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ABSTRACT 

 

The first step in Intensity Modulated Radiation Therapy (IMRT) treatments is to acquire a Computed 

Tomography (CT) to plan Radiation Therapy – the planning CT (pCT). Thereafter, before an image 

guided session of EBRT, a Cone Beam CBCT is acquired making sure the patient is correctly positioned 

as was while acquiring the pCT. However, there are frequent changes in shape and size of different 

organs during treatment, meaning that the planned dose might not be the delivered. If these changes are 

significant, a treatment re-plan may be required, which is time consuming.  

This situation can be avoided, since re-planning is sometimes taken as precaution due to specialist 

uncertainty about the exact distribution of the delivered dose.  

Deformable image registration (DIR) is a possible solution to know the dose distribution throughout 

the entire treatment. The latter can be performed by deforming the planning CT on each daily CBCT 

and posteriorly calculate the actual delivered dose using the reshaped CT’s. It is not advisable to use the 

CBCT’s due to the low quality of image.  

In this project, the benefits of using DIR on clinic are going to be explored, by firstly evaluating DIR 

quality on pelvic CT-CBCT scans.  

The study cases enrolled in this dissertation were diagnosed with cervical or endometrial cancer. 

These patients accepted being part of a clinical study implemented at and approved by the ethical 

commission of Champalimaud Foundation, which suggests the implementation of Stereotactic Body 

Radiation Therapy (SBRT) instead of Brachytherapy, to avoid tumour recurrence. Using DIR, it is also 

going to be analysed the deformation magnitude and consistency of these patients during treatment as 

well as calculated the actual delivered dose to the PTV and CTV. 

For DIR purposes, it is going to be use Velocity® in this project, a software developed by Varian 

Medical Systems. The study cases planning CT’s are going to be deformed to the CBCT form using two 

DIR methods: one intensity-based and one intensity-based and feature based. For dose calculation 

purposes, Eclipse (Varian Medical Systems) is going to be used.  

 

 

Key-words: Radiation Therapy; Cone Beam Computed Tomography; Computed Tomography; 

Deformable Image Registration; Gynaecological cancer. 
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RESUMO 

 

Este projeto foi desenvolvido na Fundação Champalimaud, Lisboa, Portugal, na área de radioterapia. 

A radioterapia é utilizada para tratar neoplasias bem localizadas, e pode ser usada como complemento 

de cirurgia e/ou quimioterapia. Envolve a utilização de radiação ionizante para afetar o tumor, e destruir 

as células cancerígenas. Há dois principais tipos radioterapia: radioterapia externa (EBRT) e 

braquiterapia. Neste projeto, vão ser exploradas radioterapia externa e braquiterapia, uma vez que estas 

são as técnicas utilizadas em doentes com cancro ginecológico, doentes incluídas num estudo clinico 

aprovado pela comissão ética da fundação Champalimaud, e os nossos casos de estudo.  

O primeiro passo em tratamentos de radioterapia externa (EBRT) passa por adquirir uma imagem de 

tomografia computorizada convencional (CT) para planear o tratamento de radioterapia – o CT de 

planeamento (pCT). Na Fundação Champalimaud, são realizados dois tipos de EBRT: Arcoterapia 

Volumétrica Modulada (VMAT) e Radioterapia Modulada por Intensidade de ângulos fixos (IMRT). 

Para propósitos de localização tumoral, estes tipos de radioterapia são complementados por radioterapia 

guiada por imagem (IGRT).  

Nesta instituição, o CT de planeamento adquirido é um CT espiral, com qualidade alargada, que 

permite visualizar com clareza a área que irá ser irradiada. Após diagnosticar o tumor, o radio-

oncologista utiliza o software Eclipse® (Varian Medical Systems) para contornar as estruturas relevantes 

para planear o tratamento e para prescrever uma determinada dose para irradiar o tumor, com auxílio de 

outras imagens médicas como ressonância magnética. No caso de tratamentos de EBRT, é crucial 

prescrever uma dose ao PTV (volume de planeamento de alvo), uma vez que este é uma extensão do 

CTV (local de suspeita infiltração do tumor) e que tem em conta potenciais variações geométricas 

durante o tratamento. 

Com o Eclipse®, utilizando o pCT, é possível fazer o planeamento de tratamento. Depois de fazer o 

controlo de qualidade do tratamento (utilizando o ArcCheck e/ou EPID) o doente está pronto para ser 

tratado. 

Antes de cada sessão de radioterapia externa guiada por imagem (IGRT), é adquirida uma imagem 

de CT de feixe cónico (CBCT) para garantir que o doente está corretamente posicionado, como enquanto 

se adquiriu o pCT. O CBCT é uma imagem que tem menos qualidade que o CT espiral e que permite 

administrar menos dose de radiação ao doente, permitindo ainda assim garantir que o doente está na 

posição correta para ser tratado. 

No entanto, há mudanças frequentes na forma e tamanho dos diferentes órgãos durante o tratamento. 

Desta forma, a dose planeada pode por vezes não ser a que é realmente administrada. Quando as 

mudanças são significativas, é por vezes necessário recorrer ao replaneamento de tratamento, o que pode 

resultar num prolongamento do processo clínico e ocupação dos recursos humanos.  

O replaneamento pode ser evitado, uma vez que é por vezes realizado por precaução devido à 

incerteza dos especialistas, da distribuição exata de dose administrada ao doente.  

No registo deformável de imagens (DIR), pretende-se transformar uma imagem (“imagem em 

movimento”) numa outra (“imagem fixa”). Há três tipos de DIR, que utilizam diferentes funções 

objetivas para encontrar a melhor correspondência entre a imagem em movimento e a fixa: DIR baseada 

na intensidade dos pixéis de ambas as imagens (pressupõe que as duas apresentam intensidades 

semelhantes em iguais pontos); DIR baseada em algumas características (recorre a determinadas 

características das imagens, como estruturas semelhantes contornadas em ambas); DIR híbrida (resulta 

na conjugação dos dois métodos anteriores). 

O DIR é uma potencial ferramenta para saber a exata distribuição de dose de um doente durante o 

tratamento. É possível deformar o pCT à imagem de cada CBCT adquirido, e depois calcular-se a dose 
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administrada nos CT’s deformados. Isto devido ao facto de não ser possível calcular dose nos CBCT’s 

devido à falta de qualidade de imagem, o que pode resultar em erros associados.  

Neste projeto, os casos de estudo são doentes diagnosticadas com cancro ginecológico: do colo do 

útero ou do endométrio. O diagnóstico destas doentes é feito em primeiro lugar através de uma consulta, 

da realização de um ultrassom trans-vaginal, biópsia do tumor, CT abdominal-pélvico e ressonância 

magnética pélvica. Quando o diagnóstico é estabelecido, o estádio do tumor é avaliado de acordo com: 

diferenciação das células dos tecidos, alastramento e metastização, idade da doente, e invasão do espaço 

linfo-vascular (LVSI). A aquisição de CT’s torácicos ou abdominais superiores é indicada para detetar 

eventuais metástases distantes. Pode ser adquirida uma imagem de Tomografia por Emissão de Positrões 

(PET) quando se está na presença de um cancro ativo, para estadear metástases distantes e para 

confirmar a extensão da doença.   

Após o primeiro tratamento de EBRT ou quimioterapia adjuvante, a braquiterapia é o tratamento 

stantard a ser administrado a doentes com cancro do colo do útero ou endométrio, para evitar a 

recorrência tumoral. No entanto, as doentes incluídas nesta dissertação aceitaram fazer parte de um 

estudo clínico implementado e aceite pela comissão de ética da Fundação Champalimaud: utilizar um 

boost de radioterapia estereostática (SBRT) VMAT no lugar de braquiterapia em doentes ginecológicos. 

A SBRT implica a prescrição de uma alta dose de radiação para os tumores, e requer imobilização ou 

monitorização da doente, uma vez que pequenos movimentos podem danificar a precisão de dose 

administrada. De acordo com o estádio da doença, e dependendo se o útero é passível de ser removido 

por cirurgia, as doentes de cancro do colo do útero ou endométrio podem passar por três ou cinco frações 

de SBRT. Às doentes de três frações, foi possível remover o útero através de cirurgia, enquanto que as 

doentes de cinco frações ainda apresentam útero.  

Neste projeto, foi utilizado para DIR, o Velocity® (Varian Medical Systems). Para cálculos de dose, 

foi utilizado o Eclipse®.  

Foram primeiro estudados os benefícios de usar DIR na clínica, avaliando em primeiro lugar a 

qualidade da DIR.  

Após a validação do software para os casos de estudo, para transformar os pCT’s à imagem de cada 

um dos CBCT’s, recorreu-se a dois métodos de DIR. Os dois rCT’s resultantes, correspondentes ao 

mesmo CBCT foram depois comparados, para que fosse possível decidir qual dos métodos era o mais 

indicado para os casos de estudo. Os dois métodos utilizados do Velocity® foram: CBCT Corrected 

Deformable (indicado para registo de imagem pCT-CBCT; função objetiva baseada na intensidade dos 

pixéis) e Structure Guided Derformable (função objetiva híbrida). 

Para as imagens abdomino-pélvicas de doentes com cancro ginecológico, o método que melhor 

resultou, foi o Structure Guided Deformable. No entanto, por vezes o CBCT Corrected Deformable teve 

melhores resultados, o que levou a concluir que quando os resultados não são bons o suficiente quando 

utilizando o primeiro, se deve utilizar o segundo. 

Quando os pCT deformados eram considerados aprovados, ou seja, estavam em conformidade com 

o CBCT correspondente, era possível utilizar os mesmos para realizar cálculos de dose. A avaliação foi 

realizada considerando apenas a região do PTV, uma vez que esta é a zona com relevância clínica. Os 

pCT’s deformados no Velocity® foram exportados para o Eclipse® para proceder ao cálculo da dose 

em cada pCT deformado. O plano original de tratamento foi copiado para os mesmos, para replicar a 

situação de tratamento. O cálculo da dose dos rCT’s sobreposta no pCT permitiu a avaliação da 

conformidade das doentes ao longo do tratamento, e também a preparação do passo seguinte.  

As doses calculadas no Eclipse® nos rCT’s deformados foram importadas para o Velocity®, onde 

se procedeu à deformação da dose dos rCT’s para o pCT (através da matriz de deformação anteriormente 

criada) e depois se procedeu à soma das doses deformadas, permitindo aceder à dose realmente 

administrada em todos os tratamentos.  
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Recorrendo à DIR, avaliou-se também a dose realmente administrada ao PTV e CTV das doentes 

incluídas no estudo clínico, e foi estudado se a dose administrada às estruturas de risco se encontrava 

dentro dos limites clinicamente aceites.  

Em relação à conformidade das doentes durante todo o tratamento, parece existir uma relação entre 

a mesma e a curva de aprendizagem do protocolo implementado no estudo clínico. No entanto, também 

aparenta ser possível que a conformidade das doentes esteja relacionada com o número de frações SBRT. 

O mesmo se verificou com a dose realmente administrada. A maior percentagem de dose administrada 

em relação à planeada, no CTV e PTV, evidencia estar correlacionada tanto com o tipo de doente, como 

com a curva de aprendizagem. Também foi analisada a dose administrada às seguintes estruturas de 

risco: intestino delgado, parede do reto e parede da bexiga. A dose administrada a estas estruturas, 

encontrou-se dentro dos limites aceites clinicamente. 

O Velocity® provou ser um software de fácil utilização, e que é útil para a realização de DIR em 

registo pCT-CBCT de imagens de doentes com cancro ginecológico. 

Para futuro trabalho, é importante estudar DIR noutros tipos de imagens, e reunir mais doentes 

tratadas com SBRT para evitar recorrência tumoral (endométrio ou colo do útero), para conclusões mais 

precisas acerca deste método. O Velocity® também pode ser potencialmente utilizado para implementar 

radioterapia adaptativa na clínica.  

 

Palavras-chave: Radioterapia; Tomografia Computorizada; Tomografia Computorizada de Feixe 

Cónico; Registo Deformável de Imagens; Cancro ginecológico. 
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1. INTRODUCTION 

 

In this project the advantages of using Velocity® on clinic at Champalimaud Foundation (CF) are 

assessed. The use of this software and Deformable Image Registration (DIR) may improve clinical 

workflow, avoiding re-planning External Beam Radiation Therapy treatments unnecessarily.   

This study will focus on treatments for patients with gynaecological cancer (cervical or endometrial) 

using DIR image processing. These patients have been treated with an innovative boost treatment of 

Stereotactic Body Radiation Therapy (SBRT) instead of Brachytherapy, as suggested by a clinical study 

in course, approved by CF ethical commission.   

 

1.1. CANCER 

 

Tumours are caused by human cells mutations, leading to changes in regulation mechanisms of cell 

proliferation (increased stimulation of cell division) and/or apoptosis (decreased stimuli that interrupt 

cell division). In the cell division process, if some mutation occurs at the alleles of tumour suppressor 

genes, in proto-oncogenes, or in other responsible for cell proliferation, it will possibly lead to the 

formation of a tumour [1].  

The proto-oncogene mutation will continuously stimulate cell division. Also, a mutation of a tumour 

suppressor gene can cease it inhibitory action in the proliferative stimulation of proto-oncogenes, 

contributing to the development of a neoplasm.  

If benign, tumours are usually well localized, have a regular shape, do not metastasize and respond 

well to treatment. These do not invade adjacent tissues, even though can compress the surrounding 

structures, contrary to malignant tumours, which invade adjacent tissues, have a faster cell proliferation, 

where metastasizing usually occurs and have an irregular shape. Sometimes, malignant tumours may 

reoccur after treatment [2].  

When lumps are found in medical images such as Computed Tomography (CT), X-ray (XR) or 

Magnetic Resonance (MR), usually, a biopsy is done by removing a piece of the protuberance so that it 

is possible to analyse the tumour and confirm the diagnosis. The analysis and tests of these samples can 

confirm the cancer diagnosis and help in the choice of treatment method [3].  

 

1.2. CANCER THERAPIES – GYNAECOLOGICAL CANCER 

 

When a cancer is diagnosed, a treatment plan will be outlined depending on the type and stage of 

development of the patient's tumour. There are many options of treatment for malignant tumours, but 

usually, gynaecological cancer patients are treated with surgery, chemotherapy and/or radiation therapy 

[4].  

 

Surgery 

 

When a localized primary tumour is diagnosed, the first and most efficient treatment is surgery. Since 

this therapy operates by zero-order kinetics, and kills all the extracted cells, it is the therapy which cures 

more patients with tumours with the stated conditions. Usually, surgery is performed with other 

complementary therapies such as chemotherapy or radiotherapy [5].  
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Chemotherapy 

 

This treatment involves the use of chemical cytostatic drugs (anticancer drugs) which destroy cancer 

cells, by stopping them from multiplying or growing. These drugs are taken by infusion into a vein or 

as tablets. The anticancer drugs travel through the bloodstream, acting in all parts of the body. This 

therapy can be used to eliminate all the cancer, as a complement of surgery or radiation therapy, or even 

to shrink tumour before surgery. Sometimes, can be performed to relieve symptoms or to slow down the 

tumour if there’s no cure [6], [7].  

