicated that the ACA-box, as part of the the ACANNN suffix,
is over-represented and position specific in fragments derived from the 3′-halve of
the H/ACA-box snoRNAs. The analysis also confirmed that the C-box of C/D box
snoRNAs is over-represented in corresponding fragments. Yet, this result may be
biased by the existence of multiple, highly homologous, genomic copies of certain
C/D-box snoRNAs such as HBII-52 and HBII-85.

Fragment characteristics can play an important role in finding associations with
their processing mechanism. For example, although the larger variability of the align-
ments at the 3′-end of miRNAs affects performance, it clearly indicates a difference in
the processing of miRNAs ends. Characteristics such as 5′- and 3′-end entropy have
been successfully used in the classification of sncRNAs [149, 150]. Using such char-
acteristics on the fragment level, for example for clustering or classification, might
provide new insights into the processes of production, functioning or degradation of
fragments or indicate a possible sub-grouping. The future in-depth analysis of snc-
dRNAs will require more comprehensive datasets with higher sequencing depth and
more statistical power.

2.5 Conclusion

The lack of a sncdRNAs annotation is a short coming in small RNA-seq analysis.
To overcome this, we designed the computer program FlaiMapper. FlaiMapper has
a high performance in predicting miRNA boundaries, but can be used for the an-
notation of any type of sncdRNA. Examination of FlaiMapper-predicted sncdRNAs
indicated different type specific characteristics: 5′/3′-end-specific variability in miR-
NAs, associations between AGO and relative fragment profiles in dataset SRP006788

and a position-specific sequence motif in a subset of the H/ACA-box fragments. These
characteristics indicate that FlaiMapper is a good starting point for the downstream
analysis of small RNA sequencing experiments.
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Abstract

Small nucleolar RNAs (snoRNAs) are dynamically regulated in different tissues
and affected in disease. SnoRNAs are processed further to stable smaller RNAs.
We sequenced the small RNA transcriptome of prostate cancer (PCa) at different
PCa stages and generated a quantified catalogue of 3927 small non-coding RNAs
(sncRNAs) detected in normal and malignant prostate tissue. From these, only 1524
are microRNAs. The remaining 2401 sncRNAs represent stable sncRNAs species that
originate from snoRNA, tRNA and other sncRNAs. We show that snoRNA-derived
RNAs (sdRNAs) display stronger differential expression than microRNAs and
are massively upregulated in PCa. SdRNAs account for at least one third of all
small RNAs with expression changes in tumor compared to normal adjacent tissue.
Multiple sdRNAs can be produced from one snoRNA in a manner related to the
conservation of structural snoRNA motifs. Q-PCR analysis in an independent patient
cohort (n=106) confirmed the processing patterns of selected snoRNAs (SNORD44,
SNORD78, SNORD74 and SNORD81) and the cancer-associated up-regulation of their
sdRNAs observed in sequencing data. Importantly, expression of SNORD78 and its
sdRNA is significantly higher in a subset of patients that developed metastatic
disease, demonstrating that snoRNA and sdRNAs may present as novel diagnostic
and/or prognostic biomarkers for PCa.

Keywords: GAS5; SNORD78; prostate cancer; sdRNA; snoRNA
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3.1 Introduction

Malignant transformation and cancer progression cause changes in the expression and
function of microRNAs (miRNAs) [17, 16]. However, the effects of these processes on
other small non-coding RNAs (sncRNAs) are less understood. Recently, we demon-
strated the abundance and differential expression of small nucleolar RNA-derived
RNAs (sdRNAs) in the small transcriptome of prostate cancer (PCa) [151]. It is gen-
erally accepted that small nucleolar RNAs (snoRNAs) are housekeeping, non-protein
coding molecules that associate with specific sets of proteins to maintain proper ri-
bosomal maturation in the nucleolus.

Still, several reports show that snoRNAs have tissue-specific expression [152, 153],
and may present as novel cancer biomarkers. For example, the H/ACA-box snoRNA
SNORA42 is commonly overexpressed in non-small cell lung cancer (NSCLC) and its
expression is significantly inversely correlated with survival [154, 140]. Similarly, the
levels of C/D-box snoRNAs SNORD33, SNORD66 and SNORD76 are significantly elevated
in plasma from NSCLC patients compared with cancer-free controls and can provide
potential biomarkers for early detection [155]. In chronic lymphocytic leukemia (CLL),
heterogeneous snoRNA expression patterns discriminate major CLL subgroups and
can stratify patients in different prognostic groups [156], while in multiple myeloma
snoRNA expression patterns are associated with distinct molecular subtypes of the
disease [157].

Furthermore, resent research demonstrates that the molecular alterations of
snoRNA are functionally linked to basic cellular processes associated with cancer
proposing either tumor suppressor or oncogene role for different snoRNAs. In NSCLC,
SNORA42 acts as a putative oncogene. Its overexpression enhances cell proliferation and
growth in bronchial epithelium and cancer cells, while its knockdown in NSCLC cells
inhibits colony forming [140]. In acute promyelocytic leukemia, the SNORD112-114 is
specifically activated in a subset of patients and may influence cell growth through
a negative regulation of the cell cycle and the Rb pathway [158]. On the con-
trary, in peripheral T-cell lymphoma, over-expression of the candidate prognostic
marker SNORD71 (HBII-239) is associated with favorable outcome [159]. The C/D box
snoRNA SNORD50, a translocation partner of BCL6 in B-cell lymphoma [160], is a can-
didate tumor suppressor significantly associated with clinically relevant prostate [161]
and breast [141] cancer. In hepatocellular carcinoma (HCC), SNORD113-1 has been
identified as a tumor suppressor [162]. Down-regulation of this snoRNA is associated
with decreased survival of HCC patients, while reconstitution of its expression sup-
presses tumorigenesis in vitro and in vivo. In glioblastoma, decreased expression of
the GAS5 encoded SNORD76 is associated with an aggressive phenotype [163]. Ectopic
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expression of this tumor suppressor snoRNA inhibits tumorigenicity by arresting can-
cer cells in S phase in vitro and inhibits orthotopic tumor growth in vivo. In breast
cancer and head and neck squamous cell carcinoma the low expression of another
GAS5 encoded snoRNA, SNORD44, correlates with markers of aggressive pathology and
poor prognosis [164, 165].

At present, little is known about the pathways of snoRNA turnover. Apparently,
snoRNAs are further processed to sdRNAs in a vast variety of organisms [24]. It
is yet unclear whether sdRNAs are novel functional entities or footprint-products
of snoRNA downstream processing shielded from degradation by snoRNA-interacting
proteins. A miRNA-like activity has been proposed for sdRNAs derived from H/ACA-
box snoRNAs (H/ACA-sdRNAs) based on their apparent size of 20-24 nt equivalent
to miRNAs, the ability to promote repression of complementary targets in vitro, and
the association with DICER and AGO complexes [166, 167, 138, 168, 139, 137, 169].
In contrast, a bimodal size distribution of 17-20 nt and 27-30 nt has been reported
for sdRNAs derived from C/D-box snoRNAs (C/D-sdRNAs) [151, 167, 138]. C/D-
sdRNAs are not efficiently incorporated in AGO2 suggesting a different function for this
type of sdRNAs [170]. In addition, it has been reported that the highly abundant in
brain ‘orphan’ snoRNAs, SNORD115 and SNORD116, are processed into larger sdRNAs
(34-73 nt) that complex with spliceosomal proteins and may regulate the alternative
splicing of target mRNAs [136, 171]. Association of C/D-box snoRNAs with novel
RNPs and involvement in alternative splicing has been previously observed in mice for
the brain specific MBII-52 [172]. Interestingly, both MBII-52 and its human ortholog
SNORD115 produce larger sdRNAs (34-73 nt). Similar observation has also been made
for sdRNA regions of SNORD88C, which can influence the alternative splicing of FGFR3
pre-mRNA [128]. At the same time, studies in Drosophila sp. and in human cells show
that snoRNAs are strongly enriched in the nuclear fractions of chromatin-associated
RNA and possibly involved in the maintenance of open chromatin structure [173].

Here, we report the deep sequencing of patient-derived samples from normal
prostate, and PCa in different disease stages, which reveals sdRNA production from
the vast majority of known human snoRNAs. At least 78 of the detected sdRNAs
demonstrate strong differential expression in cancer. Furthermore, the expression
of some sdRNAs and their precursors is associated with clinical progression and
metastatic occurrence.
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3.2 Results

3.2.1 Library preparation and sequencing

We generated 10 sncRNA libraries from normal adjacent prostate (NAP), benign
prostate hyperplasia (BPH), different stages of PCa, and metastatic lymph node (LN)
prepared from fresh-frozen patient material (FF) (Supplementary Table 1). To esti-
mate the influence of sample storage on sncRNA abundance and stability, we prepared
a replicate library from formalin-fixed, paraffin-embedded tissue (FFPE) from tumor
samples used for one of the fresh-frozen libraries (group 3). All sequencing reactions
yielded approximately 14 million raw reads, each (13,468,284 to 15,393,670) with the
FFPE library producing the highest raw read number (Figure 3.1a).

3.2.2 Annotation of the sncRNA transcriptome

The correct mapping of sncRNA reads is challenged by the fact that predominant
isoforms of miRNAs and other sncRNAs such as snoRNAs may vary from the mature
sequences annotated in public databases. Differences can be caused by alternative
3′-end modifications [174] or alternative 5′-/3′-end positions of the detected sncRNA.
Additionally, the length of mature sncRNA transcripts can be ambiguously anno-
tated in different public databases. To map as many sequence reads as possible, we
constructed a custom small non-coding RNA database (sncRNAdb) that consists of
2271 unique small non-coding RNA species corresponding to 2356 unique genomic
loci (Supplementary Figure 1 and Supplementary File 1).

Mapping to sncRNAdb resulted in the detection of a total of 1637 unique sncRNAs
expressed across any of the 11 libraries with an average of 1229 per library. 70% to 84%
of the reads generated from fresh-frozen samples and only 52% of the reads generated
from FFPE could be annotated by sncRNAdb (Figure 3.1a and Supplementary Table
2). The majority of annotated reads mapped to 873 pre-miRNAs (85.5-95.6%), 385
tRNAs (1.89-7.4%), 228 C/D-box snoRNAs (0.3-1.9%), and 91 H/ACA-box snoRNAs
(0.0-0.1%) (Figure 3.1b, 3.1c and Supplementary Tables 2 and 3).

Interestingly, in PCa samples we detected up to 27% more C/D-box and up to 52%
more H/ACA-box snoRNAs compared to NAP or BPH. Furthermore, total snoRNA
read-counts were increased at least two-fold, indicating possible activation of snoRNA-
gene expression in response to malignant transformation. In contrast, the number
of detected miRNAs remained relatively stable and the total miRNA read-counts
changed by no more than 19% (min. 9,202,300, max. 11,367,682) (Figure 3.1c, Sup-
plementary Figure 2 and Supplementary Tables 3 and 4).
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Table 3.1: Number of differentially expressed sncdRNAs.

Comparison Total number of sncdRNAs with Type of sncRNA
significantly changed expression

Corrected Fold Expression tRF miRNA sdRNA Other
p-value1 change in cancer SNORD SNORA
(≤0.01) (≥ ±4.0) (2nd group)

NAP vs. PCa 6 Up 66 25 9 23 5 4
cured 200 68
(grl vs. gr 3) Down 2 0 2 0 0 0

PCa 6 cured vs. Up 0 0 0 0 0 0
PCa 6 recurrent 155 14
(gr3 vs. gr4) Down 14 10 3 1 0 0

PCa 6 recurrent vs. Up 8 0 4 1 1 2
PCa 6 recurrent 156 16
(gr4 vs. gr10) Down 8 0 5 3 0 0

PCa 6 cured vs. Up 5 0 3 0 1 1
PCa 6 recurrent 141 18
(gr3 vs. grill) Down 13 3 7 3 0 0

NAP vs. PCa 7 Up 18 2 3 9 3 1
recurrent 168 34
(grl vs. gr 5) Down 16 5 8 1 0 2

NAP vs. PCa 8 Up 87 27 15 29 5 11
recurrent 238 105
(grl vs. gr6) Down 18 7 8 1 0 2

NAP vs. Up 115 36 28 35 5 11
metastatic LN 302 157
(grl vs. gr 8) Down 42 7 35 0 0 0

NAP vs. Up 87 24 38 18 1 4
TURP HR 254 104
(grl vs. gr 7) Down 17 3 11 1 0 2

BPH vs. Up 92 21 42 21 2 6
TURF HR 352 202
(gr2 vs. gr7) Down 110 94 15 0 0 1

NAP vs. BPH Up 99 93 5 0 0 1
250 107

(grl vs. gr2) Down 8 0 5 1 0 2

FF vs. FFPE Up 462 261 6 80 56 59
689 540

(gr3 vs. gal) Down 78 2 73 2 1 0
1Z-test, Bonferroni corrected p-value
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Figure 3.1: Summary of sncRNA sequencing data from PCa patient samples. (a)
Number of retrieved raw, extracted, annotated, and unique reads generated for each one of
the sequencing libraries. (b) Number of detected sncRNA-species per library. (c) Relative
abundance of different sncRNA-types per library. Read-length distribution in normal (d)
and cancer libraries (e) derived from fresh-frozen, (f) and FFPE material. Each sncRNA
type is represented by different color: miRNA (red), SNORD (dark blue), SNORA (orange),
tRNA (green), scaRNA (black), rRNA (gray), snRNA (yellow), scRNA (magenta), other
miscellaneous RNAs (light blue).
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Figure 3.2: FlaiMapper results. (a) Total number of detected sncRNA precursors per
RNA type and sequencing library. (b) Total number of sncdRNAs per precursor type and
sequencing library. (c, d, e, f) Different types of sncRNAs produce different number of
fragments. (g) Relation between the number of fragments produced per precursor RNA and
the expression levels of individual fragments. (h) Relation between the number of fragments
produced per precursor RNA and the expression levels of the most abundant fragment per
precursor.
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We also examined the read-length associated with different types of sncRNAs. As
expected, miRNA reads had a narrow size distribution between 21 and 23 nt in all
libraries. Similar size range was observed for snRNA- and scaRNA-derived RNAs in
fresh-frozen libraries. In concordance with our previous results [151], we detected a
size peak at 23 nt and a plateau between 26-28 nt for reads mapping to C/D-box snoR-
NAs. Interestingly, reads mapping to H/ACA snoRNAs and tRNAs demonstrated a
shift in size distribution between normal and malignant samples (Figure 3.1d, 3.1e
and Supplementary Figure 3) suggesting cancer-associated alterations in sncRNA
processing.

Comparison of the sncRNA composition of the FFPE library with its fresh-frozen
counterpart demonstrated that the relative miRNA read-content in FFPE decreased
3.9-fold from 92% to 24% of the total annotated reads. On the contrary, the num-
ber of reads mapping to other sncRNA species was strongly elevated i.e. sequence
read-counts were increased 152-fold for snRNAs, 12.7-fold for H/ACA-box snoRNAs,
5.6-fold for tRNAs, and 2.7-fold for C/D-box snoRNAs (χ2 test, p < 0.0001 for all
tested groups) (Figure 3.1c, Supplementary Figure 2 and Supplementary Table 4).
The size distribution of read-length in FFPE material was also strongly affected for
all examined ncRNA groups except for miRNAs. (Figure 3.1e, 3.1f and Supplemen-
tary Figure 3). These observations can be explained with the higher level of RNA
degradation in FFPE for transcripts longer than miRNA [175, 176].

3.2.3 Mapping and annotation of sncRNA-derived RNAs (snc-
dRNAs)

The majority of miRNA reads in small RNA sequencing data map to the specific loca-
tion on their pre-miRNA corresponding to the mature miRNA. Similarly, reads map-
ping to other sncRNAs, originate from specific positions on their precursor rather than
being randomly derived and can represent specific, biologically functional, smaller
RNA species, e.g. sdRNAs or tRNA fragments (tRFs) [177]. Nevertheless, the assign-
ment of RNA-seq sequence-reads to specific sdRNAs or tRFs for quantitation purposes
is hampered by the lack of proper annotation. Furthermore, many sncRNAs produce
multiple fragments [136, 171] that may overlap each other, which further complicates
the exact determination of their origin loci and a subsequent quantitative analysis.

To correctly determine the boundaries of sdRNAs, tRFs and other sncRNA-derived
RNAs (sncdRNAs) in our dataset and annotate their specific location on the precur-
sor sequence, we applied the computational algorithm Fragment Location Annotation
and Identification Mapper (FlaiMapper) and evaluated its performance in this data
set as described [178]. Shortly, FlaiMapper predicted 5′- and 3′-miRNA ends were
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Figure 3.3: Global expression changes of sncdRNAs in normal and malignant
prostate tissue. Upper and middle panels present scatterplots comparing the normalized
expression values of individual sncdRNA (dots) in each prostate cancer library (PCa) during
progressing disease to these in the library prepared from normal adjacent prostate tissue
(NAP). The expression of sncdRNAs in the hormone-refractory, transurethral resection of
the prostate (TURP HR) library is also compared to the benign prostate hyperplasia (BPH)
library since the latest represents the normal counterpart of malignant transurethral resec-
tion of the prostate material. Differences in sncdRNA expression between biological replicates
of Gleason 6 cancers (PCa 6) as well as comparison of a fresh-frozen library (FF) with its
formalin-fixed, paraffin-embedded (FFPE) counterpart derived from the same patients are
presented in the lower panels. Each sncdRNA type is presented by a different color. Diago-
nal lines across each scatterplot represent fold change difference in expression. Middle line,
crossing the horizontal and vertical axes at 0, no expression change; lines crossing the vertical
and horizontal axes at 2, twofold expression change; lines crossing the vertical and horizontal
axes at 4, four-fold expression change. Cured, no disease relapse after radical prostatectomy;
rec., recurrent disease, biochemical or metastatic relapse after surgery; LN, metastatic lymph
node sample; TERG+, TMPRSS2-ERG fusion gene event; TERG-, no TMPRSS2-ERG fusion event;
Numbers (6, 7 or 8) after PCa indicate the pathological Gleason score of the tumors in the
respective group.
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compared with the 5′- and 3′-end boundaries of corresponding mature miRNAs in
miRBase, v17 [146]. 82% of the detected miRNAs had a correctly determined 5′-end
exactly matching miRBase annotation. An additional 11% had an offset of 1 nt. In
agreement with previous observations [146], 3′-ends of mature miRNAs had higher
variability and matched miRBase annotations for 45%. From the investigated miRNAs
additional 33% had 1 nt offset, and 14%, 2 nt offset (Supplementary Figure 4). Given
the high confidence with which FlaiMapper identified 5′- and 3′-end boundaries of bona
fide miRNAs, we performed annotation of all sncdRNAs in our fresh-frozen libraries.
We detected 3927 unique sncdRNAs derived from different precursor classes. From
these, 1524 originated from miRNAs, 1175 from tRNAs, 657 from C/D-box snoRNAs,
244 from H/ACA-box snoRNAs, and 327 from other sncRNA species (Supplementary
Table 5 and Supplementary File 2). The total number of detected unique sncdRNAs
was higher than the number of detected unique precursor species, showing that indi-
vidual sncRNA precursors produce more than one sncdRNA (Figure 3.2a, 3.2b and
Supplementary Figure 5). For example, the majority of pre-miRNAs produced one or
two miRNAs corresponding to the guide and passenger strand. For C/D box snoR-
NAs we detected between 1 and 6 sdRNAs originating from the same precursor, with
the exception of the unusually long SNORD3A, SNORD3B and SNORD3C, which give rise
to 10 to 13 C/D-sdRNAs. Most H/ACA-box snoRNAs produced between 1 and 3
sdRNAs, while for tRNAs we detected between 1 and 6 tRFs per precursor (Fig-
ure 3.2d-f). Other examined sncRNAs in our libraries produced a varying number
of fragments ranging from 3 for the telomerase RNA component to 28 for the small
nuclear 7SK RNA (Figure 3.2c; Supplementary Figure 6 and 7). We next argued that
the expression level of the sncRNA-precursor might positively influence the number of
sncdRNAs detected per sncRNA. We examined the distribution of expression values
of individual sncdRNAs in relation to the number of sncdRNAs derived per sncRNA
and could not observe a strong dependency between the median expression levels of
sncdRNAs and the total number of sncdRNAs produced per sncRNA. We obtained
similar results when the expression level of the most abundant sncdRNA per precursor
was used as a surrogate measure of the expression of the precursor RNA (Figure 3.2g-
h). Based on these results, we can conclude that multiple sncdRNAs originating from
the same sncRNA can be detected independently of their (low) expression level or the
expression level of their precursor. Vice versa, different precursor RNAs can produce
only one sncdRNAs with very high abundance. Hence, it can be assumed that the
number and quantity of different sncdRNAs do not directly reflect the abundance of
their precursor but, like miRNAs, are probably also influenced by additional aspects
of cellular metabolism, e.g. association with protein complexes and/or turnover rates.

The size of unique sdRNAs ranged between 15 and 29 nt (Supplementary Figure
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Figure 3.4: Global processing patterns and relative abundance of sdRNAs and
miRNAs expressed in prostate (cancer) tissues. (a) Full-length C/D-box snoRNAs
are aligned relative to the middle nucleotide of each sequence. (b) H/ACA-box snoRNAs are
aligned based on the position of the H-box. (c) Pre-miRNAs are aligned relative to the middle
nucleotide of each sequence. A green line represents each full-length sncRNA. Sequences are
extended 10 nt at each end to avoid mapping ambiguity caused by incorect annotation.
Positions of detected conserved H/ACA-boxes or C/D-boxes are shown in blue and red.
Light and dark grey lines indicate the positional origin of sdRNAs, miRNAs and miRNA*s.
The color intensity corresponds to the relative abundance of sncdRNAs originating from the
same precursor (read-count as a percentage of the total read-count per precursor), e.g. if
only one sdRNA per snoRNA-precursor is detected it is assigned 100% abundance, if two or
more sdRNAs originate from the same snoRNA the sdRNA with the highest read-count is
given the darkest color and the sdRNA with the lowest read-count, the lightest. Thin dashed
lines separate each panel into three subgroups where sncRNAs producing only one sncdRNA
are on top, sncRNAs producing two sncdRNAs are in the middle and those producing there
or more sncdRNAs are on the bottom. The highly sequentially conserved, multiple gene-
copy C/D-box snoRNAs from the SNORD116 (HBII-85) and SNORD115 (HBII-52) families
are grouped together below other C/D-box snoRNAs. The X-axis indicates the position of
sncdRNAs relative to the center of their precursor sequence. The Y-axis depicts the number
of full-length sncRNA precursors.
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Figure 3.5: Genomic organization, conservation, secondary folding, fragmentation
pattern and expression of SNORD44, SNORD74, SNORD78, and SNORD81. (a) SNORD44,
SNORD74, SNORD78, and SNORD81 are transcribed simultaneously from the conserved intronic
regions of the protein-non-coding GAS5 gene. Spliced exons (boxes); snoRNA loci (arrows).
(b) sdRNAs from SNORD44, SNORD74, SNORD78, and SNORD81 are up-regulated in PCa. Expres-
sion is comparable to PCa-relevant microRNA (not shown). SNORD74 and SNORD81 produce
equally expressed 5′- (sd5′), middle- (sdM), and 3′-sdRNAs (sd3′) with overlapping sdM
and sd3′. SdRNAs originating from the middle regions extend towards the antisense box and
their 5′-ends map exactly adjacent to the nucleotide complementary to the targeted riboso-
mal residue. (c) SNORD44 and SNORD78 produce predominantly one sdRNA either from the 5′-
or 3′-arm of the snoRNA. The position of core snoRNP-proteins NOP58/56 and FIBRILLARIN
(indicated at SNORD74) is dependent on the kink-turns formed by non-complementary base-
pairing (dots) of the conserved external sequence boxes C and D and/or the internal boxes
C’/D’. The rRNA-complementary antisense-box (lower case) is exposed and contains the
nucleotide targeted for modification (red), positioned exactly 5 nt upstream of the D or D’
box.
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Figure 3.6: Q-PCR validation of snoRNA and sdRNA expression in an indepen-
dent cohort of patient samples. NAP, normal adjacent prostate (n=17); PCa-cured,
radical prostatectomy sample, no disease relapse after radical prostatectomy (n=20); PCa-
biochem, radical prostatectomy sample, patients manifested biochemical disease relapse
after surgery (n=18); PCa-met, radical prostatectomy sample, metastatic disease progres-
sion after surgery (n=10); LN-normal, normal lymph node (n=3); LN-PCa, metastatic
lymph node (n=11); TURP-normal, transurethral resection of the prostate sample that
does not contain cancer cells (n=3); TURP-PCa, transurethral resection of the prostate
sample that contains cancer cells (n=24). Horizontal line marks the mean of each group.
Patient number in each group is indicated in brackets. P-values from unpaired two-tailed
t-tests (alpha level 0.05) are indicated above each comparison.

6). However, when the expression of individual sdRNAs of the same length were
accounted, we observed a predominant size of 23 nt for the majority H/ACA-sdRNAs
and a binominal size distribution for C/D-sdRNAs with two predominant sizes of 22-
23 nt and 28 nt (Supplementary Figure 7), which is in agreement with our previous
findings and other reports [151, 167, 138, 149]. C/D-sdRNAs demonstrated a broader
size distribution, which however could be a reflection of the broader size range of their
precursors.

3.2.4 sdRNAs are differentially expressed in prostate cancer

Previously, we observed differential expression of sdRNAs between PCa speci-
mens [151]. To examine if such changes are a cancer-specific event we compared the
expression of FlaiMapper defined sncdRNAs between normal (NAP and BPH) and
malignant tissues of progressing disease (PCa, LN, TURP). We detected between 34
and 202 sncdRNAs with significant differential expression (Table 3.1, Figure 3.3, and
Supplementary File 3). Approximately one third of the differentially expressed RNAs
in each comparison comprised C/D-sdRNAs upregulated in cancer (Figure 3.3). In
contrast, only one sdRNA was differentially expressed between non-malignant samples
(NAP and BPH) and only five, between biological replicate samples (PCa, Gleason 6,
groups 3, 4, and 10). This suggests that the accumulation of C/D-sdRNAs is primarily
driven by malignant transformation.
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To examine the effect of sample storage on fragment abundance, we compared
the expression of sncdRNAs between the FFPE sample and its fresh-frozen (FF)
counterpart. We limited comparison analyses to sncRNAs detected in any of the FF
libraries. MiRNAs had decreased expression in FFPE compared with sdRNAs, tRFs
and other sncdRNAs (Table 3.1, 3.3 and Supplementary Figure 8). Nevertheless, the
reduction of miRNA expression in FFPE appears to be the result of a global decrease
in miRNA read-counts compared to read-counts of other sncdRNAs (Figure 3.1c)
since the relative expression of miRNAs correlated strongly between both conditions
(Pearson ρ = 0.9289) (Supplementary Figure 8). This was not observed for sdRNAs
(Pearson ρ = 0.6557 for C/D-sdRNAs and 0.3895 for H/ACA-sdRNAs) or other
sncdRNAs, which have longer precursors and may be more susceptible to degradation
in FFPE material.

3.2.5 SdRNAs demonstrate specific global processing patterns
in prostate tissue

Given the discrete size and specific expression of sdRNAs, we examined detected snoR-
NAs for the presence of a common processing pattern. To be able to compare with
miRNAs, we aligned all snoRNA and pre-miRNA sequences and visualized the posi-
tion and relative abundance of the corresponding sdRNAs and miRNAs (Figure 3.4,
Supplementary file 4 and 5). The majority of sdRNAs originated from equivalent
locations of their precursors. Often, one predominant sdRNA was observed per pre-
cursor. The position of these predominant sdRNAs was not dependent on the total
number of smaller species detected per precursor sequence, showing a rather uniform
fragmentation pattern consistent with the precursor-type. This is in agreement with
previously suggested specific snoRNAs processing and accumulation of smaller RNAs
observed in cell lines [170, 128].

In our patient samples, predominant H/ACA-sdRNAs originate from either the 5′-
arm of the first H/ACA-snoRNA hairpin (38.5%) or the 3′-arm of the second hairpin
including the region of the ACA-box (31%) (Figure 3.4b). C/D-box snoRNA produce
twice as many predominant sdRNAs originating from the 5′-terminus that contain
a C-box (60.1%) compared to 3′-terminal sdRNAs that contain a D-box (30.1%)
(Figure 3.4a).

Interestingly, individual C/D-sdRNAs with highly similar sequences demonstrate
almost identical fragmentation pattern, which is also dependent on the conservation
of snoRNA structural features. For example, snoRNAs from the highly conserved,
multiple gene-copy SNORD116 family (HBII-85), which have a degenerated C’-box
(UGAGUGA) produce four sdRNAs where the most abundant one maps to the 5′-region
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covering the C-box. SnoRNAs from the SNORD115 (HBII-52) family with conserved
C’/D’-boxes produce three sdRNAs, with the most abundant ones mapping to the
middle-region and covering the entire K-loop including the C’/D’-box. In contrast,
the larger snoRNAs from the SNORD3 family, which lack a conserved C-box, produce
between 10 and 13 overlapping sdRNAs with the most predominant mapping to the
3′-end.

SNORD115 and SNORD116 sdRNAs differ in size and position from the previously
reported highly abundant psnoRNAs processed from the orthologous MBII-52 and
MBII-85 detected by RNase protection assays [136, 171, 179]. This discrepancy could
be explained by the implicit methodology differences between sncRNA sequencing
and RNase protection assays. However, these differences could be also caused by
tissue-specific sdRNA accumulation as previously described for sdRNAs originating
from SNORD88C (HBII-180C) [128] or by the dependence of processing mechanisms on
the structural conservation of C/D-box snoRNAs. Of note, SNORD115, SNORD116, or
SNORD88C-originating sdRNAs were detected at low abundance in our samples.

3.2.6 Processing and expression of sdRNAs originating from
GAS5 encoded C/D-box snoRNAs is related to the con-
servation of structural C’/D’-boxes

We investigated whether the fragmentation pattern of other C/D-box snoRNA is also
dependent on structural feature conservation. For this we analyzed the positional ori-
gin of a highly abundant sdRNA produced from the 3′-end of SNORD78 [151] and other
sdRNAs from the same locus. SNORD78 is intronically encoded by the Growth Arrest
Specific 5 gene (GAS5) together with 9 other C/D-box snoRNAs [180]. All 10 SNORDs
are presumably simultaneously transcribed as a GAS5 precursor-transcript, which un-
dergoes intron removal and posttranscriptional processing. We could detect sdRNAs
from all 10 GAS5-encoded snoRNAs. However, only four (SNORD44, SNORD78, SNORD74
and SNORD81) snoRNAs produced abundant sdRNAs (Figure 3.5 and Supplementary
Figure 9).

Interestingly, SNORD74 and SNORD81 produced three abundant sdRNAs with sim-
ilar, relatively low expression levels that mapped to the 5′-, 3′-, and middle region
of the snoRNAs. The 3′- and middle sdRNAs overlapped each other and covered the
K-loop and the conserved canonical C’/D’-box (Figure 3.5). In contrast, SNORD78 and
SNORD44, which lack the canonical C’/D’-box, produced predominantly one 28 nt long
sdRNA each, mapping to the 3′-arm for SNORD78 (sd78-3′) or the 5′-arm of SNORD44
(sd44-5′). Sd78-3′ and sd44-5′ were strongly upregulated in samples prepared from ma-
lignant tissue compared to normal or benign, while middle- and opposite arm-derived
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sdRNAs were present only at very low read-counts in all libraries (Supplementary
Figure 9a and 10).

3.2.7 SNORD78 and sd78-3′ expression is associated with
metastatic PCa

To validate our sequencing data, we tested the expression of SNORD44, SNORD78,
SNORD74, SNORD81, and their derivate sdRNAs, in an independent patient cohort of
106 fresh-frozen clinical samples by quantitative real-time PCR (Q-PCR). To eval-
uate whether increased sdRNA expression is a result of a general activation of the
GAS5 locus, we also measured the expression of the spliced GAS5 transcript (Figure 3.6
and Supplementary Figure 9b). All tested snoRNAs and sdRNAs were upregulated
in organ-confined PCa compared to normal adjacent controls. This was not related
to an elevation of the spliced GAS5 transcript, which did not demonstrate pronounced
expression changes between NAP and PCa. Interestingly, overlapping sdRNAs orig-
inating from the same snoRNA as well as full-length snoRNAs were simultaneously
detectable by Q-PCR suggesting the existence of multiple conformational states of
these snoRNAs.

Sd78-3′, SNORD78 and GAS5 expression was also detectable in different normal basal
prostate epithelium cell lines (PNT2C2, RWPE) prostate cancer cell lines (PC346C,
LAPC4, VCAP, LNCAP, 22RV1, PC3, and DU145N) as well as in hepatocellular
carcinoma (HEP3B) and colon adenocarcinoma (COLO205) cells demonstrating that
SNORD78 processing to sd78-3′ is not restricted to prostate tissue or cells. Similar to
patient data, the expression levels of sd78-3′ and SNORD78 were not correlated to the
expression of the GAS5 host gene (Supplementary Figure 11).

Consistent with our previous results [151], sd78-3′ was upregulated in the LN li-
brary generated in this study, suggesting association of this sdRNA with aggressive
disease. Therefore, in the validation cohort we stratified patients with organ-confined
disease at the time of radical prostatectomy into three groups: cured after radical
prostatectomy, biochemical disease reoccurrence, and progression to metastatic dis-
ease after surgery. Strikingly, the expression of sd78-3′ and its precursor SNORD78 in
the third group was significantly higher already at the time of surgery, suggesting an
early involvement in PCa progression and possible prognostic marker potential for
these sncRNAs.
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3.3 Discussion

SncRNAs and in particular miRNAs emerged as novel modulators of gene expression
and regulators of fundamental cellular processes often disturbed in cancer. At the
same time, long-known “housekeeping” RNAs such as snoRNAs appeared to have
tissue-specific expression altered in solid tumors and hematological malignances [155,
176, 181]. Furthermore, several studies discussed above demonstrate that similarly to
miRNA, snoRNAs carry diagnostic and/or prognostic biomarker potential in different
cancer types [154, 140, 155, 156, 157, 161, 141].

Improved detection and screening over the last decade led to large increase in
prostate cancer detection. However, the majority of presently diagnosed patients carry
clinically insignificant tumors, which would never progress to a life threatening disease.
Without the presence of better prognostic markers, many patients undergo unneces-
sary invasive surgical treatment.

Prompted by our previous findings on elevated levels of snoRNA fragments in
metastatic PCa [151] and by accumulating evidence from sequencing data that demon-
strates processing of snoRNA to stable smaller sdRNAs [167, 128, 177], we combined
RNA sequencing of human prostate (cancer) tissue with tailored computational anal-
ysis. This resulted in a methodologically quantitated catalog of 3927 sncdRNAs orig-
inating from 1637 unique sncRNAs and allowed us to follow for changes in their
expression during malignant transformation and cancer progression.

To investigate possible effects of sample storage conditions we compared the
sncRNA transcriptome of fresh-frozen tissue with its FFPE-stored counterpart. We
saw large changes in the accumulation of sncdRNAs, particularly sdRNAs and tRFs,
when we compared fresh-frozen with FFPE material. This was not the case for miR-
NAs were we observed only relative down-regulation, most possibly caused by the
additional buildup of degradation products of mRNAs and long ncRNAs due to sam-
ple preparation and storage [175]. In addition, while miRNA read-length in FFPE
tissue remained unchanged, reads from other sncRNAs had changed length distribu-
tion indicating that FFPE-preserved tissue is less suitable for the analysis of sncRNAs
other than miRNA.

Previously we detected differential expression of sdRNAs between organ-confined
PCa and lymph node metastases [151]. The expression analysis presented here indi-
cates that the major accumulation of sdRNAs is associated with malignant transfor-
mation and can be described by an increased global production and/or accumulation
of sdRNAs already in the early cancer stages but it is not directly associated with the
expression levels of precursor snoRNAs. Biological replicate analysis among three li-
braries (PCa, Gleason score 6) confirms the reproducibility of sequencing experiments
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on fresh-frozen tissue as less than 20 sncRNAs show significantly changed expression
levels. We did not observe a direct association between the number of sncdRNAs
arising from one precursor and its quantity, suggesting that sncdRNA accumulation
is not the direct result of increased sncRNA turnover in malignant cells. Q-PCR
analysis confirmed the expression changes detected by sequencing and also identi-
fied the simultaneous existence of full-length snoRNAs and their derivate sdRNAs
from the GAS5 locus. The high levels of SNORD78 and sd78-3′ in a subset of patients,
which progressed to metastatic disease, identify these two sncRNAs as possible novel
prognostic biomarkers for the further stratification of PCa patients at high risk of
developing aggressive disease.