 

Radiation Therapy 

 

This technique is used to treat well localized neoplasms and can be used as complement of surgery 

and/or chemotherapy. It involves the use of ionizing radiation to affect the tumour, and destroy cancer 

cells [8]. 

Each patient must have a treatment plan made by a group of professionals which includes radiation 

oncologists and physicists. This team prescribes a plan of dose, that must be delivered to a specific 

patient, with a specific tumour [8]. 

There are three types of radiation therapy (RT): radioisotope therapy (systemic injection that has 

been designed to target disease), brachytherapy (insertion of radiation-emitting sources near the tumour) 

or external beam radiation therapy – EBRT – (external application of radiation beams to treat the cancer) 

[8]. In this chapter, EBRT and brachytherapy will be explained, since these are the radiation therapy 

treatments used to treat endometrial and cervical cancer. 

 

1.3. RADIATION THERAPY MODALITIES 

 

1.3.1. EXTERNAL BEAM RADIATION THERAPY 

 

In External Beam Radiation Therapy (EBRT) high energy beams from outside the body into the 

tumour are used, usually irradiated by linear particle accelerators (LINACs).  

X-rays, produced by electrons, are used in EBRT and can be superficial (10 ≤ Ek ≤ 100 keV), 

orthovoltage (100 ≤ Ek ≤ 500 keV) or megavoltage (Ek  ≥ 1 MeV). Superficial or orthovoltage, are 

produced with X-ray tubes while megavoltage are produced commonly with LINACs (Figure 1.1) [9].   

 

Linear Particle Accelerator (LINAC) 

 

LINAC’s respect the two basic accelerators conditions: the particle to be accelerated is charged and 

an electric field is provided in the direction of the particle acceleration. The type of accelerator depends 

on the way it produces the accelerating electric field and how the field acts on the particles to be 

accelerated. Considering the accelerating electric field, there are two main classes of accelerators: 

electrostatic and cyclic [9]. 

Medical LINACs (Figure 1.1) are cyclic accelerators: the electric fields are variable and non-

conservative and associated to a variable magnetic field. These can produce beams by using high-

frequency electromagnetic waves (Microwaves: 103 − 104 MHz; Vast majority S frequency band) to 

accelerate electrons to kinetic energies from 4 to 25 MeV. The beam can penetrate the human body to 

treat either superficial or deep-seated tumours [9], [10]. 
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Figure 1.1: Typical medical LINAC (Adapted from [9]) 

 

The accelerating waveguides are evacuated structures where the electrons are accelerated and follow 

straight trajectories. The magnetrons and klystrons produce the microwaves, generating the high-power 

radio frequency fields used for acceleration in the accelerating waveguides. The deceleration of the 

electrons, when they hit the target leads to the emission of bremsstrahlung radiation (X-rays photons) 

[9]. 

The last generation LINAC’s provide high energy photons (XR) and electrons. The introduction of 

multileaf collimators (MLC) in this generation allowed photon beam intensity modulation and full 

dynamic conformal dose delivery with intensity modulated beams. 

The types of external beam radiation therapy performed at Champalimaud Foundation are Intensity 

Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Radiotherapy (VMAT). These 

are complemented with Image Guided Radiation Therapy, since CBCT scans (Chapter 1.5.4.1) are 

acquired before any treatment fraction, allowing the patient position adjustment according to the 

planning positioning. By using the Multileaf Collimators, on IMRT or VMAT it is possible to change 

the beam strength in certain areas, making it possible to deliver a stronger dose in the tumour. On IMRT 

the gantry stops at certain positions, MLCollimators are reshaped according to tumour’s shape in that 

location and then the cancer is irradiated. On VMAT, the gantry moves continuously while irradiating, 

and the MLCollimators are continuously reshaped in conformity with tumours 3-dimensional shape 

[11].  

The referred EBRT methods performed in CF use only X-rays (photons) to treat neoplasms. To treat 

superficial tumours, a phantom layer of “skin”, names bolus, is used in order to guarantee the interaction 

of the X-rays with the superficial tumour.   

X-ray radiation is ionizing, and interacts indirectly with matter, contrary to electrons, protons, alpha 

particles or heavy ions. The radiation interacts with other molecules, and by originating free radicals, 

causes breakage of chemical bonds or oxidation of the molecules, leading to DNA breakage. This DNA 

breakage, and the changes in the cell molecules, induce cellular death [12]. There is also the direct 

breakage of DNA strands by radiation, which also induces cellular death.  
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1.3.2. BRACHYTHERAPY 

 

Brachytherapy is a RT method performed at short distance with small, encapsulated radionuclide 

sources. It is commonly used as a boost treatment in cervical/endometrial cancer cases. These sources 

are placed directly into/near the region to be treated, and emit, most commonly, photons to destroy the 

tumoura. In case of gynaecological cancers, a device named tandem is insert into the vagina and the 

source emits the photons, as seen in Figure 1.2 [13]. The dose can be delivered continuously, over a 

brief period or over the lifetime of the source to a complete decay. Photons interaction with tumours 

was described in the previous section [9]. 

 

 
Figure 1.2: Uterus Intracavitary Brachytherapy (Adapted from [13]). 

 

There are two types of brachytherapy: intracavitary and interstitial, both implemented in cases of 

cervical and endometrial cancers. In intracavitary brachytherapy, the sources are positioned near the 

tumour volume and the treatment is always temporary, of short duration. The fractions are delivered 

typically 1-2 times per week [14].  However, in interstitial brachytherapy, the sources are implanted in 

the tumour volume and the treatments may be temporary or permanent and usually the treatment is 

performed in a single session [9], [14].  

In Portugal, to treat cervical and endometrial cancer, patients can pass through surgery 

(hysterectomy), chemotherapy and/or EBRT. Brachytherapy is still the first choice when, after the first 

phase of treatment, is needed to boost the tumour with RT to avoid tumour recurrence [15].  

Even though this treatment enables higher localized dose delivery when compared with EBRT, it can 

only be used when the tumour is small and well localized [9].  

 

1.4. INDIVIDUAL PLANNING 

 

RT treatment planning to a specific tumour must not be performed without considering several vital 

facts. When the patient is diagnosed with cancer, a reference CT is used to plan the treatment: the 

planning CT (pCT). The process of planning includes contouring the organs at risk plus tumour, beam 

set-up on the pCT and verification of the plan (which includes the total dose delivered to the patient). 

The latter is performed by the physicist. The final plan approval is given by the radiation oncologist. At 

CF, the delimitation of structures is performed using Eclipse®, v. 13.6 1996-2015 Varian Medical 

Systems, Inc.  

                                                      
a 𝛽 or neutron emitting sources are used in specific situations. 
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Quality assurance is performed before the treatment delivery (at CF with ArcCheck, Sunnuclear 

Corporation, and/or EPID, Varian Medical Systems). Before any session of treatment, the patient is 

submitted to a CBCT scan (Chapter 1.5.4.1), to make sure of the correct set-up position. 

In RT planning phase the following ROI’s are considered: gross tumour volume (GTV – volume of 

known tumour infiltration), clinical target volume (CTV – suspected tumour infiltration), organs at risk 

(OAR – healthy organs that can be affected by the treatment), planning organ-at-risk volume (PRV) and 

planning target volume (PTV). PRV and PTV are created to ensure that the prescription restrictions 

match the absorbed dose delivered to the OAR and CTV, respectively. It is important to define PTV, 

PRV and GTV independently of irradiation techniques, since for delineation of volumes the type of 

radiation employed is irrelevant. The following parameters combined are important to decide the 

treatment plan quality: total amount of dose delivered to a specific tumour and surrounding organs, 

number of sessions and the time between each session, overall time, patient position on each treatment 

[16]. In case of EBRT treatments, it is crucial to prescribe a specific amount of dose to the PTV, since 

this structure is a CTV’s “extension”. The prescription of a certain amount of dose to the PTV, assures 

the delivery of that amount of dose to the CTV.  

At CF, the dose calculations are performed in Eclipse®, which uses the contours and restrictions 

made by the radiation oncologist, as well as the CT scans Hounsfield Units. After discussing and 

deciding the final plan, it is possible to analyse the planned dose distribution by displaying the dose in 

colour scales on the CT plan and by displaying Dose Volume Histograms (DVH), which supply 

information about the delivered dose at each percentage of volume of the regions of interest.  

A plan dose distribution of one of this dissertation study cases is shown in Figure 1.3. 

 

 
Figure 1.3: Planned dose distribution of a patient treated with SBRT: 3 x 7.5Gy. 
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1.5. MEDICAL IMAGING - GYNAECOLOGICAL CANCER 

 

1.5.1. MAGNETIC RESONANCE IMAGING (MRI) 

 

Magnetic Resonance images provide a spatial map of the hydrogen nuclei on tissues. The principle 

behind MRI consists on the orientation of the hydrogen nuclei spin by the action of a magnetic force 

field, which can organize them as parallels or anti-parallels. An MRI image intensity depends on the 

physical properties of each tissue and on the number of protons in certain locations [17]. It’s an 

advantageous technique since there is no need of using ionizing radiation – no harm of penetration - and 

the contrast is high, the images can be acquired in any 2 to 3-dimension plan and the spatial resolution 

can be 1 mm or less. However, it’s an expensive technique, slower than CT and cannot be performed on 

patients with metallic prostheses or pacemakers [17].  

Despite the high quality of image, and the fact that MRI scans are used in the planning phase of 

EBRT treatment for contouring purposes, CT is still the standard image used when planning EBRT 

treatments even though MRI has a lot of potential in this field [18], [19]. 

 

1.5.2. POSITRON EMISSION TOMOGRAPHY 

 

Positron Emission Tomography (PET) is a method of nuclear imaging technique which allows the 

functional analysis of the human body, unlike Computed Tomography for example, by creating images 

portraying the distribution of positron-emitting nuclides in patients. Using PET, it is possible to evaluate 

not only the location of a disease, but also the metabolism and evolution of it.  

This method uses positron-emitting radiotracers (carrier molecules bonded to a radioactive atom), 

which are different depending on the purpose of the scan, and are injected or inhaled by the patient. 

[20]–[22]. For instance, the radiopharmaceutical fluorine 18 fluorodeoxyglucose (FDG) injected in 

patients is used to localize tumours, and metastasis, since these are areas where the consume of glucose 

is higher [23]. 

Depending on its carrier molecules, the radiotracers distributes within different tissues. When the 

radionuclide decays, a positron is emitted, and it scatters through the human body losing energy 

annihilating with an electron, producing two photons (511 keV) emitted in opposite directions. These 

photons are detected in coincidence by scintillation detectors arranged in a ring. Images are obtained by 

back-projection methods, showing the patient’s radioactivity map [23], [24].  

 

1.5.3. ULTRASOUNDS 

 

An ultrasound image uses high-frequency sound waves to visualise body structures. The transducer 

is placed inside the body or directly on the skin and it produces the ultra sounds. The ultra-sounds are 

reflected when hit some of the body structures and then are detected again by the transducer. 

Subsequently, the images are formed, based on the amplitude of the detected waves [25]. In case of a 

transvaginal ultrasound, the probe is inserted into the vagina, to examine ovaries, pelvis or part of the 

womb, being part of gynaecological cancer diagnosis.   
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1.5.4. COMPUTED TOMOGRAPHY (CT) 

 

CT scans provide medical imagens with great resolution, of a single plan, without overlap of other 

plans. As well as radiographies, CT scans use X-rays to obtain the images. However, when obtaining 

CT scans, there is a synchronized rotation of the X-ray tube and a series of detectors that record one-

dimensional projections. The patient is positioned into the gantry, where the radiation is both produced 

and detected. After radiation detection, the image is obtained by a back projection filtered process [17]. 

A CT image displays a map of the tissue CT numbers, expressed in Hounsfield Units (HU). The HU 

[Equation (1.1)] depend on structures linear attenuation coefficient (μ). The  analysis of the HU of a 

pCT is necessary to perform the treatment planning on RT [17]. 

 

 HU =
μtissue − μWater

μWater − μAir
× 1000 (1.1) 

 

The difference between spiral and conventional CT (Figure 1.4) is that on spiral CT, the tube can 

move continuously, making possible to move the table continuously while acquiring data. On 

conventional CT, a slice is acquired while the tube moves in one direction, and the next slice is obtained 

while the tube moves in the opposite direction [17].At CF it is used spiral CT. 

 

 
Figure 1.4: Conventional CT (a) vs Spiral CT (a) (Adapted from [26]). 

 

1.5.4.1. Cone Beam Computed Tomography (CBCT) 

 

CBCT scans have less resolution and more image artefacts than CT scans, as it is possible to observe 

in Figure 1.5.  

 

 
Figure 1.5: Conventional CT (a) vs CBCT (b) image of the liver. (Adapted from [27]). 

(a) (b) 
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The main differences between CT and CBCT is that CBCT beam is cone shaped and the detector is 

an area detector capable of capturing a full volume of image in a single rotation (Figure 1.4 and Figure 

1.6) [28]. 

 

 
Figure 1.6: Cone Beam CT (Adapted from [29]). 

 

On each RT session, the specialists need to make sure the patient is in the correct position, in order 

to keep dose delivery as planned, minimising irradiation of healthy structures. In order to guarantee the 

latter a CBCT exam can be performed before treatment (IGRT) - Figure 1.7.  

Even though CBCT is useful before any EBRT fraction treatment to connect patient set-up, it is not 

enough for planning treatment or for accurate dose calculations. Due to its low resolution, sometimes is 

not even useful to check tumour evolution [30]. There are studies that suggest dose calculation using 

CBCT but conclude that it is only possible when using a calibration algorithm, or by combining CBCT 

with EPID information. Also suggest that these scans can be used to study the impact of anatomy 

changes, but not for planning treatment [31], [32].  

 

 
Figure 1.7: LINAC: EPID (a) and CBCT scanner (b). (Adapted from [33]). 

 

On TrueBeam LINAC’s (Varian Medical Systems) it is possible to image pelvis using the pelvis 

spotlight protocol. This protocol uses half rotation of the X-ray source around the patient, differing from 

the CBCT pelvis protocol which uses a full rotation of the X-ray source. Spotlight protocol results in 

1/3 of the weighted CT dose index of a full rotation CBCT, and it is usually used with the aim of reducing 

the administrated dose to a patient. A spotlight CBCT has a smaller field-of-view in a transversal slice 

than a full rotation CBCT [34]. The differences between a CBCT and a spotlight CBCT are visible on 

Figure 1.8. 

 

(a) 

(b) 

(b) 
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Figure 1.8: CBCT (a) vs spotlight CBCT (b). 

 

1.6. GYNAECOLOGICAL CANCER (ENDOMETRIAL AND CERVICAL) 

 

The uterus anatomy is illustrated in Figure 1.9.  

Gynaecological cancer diagnosis is usually performed by gynaecological consultation, trans-vaginal 

ultrassonography, tumour biopsy, abdominal-pelvic CT scan and pelvic MR. When the diagnosis is 

established, the stage of the tumour is evaluated according to: differentiation of tumour tissue cells, 

spreading and metastasis, age of patient and lymphovascular space invasion (LVSI).  Thoracic and 

superior abdominal-pelvic CT scans are indicated to detect eventual distant metastasis. PET can be 

performed when an active cancer is present to stage distant metastasis and to confirm the extent of 

locoregional disease. The stages of endometrial and cervical cancer tumours are shown in Table 1.1 and 

Table 1.2. On Table 1.3 it is possible to find the risk of relapse associated with type in endometrial 

cancer, cervical cancer risk of relapse is usually not relevant for planning SBRT, that is why it is not 

explored. 

 

 
Figure 1.9: Uterus (Adapted from [28]). 

 

If the treatment of a gynaecological patient is RT, clinical examination of the radiation oncologist is 

crucial to identify some cancer characteristics important in treatment planning.  

(a) (b) 
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The first step when treating endometrial or cervical cancer, is to examine if it is possible to remove 

the tumour with surgery with clear surgical margins (which means it is possible to remove the tumour 

without having cancer cells in the resection margin). Due to anatomy related motives, endometrial 

cancer, usually is more suitable for surgery than cervical cancers. After surgery or following the first 

EBRT treatment (usually with 23 sessions), another treatment can be proposed to the patient, with the 

aim of increasing the therapeutic dose to the vagina, avoiding excessive irradiation of the surrounding 

organs at risk. This treatment is usually performed using brachytherapy.  

 

Table 1.1: Classification of endometrial cancer according to differentiation and spreading of tumour cells (Adapted 

from [35]). 

Grade G 
Differentiation of 

tumour tissue cells 
 Stage (according to FIGOb system) 

GX 

 

Impossible to 

evaluate 
 Stage I (SI) Stage II (SII) Stage III (SIII) Stage IV (SIV) 

G1 Well  

Cancer only in the 

uterus or womb; 

No metastasis. 
Tumour has 

spread from 

the uterus to 

the cervical 

stroma, but 

not to other 

parts of the 

body 

Tumour has 

spread beyond 

the uterus, but 

still in pelvic 

area 

Tumour has 

metastasized to 

rectum, bladder 

and/or distant 

organ 

G2 Moderately 

 IA: cancer only in 

the endometrium 

or less than 1/2 of 

myometrium  

G3 Poor 

 IB: tumour spread 

to more than 1/2 of 

the myometrium  

 

Table 1.2: Classification of cervical cancer according to differentiation and spreading of tumour cells (Adapted from 

[36]). 

Grade 

G 

Cancer 

cells 
 Stage (according to FIGO system) 

G1 

 

Most like 

normal 

cells 

 Stage 0 Stage I Stage II  Stage III  Stage IV (SIV) 

G2 

A bit like 

normal 

cells 

 
Carcinoma 

in situ 

Invasive 

carcinoma, 

confined 

to cervix 

Tumour 

extension 

beyond 

cervix 

IIIA: Tumour extension 

to lower third of vagina 

but not to pelvic side 

wall 

IVA: Tumour 

invasion 

(Bladder/Rectum) 

IIIB: Tumour extension 

to pelvic side wall 

IVB: Distant 

metastasis 

 

Table 1.3:  Risk of relapse associated with type in endometrial cancer (Adapted from [35]). 

Risk Types of tumours Risk Types of tumours 

Low 
SI , G1,2 , <50% myometrial invasion , No 

LVSI 
High 

SI, G3, ≥50% myometrial invasion, 

regardless LVSI status; SII; SIII, no 

residual disease; Non-endometrioid  

Intermediate 
SI , G1,2 , ≥ 50% myometrial invasion, No 

LVSI 
Advanced 

SIII residual disease  

SIVA 

High-intermediate 

SI, G3, <50% myometrial invasion, 

regardless LVSI status; SI, G1,2, LVSI 

unequivocally positive, regardless of depth 

of invasion  

Metastatic SIVB 

  

                                                      
b International Federation of Gynaecology and Obstetrics 
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2. STATE OF THE ART 

 

Same patient medical scans can differ drastically. Not only due to the nature of the image modality, 

but also given anatomical changes of the same patient. One of the main objectives of using a software 

such as Velocity® (Varian Medical Systems) is to uniformize images of CT, CBCT, MRI, etc, by using 

deformable image registration and deforming different scans. Therefore, allowing for a database of 

different image sets of the same patient in a consolidated view. In this way, the specialists have an easier 

and faster process of decision-making during the treatment [37]. 

 

2.1. IMAGE REGISTRATION (IR)  

 

Image registration is a process to find spatial correspondence between two or more sets of images. It 

is beneficial during RT treatments: firstly, in tumour delineation phase, when are used different type of 

scans to contour the tumour and organs at risk; secondly, it is useful to continuously monitor a patient 

during treatment, using CT-CBCT registration since both patient and tumour may undergo extreme 

changes.  

Considering two sets of images: a fixed image, F(x), and a moving image, M(x′) . The goal when 

using Image Registration is to find the best correspondence between these two sets. It is considered a 

transformation vector T(x′), where x′ is the position vector (pixel), and u(x′) the displacement vector 

[38]. Image registration finds the best T(x′) to minimize the difference between F(x) and M(T(x′)), so 

that this result can be achieved [38]:  

 

 F(x) = M(T(x′)) =   M(x′ + u(x′)) (2.1) 

 

2.1.1. DEFORMABLE IMAGE REGISTRATION VS RIGID IMAGE REGISTRATION 

 

There are two modalities of image registration: rigid (RIR) and deformable (DIR). Rigid registration 

has six degrees of freedom when referring to image deformation (3 rotational and 3 translational 

variables). Deformable registration has a greater number of degrees of freedom, which results in a 

deformation matrix, or deformation vector field. In RIR all the pixels involved in the transformation 

move/rotate uniformly resulting in a maintained pixel-to-pixel relation before and after transformation. 

However, in DIR, these pixel-to-pixel relations change after transformation [38], [39]. 

When no anatomic changes are expected, RIR is very useful in RT. However, in several cases, there 

are changes in the patient/tumour throughout the whole treatment, which cannot be handled by RIR. 

With DIR, it is possible to manage local distortion between two image sets, enabling the management 

of image sets from different day treatments in a uniform way [38]. 

 

2.1.2. DIR PROCESS 

 

The first step of the DIR process is to align the moving image (M(x′)) with the fixed one (F(x)) by 

RIR or affine translation. Next, by using DIR algorithms, the local area of the moving image is registered 

to the fixed one. The similarity index between the two images is calculated with the objective function. 

This starts an iterative process, and the deformation vector field (DVF) is generated, according to a 

transformation model, to form the moving image, which updates the objective function. The 

optimization algorithm maximizes the similarity index between the deformed moving image and the 
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fixed one. Until the similarity index target is achieved, this process continues iteratively. The DIR 

process is exemplified in Figure 2.1 [38].  

 

 
Figure 2.1: Flow chart of DIR process. (Adapted from [38]). 

 

2.1.2.1. Objective Function 

 

As mentioned before, the objective function calculates the similarity index between the fixed and 

moving image. The type of objective function depends on the way it finds this similarity index. It can 

be intensity-based, feature-based or hybrid [38]. 

Intensity-based objective functions calculate the similarity index based on image intensity. These 

objective functions assume that same structures pixel values among different images are similar. There 

are some similarity indexes proposed such as Sum of Squared Difference (SSD) of image intensity, 

Correlation Coefficient (CC) and Mutual Information (MI).  

Feature-based objective functions do not depend on image intensity: these are based on considering 

features in images, such as points of interest (POIs) or contours of ROIs. The simplest way to implement 

one of these functions is to calculate the squares of the distances between paired POIs in the fixed and 

moving image.  

Hybrid objective functions aim to minimize the limitations of feature-based and intensity-based. 

Some algorithms were proposed, which combine different terms as similarity and regularization terms. 

Takayama et al. confirmed the advantages of hybrid-based DIR, by comparing it with intensity-based 

DIR. They concluded that hybrid based DIR has better results when it comes to comparing CBCT pelvic 

images [38], [40]. 

 

2.1.2.2. Transformation Model  

 

To maximize similarity index, the update of correspondence of POIs/ROIs between two images is 

based on the transformation model. A deformation model must have a vast number of motion parameters 

to achieve local transformation [38].  

A transformation model can be parametric or non-parametric. On a parametric model, a fine 

Deformation Vector Field is generated, as a linear combination of its basis functions. On non-parametric 

models transformation vectors of all points are generated [38]. Since Velocity® only uses a parametric 

model, this is going to be explored. 

The most typical parametric models are spline models. Spline interpolation is a method of 

constructing, an interpolant based on a discrete set of data points. The spline – interpolant – is a type of 
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piecewise polynomial. A basis spline (B-spline) has minimal support according to degree, smoothness 

and domain partition of the spline [38], [41]–[45] . 

 

2.1.2.3. DIR APPLICATIONS  

 

Deformable Image Registration has been introduced in the field of radiation therapy and this method 

has four big applications: 1. Mathematical modelling; 2. Functional imaging; 3. Automatic segmentation 

and contour propagation; 4. Dose accumulation.  

 

2.1.2.4. Mathematical modelling 

 

Since it is possible to acquire the correspondences between different image sets of the same patients 

during a full RT treatment using DIR, theoretically it would be possible to create a mathematical model 

which could predict the evolution of organ deformation, allowing the use of these types of models in 

RT planning [38]. 

 

2.1.2.5. Functional Imaging  

 

Functional imaging is usually acquired with emission tomography methods. However, it is possible 

to execute a functional image of the lung by using 4D-CT image sets, as suggested in several studies. 

4D-CT lung images are used for RT planning, and contain characteristics that can be used to analyse the 

air in the lungs, due to ventilation[38], [46]. 

These developed techniques calculated the volume changes (between inhalation and exaltation) of 

each voxel on the 4D images using the DIR algorithms. With these studies, was possible to find better 

methods to optimize lung cancer IMRT, by using lung functional images [38], [39].  

 

2.1.2.6. Automatic segmentation and contour propagation  

 

Before RT treatment, the radiation oncologist contours manually all the relevant structures to the 

treatment plan. This is a process very time-consuming with potential introduced errors which lean on 

the variability in delineation between different specialists.  

Automatic segmentation is an applicability of DIR which enables the reduction of contouring time 

and may reduce the variation of contouring among different specialists [47].  

The auto segmentation process requires a reference CT (named atlas) which is used to perform DIR 

between the latter and the new CT. The deformation matrix resultant from this DIR is used to propagate 

the contours of the reference CT into the  contours of the new CT [46].  

It is also possible to use DIR to propagate the contours of the fixed image to the movement image 

applying DIR. The use of DIR as a method of contour propagation was evaluated by Hvid et al. This 

study concluded that automatic segmentation using DIR techniques when propagating the contours from 

CT to CBCT lead to acceptable Dice Similarity Indexes. Therefore making possible the use of these 

algorithms in clinical context of ART or IMRT [48].  

Li X. et al., tried to evaluate the DIR for contour propagation between CT and CBCT in head and 

neck adaptive radiation therapy. They used ten intensity-based DIR techniques, including B-splinec, and 

rigid registration to propagate the contours of the CT plan to treatment CBCT of 21 patients. The initial 

delimitation of structures of interest was performed using Eclipse®. The contoured structures were 

                                                      
c DIR performed by B-spline method was implemented using an open source DIR package, Elastix. 
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divided by bony and soft-tissue. To evaluate the agreement between propagated contours and the ones 

delimitated by the specialist, a Dice Similarity coefficient (DSC) percentage of error (PE) and Hausdorff 

distance (HD) were performed, [49]. Even though previous studies suggested that DIR strategies (B-

spline included) were better at contour propagation than RIR methods, on this study DIR did not perform 

necessarily better than RIR. It was concluded that DIR performed better in bony structures than in soft-

tissue structures, and for different regions of interest with different degrees of freedom throughout the 

treatment [49]. Although this study seems to take the advantages of DIR in contour propagation, it only 

used intensity-based algorithms, and that might be the reason why the results did not support the use of 

DIR over RIR [49].  This study also suggested care when using intensity-based DIR in low contrast 

organs. Perhaps the solution is to use hybrid DIR when contouring low contrast organs.  

Thor M. et al studied DIR for contour propagation from planning CT to CBCT scans in prostate 

cancer RT. The registrations were performed using Multi-modality Image Registration and 

Segmentation application (MIRS v.1.0, Varian Medical System). They have shown improvements of 

using DIR instead of RIR to contour propagation of tumour and structures of interest. They also 

investigated quantitatively and qualitatively the DIR algorithm concluding that propagation of the 

contours was statistically more successful for prostate than for bladder or rectum [50].  

 

2.1.2.7. Dose accumulation 

 

As stated previously, on each fraction of EBRT, it is supposed to deliver a specific amount of dose 

to the patient. However, due to changes of anatomical structures or even position changes, the delivered 

dose may not be the previously planned [51]. Dose accumulation is one of the DIR applications: it allows 

the calculation of the actual delivered dose to the patient at each treatment fraction [38]. Studies such as 

[51] used DIR to evaluate the differences between the estimated and delivered dose, suggesting that this 

is an issue that cannot be ignored.   

Several studies were performed to analyse dose accumulation between different image modalities or 

dose accumulation affection by breathing motion. Yan et al studied the accumulate fractioned dose in a 

deforming organ by using a biomechanical model which calculated the DVF from the CT plan to each 

daily CT image set, acquired immediately before or after the treatment. Each DVF as well as the 

planning dose distribution were used to estimate the dose distribution of a region of interest. This type 

of study allows the comprehension of the response of human organs to radiation and the true relationship 

between volume and dose. With these models, it is possible to optimize the individual treatment daily 

[38], [52].   

Even though CBCT’s are useful to make sure the patient is at the planned position, since acquisition 

requires less X-ray projections and lower beam intensities than a CT, the image sets can have low 

contrast, low signal-to-noise ratio and artefacts. This turns dose calculations using CBCT less accurate. 

The solution might be using DIR to deform the pCT to each daily CBCT, to calculate the daily dose. 

However it is important to state that those mentioned characteristics of CBCT’s may harm the image 

registration process [53].  

In 2003, Schaly et al. aimed to calculate the daily dose delivered to EBRT patients. The dose 

accumulation procedure included the use of DIR with a TPS (Thin Plate Spline) transformation model. 