It has been shown that the majority of C/D-sdRNAs are derived from the termini
of their precursor and may remain attached to the core snoRNP shielded from further
degradation [170]. A large part of the sdRNAs detected in our libraries is also termi-
nally derived. Nevertheless, the processing patterns of snoRNAs that we observe, and
the accumulation of specific sdRNAs appear to be dependent on the conservation of
structural snoRNA features and do not always correspond to snoRNA termini pro-
tected by the snoRNP. Furthermore, the overlap and discrete origin-position of multi-
ple sdRNAs produced from the same precursor exemplified by sdRNAs produced from
SNORD44, SNORD78, SNORD74 and SNORD81 suggest rather specific nucleolytic cleavage
that requires different conformational states for C/D-box snoRNAs [182] possibly as-
sisted by structural interaction with the core snoRNPs or yet unidentified proteins. Of
note, the highly abundant sd78-3′ is derived from the opposite part of SNORD78 and
does not overlap with the previously reported snoRNP footprint of SNORD78 [170].
It has been proposed that the specificity of sdRNA processing patterns detected in
human cell lines is conserved between different cell types while the accumulation of
individual sdRNAs is cell type specific implying the existence of dedicated processing
mechanisms [167, 138, 128, 183].

It remains to be established how sdRNAs and other sncdRNAs are produced in the
cell and to what extend this process is deregulated in cancer. The miRNA processing
RNaseIII, DICER was suggested in the biogenesis of H/ACA-box-originating sdRNAs
that have an apparent size of 20-24 nt. However, C/D box-sdRNAs identified by us and
others [167, 138] have a bimodal size distribution which deviates from that of DICER
products, suggesting the involvement of other nuclease(s) in the generation of sdRNAs.
Another protein from the miRNA biogenesis pathway that could be involved in the
generation of SNORD-sdRNAs is AGO2. It has been shown that AGO2 is responsible for
the maturation of pre-miRNA-451 which is too short to undergo DICER processing.
The AGO2 cleaved miR-451 product is a fragment of 30 nt that is processed further
to the mature 23 nt long miR-451 by unknown exonucleases [184]. Nonetheless, AGO2-
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derived mature miR-451 is predominantly uridilated at is 3′-end, while most of the
C/D box-sdRNAs in our libraries are not. Furthermore, recent analyses of AGO2 PAR-
CLIP libraries demonstrate that despite their cellular abundance, C/D box snoRNAs-
originating sdRNAs are not efficiently incorporated in AGO2 [170].

The small transcriptome is a mix of turnover products and functional entities,
where a proportion of the cellular sdRNA pool most probably represents stable degra-
dation products shielded by effector proteins. Nevertheless, the mechanisms of sdRNA
generation and their putative functional role in normal and malignant cells should be
investigated further alongside with their biomarker potential in prostate and other
cancers.

3.4 Materials and methods

3.4.1 Patient samples and cell lines

Snap-frozen, liquid nitrogen stored and FFPE clinical samples (Supplementary Table
1) were from the tissue bank of the Erasmus University Medical Center, Rotterdam,
The Netherlands and from Tampere University Hospital (TAUH), Tampere, Finland.
Collection and use of patient material was performed according to the national leg-
islations concerning ethical requirements and approved by the Erasmus MC Medical
Ethics Committee, Medical Research Involving Human Subjects Act (MEC-2004-
261), and the Ethical Committee of the Tampere University Hospital. Prostate and
lymph node tissues were from radical prostatectomy. BPH samples were obtained
from cystoprostatectomies and found not to contain any prostate cancer cells. PCa-
TURP samples were collected by transurethral resection of the prostate. Histological
evaluation of analyzed material was described previously [151].

3.4.2 RNA isolation

Total RNA from frozen tissue was isolated using RNABee reagent (Campro Scientific,
GmbH, Berlin, Germany) according to manufacturer’s protocols. Total RNA isolation
from FFPE material was described previously [177].

3.4.3 Sequencing

Total RNA sample pools of four individual patient samples each, were outsourced
for sequencing (BGI, Shenzhen, China). Library preparations were performed accord-
ing to the “Small RNA Sample Preparation Guide, Part #1004239”, (Illumina Inc.).
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Shortly, total RNA pools were separated on 15% Tris/Borate/EDTA urea polyacry-
lamide electrophoresis gel, and the sncRNA fraction in the size range of 15-35 nt was
extracted and purified. After 5′- and 3′-adapter ligation, cDNA was generated by re-
verse transcription with SuperScript II Reverse Transcriptase (Invitrogen, Carlsbad,
CA, USA) followed by 15 cycles of PCR by Phusion DNA Polymerase (Finnzymes
Oy, Espoo, Finland). The strand-specific single-end reads were sequenced with a read-
length of 35 bp.

3.4.4 Small non-coding RNA database (sncRNAdb)

Official small non-coding RNA nomenclature lists and NCBI RefSeq identifier num-
bers for microRNA precursors (pre-miRNAs), small nucleolar RNAs (snoRNAs), small
cytoplasmic RNA (scRNAs), small nuclear RNA (snRNAs), and small miscellaneous
RNAs (miscRNAs) were retrieved from the HUGO Gene Nomenclature Committee
(HGNC) [185]. Genome locations corresponding to the RefSeq entries were further
extended with 10 nt at the 5′- and 3′-end to ensure correct mapping of reads de-
rived from ambiguously annotated ncRNAs and mapped against the hg19 assembly
at the University of California Santa Cruz (UCSC) [186]. UCSC Genome Browser
uses miRBase 15; therefore all miRNAs entries were manually curated to match miR-
Base 17. Since HGNC does not provide RefSeq identifiers for tRNAs, tRNA data was
retrieved from the UCSC dedicated Genomic tRNA Database [187]. The number of
mapped reads was positively influenced by the addition of “CCA” triplet to the 3′-end
of genomic tRNA sequences and intron removal. Therefore, tRNA entries represent
the mature tRNA form and are not extended. Sequences, genomic loci and database
identifiers of all ncRNAdb entries are given in Supplementary File 1.

3.4.5 Computational analysis of sequencing data

Initial mapping of sequencing reads to sncRNAdb was done in CLC-Bio Genomics
Workbench v4.9 following the “Small RNA Analysis” workflow. Read-summarizing
and adapter-removal parameters from the “Extract and Count” tool were applied:
Minimum sampling count was 4; Minimum and maximum number of nucleotides
in reads was 15 and 35 nt, respectively; no 3′- or 5′- terminal nucleotide removal
was performed. Each read was screened with “no fixed adapter length” for the (par-
tial) presence of Illumina small RNA adapter: CAAGCAGAAGACGGCATACGA on the minus
strand with alignment mismatches and gaps allowance at a mismatch cost of 3, and
a gap cost of 5, minimum score: ns, minimum score end: 3. If adapter was not found
reads were discarded from further analysis. Filtered sequence reads were mapped to
sncRNAdb with a maximum of 2 mismatches allowed using the “Annotate and Merge”
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tool.

3.4.6 Location, annotation and quantitation of sncdRNAs

Annotation of sncdRNAs was done using FlaiMapper as described [178]. Only se-
quence reads from libraries derived from fresh-frozen material were used as an in-
put for the calculation of 5′- and 3′-ends of sncdRNAs. Quantitation and expression
analysis of sncdRNAs was performed in a second round of mapping to FlaiMapper
annotated sncRNAdb using ‘Small RNA Analysis’ workflow in CLC-Bio Genomics
Workbench v4.9. “Expression values” that equal the sum of all reads mapping to a
FlaiMapper annotated sncdRNA were used. Expression data was normalized with the
“Reads per Million” algorithm. Differentially expressed sncdRNAs were detected us-
ing Kal’s Z-test on proportions [188] with two-sided p-value, followed by Bonferroni
correction with a corrected p-value cut-off of 0.01.

3.4.7 Quantitative real time PCR (qPCR)

snoRNA and sdRNA expression levels were evaluated by qPCR using miRCURY
LNATM Universal RT microRNA PCR, Polyadenylation and cDNA synthesis and
SYBR Green kits (Exiqon, Copenhagen, Denmark) and custom LNATM primers ac-
cording to the manufacturer’s instructions. Custom LNA primers for qPCR analysis
of snoRNAs and sdRNAs were designed by Exoqon A/S, Copenhagen, Denmark. Tar-
get sequences used for primer design as well as design IDs are listed in Supplementary
methods table M1. SNORD38B expression was measured with Reference gene primer
set 20391 (Exiquon, Vedbaek, Denmark) and used to normalize raw Ct values by the
delta delta Ct Method. GAS5 expression was assessed by the Promega Reverse Tran-
scription System (Promega Benelux, The Netherlands) and SybrGreen qPCR System
(Roche, The Netherlands) according to manufacturer protocols. Primers used were
GAS5 FW: CAAGGACTCAGAATTCATGAT and GAS5 REV: AGTGGTCTTTGTAGACTGCC. Raw
expression values were normalized against the geometrical mean of GAPDH and PBGD

by the delta delta Ct Method.

3.4.8 Statistical analysis

Significance of sncRNA composition and read-numbers were assessed with chi-square
test for independence without Yates’ correction. Two-sided p-values were calculated
at alpha level of 0.05. Differences between groups in qPCR experiments were tested
with unpaired two-tailed t-test at alpha level 0.05. Pearson correlation coefficients
were assessed at an alpha level of 0.05 using GraphPad Prism 5.
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72 FusionMatcher

Abstract

Motivation: A new generation of tools that identify fusion genes in RNA-seq
data is limited in either sensitivity and or specificity. To allow further downstream
analysis and to estimate performance, predicted fusion genes from different tools
have to be compared. However, the transcriptomic context complicates genomic
location-based matching. FusionMatcher (FuMa) is a program that reports identical
fusion genes based on gene-name annotations. FuMa automatically compares and
summarizes all combinations of two or more datasets in a single run, without
additional programming necessary. FuMa uses one gene annotation, avoiding
mismatches caused by tool specific gene annotations. FuMa matches 10% more
fusion genes compared to exact gene matching (EGM) due to overlapping genes and
accepts intermediate output files that allow a step wise analysis of corresponding tools.

Availability and Implementation: The code is available at:
https://github.com/ErasmusMC-Bioinformatics/fuma
and available for Galaxy in the tool sheds and directly accessible at:
https://bioinf-galaxian.erasmusmc.nl/galaxy/
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4.1 Introduction

A new generation of bioinformatics tools has been released that aims to detect fusion
genes within RNA-seq data; however, the current tools are limited in either sensitivity
or specificity, making their results impractical for downstream analysis and subsequent
validation [76]. As shown in other domains of high-throughput sequencing analysis,
using a consensus of tools may improve performance by compensating for individual
tool error profiles [189, 190]. Since no single tool shows superior detection performance,
a consensus-based fusion gene detection in RNA-seq can improve both downstream
analysis as well as overall performance. Moreover, to identify limiting factors and
promote improvement of current algorithms, an accurate estimation of sensitivity
and specificity is required, for which an accurate fusion gene comparison is crucial.
Therefore, comparing validated and in silico predicted fusion genes in an automated
fashion and summarizing identical fusion genes in two or more datasets in an easy
and accessible way is a desirable feature.

Ideally, sensitivity/specificity estimation should be based upon the identified ge-
nomic breakpoints provided as two chromosomal locations. However, the nature of
RNA-seq complicates this strategy, as reads may span exon junctions and breakpoints
are more likely to be expected in introns because of their relative large size, introduc-
ing additional uncertainty when trying to pinpoint the exact genomic position of the
DNA breakpoint. For instance, using exact position-based matching (EPM) results in
poor overlap between tools (Supplementary Section 4.5.13). A less conservative strat-
egy used in DNA-seq analysis involves comparing genomic intervals [81], which can
be defined by adding flanking regions to each breakpoint to increase the likelihood of
matching fusion events called by multiple programs. In RNA-seq analysis this strat-
egy is also not sufficient, because the intervals are not related to the organization of
the transcriptome. In addition, transcriptome annotations differ substantially between
sources which frequently result in inconsistent results in RNA-seq analysis [191], in-
tron sizes are differing and lastly, a substantial number of genes do overlap with each
other [192] due to opposite strand positioning. Therefore, we designed a new method,
FuMa, which boosts the current fusion gene matching functionality of the Chimera
package [48], to address the challenges outlined above.

4.2 Methods

Here, we present FuMa, a computer program that reports identical fusion genes de-
tected in RNA-seq, where matching is based on a user provided gene-name anno-
tation. For two or more datasets, FuMa enlists all possible combinations of datasets
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74 FusionMatcher

that can be compared with each other. The iterative procedure starts by comparing all
2-dataset combinations. Every such comparison results in a new virtual dataset, con-
taining only the matching fusion genes. Consequently, for comparisons with a larger
number of datasets, input datasets and merged datasets will be compared with each
other such that all possible combinations are tested, by comparing only two virtual
datasets at a time.

Because several factors complicate matching using genomic positions, our solution
is based on gene-name comparisons. Each breakpoint of a fusion gene consists of two
genomic locations. We define the genomic locations of a breakpoint as left and right,
where left < right, while sorting is applied first on chromosome name and, in case of
equality, on genomic position. When the left and right locations are identical to the
lexicographical order, we denote the acceptor-donor order as forward, otherwise as
reverse. For each fusion gene a list of genes overlapping each associated genomic loca-
tion from the user provided gene annotation (BED format) is added with the HTSeq
library [52]. This step ensures that all fusion genes are annotated with consistent ge-
nomic identifiers rather than those provided by the detection tools themselves. Since
genes frequently overlap and multiple genes may be annotated upon one location, we
add genes as a list to use them for set-theory-based matching rather than exact gene
matching (EGM). FuMa has two matching methods, subset-based matching (FuMa-s,
default) and overlap-based matching (FuMa-o) further explained in Supplementary
Sections 4.5 and 4.5.2. Using FuMa-s, matching within any two datasets (both input-
versus input- and input- versus merged/virtual dataset) is applied as follows:

• For each fusion gene in both datasets, remove entries that do not have gene
annotations associated to both locations.

• Per dataset, merge duplicates such that a dataset contains only unique fusion
genes. Two fusion genes are considered a duplicate by the match-function, which
will later be explained as criterion used for matching fusion genes.

• Iterate over all fusion genes in both datasets such that all fusion genes of the
first dataset are compared with all fusion genes of the second dataset. Assessing
whether two fusion genes are identical is done by the match-function where two
fusion genes are considered identical if: one of the left gene lists is a subset of
the other left gene list AND one of the right gene lists is a subset of the other
(Supplementary Table S4.1). Depending on the chosen parameters, the order
of the genomic locations (forward or reverse) or the strands of the breakpoint
may be taken into account as additional constraints. The comparison of any
two virtual datasets will produce a ‘merged’ dataset that only includes matched
fusion genes present in both input datasets. When two fusion genes match, the
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Figure 4.1: Differences between the matching approaches in the Berger (left) and Edgren
(right) dataset. Each bar represents the number of fusion genes found in 2 or more samples.
(Supplementary section S6). For this analysis a RefSeq gene annotation was used.

left and right gene sets of a matched fusion gene will be the intersect of the
left or right gene sets of the input fusion genes. The intersect is chosen over the
union to prevent gene lists from ‘growing’ after multiple iterations of matching
(Supplementary Section 4.5.2).

4.3 Results

FuMa was tested on publicly available data [193, 194] and results provided as part of
the Chimera package [48] (Supplementary Section 4.5.13). Concordance of the match-
ing methods was assessed using RefSeq gene annotation. While EPM reported less
than half of the overlaps of FuMa, EGM performed better but was still outmatched by
FuMa. Specifically, EGM missed 11.1-15.4% of the fusion genes due to not accounting
for overlapping genes (Figure 4.1) and importantly, five of the missed fusions had
been validated. FuMa-o also reported a matching intergenic fusion event in a large
gene that likely represents a false positive.

4.4 Discussion & Conclusion

Accurate comparisons of identical fusion genes between different algorithms are desir-
able to increase confidence in in silico predictions and to allow performance analyses as
well as in-depth evaluations of the algorithms used. Therefore, we developed FuMa,
a software package that makes use of a gene name and set-theory-based strategy,
taking into account the transcriptome to reduce uncertainty and produce a human
and computer understandable output (Supplementary Section 4.5.12). FuMa is pub-
licly available, available for Galaxy [195] and available as R package compatible with
Chimera [48]. FuMa focuses on comparing breakpoints within annotated genes and is
more sensitive compared with EPM and EGM. In addition, FuMa can handle interme-
diate results of several detection tools and thereby allows an evaluation of the interim
steps of an algorithm. Last, we find limited overlap between ChimeraScan, Defuse and
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76 FusionMatcher

FusionMap [72, 71, 196] in the Edgren dataset (Supplementary Figure S4.5), which
is in line with earlier reports [48] indicating that further improvements in detecting
fusion genes in RNA-seq data are needed.
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4.5 Appendix

Introduction

This is the manual of FuMa which is part of the Supplementary Material that belongs
to the manuscript: FuMa: reporting overlap in RNA-seq detected fusion genes. FuMa
(Fusion Matcher) matches predicted fusion genes (both genomic and transcriptomic)
according to chromosomal location and corresponding annotated genes. The organ-
isation of the transcriptome (provided by the user as BED file) forms the basis for
FuMa to consider fusion genes to be identical or not. The provided gene annotation
can be adjusted to define the biological question. For example, when it is desired to
only consider fusion events that occur within exons, FuMa can be provided a list of
exon regions instead of entire genes. Currently FuMa supports input files from:

• Chimera [48]

• ChimeraScan [72]

• CompleteGenomics [197]

• DeFuse [71]

• FusionCatcher [74]

• FusionMap [196]

• GMAP [198]

• STAR [199]

• STAR Fusion [200]

• TopHat-Fusion [70]

4.5.1 Technical implementation

Matching fusion genes based on the genomic location shows limited accuracy. There-
fore it is more convenient to use the gene names overlapping the breakpoints instead.
Since ∼10% of the annotated human genes are overlapping [192], and more genes and
transcripts are being discovered by the RNA-seq technology, breakpoints frequently
span multiple genes. This complicates matching based on gene names and to account
for that, matching two fusion genes in FuMa is achieved using set-theory based match-
ing (overlap or subset). First, both genomic partners of a fusion event are annotated
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78 FusionMatcher

with overlapping gene(s). The overlap- and subset matching approach have the ad-
vantage over the more stringent exact gene matching (EGM) approach that a certain
level of overlapping genes are considered as acceptable. They behave quite similar but
have features that require a more detailed explanation.

Figure S4.2: Example of the subset matching methodology Both scenario’s (left and
right) illustrate two predicted fusion genes. Both fusion genes have the same right location
(red dashed line), located only in the yellow gene. Fusion #1 has two annotated genes on
its left location: the green and the blue gene. In the right scenario, Fusion #2 is located in
the blue and purple gene while in the left scenario it is only located within the blue gene.
In the left scenario, the two fusion genes are considered identical because the left gene set of
Fusion #2 (blue) is a subset of the left gene set of Fusion #1 (blue and green) and the right
gene sets (yellow and yellow) too. In the right scenario, the left gene sets (purple, blue) and
(green, blue) are no subsets of each other and the fusion genes are therefore considered to be
distinct. The corresponding truth table of FuMa’s subset based matching strategy is given
in Table S4.1.

Figure S4.3: Example of the overlap matching methodology Both scenario’s (left
and right) illustrate two predicted fusion genes, Fusion #1 and Fusion #2. Both have the
same right location (red dashed line through the yellow gene), located in one single gene
annotation, the yellow gene. Fusion #1 has two annotated genes on its left location: the
green and the blue gene. In the right scenario, Fusion #2 is located in the blue and purple
gene while in the left scenario it is only located within the blue gene. In the left scenario, the
two fusions are considered identical because the left gene set of Fusion #2 (blue) overlaps the
left gene set of Fusion #1 (blue, green). Also in the right scenario, the left gene sets (purple,
blue) and (green, blue) are overlapping and the fusion genes are therefore considered to be
identical, but the set is reduced to (blue) since that’s the part that overlaps.

78



Fu
si
on

M
at

ch
er

Fu
si
on

M
at

ch
er

Fu
si
on

M
at

ch
er

Fu
si
on

M
at

ch
er

4.5 Appendix 79

Subset-based matching

The subset matching approach, which is FuMA’s default, considers two fusion genes
identical if one of the left gene sets is a subset of the other left gene set, and one of
the right gene sets is a subset of the other right gene set. Additional constrains with
respect to acceptor-donor gene order and breakpoint strands are dependent on the
chosen parameters. When two fusion genes match, for both the left and the right gene
set the intersect (subset) will be returned as the gene sets of the matched fusion gene.
The subset methodology is illustrated in Figure S4.2 and the corresponding truth
table is further outlined in Table S4.1.

Overlap-based matching

Overlap based matching considers two fusion genes identical if both the genes sets,
the left and the right, have at least one overlapping gene in common with the other
left and right gene set. We provide a more detailed description (Figure S4.3) and a
corresponding truth table is given in Table S4.2. The overlap approach is less stringent
than subset based matching and has a few noteworthy characteristics:

• Long genes. Long genes may span more other genes by chance. Therefore,
two distant fusion genes that, by chance, also fall in the same long gene, may
be matched only because they both overlap this same long gene. (See section
Example 1: long genes)

• Set shrinkage and expansion. When two (input) fusion genes match, the
matched fusion gene gets annotated genes from the gene sets of the two (input)
fusion genes. For the overlap approach, two sets can be returned; the intersect
(all genes that must be present in both fusion genes) or the union (all genes,
that must be present in at least one of them). Using the union introduces a
problem referred to as set expansion, which will result in an outcome that is
dependent on the order of matching and on the iteration depth. This is very
undesirable behaviour and therefore FuMa returns the intersect instead. But
the intersect of two gene sets may result in a gene set smaller than the initial
gene sets. We refer to this as set shrinkage. For example, if set (green, blue) is
being matched with (blue, red), the set of overlapping genes will be (blue). This
is different from the subset method, because there the smallest initial gene set
is being returned, since that’s the set shared by both fusion genes. Therefore
the gene sets in the subset method will never become smaller than the smallest
input gene set, while for the overlap based method the matched subset is not
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80 FusionMatcher

Fusion #1 Fusion #2 Returning Match
Left Right Left Right Match Left Right
Blue Yellow Blue,

Green
Yellow True Blue Yellow

Blue,
Purple

Yellow Blue,
Green

Yellow False

Table S4.1: Subset-based truth table Truth table of FuMa’s matching strategy using
the examples from Figure S4.2. Depending on the genes spanning the breakpoints (first
four columns), FuMa determines whether the fusion genes match (fifth column). The first
four columns represent the gene sets (delimited with a comma) spanning the left and right
locations. These gene names correspond to the colors used in Figure S4.2. The 5th column
indicates whether FuMa considers the two fusions a match or not. The 6th and 7th columns
represent the gene sets of the merged fusion gene as result of matching. The top example
matches because (blue) is a subset of (blue, green). Although in the bottom example both
fusion genes have their left location annotated within the blue gene, they are not considered
a match because they are no subsets of each other; they are mutually exclusivily annotated
within the purple and green gene.

Fusion #1 Fusion #2 Returning Match
Left Right Left Right Match Left Right
Blue Yellow Blue,

Green
Yellow True Blue Yellow

Blue,
Purple

Yellow Blue,
Green

Yellow True Blue Yellow

Table S4.2: Overlap-based truth table Depending on the genes spanning the break-
points (first four columns), FuMa determines whether a fusion genes matches (fifth column).
The first four columns represent the gene sets (delimited with a comma) spanning the left
and right locations. These gene names correspond to the colors used in Figure S4.3. The
5th column indicates whether FuMa considers the two fusions a match or not. The 6th and
7th columns represent the gene sets of the merged fusion gene as result of matching Fusion
#1 and #2. The top examples matches because (blue) overlaps (blue, green). In contrast to
the subset method, the bottom example does match because (blue, purple) and (blue, green)
have blue in common.

necessarily equal to any set observed at the breakpoints. More details are given
in section Example 2: set expansion and shrinkage.

4.5.2 Exact gene set matching (EGM)

EGM consider fusion genes to be identical if their left and right gene sets are exactly
identical. This is the most stringent matching scheme implemented in FuMa. EGM
considers two gene sets identical if both the left and right gene sets contain exactly
the same gene names as the other left and right gene sets.
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Differences between matching types

The matching schemes have different noteworthy characteristics outlined in the fol-
lowing sections.

4.5.3 Example 1: long genes

b1 b2

| |

[ gene-A ] [ gene-B ]

[---------- long gene ----------]

The example above illustrates two breakpoints b1 and b2. Assume they are both part
of a fusion gene of which the other genomic locations are identical. Breakpoint b1 falls
within gene-A and long gene and breakpoint b2 falls within long gene and gene-B.
When we match these breakpoints with the overlap approach, the breakpoints will
be considered to be identical, since they have long gene in common. The longer long
gene is, the more other genes it will span. Therefore, any fusion gene annotated within
long gene will in the overlap based matching be considered a match with any other
fusion gene annotated within long gene, even if one breakpoint is overlapping gene-A
and the other gene-B. When subset matching is being used, the breakpoints in the
example would not have been considered a match, since (gene-A, long gene) is not
a subset of (gene-B, long gene). In the unit tests we have confirmed this behaviour
and in the analysis Section 4.5.13, a long gene artefact was observed only using the
overlap method.

Although the overlap based matching is more sensitive to long genes than subset
and EGM based matching, each of these gene name based matching methods are
sensitive to long genes because they may overlap more other genes. Therefore it is
recommended to treat results containing large genes carefully.

4.5.4 Example 2: set expansion and shrinkage

When overlap based matching is used and considers two fusion genes a match, a
consensus left- and right gene set is returned for the merged fusion gene. When the
intersect is being returned, the merged fusion gene may be affected by shrinkage, while
the union may be affected by set growth.
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Set shrinkage

Set shrinkage occurs when the returning gene set is the intersect of the two sets and
the input sets are no subsets of each other. Consider two example breakpoints that
have the following gene sets:

Breakpoint1: GeneA, GeneB, GeneC

| |

Breakpoint2: GeneB, GeneC, GeneD, GeneE

The breakpoints are considered to be a match because GeneB and GeneC are
found in both. The intersect of the gene sets of Breakpoint1 and Breakpoint2 is
thus (GeneB, GeneC ). Hence, genes GeneA, GeneD and GeneE are not part of the
annotation of the merged fusion. When we continue matching with e.g. Breakpoint3,
we see only one shared gene:

Breakpoint1,2*: GeneB, GeneC

|

Breakpoint3: GeneB, GeneD

Both fusion genes have only GeneB in common, and the merged fusion gene will thus
only contain GeneB. So GeneC is taken away from the merged fusion gene, although
it was present in Breakpoint1 and Breakpoint2. GeneB is the only gene shared in all
three breakpoints, although it may be important to know that GeneC was shared
by the other two breakpoints. This information is lost because of the nature of the
overlap matching approach in combination with returning the intersect. We refer to
this as the set shrinkage issue. Returning the intersect is the implemented method for
overlap based matching. When the subset approach was used instead, Breakpoint3
would not have been considered a match with merged breakpoint Breakpoint1,2∗.

Set expansion

– This section illustrates a methodology that is not implemented in FuMa –
When a merged fusion gene would contain the union of the gene sets, the problem
referred to as set expansion could be encountered. This will introduce order dependent
results and matching may become less stringent after each iteration. To illustrate the
problem of set expansion, imagine the following breakpoints:
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4.5 Appendix 83

1. b1 = (A,A’)

2. b2 = (A,A’’)

3. b3 = (A’’,B)

Such situation would look similar to this:
b1 b2 b3

| | |

[---A’---] | |

[-----A-----] |

[-----A’’-----]

[---B---]

We denote the following possible orders of matching:

1. (b1 & b2) & b3

2. (b1 & b3) & b2

3. (b2 & b3) & b1

When matching is applied in order 1, the following is observed:

1. Iteration 1:

- (A,A’) & (A,A’’) -> (b1 & b2) = (A,A’,A’’)*

The gene sets match and the merged set contains 3 genes

2. Iteration 2:

- (A,A’,A’’)* & (A’’,B) -> (b1 & b2 & b3) = (A,A’,A’’,B)

The gene sets match and the merged set contains all 4 genes

When matching is applied in order 2, the following is observed:

1. Iteration 1:

- (A,A’) & (A’’,B) -> (b1 & b3) =

no match; b1 and b3 are not considered identical
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84 FusionMatcher

When matching is applied in order 3, the following is observed:

1. Iteration 1:

- (A,A’’) & (A’’,B) -> (b2 & b3) = (A,A’’,B)*

The gene sets match and the merged set contains 3 genes

2. Iteration 2:

- (A,A’’,B)* & (A,A’) -> (b1 & b2 & b3) = (A,A’,A’’,B)

The gene sets match and the merged set contains all 4 genes

This shows that b1 and b3 are considered identical in order 1 and order 3, but not
in order 2. It also shows that the gene sets have become larger than the initial gene
sets. Before matching, all gene sets had a size of 2 genes, after the first iteration 3
genes and after the second iteration the size of the genes sets have become 4 genes.
Therefore, the merged breakpoint can be matched with more other breakpoints than
each of the input fusion genes individually, because it will match if a breakpoint is
annotated upon any of these 4 genes. Hence, using the union as merged gene set is
not convenient.

Installation

4.5.5 Debian, Ubuntu and derivatives

FuMa requires Python 2.7, depends on HTSeq and can be obtained via git. We recom-
mand the following commands to install FuMa (on Ubuntu and Debian derivate sys-
tems):
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4.5 Appendix 85

sudo apt-get install build-essential python-dev git python-pip

sudo pip uninstall fuma

git clone https://github.com/yhoogstrate/fuma.git

cd fuma

python setup.py build

python setup.py test

sudo python setup.py install

fuma --version

4.5.6 Galaxy

Because usage of FuMa via the command line can be experienced as complicated, we
also provide FuMa as Galaxy [195, 201, 93] tool. The toolshed repository in which
FuMa is available is:

https://toolshed.g2.bx.psu.edu/view/yhoogstrate/fuma

To install FuMa via Galaxy, the user has to make sure to have the main tool shed
(https://toolshed.g2.bx.psu.edu/) configured in galaxy’s tool_sheds_conf.xml. To
install FuMa within galaxy, follow the procedure via the galaxy admin panel. FuMa
in galaxy has been made publicly available at the following galaxy instance:

https://bioinf-galaxian.erasmusmc.nl/galaxy/

The data used in the analysis is available as shared data library at the following url:

https://bioinf-galaxian.erasmusmc.nl/galaxy/library/list#folders/F313c46a90355d6dd

4.5.7 R

For compatibility with the Chimera package, FuMa has been embedded in R. This
allows an R user to use the Chimera data structures and tests overlap using FuMa.
The R package is available under the name FuMaR and at the following URL:

https://github.com/yhoogstrate/FuMaR

The Chimera R package is a prerequisite to get FuMaR working:
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http://bioconductor.org/packages/release/bioc/html/chimera.html

The FuMaR package can be installed as follows:
git clone https://github.com/yhoogstrate/FuMaR.git FuMaR

R CMD INSTALL FuMaR

4.5.8 Usage

4.5.9 Command line

To run FuMa via the command line, each input dataset should be given as a separate
file. The corresponding gene annotation has to be linked to each dataset and the file
format has to be linked. This is a rather complex information structure and therefore,
unfortunately, the command line arguments may be experienced as complicated. The
command line usage of FuMa is:

usage: fuma [-h] [-V] [--formats] [-m {overlap,subset,egm}]

[--strand-specific-matching] [--no-strand-specific-matching]

[--acceptor-donor-order-specific-matching]

[--no-acceptor-donor-order-specific-matching] [--verbose]

[-a [ADD_GENE_ANNOTATION [ADD_GENE_ANNOTATION ...]]] -s ADD_SAMPLE

[ADD_SAMPLE ...]

[-l [LINK_SAMPLE_TO_ANNOTATION [LINK_SAMPLE_TO_ANNOTATION ...]]]

[-f {summary,list,extensive}] [-g LONG_GENE_SIZE] [-o OUTPUT]

optional arguments:

-h, --help show this help message and exit

-V, --version show program’s version number and exit

--formats show accepted dataset formats

-m {overlap,subset,egm}, --matching-method {overlap,subset,egm}

The used method to match two gene sets. Overlap

matches when two gene set have one or more genes

overlapping. Subset matches when one gene set is a

subset of the other. EGM is exact gene matching; all

genes in both sets need to be identical to match.

--strand-specific-matching

Consider fusion genes distinct when the breakpoints

have different strands: (A<-,B<-) != (->A,B<-);

default

--no-strand-specific-matching

Consider fusion genes identical when the breakpoints

have different strands: (A<-,B<-) == (->A,B<-)
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--acceptor-donor-order-specific-matching

Consider fusion genes distinct when the donor and

acceptor sites are swapped: (A,B) != (B,A)

--no-acceptor-donor-order-specific-matching

Consider fusion genes identical when the donor and

acceptor sites are swapped: (A,B) == (B,A); default

--verbose increase output verbosity

-a [ADD_GENE_ANNOTATION [ADD_GENE_ANNOTATION ...]],

--add-gene-annotation [ADD_GENE_ANNOTATION[ADD_GENE_ANNOTATION ...]]

annotation_alias:filename * file in BED format

-s ADD_SAMPLE [ADD_SAMPLE ...], --add-sample ADD_SAMPLE [ADD_SAMPLE ...]

sample_alias:format:filename (available formats: fuma

--formats)

-l [LINK_SAMPLE_TO_ANNOTATION [LINK_SAMPLE_TO_ANNOTATION ...]],

--link-sample-to-annotation [LINK_SAMPLE_TO_ANNOTATION [LINK_SAMPLE_TO_ANNOTATION ...]]

sample_alias:annotation_alias

-f {summary,list,extensive}, --format {summary,list,extensive}

Output-format

-g LONG_GENE_SIZE, --long-gene-size LONG_GENE_SIZE

Gene-name based matching is more sensitive to long

genes. This is the gene size used to mark fusion genes

spanning a ’long gene’ as reported the output. Use 0

to disable this feature.

-o OUTPUT, --output OUTPUT

output filename; ’-’ for stdout

-a ADD_GENE_ANNOTATION

The first command line argument we describe is -a. Gene annotations can be provided
as a tab-delimited file, with the first column containing the genes’ chromosome, the
second and the third column the (1-based) start and end position, and the fourth
column the (unique) gene identifier or name, as shown in the example below:
chr1 100000000 120000000 GeneNameA

chr2 100000000 120000000 GeneNameB

chr21 100000000 120000000 GeneNameC

chr22 100000000 120000000 GeneNameD

chrX 140000000 160000000 GeneNameX

chrY 140000000 160000000 GeneNameY

This format is compatible with the BED format1, but requires that the 4th column
is present and requires it to contain gene names. Additional columns are allowed, but
are not taken into account. Do not provide BED files that describe one exon

1https://genome.ucsc.edu/FAQ/FAQformat.html#format1
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88 FusionMatcher

per line because this will exclude the introns, but provide BED files that describe
one gene per line instead.

The reason it is not feasible to use BED files with one exon per line and merge
these exons automatically into single gene entries: merging exons that belong to
the same gene name into single gene entires comes with the assumption that there
are no duplicates of a gene, which is not necessarily true. If FuMa would merge
based on gene names, duplicates on the same chromosome (that span long distances)
effectively create very long genes. If a user only wants to match in exon regions,
you can use BED files with one exon per line. In that case is advised to provide
non-unique gene names, like the following example:
chr1 100000000 100001000 GeneNameA

chr1 100002000 100003000 GeneNameA

chr1 100005000 100006000 GeneNameA

chr2 100000000 100100000 GeneNameB

chr2 100101000 100103000 GeneNameB

The gene annotation argument is provided as unique alias followed by the filename,
separated with a colon:
-a "hg19:somefile.bed"

In this case the alias of the BED-file, hg19, will later be used to link it to datasets. In
case the user wants to use multiple references, for example to match across different
genome builds, multiple arguments can be provided delimited with white-spaces:

-a "hg18:somefile_hg18.bed" "hg19:somefile_hg19.bed"

-s ADD_SAMPLE

The -s argument can be used to provide a fusion gene detection experiment, which
should have the following syntax:

sample_alias:format:filename

The sample_alias will be used for two things: (1) as alias (column header) in the
final output and (2) to link the references to the samples. The format is the file
format in which the fusion genes are described. The formats are described in more
detail in Section 4.5.9. Some tools have multiple formats, often the interim results.
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4.5 Appendix 89

-l LINK_SAMPLE_TO_ANNOTATION

Each dataset must be annotated with only one gene annotation. This can be achieved
using the following argument syntax:

sample_alias:annotation_alias

When you have sample s and a reference named ref, you can link s to ref as follows:

-l "s:ref"

In case you have two samples, one on hg18 and one on hg19, you can provide it as
follows:

-l "defuse_hg18:hg18" "chimerascan_hg19:hg19"

-l MATCHING_METHOD

FuMa has the option to use three methods to match fusion genes; ‘overlap’, ‘subset ’
and ‘egm’. The method can be selected with the -m or --matching-method, argument
as follows:

fuma -m egm [ ... ]

fuma --matching-method subset [ ... ]

-f OUTPUT_FORMAT

FuMa has the built-in option for several output formats. The default output format
is ‘list ’ which contains, per unique fusion gene, matched or not matched, for each
matching tool, the genomic locations and identifier(s) or an empty column if a tool
did not pick it up. There is an additional column to indicate whether one of the
annotated genes are large. The following example shows three fusion genes; one
detected by TopHat fusion, one by STAR and one by both. The corresponding output
in ‘list ’ format would look like:

Left Genes Right Genes Involves large gene(s) STAR TopHat Fusion
FOO1 BAR1 FALSE UID_A=chr1:12-34
FOO2 BAR2 FALSE TID_A=chr4:66-77
DOX1 BOX5 FALSE UID_B=chr5:85-95 TID_B=chr5:88-99
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90 FusionMatcher

Tools may predict multiple fusion events within the same left- and right genes, which
FuMa will consider as duplicates. In case a duplicate is observed, the output contains
the identifiers of all duplicates into one cell delimited with a comma. This allows to
trace duplicate entries back in the output. An example of a duplicate entry is given
below:

Left Genes Right Genes Involves large gene(s) FusionMap
FOO1 BAR1 FALSE UID_A=chr1:12-34,UID_B=chr1:12-34

When a genomic location is annotated with multiple genes, the genes are delimited
with a colon in one cell. An example of a genomic location that spans genes FOO1
and FOO2 is given below:

Left Genes Right Genes Involves large gene(s) FusionMap
FOO1:FOO2 BAR1 FALSE UID_A=chr1:12-34

The FuMa package contains an additional tool fuma-list-to-boolean-list to
replace cells to TRUE or FALSE depending on whether a match was found or not.