In this procedure, they started by contouring the bony structures on the planning and treatment study 

(CT scans) to transform the patient coordinate systems. After calculating the planned dose, they aligned 

the isocentre of treatment planning to the coordinate system of each treatment study CT to re-calculate 

the planned dose distribution. The next step included the use of DIR (with TPS) to map treatment dose 

distribution back to the planning study. This study demonstrated the statistical significant differences 

between planned and delivered dose, enhancing the importance of  calculation of the daily dose [54]. 
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Moteabbed M. et al tried to validate a B-spline algorithm and evaluate the delivered IMRT dose 

based on DIR for prostate treatments. They acquired a CT (planning CT) and CBCT of a pelvic phantom 

and then deformed both images using two patient-based deformation fields. Afterwards, the pCT was 

deformed to the CBCT, creating a new CT image. The software used for DIR was Platismatch, an online 

available software, and a B-spline algorithm was used to achieve better registration quality. The process 

was repeated with full, half full and empty bladder. They then evaluated the geometry of the images by 

comparing voxel-based HU and vector fields, and for dosimetry evaluation, compared the plan on the 

original CT with the warped images and the dose volume histograms of the similar warped structures in 

both images. This study concluded that it is feasible and accurate to use DIR on deformed planning CT 

to evaluate IMRT daily dose on patients with prostate cancer [55]. 

In order to study adaptive RT in head and neck patients, Veiga et al. studied in 2014 and 2015 the 

feasibility of dose of the day calculations using CT-to-CBCT deformable registration [56] and the 

uncertainties in dose warping due to choice of deformable registration algorithm [57]. All the studied 

patients in both studies acquired a planning CT (pCT) and CBCT’s acquired at treatment day. On the 

first study, they used a B-spline Free Form deformation algorithm of NiftyReg, to deform the planning 

CT to each daily CBCT acquired at treatment position. Subsequently, they calculated the daily dose at 

each deformed pCT (DDIR), the dose in a rigidly aligned pCT (DRIG), the dose of a calibrated CBCT 

(DCBCT) and the dose of a re-plan CT (DrCT). The dose was calculated using Eclipse® (Varian Medical 

Systems). By comparing DDIR, DRIG and DCBCT with the gold-standard DrCT, this study lead to the 

conclusion that calculating “dose of the day” by deforming a pCT to the daily CBCT is possible, without 

need to acquire a new CT since the dose differences were clinically acceptable and DDIR was closer to 

DrCT than the other calculated doses [56]. After the first study, the group compared four different DIR 

approaches available in NiftyReg, to find the uncertainties in dose warping. They first mapped the HU 

information from pCT to each CBCT using DIR. Then, calculated the dose of the day on each deformed 

pCT and mapped the dose of the day back to the space of the pCT. The final step was to accumulate and 

display the dose distributions on the pCT space. The investigators compared four different approaches 

to dose warping and then concluded that different choices of DIR algorithms have larger impact in terms 

of dose warping in regions were the dose gradient is high and/or the image quality is poorer [57]. 

A study by Fusella et al (2016) used Velocity® for DIR to evaluate if the need for planning 

recalculations in deformed anatomies. Additionally, the authors aimed to find a way of using this DIR 

efficiently when applying it to dose warping: dose accumulation (DA) for Adaptive Radiation Therapy 

(ART)d and dose summation (DS) for re-treatmente. Dose mapping of different CT sets was performed 

using B-spline based registrations, and then validated by a set of 3 computational phantoms. On each 

phantom, they simulated both ART and re-treatment, to recreate clinical needs, and then performed DIR 

to find the displacement vector (DVF) for dose applications. Both deformed and recalculated doses were 

then compared. Even though this study validated the warping dose process obtained by registering 

various sets of images, they concluded that dose recalculation of the deformed images, seems to be a 

better solution for dose accumulation purposes and for image guided radiation therapy applications. This 

study emphasises the need of validating DIR algorithms, for applying it to clinic, and also the benefits 

of using this technique [45].  

In 2017, Poon et al evaluated the deformed image-based dose calculations for ART nasopharyngeal 

carcinoma. Considering that current CBCT scans have less quality than CT images, they suggested the 

deformation the CT plan dose to each CBCT of RT sessions of patients with nasopharyngeal cancers 

                                                      
d Adaptive Radiation Therapy – Before any RT treatment fraction, the plan is re-evaluated and changed if needed, turning 

it into a systematically monitored treatment, where several factors are considered to optimize the treatment at each fraction.  
e Re-treatment happens when it is impossible to find the planned position of the patient and is necessary to re-plan the 

whole treatment, taking into account the given fractions until then.  
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(NPC). The researchers used MIM software Inc, to execute image registration, applying a constrained 

intensity-based free-form registration algorithm for CT-CT. Then, calculated dose using Eclipse®, 

Version 10.0. The dose calculation of the deformed planning CT resulted in significant dose 

uncertainties in target volumes and organs at risk. They concluded that the deformable registration error 

was probably the cause of dose deviations found in OARs and target volumes [30]. Even though this 

study suggests that it is not feasible to use DIR for dose accumulation calculations, there are other studies 

that support this procedure.  

Vickress J. et al, studied the impact of DIR errors in dosimetry and concluded that errors in DIR are 

inevitable when the objective is to obtain highly accurate DVF solutions. This group compared deformed 

landmarks with the defined ones and calculated the landmark actual displacement error, which was 

defined as the gold standard and used to evaluate the dose-predictive power of various measures of DIR 

error. They calculated the range of dose uncertainty (RDU) by measuring DIR error, and stated that 

RDU is a parameter that can provide a useful representation of the impact of the DIR algorithm in 

dosimetry [58].    

Orlandini L.C. et al compared the cumulative with the planned dose of image guided, IMRT of the 

prostate bed and studied the feasibility of adding dose tracking to routine workflow for RT. They 

concluded that using DIR (with software RayStation, RaySearch Laboratories) to deform the planning 

CT to the daily CBCT’s and calculate the cumulative dose after this procedure was a feasible method, 

that could save up some time on clinic, and help the professionals to take some decisions in adaptive 

treatment [59].  

Despite of different study results when testing DIR on dose calculations, it was decided in this 

dissertation project that it is viable to preform pCT-CBCT DIR and then proceed to dose calculation on 

the reshaped CT’s, if the DIR result is satisfactory.  
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3. MATERIALS & METHODS 

 

On this project, for dose calculations and for patients plan visualisation it was used Eclipse® (v. 13.6 

1996-2015 Varian Medical Systems, Inc). For DIR purposes, it was used Velocity® (v. 3.2.1. 2004-

2015 Varian Medical Systems, Inc). For statistical analysis, it was used RStudio (Version 2.1, February 

1999 - Copyright (C) 1991, 1999 Free Software Foundation, Inc.) 

 

3.1. STUDY CASES 

 

3.1.1.  TREATMENT PROTOCOL  

 

At Champalimaud Foundation, since 2016 it is being implemented a new approach of treatment when 

treating patients with cervical or endometrial cancer, to avoid tumour recurrence. This study was 

approved by the ethical commission of the CF. The patients included in this dissertation take part of this 

clinical study. 

After surgery or following the first EBRT treatment or adjuvant chemotherapy, brachytherapy is 

usually given to the patient to avoid tumour recurrence. However, this clinical study protocol proposes 

the use of VMAT Stereotactic body radiation therapy (SBRT) instead of brachytherapy, as suggested in 

previous work [60]. On SBRT high dose radiation to tumours is delivered (not on spine or brain) 

requiring body immobilisation or monitoring (in our case, using Calypso Beacons [61] and IGRT), since 

small movements can disturb the precision of dose delivery [62], [63]. The usual treatment method now 

performed at clinic is described below.  

For treatment Planning, is acquired a spiral CT (120 kV, 360 mAs, 1mm slice thickness).  

Before treatment, in order to guarantee monitoring of patients’ position, it is acquired a CBCT (125 

kV, 1080 mAs, Fan type half, acquired with full trajectory).  

When it is possible to remove the tumour and uterus with surgery, there are two options of adjuvant 

treatment, depending on tumour type (Table 1.1, Table 1.2 and Table 1.3): 

- Exclusive SBRT local treatment (typically 3 x [7-10.5] Gy), usually adequate for endometrial 

intermediate-risk or intermediate-high risk cancer patients.  

- Initial pelvic EBRT treatment (23 x 2Gy) plus local SBRT boost (typically 3 x [5 - 7.5] Gy). 

This is adequate for endometrial high-risk cancer patients. Nevertheless, if it is a stage III 

tumour, the patient is also submitted to chemotherapy. 

When it is not possible to remove the tumour with surgery, mainly in cervical cancer patients, EBRT 

with 23 x 2 Gy (with or without lombo-aortic lymph nodes) is firstly prescribed. This treatment is usually 

followed by SBRT boost treatment of 5 x [4 – 5] Gy. In these cases, weekly radiosensitizer 

chemotherapy is performed simultaneously with the EBRT and SBRT treatments, to improve 

locoregional control probability.  

Before SBRT, a planning CT (pCT) of the patient is acquired. CT protocol requires full bladder 

(filled with 200 cc of serum and 15cc of iodine contrast), a brachytherapy vaginal cylinder (which has 

Calypso beacons for tracking [61]) and a rectal balloon (filled with 50 cc of air). An example of a 3fr 

patient pCT, whose uterus has been removed before SBRT is shown in Figure 3.1.  

The radiation oncologist contours the clinical target and the “organs at risk” (OARs) volumes and 

the prescribes the doses to each target volume. Recommendation on OARs maximum doses are also 

prescribed. Then treatment planning is performed with Eclipse®. 

The required contoured structures are the CTV (VC -Vaginal Cuff - and VCM - Vaginal Cuff 

Mucosa), PTV, rectal wall, urethral wall, sigmoid, small bowel, body, bladder wall, vagina, vaginal 
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cylinder, rectal balloon and ring structure. The physicists can also add structures named “CTV/PTV 

Calc/Calculation”, “CTV/PTV + x mm”  which guarantee the delivery of a specific amount of dose to 

these crucial areas, for planning purposes. The specific structure “Ring” is not an anatomical structure, 

and is created to avoid the excess of dose in the surrounding area of the PTV 

 

 
Figure 3.1: Sagittal view pCT of a 3x7.5Gy patient. CTV in green, PTV in red. Bladder, rectal balloon, beacon and cylinder 

shown in the figure. 

 

3.1.2. STUDY PATIENT SAMPLE 

 

We had a total of 49 gynaecological cancer patients in our database, treated with a local vaginal 

SBRT treatment to avoid tumour recurrence. Only 23 of the 49 were suitable for this study since the 

patients were excluded if:  

- No vaginal cylinder or rectal balloon were present; 

- The patient was not treated for cervical or endometrial cancer; 

- A CBCT or spotlight CBCT did not have quality enough for contouring the relevant structures; 

- The CBCT did not cover all the ROI’s intended (vaginal cylinder, Rectal Balloon or Bladder and 

specially PTV). Given that the rCT resultant from these excluded patients result in an inadequate 

deformation.  

From the 23 gynaecological cancer patients used for this study: 

- 8 patients passed through 5 fractions of SBRT (5fr patients). These patients were not submitted 

surgery to uterus removal: 

- 7 patients (5x5Gy) – cervical cancer 

- 1 patient (5x4Gy) – cervical cancer. Patient received also 1x8Gy to iliac lymph nodes.   

- 15 passed through 3 fractions of SBRT (3fr patients). These patients had their uterus removed: 

- 12 patients (3x7,5Gy) – high risk endometrial cancer 

- 1 patient (3x 7,5Gy) – cervical cancer, tumour surgically removed  

- 2 patients (2x10,5Gy) – intermediate risk endometrial cancer 

 

3.2. VELOCITY® 

 

3.2.1. DIR ALGORITHMS  

 

Velocity® software allows choosing which type of objective function, depending on the image set 

conditions: it is possible to deform images based on pixel intensity or on image features. The software 

primary registration uses a multi-resolution approach and the objective function is based on Mattes 

Mutual Information (MI). MI allows measuring two random variables dependent on each other and it 
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quantifies the amount of information it is possible to obtain of one of these random variables from the 

other [64]. 

Even though Velocity® offers several registration algorithms, in this study only two were used. 

These algorithms are the most adequate to deform higher quality images (pCT scans) to less quality 

image sets (CBCT scans) [65]: CBCT corrected deformable (CD) and Structure Guided Deformable 

registration (SGD). Deformable Multi-pass (DMP) is another registration algorithm which was used 

only in the validation phase of this study. It is ideal for CT to CT registration, two high resolution scans 

[65].  

CD is a three-pass deformable registration. It includes a CBCT filter and is suggested for CT to low 

noise CBCT registration [65]. SGD registration is a hybrid registration of the Deformable Multi-pass, 

which is influenced by the contoured structures of interest. The structures must be contoured manually 

on the moving and fixed images. This method is useful in cases where the deformation is difficult due 

to dramatic changes (eg. the bladder can suffer a lot of changes between fractions of treatment), and 

requires the use of Navigators Velocity® feature [65]. 

As a transformation model, Velocity® software uses a cubic (order 3) B-spline model  in order to 

maximize the similarity index between the moving and fixed image [44]. 

On Velocity®, grid size and limitation of the registration space to a region of interest is configurable 

to allow the optimization of the settings of registration parameters. In order to guide the user to some 

tasks step-by-step. Navigators feature guides the user step-by-step in some tasks, like SGD DIR for 

example.   

 

3.2.2. DEFORMATION PROCESS 

 

The objective was to deform a pCT into a CBCT by using DIR on Velocity®, so we started by 

choosing the pCT as the fixed image and the CBCT as the moving image. Which means that on 

Velocity®, the pCT was chosen as the primary image and the CBCT as secondary.  

In clinical practice, the rigid registration is performed and approved by the radiation oncologist 

before treatment. In order to apply the SGD DIR, contouring of relevant structures had to be performed 

(on CBCT and pCT) (Chapter 3.2.1).  

To compare different rCT’s coming from the same pCT-CBCT registration, it is needed to have the 

same ROI of DIR. Therefore, hybrid registration (SGD) was performed firstly. Then, the SGD DIR ROI 

was conserved and was performed deformable image registration intensity-based (CD), without need of 

using Navigatorsf. The ROI had to include the whole PTV region, bladder and rectal balloon, and the 

cylinder as shown in Figure 3.2. 

 

  
Figure 3.2: 5fr patient DIR ROI (left) vs 3fr patient DIR ROI (right)  

                                                      
f To perform DMP DIR, there is no need of using Navigators. It is a similar process to CD DIR.  
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Then, Velocity® supplied the two deformation matrixes (which transform the CBCT on the pCT) 

resultant from the two DIR processes.  

After, we found the inversed matrixes (which transform the pCT on the CBCT), in order to created 

two planning reshaped CT’s (CD rCT and SGD rCT). These have the image quality of a CT scan, but 

are similar to the correspondent CBCT.  