The output format ‘extensive’ is file format similar to the format Complete
Genomics provides and that only contains the matched fusion genes. This format is
in particular useful if the output of a run needs to be the input for another run.

The output format ‘summary’ is a set of tables that contain the numbers of detected
matches per combination of datasets, useful for creating Venn diagrams.

-g LONG_GENE_SIZE

Because gene name based matching may be affected by large genes spanning fusion
genes by chance, the output of type ‘list’ has a column indicating whether any of the
genes the fusion genes annotated upon the breakpoint are large. Whether a gene is
large is defined as having a genomic size larger than the -g parameter. When this
value is set to 0, genes will not be marked as long gene.

–strand-specific-matching and –no-strand-specific-matching

FuMa has the built-in option to match fusion genes by taking the strands of the
breakpoints into account. In the following example fusion genes #1 and #2 with
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exactly the same breakpoints are shown, but the strands of the second breakpoints
are in the opposite direction:

#1:

b1 (+) -> <- (-) b2

| |

[ --- Gene A --- ] [ --- Gene B --- ]

#2:

b1 (+) -> b2 (+) ->

| |

[ --- Gene A --- ] [ --- Gene B --- ]

To let FuMa consider them as distinct fusion genes because of the different strands, the
user should enable strand specific matching using the --strand-specific-matching
argument as indicated below:
fuma \

--strand-specific-matching \

-a "hg19:genes_hg19.bed" \

\

-s "chimerascan:chimerascan:FOO_chimerascan/chimeras.bedpe" \

"defuse:defuse:FOO_defuse/results.tsv" \

-l "chimerascan:hg19" \

"defuse:hg19" \

-f "list" \

-o "chimerascan_defuse_overlap.txt"

By default, this option is enabled. If the user wants to disable this feature, the
--strand -specific-matching argument has to be provided.

Acceptor/donor (a)specific matching

For most file formats, the order in which the acceptor and donor gene are denoted
should correspond to the order in which they appear in the transcript. This informa-
tion may be crucial to explain the function and biological role of a fusion gene. For
example, TMPRSS2-ERG, a fusion gene found in about 50% of all screened prostate
cancers, uses regulatory elements from the androgen driven gene TMPRSS2, fused to
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92 FusionMatcher

gene ERG that has an oncogenic role in human prostate cancer [202]. These principles
would not apply if the order the transcript would be vice versa. To account for this,
FuMa has the built-in option to separate fusion genes based on the order of the
denotation of the acceptor and donor. In the following example fusion genes #1 and
#2 are shown with a different order of donor and acceptor gene:
#1:

break1 ---------> break2

| |

[ --- Gene A --- ] [ --- Gene B --- ]

#2:

break1 ---------> break2

| |

[ --- Gene B --- ] [ --- Gene A --- ]

To let FuMa consider them as distinct fusion genes because of the different order of
the donor and acceptor gene, the user should enable acceptor donor specific matching
by including the –acceptor-donor-order-specific-matching argument:

fuma \

--acceptor-donor-order-specific-matching \

-a "hg19:genes_hg19.bed" \

\

-s "chimerascan:chimerascan:FOO_chimerascan/chimeras.bedpe" \

"defuse:defuse:FOO_defuse/results.tsv" \

-l "chimerascan:hg19" \

"defuse:hg19" \

-f "list" \

-o "chimerascan_defuse_overlap.txt"

By default this option is disabled. Some file formats (in particular interim
output files and discordant reads) do not take this information into
account and for these file formats this functionality is disabled.
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Input formats

FuMa supports the following file formats as input:

Tools File Argument at command line
Chimera prettyPrint() output chimera
ChimeraScan chimeras.bedpe chimerascan
Complete Genomics highConfidenceJu*.tsv complete-genomics
Complete Genomics allJunctionsBeta*.tsv complete-genomics
DeFuse results.txt defuse
DeFuse results.classify.txt defuse
DeFuse results.filtered.txt defuse
Fusion Catcher final-list_cand*.txt fusion-catcher_final
FusionMap fusionmap
Trinity + GMAP trinity-gmap
OncoFuse oncofuse
RNA STAR Chimeric.out.junction rna-star_chimeric
STAR Fusion _candidates.final star-fusion_final
TopHat Fusion pre fusions.out tophat-fusion_pre
TopHat Fusion post potential_fusion.txt tophat-fusion_post_potential_fusion
TopHat Fusion post result.txt tophat-fusion_post_result

To get an overview of the formats available in the installed instance the user can run
the following command:

fuma --formats

4.5.10 Galaxy

In Galaxy, after having FuMa installed via the toolshed, it can be opened by typing
‘fuma’ in the ‘search tools’ field on the left panel. When it has opened, the interface
should be similar to Figure S4.4. The main input of the Galaxy wrapper is a set
of datasets. The user can as add many datasets as the server can handle in terms of
resources. For each dataset the user needs to specify (1) the history item in galaxy that
contains the output file of the fusion gene detection experiment, (2) the corresponding
file format of the history item and (3) a corresponding gene annotation file (in BED
format). Last, the user can select the following advanced settings:

• The desired output format.
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94 FusionMatcher

Figure S4.4: FuMa in Galaxy.

• For the ‘list’-output, replace the columns to TRUE or FALSE depending on
whether a match was found or not.

• Strand specific matching.

• Acceptor and donor order specific matching.

4.5.11 R

The R wrapper of FuMa, called FuMaR, depends on BioConductor package
Chimera [48]. To run FuMa in R, the packages FuMaR and chimera should be loaded.
To run FuMa, a FuMa object that contains the settings and allows to control FuMa
as background process, should be created. Datasets have to be provided to the object
as lists of fSet objects, the default data type of data importers in Chimera. These
datasets can be added to the FuMa object using the add_data(dataset, name) func-
tion, which requires the data object and a unique name. When the data has been
added, the fuma(FuMa_object, BED_file) command will export the datasets with
Chimera’s prettyPrint() to disk and FuMa will be executed in the background. An
example with three datasets (DeFuse, ChimeraScan and FusionMap) using Chimera
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is given below:

> library(FuMaR)

> library(chimera)

> df.e <- importFusionData("defuse",paste(find.package(package="chimera"),

"/examples/Edgren_df.tsv",sep=""))

> cs.e <- importFusionData("chimerascan",paste(find.package(package="chimera"),

"/examples/Edgren_cs.txt",sep=""),org="hs")

> fm.e <- importFusionData("fusionmap",paste(find.package(package="chimera"),

"/examples/Edgreen_fm.txt",sep=""),org="hs")

> f1 <- FuMa(matching="subset")

> f2 <- add_dataset(f1,df.e,"defuse")

> f3 <- add_dataset(f2,cs.e,"chimerascan")

> f4 <- add_dataset(f3,fm.e,"fusionmap")

> f <- fuma(f4,"refseq_genes.bed")

4.5.12 Examples

Example 01: one sample, two tools

Imagine sample FOO was analysed with Defuse and ChimeraScan on the same
reference genome (hg19). The corresponding gene annotation is genes_hg19.bed and
the output should be stored in chimerascan_defuse_overlap.txt. The command
line argument to run this analysis would be:

fuma \

-a "hg19:genes_hg19.bed" \

-s "chimerascan:chimerascan:FOO_chimerascan/chimeras.bedpe" \

"defuse:defuse:FOO_defuse/results.tsv" \

-l "chimerascan:hg19" \

"defuse:hg19" \

-f "list" \

-o "chimerascan_defuse_overlap.txt"

Example 02: one sample, one tool, different reference genomes

When it is desired to compare the differences between runs on different genome
builds, the user can add each run and define a different gene annotation for each run.
Imagine a sample with TopHat-Fusion on reference genomes hg18 and hg19, it can
be analysed with FuMa as follows:
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96 FusionMatcher

fuma \

-a "hg18:genes_hg18.bed" \

"hg19:genes_hg19.bed" \

-s "thf_hg18:tophat-fusion_post_result:thf_hg18/result.txt" \

"thf_hg19:tophat-fusion_post_result:thf_hg19/result.txt" \

-l "thf_hg18:hg18" \

"thf_hg19:hg19" \

-f "list" \

-o "thf_hg18_hg19_overlap.txt"

It is important that the gene annotations genes_hg18.bed and genes_hg19.bed

contain similar gene names, since matching is based on these names. Therefore, it
is recommanded to remove gene names that are specific per annotation; the latest
genes only available in hg19 shall not match with hg18 simply because they do not
exist in hg18.

Example 03: Edgren dataset

The publicly available data from the Edgren dataset analysed by FusionMap,
ChimeraScan and DeFuse was used in the manual of the Chimera package [194, 48].
To obtain these results the user should run the following command:
$ wget http://www.bioconductor.org/packages/release/bioc/src/contrib/

chimera_1.10.0.tar.gz

$ tar -xzf chimera_1.10.0.tar.gz

$ find . -type f | grep -i -E "Edgr[e]{1,2}n"

Please check whether the output is similar to:
./chimera/inst/examples/Edgreen_fm.txt

./chimera/inst/examples/edgren.stat.detection.txt

./chimera/inst/examples/Edgren_df.tsv

./chimera/inst/examples/Edgren_cs.txt

./chimera/inst/examples/Edgren_true.positives.txt

96



Fu
si
on

M
at

ch
er

Fu
si
on

M
at

ch
er

Fu
si
on

M
at

ch
er

Fu
si
on

M
at

ch
er

4.5 Appendix 97

To get a gene reference and the true positivies with genomic coordinates, run at the
command line:
$ wget https://toolshed.g2.bx.psu.edu/repos/yhoogstrate/fuma/

raw-file/tip/test-data/refseq_genes_hg19.bed

$ wget https://toolshed.g2.bx.psu.edu/repos/yhoogstrate/fuma/

raw-file/tip/test-data/edgren_true_positives.txt

To proceed with the FuMa analysis, run:
edir="./chimera/inst/examples/"

fuma \

--strand-specific-matching \

--acceptor-donor-order-specific-matching \

-m "subset" \

-a "hg19:refseq_genes_hg19.bed" \

-s "chimerascan:chimerascan:"\$edir"Edgren_cs.txt" \

"defuse:defuse:"$edir"Edgren_df.tsv" \

"fusionmap:fusionmap:"$edir"Edgreen_fm.txt" \

"edgren_TP:fusionmap:edgren_tp.txt" \

-l "fusionmap:hg19" \

"defuse:hg19" \

"chimerascan:hg19" \

"edgren_TP:hg19" \

-f "list" \

-o "edgren_fuma_list_specific.txt"

To convert the columns to boolean values, proceed with:
fuma-list-to-boolean-list \

-o "edgren_fuma_booleanlist_specific.txt" \

"edgren_fuma_list_specific.txt"

To find all fusion genes that did match, thus present in 2 or more datasets, proceed
with the command:
grep -E "TRUE.*?TRUE" edgren_fuma_booleanlist_specific.txt

The output will be a list of 26 fusion genes (Table S4.3).
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FALSE
TRUE

FALSE
MED1

ACSF2:NM_001288968*
FALSE
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Figure S4.5: Venn diagram of subset based matching on the Edgren dataset The
matched fusion genes found by FuMa on the Edgren dataset are given in a Venn diagram.
In each diagram, Edgren TP are the true positives from the Edgren dataset. The gray areas
represent the fusion genes that match. Left : FuMa with strand specific mode enabled. Right :
FuMa with strand specific mode disabled. The overlap for all datasets is limited.

4.5.13 Analysis

To highlight differences between subset and overlap based matching compared to
EGM and EPM, we ran FuMa on the Edgren and Berger datasets [194, 193].

The Edgren dataset has 27 validated fusion genes fusion genes and the Berger
dataset contains 25 validated fusion genes, with genomic locations reported over sev-
eral papers [73, 203]. In a previous study, the Edgren dataset was analysed with
ChimeraScan, DeFuse and FusionMap and the results have been made publicly avail-
able [48]. Together with a list of corresponding validated fusion genes, these data
were analysed with FuMa using a RefSeq gene annotation (Table S4.3). This was
repeated with gene annotations from UCSC and Ensembl to indicate potential dif-
ferences due to different gene annotations. For this analyis, FuMa was set with
--strand-specific-matching and --acceptor-donor-order-specific-matching.

The Berger dataset was analysed with several tools (ChimeraScan v0.4.5, DeFuse
0.6.2, Fusioncatcher v0.99.3e, STAR-2.4.0g1 followed by STAR-Fusion and Tophat-
Fusion v2.0.9). For the majority of the validated fusion genes, the corresponding
strands were not reported. Therefore, the analysis on this dataset could not be done
in strand-specific mode.

For both datasets, only a limited number of predicted fusion genes have been
wet-lab validated. Hence, any other predicted fusion gene can be a true or false pos-
itive, which makes it difficult to estimate sensitivity and specificity [76]. To estimate
potential false positives, additional sample SRR064437 from the Edgren dataset was
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100 FusionMatcher

Names unique fusion genes matches Difference in matches
dataset geneset samples E S O E S O O − E O − S
Edgren refseq 4 11436 11393 11374 22 26∗ 26 4 0
Edgren ucsc 4 13549 13508 13421 25 28 28 3 0
Edgren ensembl 4 11919 11897 11844 20 24 25 5 1
SRR064437 refseq 4 43 41 41 0 0 0 0 0

(control)

Table S4.4: Summary of the results using strand specific and donor acceptor specific matching
mode. Abbrevations: E=egm, S=subset and O=overlap. The first column contains the names
of the datasets, followed by the gene annotation in the 2nd column. Column 3 contains
the number of samples. For Edgren these are ChimeraScan, Defuse, FusionMap and the
true positives from the chimera package and for the control sample these are results from
Chimerascan, DeFuse, FusionCatcher and Tophat Fusion. Columns 4, 5 and 6 contain the
unique fusion genes with annotated genes, and columns 7, 8 and 9 the number of fusion genes
found in 2 or more datasets. The 10th column contains the number of fusion genes matched
with the overlap method, but missed by EGM. The 10th column contains the matches found
by the overlap method, but missed by the subset method. These results are visualised in
Figure S4.5 (left).

analysed. This is a sample from healthy breast tissue, that should not contain any fu-
sion gene. Therefore, it should also not match fusion genes in the subsequent results of
the prediction tools. The results of the FuMa analyses were summarized (Tables S4.4
and S4.5) and compared with each other to indicate which matched fusions were
missed by EGM (Table S4.7), indicating that:

• In the Edgren dataset, 26 fusion genes were considered identical in 2 or
more datasets using a RefSeq gene annotation and the overlap approach (Fig-
ure S4.5), including 21 of 25 true positives with annotated genes (of which
CSE1L-ENSG00000236127 and SUMF1-LRRFIP2 did not have annotated genes on
both breakpoints). Of the 26 fusion genes matched in 2 or more datasets, EGM
missed 4 (Table S4.7), indicating that 15.3% of the fusion genes in this dataset
were not matched by EGM due to overlapping genes. Each of these 4 fusion
genes were also matched by the subset method but more importantly each of
them, CPNE1-PI3, VAPB-IKZF3, SKA2-MYO19 and ANKHD1-PCDH1, are validated
fusion genes.

◦ When an Ensembl gene annotation was used, only the overlap method
matches an additional true positive: BCAS4-BCAS3. This fusion gene was
annotated as BCAS4-BCAS3:RP11-264B14.1 and the ChimeraScan predic-
tion was annotated as BCAS4-BCAS3:RP11-332H18.5.

◦ Exact position based matching revealed only 6 matches: SULF2-ARFGEF2,
ANKHD1-PCDH1, GSDMB-TATDN1, RARA-PKIA, ACACA-STAC2, MYO19-SKA2.
These matches were only between DeFuse and FusionMap with strand and
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acceptor donor specific mode disabled, and 0 matches with these settings
enabled.

• In the Berger dataset, EGM misses 4 fusion genes compared with the overlap
based method: GNG5-CTBS, SHANK-GNA12, KANSL1-ARL17A and intergenic fusion
LOC100288142-LOC100288142 of which the latter was not matched by subset
based matching. Of these fusion genes only SHANK2-GNA12 was reported to be a
true positive. The three non validated fusion genes, all predicted by two tools,
were investigated for being artefacts of large gene annotations.

◦ GNG5-CTBS was not considered a match by EGM because the prediction
by ChimeraScan has the left breakpoint within GNG5 as well as RPF1. In
the used RefSeq annotation RPF1 is a 19.114bp long gene, larger than GNG4

with 8.257bp. Because GNG4, the shortest gene, is the gene shared by the
two predictions, and because both genes are not large, this fusion is not
likely to be matched because they share a large gene.

◦ KANSL1-ARL17A was not considered a match by EGM because the pre-
diction because ChimeraScan’s predicted breakpoint is within the genes
ARLA17A, NM_001103154 and LRRC37A whereas DeFuse’s breakpoint is only
within ARLA17A and NM_001103154. NM_001103154 (62.222bp) is an alias
for both ARL17B and ARL17A and is entirely embedded in ARL17A. Simi-
larly, the 42.664bp long gene LRRC37A that prevents EGM from match-
ing, is entirely embedded in ARL17A. These three genes are overlapping
for the majority of their length (Figure S4.6) and therefore the match
is most likely due to overlapping gene annotations rather than because
ARL17A is exceptionally long and overlaps these genes by chance. Off
note, the overlap approach marked another ChimeraScan prediction as
a duplicate: KANSL1-ARLA17A, LRRC37A4P, NM_001288811, NM_001288812
& NM_001288813 and this ARLA17A is a paralog of the ARLA17A used
above. Therefore, the multiple genomic copies of ARLA17A allow the over-
lap method to consider these events as duplicates, which is not the case
for the subset method. Because paralogues behave like long genes in the
sense that they may be present at genomic distant locations, we consider
this duplicate as a large gene type artefact.

◦ LOC100288142-LOC100288142 is an intergenic fusion, not matched by
EGM and neither by the subset approach, but being matched in ChimeraS-
can and Tophat Fusion by the overlap approach. The 2.320.934bp long gene
is relatively large, lays within a gene rich region and spans several genes.
Because of the large size and the number of genes it overlaps, this match
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seems to be caused because LOC100288142 is spanning multiple predicted
fusion genes. The more conservative subset matching did not match these
fusion genes.

◦ Using exact position matching in the non specific matching mode, we find:

� 0 matches in SRR018259_M0000216

� 2 matches in SRR018260_M990802

� 1 match in SRR018261_M980409

� 0 matches in SRR018265_M010403

� 5 matches in SRR018266_501-MEL

� 1 match for SRR018267_M000921

� 3 matches for SRR018269_K-562-3-CML

With a total of 12 of the 27 found by the overlap method, this misses more
than half of the fusion genes.

• For the Edgren dataset, which was analysed with and without strand specific
mode, the number of total matches reduced to almost 50% by using strand
specific mode, while the true positives missed by the EGM approach were pre-
served.

• The dataset that should not contain any fusion gene, did not contain any
matches in any of the methods (overlap, subset nor EGM). This does not allow
to estimate specificity.

The results indicate that using a RefSeq gene annotation, EGM matches a consid-
erable lower proportion (4/26 = 15.4% for the Edgren dataset and 4/27 = 14.8%
(overlap) and 3/27 = 11.1% (subset) for the Berger dataset) of the fusion genes
than the overlap and subset method, only because overlapping genes are not taken

Figure S4.6: Genomic locations of overlapping genes ARLA17A, LRRC37A and NM_001103154
(ARLA17B) on hg19
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104 FusionMatcher

method Missed Matched fusion genes total
EGM 7 45 52
FuMa-s 0 52 52
total 7 92 104

Table S4.6: Contingency table that belongs to the Fisher’s exact test. To find to
what extent EGM matches fewer fusion genes than the subset method (FuMA-s), we have
used this contingency table for a Fisher’s exact test. The total number of matched fusion
genes missed by EGM in both datasets is 7 from a total of 52 matched by FuMa.

into account. Using Fisher’s exact test on contingency Table S4.6 we find that EGM
matches significantly less fusion genes than the subset method, with a P-value that
equals 0.0126. Given increasingly more genes are discovered with RNA-seq, this prob-
lem will most likely increase over time.

The results do not clarify whether the overlap or subset matching method is su-
perior. This is partially because the results are rather similar and partially because
the number of available validated fusion genes is limited. On the one hand, in the
Edgren dataset when an Ensembl gene annotation was used, the overlap method
matches one more true positive, BCAS4-BCAS3, while on the other hand it matches
LOC100288142-LOC100288142 in the Berger dataset, likely to be a large gene arte-
fact. The overlap method is more sensitive, because two sets that are subsets of each
other are by definition overlapping, but not vice versa. This implies that any match
by the subset method must be match in the overlap method, and thus not vice versa.
As result, the overlap based method is more sensitive to large genes, as explained in
Section 4.5.3.

The Edgren dataset was analysed with and without strand and donor-acceptor
specific matching. This showed that although the number of matched true positives
did not decrease, the number of total matches was reduced with ∼50% whith spe-
cific matching enabled. Therefore, when data is stranded, strand-specific matching is
recommended.
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Edgren
method left-genes right-genes chimerascan defuse fusionmap true positives
overlap CPNE1:∗1 PI3 TRUE FALSE FALSE TRUE
egm CPNE1:∗1:RBM12 PI3 TRUE FALSE FALSE FALSE
egm CPNE1:∗1 PI3 FALSE FALSE FALSE TRUE
overlap NR_036633:VAPB IKZF3:∗2 TRUE FALSE FALSE TRUE
egm NR_036633:VAPB IKZF3:∗2:NM_001284516 TRUE FALSE FALSE FALSE
egm NR_036633:VAPB IKZF3:∗2 FALSE FALSE FALSE TRUE
overlap SKA2 MYO19 TRUE FALSE FALSE TRUE
egm SKA2 MYO19:∗3:ZNHIT3 TRUE FALSE FALSE FALSE
egm SKA2 MYO19 FALSE FALSE FALSE TRUE
overlap ANKHD1:ANKHD1-EIF4EBP3 PCDH1 FALSE FALSE TRUE TRUE
egm ANKHD1:ANKHD1-EIF4EBP3 NM_001278613:PCDH1 FALSE FALSE FALSE TRUE
egm ANKHD1:ANKHD1-EIF4EBP3 PCDH1 FALSE FALSE TRUE FALSE

Berger (SRR018261 M980409 )
method left-genes right-genes chimerascan defuse fusioncatcher star-fusion tophat fusion true positives
overlap GNG5 CTBS TRUE TRUE FALSE FALSE FALSE FALSE
egm GNG5:RPF1 CTBS TRUE FALSE FALSE FALSE FALSE FALSE
egm GNG5 CTBS FALSE TRUE FALSE FALSE FALSE FALSE

Berger (SRR018266 501-MEL)
method left-genes right-genes chimerascan defuse fusioncatcher star-fusion tophat fusion true positives
overlap SHANK2 GNA12:∗5 TRUE TRUE FALSE TRUE TRUE TRUE
egm SHANK2 GNA12:∗5 FALSE TRUE FALSE TRUE TRUE TRUE
egm NR_110766:SHANK2 GNA12:∗5 TRUE FALSE FALSE FALSE FALSE FALSE

Berger (SRR018269 K-562-3-CML)
method left-genes right-genes chimerascan defuse fusioncatcher star-fusion tophat fusion true positives
overlap KANSL1 ARL17A TRUE TRUE FALSE FALSE FALSE FALSE
subset KANSL1 ARL17A:∗5a TRUE TRUE FALSE FALSE FALSE FALSE
subset KANSL1 ARL17A:∗5c TRUE FALSE FALSE FALSE FALSE FALSE
egm KANSL1 ARL17A:∗5a FALSE TRUE FALSE FALSE FALSE FALSE
egm KANSL1 ARL17A:∗5b TRUE FALSE FALSE FALSE FALSE FALSE
egm KANSL1 ARL17A:∗5c TRUE FALSE FALSE FALSE FALSE FALSE
overlap LOC100288142 LOC100288142 TRUE FALSE FALSE FALSE TRUE FALSE
egm LOC100288142:∗6a LOC100288142:∗6b TRUE FALSE FALSE FALSE FALSE FALSE
egm LOC100288142:∗6b LOC100288142:∗6c TRUE FALSE FALSE FALSE FALSE FALSE
egm LOC100288142:∗6d LOC100288142:∗6e FALSE FALSE FALSE FALSE TRUE FALSE

Table S4.7:Differences in fusion genes found in 2 or more datasets between overlap
and subset based matching and EGM. The listed datasets were analysed using a
RefSeq gene annotation using subset, overlap and EGM based matching. The top table
contains the differences in the Edgren dataset, which was analysed with strand and acceptor
donor specific matching. The bottom table contains the Berger dataset, analysed without
these additional constraints. The individual datasets of the Berger dataset are separated.
Within each dataset the different fusion genes are separated with a solid line and the results
of per matching approach separated with a dashed line. In all cases the subset results are
identical to the overlap results and are therefore not shown, except for KANSL1-ARLA17A and
integenic fusion LOC100288143. The output was truncated because of the larger gene sets.
The substitutions are listed below:
∗1 NM_001198863:NR_037188
∗2 NM_001284514:NM_001284515
∗3 NM_001281432:NM_001281433:NM_001281434:NR_104009:NR_104010:NR_104011
∗4 NM_001282441:NM_001293092
∗5a NM_001103154
∗5b LRRC37A:NM_001103154
∗5c LRRC37A4P:NM_001288811:NM_001288812:NM_001288813
∗6a NBPF9
∗6b NBPF9:PDE4DIP
∗6c NBPF10:NM_001302371
∗6d NBPF10:NM_001302371:PIAS3
∗6e NBPF10:NM_001302371:NUDT17
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DNA breakpoints in random-primed RNA-
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108 Dr. Disco

Abstract

Fusion genes are often driver mutations in different types of cancer. They can be
detected with DNA-sequencing (DNA-seq) and, as fusion-transcript, with RNA-
sequencing (RNA-seq). In RNA-seq experiments, typically mRNA is extracted by
targeting poly-A tails, or reverse transcribed using oligo-dT primers. The location of
the majority of the DNA breaks cannot be detected because they are rarely located in
exons, while RNA-seq data typically, in majority, consists of exon derived sequences.
By reverse transcribing ribo-depleted total RNA using random hexamer primers, the
RNA library will also include pre-mRNA, containing sequences derived from introns.
Here, we introduce a computational method for detecting inferenced DNA breaks
of fusion genes, on top of exon-to-exon fusion splice junctions, using RNA-seq data
only. To detect genomic breakpoints, intronic and exonic data are kept separated in
a graph data structure. The graph analysis works with paired-end sequencing data
and is capable of determining multiple exon-to-exon boundaries per fusion. Unlike
most RNA-seq fusion gene detection software, there is no restriction to gene or exon
annotations, allowing detection of novel splice junctions, fusions to non-gene regions
and fusions of non-polyadenylated transcripts. The software makes use of community
standard file formats to allow integration with workflow management systems, and
for compatibility with genome browsers. In this study its relevance is demonstrated
by generating an overview of TMPRSS2-ERG breakpoints in a cohort of 51 prostate
cancer samples. The results confirm similar hotspot regions detected in indepedent
DNA-seq analysis of different patients. We also reveal novel exons involved in the
fusion. Beyond the TMPRSS2-ERG DNA breakpoints, additional deletions in TMPRSS2
were found in fusion positive samples. Thus, by analysing the entire genome for
fusions using random primed ribo-depleted total RNA-seq data, the vastly increased
search space allows detection of novel, cancer-specific, RNA molecules.

Availability and Implementation: The source code is available at:
https://github.com/yhoogstrate/dr-disco
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5.1 Introduction

Fusion genes are often driver mutations in cancer and have a great potential to func-
tion as biomarker for diagnosis and therapy selection [204, 205]. For example, fusion
genes of the ETS gene family are detected in about 50-70% of the prostate cancer
(PCa) patients [206, 207], including TMPRSS2-ERG with an estimated incidence of
∼50%. COSMIC1 is a curated database that gathers information on cancer-related
fusions and contains almost 300 annotated fusion genes, linked to almost 10,000 sam-
ples [105]. Similarly, the TCGA Fusion Gene Data Portal2 is a database containing
more than 10,000 fusion transcripts [208].

Fusion genes detected on DNA level can be further interrogated in a corresponding
browser [209], for example to predict possible fusion proteins. Detecting fusion genes
in RNA-seq compared with DNA-seq has several advantages such as determination
of altered expression levels, revealing the fusion genes’ splice variants [70] and it can
more easily be used to predict possible chimeric proteins. In addition, stranding, splice
junctions and gene structure may indicate which gene acts as donor and acceptor and
may explain whether it functions as oncogene or tumor suppressor. A disadvantage
of using RNA-seq is that not or lowly expressed rearrangements will not be detected.

Detecting fusion genes in DNA as well as RNA sequencing is challenging for a
variety of reasons. During alignment to a reference genome there is a realistic chance
on reads mapping to multiple (homologous) locations, since relatively small fragments
are being sequenced rather than entire chromosomes or transcripts. In RNA-seq, the
sequencing depth needed to determine a breakpoint with high confidence is higher
compared with the sequencing depth needed for expression analysis. The approximate
location of a fusion is typically revealed using spanning reads; paired-end reads that
have both their mates aligned into different fusion partners [71]. The precise location
of a fusion is then determined with split reads, reads that are split exactly over the
junction.

Due to the imperfect and stochastic nature of size selection, the distance between
mapped paired-end reads is variable. Terms that are related to the distance between
paired-end reads are described in Figure 5.1. The variability in insert size compli-
cates determining whether reads originate from wild-type sequences or rearrange-
ments. RNA-seq data has the additional complexity of RNA processing leading to
non-continuous alignments due to for instance splicing, read-throughs and circRNAs.
As a result, RNA-seq aligners suffer from longer processing times or higher hardware
requirements than for DNA-seq. RNA specific aligners typically align spliced reads by

1https://cancer.sanger.ac.uk/cosmic/fusion
2http://54.84.12.177/PanCanFusV2/
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Adapter 1 Insert Adapter 2

Read-2Read-1

Inner distance

Insert size

Fragment length

5`

3` 5`

3`

Figure 5.1: The length of the cDNA fragment includes the insert and the adapters. The
insert size is the length of the insert, whereas the inner distance is the length of the insert
minus the length of both reads. Reads can have a negative inner distance when they are
overlapping.

preferring gapped alignment in close proximity over long distances, while for fusion
gene detection it is equally important to look elsewhere in the genome for fusion part-
ners. This requires aligners to use different settings for fusion gene analysis, which
increases the search space and the number of optima, resulting in a higher number of
multi-mapping reads and alignment artefacts.

During co-transcriptional splicing, pre-mRNA is first capped and introns are
spliced out immediately when the splice donor and acceptor sequences are tran-
scribed. As a last step, when the poly-A signal is recognised, the transcript will
be poly-adenylated and the mature mRNA is released. RNA-seq libraries are typi-
cally prepared by targetting the poly-A tails (poly-A+ RNA-seq). Because splicing
takes place mostly before poly-adenylation, corresponding sequencing typically con-
sist of exon-derived sequences, while sequences that originate from introns are rare.
Although rare, intron sequences are found in poly-A+ RNA-seq and can originate from
post-transcriptional splicing and intron retention.

Genomic breaks resulting in fusion genes are most often located in introns. Be-
cause reads derived from intronic regions are rare in poly-A+ RNA-seq data, fusion
transcripts are detected as exon-to-exon splice junctions [196]. If a fusion gene consists
of multiple splice isoforms, multiple exon-to-exon boundaries may be derived from the
same fusion gene (Figure 5.2). In contrast, when random hexamer primers are used
in the reverse transcription step of ribo-depleted total RNA, also non-polyadenylated
transcripts will be a template for RNA-seq library construction. This type of data will
further be referred to as random primed RNA-seq. Random primed RNA-seq data
does not only include mature mRNA, but also (l)ncRNAs, rRNA and pre-mRNA
being transcribed. Because random primed RNA-seq data also contains intron span-
ning reads from pre-mRNA, corresponding data should allow detection of genomic
breakpoints [87], as further explained in Figure 5.2.

In this study, we have developed a computational method for the detection of
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5.2 Methods 111

fusion genes in random primed RNA-seq data, including the ability to detect and
distinguish between DNA breaks on top of detecting exon-to-exon fusion splice junc-
tions. Additionally, we provide an improved solution for the interactive visualisation
of rearrangements in RNA-seq data.

5.2 Methods

For the CTMM NGS-ProToCol study, 51 prostate cancer (PCa) and 41 normal adja-
cent prostate (NAP) samples were sequenced, of which the total RNA was prepared
with random hexamer primers for cDNA synthesis. RNA was extracted with a NEB-
Next Ultra Directional RNA PREP Kit and ribosomal RNA was reduced using a
RNase-H based method. Additional clinical and molecular information is given in
supplementary Tables S5.1 and S5.2. The 2x126 nt stranded paired-end reads were
sequenced on a Illumina HiSeq 2500, with an average sequencing depth of ∼70 million
paired-end reads per sample.

5.2.1 Computational Analysis

Data preparation

Trimmomatic [210] was used to improve the overall base quality, using settings given
in section S5.6.1. The trimmed reads are aligned with STAR [199], using similar
settings as used by STAR-Fusion [200], given in supplementary section S5.6.2. Within
the results are discordant reads, reads that are either split up or have their mate
inverted or aligned with an inner distance that does not fit a canonical gene. The
analysis of these discordant reads in the application, Dr. Disco, is comprised of 5 steps:
(I) transformation of alignment data into a graph, (II) merging edges of split and
spanning reads that correspond to the same event, (III) extract edges that correspond
to different splice isoforms of the same fusion, (IV) filtering and (V) determination of
SV-type (Figure 5.3). It was noticed that after running STAR, certain reads are not
directly compatible with the split view in Integrative Genomics Viewer [211] or for
subsequent analysis because SA:i:-tags are not in place. Therefore Dr. Disco extends
these files, which is explained in more detail in supplementary section S5.6.3.

I. Transformation into graph

An aligned read is considered discordant when it cannot be derived from a transcript
of a classical gene because of inconsistent orientation, distance to its mate or an
introduced split. Discordant fusion reads are either singleton or paired-end. Singletons
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mRNA

DNA

pre-mRNA

+ mRNA

B 

C

A

D

F

E

1 2 3

I II III

1 2 IIIII

1 AAAAAAIIIIIAAAAAA1 2 III

IIIII21

Figure 5.2: Differences between DNA-seq, random primed and poly-A+ RNA-seq data with
respect to fusion genes. (A) Illustration of a deletion between two genes (red and blue).
Both genes consist of three exons (red: 1, 2 and 3 ; blue: I, II and III) and two introns.
Note that this is a schematic representation and that introns are typically much larger than
exons. (B) A DNA recombination that leads to a fusion gene consisting of exons of both
partners. Because the genomic breaks are in introns 2-3 and I-II, the fusion gene contains
exons 1, 2, II and III. (C) The transcribed fusion will be alternatively spliced resulting in
different mRNA fusion transcripts. (D) DNA-seq data covers the entire genome uniformly,
including the fusion gene, and spans the genomic breakpoints. The fusion gene structure
and splice isoforms cannot be unambiguously deduced from DNA sequencing data only. The
data only contains discordant reads spanning the genomic breakpoint (split reads: pink,
spanning reads: green). (E) In poly-A+ RNA-seq, data covers mostly exons, in quantities
that correspond to splice isoform expression levels. Using sequencing data only, it is possible
to predict the strand and splice isoforms of the fusion transcript, without being able to
detect the actual genomic breakpoints. Both spanning and split reads are indicated over the
exon-exon boundaries (in green and brown, respectively). (F) Random primed RNA-seq data
contains both mRNA and pre-mRNA derived reads. Similar to DNA-seq data, pre-mRNA-
derived reads include both intron and exon spanning sequences and as a result, the entire
fusion gene is covered with reads. Whereas DNA-seq data covers an entire genome, pre-
mRNA covers expressed regions and therefore also allows detection of genomic breakpoints.
Indicated are reads spanning the exon-to-exon boundary as well as the genomic breakpoint
(green), split reads covering the genomic breakpoint (pink) and (spliced) split reads covering
the exon-to-exon boundary (brown).
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1.