 

3.2.3. QUALITY ASSURANCE (QA) AND VALIDATION OF VELOCITY® 

 

Velocity® uses a modified cubic B-spline deformable registration algorithm with MI-based 

matching. To make sure the DIR is correctly performed, any user of this software can choose between 

three options: 1. Assess tissue/voxel intensity overlay – allows the observation of the deformed and 

original images, at the same time ; 2. Assess the deformable warp map – gives us the visual 

representation of voxel displacement from the original to the deformed image; 3. Display the difference 

map between two registered images [65]. This quality assurance method is a qualitative method.  

To perform a quantitative evaluation, a conformality tool that allows the comparison of two structures 

can be used. This Dice Coefficient of Similarity (DSC) measures the similarity of two structures [0 (no 

similarity) to 1 (identical structures)] by comparing the overlapped volume [65].  

Qualitative and quantitative evaluation methods were used in this project to classify each 

deformation.  

To assure that Velocity® does not damage image quality, leading to misrepresentation of dose 

calculation, the software validation was initiated with the deformation of a pCT on itself, using both CD 

and SGD methods and another method known as Deformable multi-pass, which is indicated for CT-CT 

deformations. It was chosen the pCT of an endometrial cancer patient, submitted to 3 x 7.5 Gy of VMAT 

SBRT.  

Using Velocity®, it was created a copy of the chosen patient pCT named “pCT scaled”. After, it was 

selected the pCT as the fixed imaged and the pCT scaled as the moving image. Then, it was performed 

CD, SGD and DMP DIR. The whole body was chosen as the ROI for deformation. Were created three 

reshaped CT’s resultant from the DIR, and the propagated contours were compared with the original 

contours using Velocity’s conformality tool. The created rCT’s were then exported to Eclipse®. After, 

the original plan was copied to the rCT’s and then it was calculated the dose on the rCT’s and posteriorly 

compared with the planned dose on the pCT.  

Subsequently, were compared (between each rCT and the pCT) on Eclipse® the values of Volume, 

minimum, maximum and mean dose of the original plan and the plan of the structures on the rCT’s 

named CD (CBCT corrected deformable), SGD (Structure guided deformable) and DMP (deformable 

multi-pass).  

Volume variable measures the volume of a contoured structure in cm3. Minimum, maximum and 

mean dose (in Gy), measure the minimum, maximum and mean dose delivered to a specific contoured 

structure. 

It was calculated the percentage error of every structure between the value of each variable (x) 

measured in the pCT and in the rCT’s: 

 

 
Error (%) =

|xpCT − xrCT|

xpCT
× 100% 

(3.1) 

 

The previous procedure was repeated but acquiring a copy of the pCT on Eclipse®, which was 

exported to Velocity® to perform DIR.  
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Since the global evaluation of abdomen and pelvis DIR using Velocity® is not easy due to all non-

rigid structures, it is important to verify the accuracy of the software. For this reason, it was performed 

DIR in Head and Neck CT and CBCT scans which are scans have more rigid structures surrounding and 

DIR results in higher quality rCT’s. Also, it was performed DIR in prostate CT and CBCT scans, which 

are more similar to the study cases, allowing the evaluation of DIR in cases similar to the studied on this 

dissertation.  

The Head and Neck patient chosen was diagnosed with nasopharyngeal cancer and for treatment 

passed through 33 x 2.121 Gy EBRT. Were created six reshaped CT’s from the 2nd, 6th, 23rd ,24th ,25th 

and 33rd CBCT acquired in the correspondent fractions of treatment. We only performed the CD DIR, 

and then classified the reshaped CT’s considering only the PTV area. To evaluate the deformation of 

this case, it is possible to only use qualitative evaluation, since it is an area surrounded by bone.  

The prostate cancer patient chosen was submitted to 28 x 2.5 Gy of EBRT. Were created 2 rCT’s, by 

using DIR, correspondent to the 1st and 28th CBCT acquired during treatment. For this study case, it was 

performed only intensity-based DIR (CD on Velocity®) since as suggested in Velocity® user manual, 

SGD is useful as an alternative to the last type of registration when achieving non-satisfactory results. 

Since the radiation oncologist is the only one capable of identifying the structures on CBCT’s and 

reshaped CT’s, he contoured the bladder, CTV and Rectum of the reshaped CT’s twice (with one month 

apart) and contoured the same structures on the correspondent CBCT’s. The propagated contours of the 

bladder, CTV and rectum were acquired by using the deformation matrix to deform the correspondent 

contours on the planning CT. After it was calculated the conformality between the contours made by the 

specialist and the propagated contours on CBCT’s and rCT’s, to analyse deformation quality.  

 

3.3. DEFORMATION AND CLASSIFICATION PROCESS FOR THE STUDY CASES 

 

The image deformation process for our study cases using Velocity®, started by contouring at each 

CBCT and at the pCT the bladder, cylinder and rectal balloong. In some patients, bladder, cylinder and 

rectal balloon had already been contoured by the radiation oncologist at the pCT After performing both 

DIR processes, we had two rCT’s with image quality of a CT scan but similar to the correspondent 

CBCT.  

By comparing the CBCT’s anatomy structures contours and correspondent structures on the rCT’s 

of all patients, was classified qualitatively the deformation of the Bladder (cBladder), Cylinder (cCylinder) 

and Balloon (cBallon). The classification scale was: 1 - Bad, 2-Medium and 3-Good. Depending on the 

combination of the classifications of the structures of interest (c1,c2 and c3), the rCT’s were included in 

distinct groups of classification, I to VII (worst to best level of classified rCT). The rCT was considered 

approved for dose calculation if included in group VI or group VII. Table 3.1 represents the classification 

of the rCT’s depending on the classification of the structures of interest. 

 

 

 

 

 

 

 

                                                      
g This contouring allows the hybrid deformation. The feature-based image registration is based on the contours of the same 

structures on the moving and fixed image.  
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Table 3.1: rCT classification. 

 

 

 

 

 

 

 

 

 

 

For the first ten patients, the rCT classification was made considering all the ROI deformed and 

afterwards it was decided to consider the PTV region. The comparison of these two classification 

methods was performed using R Studio. The method of considering only the PTV region for 

classification, was approved by the radiation oncologist specialist on gynaecological cancers.  

In Figure 3.3 is shown the deformation and classification process of a 3-fraction SBRT treatment 

patient, which is analogous to a 5-fraction SBRT treatment patient.  

 
Figure 3.3: DIR process of a 3-fraction treatment patient. 

 

As a complementary method for qualitative classification, Velocity’s conformality tool was used. 

The values of conformality between the CBCT contoured structure and the one propagated structure 

created on the rCT were acquired (confBladder, confCylinder and confBalloon). The mean value of 

conformality (mconformality) was obtained by: 

 

 
mconformality =

confBladder + confCylinder + confBalloon

3
 

(3.2) 

𝐜𝟏 𝐜𝟐 𝐜𝟑 
rCT Classification 

(I – Worst … VII – Best) 

rCT Approval 

(1 – Yes | 0 – No) 

3 3 3 VII 1 

3 3 2 VI 1 

3 3 1 
V 

0 

3 2 2 0 

3 2 1 
IV 

0 

2 2 2 0 

3 1 1 
III 

0 

2 2 1 0 

2 1 1 II 0 

1 1 1 I 0 
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3.3.1. COMPARISON OF TWO DEFORMATION METHODS 

The deformation method more adequate to these patients was obtained by comparing the results of 

qualitative classification and the conformality values of the same structures. Resulting from CD and 

SGD deformation, it was aimed to decide which deformation method was more adequate for these 

patients.  

The comparison was performed by using R Studio. 

 

3.3.2. COMPARISON OF THE RESHAPED CT’S OF PATIENTS WITH OR WITHOUT UTERUS 

 

From chapter 3.1., it is known that patients treated with a 3-fraction SBRT, contrary to 5-fraction 

patients, had their uterus surgically removed, to eliminate the tumour (totally or partially).  

We had a total of 40 CBCT’s from the patients whose uterus had not been removed while 45 CBCT’s 

from patients whose uterus had been removed. This resulted in a total of 40 rCT’s (CD and SGD) from 

5fr patients and 45 rCT’s (CD and SGD) from 3fr patients.  

As shown in Figure 3.4 and Figure 3.5, the presence of the uterus in the 5fr patients provides a larger 

restraint in the surrounding organs. Besides, in Figure 3.5 is illustrated that the differences in contrast 

between the uterus and the surrounding organs (not including the bladder, balloon or cylinder) are not 

very significant. Poor contrast, and the larger PTV region, are facts that may contribute to differences 

in quality of the rCT’s.   

Since the conditions of the patients are not identical, was also addressed the influence of these 

different conditions in the DIR process. 

 

  
Figure 3.4: pCT sagittal view. Patient with no uterus. On right, PTV region in red. 

 
Figure 3.5:  pCT sagittal view. Patient with uterus. On right, PTV region in red. 

Bladder 

Vaginal

Cylinder 

Rectal 

Balloon 

Beacon 
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3.4. DOSE CALCULATION 

 

After obtaining the reshaped CT’s of all fractions of treatment, the next step was to calculate the 

actual delivered dose to the patient.  

The best case was to have at least one approved rCT between the two created at each fraction of 

treatment, so that it was not needed to replace it by another fraction rCT. The best qualitatively classified 

(Table 3.1) of each pair of rCT’s was chosen and then exported to Eclipse® (in Figure 3.6, the rCT 

chosen is marked with the blue “x”). In case of the same qualitative classification, the rCT with the 

highest mconformality was exported. 

In case there was a fraction of treatment not having an approved rCT, the rCT chosen to replace that 

missing rCT was the one with the worst qualitative classification, to observe the “worst case scenario”.  

The delivered treatment was copied to the sum plan of all the exported rCT’s and the dose map was 

calculated and superimposed on the planning CT. In this way, the dose was visually assessed in the 

coordinate system of the pCT – this was named SD (Sum Dose). The dose was calculated on the rCT’s 

by copying the delivered plan weighted with the dose per fraction. This first step aimed to evaluate the 

deformation magnitude and to prepare the following step back to Velocity®. Subsequently, the dose 

maps of each fraction rCT were exported to Velocity® and were deformed applying the deformation 

matrixes between the rCT and the pCT. Then, the total deformed dose map, was calculated by adding 

all the dose maps, correspondent to each fraction of treatment. This was named actual delivered dose 

(ADD). An example procedure is visualised on Figure 3.6. 

 

 
Figure 3.6: Example of process from the image deformation until the dose calculation where all the fractions (fr) of 

treatment had an approved reshaped CT (rCT). 3 fraction SBRT patient.  

The delivered dose to the small bowel, rectal and bladder wall was analysed, since these are organs 

at risk which are evaluated by the radiation oncologist when approving the delivered patient plan. It was 

also acquired the total percentage of delivered dose to the PTV and CTV. 

   

pCT 
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4. RESULTS & DISCUSSION 

 

4.1. VELOCITY®: VALIDATION 

 

Before proceeding to DIR on the available scans of our study cases, a test was conduct in Velocity®. 

The effects on dose calculation were analysed on a CT deformed on itself and by analysing DIR on a 

head and neck and on one prostate cancer case.  

 

4.1.1. DIR – PLANNING CT 

 

As described previously on chapter 3.2.3, the pCT was firstly copied on Velocity® creating the “pCT 

scaled” The pCT was settled as the fixed image and the “pCT scaled” as the moving image, and were 

created three rCT’s by performing DIR, using the three following registration algorithms: CD, SGD, 

and DMP. For each rCT were acquired the propagated contours, by applying the resultant deformation 

matrixes on the pCT contours. 

First, the pCT was compared with created rCT’s, using the spyglass tool of Velocity®. By evaluating 

qualitatively, the rCT’s were equal to the pCT, as expected. On Figure 4.1, Figure 4.2 and Figure 4.3, it 

is possible to visualise the three rCT’s created above the pCT and it is easy to confirm that the images 

are similar.  

 

 
Figure 4.1: Axial view of the pCT below the rCT (CBCT Corrected deformable – surrounded in blue).  

 
Figure 4.2: Axial view of the pCT below the rCT (Structure guided deformable – surrounded in blue). 

rCT – CD  

rCT – SGD  
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Figure 4.3: Axial view of the pCT below the rCT (Deformable multi-pass – surrounded in blue). 

Since the moving and fixed image were the same, when performing DIR, as expected were generated 

three null deformation matrixes, which would theoretically result in propagated contours equal to the 

contoured on the pCT.  

The next step was to compare the automated contours on the rCT’s with the correspondent ones on 

the pCT, by using the conformality tool. The structures of the pCT were: rectal balloon, bladder wall, 

body, bowel small, CTV (VC, VCM and + 5 mm), right and left femur, PTV (Calculation and VC), 

rectal wall, ring, sigmoid, urethral wall and vagina. The conformality between the propagated contours 

(of all rCT’s) and the correspondent contours of the pCT was always 1 according to Velocity®. This 

indicated the nullity of the deformation matrixes which was then confirmed. 

As is it possible to visualise in the following boxplots (Figure 4.4, Figure 4.5,Figure 4.6 and Figure 

4.7) we can firstly verify that there are no differences in the errors between the different rCT’s, indicating 

there are no differences between the three generated rCT’s (N=16).  

When analysing the volume of different structures (Figure 4.4) it is observed that there are structures 

in the rCT’s that present from 0.0% to 4.4% difference in volume from the pCT. The median is 

positioned in a 0.4% difference, the mean error value is 0.8% and the standard deviation is 

approximately 1.1%. The fact that the median is positioned at 0.4% indicates that more than 50% of the 

sample presented an error inferior to 0.4%. The structures that presented the largest error in volume were 

Urethral Wall (4.3%) and the “PTV calculation” (2.2%). CTV VCM also presented an error superior to 

1%. These differences in volume, were not observed in Velocity®. 

 

 
Figure 4.4: Percentage volume error between the structures on the pCT and the rCT’s [CD, SGD and DMP]. ”PTV 

Calc” and Urethral Wall errors represented surrounded in red. 

rCT –DMP  
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The distribution of percentage minimum dose errors on the structures of the pCT and the structures 

of the rCT’s (N=16) is shown in Figure 4.5  

The median is positioned at 0.0%, and the standard deviation is 2.0%. The mean value is 0.9%. Ring 

presented an error of 6.6%, “CTV+ 5 mm” presented an error of 5.0%, and “PTV Calculation”, PTV, 

CTV VCM presented an error of 1.0%. The remaining presented a 0.0% error. When the error was 

superior to 0.0%, the value on minimum dose was always higher in the rCT’s than in the pCT.  

 

 
Figure 4.5: Percentage minimum dose error between the structures on the pCT and the rCT’s [CD, SGD and DMP]. 

”CTV + 5 mm” and “Ring” errors represented surrounded in red. 

 

Figure 4.6 shows the distribution of percentage maximum dose errors between the structures on the 

pCT and the rCT’s (N=16). The median is positioned at 0.0%, the standard deviation is 0.2% and the 

mean value is 0.1%. Only the rectal wall, ring and urethral wall presented an error superior to 0.0%. The 

rectal wall had a maximum dose value on the rCT’s higher than on the pCT’s and the rest had a lower 

value.  