2.

Discordant reads are transformed into 

breakpoints and junctions which are 
inserted into a graph.

Merge edges with similar genomic 

locations

3.

4.

5.

Extract edges that originate from 
different splice isoforms, based on 
distances at mRNA level

Filter out false positives

Determine type of break: intronic or 
exonic 

Figure 5.3: Flowchart of Dr. Disco. (1) Edges and nodes are parsed from a discordant align-
ment and put in a graph. On top, a chromosome is indicated with a horizontal bar, edges
with black curved lines and a splice junction representing edge with a dashed light gray line.
Nodes are not indicated, but can be seen as the locations where the edges attach to the chro-
mosome. Patterns of coherent edges emerge at more or less the same positions. These edges
will be merged to bundle evidence and increase confidence per fusion gene. In paired-end
sequencing only the very endings are sequenced. This results in spanning reads, which do
not exactly represent the junction but fall in close proximity, limited to a certain distance.
This distance should not exceed the inner distance, indicated with purple triangles. (2) To
bundle edges that originate from the same junction, it is desired to merge split- and (usually
slightly shifted) spanning reads. This will reduce the size of the graph and make the weight
of the remaining edges, as indicated with thicker lines, heavier. (3) The distance between
edges at mRNA level is calculated, and indicated with a green arrow. Edges are recursively
extracted from the graph based on the distance at mRNA level. This results in subgraphs
that consists of all junctions from the same fusion gene, including different splice isoforms,
but does not merge corresponding DNA breaks. Each resulting subgraph is indicated with
a unique color. (4) Sub-graphs are filtered on several variables such as the number of reads,
ratio split and spanning reads, the shape of the alignment (triangular or rectangular [194]).
(5) The extracted sub-graphs are only a set of edges. If the edges within the sub-graph
are all in close proximity of splice junctions, they are likely derived from mature mRNA.
These subgraphs are classified as either intronic or exonic by finding the distance the the
closest splice junction. The red junction, which is on both sides not close to an exon bound-
ary, is considered intronic. The green junctions, all close to exon boundaries, are considered
exon-to-exon fusion events.
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114 Dr. Disco

are reads of which the mate was excluded from alignment and paired-end are those
of which both mates were aligned. Discordant reads are classified in two major types:
split reads and spanning reads [71]. Singletons are always split reads while paird-end
reads can be both split and spanning. If paired-end reads have a mate that was split
and the remaining mate was not split, the remaining mate is a silent mate which is
neglected in fusion analysis. Spanning reads have no mates that are split but have a
too large or too small inner distance or are inverted with respect to each other. Note
that any discordant read (singleton or paired-end, split or spanning) can also be a
spliced read.

The main data structure of the computational analysis is a graph representing
the junctions provided by discordant reads. Each discordant read will be assigned
a subtype, defined by whether it was split or spanning and singleton or paired-end.
For every read, the gap between the genomic positions is estimated according to the
subtype. From the graph’s perspective, this gap can be seen as an edge between two
genomic locations and the genomic locations can be seen as nodes. For the trans-
formation of a split read into an edge, the genomic locations of the split point will
represent the genomic location of the corresponding nodes. For the transformation of
spanning reads into an edge, the R1 -read’s last aligned base and the R2 -read’s first
aligned base will represent the genomic location of the corresponding nodes. If during
insertion of an edge into the graph no identical edge was found, it will be inserted and
labelled with the corresponding subtype. Otherwise, the (subtype specific) weight is
increased by one. Splice junctions will be inserted as edges into a separate graph. An
example of how a graph data structure looks like, is presented in Figure 5.4 (top and
middle).

However, the graph data structure alone is not efficient for quickly searching within
genomic regions, to find closely adjacent edges. For quick access based on genomic
coordinates, a reference to all edges is added to a genomic interval data structure [212],
implemented with the HTSeq library [52].

II. Merging edges derived from same event

Typically, split reads are located exactly on the breakpoint, while spanning reads are
slightly shifted. A spanning read is shifted no more than its inner distance. Based on
insert size statistics (Figure S5.7), we have set the maximum inner distance, a param-
eter for the algorithm, to 450 bp. From the graph’s perspective, split and spanning
reads of the same fusion correspond to edges that are on both sides in close proximity.
To bundle evidence from the same junction, corresponding edges are merged as illus-
trated in Figure 5.4. Merging split and spanning reads derived from the same junction
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A

chr1 chr2

G G G GA A A AT TC C C CA C T G GA A AT T CG GC C G
10090 900 910

G AC G GTCG AT CA GT GCA A C G

G AT CG A G TCG AT CT G A G G T A

G AT CG A G GTCG AT CA G G T A

split 01
split 02
spanning 01

chr1:97 chr1:100 chr2:900 chr2:903

spanning: 1

split: 2

chr1:100 chr2:900

split: 2,
spanning: 1

Figure 5.4: Merging closely adjacent edges. (top) An alignment consisting of two split reads
and a spanning mate pair that represents two distinct gaps (chr1:100-chr2:900 & chr1:97-
chr2:903). (middle) After transforming this alignment into a graph, one edge represents two
split reads and the other represents one discordant mate pair. The weight of the edge that
represents two split reads is two and therefore indicated with a thicker line. Both nodes at
chr1 and chr2 are only 3 bp away from each other. (bottom) As both edges are in close
proximity (3 bp + 3 bp), they are likely to be derived from the same event (either exon-to-
exon junction or DNA break). After merging, only one edge remains of which the weight is
the sum of the weight of the edges before merging.

starts with the edge with the largest weight. Because split reads are more powerful
in determining exact breakpoints, they give edges a +50% increase in weight over
spanning reads only during estimation of the heaviest edge. Dr. Disco then searches
for other edges that have both their nodes no more than the maximum inner distance
away. During merging, the total weight of the graph stays identical, while the num-
ber of unique edges decreases and the graph becomes smaller. This is illustrated in
Figure 5.4 (middle and bottom); the number of edges decreases from 2 to 1, while the
weight stays 3 (2 split, 1 discordant).

III. Extract edges from different splice isoforms

In the previous step, edges that belong to the same junction (either exon-to-exon, or
DNA break) were merged, but exon-to-exon junctions from different splice isoforms
of the same fusion gene are still separated since introns are typically much larger than
the maximum inner distance. Edges that correspond to different splice isoforms of the
same fusion gene are extracted in a two step approach. First, the shortest possible
distance between two nodes at mRNA level is calculated. Second, edges that have a
distance at the mRNA level of less than the maximum inner distance, are extracted

115



D
r.

D
is
co

D
r.

D
is
co

D
r.

D
is
co

D
r.

D
is
co

D
r.

D
is
co

116 Dr. Disco

from the graph as they are likely to correspond to different splice isoforms of a fusion
gene.

Estimation of the distance between two nodes at mRNA level is demonstrated us-
ing an example in Figure 5.5 (top). The gene on chr1 contains two nodes, chr1:1000
and chr1:2500, separated from each other with a genomic distance of 1500 bp. Be-
tween these nodes there is a splice junction (chr1:1003-chr1:2490). Remark that
splice junctions are determined by the NGS data and not by gene annotations. For
each node, there will be searched for the closest splice junction within a genomic dis-
tance of 450 bp. Starting with node chr1:1000, there exists one such splice junction
at chr1:1003, with a distance of 3 bp. Similarly, for node chr1:2500, there exists
one such splice junction, with a distance of 10 bp (to node chr1:2490). The distance
at mRNA level between nodes chr1:1000 to chr1:2500 is 3 + 10 = 13 bp and conse-
quently the nodes shall be connected by inserting an edge that represents the distance
at mRNA level, further referred to as s-link.

Extracting edges that correspond to different splice isoforms starts with the edge
with the highest weight. Considering the example in Figure 5.5 (bottom) that contains
two edges, the heaviest edge is chr1:2500-chr2:900 with 2 split reads. The s-links will
be traversed separately and recursively, until a maximum cumulative mRNA distance
of 450 bp is reached and until all nodes found during traversal are stored. Selection
starts with node chr1:2500, stored into a set of nodes that fall within the acceptable
mRNA distance. This node has only one s-link, with a mRNA distance of 13 bp to
node chr1:1000. Because this distance is smaller than 450 bp, set {chr1:2500} gets
extended with chr1:1000 into {chr1:1000,chr1:2500}. Although there are still 437
bases left for further iterations, no other s-links are connected to chr1:1000 and the re-
cursion ends. Because there are no s-links conneceted to node chr2:900, it will return
a set only containing itself: {chr2:900}. All edges between {chr1:1000,chr1:2500}

and {chr2:900}, which are chr1:1000-chr2:900 and chr1:2500-chr2:900, will be
extracted as they are likely to belong to the same (fusion) gene structure.

Because splice junctions are relatively far apart due to typically large introns, it
was decided that such edges will not be merged into a single edge but will be extracted
as a subgraph. These subgraphs preserve multiple exon-to-exon junctions and thus
the fusion transcript structure. All edges present in a subgraph are removed from the
main graph so they can only participate in one subgraph, corresponding to only one
fusion. This process continues until all edges have been extracted and the main graph
is empty.

It does occur that splice sites are not covered by reads, for example when the
sequencing depth is low. As a result, when spliced reads are absent, extraction of
subgraphs based on (splice junction derived) s-links cannot take place. Edges that
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chr2
900

2500

chr1

24901000 1003

Exon-1 Exon-2 Exon-I
spanning 01

split 
01

split 
02

splice junction

chr1:1000 chr1:1003 chr1:2490 chr1:2500

chr2:900
spanning: 1

splice: 1

split: 2

d1 = 3 d2 = 10

distance at mRNA level d = 13

s-link

Figure 5.5: Extracting edges from different splice isoforms. (top) This schematic view of a
fusion gene illustrates how edges corresponding to different splice isoforms are extracted.
Exons are indicated as light gray blocks and the junctions within the discordant reads are
indicated as lines between the exons. Between the two exons at chr1 and one at chr2 are
two split reads (exon-2 − exon-I) and a spanning read (exon-1 − exon-I). The presence of
a splice junction at chr1:1003-2490 indicates these reads belong to the same fusion. Note
that no intronic breaks are indicated. (bottom) The total genomic distance between edges
chr1:1000-chr2:900 and chr1:2500-chr2:900 is (2500−1000)+(900−900) = 1500 bp. Dis-
tances at mRNA level are calculated for each pair of nodes on the same chromosome. These
are calculated as sum of the two shortest genomic distances to the nodes that correspond to
the splice junction. The distances to the closest splice junctions are d1 = 1003−1000 = 3 and
d2 = 2500− 2490 = 10 bp. The distance at the mRNA level is then calculated as the sum of
both distances to the closest splice junction (3+10 = 13 bp). If there are two nodes of which
the genomic distance minus the splice junction distance is smaller than the maximum inner
distance, an s-link is inserted. Although the genomic distance in the example is 1500 bp, the
distance at the mRNA level is only 13 bp. Since 13 bp is smaller than the maximum inner
distance, 450 bp, the s-link will be included. As result, this allows edges chr1:1000-chr2:900
and chr1:2500-chr2:900, from different isoforms, to be merged.
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are located at exons that lack splice junctions will stay separated in the graph, even
though they belong to the same (fusion) gene. An example in which this behaviour
was repeatedly found is alternative exon-0 of TMPRSS2. This is an exon upstream
of TMPRSS2 [213], not present in most gene annotations such as RefSeq [10] and
UCSC [214]. It was repeatedly observed that spliced reads in this exon were ab-
sent and consequently fusion transcripts involving this exon did not get extracted
with the rest of the fusion, despite the fact that they are derived from splice iso-
forms of a TMPRSS2-ERG fusion. To overcome this technical issue, an additional step
was implemented in which subgraphs are also extracted based on genomic distance
(further explained in section S5.6.4). This fix allows inclusion of TMPRSS2 exon-0 in
TMPRSS2-ERG results, which is important since TMPRSS2 exon-0 is a favourable prog-
nostic marker [213].

IV. Filtering

Discordant reads do not necessarily originate from fusion genes or rearrangements
but could be mapping artefacts, sequencing artefacts, non-human contamination or
related to population wide variation, read-throughs, and circRNAs [74]. To reduce
the positives, different filters are applied. When there is a high number of identical
copies of sequencing reads, the alignment has a rectangular shape. In contrast, when
the alignment consists mostly of unique reads, the alignment has on both sides of the
junction a more triangular shape (Figure S5.11). To which extent the shape of the
alignment near the breakpoints is triangular, has earlier been reported to be useful
in determining whether a candidate break is false positive [194], and is therefore used
for filtering. Also, the ratio of split and spanning reads, the total number of reads and
the alignment mismatch ratio are used to filter out false positives.

V. Determination of SV-type

Each returned sub-graph is only a set of edges. These can be derived from a genomic
breaks and from splice junctions of fusion genes. Near the junctions from those that
are derived from spliced mRNA are most often spliced reads. The splice junction
graph is used to extract the splice junctions found in these spliced reads. Based on
the genomic distance to the closest splice junctions, the SV is classified as either
intronic or exonic.
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5.3 Results

The cohort consists of 41 NAP and 51 PCa samples, of which 40 PCa samples were
RT-PCR tested for TMPRSS2-ERG (23 positive & 17 negative, Table S5.1). To deter-
mine for all PCa samples which are TMPRSS2-ERG positive, ERG expression levels were
investigated, with 32/51 showing elevated expression (read count > 1000). The fusion
was confirmed in these 32 samples using FusionCatcher [74].

To investigate TMPRSS2-ERG and related rearrangements, only discordant reads
that at least partially map to ERG or TMPRSS2 (chr21:39,737,183-40,035,618,
chr21:42, 834,478-42,882,085, hg19) were used for analysis with Dr. Disco.
TMPRSS2-ERG was found in 32 of the 51 PCa samples, precisely those that have over-
expression of ERG and were confirmed by FusionCatcher. Of these 32 samples, 23 had
been RT-PCR tested for TMPRSS2-ERG of which all 23 samples were found to be posi-
tive. Of the remaining 17 RT-PCR tested samples, all 17 were found negative on both
platforms. In three samples, s027, s050 and s053, the genomic break of the fusion was
not detected while exon-to-exon fusion junctions were. Of the 41 NAP samples, one
(s031 ) was predicted to have TMPRSS2-ERG, which was not detected by FusionCatcher.
The predicted junctions are given in Table S5.2.

Detected TMPRSS2-ERG DNA breakpoints and exon-to-exon junctions are shown
in Figure 5.6. The DNA breakpoints in ERG are located in a hotspot region that
spans the last half of intron 3, and were located more or less equally far apart from
each other. The difference between the ratio of breakpoints per base in the hotspot
region compared with the region at the beginning of intron 3 (chr21:39,898,001-
39,947,586), is significantly different (p < 0.01, χ̃2-test).

Five samples have their genomic break outside the hotspot region in ERG (s043,
s031, s075, s054 and s048 ), of which the last three are relatively close to each other,
before ERG starts (Figure 5.6). In two samples of which the ERG break was located
within intron 3 but outside of the hotspot region, no other rearrangements were
found. In the three samples of which the ERG break was located before ERG, additional
rearrangements were present:

• In s075 there are two small (91 bp & 201 bp) intronic amplifications (chr21:39,
929,736-39,929,827 & chr21:40,063,681-40,063,882; hg19), not detected
by Dr. Disco because of the small size (≤450 bp). These intronic amplifications
do not seem to have effect on splicing as no known splice sites are affected.

• The read depth in sample 054 indicates a deletion that erases exon 3 of ERG. This
junction is not supported by discordant read from STAR and could consequently
not be detected by Dr. Disco. Further inspection revealed the presence of reads
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harbouring sequences of both sides of the junction, while STAR did not split
them but soft-clipped them instead. These reads are characterised by multiple
mismatches, possibly caused by an insert-sequence or small mutations.

• The read depth in sample 048 indicates that there is a deletion of half the
size of ERG, removing exons 2, 3 and *1. This junction is also not supported
by discordant reads from STAR, while further inspection indicated concordant
reads spanning both sides of the junction, which were softclipped instead of
being split. These reads were also characterised by multiple mismatches, possibly
as result of an insert-sequence or small mutations.

Each of the three fusions that break before ERG make use of two cryptic inter-
genic exons (chr21:40,064,445-40,064,721; AC[CA..GC]CT & chr21:40,073,517-
40,073,871; AC[CC..CT]CT; hg19). The corresponding alignments of the fusions and
corresponding additional rearrangements are indicated in Figures S5.9 and S5.10.

In TMPRSS2 also a preferred SV region is apparent (chr21:42,866,505-
42,877,200) encompassing introns 1 and 2 entirely. Ordering the samples on ge-
nomic breakpoints in TMPRSS2 does not show a trend in the genomic breakpoints in
ERG (Figure S5.8). This suggests that both DNA breakpoints of a TMPRSS2-ERG fusion
are independently random. On top of the TMPRSS2-ERG fusions, two intronic deletions
were identified in TMPRSS2 (s055, s064 ; Table S5.2). These deletions are located within
a single intron and therefore do not seem to affect mRNA or protein coding sequences.

The detected exon-to-exon junctions are located on the outside of the DNA breaks,
which fits with that the region within the DNA breaks is deleted. Exon-to-exon junc-
tion involving exons that are not present in current gene annotions were found. Some
of these exons are intergenic, including exon-0 [213] of TMPRSS2. Two recurrent cryptic
new exons were found near exon(s)-1 of TMPRSS2, denoted as exons *1 and *2, which
are shown in Figure 5.6. The corresponding number of discordant reads from these
exons are: exon-*2: 796, exon-*1: 582, exon-1a: 3306, exon-1b: 7442 and exon-0: 3307
reads, indicating these new exons are expressed to a lower extent than common exons
1a and 1b.

5.4 Discussion

STAR-Fusion [200], in particular designed to estimate exon-to-exon junctions of fu-
sions involving annotated genes, makes use of aligner STAR [199]. In another study
STAR was used for fusion gene detection in a similar setup [216]. Such implementa-
tions re-use publicly available, thoroughly tested and curated software in a modular
manner, which gives more control over a pipeline compared with fully embedded
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Figure 5.6: Genomic regions of ERG (top) and TMPRSS2 (bottom). Annotated transcripts
are given at the bottom of each plotted gene as thin black lines and the corresponding exons
as thicker black boxes. The annotated transcripts of ERG are: NM_001243429, NM_001136155,
NM_001243428, NM_001136154, NM_001243432, NM_004449, NM_182918 & NR_111949 (putative
ncRNA), and of TMPRSS2: NM_001135099 & NM_005656. Common alternative exons found in
exon-to-exon junctions are indicated in gray, as (*1) in ERG and as (*1) and (*2) in TMPRSS2.
Consensus exon numbers are indicated under the transcript annotations in parenthesis. The
results of the RNA-seq analysis are separated per sample on the vertical axis. The numbers
indicated in gray are the sample IDs. The DNA breakpoints of the RNA-seq analysis are
marked in blue and the exon-to-exon junctions in red. The samples are ordered based on
the position of the predicted DNA breakpoint. Detected breakpoints found in independent
DNA-seq analysis [215], converted from hg18 to hg19 with UCSC liftOver, are plotted on top
of both figures. Transcription starts at TMPRSS2 (minus strand) and breaks at the genomic
breakpoint, indicated in blue, and continues at the breakpoint in ERG (blue), also in the
negative direction. In both genes the hotspot regions of the DNA breaks detected in the
RNA-seq data are indicated with a green box.
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pipelines. This makes it ideal for compatibility with workflow management systems
such as Galaxy [217].

The input of Dr. Disco are discordant reads are in BAM or SAM alignment for-
mat. The SAM alignment format was chosen over the STAR junctions files, because
BAM/SAM is the de facto standard file format for alignment data and is therefore
compatible with software such as pysam, pybam, samtools, and HTSlib and with
genome browsers.

Random primed RNA-seq is not specifically targeting polyadenylated mRNA but
also includes non-polyadenylated RNA such as pre-mRNA. Because DNA breakpoints
of fusion genes are most often located in introns, being able to sequence pre-mRNA
should allow detection of genomic breakpoints of such fusions, while determination
of exon-to-exon junctions remains possible. Combined identification of fusion genes
at a genomic and transcriptomic level helps to better understand the relationship
between the rearrangement at DNA and RNA level. This could for instance explain
why certain exons or splice variants are present or absent. For certain fusions, the
presence of a DNA break may rule out the possibility of a read-through event. Also,
detection at both levels may increase confidence of a detected fusion.

Software package Dr. Disco was developed to also detect DNA rearrangements in
RNA-seq data. The method puts all putative fusion gene evidence into a graph data
structure, which allows separation of intronic from exonic data. Using 51 PCa samples,
we show that the combination of random primed RNA-seq data with Dr. Disco allows
detection of RNA molecules derived from TMPRSS2-ERG fusions, with junctions located
in intergenic and intronic regions. It predicted TMPRSS2-ERG in the 32 samples that
have elevated ERG expression and of which FusionCatcher had confirmed the fusion,
including 23 RT-PCR TMPRSS2-ERG positive samples. The exon-to-exon junctions were
typically surrounding the DNA breakpoints and not located within the expected 3
Mb deletion, which fits the expected fusion gene structure. In addition, the predicted
DNA breakpoints fall in the same hotspot regions described in independent DNA-seq
analysis [215].

Exons 4 and 5 were indeed the most common first ERG exons of TMPRSS2-ERG

fusion transcripts surrounding the break [123]. This also fits with the detected ge-
nomic breakpoints, which were not found after exon 5 (ERG) and rarely after exon
3 (TMPRSS2). Breakpoints located in ERG were significantly more often found in the
last half of intron 3 compared with the first half. These findings are in concordance
with earlier reports [215]. Hence, the detected genomic breakpoints fit with previous
reports and the results demonstrate that Dr. Disco’s model works as expected.

The mechanism behind TMPRSS2-ERG is explained by whether an ERG protein cod-
ing transcript (without frameshift) can occur [123]. The preference for breakpoints in
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introns 1 and 2 of TMPRSS2 fits this critereon. However, the lack of DNA breakpoints
in the first half of ERG intron 3 (chr21:39,898,000-39,947,587; hg19) suggests that
selection is not only driven by intron/exon structure, because fusions to the region
without breakpoints are expected to splice in a similar way and would result in similar
proteins.

To make use of the full potential of random primed RNA, our method is not
restricted to annotated genes or exons but is capable of revealing rearrangements
between any two genomic locations. As a result, we found TMPRSS2-ERG tran-
scripts containing new exons (Figure 5.6). In TMPRSS2, several new exons involved
in TMPRSS2-ERG fusion transcripts were detected, including intergenic exon-0 [213].

In three samples (s064, s051, s060 ), we found exon-to-exon boundaries upstream
of the genomic breakpoint of TMPRSS2, thus in the region expected to be deleted. Al-
though there are reports indicating multiple, independent, TMPRSS2-ERG fusion genes
in different subregions of the prostate in the same patient [123] as well as multiple
variants within the same genome [218], we did not find any further evidence support-
ing multiple breaks and assume these are cross-sample contaminations, that possibly
arose as de-multiplexing errors of the RNA-seq reads. The assumption that these
reads are cross-sample contaminations is supported by the low amount of correspond-
ing evidence (s064 : 1 read, s051 : 2 reads, s060 : 5 reads).

In the three samples in which the DNA break was not found while exon-to-exon
junctions were, sufficient DNA break spanning discordant reads were present. In sam-
ple s053, the genomic break in TMPRSS2 is 57 bp away from an exon, and in s050
114 bp. This led in both cases to merging the evidence of intronic and exonic data
during the merge step of the graph analysis. A next step in improving the algorithm
could be to find a solution for this. This could for instance by done by using the
splice junctions found in the concordant alignment or by using a gene annotation and
improving the rules used in the merge steps. In s027, the DNA break was detected
(chr21:39,945,261-42,856,315; hg19), but the filter had classified it as invalid be-
cause of the lack of split reads.

To make use of the full potential of random primed RNA-seq data for fusion gene
analysis, also intronic and intergenic genomic regions need to be interrogated for the
presence of possible fusion transcripts. In this study we have focused beyond exon re-
gions, and the results confirm that a full genome strategy is indeed capable of revealing
different new cancer specific transcripts. This underlines that it can therefore detect
more fusion transcripts than conventional fusion detection tools that are restricted
to annotated genes and exons. Yet, a disadvantage of this full genome approach is
the increased search space and computational complexity, compared with methods
leaving this out [75].
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5.5 Conclusion

We have developed a method, Dr. Disco, that can detect fusion genes in RNA-seq data
across the entire genome, which allows detection of intergenic and intronic splice vari-
ants and DNA breaks. This method is particularly suitable for the analysis of random
primed RNA because such data also contains relatively high proportions of pre-mRNA
derived intron sequences. The corresponding results of 51 PCa samples have shown
that the predictions of TMPRSS2-ERG are in concordance with earlier findings, in terms
of predicted genomic locations and in terms of fusion gene structure. In addition, it
revealed additional intronic deletions in TMPRSS2 which cannot be detected in poly-A+
RNA-seq data. The results indicate that detecting exon-to-exon in combination with
genomic breakpoints may be advantageous in understanding diseases involving large
structural variants and could further help understanding mRNA products and fusion
events. That the full genome approach of Dr. Disco is capable of detecting fusions
involving intergenic regions is demonstrated by confirming the presence of TMPRSS2
exon-0 and two recurrent alternative exons. Thus, a sequencing library enriched with
non-polyadenylated transcripts in combination with analysis using Dr. Disco allowed
discovery of novel cancer specific fusion transcripts, both at mRNA and pre-mRNA
level, that could not be detected in a hightroughput manner before. The modular
implementation of Dr. Disco makes use of community standard file formats and is
therefore compatible with genome browsers to allow data visualisation. The software
is available in Bio-Conda 3, the Galaxy platform 4 and included in The Galaxy RNA
Workbench [219] 5.
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Figure S5.7: Results of the tool Picard CollectInsertSizeMetrics on sample s001.

Figure S5.8: Map of predicted TMPRSS2-ERG breakpoints. Genomic breakpoints of ERG (left)
and TMPRSS2 (right) are indicated with gray diamonds. Gene annotations (hg19) are indicated
at the bottom. Samples are ordered on the position of the genomic breakpoint in TMPRSS2
whereas the order of breakpoints in ERG do not show noticible correlation.
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Table S5.1: Clinical and molecular sample characteristics

Cancer % in cancer Normal
Samples 51 41

∑
=92

TMPRSS2-ERG +
FusionCatcher 32 62.7% 3

PSA 11 (0.3-64.3) -
GS
3+3 17 33.3% -
3+4 24 47.0% -
4+3 5 9.8% -
8 2 3.9% -
9-10 2 3.9% -
? 1 2.0% -

pT stage
2 17 33.3% -
3 20 39.2% -
4 13 25.5% -
x 1 2.0% -

PCR tested % of PCR tested not PCR tested
Cancer samples 40 11

∑
=51

TMPRSS2-ERG +
RT-PCR 23 57.5% -
FusionCatcher 23 57.5% 9

TMPRSS2-ERG −
RT-PCR 17 42.5% -
FusionCatcher 17 42.5% 2

126



D
r.

D
is
co

D
r.

D
is
co

D
r.

D
is
co

D
r.

D
is
co

D
r.

D
is
co

5.6 Supplementary materials 127

Figure S5.9: Concordant reads of samples with DNA break before ERG. This is an IGV view
with the density tracks on ‘log-scale’, showing the concordant alignments (samples from top
to bottom: s048, s054, s075 ) of which the DNA breakpoint was found before ERG. In sample
s048, a region is visible of which the read density is low, caused by a deletion. Inside that
region, on the left side, a small region with a lower density is visible. It is possible that there
are differences in copynumber or clonality and that those reads correspond to a different
deletion. In sample 054, a drop in the read density can be seen around exon 3, caused by
a deletion. The read depth in s075 is not interrupted, indicating no deletions are present.
These alignments are on hg38.
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Figure S5.10: Alignments of small amplifications in sample s075. The alignment of two
TMPRSS2-ERG related amplifications in sample s075 in IGV. In both views, the density of
reads from the concordant alignment is shown on top and the alignment of discordant reads
at the bottom. These alignments are on hg38.
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5.6.1 Trimmomatic settings
The following adapters were used for Trimmomatic [210] 0.33:

PrefixPE/1: TACACTCTTTCCCTACACGACGCTCTTCCGATCT
PrefixPE/2: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

It was used with the following commandline arguments:

java -jar $TRIMMOMATIC_JAR PE \
-threads 48 \
-phred33 \
$prefix_R1.fastq.gz $prefix_R2.fastq.gz \
$prefix"_R1_paired.fastq.gz $prefix"_R1_unpaired.fastq.gz \
$prefix"_R2_paired.fastq.gz $prefix"_R2_unpaired.fastq.gz \
ILLUMINACLIP:adapter_fa:2:30:10 \
LEADING:26 \
TRAILING:26 \
AVGQUAL:20 \
SLIDINGWINDOW:4:24 \
MINLEN:36

5.6.2 STAR settings
The following settings for STAR-v2.4.2a [199] were used:

STAR --runThreadN 9
--genomeDir ... \
--readFilesIn ... ... \
--outFileNamePrefix ... \
--outSAMtype BAM SortedByCoordinate \
--outSAMstrandField intronMotif \
--outFilterIntronMotifs None \
--alignIntronMax 200000 \
--alignMatesGapMax 200000 \
--alignSJDBoverhangMin 10 \
--alignEndsType Local \
--chimSegmentMin 12 \
--chimJunctionOverhangMin 12 \
--sjdbGTFfile gencode.v19.annotation.gtf \
--sjdbOverhang 100 \
--quantMode GeneCounts \
--twopass1readsN -1 \
--twopassMode Basic
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5.6.3 Fixing discordant alignments
Discordant alignments of STAR have minor limitations that prevent a split view in
Integrative Genomics Viewer. This is partially due to limitations in the BAM file
format with respect to chimeric reads. According to the BAM/SAM specification6 it
is not possible to describe an interchromosomal junction as one single alignment. In-
stead, chimeric alignments are supposed to be split over multiple alignment entries. To
correct for sticky ends, remaining parts of the aligned reads that belong elsewhere are
made invisible (soft clipping). It is, however, not specified how to deal with PNEXT
and RNEXT flags, which are supposed to link to the next aligned piece. Consider an
example with two mates, R1 and R2, of which R2 is a discordant split read. This will
result in alignment R2-a and R2-b. STAR links R1 to R2-a with the PNEXT and
RNEXT flags, while both R2-a and R2-b link back to only R1. Consequently, during
visualisation, no link between R2-a and R2-b is found and does therefore not allow a
split view of split reads. This is fixed by linking R1 to R2-a, R2-a to R2-b and R1,
with the remark that this is still not ideal as R2-a should link to both R1 as well
as R2-b. In addition, SA:Z:-tags were added in order to reference the other chimeric
alignments of the reads. An example of a proper split view of discorant reads that
correspond to a TMPRSS2-ERG DNA break is given in Figure S5.11.

TMPRSS2ERG

Sequence

RefSeq Genes

[0 - 62][0 - 62]
7046-004-041_discordant.fixed.terg.bam C

overage

7046-004-041_discordant.fixed.terg.bam J

unctions

7046-004-041_discordant.fixed.terg.bam

chr21:42,851,436-42,852,281

chr21

chr21:39,858,661-39,859,506

chr21

N
A

M
E

D
A

T
A

T
Y

P
E

D
A

T
A

 F
IL

E

Figure S5.11: Split view of TMPRSS2-ERG in Integrative Genomics Viewer. An IGV split
view of the reads that correspond to the DNA break of TMPRSS2-ERG of sample s041 ’s fixed
(dr-disco fix) alignment. Reads are coloured per subtype where the red reads are spanning
reads, green reads are silent mates and all the remaining reads are split reads.

6https://samtools.github.io/hts-specs/SAMv1.pdf (revision 2a802cd)
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5.6.4 Extracting edges from different splice isoforms (without
splice junctions)

To also extract edges that were left separated due to a lack of splice junctions, the
last step in the extraction phase starts with obtaining all corresponding nodes per
subgraph. Given that each edge contains two nodes, we denote for every subgraph
two vectors. Each node in an edge is considered left or right, where a left node has
a genomic location lexicographically smaller than the right node. Then for every two
subgraphs, the smallest genomic distances to a node in the other vector is calculated
for both the left and right set of nodes, which is illustrated in Figure S5.12. If the
number of nodes in both sets is not identical, the distance to the nodes in the shortest
vector are used to determine the distance. Note that genomic distances are used since
splice junctions are missing. For both vectors a root mean square (RMS ) is calculated.
Using these two vectors (left and right) of minimal genomic distances and the RMS
values, it is determined whether two subgraphs shall be merged by evaluating:

• If in both vectors there are distances smaller than the maximum inner distance
size.

• If in one vector:

– 100% of the distances are smaller than the maximum inner distance and
of the other vector the RMS is less than 15000 bp.

– 70% of the distances are smaller than the maximum inner distance and of
the other vector RMS is less than 1000 bp.

– 30% of the distances are smaller than the maximum inner distance and of
the other vector RMS is less than 5000 bp.
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chr1:300 chr1:500 chr1:800

chr2:200

chr1:1000

discordant: 1

discordant: 1

discordant: 1

s-link s-link

discordant: 1

chr1:300 chr1:500 chr1:800

chr2:200 chr2:200

chr1:1000

discordant: 1

discordant: 1

discordant: 1

s-link s-link

discordant: 1

subnet 1 (left,right) =

[
chr1:300
chr1:500

]
,
[
chr2:200

]
(5.1)

subnet 2 (left,right) =

[
chr1:800
chr1:1000

]
,
[
chr2:200

]
(5.2)

dist (left) =

[
min(chr1:300− chr1:800 = 500, chr1:300− chr1:1000 = 700) = −500
min(chr1:500− chr1:800 = 300, chr1:500− chr1:1000 = 500) = −300

]
(5.3)

dist (right) =
[
min(chr2:200− chr2:200 = 0) = 0

]
(5.4)

RMS (left) =

√
−5002 +−3002

2
= 412.3 (5.5)

RMS (right) =

√
02

1
= 0 (5.6)

Figure S5.12: Extracting edges from different splice isoforms. (top) Two subgraphs (blue and
red) that share a common exon are not merged because no splice junction exists between the
red and blue nodes. (upper) The two subgraphs completely separated. (mid) To estimate
whether both subgraphs can be merged based on genomic distance, vectors containing the
corresponding left and right genomic locations are estimated. For subnet 1, the left locations
are {chr1:300, chr1:500} and the right locations are {chr2:200}. For subnet 2, the left
locations are {chr1:800, chr1:1000} and the right locations are {chr2:200}. (lower) Then
the minimum distances between both left and right vectors are estimated. In case the number
of nodes in two vectors is not identical, the shortest distances relative to the smallest vector
are used and because of this the function becomes symetrical (d(a, b) == d(b, a)). The
estimated minimal distances are: (left): {-500, -300} and (right): {0}. (bottom) Root
mean square values of these distances are calculated and are used in combination with the
distance vectors to make a decision. Because the calculated RMS values are 412.3 (left) and
0 (right) and both vectors contain distances smaller than 450, these subgraphs can be put
together as they are likely to come from the same fusion gene despite no splice junctions
were found.
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Table S5.2: Results of TMPSS2-ERG analysis in NGS-ProToCol data (hg19 ). ERG* with asterisk
means that the actual breakpoint is close to but not located inside ERG.

Sample TMPRSS2-ERG Fusion Breakpoint-1 Breakpoint-2 Type
s001-n -
s003-n -
s004-n -
s005-n -
s006-n -
s007-n -
s008-n -
s011-n -
s012-c + TMPRSS2-ERG chr21:39817544(-) chr21:42870045(+) exonic

TMPRSS2-ERG chr21:39867955(-) chr21:42869493(+) intronic
s013-n -
s014-n -
s015-n -
s016-n -
s019-n -
s020-n -
s021-n -
s022-n -
s024-n -
s025-n -
s026-n -
s027-c + TMPRSS2-ERG chr21:39817544(-) chr21:42860320(+) exonic
s031-n - TMPRSS2-ERG chr21:39940055(-) chr21:42874460(+) intronic
s032-n -
s033-n -
s035-n -
s036-n -
s037-n -
s038-n -
s039-n -
s040-n -
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Sample TMPRSS2-ERG Fusion Breakpoint-1 Breakpoint-2 Type
s041-c + TMPRSS2-ERG chr21:39817544(-) chr21:42870045(+) exonic

TMPRSS2-ERG chr21:39859273(-) chr21:42851646(+) intronic
s042-c -
s043-c + TMPRSS2-ERG chr21:39926744(-) chr21:42873074(+) intronic

TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic
s044-c -
s045-c + TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic

TMPRSS2-ERG chr21:39877811(-) chr21:42873374(+) intronic
s047-c + TMPRSS2-ERG chr21:39877602(-) chr21:42878701(+) intronic

TMPRSS2-RERE chr1:8414073(+) chr21:42878790(-) intronic
TMPRSS2-RERE chr1:8414473(-) chr21:42871549(-) intronic

s048-c + TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic
TMPRSS2-ERG* chr21:40102202(-) chr21:42867598(+) intronic
TMPRSS2-ERG* chr21:40073871(-) chr21:42870045(+) exonic

s049-c -
s050-c + TMPRSS2-ERG chr21:39817544(-) chr21:42870045(+) exonic

TMPRSS2-ERG chr21:39858981(-) chr21:42866563(+) exonic
s051-c + TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic

TMPRSS2-ERG chr21:39839166(-) chr21:42873719(+) intronic
s052-c -
s053-c + TMPRSS2-ERG chr21:39817544(-) chr21:42870045(+) exonic
s054-c + TMPRSS2-ERG chr21:39956869(-) chr21:42883789(+) exonic

TMPRSS2-ERG* chr21:40104140(-) chr21:42867900(+) intronic
TMPRSS2-ERG* chr21:40073871(-) chr21:42870045(+) exonic

s055-c - TMPRSS2-TBX3 chr12:115112640(-) chr21:42866282(+) exonic
TMPRSS2-TBX3 chr12:115113110(-) chr21:42864779(+) intronic
TMPRSS2-TMPRSS2 chr21:42858784(+) chr21:42871555(+) intronic
TMPRSS2-TMPRSS2 chr21:42862260(-) chr21:42871707(-) intronic
TMPRSS2-TBX3 chr12:115114117(+) chr21:42840465(-) exonic

s056-c + TMPRSS2-ERG chr21:39817544(-) chr21:42870045(+) exonic
TMPRSS2-ERG chr21:39841171(-) chr21:42867411(+) intronic

s057-c -
s058-c + TMPRSS2-ERG chr21:39859776(-) chr21:42871690(+) intronic

TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic
s059-c + TMPRSS2-ERG chr21:39817544(-) chr21:42883789(+) exonic

TMPRSS2-ERG chr21:39861836(-) chr21:42874947(+) intronic
TMPRSS2-intergenic chr2:30904387(+) chr21:42847992(+) intronic

s060-c + TMPRSS2-ERG chr21:39817544(-) chr21:42883789(+) exonic
TMPRSS2-ERG chr21:39886422(-) chr21:42872955(+) intronic
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Sample TMPRSS2-ERG Fusion Breakpoint-1 Breakpoint-2 Type
s061-c + TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic

TMPRSS2-ERG chr21:39822719(-) chr21:42875445(+) intronic
s062-c -
s063-c + TMPRSS2-ERG chr21:39878221(-) chr21:42873595(+) intronic

TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic
s064-c + TMPRSS2-TMPRSS2 chr21:42876044(+) chr21:42876752(+) intronic

TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic
TMPRSS2-ERG chr21:39877714(-) chr21:42876630(-) intronic

s065-c + TMPRSS2-ERG chr21:39817544(-) chr21:42870045(+) exonic
TMPRSS2-ERG chr21:39826992(-) chr21:42866975(+) intronic

s067-c + TMPRSS2-ERG chr21:39817544(-) chr21:42883789(+) exonic
TMPRSS2-ERG chr21:39870591(-) chr21:42872844(+) intronic

s068-c + TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic
TMPRSS2-ERG chr21:39872200(-) chr21:42876988(+) intronic

s069-c + TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic
TMPRSS2-ERG chr21:39830932(-) chr21:42872053(+) intronic

s070-c -
s071-c - TMPRSS2-PADI4 chr1:17666182(+) chr21:42866282(+) exonic
s072-c + TMPRSS2-ERG chr21:39885972(-) chr21:42874918(-) intronic

TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic
s073-c + TMPRSS2-ERG chr21:39842092(-) chr21:42871045(+) intronic

TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic
s074-c -
s075-c + TMPRSS2-ERG* chr21:40081166(-) chr21:42874169(+) intronic

TMPRSS2-ERG chr21:39956869(-) chr21:42880007(+) exonic
s076-c -
s077-c -
s078-c + TMPRSS2-ERG chr21:39817544(-) chr21:42870045(+) exonic

TMPRSS2-ERG chr21:39874170(-) chr21:42868603(+) intronic
s079-c -
s081-c + TMPRSS2-ERG chr21:39880312(-) chr21:42866548(+) intronic

TMPRSS2-ERG chr21:39817544(-) chr21:42870045(+) exonic
s082-c + TMPRSS2-ERG chr21:39817544(-) chr21:42883789(+) exonic

TMPRSS2-ERG chr21:39856860(-) chr21:42873590(+) intronic
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Sample TMPRSS2-ERG Fusion Breakpoint-1 Breakpoint-2 Type
s125-n -
s126-n -
s130-c -
s131-c + TMPRSS2-ERG chr21:39896846(-) chr21:42875112(+) intronic

TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) exonic
s132-c -
s133-c + TMPRSS2-ERG chr21:39817544(-) chr21:42870045(+) intronic

TMPRSS2-ERG chr21:39830403(+) chr21:42868581(+) intronic
s134-c -
s135-c -
s136-n -
s137-c -
s138-c + TMPRSS2-ERG chr21:39841976(-) chr21:42871057(+) intronic
s139-c + TMPRSS2-ERG chr21:39851982(-) chr21:42871161(+) intronic

TMPRSS2-ERG chr21:39817544(-) chr21:42880007(+) intronic
TMPRSS2-MGA chr15:42042634(-) chr21:42871284(-) intronic

s140-n -
s141-n -
s143-n -
s144-n -
s145-n -
s147-n -
s148-n -
s149-n -
s150-c -
s151-n -
s152-n -
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Abstract

RNA-based regulation has become a major research topic in molecular biology. The
analysis of epigenetic and expression data is therefore incomplete if RNA-based
regulation is not taken into account. Thus, it is increasingly important but not
yet standard to combine RNA-centric data and analysis tools with other types
of experimental data such as RNA-seq or ChIP-seq. Here, we present the RNA
workbench, a comprehensive set of analysis tools and consolidated workflows that
enable the researcher to combine these two worlds. Based on the Galaxy framework
the workbench guarantees simple access, easy extension, flexible adaption to personal
and security needs, and sophisticated analyses that are independent of command-line
knowledge. Currently, it includes more than 50 bioinformatics tools that are dedicated
to different research areas of RNA biology including RNA structure analysis, RNA
alignment, RNA annotation, RNA-protein interaction, ribosome profiling, RNA-seq
analysis and RNA target prediction. The workbench is developed and maintained
by experts in RNA bioinformatics and the Galaxy framework. Together with the
growing community evolving around this workbench, we are committed to keep the
workbench up-to-date for future standards and needs, providing researchers with a
reliable and robust framework for RNA data analysis.

Availability: The RNA workbench is available at:
https://github.com/bgruening/galaxy-rna-workbench.
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6.1 Introduction 139

6.1 Introduction

Since recent advances in high-throughput sequencing (HTS) emphasized the impor-
tance and versatile role of (non-coding) RNAs, there is high demand for integrated
computational analyses investigating RNA-mediated regulation. Previously existing
workbenches (such as miARma-Seq [100] RAP [99] and the UEA Small RNA Work-
bench [101]) were focused on providing tools for the analysis of RNA deep sequencing
data and do not contain RNA centric tools.

We addressed these needs by developing the RNA workbench. Based on the Galaxy
framework [102] it combines a comprehensive set of tools for the analysis of RNA struc-
tures, RNA alignments, RNA–RNA and RNA–protein interactions, RNA sequencing,
ribosome profiling, genome annotation and many more. So far, we integrated more
than 50 RNA-related tools, including suites like the ViennaRNA package, covering
this broad variety of use-cases (a complete list of tools can be found on GitHub). Ev-
ery available tool works as a single building-block that can be connected with other
tools to create computational pipelines. Datasets can be incorporated in a similar
manner, facilitating an intersection of diverse data sources such as DNA methylation
with RNA-seq experiments. Input and output datasets can be defined by the user,
and can be as diverse as the adapted set of tools. Established data types for sequence
and/or structure information are accepted as input. Output data types follow the
same principle, can be converted to different formats, or ultimately used to draw plots
and create figures. The workbench provides tools for visualizations of RNA structure
datasets, such as dot-bracket strings, and RNA 2D or 3D structures. The workbench
also covers a broad range of RNA secondary structure prediction and analysis tools
such as RNAfold [220] or LocARNA [221, 222].

6.2 Goals of the RNA workbench

The main driving force behind the development of the RNA workbench is the goal to
establish a central, redistributable workbench for scientists and programmers working
with RNA-related data, and build a sustainable community around it. This platform
is unique in combining available tools, workflows and training material, as well as
providing easy access for experimentalists. Simultaneously, it serves as a central hub
for programmers, which can easily integrate and deploy their existing or novel tools
and workflows. The RNA workbench is based on three pillars: (i) a comprehensive
set of RNA-bioinformatics tools, (ii) easy and stable dissemination via Galaxy and
Docker and (iii) a set of predefined workflows and associated descriptions/training
material. The latter is needed for two reasons: first, it facilitates the use of the RNA
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140 Galaxy RNA Workbench

workbench for researchers with limited bioinformatics experience, and second, it allows
to integrate the workbench in the daily lab work by combining RNA-related analysis
tasks with workflows for RNA-seq analysis.

6.2.1 Building on the shoulders of giants

In order to achieve long-term sustainability, we provide the essentials of our work
on BioConda1 and BioContainers2 [223] for reproducible deployments of tools into
Galaxy. Using easy-to-distribute packages for all tool dependencies also enables auto-
matic continuous integration tests for all developed tools and the workbench. After a
tool passes the tests and gets accepted it will be made available via an automatic de-
ployment into the Galaxy ToolShed3 [95]. From the ToolShed, Galaxy administrators
can easily install desired tools and workflows.

6.2.2 Easily accessible and reproducible analysis platform

For the fast dissemination of the RNA workbench, as well as for an easy integra-
tion with other HTS analysis tasks, we implemented the RNA workbench within the
Galaxy framework. A major advantage of relying on Galaxy as the core framework is
that it is possible to leverage its scalability, which enables the RNA workbench to run
on single CPU installations as well as on large multi-node high performance comput-
ing environments. Furthermore, Galaxy provides researchers with means to reproduce
their own workflow analyses, enabling them to rerun entire pipelines, or publish and
share them with others. The RNA workbench is containerized, i.e., administrators can
deploy it via Docker. That makes it possible to have all tool installation dependencies
already resolved, while still keeping maintenance tasks to a minimum. The provided
layer of virtualization also allows the handling of user-defined input data in a secure
and compartmentalized way, a key requirement for researchers working on sensitive
data (e.g. patient data in clinics). Running the containerized RNA workbench simply
requires installing Docker and starting the Galaxy RNA workbench image. Further-
more, containerizing Galaxy enables a customized Galaxy instance with a selected
subset of tools dedicated to specific data analysis tasks, while keeping deployment
and installation simple.

1https://bioconda.github.io
2https://biocontainers.pro
3https://toolshed.g2.bx.psu.edu
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6.3 RNA-Bioinformatics tools

In its current state, the RNA workbench includes more than 50 tools covering all
aspects of RNA research. In a community effort, these tools will be kept up-to-date and
adapted to future needs. New tools and new ways to visualize data provided to the user
will also be integrated. A current overview of tools available in the RNA workbench
can be found at: https://bgruening.github.io/galaxy-rna-workbench/.

In the following, we will highlight a few of the integrated tools.
The ViennaRNA package [220] consists of a suite of tools centered around the

prediction of secondary structures of RNAs based on the thermodynamic Turner en-
ergy model. Thus, it covers prediction of optimal and suboptimal structures from
single sequences as well as alignments, prediction of ensemble base pair probabilities,
accessibility of sequences, and RNA–RNA interaction prediction. Importantly, pre-
dictions can be flexibly controlled by hard and soft structure constraints; the latter
enables the inclusion of structure probing data.

AREsite2 [224] is a resource for the investigation of AU, GU and U-rich elements
(ARE, GRE, URE) in human and model organisms. It provides information on ge-
nomic location, genomic context, RNA secondary structure context and conservation
of annotated motifs in the whole gene body including introns. It is integrated into
the RNA workbench via its REST interface, which provides search results directly in
Galaxy for further analysis.

LocARNA [221, 222] provides a comparative analysis of multiple (unaligned)
RNAs by simultaneous folding and alignment, implementing a fast variant of the
Sankoff algorithm. Beyond pairwise and multiple alignments, it computes reliabili-
ties of alignment columns and provides very fast analysis by simultaneous folding
and matching. Finally, LocARNA supports anchor and structure constraints, which
improve its applicability in practice.

doRiNA [225] is a database of RNA interactions in post-transcriptional regula-
tion. The combined action of RNA-binding proteins (RBPs) and microRNAs (miR-
NAs) is believed to form the backbone of post-transcriptional regulation. doRiNA is
implemented as data source tool inside the RNA workbench. This means that the
Galaxy user is redirected to the post-transcriptional interaction database and can
make selections using the optimized doRiNA interface. Once the selection is done, the
data is streamed directly to Galaxy and can be freely analyzed with other tools.

The Infernal [226] tool suite can construct probabilistic models, also called co-
variance models (CM), that represent the sequence and structure of an RNA family
from a multiple sequence alignment with consensus secondary structure. The covari-
ance model can be used to find more members of this RNA family via homology
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search.
PARalyzer [227] generates a high resolution map of interaction sites between

RNA-binding proteins and their targets. The algorithm utilizes the deep sequenc-
ing reads generated by the PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced
Crosslinking and Immunoprecipitation) protocol. The use of photoactivatable nu-
cleotides in the PAR-CLIP protocol results in more efficient crosslinking between the
RNA-binding protein and its target relative to other CLIP methods; in addition a nu-
cleotide substitution occurs at the site of crosslinking, providing for single-nucleotide
resolution binding information. PARalyzer utilizes this nucleotide substitution in a
kernel density estimate classifier to generate the high resolution set of protein-RNA
interaction sites.

FuMa [228] can generate an integration report on predicted fusion genes from
most RNA-seq fusion gene detection software. It automatically orders the result based
on the frequencies of the fusion genes such that frequently predicted fusion genes can
be extracted.

6.4 Workflows

One of the core concepts of the RNA workbench is the definition of standard workflows
as a minimal set of building blocks around which a researcher can compose and
tailor specific pipelines. For example, a researcher wants to analyze the effects of an
RNA-binding protein (RBP) in regard to expression levels in wild-type compared to
knockout or knockdown of the RBP of interest. In this case, one needs to combine the
detection of differentially expressed genes in the two conditions with the information of
publicly available CLIP-data, as provided for example by the doRiNA [225] database,
to differentiate between direct and indirect targets. Workflows for the analysis of
differentially expressed genes are part of the RNA workbench, as well as an interface
to doRiNA, such that it becomes an easy task to design a new workflow combining
these analysis steps.

In Galaxy, workflows are typically created in two different ways: (i) from an ex-
isting history, which stores all tools applied in a previous analysis together with all
pertinent parameters, or (ii) from scratch, using a graphical editor via drag-and-drop
of tools from the tool panel into the workflow editor. Within workflows, tools can
be freely combined to ensure a maximum of flexibility in their usage and connectiv-
ity between different analysis steps, e.g. RNA structure analysis tools and RNA-seq
data analysis. Various format converters embedded in Galaxy allow combining diverse
analysis outputs. Easy sharing of workflows with other Galaxy users guarantees highly
reproducible and transparent research. In other words, the workflows ensure that all
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6.4 Workflows 143

analysis steps, tools and parameters of an experiment are documented and visible to
researchers, readers and reviewers. Workflows can also be submitted to the Galaxy
ToolShed or myexperiment.org [229] for further distribution. The RNA workbench
currently includes publicly available standard workflows for RNA data analysis, e.g.
for RNA-seq. These workflows contain all required steps such as quality control, map-
ping, differential expression analysis, and visualization of results. Provided workflows
can easily be extended or modified, e.g. to use other read mappers available in Galaxy.

In the following, we will describe two sample workflows, one closely related to
the detection of ncRNAs, which is a common task in RNA-related research. The
other workflow is related to the analysis of RNA-seq data and is often needed as a
subworkflow for more complex analysis tasks. These workflows are well annotated and
described in the RNA workbench and extended by Galaxy Interactive Tours.

6.4.1 Analysis of (unaligned) non-coding RNAs

An important task is to test for the existence of a functional structure in a non-coding
RNA. However, the secondary structure of structured non-coding RNAs is not signif-
icantly more stable compared to random sequences [230]. Thus, putative functional
structures can only be detected using information about conservation. Our workflow
for non-coding RNAs performs the typical analysis steps required to detect conserved
secondary structures, given a set of unaligned RNA sequences. It computes a sequence
and a structure-based alignment by MAFFT [231] and LocARNA, respectively, and
analyzes them with RNAcode [232] and RNAz [233] with appropriate parameter set-
tings. RNAz and RNAcode both work on a given alignment. RNAz tests whether
a consensus secondary structure is significantly conserved, whereas RNAcode differ-
entiates coding from non-coding RNAs. Together these tools provide information,
whether the RNAs are related and conserve a common secondary structure. In ad-
dition, a covariance model is built from the LocARNA alignment and subsequently
used to search the given sequence database for RNAs with similar sequence- and
structure-conservation. This workflow resembles the core of RNAlien [234], which is
based on the same tools and is integrated into the RNA workbench. Going beyond the
presented workflow, RNAlien automatically gathers sequences via homology search
starting from a single sequence and constructs RNA family models in an iterative
process.

To give an other example, in the context of µORFs detection, RNA-seq analysis,
the identification of non-coding RNAs with RNAcode and RNAz and the detection
of transcription start sites can be used to determine new, short transcripts that are
expressed and do not exhibit secondary structure conservation (i.e. are likely not
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Figure 6.1: The workflow for analyzing RNA-seq data. The workflow tolerates single-end and
paired-end reads derived from different conditions. It employs TopHat2 for mapping and
htseq-count to create the read counts. The final outputs contain read count per annotated
gene for each condition and for each sequencing type.

functional ncRNAs). Subsequent analysis of Ribo-seq data can then provide additional
evidence for a new transcript that may code for a small protein. For all these tasks,
partial workflows and required tools are already integrated in our RNA workbench,
which implies that it is easy to set up a new workflow for a more complex task.

6.4.2 RNA-seq analysis: trimming, mapping and read count

As mentioned before, the analysis of RNA-centric data like CLIP-seq requires the
combination with other type of data, and very often RNA-seq. For that reason, we
provide a standard RNA-seq workflow that can easily be combined with other work-
flows. The RNA-seq workflow (as shown in Figure 6.1) takes a list of RNA-seq datasets
as input and successively executes a series of analysis steps - adapter & quality trim-
ming, mapping to a reference genome and read count per annotated gene. The input
allows two conditions, e.g. treatment versus control and it also accepts single-end and
paired-end reads for each condition. At the trimming step, the workflow employs Trim
Galore! [235, 236] to perform adapter trimming. Then, TopHat2 [237] is used to map
the trimmed reads against the reference sequences, which should be provided by the
user. As last step, the workflow executes HTSeq-count [52] to generate read counts
per annotated gene for each condition and for each sequencing type. A reference an-
notation in Gene Transfer Format (GTF), e.g. provided by Ensembl [238], is required
at this step. The final read counts can be used for the downstream assessment of dif-
ferential expression using tools like DESeq2 [55]. The current workflow can serve as a
template that can be modified by the user according to different needs, for instance,
replacement of tools or modification of the wrapping strategy.
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6.5 Implementation

The workbench is implemented as portable virtualized container based on Galaxy.
The Galaxy framework allows for reproducible and transparent scientific research
which makes it easy to access, deploy and scale−conceptualized as a web service.
The foundation of the workbench container is a generic Galaxy Docker instance
(https://bgruening.github.io/docker-galaxy-stable/). On-top of this, pre-
configured Galaxy tools can be automatically installed from the Galaxy ToolShed
using the Galaxy API BioBlend [239]. In Galaxy, tool dependencies are automati-
cally resolved via BioConda, which is the bioinformatics channel for the Conda pack-
age manager. BioConda facilitates software packaging and enables installation at a
user level, keeping track of different versions of the same software in virtual environ-
ments. These features are in line with the scope of Galaxy; maintaining large numbers
of dependencies in a reproducible way. Therefore, all available tools within the RNA
workbench are also distributed as BioConda packages and BioContainers, which are
persistent, frozen, containerized versions of Conda packages. The RNA workbench
ships with a variety of tools, tours, documentation, workflows and data that have
been added as additional layers on top of the generic Docker instance. During devel-
opment, the software has been tested extensively in a continuous integration setup
(CI) at different levels: Galaxy itself, tool integration in Galaxy (IUC, galaxytools
channels), dependencies (BioConda) and at the workbench level. Together with a
strict version management on all levels, this contributes to a high degree of error-
control and reproducibility. The RNA workbench started in January 2015 - with
constant development over 2 years, and extensive testing in local and public Galaxy
instances, such as the Freiburg Galaxy instance, the MDC instance in Berlin and
Erasmus MC’s Galaxian. More than 500 users accessed the RNA tools during the last
two years and the virtualized Docker instance was already downloaded >500 times.
Moreover, due to an open and transparent development process, there is a growing
community that contributes to our workbench, which guarantees the sustainability of
the RNA workbench project and maintenance of the underlying Docker/rkt images.

6.6 Using the RNA workbench

Installation: The RNA workbench can be installed under OSX and Windows using
the graphical tool Kitematic (https://kitematic.com), or with the following Linux
command:

docker run -d -p 8080:80 bgruening/galaxy-rna-workbench
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146 Galaxy RNA Workbench

This installation is production-ready and can be configured to use external
computer clusters or cloud environments. Due to the very modular system, it is also
possible to install all or only a few tools of the RNA workbench on available Galaxy
servers. Just get in contact with your local Galaxy administrator. When using the
RNA workbench Docker image, the user has full administration rights, which enables
customization independent of potential user restrictions.

6.6.1 Training

For self-empowering the user, documentation and training of the RNA workbench are
important. We included an extensive set of documentation in traditional formats, e.g.
tool descriptions and ‘README’ files.

We also provide training sessions around HTS data analyses and RNA-seq data
analysis. The training materials ranging from the introduction to Galaxy, to usage
and maintenance of Galaxy and the RNA workbench are freely accessible for self-
paced studies at the Galaxyproject Github repository (https://galaxyproject.gi
thub.io/training-material). This training material is constantly improved and
extended in an international community effort, including ELIXIR and EMBL. For
HTS data analyses we provide training as a specific introduction to the topic with
self-explanatory presentation slides, a hands-on training documentation describing
the analysis workflow, all necessary input files ready-to-use via Zenodo, a Galaxy
Interactive Tour, and a tailor-made Galaxy Docker image for the corresponding data
analysis.

To provide an even more intense training experience within the RNA workbench,
we also included interactive training such as the Galaxy Interactive Tours. Such tours
guide users through an entire analysis in an interactive and explorative way. It com-
bines advantages from training videos and detailed protocols. Production of train-
ing videos is very time-consuming and tend to become outdated very soon, due to
tool version changes or renewed workflows. In contrast to conventional screencasts,
a Galaxy Interactive Tour can be easily updated and improved to guide the Galaxy
user step-by-step, e.g. through a whole HTS analysis starting from uploading the data
to using complex analysis tools. Exemplary, the RNA workbench currently integrates
two Galaxy Interactive Tours. The first one introduces a new user to the Galaxy in-
terface and its usage with an RNA-seq example dataset. The second one illustrates
secondary structure prediction of RNA molecules using parts of the ViennaRNA pack-
age. To show how Galaxy Interactive Tours can interactively guide users through the
necessary steps of HTS analyses, the tours are also provided as online screencasts.
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DotBracket

RNA Structure Viewer

RNADotPlotMatrix

DotPlot 

PDB

PV Protein Viewer 

3D visualization

a) b) c)

Secondary structure 
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Figure 6.2: RNA structure visualization: the figure shows visualization for an IRE1 RNA
sequence, retrieved from Rfam database [240], via different backends integrated into the
toolbox. (A) Secondary structure encoded in dot-bracket notation, can be displayed by the
RNA structure viewer. (B) Base pairing probabilities are visualized as DotPlot. (C) Ter-
tiary/Quaternary structure information encoded in protein-database format is rendered via
Protein Viewer

6.6.2 Visualization

Following data reduction as a key element of explorative research, there is a need for
meaningful figures and visualizations that summarize results. The RNA workbench in-
cludes standard interactive plotting tools to draw bar charts and scatter plots from all
kinds of tabular data and allows for connections to Integrated Genome Browser [241]
and UCSC [242] like any other Galaxy instance. On top of this, we included three
visualizations specific to RNA research. An interactive DotPlot visualization for sec-
ondary structures in EPS format (Figure 6.2c), a 2D visualization for the common
dot-bracket format (Figure 6.2a) and a 3D visualization capable of visualizing PDB,
SDF and MOL files containing three-dimensional coordinates (Figure 6.2c).

6.7 Community

The RNA workbench project is an open source project that strives to create a com-
munity interested in accessible and reproducible RNA-related research. Knowing that
real sustainability can only come true with a strong community we are aiming at more
open participation, reward, and inclusion. We are working together with Galaxy, Bio-
Conda, BioContainers and BioJS and coordinating efforts to not reinvent the wheel
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148 Galaxy RNA Workbench

but joining forces to create the new generation of bioinformatics infrastructure to-
gether. In the RNA workbench community, we practice the organizations on GitHub,
IRC, and Gitter and welcome everyone to contribute on every level to improve the
entire stack from documentation to tools and scientific workflows. Support will be
provided through the same channels.

6.8 Discussion

In this work, we present the RNA workbench, maintained and developed by a con-
stantly growing community. The presented workbench is unique as it allows to easily
combine RNA-centric analysis with other types of experiments. It provides a set of
tools, each one being available as BioConda package as well as a Docker/rkt container
(BioContainers). Based on the Galaxy Docker project, the proposed web server is
more than the sum of its parts. It offers a comprehensive virtualized RNA workbench
that can be deployed on every standard Linux, Windows and OSX computer, but can
at the same time employ high-performance- or cloud-computing infrastructure.

Major advantages of our approach to deliver a dockerized workbench for RNA
centric analysis are the ease of installation, the high number of pre-included tools,
the flexibility in regard to extension with other tools and workflows and the high
reproducibility and transparency of workflows. All tools that are available on the
Galaxy Toolshed can be installed along with their automatically resolved dependencies
with a single click in the Galaxy interface. Best practice pipelines for the analysis
of RNA-seq data are provided with the Docker image and can easily be modified,
extended or combined with other analysis pipelines via Galaxy’s workflow editor GUI.

The RNA workbench was designed as a community project, and as such it is
easy for users to contribute to the workbench with workflows, new tools and training
material, keeping the workbench up-to-date and valuable for research. Moreover, all
components such as tools, workflows, visualizations, interactive tours and training
material can be easily integrated into any available Galaxy instance for teaching,
learning or exploratory purposes.

The main difference to existing solutions such as miARma-Seq [100], RAP [99]
and the UEA Small RNA Workbench [101] is that our RNA workbench combines the
realm of RNA-centric analysis on sequence and structure level with modern high-
throughput sequence analysis. In this regard we provide well established tools for
RNA structure prediction, analysis and visualization together with read mappers and
expression analysis tools for HTS analysis.
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7 | Discussion

We set out to find prostate cancer (PCa)-associated RNA molecules in RNA-
sequencing (RNA-seq) data, that can potentially be used as biomarker, by making
use of new computational methods. Research on RNA is nowadays mostly performed
with RNA-seq. What makes RNA-seq interesting is its capability to analyse RNA se-
quences independent of probes, allowing detection of new transcripts, mutations and
revealing gene structures [58]. Corresponding data analysis requires custom software
and therefore, software is a determinant for the outcome and plays a key role in the
entire analysis. We have used small RNA-seq data to detect small non-coding RNAs
and used paired-end RNA-seq prepared with random hexamer primers to detect fusion
genes including corresponding genomic breakpoints.

7.1 Small RNA-seq in prostate cancer

One of the goals in this thesis was automated annotation and quantification of small
non-coding RNAs (sncRNAs) and search for associations with presence and aggres-
siveness of PCa. Therefore, we developed a new computational analysis method,
FlaiMapper. In chapter 2: FlaiMapper, it is demonstrated that FlaiMapper pre-
dicts the miRNA 5′ and 3′-ends extremely well when small RNA-seq was performed.
In chapter 3: sdRNAs, FlaiMapper was used to analyse the small RNA content in
prostate and PCa samples. Global deregulation of small RNA processing was observed
in PCa. It revealed the presence of C/D-box snoRNA-derived small RNAs, signifi-
cantly overexpressed in PCa. It was also found that abundance of specific C/D-box
snoRNA-derived RNAs correlates positively with aggressiveness of cancer, suggesting
they may also be useful as prognostic markers. That C/D-box snoRNA-derived RNAs
are upregulated in PCa sheds new light on small ncRNAs and PCa, and highlights
that the methodology can discover novel molecules that are associated with cancer.

FlaiMapper was also used to analyse the composition and expression of tRNA-
derived fragments (tRFs). This work revealed that several tRFs are differentially ex-
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pressed in PCa [25]. Three of these tRFs were validated with qPCR and confirmed
that the predicted molecules exist and that the computer model provides accurate
results.

The algorithmic challenge of FlaiMapper is detecting start and end positions of
small ncRNAs in sequence alignments. The start and end positions of sequenced small
RNAs have some degree of variability, meaning they may be a bit longer, shorter or
shifted. Detection of these positions needs to be lenient enough to take this variability
into account. The variability of the start and end positions that together determine
a small RNA, follow a certain distribution. We found no basis on which we can
assume that a start position of a small RNA determines the end position or vice
versa. Therefore, in contrary to the earlier reported method blockbuster [147], we
explicitly did not use a statistical distribution that models a ncRNA, or its alignment,
as a whole. Instead, start and end positions are determined separately and linked
together afterwards. The ends of a miRNA are known to be processed by different
nucleases, DROSHA and DICER. The results of our analysis show that the variablility of
miRNAs is higher at the 3′-ends than the 5′-ends. Therefore, separate computational
determination of start and end positions is a more natural approach, as it reflects the
variability of start and end positions as result of different nucleases better.

A new direction in which FlaiMapper could be useful is the analysis of small RNAs
after knockdown or immunoprecipitation of protiens involved in RNA processing [129].
In such data, FlaiMapper could also be used to determine if a small RNA is (post-
)processed differently in the absence or presence of certain proteins.

It was found that some RNAs derived from the same host C/D-box snoRNA are
overlapping each other, which indicates that they can not both be derived from the
same molecule. One explanation could be that their host snoRNA may exist in differ-
ent conformations, which gives rise to different fragments. Given that specific C/D-box
snoRNAs molecules are upregulated in PCa, it may be important to find if there are
different conformations and whether they are associated with different functions. A
possible direction to look into could be the 2D and 3D structure of C/D-box snoRNAs.
For example, using in silico RNA folding prediction methods it could be investigated
whether C/D-box snoRNAs contain multiple energetic (sub)optima or whether the
overlapping small RNAs are found more frequently within certain secondary structure
elements (such as hairpin loops, bulge loops or stems). C/D-box snoRNAs contain a
secondary structure element named the kink-turn (K-turn), consisting of multiple
non-canonical basepairs in a kinked tertiary structure. K-turns cannot be predicted
by classical minimum free energy RNA folding algorithms because of the multiple,
energy-dependent, non-canonical base pairs. This prevents in-depth analysis of the
2D structures of C/D-box snoRNAs. In an earlier report ([243]; unpublished), I pro-

152



D
is
cu

ss
io

n
D

is
cu

ss
io

n
D

is
cu

ss
io

n
D

is
cu

ss
io

n
D

is
cu

ss
io

n
D

is
cu

ss
io

n
D

is
cu

ss
io

n

7.1 Small RNA-seq in prostate cancer 153

posed an adaptation to a classical RNA folding algorithm, that makes prediction of 2D
structures including energy-dependent multiple-bond sub-structures such as K-turns
and loop-E-motifs possible. This method was limited to in silico predicted energy
values that correspond to the K-turns, as experimentally determined values were not
available. Recently, progress was made in the experimental determination of such val-
ues [244], which allows further research in the direction of 2D structure prediction of
C/D-box snoRNAs.

To find evidence for possible functions of C/D-box snoRNA-derived small RNAs,
we have investigated whether the detected small RNAs are the highest conserved
regions of the host C/D-box snoRNA ([245]; unpublished). The results indicated that
they are not in general the highest conserved regions of the host C/D-box snoRNAs.

The accuracy of FlaiMapper was estimated by evaluating how accurate it predicts
miRBase annotations. Since the purpose of FlaiMapper was to define in particular
small RNAs other than miRNAs, FlaiMapper should ideally be benchmarked also on
other small ncRNAs. For certain types of small ncRNAs, such as piRNAs and tRFs,
annotations are available (in piRNABank [246] and tRFdb [247] respectively) and can
be used for additional benchmarking of FlaiMapper.

The filtering procedure of FlaiMapper makes use of parameters that follow a prob-
abilistic distribution related to the variability of the small ncRNAs’ start and end po-
sitions. The parameters of FlaiMapper have been estimated by investingating several
examples, mostly miRNAs and C/D-box snoRNA-dervied RNAs, and may therefore
be biassed towards these RNA types. A currently developed tool named STARPA1,
embeds FlaiMapper in its pipeline and makes use of adapted filter parameters. By
investigating the aligments of valided small RNAs, it is possible to estimate optimal
parameters computationally. Therefore, computational parameter optimization using
validated small ncRNAs, prompts future work. Ideally, such validation makes use of
as many different types of small RNAs as possible, including data from piRNABank
and tRFdb, to minimise a bias towards certain small RNAs types.

Although FlaiMapper was designed for the analysis of small RNAs in particular, it
should in principle also allow detection of other types of RNAs. The only requirements
for the algorithm to work appropriately are that (i) the analysed RNAs represent
complete (not fragmented) molecules and (ii) that they are single-end sequenced.
Given that the length of sequencing reads keeps increasing, it is plausible that the
software may become useful for the detection of larger RNAs.

Small RNAs detected and quantified with FlaiMapper have the potential to be
used as biomarkers for PCa. For example, expression levels of SNORD44-5′-fragment
were higher in malignant than in benign and normal tissue. Expression levels of

1https://github.com/luidale/starpa
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SNORD78-3′-fragment were observed in a subset of patients that progressed into
metastatic disease. The correlation of SNORD78-3′-fragment expression with prognosis
makes it potentially useful as prognostic biomarker. Given the high number of dif-
ferentially expressed small RNAs, it could be beneficial to investigate whether there
are small RNAs that are only differentially expressed in mutually exclusive subsets of
cancer samples. They could then be used to create combined expression profiles with
improved statistical power.

7.2 Fusion genes in prostate cancer

Fusion genes are found in different types of cancer. For instsance, TMPRSS2-ERG is
found in approximately ∼50% of the PCa samples. A fusion gene analysis pipeline
for RNA-seq data typically reports the predicted fusions for only a single sample,
but lacks an aggregation step in order to find recurrent fusion genes across samples.
Thus, as a final step, multiple output files need to be aggregated in order to find
recurrent fusion genes. Recurrent fusion genes can be detected with the R-package
Chimera [48], but it operates so slow that it is practically not applicable for a high
number of samples. It also requires users to write additional R scripts.

There are quite a large number of tools available for detection of fusion genes in
RNA-seq data, but there is limited overlap in their outcome and none is superior in
all aspects [75]. Reporting fusion genes that are detected by at least a number of tools
can be helpful to increase confidence. In chapter 4: FuMa, we propose a method
that reports overlap in the results of publicly available RNA-seq fusion gene detection
tools. Such reports are helpful for the scenarios described earlier: (i) it can be used to
find recurrent fusion genes in a cohort of samples and (ii) it can be used to aggregate
at the sample level such that a combination of results from different tools can improve
and prioritise the outcome.

RNA-seq data from ribo-depleted total RNA prepared with random hexamer
primers for cDNA synthesis (random primed RNA-seq) is rich in both polyadenylated
mature mRNA and non-polyadenylated transcripts, such as pre-mRNA. In contrast to
most mRNA, pre-mRNA contains both introns and exons. Therefore, when a genomic
breakpoint of an expressed fusion gene is located within an intron, the corresponding
pre-mRNA can be used to detect the DNA breakpoint, in RNA-seq data. To achieve
this, we designed Dr. Disco (chapter 5: Dr. Disco), an analysis tool that looks at
the entire genome from a graph perspective. Rather than restricting itself to genes or
even exons, it is capable of determining expressed rearrangements between any loci in
the reference genome. The method was applied on a cohort of 51 PCa samples, and
revealed the genomic breakpoint of TMPRSS2-ERG in 29 of 32 TMPRSS2-ERG positive
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7.2 Fusion genes in prostate cancer 155

samples.

In the (fusion) gene structure of TMPRSS2-ERG, the first two exons of TMPRSS2

and exons 4 and 5 of ERG are typically included in the fusion transcripts [123, 248].
The predicted exon-to-exon junctions detected with Dr. Disco fit with the proposed
structure and, in addition, the corresponding genomic breakpoints detected with Dr.
Disco are in line with their corrsponding exon-to-exon junctions. DNA-seq analysis
revealed a hotspot of TMPRSS2-ERG breaks in ERG intron 3 [215]. The detected genomic
breaks in our RNA-seq analyses show the same hotspot, indicating the validity of the
results. It was assessed whether there is a correlation in the location of the TMPRSS2

and ERG breakpoints, but no relation between the break in TMPRSS2 and the break in
ERG or vice versa was found, suggesting these events take place independently random.