 
Figure 4.6: Percentage maximum dose error between the structures on the pCT and the rCT’s [CD, SGD and DMP]. 

Rectal Wall, “Ring” and Urethral Wall errors represented surrounded in red. 
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On Figure 4.7 is possible to analyse percentage mean dose error between the structures on the pCT 

and the rCT’s. The median is positioned at 0.0%, the standard deviation is 0.6% and the mean value is 

0.3%. The structures that presented an error superior to 0.0%, even though inferior to 0.3% were, CTV 

VC, “CTV + 5 mm”, “PTV calculation”, PTV VC, Urethral wall and vagina. The structure with the 

highest error (2.2%) was the Bladder Wall. 

 

 
Figure 4.7: Percentage mean dose error between the structures on the pCT and the rCT’s [CD, SGD and DMP]. Vagina, 

Urethral Wall and Bladder Wall errors represented surrounded in red. 

 

There should be no differences between the measurements of the original plan and the calculated 

plans with the rCT’s, since the rCT’s are similar to the pCT. This was suggested when analysing the 

deformation matrix and the conformality between structures in Velocity®. However, when analysing 

the rCT plans on Eclipse®, errors were observed in the volume of structures, minimum, maximum and 

mean dose. There was not a consistency in the structure that presented errors.  

The previous results suggested that an error was introduced in the whole process, and it is visible 

when the doses are calculated on Eclipse®. There were possible reasons that justified this error such as 

the exportation and importation of scans on Velocity® and Eclipse®, the pCT copy on Velocity®, or 

even the deformation process on Velocity®.  

In order to find the error source, it was exported to Eclipse® the scaled CT, and then the original 

plan was copied to the scaled CT for dose calculations.  

The measured errors of all the variables previously analysed were all equal to the errors measured 

on the three rCT’s indicating that the error was not introduced during the deformation process.  

Due to these outcomes, instead of creating a copy of the pCT on Velocity®, it was created a copy on 

Eclipse® (pCT copy), which was then exported to Velocity® to repeat the process and to try to find the 

source of errors.  

On Velocity®, the pCT was chosen as the primary image and the pCT copy as the secondary and 

were created three rCT’s using three different DIR processes: DMP, CD and SGD. As in the previous 

case, Velocity® showed a null deformation matrix for the three rCT’s. Then, it was checked if the 

conformality between the second rCT’s structures and the pCT copy structures was 1. This value was 1 

between all the correspondent structures, making it possible to keep with the previous procedure of dose 

calculation.  
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The second rCT’s, as well as the correspondent propagated structures were exported to Eclipse®. 

The original plan was copied to each of the second rCT’s and then dose calculation was prepared on 

those and on the copy pCT.  

There were found no differences between the copy pCT doses and the original plan. Nevertheless, 

the errors found between the original plan and the second rCT’s were equal to the errors found between 

the plan and the firstly created rCT’s (from the scaled CT).  

The copy pCT, after being imported to Velocity®, was then again exported to Eclipse®, where we 

calculated again the delivered dose on this scan. This exported and imported copy pCT showed now 

differences from the original plan doses, which were similar to the previously found errors.  

This data lead to conclude that the differences between the original plan and the rCT’s plan are 

probably due to small modifications introduced by the filters when importing images to Eclipse®, and 

different filters are not accessible in this software.  

The larger percentual differences were noted in the lower volume structures, even though in exact 

number, the differences were minimal. 

When in the next chapters we calculate rCT’s delivered dose is necessary to consider the slight 

changes in the HU of the scans, introduced by the importation of images to Eclipse®, which may result 

in small errors in dose calculation.  

 

4.1.2. DIR – HEAD & NECK  

 

The second phase on this validation process was to test DIR on a head and neck (H&N) case which 

is usually a simpler process and has better results than on abdominal-pelvic region scans, due to the 

larger presence of bone structures. 

Acquired rCT’s from our H&N case were qualitatively classified with levels 1 (bad), 2 (medium) 

and 3 (good), when compared with the correspondent CBCT’s. A well classified rCT had the contours 

of bones and other structures matching the ones of the correspondent CBCT.  

For classification, it was considered only the PTV region only. From the six rCT’s created 

(correspondent to the 2nd, 6th, 23rd ,24th ,25th and 33rd fractions of treatment), only one presented medium 

classification while the rest had a good classification.  

From these data, it is possible to affirm that the software can perform satisfying DIR at least with 

cases where the rigid regions are predominant. This can be explained by the fact that the intensity-based 

DIR process is more efficient when facing higher differences in intensity such the existent in the H&N 

scans. The craniofacial bones have higher HU (+200 HU at craniofacial bone at CT) and white and grey 

matter and the other structures in head have HU intensity lower than +45 HU (HU intensity of different 

structures is clarified in Figure 4.8). Clear contours of these images are generated by this high contrast 

between different structures.  

 

 
Figure 4.8: HU scale according to different substances. Only applied to CT scans, not to CBCT. 
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The fact that the linear attenuation coefficient is meaningfully different between different head and 

neck structures, makes the scans as clear in a CT as in a CBCT (Figure 4.9), independently of the lower 

quality of CBCT. However, it is always noticeable the lower quality of image of CBCT scans.  

For the reasons explained previously, and since the CBCT corrected deformable is an intensity-based 

DIR method of Velocity®, these significant differences in intensity between diverse structures facilitates 

the match compared to DIR on an abdominal-pelvic region.  

 

  
Figure 4.9: Planning CT (pCT) of the Head and Neck study case on the left and the 2nd fraction of treatment CBCT on top 

of the pCT on the right. 

 

Classifying H&N rCT’s is basically compare the bones on CBCT and rCT, which is a simpler process 

than classifying abdominal-pelvic rCT’s. Without having completed DIR on the case above (2nd fraction 

of treatment), it is noticeable that the planning CT and the CBCT are similar, which indicates that only 

slight changes may be needed on the pCT to approach CBCT. 

On Figure 4.10, the result of the DIR applied to the images of Figure 4.9 is shown: the 2nd CBCT and 

the correspondent rCT are very similar. The rCT is above the CBCT, represented surrounded by the blue 

line.  

 

 
Figure 4.10: 2nd fraction CBCT below the correspondent rCT (surrounded in blue). 

 

CBCT    pCT 
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Figure 4.9 and Figure 4.10 is another example of a successful and simple DIR process. The CBCT 

was already similar to the pCT, so the deformation matrix despite not having a significant impact, was 

enough to turn the pCT on a perfect “copy” of the CBCT.  

Not every DIR process was as simple as the last one. When acquiring a H&N pCT or CBCT, the 

degrees of freedom that can create differences between both are mainly due to neck position. This is the 

reason why occasionally the existent differences between the pCT and CBCT’s are usually in this region, 

as it is visualised in Figure 4.11, which corresponds to the 23rd fraction of treatment CBCT of the same 

patient. On Figure 4.11, the CBCT is surrounded in blue, and above the CT. The arrows indicate the 

regions with larger difference between the two scans.   

 

 
Figure 4.11: 23rd fraction CBCT (in blue) above the planning CT. 

 

On Figure 4.12 we can verify that when the pCT was reshaped into the form of the CBCT, the images 

match almost impeccably such as in Figure 4.10. The CBCT structures now match the rCT, contrary to 

Figure 4.11 where there were significant differences in the neck region.  

Figure 4.11 and Figure 4.12 show an example of a successful case of deformation of the planning 

CT to the form of the CBCT.  

 

 
Figure 4.12: 23rd fraction CBCT (in blue) above the rCT. 
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The analysis of the deformation of the H&N images confirms the good performance of the software 

when using intensity-based DIR. Since these were simple cases, the deformation using only intensity-

based DIR was enough to achieve satisfactory results.  

We did not proceed to dose calculations to check if the planned dose was the delivered, since the 

objective was only to prove the reliability of Velocity® when performing DIR intensity-based. 

 

4.1.3. DIR – PROSTATE  

 

The data from the prostate cancer analysis is a comparison between the contours made by the 

radiation oncologist on the rCT’s and on the CBCT’s and the propagated contours resultant from the 

deformation matrix when applied to the contours of the pCT, allowing the evaluation of deformation 

quality.  

Velocity’s conformality tool was used to compare the contours. Below, on Table 4.1 and Table 4.2 

it is possible to analyse the summarized acquired data. 

 

Table 4.1: Conformality between the contours drawn by the radiation oncologist on the reshaped CT with a month apart 

(Contour I and Contour II), the propagated contours (Contour CD) and the CBCT contours [1st fraction rCT].  

 Conformality  

 
Contour I  

vs 

Contour CD 

Contour II 

vs 

Contour CD 

Contour I 

vs  

Contour 

CBCT 

Contour II 

vs  

Contour 

CBCT 

Contour I 

vs 

Contour II 

Contour CD  

vs 

Contour 

CBCT  

Bladder 0.95 0.95 0.79 0.79 0.96 0.79 

CTV 0.87 0.88 0.92 0.90 0.93 0.88 

Rectum 0.88 0.92 0.87 0.85 0.92 0.82 

 

Table 4.2: Conformality between the contours drawn by the radiation oncologist on the reshaped CT with a month apart 

(Contour I and Contour II), the propagated contours (Contour CD) and the CBCT contours [28th fraction rCT]. 

 Conformality  

 
Contour I  

vs 

Contour CD 

Contour II 

vs 

Contour CD 

Contour I 

vs  

Contour 

CBCT 

Contour II 

vs  

Contour 

CBCT 

Contour I 

vs 

Contour II 

Contour CD  

vs  

Contour 

CBCT  

Bladder 0.96 0.96 0.82 0.81 0.97 0.82 

CTV 0.86 0.90 0.87 0.88 0.91 0.87 

Rectum 0.86 0.89 0.92 0.86 0.90 0.84 

 

The values of the 5th column of both Table 4.1 and Table 4.2 allow the comparison between the 

contours in the rCT made by the specialist in two different times. The fact that the values are all above 

0.90 indicates that the completed contours had a similar shape even though the difference of time. Also, 

the fact that the conformality between contours I and II (column 5) is above 0.9 but not 1 on both tables 

gives support to the theory that on the rCT the structures as visible enough to contour it well. Also, even 

though the conformality between two similar structures is not 1, it does not mean that the contours are 

not similar. It indicates the difficulty of contouring structures using only the CT scans. This was already 

discussed on previous literature: the contouring of same structures by different specialists, or by the 

same specialists on separated times, using only CT scans can result in higher variations of contouring 
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than when the same structures are contoured using not only CT scans but also other imaging methods 

such as PET [66].  

The values of the conformality of the rectum on Table 4.2 on column 3 and 4 are the ones that differ 

the most, and the conformality between rectum contour I and II on the rCT is the smallest within the 

three on both tables. The challenge faced when contouring the rectum, and the low quality of the CBCT’s 

are two reasons that explain this fact.  

Also, the fact that the values of columns 1 and 2 are all higher than 0.85 indicates that the propagated 

contours created by the deformation matrix are similar and correspond to the structures visualised by 

the specialist on the rCT, validating propagated contours.  

Column 6 of both Table 4.1 and Table 4.2 allows the brief quality evaluation of intensity-based DIR 

(CBCT Corrected Deformable). The larger the conformality between the contour of a structure on the 

CBCT and the same structure propagated, the larger quality of the rCT when compared with the CBCT, 

which implies a better result of DIR. As it is going to be described on the following chapters, in some 

cases, conformality of 0.8 between the reshaped structure and the one contoured on the CBCT, is an 

indicator of a satisfying result of DIR. As it is possible to see on Table 4.1 and Table 4.2, the 

conformality between the rCT propagated contours and the CBCT contours and rCT is always above 

0.80. This is an indicator that the application of DIR on these prostate cancer cases was successful, and 

that in result were created two rCT’s similar to the correspondent CBCT’s of treatment.   

As it is going to be discussed in the following chapters, even though conformality is not a 100% 

reliable predictive tool for a good DIR result, it may be a tool to help classifying a rCT resultant from 

CD DIR.  

This prostate cases rCT’s analysis, shows that the software can work properly when the ROI of the 

applied DIR has predominance of soft structures such as rectum or bladder. This first phase of the study 

allowed to proceed with Velocity® on cervical and endometrial cancer scans.  

 

4.2. RESHAPED CT’S ANALYSIS 

 

4.2.1. DIR CLASSIFICATION PROCESS 

 

4.2.1.1. Classification: All DIR ROI or PTV region? 

 

Firstly, the rCT had to be approved for dose calculation. This also meant it was a successful case of 

DIR. On the first ten patients analysed, we had a total of 36 CBCT scans: 3 of the patients were submitted 

to 5 SBRT fractions and 7 of the patients were submitted to 3 SBRT fractions. The qualitative 

classification was made considering all the ROI of DIR, and then changed by considering the PTV 

region (Figure 3.2). The latter by suggestion of the radiation oncologist, since the delivered dose on PTV 

and CTV would be analysed further in this dissertation. 

It was performed CD and SGD registration to acquire two rCT correspondent to each CBCT scan 

available (CD and SGD rCT’s). The rCT’s were compared with the correspondent CBCT and were 

classified qualitatively according to Table 3.1. 
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Table 4.3: Comparison between the classification considering only the PTV region and considering all the ROI of 

registration. Qualitative classification of the CBCT Corrected Deformable (CD) rCT's from the first ten patients. 36 rCT’s in 

total. 

  PTV  
  I II III IV V VI VII 

R
O

I 

I 0 0 0 0 0 0 0 

II 0 2 1 2 0 0 0 

III 0 0 2 3 2 2 0 

IV 0 1 0 1 6 3 0 

V 0 0 0 0 2 2 1 

VI 0 0 0 1 0 1 1 

VII 0 0 0 0 0 2 1 

 

From Table 4.3, it is possible to calculate, that 25.0% of the created CD rCT’s had the same 

classification whether considering only the PTV region, whether the whole ROI for deformation. 

However, 63.9% of the rCT’s had better classification when considering the PTV region, and only 

11.1% had better classification when considering the whole ROI. 

 

Table 4.4: Comparison between the classification considering only the PTV region and considering all the ROI of 

registration. Qualitative classification of the structure guided deformable (SGD) rCT's from the first ten patients. 36 rCT’s in 

total. 

  PTV 
  I II III IV V VI VII 

R
O

I 

I 0 0 0 0 0 0 0 

II 0 0 0 2 1 1 0 

III 0 0 0 0 0 1 0 

IV 0 0 0 0 2 5 2 

V 0 0 0 0 3 9 0 

VI 0 0 0 0 0 0 5 

VII 0 0 0 0 0 3 2 

 

As it is notable also on Table 4.4, the rCT’s had again usually better classification when considering 

exclusively the PTV region for classification, now using SGD registration. As it is notable, 13.9% of 

the SGD rCT’s had the same classification on both methods of classification, 77.8% had better 

classification when considering only the PTV region, and only 8.3% had better classification when 

considering the whole ROI.  