The first step in the Dr. Disco pipeline is alignment to a reference genome. Al-
though both reads of a read pair can perfectly map a reference genome, they may still
span a large genomic distance, be mapped to different chromosomes or be mapped
in opposite strands. It may also happen that one read of a pair gets split into two
pieces, which are both perfectly aligned. Although such reads align without with-
out any mismatches to the reference genome, they cannot originate from a canonical
gene and are therefore marked as discordant read. Because fusion genes cause such
reads, Dr. Disco uses discordant reads (provided by aligner STAR) as input, similar
to STAR-Fusion [200]. However, discordant reads do not only originate from fusion
genes but can also originate from other transcripts or technical artefacts (Table 7.1).

Discordant reads that originate from reasons provided in Table 7.1, may result
in more false positives and need to be separated from those caused by actual fusion
events, in order to obtain a high accuracy. A part of this can be addressed in the
alignment step and therefore it is trivial to ensure the most optimal alignment settings
are used. Fusion genes that are not detected due to low read depth, alignment artefacts
or misclassification, prompts future work. What further could be investigated is up to
which read length the software is sufficiently accurate. The smaller the reads are, the
larger the chance they map to arbitrary locations on the genome, which will result
in more discordant reads and consequently more false-positives. In particular with
the lenient fusion settings of STAR, the search space increases and the chances on
alignment artefacts increases. Testing these limits could for example be performed
by using a dataset with long reads and known true-positive fusion genes and by
systematically truncating the reads and investigating the differences.

Dr. Disco can investigate the entire reference genome and is capable of identifing
intronic and intergenic breakpoints. A disadvantage of using reference genome-based
alignments as input, is that fusion genes within highly mutated regions result in
many alignment mismatches, which is what might have happened with the unde-
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Table 7.1: Sources of discordant reads other than fusion genes

Source Description
Low entropy, satellite and
small repeat sequences
and homopolymers

The reference genome contains many low entropy se-
quences like poly-A, poly-T and poly-CA repeats. Due
to their low complexity, they have (close to) identical
genomic copies.

Repeat regions, pseudo-
genes, transposable ele-
ments, retrotransposons
and homologs

There are various sources of highly similar sequences
with an entropy higher than the small repeats stated
above. For example, pseudogenes are near identical
copies, which may result in mates mapping to differ-
ent loci.

Alternative loci Reference genome hg38 has many alternative loci rep-
resenting subpopulation specific genomic variations.
These loci are annotated as distinct chromosomes in
the reference genome. Often, reads near the start and
end point of the alternative locus have one mate on
the alternative locus while the other mate is on the
major chromosome. They will be marked as discor-
dant since the aligner interprets this as an interchro-
mosomal junction.

Small fragments (< 2x
read length)

RNAs with insert sizes smaller than twice the length
of the sequenced read, result in pairs with overlapping
aligned mates, and will be marked as discordant by
the aligner.

Circular RNAs Circular RNAs are formed by a covalent bond, often
between an exon at the end of a gene to an exon at
the beginning of a gene. As a result, reads are split in
an opposite orientation and are marked as discordant
by the aligner.

Read-throughs Read-throughs or genes that are incorrectly anno-
tated as separate genes may result in discordant reads.

Immunoglobulin recombi-
nations

The V(D)J recombination is a natural system of
genome recombination and, if expressed, it may re-
sult in discordant reads.

Splicing of not annotated
genes or exons

Spliced reads that belong to new genes and new ex-
ons with non-canonical splice junctions or spanning a
large genomic distance can be marked as discordant
reads.
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7.3 Challenges in computational methods 157

tected intronic deletions (chapter 5). Investigating alignment settings to solve this
issue prompts future work.

Dr. Disco can determine genomic breakpoints of fusion genes provided that they
are expressed and sufficient pre-mRNA is sequenced. To get a better understanding
of the number of fusion genes that are indeed expressed, it is part of our ongoing
work to integrate RNA-seq with DNA-seq results. We expect to resolve how many
arrangements involve intergenic regions and whether they are indeed spliced, even
though they are located outside annotated genes. In addition, fusions that only take
place at the RNA level, such as trans-splice isoforms, circRNAs and read-throughs,
will be further investigated.

The analysis in chapter 5 was limited to the genomic regions of TMPRSS2 and ERG,
which span only a fraction of the entire genome. Although the analysis in this region
of the genome was performed in a reasonable time, it is clear that for a full genome
analysis this is not the case. The algorithm is quite complex, meaning that a substan-
tial number of computations are needed to obtain the results. During development,
several improvements to the calculation time have been made but it is plausible that
the optimisation is getting close to its limits. Further optimisation of Dr. Disco will
require more development time as well as computational resources. There are two
preferred directions for further speed performance optimisations. The first is inclu-
sion of a gene annotation (e.g. GTF file) at the start of Dr. Disco, which may allow
reducing or removing the ‘merge_overlapping_subnets’ functionality. The second is
an implementation in a programming language that gives more control over memory
and data structures such as C, C++ or Java. This could for example be achieved by
integrating the ported code directly into aligner STAR.

Using Dr. Disco, additional fusions such as intronic deletions and fusions to non-
gene regions can be found. Detected DNA breakpoints may provide information that
explain how a junction arose and how the fused gene structure is composed. Detection
of DNA breaks and fusions (or splice isoforms) involving intergenic regions are a new
asset to RNA-seq analysis, but only possible when the RNA-seq library includes total
RNA, for using random primed RNA-seq. This limits the use of poly-A-purified RNA
and oligodT-primed RNA-seq data and we therefore recommend not to use such
mRNA RNA-seq protocols for fusion gene analysis.

7.3 Challenges in computational methods

Besides implementing new computational methods to address individual research
questions, it is important that other scientists get access to the software tools to
use them on their own data and to improve them. This way, like publications, also
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the software tools serve as building blocks of the foundation of science, upon which
science can build further on. To do so, software and data should ideally follow the
FAIR principles (findable, accessible, interoperable and re-usable) [125]. With this in
mind, we have built a toolbox for RNA related research (chapter 6: Galaxy RNA
Workbench). In the Galaxy RNA workbench the tools presented in this thesis, Dr.
Disco, FlaiMapper and FuMa, have been integrated together with closely related tools
such as STAR.

Ideally, scientific software is open source and written in a modular way, which
is beneficial for designing pipelines and platform integration. For modularity it is
important that there are clear agreements about input and output, about data formats
and standardised code libraries that enforce making use of correct implementations
of such standards where possible. In bioinformatics, companies have often provided
specifications that are typically of commercial interest, but lack flexiblity outside the
scope of the company’s interest. It also happens that specifications turn out not to be
future-proof. It would therefore be convenient to have an international independent
authority that either proposes new conventions or organises contests in which they
review submitted proposals, to generate a better IT fundament for computational
research. This may provide a much stronger fundament for bioinformatics resulting
in more robust research oriented software and will also benefit further development
of the Galaxy RNA workbench.

7.4 Future perspectives

The outlined methods to identify novel small RNAs and fusion events, have been
successfully applied on PCa data. To learn more about small RNAs and fusion genes,
it would be of interest to setup a pan-cancer study, at a scale comparable with
TCGA [107, 108] or ICGC [249]. Since the data used in chapter 3 has been gen-
erated, a large number of new small RNA-seq datasets have been published [66].
Analysing these new data to generate pan-cancer atlasses could reveal possible fu-
sions or small ncRNAs that are specific for certain types of cancer or tissue or are
common across different types of cancer or tissue. Results on small ncRNAs would fit
ideally in YM500, a database for small RNA sequencing in human cancer research [66],
and the fusion genes and transcripts in the COSMIC database [105]. The methods
themselves have proven to be of value for research and have been integrated in an
RNA oriented workbench. Before such a workbench can be used in a clinical setting,
a risk assessment must be performed and must comply with the ISO-27001 standard.

In this thesis, we have demonstrated that RNA can be analysed with sophisticated
techniques that allow to discover new and cancer specific RNAs. However, the results
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presented are not yet directly applicable in the clinic. Certain C/D-box snoRNA-
derived ncRNAs and tRFs [25] have been found to have a diagnostic and/or prognostic
value. But before these potential biomarkers can be used as actual biomarker, further
research on their predictive power and reproduciblility of the results is necessary.
The RNA-seq data generated and processed in the presented work, are all taken
from tissue RNA. Whereas these tissue samples are taken from radical prostatectomy
material, biomarkers are tested on tissue samples taken from biopsies. Because biopsies
may cause severe complications, it would be more convenient to have liquid biopsies
from urine, blood serum or blood plasma instead. Since RNAs are present in such
biofluids [250], it is important to translate the tissue based RNA biomarker assays to
urine or blood-based assays [251].

Although RNA is the point of focus in all chapters, the proposed computational
methods make use of diverse techniques such as graphs (Dr. Disco), set theory (FuMa)
and peak detection (FlaiMapper). This indicates that RNA-seq data is versatile and
that corresponding analysis requires to look at it from different perspectives in order
to make new findings. After having successfully shed light on small RNAs and fusion
genes, there are still certain topics that remain underexposed. Previous RNA-seq
research has in particular been focusing on gene expression and splicing. Topics that
deserve more attention and probably require new computational methods are circular
and possibly double stranded RNAs. Another interesting direction is to investigate
RNAs that we cannot unambiguously map to the genome. These might contain RNAs
that originate from other (micro) organisms or types of RNA we are not (yet) familiar
with. In addition, looking into the 2D and 3D structure, RNA-editing and RNA
modifications may reveal new insights in RNA.

Last but not least, RNA analysis requires a gearbox containing sophisticated tools
that (i) offer solutions for state-of-the-art techniques, (ii) can keep up with the colos-
sality of the data and (iii) have a high level of user-friendliness with the main purpose
to improve productivity. A typical group of tools where I do not have the belief that
they meet with these criteria are genome browsers, while they should be the home
portal of genomic research, where all information should come together. They are
typically slow, contain bugs or even crash, cannot handle large datasets, are barely
customizable (no ‘favorite genomic locations’, no way of creating project structures),
are graphically primitive, cannot view branchpoints modelling structural variants, are
sometimes implemented in webbrowsers despite the requirement to cope with very
large datasets, require unnecessary complicated configurations or require manual in-
stallation of reference data. I would be honored to contribute to these shortcomings
as one of my following missions.
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8.1 Summary

Cancer finds its origin in DNA changes, which have consequences at the RNA and
protein level. With the next generation sequencing technology, changes in both DNA
(DNA-seq) and RNA (RNA-seq) can be analysed on a large scale. In contrast to DNA,
RNA molecules are not only static information carriers but fulfill different functions
in the cell and therefore have the potential to serve as a good biomarker. By using
RNA-seq, new RNA molecules can be detected, potentially including new biomark-
ers. However, because the data is so colossal, analysis requires the use of different
computer programs. For various applications, such as detection of fusion genes and
small ncRNAs, current tools are not sufficient and new or better solutions are needed.
Because there is a lack of diagnostic / prognostic biomarkers for prostate cancer, one
of the most common types of cancer in men, prostate cancer is an ideal model system
for the development of these new analysis methods. In this thesis we describe new
computational methods for the analysis of RNA-seq data and demonstrate how it can
be used to find potential new biomarkers in prostate cancer samples.

In chapter 1, general information about DNA, different types of RNA, cancer and
related mutations including fusion genes is provided. Also, more information about
prostate cancer and the recurrent fusion gene TMPRSS2-ERG is provided. In addition,
various recent technological developments regarding next generation sequencing and
computational analysis are explained. This is followed by an ideological explanation
of software modularity and the integration of bioinformatics software and the added
value of corresponding data standards.

Besides protein coding mRNA, cells also contain many different non-protein coding
RNA molecules (ncRNAs). This includes several small ncRNAs, which can be detected
by small RNA-seq. For the analysis of small ncRNAs of which typically no annotation
is available, no corresponding detection methods were available. In chapter 2, it is
explained how such small ncRNAs can be discovered using the proposed new method
FlaiMapper. Subsequenctly, in chapter 3 it is described how this method was applied
to samples of different stages of prostate cancer. Several new RNAs, in particular
C/D-box snoRNA-derived RNAs, were associated with prostate cancer and correlated
with prognosis. This association also demonstrates the relevance and precision of the
analysis method.

Fusion genes are often found in prostate cancer. Detection of fusion genes by means
of RNA-seq is possible and several programs have been developed for this purpose.
The overlap between these programs is limited and it has been recommended to
use multiple tools and integrate these results to increase confidence. In chapter 4 we
present the method FuMa that integrates and reports the overlap of different RNA-seq
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fusion gene detection tools.
In most protocols used to prepare RNA for sequencing, mRNAs are selected based

on the presence of poly-A tails. An increasingly popular alternative is to make use
of random hexamer primers in the reverse transcriptase step. In data produced in
this manner, non-polyadenylated RNAs such as lncRNAs, circRNAs and pre-mRNAs
will also be sequenced. pre-mRNA molecules do not only consists of exons but also
of introns. DNA breaks of fusion genes are mainly found in introns. Therefore, in
random hexamer-primed ribo-depleted total RNA-seq data, it should be possible to
determine a DNA break of a fusion gene by analysing pre-mRNA-derived sequencing
reads. Computer programs able to take this extra layer of information into account
did not exist. In chapter 5, we describe Dr. Disco, a computational method that
takes the presence of pre-mRNA into account and is able to reveal DNA breaks. We
demonstrate this on the basis of 51 prostate cancer samples in which we find hotspot
regions of DNA breaks in TMPRSS2-ERG fusions, regions that are in agreement with
literature.

In chapter 6, we emphasise that well written and thoroughly tested software is
important for the integration in larger systems. Availability of such public domain
software allowed, as a community effort, to integrate many RNA-related analysis tools
into one, free and open-source, platform, the Galaxy RNA Workbench. This provides
easy access to many RNA-specific visualisations and analysis tools, all provided with
a generic graphical interface.

In summary, we have devised several new methods to discover new, cancer-related,
RNAs that have the potential to be used as biomarkers. In addition, all proposed
methods were ultimately integrated into the Galaxy RNA workbench that has been
made available to other researchers, free of charge.
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8.2 Samenvatting

Kanker vindt zijn oorsprong in veranderingen in het DNA, welke vervolgens gevolgen
hebben op het RNA en eiwit niveau. Met de next generation sequencing technologie
kunnen veranderingen in zowel het DNA (DNA-seq) als RNA (RNA-seq) op grote
schaal geanalyseerd worden. In tegenstelling tot DNA, zijn RNA moleculen niet uit-
sluitend statische informatie dragers maar vervullen verschillende functies in de cel en
hebben mede daardoor de potentie om als goede biomarker te dienen. Door gebruik
te maken van RNA-seq kunnen nieuwe RNA moleculen gedetecteerd worden, waaron-
der potentiële nieuwe biomarkers. Echter, doordat de data zo kolossaal is, vereist
analyse ervan het gebruik van verschillende computer programma’s. Voor verschil-
lende toepassingen, zoals detectie van fusie-genen en kleine RNAs, zijn de huidige
computerprogramma’s niet toereikend en zijn nieuwe of betere oplossingen nodig.
Omdat voor prostaatkanker, een veel voorkomend type kanker bij mannen, een ge-
brek is aan diagnostische/prognostische biomarkers, is dit een ideaal modelsysteem
voor de ontwikkeling van deze nieuwe analyse methoden. In deze scriptie beschrijven
we nieuwe computer methoden voor de analyse van RNA-seq data en demonstreren
we in prostaatkanker hoe we hiermee potentieel nieuwe biomarkers kunnen vinden.

In hoofdstuk 1 wordt algemene informatie gegeven over DNA, verschillende typen
RNA, kanker en bijbehorende mutaties waaronder fusie-genen. Ook wordt meer uitleg
gegeven over prostaatkanker en het daarbij vaak voorkomende fusie-gen TMPRSS2-ERG.
Tevens worden verschillende recente technologische ontwikkelingen met betrekking tot
next generation sequencing en computationele analyse toegelicht. Aansluitend daarop
volgt een ideologische uiteenzetting over modulariteit en integratie van bio-informatica
software en de meerwaarde van bijbehorende data standaarden.

Naast eiwit coderend mRNA bevatten cellen ook vele verschillende niet eiwit
coderende RNA moleculen (ncRNAs). Hieronder vallen verschillende kleine ncRNAs,
welke middels small RNA-seq gedetecteerd kunnen worden. Voor analyse van kleine
RNAs waarvan (nog) geen annotatie bekend is, waren geen gerichte analyses beschik-
baar. In hoofdstuk 2 wordt uitgelegd hoe met een nieuwe methode, FlaiMapper, kleine
ncRNAs ontdekt kunnen worden. Vervolgens passen we deze methode in hoofdstuk 3
toe op samples van verschillende gradaties prostaatkanker. Hiermee vinden we ver-
schillende nieuwe RNAs, met name afkomstig van C/D-box snoRNAs, die geassocieerd
zijn met prostaatkanker en die gecorreleerd zijn met prognose. Deze associatie toont
bovendien de relevantie en preciesie van de methode aan.

In prostaatkanker worden vaak fusie-genen gevonden. Detectie van fusie-genen
middels RNA-seq is mogelijk en hiervoor zijn reeds verschillende programma’s on-
twikkeld. Echter, de overlap tussen deze programma’s is gering en er wordt gead-
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viseerd meerdere computerprogramma’s te gebruiken en deze resultaten vervolgens
te integreren. In hoofdstuk 4 presenteren wij een methode, FuMa, die in staat is de
overlap van analyses door verschillende programma’s te integreren en te rapporteren.

In de meeste protocollen die gebruikt worden om RNA klaar te maken voor het
sequencen wordt uitsluitend mRNA geselecteerd op basis van de aanwezigheid van
poly-A staarten. Een steeds vaker voorkomend alternatief is het gebruik maken van
random hexamer primers in de reverse transcriptase stap. In data die op deze manier
vervaardigd is, zullen ook niet-gepolyadenyleerde RNAs zitten, zoals lncRNAs, cir-
cRNAs en pre-mRNAs. Pre-mRNA moleculen kunnen sequenties uit het gehele gen
bevatten met daarin niet alleen exonen maar ook intronen. DNA breuken van fusie-
genen liggen voornamelijk in intronen. Daarom zou het theoretisch mogelijk moeten
zijn het DNA breekpunt vast te stellen aan de hand van het pre-mRNA in random
hexamer-primed RNA-seq data. Er was echter geen computer-programma beschik-
baar die met deze extra laag van informatie rekening hield en dit kon oplossen. In
hoofdstuk 5 introduceren wij een computer methode, Dr. Disco, die rekening houdt
met de aanwezigheid van pre-mRNA en daarmee in staat is DNA breuken te vinden.
We demonstreren dit aan de hand van 51 prostaatkanker weefsels waarin we hotspot
regio’s van DNA breuken in TMPRSS2-ERG vinden die overeenkomen met bevindingen
uit een andere studie.

In hoofdstuk 6 benadrukken we dat goed geschreven en grondig geteste software
belangrijk is voor integratie in grotere systemen. Beschikbaarheid van zulke software in
het publieke domein stelde ons, als bijdrage door een grote gemeenschap, in staat vele
van deze computerprogramma’s te integreren in een vrij en open-source platform, de
Galaxy RNA Workbench. Dit zorgt voor gemakkelijke toegang tot vele RNA-specifieke
visualisaties en computerprogramma’s, voorzien van een generieke grafische interface.

Samengevat hebben we verschillende nieuwe methoden bedacht om nieuwe, kanker
gerelateerde, RNAs te ontdekken, die de potentie hebben als biomarker te kunnen
dienen. Daarnaast zijn alle beschreven methoden tenslotte beschikbaar gemaakt in de
Galaxy RNA workbench, zodat ze op deze manier vrijelijk en gratis beschikbaar zijn
voor andere onderzoekers.

165



B
IB

LI
O

G
R
A

P
H

Y
B

IB
LI

O
G

R
A

P
H

Y
B

IB
LI

O
G

R
A

P
H

Y
B

IB
LI

O
G

R
A

P
H

Y
B

IB
LI

O
G

R
A

P
H

Y
B

IB
LI

O
G

R
A

P
H

Y
B

IB
LI

O
G

R
A

P
H

Y
B

IB
LI

O
G

R
A

P
H

Y
166 BIBLIOGRAPHY

166



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

Bibliography

[1] M. P. Robertson and G. F. Joyce. The Origins of the RNA World. Cold Spring
Harbor Perspectives in Biology, 4(5):a003608–a003608, apr 2010.

[2] Alfred G. Knudson. Two genetic hits (more or less) to cancer. Nature Reviews
Cancer, 1(2):157–162, nov 2001.

[3] Carlo M. Croce. Oncogenes and Cancer. New England Journal of Medicine,
358(5):502–511, jan 2008.

[4] J.D. D. Watson and F.H.C. H. C. Crick. Molecular structure of nucleic acids.
Nature, 171:737–738, 1953.

[5] Ray Wu and Ellen Taylor. Nucleotide sequence analysis of DNA. Journal of
Molecular Biology, 57(3):491–511, 1971.

[6] J. Craig Venter, Mark D. Adams, Eugene W. Myers, Peter W. Li, Richard J.
Mural, Granger G. Sutton, Hamilton O. Smith, Mark Yandell, Cheryl A. Evans,
Robert A. Holt, Jeannine D. Gocayne, Peter Amanatides, Richard M. Ballew,
Daniel H. Huson, Jennifer Russo Wortman, Qing Zhang, Chinnappa D. Kodira,
Xiangqun H. Zheng, Lin Chen, Marian Skupski, Gangadharan Subramanian,
Paul D. Thomas, Jinghui Zhang, George L. Gabor Miklos, Catherine Nelson,
Samuel Broder, Andrew G. Clark, Joe Nadeau, Victor A. McKusick, Norton
Zinder, Arnold J. Levine, Richard J. Roberts, Mel Simon, Carolyn Slayman,
Michael Hunkapiller, Randall Bolanos, Arthur Delcher, Ian Dew, Daniel Fa-
sulo, Michael Flanigan, Liliana Florea, Aaron Halpern, Sridhar Hannenhalli,
Saul Kravitz, Samuel Levy, Clark Mobarry, Knut Reinert, Karin Remington,
Jane Abu-Threideh, Ellen Beasley, Kendra Biddick, Vivien Bonazzi, Rhonda
Brandon, Michele Cargill, Ishwar Chandramouliswaran, Rosane Charlab, Kabir
Chaturvedi, Zuoming Deng, Valentina Di Francesco, Patrick Dunn, Karen Eil-
beck, Carlos Evangelista, Andrei E. Gabrielian, Weiniu Gan, Wangmao Ge,
Fangcheng Gong, Zhiping Gu, Ping Guan, Thomas J. Heiman, Maureen E.
Higgins, Rui-Ru Ji, Zhaoxi Ke, Karen A. Ketchum, Zhongwu Lai, Yiding Lei,
Zhenya Li, Jiayin Li, Yong Liang, Xiaoying Lin, Fu Lu, Gennady V. Merkulov,
Natalia Milshina, Helen M. Moore, Ashwinikumar K Naik, Vaibhav A. Narayan,
Beena Neelam, Deborah Nusskern, Douglas B. Rusch, Steven Salzberg, Wei
Shao, Bixiong Shue, Jingtao Sun, Zhen Yuan Wang, Aihui Wang, Xin Wang,
Jian Wang, Ming-Hui Wei, Ron Wides, Chunlin Xiao, Chunhua Yan, et al. The
sequence of the human genome. Science (New York, N.Y.), 291(5507):1304–51,
2001.

167



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
168 BIBLIOGRAPHY

[7] International Human Genome Sequencing. Consortium. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860–921, 2001.

[8] The ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA
Elements) Project. Science, 306(5696):636–640, oct 2004.

[9] D. Karolchik, R. Baertsch, M. Diekhans, T. S. Furey, A. Hinrichs, Y. T. Lu,
K. M. Roskin, M. Schwartz, C. W. Sugnet, D. J. Thomas, R. J. Weber, D. Haus-
sler, and W. J. Kent. The UCSC Genome Browser Database. Nucleic Acids
Research, 31(1):51–54, 2003.

[10] Nuala A. O’Leary, Mathew W. Wright, J. Rodney Brister, Stacy Ciufo, Diana
Haddad, Rich McVeigh, Bhanu Rajput, Barbara Robbertse, Brian Smith-White,
Danso Ako-Adjei, et al. Reference sequence (RefSeq) database at NCBI: cur-
rent status, taxonomic expansion, and functional annotation. Nucleic Acids
Research, 44(D1):D733–D745, Nov 2015.

[11] Alexander F. Palazzo and Eliza S. Lee. Non-coding RNA: what is functional
and what is junk? Frontiers in Genetics, 6:2, jan 2015.

[12] John S. Mattick and Igor V. Makunin. Non-coding RNA. Human Molecular
Genetics, 15(suppl_1):R17–R29, apr 2006.

[13] Yiwen Fang and Melissa J. Fullwood. Roles, Functions, and Mechanisms of
Long Non-coding RNAs in Cancer. Genomics, Proteomics & Bioinformatics,
14(1):42–54, Feb 2016.

[14] Guoku Hu, Fang Niu, Bree A. Humburg, Ke Liao, Venkata Sunil Bendi, Shannon
Callen, Howard S. Fox, and Shilpa Buch. Molecular mechanisms of long noncod-
ing RNAs and their role in disease pathogenesis. Oncotarget, 9(26):18648–18663,
Jan 2018.

[15] Heena Khatter, Alexander G. Myasnikov, S. Kundhavai Natchiar, and Bruno P.
Klaholz. Structure of the human 80S ribosome. Nature, 520:640–645, Apr 2015.

[16] James W F Catto, Antonio Alcaraz, Anders S. Bjartell, Ralph De Vere White,
Christopher P. Evans, Susanne Fussel, Freddie C. Hamdy, Olli Kallioniemi,
Lourdes Mengual, Thorsten Schlomm, and Tapio Visakorpi. MicroRNA in
prostate, bladder, and kidney cancer: A systematic review. European Urology,
59(5):671–681, 2011.

[17] Marilena V. Iorio and Carlo M. Croce. MicroRNA dysregulation in cancer:
Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO
Molecular Medicine, 4(3):143–159, Feb 2012.

[18] Yong Peng and Carlo M Croce. The role of MicroRNAs in human cancer. Signal
Transduction and Targeted Therapy, 1(1):15004, jan 2016.

[19] Giorgio Dieci, Milena Preti, and Barbara Montanini. Eukaryotic snoRNAs: A
paradigm for gene expression flexibility. Genomics, 94(2):83–88, 2009.

168



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 169

[20] Tamás Kiss. Small nucleolar RNAs: An abundant group of noncoding RNAs
with diverse cellular functions. Cell, 109(2):145–148, 2002.

[21] Hadi Jorjani, Stephanie Kehr, Dominik J. Jedlinski, Rafal Gumienny, Jana Her-
tel, Peter F. Stadler, Mihaela Zavolan, and Andreas R. Gruber. An updated
human snoRNAome. Nucleic Acids Research, 44(11):5068–5082, May 2016.

[22] Stephen Jefferson Sharp, Jerone Schaack, Lyan Cooley, Debroh Johnson Burke,
and Dieter Soil. Structure and Transcription of Eukaryotic tRNA Gene. Critical
Reviews in Biochemistry, 19(2):107–144, jan 1985.

[23] Ulrike Lambertz, Mariana E Oviedo Ovando, Elton Vasconcelos, Peter J Un-
rau, Peter J Myler, and Neil E Reiner. Small RNAs derived from tRNAs and
rRNAs are highly enriched in exosomes from both old and new world Leishmania
providing evidence for conserved exosomal RNA Packaging. BMC Genomics,
16(1):151, 2015.

[24] Elena S. Martens-Uzunova, Michael Olvedy, and Guido Jenster. Beyond mi-
croRNA – Novel RNAs derived from small non-coding RNA and their implica-
tion in cancer . Cancer Letters, 340(2):201–211, 2013.

[25] Michael Olvedy, Mauro Scaravilli, Youri Hoogstrate, Tapio Visakorpi, Guido
Jenster, and Elena Martens-Uzunova. A comprehensive repertoire of tRNA-
derived fragments in prostate cancer. Oncotarget, 7(17):24766–24777, 2016.

[26] S. Mahlab, T. Tuller, and M. Linial. Conservation of the relative tRNA com-
position in healthy and cancerous tissues. RNA, 18(4):640–652, feb 2012.

[27] Julia Salzman, Charles Gawad, Peter Lincoln Wang, Norman Lacayo, and
Patrick O. Brown. Circular RNAs Are the Predominant Transcript Isoform from
Hundreds of Human Genes in Diverse Cell Types. PLoS ONE, 7(2):e30733, feb
2012.

[28] Steven P. Barrett and Julia Salzman. Circular RNAs: analysis, expression and
potential functions. Development, 143(11):1838–1847, may 2016.

[29] Shujuan Meng, Hecheng Zhou, Ziyang Feng, Zihao Xu, Ying Tang, Peiyao Li,
and Minghua Wu. CircRNA: functions and properties of a novel potential
biomarker for cancer. Molecular Cancer, 16(1):94, may 2017.

[30] Maximiliano M Portal, Valeria Pavet, Cathie Erb, and Hinrich Gronemeyer.
Human cells contain natural double-stranded RNAs with potential regulatory
functions. Nature Structural & Molecular Biology, 22(1):89–97, dec 2014.

[31] Natasha S. Latysheva and M. Madan Babu. Discovering and understanding
oncogenic gene fusions through data intensive computational approaches. Nu-
cleic Acids Research, 44(10):4487–4503, 2016.

[32] Milana Frenkel-morgenstern, Vincent Lacroix, Iakes Ezkurdia, Milana Frenkel-
morgenstern, Vincent Lacroix, Iakes Ezkurdia, Yishai Levin, Alexandra
Gabashvili, Jaime Prilusky, Angela Pozo, Michael Tress, Rory Johnson, Roderic

169



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
170 BIBLIOGRAPHY

Guigo, and Alfonso Valencia. Chimeras taking shape : Potential functions of
proteins encoded by chimeric RNA transcripts Chimeras taking shape : Po-
tential functions of proteins encoded by chimeric RNA transcripts. Genome
Research, 22(7):1231–1242, 2012.

[33] T H Rabbitts. Chromosomal translocations in human cancer. Nature,
372(6502):143–149, 1994.

[34] Jindan Yu, Jianjun Yu, Ram-Shankar Mani, Qi Cao, Chad J. Brenner, Xuhong
Cao, Xiaoju Wang, Longtao Wu, James Li, Ming Hu, Yusong Gong, Hong
Cheng, Bharathi Laxman, Adaikkalam Vellaichamy, Sunita Shankar, Yong Li,
Saravana M. Dhanasekaran, Roger Morey, Terrence Barrette, Robert J. Lonigro,
Scott A. Tomlins, Sooryanarayana Varambally, Zhaohui S. Qin, and Arul M.
Chinnaiyan. An Integrated Network of Androgen Receptor, Polycomb, and
TMPRSS2-ERG Gene Fusions in Prostate Cancer Progression. Cancer Cell,
17(5):443–454, may 2010.

[35] Serena Nik-Zainal, Helen Davies, Johan Staaf, Manasa Ramakrishna, Dominik
Glodzik, Xueqing Zou, Inigo Martincorena, Ludmil B. Alexandrov, Sancha Mar-
tin, David C. Wedge, Peter Van Loo, Young Seok Ju, Marcel Smid, Arie B.
Brinkman, Sandro Morganella, Miriam R. Aure, Ole Christian Lingjærde, Anita
Langerød, Markus Ringnér, Sung-Min Ahn, Sandrine Boyault, Jane E. Brock,
Annegien Broeks, Adam Butler, Christine Desmedt, Luc Dirix, Serge Dronov,
Aquila Fatima, John A. Foekens, Moritz Gerstung, Gerrit K. J. Hooijer, Se Jin
Jang, David R. Jones, Hyung-Yong Kim, Tari A. King, Savitri Krishnamurthy,
Hee Jin Lee, Jeong-Yeon Lee, Yilong Li, Stuart McLaren, Andrew Menzies, Ville
Mustonen, Sarah O’Meara, Iris Pauporté, Xavier Pivot, Colin A. Purdie, Keiran
Raine, Kamna Ramakrishnan, F. Germán Rodríguez-González, Gilles Romieu,
Anieta M. Sieuwerts, Peter T. Simpson, Rebecca Shepherd, Lucy Stebbings,
Olafur A. Stefansson, Jon Teague, Stefania Tommasi, Isabelle Treilleux, Gert
G. Van den Eynden, Peter Vermeulen, Anne Vincent-Salomon, Lucy Yates, Car-
los Caldas, Laura van’t Veer, Andrew Tutt, Stian Knappskog, Benita Kiat Tee
Tan, Jos Jonkers, Åke Borg, Naoto T. Ueno, Christos Sotiriou, Alain Viari,
P. Andrew Futreal, Peter J. Campbell, Paul N. Span, Steven Van Laere, Sunil R.
Lakhani, Jorunn E. Eyfjord, Alastair M. Thompson, Ewan Birney, Hendrik G.
Stunnenberg, Marc J. van de Vijver, John W. M. Martens, Anne-Lise Børresen-
Dale, Andrea L. Richardson, Gu Kong, Gilles Thomas, and Michael R. Stratton.
Landscape of somatic mutations in 560 breast cancer whole-genome sequences.
Nature, 534(7605):47–54, may 2016.

[36] Douglas Hanahan and Robert A. Weinberg. Hallmarks of Cancer: The Next
Generation. Cell, 144(5):646–674, mar 2011.

[37] David Marin, Amr R. Ibrahim, Claire Lucas, Gareth Gerrard, Lihui Wang,
Richard M. Szydlo, Richard E. Clark, Jane F. Apperley, Dragana Milojkovic,
Marco Bua, Jiri Pavlu, Christos Paliompeis, Alistair Reid, Katayoun Rezvani,
John M. Goldman, and Letizia Foroni. Assessment of BCR-ABL1 Transcript
Levels at 3 Months Is the Only Requirement for Predicting Outcome for Patients
With Chronic Myeloid Leukemia Treated With Tyrosine Kinase Inhibitors.
Journal of Clinical Oncology, 30(3):232–238, 2012.

170



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 171

[38] Nadia M Davidson, Ian J Majewski, and Alicia Oshlack. JAFFA: High sensi-
tivity transcriptome-focused fusion gene detection. Genome Medicine, 7(1):43,
2015.

[39] Daniela Diverio, Roberta Riccioni, Franco Mandelli, and Francesco Lo Coco.
The PML/RAR alpha fusion gene in the diagnosis and monitoring of acute
promyelocytic leukemia. Haematologica, 80(2):155–160, 1995.

[40] Zheng Yang, Lu Yu, and Zhe Wang. PCA3 and TMPRSS2-ERG gene fusions
as diagnostic biomarkers for prostate cancer. Chinese journal of cancer research
= Chung-kuo yen cheng yen chiu, 28(1):65–71, 2016.

[41] E. Fainstein, C. Marcelle, A. Rosner, E. Canaani, R. P. Gale, O. Dreazen, S. D.
Smith, and C. M. Croce. A new fused transcript in Philadelphia chromosome
positive acute lymphocytic leukaemia. Nature, 330(6146):386–388, nov 1987.

[42] Wendy Stock, Daohai Yu, Ted Karrison, Dorie Sher, Richard Stone, Richard
Larson, and Clara Bloomfield. Quantitative real-time RT-PCR monitoring of
BCR-ABL in chronic myelogenous leukemia shows lack of agreement in blood
and bone marrow samples. International Journal of Oncology, 28(5):1099–1103,
may 2006.

[43] Jacques Chasseriau, Jérôme Rivet, Frédéric Bilan, Jean-Claude Chomel,
François Guilhot, Nicolas Bourmeyster, and Alain Kitzis. Characterization of
the Different BCR-ABL Transcripts with a Single Multiplex RT-PCR. The
Journal of Molecular Diagnostics, 6(4):343–347, nov 2004.

[44] P Rousselot, Bhushan Hardas, A Patel, Fabien Guidez, Joop Gaken, S Cas-
taigne, A Dejean, H de Thé, L Degos, and Farzin Farzaneh. The PML-RAR
alpha gene product of the t(15;17) translocation inhibits retinoic acid-induced
granulocytic differentiation and mediated transactivation in human myeloid
cells. Oncogene, 9(2):545–551, Mar 1994.

[45] Brittany C. Parker, Manon Engels, Matti Annala, and Wei Zhang. Emergence
of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid
tumours. Journal of Pathology, 232(1):4–15, 2014.

[46] Felix Y. Feng, J. Chad Brenner, Maha Hussain, and Arul M. Chinnaiyan.
Molecular pathways: targeting ETS gene fusions in cancer. Clinical cancer re-
search : an official journal of the American Association for Cancer Research,
20(17):4442–4448, 2014.