It is crucial that the rCT’s have a good result in the PTV region, since PTV region includes the 

surrounded area actually irradiated in RT treatments. It is critical that the PTV, and subsequently the 

CTV, receive the prescribed dose.   

Since one of the objectives is to perform CT-CBCT DIR to evaluate the actual delivered dose to the 

clinical study patients, it is it is reasonable to consider only the PTV region for classification of the 

rCT’s. Also, it is visible that there are better classification results when considering only this region.   
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4.2.1.2. Classification: differences between CD and SGD rCT’s 

 

On this phase, the aim was to identify which of both applied DIR methods was the most adequate to 

use in gynaecological scans of the study cases.  

In total, were used 23 patients were analysed: 8 were submitted to 5 fractions of treatment and 15 

were submitted to 3 fractions of treatment. This resumed in a total of 85 CBCT’s. For every CBCT, after 

performing CBCT-pCT registration, were created two rCT’s, one resultant from CD DIR and other 

resultant from SGD DIR.  

From all the created rCT’s (85 CD and 85 SGD) 37.6% of CD rCT’s and 74.1% of SGD rCT’s were 

considered approved, which indicates that SGD may have significantly better results that CD. The 

following tables show the percentage of rCT’s which belonged to each classification categoryh: 

 

Table 4.5: Percentage of CD rCT's that belong to each classification category. 

 

[CD rCT] 

Classification category  

I II III IV V VI VII 

Non-approved Approved 

Relative 

frequency 

0.0% 9.4% 9.4% 18.8% 24.7% 29.4% 8.2% 

62.4% 37.6% 

 

Table 4.6: Percentage of SGD rCT's that belong to each classification category. 

 

[SGD rCT] 

Classification category 

I II III IV V VI VII 

Non-approved Approved 

Relative 

frequency 

0.0% 0.0% 0.0% 5.9% 20.0% 48.2% 25.9% 

25.9% 74.1% 

 

On Figure 4.13 and Figure 4.14 it is possible to visualise the relative frequency of qualitative 

classifications of each analysed structure of CD and SGD rCT’s. On CD and SGD rCT’s, the balloon is 

the structure that has the highest percentage of well succeeded cases, probably due to its clear margins. 

The structures were generally better classified when in SGD rCT’s. The cylinder, on both type of rCT’s, 

proves to be the most difficult structure to deform: the percentage of well classified reshaped cylinders, 

even though higher in SGD rCT’s, is lower than 50% in both SGD and CD rCT’s. This may be related 

to the fact that the insertion of cylinder may not be consistent during treatment, and there is a difficulty 

in cylinder insertion, associated with previous EBRT treatments. 

 

 

                                                      
h Classification of the rCT’s according to Table 3.1 
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Figure 4.13: Qualitative classification of CD rCT's structures. 

 

 
Figure 4.14: Qualitative classification of SGD rCT's structures. 

 

The classification of the equivalent pairs of rCT’s (SGD and CD) was then compared, and Figure 

4.15 sums the results.  

 

 
Figure 4.15: Histogram: rCT’s better classified with CD, with SGD and equally classified. 

 

As it is possible to visualise, 64% of the created rCT’s were better classified when using SGD DIR, 

7% were better classified when using CD DIR and 29% had the same classification.  
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As stated before, Velocity® user manual suggests that SGD DIR is adequate when CD deformation 

does not achieve satisfactory results. The results suggest that SGD can improve significantly the results 

of a rCT created using CD registration.  

From the acquired data, and since there is still 7% of the rCT’s that were better when using CD DIR, 

it was decided not to choose a priori one of the methods to perform DIR to gynaecological scans.  

The influence of the DIR method not only on deformation area, but also considering each organ 

separately was studied. Figure 4.16 shows the percentage of best classified organs achieved by 

comparing the analogous organs on the paired rCT’s created. 

.  

 
Figure 4.16: Best classified rCT's - by organ. 

When analysing the rCT’s bladder, 52% of the reshaped bladders had the same classification on both 

acquired rCT’s. However, 48% had better classification in SGD rCT’s.   

When analysing the balloon deformation, 67% had equal classification in both rCT’s acquired. 8% 

had better classification in CD rCT’s and 25% had better classification in SGD rCT’s.  

60% of the reshaped cylinders were equally classified in both rCT’s. 31% were better classified in 

the SGD rCT’s and 9% were better classified in the CD rCT’s.  

This data enhances the impression that even though there is always a percentage higher than 20% of 

the created SGD rCT’s that results in better classified organs, there is a considerate percentage of 

structures that is equally classified in both analogous rCT’s.    

 

This data indicates that we need to consider both the alternative methods. Therefore, since CD is a 

simpler and less time-consuming method, it is reasonable to perform firstly SGD DIR to assure the same 

DIR ROI if needed. Then, if the results are not enough satisfactory, try CD.  

It was also tested the differences in mconformality [(Equation (3.2)] between the two acquired rCT’s. On 

Figure 4.17, it is possible to visualise that the median of mean conformality value of CD and SGD rCT’s 

is apparently higher in mconformality of SGD rCT’s.  
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Figure 4.17: Mean conformality of CD and SGD rCT's. 

The differences of the two samples (N = 85) were tested using the non-parametric Wilcoxon test, 

since both related samples were proved not to be normal. Wilcoxon test showed that the mconformality 

median of SGD rCT’s is significantly higher than mconformality of CD rCT’s (W = 3529, p ≪ α , α = 0.01 ) 

enhancing that SGD has better results than CD [67].  

 

4.2.1.3. Classification: conformality vs qualitative classification 

 

Measuring the conformality between the reshaped structure (resultant from the propagation of CBCT 

contours) and the one contoured on the CBCT, might be a possible way to measure the rCT’s quality. 

It was calculated the mconformality of the three structures, as explained in Equation (3.2) in all the 

acquired rCT’s and the next objective was to find the correlation between the mconformality and the 

qualitative classification of the rCT’s, building first the boxplots presented in Figure 4.18. 

 
Figure 4.18: Boxplots: mean conformality vs rCT’s qualitative evaluation [CD rCT’s on left and SGD rCT’s on right]. 

No CD rCT’s included in classification category I. No SGD rCT’s included in classification categories I, II and III.  
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In Figure 4.18, it seems that mconformality is correlated with the qualitative evaluation on CD rCT’s, 

contrary to SGD rCT’s. It is visible on the left boxplot that the mean conformality median of better 

classified CD rCT’s is positioned at higher values. Nevertheless, the boxplots are not enough to explain 

a correlation, and it is needed to proof this correlation by performing binomial logistic regression (for 

CD and SGD), and considering as the independent variable the mconformality value and as the dependent 

variable the approval of the rCT (0 – not approved or 1 - approved) [68], [69].  

First, it was proven the approximated logit linearity for CD rCT mconformality values. At this phase, it 

was proven that there was no logit linearity for SGD rCT mconformality, and that is also visible on Figure 

4.18 and Figure 4.19 where it seems that the values of SGD rCT’s mconfomality do not increase linearly 

when the rCT’s are higher classified [68], [69].   

 

 
Figure 4.19: Boxplot: Approved rCT's vs Conformality [CBCT corrected deformable on left and structure guided 

deformable at right] 

Considering that a rCT is approved only if its qualitative classification is VI or VII, the rCT’s were 

divided into two groups, approved (1) and non-approved (0), and then were compared with mconformality 

median values. The acquired data was visualised in the boxplots of Figure 4.19.  

On Figure 4.19, it seems that the mConformality median of approved CD rCT’s is positioned in a higher 

value in the first boxplot. However, the mConformality median of approved and non-approved SGD rCT’s 

is similar.  

To compare the mConformality values of both non-related samples (approved and non-approved rCT’s) 

it was performed the non-parametric Mann-Whitney test [67], since the samples were proved not to be 

normal. This test compared the median of approved rCT’s (M1)  with the median of non-approved rCT’s 

(M0):  

 

 H0: M1 ≤ M0  

 H1: M1 > M0 
(4.1) 

 

The test was made twice, one for CD rCT’s, and one for SGD rCT’s. 

The tests showed that the median of mConformality of approved CD rCT’s was significantly higher than 

median of mConformality of non-approved rCT’s. It was also proven that the mConformality median of approved 
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SGD rCT’s is not significantly higher from the median of non-approved SGD rCT’s. The resume of 

both tests is presented on Table 4.7 [67]. 

 

Table 4.7: Mann-Whitney tests results. Comparison between approved and non-approved CD and SGD rCT’s mconformality 

median. 

rCT’s N α p W 

CD 
85 0.01 

0.0018 1192 

SGD 0.1635 832 

 

The SGD method is based not only on intensity of pixels, but also on the correspondent contours of 

the moving and fixed image. Therefore, it was expected that mconformality of it resultant rCT’s is higher 

and cannot be a predictor of a successful DIR case. Therefore, it was not justified to find a model to 

predict SGD rCT’s approval depending on mconformality value.   

Nevertheless, it was created logistic binomial regression, to find the probability of a CD rCT being 

approved depending on the mConformality value of the correspondent rCT, which had the following structure 

[68], [69]: 

 

 
log

Papp[CD]

1 − papp[CD]
= β0 + β1 × mconformality (4.2) 

 

From Equation (4.2), Papp[CD] is the probability of a CD rCT being considered approved according 

to the created model, β0 corresponds to the expected value for the logarithm of the chance of rCT 

approval when mconformality = 0 and β1 corresponds to the expected variation in the value for the logarithm 

of the chance of a CD rCT being considered approve due to the increment in mconformality. From the created 

model using R Studio, β0 =  −3.295 and β1 = 4.185 [68], [69]. 

 

 
Papp[CD] =

eβ0+β1×mconformality

1 + eβ0+β1×mconformality
 

(4.3) 

 

This created model [Equations (4.2) and (4.3)] was then tested using the Chi-squared adjusted test, 

and it was confirmed that the probability of a CD rCT being considered approved (Papp[CD] for CD) is 

significantly correlated with a higher value of mconformality (N=85,χobs
2 =11.02, p ≪ α , α=0.01).  

If considered that when the Papp[CD] ≥ 0.6, a CD rCT was considered approved, the confusion matrix 

resultant from the previous model is [68], [69]: 

 

Table 4.8: Confusion Matrix. Binomial regression model: CD rCT approval depending on mconformality value 

 Non-approved 

rCT’s 

Approved 

rCT’s 

Papp[CD] ≥ 0.6 

20 

False Negative 

(FN) 

22 

True Positive 

(TP) 

Papp[CD] < 0.6 

33 

True Negative 

(TN) 

10 

False Positive 

(FP) 
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According to Table 4.8 , there were 30 poorly classified rCT’s and 55 well classified rCT’s resultant 

from the model. Subsequently, the model’s Positive (PPV) and Negative (NPV) predictive values are 

the following: 

 

 
PPV =

TP

TP + FN
=  0.52 

(4.4) 

 

 
NPV =

TN

TN + FP
= 0.77 

(4.5) 

 

These results [(4.4) and (4.5)] indicate than when considered approved a CD rCT after , there is 52% 

of chances approving a CD rCT it is actually considered approved and 77% of chances of suggestion of 

not approving a CD rCT when it is non-approved.  

The fact that in this model, the probability of an rCT being approved when the mconformality equals 1 is 

different than 1, enhances the fact that it is not possible to use the mconformality the only tool to approve a 

CD rCT. 

 

Afterwards, and now not considering the previous model, it was aimed to find the inflection point of 

mconformality value to consider when approving a CD rCT: now by considering the sample rCT’s approved 

if its mconformality values were above different inflection points (x). The qualitatively approved and non-

approved rCT’s were compared with the approved and non-approved rCT’s with this method. It was 

then, possible to calculate the percentage of false approved and non-approved rCT’s when considering 

different inflection points. The following table explains the method:   

 

Table 4.9: False positives (FP), false negatives (FN), true positives (TP) and true negatives (TN), associated to a fixed 

mconformality inflection point (x) 

 
mconformality  

< x 

Non-approved rCT’s 

≥  x 

Approved rCT’s 
0 

Non-approved rCT’s 
TN FP 

1 

Approved rCT’s 
FN TP 

  

In order to find the inflection point to differentiate approved from non-approved CD rCT’s, were 

fixed 16 mconformality values (x from Table 4.9), and for the CD rCT’s we found the percentage of false 

approved (FP) and false non-approved (FN) rCT’s resultant. The results are available on Table 4.10. 
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Table 4.10: Percentage of false negatives and false positively classified rCT’s when considering different inflection 

points (x) of mean conformality 

x %FN+%FP 

0.80 58 

0.81 56 

0.82 54 

0.83 54 

0.84 51 

0.85 51 

0.86 47 

0.87 41 

0.88 38 

0.89 35 

0.90 28 

0.91 34 

0.92 34 

0.93 39 

0.94 38 

0.95 38 

 

By analysing Table 4.10, when considering the data of CD rCT’s, it is possible to visualise that the 

lowest percentage of false positives plus false negatives is when it is considered the inflection point of 

mconformality fixed at 0.90. This value indicates that theoretically, mcoformality is above 0.9, there is an higher 

probability of this CD rCT being considered approved.  

However, this data does not allow the approval of an rCT based only on the mean conformality value. 

 

As it was confirmed in this chapter, conformality is a tool that may help to indicate a success or non-

success of the DIR intensity-based process, using CBCT corrected deformable on Velocity®. 

Nevertheless, it is not possible to approve a rCT using only this tool, since it is not accurate enough as 

it was shown by the probability functions created.  

 

4.2.1.4. Classification: patients with or without uterus 

 

This chapter is focused in studying the differences in rCT’s quality of patients with or without uterus 

(5-fraction and 3-fraction SBRT treatment, respectively), due to the differences referenced in chapter 

3.3.2. Were acquired 40 CD rCT’s 40 SGD rCT’s from the patients with uterus and 45 CD rCT’s and 

45 SGD rCT’s from the patients without uterus.  

When comparing CD rCT’s of patients with and without uterus it is notable that there is a higher 

percentage of approved rCT’s of patients whose uterus was surgically removed. As it is possible to 

visualise in Table 4.11 and Table 4.12, there is a considerable higher percentage of rCT’s in the VI and 

VII classification categories (58.0%) when speaking of patients without uterus, than in patients with 

uterus (15.0%). As in the CD rCT’s, the higher relative frequency of well classified SGD rCT’s is on 

the 3fr patient cases. There were 80.0% of approved 3fr SGD rCT’s versus 68.0% of approved 5fr SGD 

rCT’s (Table 4.13 and Table 4.14) 
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Table 4.11:  Percentage of rCT's that belong to each qualitative category. CD rCT's of patients without uterus. 