[47] Brittany C. Parker and Wei Zhang. Fusion genes in solid tumors: an emerg-
ing target for cancer diagnosis and treatment. Chinese Journal of Cancer,
32(11):594–603, nov 2013.

[48] Marco Beccuti, Matteo Carrara, Francesca Cordero, Fulvio Lazzarato, Su-
sanna Donatelli, Francesca Nadalin, Alberto Policriti, and Raffaele A Calogero.
Chimera: a Bioconductor package for secondary analysis of fusion products.
Bioinformatics (Oxford, England), 30(24):3556–3557, December 2014.

171



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
172 BIBLIOGRAPHY

[49] H.P.J. Buermans and J.T. den Dunnen. Next generation sequencing technology:
Advances and applications. Biochimica et Biophysica Acta (BBA) - Molecular
Basis of Disease, 1842(10):1932–1941, 2014.

[50] Bo Wang, Lin Wan, Anqi Wang, and Lei M. Li. An adaptive decorrelation
method removes Illumina DNA base-calling errors caused by crosstalk between
adjacent clusters. Scientific Reports, 7(1):e4134, Feb 2017.

[51] S Goodwin, J D McPherson, and W R McCombie. Coming of age: ten years of
next-generation sequencing technologies. Nat Rev Genet, 17(6):333–351, 2016.

[52] Simon Anders, Paul Theodor Pyl, and Wolfgang Huber. HTSeq-a Python
framework to work with high-throughput sequencing data. Bioinformatics,
31(2):166–169, Jan 2015.

[53] Gordon K Smyth. Linear Models and Empirical Bayes Methods for Assessing
Differential Expression in Microarray Experiments. Statistical Applications in
Genetics and Molecular Biology, 3(1):1–25, jan 2004.

[54] M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: a bioconduc-
tor package for differential expression analysis of digital gene expression data.
Bioinformatics, 26(1):139–140, nov 2009.

[55] Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome Biology,
15(12):550, Dec 2014.

[56] John Trinick and Larissa Tskhovrebova. Titin: A molecular control freak. Trends
in Cell Biology, 9(10):377–380, 1999.

[57] M L Bang, T Centner, F Fornoff, a J Geach, M Gotthardt, M McNabb, C C
Witt, D Labeit, C C Gregorio, H Granzier, and S Labeit. The complete gene
sequence of titin, expression of an unusual approximately 700-kDa titin isoform,
and its interaction with obscurin identify a novel Z-line to I-band linking system.
Circulation research, 89(11):1065–72, 2001.

[58] Mihaela Pertea, Geo M Pertea, Corina M Antonescu, Tsung-Cheng Chang,
Joshua T Mendell, and Steven L Salzberg. StringTie enables improved re-
construction of a transcriptome from RNA-seq reads. Nature Biotechnology,
33(3):290–295, feb 2015.

[59] Hiroaki Sakai, Ken Naito, Eri Ogiso-Tanaka, Yu Takahashi, Kohtaro Iseki, Chi-
aki Muto, Kazuhito Satou, Kuniko Teruya, Akino Shiroma, Makiko Shimoji,
Takashi Hirano, Takeshi Itoh, Akito Kaga, and Norihiko Tomooka. The power
of single molecule real-time sequencing technology in the de novo assembly of a
eukaryotic genome. Scientific Reports, 5(1), nov 2015.

[60] Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand,
Thomas A Sasani, John R Tyson, Andrew D Beggs, Alexander T Dilthey, Ian T
Fiddes, et al. Nanopore sequencing and assembly of a human genome with ultra-
long reads. Nature Biotechnology, 36(4):338–345, Jan 2018.

172



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 173

[61] Rafael Ferreira da Silva, Rosa Filgueira, Ilia Pietri, Ming Jiang, Rizos Sakellar-
iou, and Ewa Deelman. A characterization of workflow management systems for
extreme-scale applications. Future Generation Computer Systems, 75:228–238,
oct 2017.

[62] Markus Hafner, Pablo Landgraf, Janos Ludwig, Amanda Rice, Tolulope Ojo,
Carolina Lin, Daniel Holoch, Cindy Lim, and Thomas Tuschl. Identification of
microRNAs and other small regulatory RNAs using cDNA library sequencing.
Methods, 44(1):3–12, 2008.

[63] R C Lee, V Ambros, V. A. Erdmann, R. C. Lee, R. L. Feinbaum, V. Ambros,
B. Reinhart, B. Wightman, I. Ha, G. Ruvkun, A. E. Pasquinelli, A. Grishok,
G. Hutvagner, P. A. Sharp, W. J. Kent, A. M. Zahler, D. H. Mathews, J. Sabina,
M. Zuker, D. H. Turner, S. F. Altschul, N. C. Lau, L. P. Lim, E. G. Weinstein,
D. P. Bartel, M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl. An
extensive class of small RNAs in Caenorhabditis elegans. Science (New York,
N.Y.), 294(5543):862–4, 2001.

[64] Mitchell S. Stark, Sonika Tyagi, Derek J. Nancarrow, Glen M. Boyle, Anthony L.
Cook, David C. Whiteman, Peter G. Parsons, Christopher Schmidt, Richard A.
Sturm, and Nicholas K. Hayward. Characterization of the Melanoma miR-
NAome by Deep Sequencing. PLoS ONE, 5(3):e9685, Mar 2010.

[65] Ryan D. Morin, Michael D. O’Connor, Malachi Griffith, Florian Kuchenbauer,
Allen Delaney, Anna-Liisa Prabhu, Yongjun Zhao, Helen McDonald, Thomas
Zeng, Martin Hirst, Connie J. Eaves, and Marco A. Marra. Application of
massively parallel sequencing to microrna profiling and discovery in human em-
bryonic stem cells. Genome Res, 18(4):610–621, Apr 2008.

[66] I-Fang Chung, Shing-Jyh Chang, Chen-Yang Chen, Shu-Hsuan Liu, Chia-Yang
Li, Chia-Hao Chan, Chuan-Chi Shih, and Wei-Chung Cheng. YM500v3: a
database for small RNA sequencing in human cancer research. Nucleic acids
research, 45(D1):D925–D931, Nov 2016.

[67] Sébastien Tempel and Fariza Tahi. A fast ab-initio method for predicting
miRNA precursors in genomes. Nucleic Acids Research, 40(11):e80–e80, feb
2012.

[68] Andrea Sboner, Lukas Habegger, Dorothee Pflueger, Stephane Terry, David Z
Chen, Joel S Rozowsky, Ashutosh K Tewari, Naoki Kitabayashi, Benjamin J
Moss, Mark S Chee, Francesca Demichelis, Mark A Rubin, and Mark B Gerstein.
FusionSeq: a modular framework for finding gene fusions by analyzing paired-
end RNA-sequencing data. Genome biology, 11(10):R104, 2010.

[69] Yan He, Chengfu Yuan, Lichan Chen, Mingjuan Lei, Lucas Zellmer, Hai
Huang, and Dezhong Liao. Transcriptional-Readthrough RNAs Reflect the
Phenomenon of “A Gene Contains Gene(s)” or “Gene(s) within a Gene” in the
Human Genome, and Thus Are Not Chimeric RNAs. Genes, 9(1):40, jan 2018.

[70] Daehwan Kim and Steven L Salzberg. TopHat-Fusion: an algorithm for discov-
ery of novel fusion transcripts. Genome biology, 12(8):R72, January 2011.

173



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
174 BIBLIOGRAPHY

[71] Andrew McPherson, Fereydoun Hormozdiari, Abdalnasser Zayed, Ryan Giu-
liany, Gavin Ha, Mark G F Sun, Malachi Griffith, Alireza Moussavi, Janine Senz,
Nataliya Melnyk, Marina Pacheco, Marco A. Marra, Martin Hirst, Torsten O.
Nielsen, S. Cenk Sahinalp, David Huntsman, and Sohrab P. Shah. Defuse: An
algorithm for gene fusion discovery in tumor RNA-seq data. PLoS Computa-
tional Biology, 7(5):e1001138, May 2011.

[72] Matthew K. Iyer, Arul M. Chinnaiyan, and Christopher A. Maher. ChimeraS-
can: a tool for identifying chimeric transcription in sequencing data. Bioinfor-
matics, 27(20):2903–2904, 2011.

[73] Wenlong Jia, Kunlong Qiu, Minghui He, Pengfei Song, Quan Zhou, Feng Zhou,
Yuan Yu, Dandan Zhu, Michael L Nickerson, Shengqing Wan, Xiangke Liao, Xi-
aoqian Zhu, Shaoliang Peng, Yingrui Li, Jun Wang, and Guangwu Guo. SOAP-
fuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq
data. Genome biology, 14(2):R12, 2013.

[74] Daniel Nicorici, Mihaela Satalan, Henrik Edgren, Sara Kangaspeska, Astrid
Murumagi, Olli Kallioniemi, Sami Virtanen, and Olavi Kilkku. FusionCatcher
- a tool for finding somatic fusion genes in paired-end RNA-sequencing data.
bioRxiv, Nov 2014. [This article is a preprint and has not been peer-reviewed].

[75] Silvia Liu, Wei Hsiang Tsai, Ying Ding, Rui Chen, Zhou Fang, Zhiguang Huo,
Sunghwan Kim, Tianzhou Ma, Ting Yu Chang, Nolan Michael Priedigkeit,
Adrian V. Lee, Jianhua Luo, Hsei Wei Wang, I. Fang Chung, and George C.
Tseng. Comprehensive evaluation of fusion transcript detection algorithms and
a meta-caller to combine top performing methods in paired-end RNA-seq data.
Nucleic Acids Research, 44(5):e47, Mar 2015.

[76] Matteo Carrara, Marco Beccuti, Federica Cavallo, Susanna Donatelli, Fulvio
Lazzarato, Francesca Cordero, and Raffaele a Calogero. State of art fusion-
finder algorithms are suitable to detect transcription-induced chimeras in nor-
mal tissues? BMC bioinformatics, 14(7):S2, 2013.

[77] Matteo Carrara, Marco Beccuti, Fulvio Lazzarato, Federica Cavallo, Francesca
Cordero, Susanna Donatelli, and Raffaele A. Calogero. State-of-the-art fusion-
finder algorithms sensitivity and specificity. BioMed Research International,
2013, 2013.

[78] Shailesh Kumar, Angie Duy Vo, Fujun Qin, and Hui Li. Comparative assessment
of methods for the fusion transcripts detection from RNA-Seq data. Scientific
reports, 6:21597, 2016.

[79] Jin Zhang, Nicole M. White, Heather K. Schmidt, Robert S. Fulton, Chad
Tomlinson, Wesley C. Warren, Richard K. Wilson, and Christopher A. Maher.
INTEGRATE: Gene fusion discovery using whole genome and transcriptome
data. Genome Research, 26(1):108–118, 2016.

[80] Giulia Paciello and Elisa Ficarra. FuGePrior: A novel gene fusion prioritiza-
tion algorithm based on accurate fusion structure analysis in cancer RNA-seq
samples. BMC Bioinformatics, 18(1):58, Jan 2017.

174



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 175

[81] Ryan M Layer, Colby Chiang, Aaron R Quinlan, and Ira M Hall. LUMPY:
A probabilistic framework for structural variant discovery. Genome biology,
15(6):R84, 2014.

[82] Mattia Brugiolo, Lydia Herzel, and Karla M. Neugebauer. Counting on co-
transcriptional splicing. F1000Prime Rep, 5:9–9, Apr 2013.

[83] Evan C Merkhofer, Peter Hu, and Tracy L Johnson. Methods and Protocols.
In Introduction to Cotranscriptional RNA Splicing, page 83–96. Humana Press,
2014.

[84] Muhammad A. Tariq, Hyunsung J. Kim, Olufisayo Jejelowo, and Nader Pour-
mand. Whole-transcriptome RNAseq analysis from minute amount of total
RNA. Nucleic Acids Research, 39(18):1–10, 2011.

[85] Joshua Z Levin, Moran Yassour, Xian Adiconis, Chad Nusbaum, Dawn Anne
Thompson, Nir Friedman, Andreas Gnirke, and Aviv Regev. Comprehensive
comparative analysis of strand-specific RNA sequencing methods. Nature meth-
ods, 7(9):709–15, 2010.

[86] Nivedita Pathak and BimalKumar Das. Polymerase chain reaction as a diagnos-
tic tool in human viral myocarditis. Journal of the Practice of Cardiovascular
Sciences, 1(2):168, 2015.

[87] Yan Ma, Ranjana Ambannavar, James Stephans, Jennie Jeong, Andrew Dei
Rossi, Mei-Lan Liu, Adam J. Friedman, Jason J. Londry, Richard Abramson,
Ellen M. Beasley, Joffre Baker, Samuel Levy, and Kunbin Qu. Fusion Transcript
Discovery in Formalin-Fixed Paraffin-Embedded Human Breast Cancer Tissues
Reveals a Link to Tumor Progression. PLoS ONE, 9(4):e94202, apr 2014.

[88] Torsten Seemann. Ten recommendations for creating usable bioinformatics com-
mand line software. GigaScience, 2:15, 2013.

[89] Silva Luis Bastiao, Jimenez Rafael C, Blomberg Niklas, and Luis Oliveira José.
General guidelines for biomedical software development. F1000Research, 6:273,
July 2017.

[90] Felipe da Veiga Leprevost, Valmir C. Barbosa, Eduardo L. Francisco, Yasset
Perez-Riverol, and Paulo C. Carvalho. On best practices in the development of
bioinformatics software. Frontiers in Genetics, 5:199, jul 2014.

[91] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer,
Gabor Marth, Goncalo Abecasis, and Richard Durbin. The Sequence Align-
ment/Map format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[92] Jon Ison, Matúš Kalaš, Inge Jonassen, Dan Bolser, Mahmut Uludag, Hamish
McWilliam, James Malone, Rodrigo Lopez, Steve Pettifer, and Peter Rice.
EDAM: An ontology of bioinformatics operations, types of data and identifiers,
topics and formats. Bioinformatics, 29(10):1325–1332, 2013.

175



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
176 BIBLIOGRAPHY

[93] Belinda Giardine, Cathy Riemer, Ross C Hardison, Richard Burhans, Laura El-
nitski, Prachi Shah, Yi Zhang, Daniel Blankenberg, Istvan Albert, James Taylor,
Webb C Miller, W James Kent, and Anton Nekrutenko. Galaxy: a platform for
interactive large-scale genome analysis. Genome research, 15(10):1451–1455,
sep 2005.

[94] P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke,
I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski, and M. J. L. de Hoon.
Biopython: freely available Python tools for computational molecular biology
and bioinformatics. Bioinformatics, 25(11):1422–1423, mar 2009.

[95] Daniel Blankenberg, Gregory Von Kuster, Emil Bouvier, Dannon Baker, Enis
Afgan, Nicholas Stoler, Galaxy Team, James Taylor, and Anton Nekrutenko.
Dissemination of scientific software with Galaxy ToolShed. Genome Biology,
15(2):403, 2014.

[96] Po-E Li, Chien-Chi Lo, Joseph J. Anderson, Karen W. Davenport, Kimberly A.
Bishop-Lilly, Yan Xu, Sanaa Ahmed, Shihai Feng, Vishwesh P. Mokashi, and
Patrick S.G. Chain. Enabling the democratization of the genomics revolution
with a fully integrated web-based bioinformatics platform. Nucleic Acids Re-
search, 45(1):67–80, jan 2017.

[97] Danny Challis, Jin Yu, Uday S Evani, Andrew R Jackson, Sameer Paithankar,
Cristian Coarfa, Aleksandar Milosavljevic, Richard A Gibbs, and Fuli Yu. An
integrative variant analysis suite for whole exome next-generation sequencing
data. BMC Bioinformatics, 13(1):8, 2012.

[98] Carol Soderlund, William Nelson, Mark Willer, and David R. Gang. TCW:
Transcriptome computational workbench. PLoS ONE, 8(7):e69401, jul 2013.

[99] Mattia D’Antonio, Paolo D’Onorio De Meo, Matteo Pallocca, Ernesto Picardi,
Anna Maria D’Erchia, Raffaele A Calogero, Tiziana Castrignanò, and Graziano
Pesole. RAP: RNA-Seq Analysis Pipeline, a new cloud-based NGS web appli-
cation. BMC genomics, 16(6):S3, 2015.

[100] Eduardo Andrés-León, Rocío Núñez-Torres, and Ana M Rojas. miARma-Seq: a
comprehensive tool for miRNA, mRNA and circRNA analysis. Scientific reports,
6, 2016.

[101] M. B. Stocks, S. Moxon, D. Mapleson, H. C. Woolfenden, I. Mohorianu,
L. Folkes, F. Schwach, T. Dalmay, and V. Moulton. The UEA sRNA work-
bench: a suite of tools for analysing and visualizing next generation sequencing
microRNA and small RNA datasets. Bioinformatics, 28(15):2059–2061, Aug
2012.

[102] Enis Afgan, Dannon Baker, Marius van den Beek, Daniel Blankenberg, Dave
Bouvier, Martin Čech, John Chilton, Dave Clements, Nate Coraor, Carl Eber-
hard, et al. The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2016 update. Nucleic Acids Research, 44(W1):W3–W10,
May 2016.

176



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 177

[103] Birte Kehr, Kathrin Trappe, Manuel Holtgrewe, and Knut Reinert. Genome
alignment with graph data structures: a comparison. BMC bioinformatics,
15(1):99, 2014.

[104] Deanna M. Church, Valerie A. Schneider, Karyn Meltz Steinberg, Michael C.
Schatz, Aaron R. Quinlan, Chen-Shan Chin, Paul A. Kitts, Bronwen Aken, Ga-
bor T. Marth, Michael M. Hoffman, Javier Herrero, M Lisandra Zepeda Men-
doza, Richard Durbin, and Paul Flicek. Extending reference assembly models.
Genome Biology, 16(1):13, 2015.

[105] Simon A. Forbes, David Beare, Prasad Gunasekaran, Kenric Leung, Nidhi
Bindal, Harry Boutselakis, Minjie Ding, Sally Bamford, Charlotte Cole, Sari
Ward, Chai Yin Kok, Mingming Jia, Tisham De, Jon W. Teague, Michael R.
Stratton, Ultan McDermott, and Peter J. Campbell. COSMIC: exploring the
world’s knowledge of somatic mutations in human cancer. Nucleic Acids Re-
search, 43(D1):D805–D811, oct 2014.

[106] Ilkka Lappalainen, Jeff Almeida-King, Vasudev Kumanduri, Alexander Senf,
John Dylan Spalding, Saif Ur-Rehman, Gary Saunders, Jag Kandasamy, Mario
Caccamo, Rasko Leinonen, Brendan Vaughan, Thomas Laurent, Francis Row-
land, Pablo Marin-Garcia, Jonathan Barker, Petteri Jokinen, Angel Carreño
Torres, Jordi Rambla de Argila, Oscar Martinez Llobet, Ignacio Medina,
Marc Sitges Puy, Mario Alberich, Sabela de la Torre, Arcadi Navarro, Justin
Paschall, and Paul Flicek. The European Genome-phenome Archive of human
data consented for biomedical research. Nat. Genet., 47(7):692–695, July 2015.

[107] Roger McLendon, Allan Friedman, Darrell Bigner, Erwin G. Van Meir, Daniel J.
Brat, Gena M. Mastrogianakis, Jeffrey J. Olson, Tom Mikkelsen, Norman
Lehman, Ken Aldape, et al. Comprehensive genomic characterization defines
human glioblastoma genes and core pathways. Nature, 455(7216):1061–1068,
Sep 2008.

[108] Katarzyna Tomczak, Patrycja Czerwińska, and Maciej Wiznerowicz. The Can-
cer Genome Atlas (TCGA): an immeasurable source of knowledge. Współczesna
Onkologia, 1A:68–77, 2015.

[109] Giovanni Ciriello, Martin L Miller, Bülent Arman Aksoy, Yasin Senbabaoglu,
Nikolaus Schultz, and Chris Sander. Emerging landscape of oncogenic signatures
across human cancers. Nature Genetics, 45(10):1127–1133, Sep 2013.

[110] Louis Papageorgiou, Picasi Eleni, Sofia Raftopoulou, Meropi Mantaiou, Vasileios
Megalooikonomou, and Dimitrios Vlachakis. Genomic big data hitting the stor-
age bottleneck. EMBnet.journal, 24(0):910, Apr 2018.

[111] M. Hsi-Yang Fritz, R. Leinonen, G. Cochrane, and E. Birney. Efficient storage
of high throughput DNA sequencing data using reference-based compression.
Genome Research, 21(5):734–740, Jan 2011.

[112] Sebastian Palluk, Daniel H Arlow, Tristan de Rond, Sebastian Barthel, Justine S
Kang, Rathin Bector, Hratch M Baghdassarian, Alisa N Truong, Peter W Kim,

177



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
178 BIBLIOGRAPHY

Anup K Singh, et al. De novo DNA synthesis using polymerase-nucleotide
conjugates. Nature Biotechnology, 36(7):645–650, Jun 2018.

[113] Nicolas Mottet, Joaquim Bellmunt, Michel Bolla, Erik Briers, Marcus G. Cum-
berbatch, Maria De Santis, Nicola Fossati, Tobias Gross, Ann M. Henry, Steven
Joniau, Thomas B. Lam, Malcolm D. Mason, Vsevolod B. Matveev, Paul C.
Moldovan, Roderick C.N. van den Bergh, Thomas Van den Broeck, Henk G.
van der Poel, Theo H. van der Kwast, Olivier Rouvière, Ivo G. Schoots, Thomas
Wiegel, and Philip Cornford. EAU-ESTRO-SIOG guidelines on prostate cancer.
part 1: Screening, diagnosis, and local treatment with curative intent. European
Urology, 71(4):618–629, apr 2017.

[114] Irene V. Bijnsdorp, Martin E. van Royen, Gerald W. Verhaegh, and Elena S.
Martens-Uzunova. The Non-Coding Transcriptome of Prostate Cancer: Impli-
cations for Clinical Practice. Molecular Diagnosis & Therapy, 21(4):385–400,
Mar 2017.

[115] Srinivas Pentyala, Terry Whyard, Sahana Pentyala, John Muller, John Pfail,
Sunjit Parmar, Carlos G Helguero, and Sardar Khan. Prostate cancer markers:
An update. Biomedical reports, 4(3):263–268, 2016.

[116] Thorsten H. Ecke, Horst H. Schlechte, Katrin Schiemenz, Markus D. Sachs, Sev-
erin V. Lenk, Birgit D. Rudolph, and Stefan A. Loening. TP53 Gene Mutations
in Prostate Cancer Progression. Anticancer Research, 30(5):1579–1586, 2010.

[117] Milan S. Geybels, Min Fang, Jonathan L. Wright, Xiaoyu Qu, Marina Bibikova,
Brandy Klotzle, Jian-Bing Fan, Ziding Feng, Elaine A. Ostrander, Peter S.
Nelson, et al. PTEN loss is associated with prostate cancer recurrence and
alterations in tumor DNA methylation profiles. Oncotarget, 8(48):84338–84348,
Sep 2017.

[118] Kurtis Eisermann, Dan Wang, Yifeng Jing, Laura E. Pascal, and Zhou Wang.
Androgen receptor gene mutation, rearrangement, polymorphism. Translational
Andrology and Urology, 2(3):137–147, 2013.

[119] Jeremy P Clark and Colin S Cooper. ETS gene fusions in prostate cancer.
Nature reviews. Urology, 6(8):429–439, August 2009.

[120] Mark A. Rubin, Christopher A. Maher, and Arul M. Chinnaiyan. Com-
mon Gene Rearrangements in Prostate Cancer. Journal of Clinical Oncology,
29(27):3659–3668, sep 2011.

[121] Scott A Tomlins, Bharathi Laxman, Sooryanarayana Varambally, Xuhong Cao,
Jindan Yu, Beth E Helgeson, Qi Cao, John R Prensner, Mark A Rubin, Rajal B
Shah, Rohit Mehra, and Arul M Chinnaiyan. Role of the TMPRSS2-ERG gene
fusion in prostate cancer. Neoplasia, 10(2):177–188, February 2008.

[122] Jacques Lapointe, Young H Kim, Melinda A Miller, Chunde Li, Gulsah Kay-
gusuz, Matt van de Rijn, David G Huntsman, James D Brooks, and Jonathan R
Pollack. A variant TMPRSS2 isoform and ERG fusion product in prostate can-
cer with implications for molecular diagnosis. Modern Pathology, 20(4):467–473,
mar 2007.

178



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 179

[123] J Clark, S Merson, S Jhavar, P Flohr, S Edwards, C S Foster, R Eeles, F L Mar-
tin, D H Phillips, M Crundwell, T Christmas, A Thompson, C Fisher, G Kovacs,
and C S Cooper. Diversity of TMPRSS2-ERG fusion transcripts in the human
prostate. Oncogene, 26(18):2667–2673, oct 2006.

[124] Xiaoju Wang, Yuanyuan Qiao, Irfan A. Asangani, Bushra Ateeq, Anton Poli-
akov, Marcin Cieślik, Sethuramasundaram Pitchiaya, Balabhadrapatruni V.S.K.
Chakravarthi, Xuhong Cao, Xiaojun Jing, Cynthia X. Wang, Ingrid J. Apel, Rui
Wang, Jean Ching-Yi Tien, Kristin M. Juckette, Wei Yan, Hui Jiang, Shaomeng
Wang, Sooryanarayana Varambally, and Arul M. Chinnaiyan. Development of
Peptidomimetic Inhibitors of the ERG Gene Fusion Product in Prostate Cancer.
Cancer Cell, 31(4):532–548.e7, apr 2017.

[125] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle
Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten,
Luiz Bonino da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J.
Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Ed-
munds, Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alas-
dair J.G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap Heringa,
Peter a.C ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J.
Lusher, Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt Persson,
Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta San-
sone, Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn, Morris a.
Swertz, Mark Thompson, Johan van der Lei, Erik van Mulligen, Jan Velterop,
Andra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun Zhao, and
Barend Mons. The FAIR Guiding Principles for scientific data management and
stewardship. Scientific Data, 3:e160018, 2016.

[126] Chong-Jian Chen and Edith Heard. Small RNAs derived from structural non-
coding RNAs. Methods, 63(1):76–84, 2013.

[127] Andrew Sobala and Gyorgy Hutvagner. Transfer RNA-derived fragments:
origins, processing, and functions. Wiley Interdisciplinary Reviews: RNA,
2(6):853–862, 2011.

[128] Michelle S. Scott, Motoharu Ono, Kayo Yamada, Akinori Endo, Geoffrey J. Bar-
ton, and Angus I. Lamond. Human box C/D snoRNA processing conservation
across multiple cell types. Nucleic Acids Research, 40(8):3676–3688, 2012.

[129] Eivind Valen, Pascal Preker, Peter Refsing Andersen, Xiaobei Zhao, Yun Chen,
Christine Ender, Anne Dueck, Gunter Meister, Albin Sandelin, and Torben He-
ick Jensen. Biogenic mechanisms and utilization of small RNAs derived from
human protein-coding genes. Nat Struct Mol Biol, 18(9):1075–1082, Sep 2011.

[130] Lin He and Gregory J Hannon. MicroRNAs: small RNAs with a big role in gene
regulation. Nature Reviews Genetics, 5(7):522–531, 2004.

[131] Marc R. Fabian and Nahum Sonenberg. The mechanics of miRNA-mediated
gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol,
19(6):586–593, Jun 2012.

179



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
180 BIBLIOGRAPHY

[132] Marc R. Friedlander, Wei Chen, Catherine Adamidi, Jonas Maaskola, Ralf
Einspanier, Signe Knespel, and Nikolaus Rajewsky. Discovering microRNAs
from deep sequencing data using miRDeep. Nat Biotech, 26(4):407–415, Apr
2008.

[133] Satoshi Yamasaki, Pavel Ivanov, Guo-fu Hu, and Paul Anderson. Angiogenin
cleaves tRNA and promotes stress-induced translational repression. The journal
of Cell Biology, 185(1):35–42, 2009.

[134] Debrah M. Thompson and Roy Parker. Stressing Out over tRNA Cleavage .
Cell, 138(2):215–219, 2009.

[135] Anthony K Henras, Christophe Dez, and Yves Henry. RNA structure and func-
tion in C/D and H/ACA s(no)RNPs. Current Opinion in Structural Biology,
14(3):335–343, jun 2004.

[136] Shivendra Kishore, Amit Khanna, Zhaiyi Zhang, Jingyi Hui, Piotr J. Balwierz,
Mihaela Stefan, Carol Beach, Robert D. Nicholls, Mihaela Zavolan, and Stefan
Stamm. The snoRNA MBII-52 (SNORD115) is processed into smaller RNAs
and regulates alternative splicing. Human Molecular Genetics, 19(7):1153–1164,
2010.

[137] Christine Ender, Azra Krek, Marc R. Friedländer, Michaela Beitzinger, Lasse
Weinmann, Wei Chen, Sébastien Pfeffer, Nikolaus Rajewsky, and Gunter Meis-
ter. A Human snoRNA with MicroRNA-Like Functions. Molecular Cell,
32(4):519–528, 2008.

[138] Markus Brameier, Astrid Herwig, Richard Reinhardt, Lutz Walter, and Jens
Gruber. Human box C/D snoRNAs with miRNA like functions: expanding the
range of regulatory RNAs. Nucleic Acids Research, 39(2):675–686, 2011.

[139] Motoharu Ono, Michelle S. Scott, Kayo Yamada, Fabio Avolio, Geoffrey J. Bar-
ton, and Angus I. Lamond. Identification of human miRNA precursors that
resemble box C/D snoRNAs. Nucleic Acids Research, 39(9):3879–3891, 2011.

[140] Y.-P. Mei, J.-P. Liao, J. Shen, L. Yu, B.-L. Liu, L. Liu, R.-Y. Li, L. Ji, S. G.
Dorsey, Z.-R. Jiang, R. L. Katz, J.-Y. Wang, and F. Jiang. Small nucleolar RNA
42 acts as an oncogene in lung tumorigenesis. Oncogene, 31(22):2794–2804, May
2012.

[141] Xue Yuan Dong, Peng Guo, Jeff Boyd, Xiaodong Sun, Qunna Li, Wei Zhou, and
Jin Tang Dong. Implication of snoRNA U50 in human breast cancer. journal
of Genetics and Genomics, 36(8):447–454, 2009.

[142] Marjan E. Askarian-Amiri, Joanna Crawford, Juliet D. French, Chanel E.
Smart, Martin A. Smith, Michael B. Clark, Kelin Ru, Tim R. Mercer, Ella R.
Thompson, Sunil R. Lakhani, Ana C. Vargas, Ian G. Campbell, Melissa A.
Brown, Marcel E. Dinger, and John S. Mattick. SNORD-host RNA Zfas1 is a
regulator of mammary development and a potential marker for breast cancer.
RNA, 17(5):878–891, 2011.

180



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 181

[143] Baoyan Bai, Hester Liu, and Marikki Laiho. Small RNA expression and deep
sequencing analyses of the nucleolus reveal the presence of nucleolus-associated
microRNAs. FEBS Open Bio, 4(0):441–449, 2014.

[144] Maud Contrant, Aurélie Fender, Béatrice Chane-Woon-Ming, Ramy Randrian-
jafy, Valérie Vivet-Boudou, Delphine Richer, and Sébastien Pfeffer. Importance
of the RNA secondary structure for the relative accumulation of clustered viral
microRNAs. Nucleic Acids Research, 42(12):7981–7996, 2014.

[145] Luke A Selth, Matthew J Roberts, ClementWK Chow, Villis R Marshall, Suhail
A R Doi, Andrew D Vincent, Lisa M Butler, Martin F Lavin, Wayne D Tilley,
and Robert A Gardiner. Human seminal fluid as a source of prostate cancer-
specific microRNA biomarkers. Endocrine-Related Cancer, 21(4):L17–L21,
2014.

[146] Ana Kozomara and Sam Griffiths-Jones. miRBase: integrating mi-
croRNA annotation and deep-sequencing data. Nucleic Acids Research,
39(suppl_1):D152–D157, 2010.

[147] David Langenberger, Clara Bermudez-Santana, Jana Hertel, Steve Hoffmann,
Philipp Khaitovich, and Peter F. Stadler. Evidence for human microRNA-offset
RNAs in small RNA sequencing data. Bioinformatics, 25(18):2298–2301, 2009.

[148] T. D. Schneider and R. M. Stephens. Sequence Logos: A New Way to Display
Consensus Sequences. Nucleic Acids Research, 18:6097–6100, 1990.

[149] Yuk Yee Leung, Paul Ryvkin, Lyle H. Ungar, Brian D. Gregory, and Li-San
Wang. CoRAL: predicting non-coding RNAs from small RNA-sequencing data.
Nucleic Acids Research, 2013.

[150] Cheng Yuan and Yanni Sun. RNA-CODE: A Noncoding RNA Classification
Tool for Short Reads in NGS Data Lacking Reference Genomes. PLoS ONE,
8(10):e77596, Oct 2013.

[151] E S Martens-Uzunova, S E Jalava, N F Dits, G J L H van Leenders, S Møller,
J Trapman, C H Bangma, T Litman, T Visakorpi, and G Jenster. Diagnostic
and prognostic signatures from the small non-coding RNA transcriptome in
prostate cancer. Oncogene, 31(8):978–991, 2012.

[152] John C. Castle, Christopher D. Armour, Martin Löwer, David Haynor, Matthew
Biery, Heather Bouzek, Ronghua Chen, Stuart Jackson, Jason M. Johnson,
Carol A. Rohl, and Christopher K. Raymond. Digital genome-wide ncRNA
expression, including SnoRNAs, across 11 human tissues using polya-neutral
amplification. PLoS ONE, 5(7), 2010.

[153] Yuuichi Soeno, Kazuya Fujita, Tomoo Kudo, Masataka Asagiri, Shigeru Kakuta,
Yuji Taya, Yoshihito Shimazu, Kaori Sato, Ritsuko Tanaka-Fujita, Sachiko
Kubo, Yoichiro Iwakura, Yoshikazu Nakamura, Shigeo Mori, and Takaaki Aoba.
Generation of a Mouse Model with Down-Regulated U50 snoRNA (SNORD50)
Expression and Its Organ-Specific Phenotypic Modulation. PLoS ONE, 8(8),
2013.

181



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
182 BIBLIOGRAPHY

[154] A Goeze, K Schluns, G Wolf, Z Thasler, S Petersen, and I Petersen. Chromo-
somal imbalances of primary and metastatic lung adenocarcinomas. J Pathol,
196(1):8–16, 2002.

[155] Jipei Liao, Lei Yu, Yuping Mei, Maria Guarnera, Jun Shen, Ruiyun Li, Zhenqiu
Liu, and Feng Jiang. Small nucleolar RNA signatures as biomarkers for non-
small-cell lung cancer. Molecular cancer, 9:198, 2010.

[156] D. Ronchetti, L. Mosca, G. Cutrona, G. Tuana, M. Gentile, S. Fabris, L. Agnelli,
G. Ciceri, S. Matis, C. Massucco, M. Colombo, D. Reverberi, A.G. Recchia,
S. Bossio, M. Negrini, P. Tassone, F. Morabito, M. Ferrarini, and A. Neri. Small
nucleolar RNAs as new biomarkers in chronic lymphocytic leukemia. BMC
Medical Genomics, 6(1):27, 2013.

[157] D Ronchetti, K Todoerti, G Tuana, L Agnelli, L Mosca, M Lionetti, S Fabris,
P Colapietro, M Miozzo, M Ferrarini, P Tassone, and a Neri. The expression
pattern of small nucleolar and small Cajal body-specific RNAs characterizes dis-
tinct molecular subtypes of multiple myeloma. Blood cancer journal, 2(11):e96,
2012.

[158] W Valleron, E Laprevotte, E F Gautier, C Quelen, C Demur, E Delabesse,
X Agirre, F Prosper, T Kiss, and P Brousset. Specific small nucleolar RNA
expression profiles in acute leukemia. Leukemia, 26(9):2052–2060, 2012.

[159] Wilfried Valleron, Loic Ysebaert, Laure Berquet, Virginie Fataccioli, Cathy Que-
len, Antoine Martin, Marie Parrens, Laurence Lamant, Laurence De Leval,
Christian Gisselbrecht, Philippe Gaulard, and Pierre Brousset. Small nucleolar
RNA expression profiling identifies potential prognostic markers in peripheral
T-cell lymphoma. Blood, 120(19):3997–4005, 2012.

[160] Ritsuko Tanaka, Hitoshi Satoh, Masatsugu Moriyama, Kasumi Satoh, Yasuyuki
Morishita, Syouko Yoshida, Toshiki Watanabe, Yoshikazu Nakamura, and Shi-
geo Mori. Intronic U50 small-nucleolar-RNA (snoRNA) host gene of no protein-
coding potential is mapped at the chromosome breakpoint t(3;6)(q27;q15) of
human B- cell lymphoma. Genes to Cells, 5(4):277–287, 2000.

[161] Xue-Yuan Dong, Carmen Rodriguez, Peng Guo, Xiaodong Sun, Jeffrey T. Tal-
bot, Wei Zhou, John Petros, Qunna Li, Robert L. Vessella, Adam S. Kibel,
Victoria L. Stevens, Eugenia E. Calle, and Jin-Tang Dong. SnoRNA U50 is a
candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clin-
ically significant prostate cancer. Human Molecular Genetics, 17(7):1031–1042,
2008.

[162] Gang Xu, Fang Yang, Cui-Ling Ding, Lan-Juan Zhao, Hao Ren, Ping Zhao, Wen
Wang, and Zhong-Tian Qi. Small nucleolar RNA 113-1 suppresses tumorigenesis
in hepatocellular carcinoma. Molecular cancer, 13:216, 2014.

[163] Luyue Chen, Lei Han, Jianwei Wei, Kailiang Zhang, Zhendong Shi, Ran Duan,
Shouwei Li, Xuan Zhou, Peiyu Pu, Jianning Zhang, and Chunsheng Kang.
SNORD76, a box C/D snoRNA, acts as a tumor suppressor in glioblastoma.
Scientific reports, 5:e8588, 2015.

182



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 183

[164] H E Gee, F M Buffa, C Camps, A Ramachandran, R Leek, M Taylor, M Patil,
H Sheldon, G Betts, J Homer, C West, J Ragoussis, and A L Harris. The small-
nucleolar RNAs commonly used for microRNA normalisation correlate with
tumour pathology and prognosis. British journal of Cancer, 104(7):1168–1177,
2011.

[165] M Mourtada-Maarabouni, Mr Pickard, Vl Hedge, F Farzaneh, and Gt Williams.
GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in
breast cancer. Oncogene, 28(2):195–208, Oct 2009.

[166] Ashesh A. Saraiya and Ching C. Wang. snoRNA, a Novel Precursor of mi-
croRNA in Giardia lamblia. PLoS Pathog, 4(11):e1000224, 11 2008.

[167] Ryan J. Taft, Evgeny A. Glazov, Timo Lassmann, Yoshihide Hayashizaki, Piero
Carninci, and John S. Mattick. Small RNAs derived from snoRNAs. RNA (New
York, N.Y.), 15(7):1233–40, 2009.

[168] Alexander Maxwell Burroughs, Yoshinari Ando, Michiel Jan Laurens de Hoon,
Yasuhiro Tomaru, Harukazu Suzuki, Yoshihide Hayashizaki, and Carsten Olivier
Daub. Deep-sequencing of human Argonaute-associated small RNAs provides
insight into miRNA sorting and reveals Argonaute association with RNA frag-
ments of diverse origin. RNA biology, 8(1):158–77, 2011.

[169] Michelle S. Scott, Fabio Avolio, Motoharu Ono, Angus I. Lamond, and Geof-
frey J. Barton. Human miRNA Precursors with Box H/ACA snoRNA Features.
PLoS Comput Biol, 5(9):e1000507, 09 2009.

[170] Shivendra Kishore, Andreas R Gruber, Dominik J Jedlinski, Afzal P Syed, Hadi
Jorjani, and Mihaela Zavolan. Insights into snoRNA biogenesis and processing
from PAR-CLIP of snoRNA core proteins and small RNA sequencing. Genome
biology, 14(5):R45, 2013.

[171] Manli Shen, Eduardo Eyras, Jie Wu, Amit Khanna, Serene Josiah, Mathieu
Rederstorff, Michael Q. Zhang, and Stefan Stamm. Direct cloning of double-
stranded RNAs from RNase protection analysis reveals processing patterns of
C/D box snoRNAs and provides evidence for widespread antisense transcript
expression. Nucleic Acids Research, 39(22):9720–9730, 2011.

[172] Yuuichi Soeno, Yuji Taya, Taras Stasyk, Lukas a Huber, Takaaki Aoba,
and Alexander Hüttenhofer. Identification of novel ribonucleo-protein com-
plexes from the brain-specific snoRNA MBII-52. RNA (New York, N.Y.),
16(7):1293–1300, 2010.

[173] Thomas Schubert, Miriam Caroline Pusch, Sarah Diermeier, Vladimir Benes,
Elisabeth Kremmer, Axel Imhof, and Gernot Längst. Df31 Protein and snoR-
NAs Maintain Accessible Higher-Order Structures of Chromatin. Molecular
Cell, 48(3):434–444, 2012.

[174] Danijela Koppers-Lalic, Michael Hackenberg, Irene V. Bijnsdorp, Monique A J
van Eijndhoven, Payman Sadek, Daud Sie, Nicoletta Zini, Jaap M. Middeldorp,
Bauke Ylstra, Renee X. de Menezes, Thomas Wurdinger, Gerrit A. Meijer, and

183



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
184 BIBLIOGRAPHY

D. Michiel Pegtel. Nontemplated nucleotide additions distinguish the small
RNA composition in cells from exosomes. Cell Reports, 8(6):1649–1658, 2014.

[175] Silke von Ahlfen, Andreas Missel, Klaus Bendrat, and Martin Schlumpberger.
Determinants of RNA quality from FFPE samples. PLoS ONE, 2(12), 2007.

[176] A Liu, M T Tetzlaff, P Vanbelle, D Elder, M Feldman, J W Tobias, A R Sepul-
veda, and X Xu. MicroRNA Expression Profiling Outperforms mRNA Ex-
pression Profiling in Formalin-fixed Paraffin-embedded Tissues. Int J Clin Exp
Pathol, 2(6):519–527, 2009.

[177] Olivia Larne, Elena Martens-Uzunova, Zandra Hagman, Anders Edsjö,
Giuseppe Lippolis, Mirella S Vredenbregt Van Den Berg, Anders Bjartell,
Guido Jenster, and Yvonne Ceder. MiQ - A novel microRNA based diagnos-
tic and prognostic tool for prostate cancer. International journal of Cancer,
132(12):2867–2875, 2013.

[178] Youri Hoogstrate, Guido Jenster, and Elena S. Martens-Uzunova. FlaiMapper:
Computational annotation of small ncRNA-derived fragments using RNA-seq
high-throughput data. Bioinformatics, 31(5):665–673, 2015.

[179] Marie Line Bortolin-Cavaillé and Jérôme Cavaillé. The SNORD115 (H/MBII-
52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-
Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Research,
40(14):6800–6807, 2012.

[180] C M Smith and J A Steitz. Classification of gas5 as a multi-small-nucleolar-
RNA (snoRNA) host gene and a member of the 5’-terminal oligopyrimidine gene
family reveals common features of snoRNA host genes. Molecular and cellular
biology, 18(12):6897–6909, 1998.

[181] Zsuzsanna Kiss-László, Yves Henry, and Tamás Kiss. Sequence and structural
elements of methylation guide snoRNAs essential for site-specific ribose methy-
lation of pre-rRNA. EMBO journal, 17(3):797–807, 1998.

[182] Audrone Lapinaite, Bernd Simon, Lars Skjaerven, Magdalena Rakwalska-
Bange, Frank Gabel, and Teresa Carlomagno. The structure of the box C/D
enzyme reveals regulation of RNA methylation. Nature, 502(7472):519–523,
2013.

[183] Zhihua Li, Christine Ender, Gunter Meister, Patrick S. Moore, Yuan Chang,
and Bino John. Extensive terminal and asymmetric processing of small
RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Research,
40(14):6787–6799, 2012.

[184] Daniel Cifuentes, Huiling Xue, David W Taylor, Heather Patnode, Yuichiro
Mishima, Sihem Cheloufi, Enbo Ma, Shrikant Mane, Gregory J Hannon,
Nathan D Lawson, Scot A Wolfe, and Antonio J Giraldez. A novel miRNA
processing pathway independent of Dicer requires Argonaute2 catalytic activ-
ity. Science (New York, N.Y.), 328(5986):1694–1698, 2010.

184



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 185

[185] Mathew W Wright and Elspeth a Bruford. Naming ’junk’: human non-protein
coding RNA (ncRNA) gene nomenclature. Human genomics, 5(2):90–98, 2011.

[186] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M.
Zahler, and a. D. Haussler. The Human Genome Browser at UCSC. Genome
Research, 12(6):996–1006, 2002.

[187] Todd M. Lowe and Sean R. Eddy. TRNAscan-SE: A program for improved
detection of transfer RNA genes in genomic sequence. Nucleic Acids Research,
25(5):955–964, 1996.

[188] A J Kal, A J van Zonneveld, V Benes, M van den Berg, M G Koerkamp,
K Albermann, N Strack, J M Ruijter, A Richter, B Dujon, W Ansorge, and
H F Tabak. Dynamics of gene expression revealed by comparison of serial
analysis of gene expression transcript profiles from yeast grown on two different
carbon sources. Molecular biology of the cell, 10(6):1859–1872, 1999.

[189] David Goode, Sally Hunter, Maria Doyle, Tao Ma, Simone Rowley, David
Choong, Georgina Ryland, and Ian Campbell. A simple consensus approach
improves somatic mutation prediction accuracy. Genome Medicine, 5(9):90,
2013.

[190] Adam D. Ewing, Kathleen E. Houlahan, Yin Hu, Kyle Ellrott, Cristian Caloian,
Takafumi N. Yamaguchi, J. Christopher Bare, Christine P’ng, Daryl Waggott,
Veronica Y. Sabelnykova, et al. Combining tumor genome simulation with
crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nat
Meth, 12(7):623–630, Jul 2015.

[191] Shanrong Zhao and Baohong Zhang. A comprehensive evaluation of ensembl,
RefSeq, and UCSC annotations in the context of RNA-seq read mapping and
gene quantification. BMC Genomics, 16(1):97, 2015.

[192] Chaitanya R Sanna, Wen-Hsiung Li, and Liqing Zhang. Overlapping genes in
the human and mouse genomes. BMC genomics, 9:169, 2008.

[193] Michael F. Berger, Joshua Z. Levin, Krishna Vijayendran, Andrey Sivachenko,
Xian Adiconis, Jared Maguire, Laura A. Johnson, James Robinson, Roel G. Ver-
haak, Carrie Sougnez, et al. Integrative analysis of the melanoma transcriptome.
Genome Research, 20(4):413–427, 2010.

[194] Henrik Edgren, Astrid Murumagi, Sara Kangaspeska, Daniel Nicorici, Vesa
Hongisto, Kristine Kleivi, Inga H Rye, Sandra Nyberg, Maija Wolf, Anne-Lise
Borresen-Dale, and Olli Kallioniemi. Identification of fusion genes in breast can-
cer by paired-end RNA-sequencing. Genome biology, 12(1):R6, January 2011.

[195] Jeremy Goecks, Anton Nekrutenko, James Taylor, and The Galaxy Team.
Galaxy: a comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences. Genome Biology,
11(8):R86, 2010.

185



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
186 BIBLIOGRAPHY

[196] Huanying Ge, Kejun Liu, Todd Juan, Fang Fang, Matthew Newman, and Wolf-
gang Hoeck. FusionMap: detecting fusion genes from next-generation sequencing
data at base-pair resolution. Bioinformatics, 27(14):1922–1928, 2011.

[197] Paolo Carnevali, Jonathan Baccash, Aaron L Halpern, Igor Nazarenko, Ge-
offrey B Nilsen, Krishna P Pant, Jessica C Ebert, Anushka Brownley, Matt
Morenzoni, Vitali Karpinchyk, et al. Computational Techniques for Human
Genome Resequencing Using Mated Gapped Reads. Journal of Computational
Biology, 19(3):279–292, 2012.

[198] Thomas D. Wu and Colin K. Watanabe. GMAP: a genomic mapping and
alignment program for mRNA and EST sequences. Bioinformatics (Oxford,
England), 21(9):1859–75, May 2005.

[199] Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris Za-
leski, Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R. Gingeras.
STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29:15–21, 2013.

[200] Brian Haas, Alexander Dobin, Nicolas Stransky, Bo Li, Xiao Yang, Timothy
Tickle, Asma Bankapur, Carrie Ganote, Thomas Doak, Natalie Pochet, Jing
Sun, Catherine Wu, Thomas Gingeras, and Aviv Regev. STAR-Fusion: Fast and
Accurate Fusion Transcript Detection from RNA-Seq. bioRxiv, page e120295,
mar 2017.

[201] Daniel Blankenberg, Gregory Von Kuster, Nathaniel Coraor, Guruprasad
Ananda, Ross Lazarus, Mary Mangan, Anton Nekrutenko, and James Taylor.
Galaxy: a web-based genome analysis tool for experimentalists. Current proto-
cols in molecular biology, 89(1):19.10.1–19.10.21, 2010.

[202] Scott A Tomlins, Daniel R Rhodes, Sven Perner, Saravana M Dhanasekaran,
Rohit Mehra, Xiao-Wei Sun, Sooryanarayana Varambally, Xuhong Cao, Joelle
Tchinda, Rainer Kuefer, Charles Lee, James E Montie, Rajal B Shah, Kenneth J
Pienta, Mark A Rubin, and Arul M Chinnaiyan. Recurrent fusion of TMPRSS2
and ETS transcription factor genes in prostate cancer. Science (New York,
N.Y.), 310(5748):644–8, October 2005.

[203] Yang Li, Jeremy Chien, David I. Smith, and Jian Ma. FusionHunter: identi-
fying fusion transcripts in cancer using paired-end RNA-seq. Bioinformatics,
27(12):1708–1710, 2011.

[204] Mridula Nambiar, Vijayalakshmi Kari, and Sathees C. Raghavan. Chromoso-
mal translocations in cancer. Biochimica et biophysica acta, 1786(2):139–52,
December 2008.

[205] Frederic J Kaye. Mutation-associated fusion cancer genes in solid tumors. Molec-
ular cancer therapeutics, 8(6):1399–408, June 2009.

[206] Adam Abeshouse, Jaeil Ahn, Rehan Akbani, Adrian Ally, Samirkumar Amin,
Christopher D Andry, Matti Annala, Armen Aprikian, Joshua Armenia, Arshi
Arora, et al. The Molecular Taxonomy of Primary Prostate Cancer. Cell,
163(4):1011–1025, nov 2015.

186



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 187

[207] Scott A. Tomlins, Anders Bjartell, Arul M. Chinnaiyan, Guido Jenster,
Robert K. Nam, Mark A. Rubin, and Jack A. Schalken. ETS gene fusions
in prostate cancer: From discovery to daily clinical practice. European Urology,
56(2):275–286, aug 2009.

[208] K Yoshihara, Q Wang, W Torres-Garcia, S Zheng, R Vegesna, H Kim, and
R G W Verhaak. The landscape and therapeutic relevance of cancer-associated
transcript fusions. Oncogene, 34(37):4845–4854, dec 2014.

[209] Saskia Hiltemann, Elizabeth A McClellan, Jos van Nijnatten, Sebastiaan Hors-
man, Ivo Palli, Ines Teles Alves, Thomas Hartjes, Jan Trapman, Peter van der
Spek, Guido Jenster, et al. iFUSE: integrated fusion gene explorer. Bioinfor-
matics, 29(13):1700–1701, 2013.

[210] Anthony M. Bolger, Marc Lohse, and Bjoern Usadel. Trimmomatic: a flexi-
ble trimmer for Illumina sequence data. Bioinformatics, 30(15):2114–2120, apr
2014.

[211] James T Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman,
Eric S Lander, Gad Getz, and Jill P Mesirov. Integrative genomics viewer.
Nature Biotechnology, 29(1):24–26, jan 2011.

[212] Michael Lawrence, Wolfgang Huber, Hervé Pagès, Patrick Aboyoun, Marc Carl-
son, Robert Gentleman, Martin T. Morgan, and Vincent J. Carey. Software for
Computing and Annotating Genomic Ranges. PLoS Computational Biology,
9(8):e1003118, aug 2013.

[213] K. G. Hermans, J. L. Boormans, D. Gasi, G. J.H.L. van Leenders, G. Jenster,
P. C.M.S. Verhagen, and J. Trapman. Overexpression of Prostate-Specific TM-
PRSS2(exon 0)-ERG Fusion Transcripts Corresponds with Favorable Prognosis
of Prostate Cancer. Clinical Cancer Research, 15(20):6398–6403, oct 2009.

[214] Cath Tyner, Galt P. Barber, Jonathan Casper, Hiram Clawson, Mark Diekhans,
Christopher Eisenhart, Clayton M. Fischer, David Gibson, Jairo Navarro Gonza-
lez, Luvina Guruvadoo, Maximilian Haeussler, Steve Heitner, Angie S. Hinrichs,
Donna Karolchik, Brian T. Lee, Christopher M. Lee, Parisa Nejad, Brian J.
Raney, Kate R. Rosenbloom, Matthew L. Speir, Chris Villarreal, John Vi-
vian, Ann S. Zweig, David Haussler, Robert M. Kuhn, and W. James Kent.
The UCSC Genome Browser database: 2017 update. Nucleic Acids Research,
45(D1):D626–D634, 2017.

[215] Christopher Weier, Michael C Haffner, Timothy Mosbruger, David M Esopi,
Jessica Hicks, Qizhi Zheng, Helen Fedor, William B Isaacs, Angelo M. De Marzo,
William G Nelson, and Srinivasan Yegnasubramanian. Nucleotide resolution
analysis of TMPRSS2 and ERG rearrangements in prostate cancer. The Journal
of Pathology, 230(2):174–183, may 2013.

[216] Nicolas Stransky, Ethan Cerami, Stefanie Schalm, Joseph L. Kim, and Christoph
Lengauer. The landscape of kinase fusions in cancer. Nature Communications,
5:e4846, sep 2014.

187



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
188 BIBLIOGRAPHY

[217] Youri Hoogstrate, Chao Zhang, Alexander Senf, Jochem Bijlard, Saskia Hilte-
mann, David van Enckevort, Susanna Repo, Jaap Heringa, Guido Jenster, Re-
mond J.A. Fijneman, Jan-Willem Boiten, Gerrit A. Meijer, Andrew Stubbs,
Jordi Rambla, Dylan Spalding, Sanne Abeln, Youri Hoogstrate, Chao Zhang,
Alexander Senf, Jochem Bijlard, Saskia Hiltemann, David van Enckevort,
Susanna Repo, Jaap Heringa, Guido Jenster, Remond J.A. Fijneman, Jan-
Willem Boiten, Gerrit A. Meijer, Andrew Stubbs, Jordi Rambla, Dylan Spald-
ing, and Sanne Abeln. Integration of EGA secure data access into Galaxy.
F1000Research, 5(0):1–9, 2016.

[218] Inês Teles Alves, Saskia Hiltemann, Thomas Hartjes, Peter van der Spek, An-
drew Stubbs, Jan Trapman, and Guido Jenster. Gene fusions by chromothrip-
sis of chromosome 5q in the VCaP prostate cancer cell line. Human genetics,
132(6):709–713, June 2013.

[219] Björn A. Grüning, Jörg Fallmann, Dilmurat Yusuf, Sebastian Will, Anika
Erxleben, Florian Eggenhofer, Torsten Houwaart, Bérénice Batut, Pavankumar
Videm, Andrea Bagnacani, Markus Wolfien, Steffen C. Lott, Youri Hoogstrate,
Wolfgang R. Hess, Olaf Wolkenhauer, Steve Hoffmann, Altuna Akalin, Uwe
Ohler, Peter F. Stadler, and Rolf Backofen. The RNA workbench: best prac-
tices for RNA and high-throughput sequencing bioinformatics in Galaxy. Nu-
cleic Acids Research, 45(W1):W560–W566, 2017.

[220] Ronny Lorenz, Stephan H Bernhart, Christian Hoener Zu Siederdissen, Hakim
Tafer, Christoph Flamm, Peter F Stadler, and Ivo L Hofacker. ViennaRNA
Package 2.0. Algorithms for Molecular Biology, 6(1):26, 2011.

[221] Sebastian Will, Kristin Reiche, Ivo L Hofacker, Peter F Stadler, and Rolf Back-
ofen. Inferring noncoding RNA families and classes by means of genome-scale
structure-based clustering. PLoS computational biology, 3(4):e65, 2007.

[222] S. Will, T. Joshi, I. L. Hofacker, P. F. Stadler, and R. Backofen. LocARNA-
P: accurate boundary prediction and improved detection of structural RNAs.
RNA, 18(5):900–914, May 2012.

[223] Felipe Veiga da Leprevost, Björn A. Grüning, Saulo Alves Aflitos, Hannes L.
Röst, Julian Uszkoreit, Harald Barsnes, Marc Vaudel, Pablo Moreno, Laurent
Gatto, Jonas Weber, Mingze Bai, Rafael C Jimenez, Timo Sachsenberg, Julianus
Pfeuffer, Roberto Vera Alvarez, Johannes Griss, Alexey I. Nesvizhskii, and Yas-
set Perez-Riverol. BioContainers: An open-source and community-driven frame-
work for software standardization. Bioinformatics, mar 2017.

[224] J. Fallmann, V. Sedlyarov, A. Tanzer, P. Kovarik, and I. L. Hofacker. AREsite2:
an enhanced database for the comprehensive investigation of AU/GU/U-rich
elements. Nucleic Acids Research, 44(D1):D90–95, Jan 2016.

[225] K. Blin, C. Dieterich, R. Wurmus, N. Rajewsky, M. Landthaler, and
A. Akalin. DoRiNA 2.0–upgrading the doRiNA database of RNA interac-
tions in post-transcriptional regulation. Nucleic Acids Research, 43(Database
issue):D160–167, Jan 2015.

188



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 189

[226] E. P. Nawrocki and S. R. Eddy. Infernal 1.1: 100-fold faster RNA homology
searches. Bioinformatics, 29(22):2933–2935, Nov 2013.

[227] D. L. Corcoran, S. Georgiev, N. Mukherjee, E. Gottwein, R. L. Skalsky, J. D.
Keene, and U. Ohler. PARalyzer: definition of RNA binding sites from PAR-
CLIP short-read sequence data. Genome Biol., 12(8):R79, Aug 2011.

[228] Y. Hoogstrate, R. Bottcher, S. Hiltemann, P. J. van der Spek, G. Jenster, and
A. P. Stubbs. FuMa: reporting overlap in RNA-seq detected fusion genes. Bioin-
formatics, 32(8):1226–1228, Apr 2016.

[229] Carole A Goble, Jiten Bhagat, Sergejs Aleksejevs, Don Cruickshank, Danius
Michaelides, David Newman, Mark Borkum, Sean Bechhofer, Marco Roos, Peter
Li, and David De Roure. myExperiment: a repository and social network for
the sharing of bioinformatics workflows. Nucleic Acids Research, 38(Web Server
issue):W677–82, July 2010.

[230] E. Rivas and S. R. Eddy. Noncoding RNA gene detection using comparative
sequence analysis. BMC Bioinformatics, 2(1):8, 2001.

[231] K. Katoh and D. M. Standley. MAFFT multiple sequence alignment soft-
ware version 7: improvements in performance and usability. Mol. Biol. Evol.,
30(4):772–780, Apr 2013.

[232] S. Washietl, S. Findeiss, S. A. Muller, S. Kalkhof, M. von Bergen, I. L. Hofacker,
P. F. Stadler, and N. Goldman. RNAcode: robust discrimination of coding and
noncoding regions in comparative sequence data. RNA, 17(4):578–594, Apr
2011.

[233] A. R. Gruber, R. Neubock, I. L. Hofacker, and S. Washietl. The RNAz web
server: prediction of thermodynamically stable and evolutionarily conserved
RNA structures. Nucleic Acids Research, 35(Web Server issue):W335–338, Jul
2007.

[234] F. Eggenhofer, I. L. Hofacker, and C. Honer Zu Siederdissen. RNAlien
- Unsupervised RNA family model construction. Nucleic Acids Research,
44(17):8433–8441, Sep 2016.

[235] F. Krueger. A wrapper tool around Cutadapt and FastQC to consistently apply
quality and adapter trimming to FastQ files, with some extra functionality for
MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries. [ht
tps://www.bioinformatics.babraham.ac.uk/projects/trim_galore/; un-
published].

[236] Marcel Martin. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet.journal, 17(1), 2011.

[237] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg.
TopHat2: accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biology, 14(4):R36, Apr 2013.

189

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/


B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
190 BIBLIOGRAPHY

[238] B. L. Aken, P. Achuthan, W. Akanni, M. R. Amode, F. Bernsdorff, J. Bhai,
K. Billis, D. Carvalho-Silva, C. Cummins, P. Clapham, L. Gil, C. G. Giron,
L. Gordon, T. Hourlier, S. E. Hunt, S. H. Janacek, T. Juettemann, S. Keenan,
M. R. Laird, I. Lavidas, T. Maurel, W. McLaren, B. Moore, D. N. Mur-
phy, R. Nag, V. Newman, M. Nuhn, C. K. Ong, A. Parker, M. Patricio,
H. S. Riat, D. Sheppard, H. Sparrow, K. Taylor, A. Thormann, A. Vullo,
B. Walts, S. P. Wilder, A. Zadissa, M. Kostadima, F. J. Martin, M. Muffato,
E. Perry, M. Ruffier, D. M. Staines, S. J. Trevanion, F. Cunningham, A. Yates,
D. R. Zerbino, and P. Flicek. Ensembl 2017. Nucleic Acids Research,
45(D1):D635–D642, Jan 2017.

[239] C. Sloggett, N. Goonasekera, and E. Afgan. BioBlend: automating pipeline
analyses within Galaxy and CloudMan. Bioinformatics, 29(13):1685–1686, Jul
2013.

[240] E. P. Nawrocki, S. W. Burge, A. Bateman, J. Daub, R. Y. Eberhardt, S. R.
Eddy, E. W. Floden, P. P. Gardner, T. A. Jones, J. Tate, and R. D. Finn.
Rfam 12.0: updates to the RNA families database. Nucleic Acids Research,
43(Database issue):D130–137, Jan 2015.

[241] H. Thorvaldsdottir, J. T. Robinson, and J. P. Mesirov. Integrative Genomics
Viewer (IGV): high-performance genomics data visualization and exploration.
Brief. Bioinformatics, 14(2):178–192, Mar 2013.

[242] C. Tyner, G. P. Barber, J. Casper, H. Clawson, M. Diekhans, C. Eisenhart,
C. M. Fischer, D. Gibson, J. N. Gonzalez, L. Guruvadoo, M. Haeussler, S. Heit-
ner, A. S. Hinrichs, D. Karolchik, B. T. Lee, C. M. Lee, P. Nejad, B. J. Raney,
K. R. Rosenbloom, M. L. Speir, C. Villarreal, J. Vivian, A. S. Zweig, D. Haus-
sler, R. M. Kuhn, and W. J. Kent. The UCSC Genome Browser database: 2017
update. Nucleic Acids Research, 45(D1):D626–D634, Jan 2017.

[243] Youri Hoogstrate. An algorithm for prediction RNA 2D structures including
K-turns. Technical report, Technical University of Delft, 2012. [MSc internship
report; unpublished].

[244] Saira Ashraf, Lin Huang, and David M.J. Lilley. Sequence determinants of the
folding properties of box C/D kink-turns in RNA. RNA, 23(12):1927–1935,
2017.

[245] Youri Hoogstrate. ncRNA sequencing fragmenten onder de loep met ncRNA
Mapper. Technical report, ErasmusMC, 2011. [BSc thesis; unpublished].

[246] S. Sai Lakshmi and Shipra Agrawal. piRNABank: a web resource on
classified and clustered Piwi-interacting RNAs. Nucleic Acids Research,
36(suppl_1):D173–D177, Sep 2007.

[247] Pankaj Kumar, Suresh B. Mudunuri, Jordan Anaya, and Anindya Dutta.
tRFdb: a database for transfer RNA fragments. Nucleic Acids Research,
43(D1):D141–D145, 2015.

190



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y

BIBLIOGRAPHY 191

[248] Sameer Jhavar, Alison Reid, Jeremy Clark, Zsofia Kote-Jarai, Timothy Christ-
mas, Alan Thompson, Christopher Woodhouse, Christopher Ogden, Cyril
Fisher, Cathy Corbishley, Johann De-Bono, Rosalind Eeles, Daniel Brewer, and
Colin Cooper. Detection of TMPRSS2-ERG translocations in human prostate
cancer by expression profiling using GeneChip Human Exon 1.0 ST arrays. The
Journal of Molecular Diagnostics, 10(1):50–57, January 2008.

[249] J. Zhang, J. Baran, A. Cros, J. M. Guberman, S. Haider, J. Hsu, Y. Liang,
E. Rivkin, J. Wang, B. Whitty, M. Wong-Erasmus, L. Yao, and A. Kasprzyk.
International Cancer Genome Consortium Data Portal: a one-stop shop for can-
cer genomics data. Database, 2011(1):26, sep 2011.

[250] Carla Zijlstra and Willem Stoorvogel. Prostasomes as a source of diag-
nostic biomarkers for prostate cancer. Journal of Clinical Investigation,
126(4):1144–1151, apr 2016.

[251] V R Minciacchi, A Zijlstra, M A Rubin, and D Di Vizio. Extracellular vesicles
for liquid biopsy in prostate cancer: where are we and where are we headed?
Prostate Cancer and Prostatic Diseases, 20(3):251–258, apr 2017.

[252] Saskia Hiltemann, Youri Hoogstrate, Peter van der Spek, Guido Jenster, and
Andrew Stubbs. iReport: a generalised Galaxy solution for integrated experi-
mental reporting. GigaScience, 3(1):1–8, 2014.

[253] Elena S. Martens-Uzunova, Youri Hoogstrate, Anton Kalsbeek, Bas Pigmans,
Mirella Vredenbregt-van den Berg, Natasja Dits, Søren Jensby Nielsen, Adam
Baker, Tapio Visakorpi, Chris Bangma, and Guido Jenster. C/D-box snoRNA-
derived RNA production is associated with malignant transformation and
metastatic progression in prostate cancer. Oncotarget, 6(19):17430–17444, jul
2015.

[254] Lale Erdem-Eraslan, Martin J. van den Bent, Youri Hoogstrate, Hina Naz-
Khan, Andrew Stubbs, Peter van der Spek, René Böttcher, Ya Gao, Maurice
de Wit, Walter Taal, Hendrika M. Oosterkamp, Annemiek Walenkamp, Lau-
rens V. Beerepoot, Monique C.J. Hanse, Jan Buter, Aafke H. Honkoop, Bronno
van der Holt, René M. Vernhout, Peter A.E. Sillevis Smitt, Johan M. Kros, and
Pim J. French. Identification of Patients with Recurrent Glioblastoma Who
May Benefit from Combined Bevacizumab and CCNU Therapy: A Report from
the BELOB Trial. Cancer Research, 76(3):525–534, 2016.

[255] C Zhang, J Bijlard, C Staiger, S Scollen, D van Enckevort, Y Hoogstrate, A Senf,
S Hiltemann, S Repo, W Pipping, M Bierkens, S Payralbe, B Stringer, J Heringa,
A Stubbs, LO Bonino Da Silva Santos, J Belien, W Weistra, R Azevedo, K van
Bochove, G Meijer, JW Boiten, J Rambla, R Fijneman, JD Spalding, and
S Abeln. Systematically linking tranSMART, Galaxy and EGA for reusing
human translational research data. F1000Research, 6, 2017.

[256] Bérénice Batut, Saskia Hiltemann, Andrea Bagnacani, Dannon Baker, Vivek
Bhardwaj, Clemens Blank, Anthony Bretaudeau, Loraine Brillet-Guéguen,
Martin Čech, John Chilton, Dave Clements, Olivia Doppelt-Azeroual, Anika

191



B
IB

L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
B

IB
L
IO

G
R

A
P
H

Y
192 BIBLIOGRAPHY

Erxleben, Mallory Ann Freeberg, Simon Gladman, Youri Hoogstrate, Hans-
Rudolf Hotz, Torsten Houwaart, Pratik Jagtap, Delphine Larivière, Gildas Le
Corguillé, Thomas Manke, Fabien Mareuil, Fidel Ramírez, Devon Ryan, Flo-
rian Christoph Sigloch, Nicola Soranzo, Joachim Wolff, Pavankumar Videm,
Markus Wolfien, Aisanjiang Wubuli, Dilmurat Yusuf, James Taylor, Rolf Back-
ofen, Anton Nekrutenko, and Björn Grüning. Community-Driven Data Analysis
Training for Biology. Cell Systems, 6(6):752–758.e1, 2018.

[257] Malgorzata A Komor, Linda JW Bosch, Gergana Bounova, Anne S Bolijn,
Pien Delis van Diemen, Christian Rausch, Youri Hoogstrate, Andrew P Stubbs,
Mark de Jong, Guido Jenster, et al. Consensus molecular subtypes classification
of colorectal adenomas. The Journal of Pathology, 246(3):266–276, Aug 2018.

[258] Sujun Chen, Vincent Huang, Xin Xu, Julie Livingstone, Fraser Soares, Jouhyun
Jeon, Yong Zeng, Fouad Yousif, Yuzhe Zhang, Nilgun Donmez, Musaddeque
Ahmed, Haiyang Guo, Stas Volik, Anna Lapuk, Jessica Petricca, Melvin L.K.
Chua, Lawrence E. Heisler, Natalie S. Fox, Michael Fraser, Vinayak Bhandari,
Yu-Jia Shiah, Michele Orain, Valerie Picard, Helene Hovington, Alain Bergeron,
Louis Lacombe, Yves Fradet, Bernard Tetu, Stanley Liu, Felix Feng, Malgo-
rzata A. Komor, Cenk Sahinalp, Colin Collins, Youri Hoogstrate, Mark de Jong,
Remond J.A. Fijneman, Teng Fei, Guido Jenster, Theodorus van der Kwast,
Robert G. Bristow, Paul C. Boutros, and Housheng Hansen He. Widespread
and functional rna circularization in localized prostate cancer. Cell, 2018. [Ac-
cepted].

192



A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

9 | Appendices

9.1: Curriculum Vitae

9.2: PhD Portfolio

9.3: List of Publications

193



A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

A
pp

en
di

ce
s

194 Appendices

9.1 Curriculum Vitae

Youri Hoogstrate was born on the 7th of September 1987, Goes, The Netherlands.
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2011. The thesis was about small RNA-seq analysis and conservation of ncRNAs,
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graduated in 2013. The research assignment during the MSc program was about RNA
folding including K-turns, in collaboration with the bioinformatics department of TU-
Delft. The MSc thesis was about understanding characteristics between biological and
artificial protein sequences, in collaboration with the human genetics department of
Leiden University Medical Center. During the MSc program he was employed at
the Erasmus Medical Center, Rotterdam, as bioinformatician, mainly focusing on
RNA-seq analysis. After the MSc program he started a PhD program on RNA-seq
analysis in the Erasmus Medical Center as collaboration between the departments of
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9.2 PhD portfolio

Year Attended courses ECTS
2015 MolMed Course Basic and Translational Oncology 1.8

ErasmusMC

Year Lectured Courses
2014 Galaxy Community Conference GCC2014

Baltimore, USA
lectured: RNA-seq courses

2015 TraIT Galaxy NGS course
ErasmusMC
lectured: RNA-seq practical

2015 Galaxy Community Conference GCC2015
The Sainsbury Laboratory, Norwich, UK
lectured: RNA-seq courses

2015 Workshop Galaxy, BSc nanobiology course Delft
TU-Delft, Delft
lectured: Galaxy and RNA-seq

2015 BioSB RNA-seq 5thcourse
LUMC
lectured: small RNA-seq and Galaxy courses

2014 MolMed Galaxy course
ErasmusMC
lectured: RNA-seq tuxedo and Enhanced RNA-seq

2016 NGS Data Analysis in Galaxy (CTMM-TraIT course)
VUmc, Amsterdam
lectured: entire course

2016 MolMed Galaxy course
ErasmusMC
lectured: RNA-seq
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2016 BioSB RNA-seq 6thcourse
LUMC
lectured: small RNA-seq and Galaxy courses

2017 Galaxy for NGS
ErasmusMC
lectured: MolMed Galaxy course

2017 ELIXIR European Galaxy Developer Workshop
Strassbourg, FR
lectured: Visualisations and tool development

Year Attended Conferences
2014 Galaxy Community Conference GCC2014 Baltimore, MD, USA
2015 Galaxy Community Conference GCC2015 Norwich, UK
2016 BioSB 2016 Lunteren, NL
2016 ECCB2016 Den Haag, NL

Year Supervised Students
2014 Hina Naz-Khan (MSc thesis)
2014 Adam van Adrichem (MSc Research Assignment)
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Contributions to scientific open-source software
bioconda recipes: build-recipes for bioconda package manager
CrossMap: Modern implementation of liftOver
featureCounts: Tool that quickly estimates read-counts in BAM files
fusionCatcher: RNA-seq fusion gene detection tool
Galaxy: Web-portal for running scientific analysis tools
RNA-STAR: RNA-seq aligner
VG: graph based genome

Maintainer of scientific open-source software
bam-lorenz-coverage: generate Lorenz plots and Coverage plots directly from
BAM files
dr-disco: detecting genomic breakpoints of fusion transcripts in random primed
RNA-seq data
fastafs: fuse layer between compressed and true FASTA files
FlaiMapper: detection of small ncRNA derived fragments
FuMa: reporting overlap in RNA-seq detected fusion genes
Galaxy IUC-tools: Main Galaxy Tool shed repository
HTSeq: Tool and library for gene counting and genomic indices
ncRNA Mapper: Investigation of conservation and folding of ncRNA derived
fragments
segmentation-fold: Modification to classical RNA folding algorithm to include
K-turns and loop-E-motifs
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