 

Category [CD rCT – Without uterus] 

I II III IV V VI VII 

Non-approved Approved 

Relative 

frequency (%) 

0.0% 4.4% 8.8% 13.3% 15.6% 46.6% 11.1% 

42.0% 58.0% 

 

Table 4.12: Percentage of rCT's that belong to each qualitative category. CD rCT's of patients with uterus. 

 

Category [CD rCT – With uterus] 

I II III IV V VI VII 

Non-approved Approved 

Relative 

frequency (%) 

0.0% 15.0% 10.0% 25.0% 35.0% 10.0% 2.0% 

85.0% 15.0% 

 

Table 4.13: Percentage of rCT's that belong to each qualitative category. SGD rCT’s of patients without uterus. 

 

Category [SGD rCT – Without uterus] 

I II III IV V VI VII 

Non-approved Approved 

Relative 

frequency (%) 

0.0% 0.0% 0.0% 6.7% 13.3% 46.7% 33.3% 

20.0% 80.0% 

 

Table 4.14: Percentage of rCT's that belong to each qualitative category. SGD rCT's of patients with uterus. 

 

Category [SGD rCT – With uterus] 

I II III IV V VI VII 

Non-approved Approved 

Relative 

frequency (%) 

0.0% 0.0% 0.0% 5.0% 27.5% 50.0% 17.5% 

32% 68.0% 

 

After, were compared the qualitative classifications of the contoured structures, of 3fr and 5fr patients 

of CD and SGD rCT’s (Figure 4.20, Figure 4.21, Figure 4.22 and Figure 4.23). Once again, SGD rCT 

structures are usually better classified than CD rCT structures.  

 

It  is noticeable by the plots, that on CD rCT’s of patients without uterus (Figure 4.20), the percentage 

of well classified reshaped structures is always higher than in patients with uterus (Figure 4.21). 

From Figure 4.22 and Figure 4.23, it is clear that the relative frequency of the well classified 

structures (qualitative classification equals 3) is not considerably different in the SGD rCT’s, probably 

since this is a method that is not exclusively intensity-based. However, there is a higher percentage of 

well classified reshaped bladders and cylinders on the SGD rCT’s on 3fr patients.  
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Figure 4.20: Relative frequency of qualitative classifications by structure. Patients whose uterus was surgically 

removed CD rCT's. 

 
Figure 4.21: Relative frequency of qualitative classifications by structure. Patients whose uterus was not surgically 

removed CD rCT's. 

 
Figure 4.22: Relative frequency of qualitative classifications by structure. Patients whose uterus was surgically 

removed SGD rCT's. 

 
Figure 4.23: Relative frequency of qualitative classifications by structure. Patients whose uterus was not surgically 

removed SGD rCT's. 
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When analysing the reshaped bladders, it is possible to note that in 3fr patients rCT’s (CD and SGD), 

the percentage of well classified deformed bladders is around 20% higher than in 5fr patients rCT’s.  

The balloon is apparently the easiest structure to deform, since there is a considerable (minimum 

57%) percentage of well classified cases not only on 3fr patients rCT’s but also on 5fr patients rCT’s, 

on both CD and SGD rCT’s. This can be explained by the marked difference in contrast between the 

balloon and the surrounding structures, which facilitates the DIR process.  

The percentage of well classified reshaped cylinders was always the lowest, and it is lower on 5-fr 

patient rCT’s, which can indicate that this is the most difficult structure to deform, probably due to the 

difficulty in cylinder insertion before treatment delivery.   
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4.2.2. DOSE CALCULATION  

 

4.2.2.1. Evaluation of deformation magnitude 

 

When the rCT’s were exported to Eclipse®, the delivered treatment was copied to the plan sum of 

all the patient’s exported rCT’s. Then the dose map superimposed on the planning CT was calculated 

(SD as named and described in chapter 3.4).  

This first phase allowed the evaluation deformation magnitude of the rCT’s, since when analysing 

the SD on the pCT’s we were evaluating the HU differences between the pCT and the plan sum of the 

rCT’s: allowing patients consistency evaluation through treatment.   

It was calculated the ratio between the SD and planned dose on both PTV and CTV of all database 

patients (3fr and 5fr) (Figure 4.24).  

 

 
Figure 4.24: Sum dose of all rCT's superimposed over the pCT: ratio of delivered dose / planned dose on PTV (left) and CTV 

(right).  

 

The mean value of PTV’s ratio of SD/planned dose was 87% and the median was 100%. The mean 

value of CTV’s ratio of SD/planned dose was 93% and the median was also 100%. From Figure 4.24, 

the patients CTV’s showed higher consistency through SBRT treatments than the PTV. This is as 

expected, since the PTV contouring aims the assurance of delivering the prescribed dose to the CTV. 

The three outliers present in the right boxplot, belong to 5fr SBRT treatment patients.  

Since the clinical study SBRT protocol has been being improved through the last three years, it was 

relevant to study if there were improvements in patient’s consistency during treatment along the years 

(Figure 4.25), since there are studies that suggest that clinical trials have better results in clinics with 

experience [70].  

From Figure 4.25, is clear that through the years, the ratio SD/planned dose has increased, supporting 

the protocol learning curve. When analysing the PTV, the mean ratio in 2016 was 78%, in 2017 89% 

and in 2018 96%. On CTV data, the mean ratio of SD/planned dose was 82% in 2016, 94% in 2017 and 

100% in 2018.   
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Figure 4.25: Summed dose of all rCT's superimposed over the pCT: ratio of delivered dose / planned dose on PTV (left) 

and CTV (right) in function of year of treatment of the patient. 

 

When analysing the ratio of SD/planned dose by dividing the patients according to the number of 

SBRT treatment fractions (Figure 4.26), it was visible that patients with 5fr SBRT treatment (with 

uterus) had higher differences between the pCT and rCT’s. The uterus existence on these patients may 

result in a higher difficulty of replicating the pCT conditions through treatment. When analysing the 

ratio on the PTV, the mean ratio of SD/planned dose on 3fr patients was 97% while on 5fr patients was 

73%. CTV’s mean ratio of SD/planned dose on 3fr patient was 99% and on 5fr patients was 82%. 

 

 
Figure 4.26: Summed dose of all rCT's superimposed over the pCT: ratio of delivered dose / planned dose on PTV (left) 

and CTV (right) in function of the number of fractions of SBRT treatment.  

It is also important to note that we still do not have a high number of patients included in the clinical 

study and in the DIR requirements previously mentioned: 23 patients (Figure 4.27 represents the number 

of patients treated in each year). Besides, from these 23 patients, 4 were treated in 2016 and 5 in 2018. 
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Also, there was only one patient treated with 5fr SBRT in 2018 and only 1 patient treated with 3fr SBRT 

in 2016. This does not let to conclude if it is the existence of uterus, or the protocol learning curve, that 

lead to a better consistency of the patients during treatment (which also leads to better DIR results). 

 
Figure 4.27: Number of patients who passed through the two types of SBRT treatment along the years. 

 

4.2.2.2. Evaluating the actual delivered dose 

 

The calculated doses on Eclipse of each rCT were exported to Velocity®. The deformation matrixes 

anteriorly created by performing DIR were used to deform the calculated rCT doses to the pCT. After 

being deformed into the pCT, all fraction doses were summed, and the deformed dose map (Actual 

delivered dose – ADD) was compared with the planned dose.  

It was then calculated the ratio between the ADD and planned dose on PTV and CTV. 

 

 
Figure 4.28: Deformed dose maps: ratio of sum of deformed doses and planned dose on PTV (left) and CTV (right) in 

function of the number of fractions of SBRT treatment.  

Figure 4.28 shows the 23 patients PTV and CTV ratio between ADD and planned dose doses 

distribution. 
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PTV’s median ratio of ADD/planned dose was 83% and the mean was 76%. The CTV’s median ratio 

of ADD/planned dose was 95% and the mean was 88%. This indicates that 50% of all the patients 

received on the CTV over 95% of the prescribed dose to the PTV. The two outliers present in the right 

boxplot, belong to 5fr SBRT treatment patients.  

When analysing the boxplots of Figure 4.29, it is visible that along the years, the ADD is more 

approximated to the planned dose as the years increase, on CTV and PTV of all patients.  

The mean ratio of ADD/planned dose on the PTV in 2016 was 67%, in 2017 was 77% and in 2018 

was 83%. The mean ratio of ADD/planned dose on CTV was slightly higher: in 2016 was 77%, in 2017 

was 89% and in 2018 was 94%. The outlier comes from a 5fr SBRT patient. 

Another possible reason is that in 2018 and in 2017 there was a predominance of 3fr SBRT treatment 

patients, and the existence of uterus in a patient might be correlated with the delivery of the planned 

dose.   

 

 
Figure 4.29: Deformed dose maps: ratio of sum of deformed doses and planned dose on (left) and CTV (right) in function of 

year of treatment of the patient. 

 

On Figure 4.30 it was analysed the ratio of ADD/planned dose on CTV and PTV, depending on the 

type of patient. 3fr patients were patients whose uterus had been surgically removed, with a smaller 

PTV, and 5fr patients were patients with uterus, and subsequently with a larger PTV. 

It is visible on Figure 4.30 boxplots, that in 5fr-patients the ratio ADD/planned dose was apparently 

lower (on CTV and PTV) than in 3fr patients.  

For 5fr patients, the mean value of ratio ADD/planned dose on PTV was 59% and on CTV was 72%. 

For 3fr patients, the mean value of ratio ADD/planned dose on PTV was 86% and on CTV was 97%.  

3fr patients seem to be receiving a higher percentage of the planned dose than 5fr patients, and this 

may be related to the fact that is difficult to replicate the protocol of the clinical study through more 

sessions of treatment, and with patients whom uterus has not been surgically removed. 
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Figure 4.30: Deformed dose maps: ratio of sum of deformed doses and planned dose on PTV (left) and CTV (right) in 

function of the number of fractions of SBRT treatment. 

 

The delivered doses to the following organs at risk were also analysed: small bowel, rectal wall and 

bladder wall. It was checked if these structures received a higher dose value than the limit established 

by the radiation oncologist at each prescribed treatment.  

In some patients, it was not possible to measure the values of received dose to some of these 

structures. This was due either because the radiation oncologist did not prescribe a maximum dose value, 

or because the structure was not contoured by the radiation oncologist. The fact that not all the structures 

are contoured is because they lay out from the target.  

It was calculated the value of relative difference between the actual delivered dose and the maximum 

allowed dose (prescribed by the radiation oncologist) [Equation (4.6)] on small bowel, rectal wall and 

bladder wall for each patient, and the data is available in Figure 4.31. 

 

 
Relative difference =

Actual delivered dose

Maximum allowed dose
− 1 

(4.6) 

 

Figure 4.31 shows that small bowel was the structure that had the highest number of patients who 

received higher dose than planned: in the first graphic, there are 7 out of 15 patients received higher 

dose values than the maximum allowed by the radiation oncologist. However, all of these patients 

received less dose than de allowed in clinical practice, which is based on dose limits established in 2008 

[71].   

Only 2 out of 22 and 1 out of 23 patients, received, a higher dose value than the allowed on the rectal 

and bladder wall, respectively. Also, these were cases where the clinical practice dose limits were 

respected.  
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Figure 4.31: Relative difference between actual delivered dose and maximum dose allowed on small bowel, rectal wall and 

bladder wall. Dots above the red line: patients’ fraction of dose outside the limit of allowed dose.  
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5. CONCLUSION 

 

Velocity’s applicability on clinic 

 

As suggested by the radiation oncologist, the approval of an rCT was based only by evaluating the 

deformation on the PTV region, since the final objective was to analyse the delivered dose on PTV and 

correspondent CTV.  

SGD DIR was a method that, as expected, resulted in better rCT’s than CD: 74.1% of the SGD rCT’s 

were considered approved while only 37.6% of the CD rCT’s were considered approved. Besides, when 

comparing the all the pairs of rCT’s correspondent to the same CBCT (CD and SGD), 64% were better 

classified when using SGD DIR. The median of SGD rCT’s mconformality was proven to be statistically 

higher than CD rCT’s mconformality, probably because SGD uses a hybrid objective function (chapter 

2.1.2.1). 

Nevertheless, when analysing the classification of the same structures on correspondent rCT’s, it 

indicated that there was a high percentage of equally classified structures on both rCT’s than in one 

method specifically. 

The acquired data also shown in chapter 4.2.1.2, indicates that on these study patients, the cylinder 

is usually the most difficult structure to deform, since it is the structure with the lowest percentage of 

well classified structures. This may be related to the fact that the insertion of cylinder may not be 

consistent during treatment. 

When analysing the potentiality of using mconformality as a way of approving a rCT, it was proven that 

mconformality is correlated only with the qualitative classification of CD rCT’s. This may be due to the 

priority in achieving the best conformality possible between the pCT and CBCT contours in SGD DIR. 

The results also suggested that when considering the created model, if considered approved a CD rCT 

with Papp[CD] above 0.6, there were 52% and 77% of chances of a CD rCT being correctly considered 

approved or non-approved, respectively. Also, from the sample, mconformality fixed at 0.90 seemed to be 

an adequate inflection point, to consider a CD rCT approved. Nevertheless, it is important to emphasize 

that it is always necessary the qualitative evaluation of the CD rCT’s, despite of the created classification 

helping tools. 

Due to the acquired data, we concluded that it is indicated to these patients, to firstly perform SGD 

DIR, and if the results are not good enough, try to use CD DIR. When classifying a CD rCT, the 

mconformality can be a tool which helps in the rCT qualitative classification described.  

 

By evaluating the values of SD/planned dose, it is possible to infer that through the last three years, 

the uniformity of patients (which is correlated with the protocol learning curve) has improved. However, 

the low number of patients (23) does not let to conclude if it is due to the protocol rigor or type of patient 

that guarantees a better uniformity during treatment.  

Through the last three years, the actual delivered dose (ADD) has been approximating the planned 

dose, which can also be related also with the protocol learning curve. Nevertheless, since the number of 

3fr patients is higher than 5fr patients in 2017 and 2018, it may indicate that the actual delivered dose 

can also be correlated with the type of patient, indicating that 5fr patients seem to be receiving less 

percentage of the planned dose than 3fr patients.  

However, it is not possible to affirm that 5fr patients are not receiving enough dose in the PTV and 

CTV. Firstly, in brachytherapy, it was not yet been evaluated the actual delivered dose that reaches the 

PTV, so we cannot affirm that these patients are not receiving enough dose as they would receive in 

brachytherapy since we still do not have data for comparison purposes. Secondly, these patients have 

been showing good reply to SBRT, which mainly aims to avoid tumour recurrence.  
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The actual delivered dose to organs at risk, despite being sometimes out of the limits imposed by the 

radiation oncologist, was always inside clinical practice tabled limits. This showed how rigorous the 

protocol is, and that the OAR’s were not put at risk.  

 

As seen, DIR can be used successfully when the objective is to deform abdominal-pelvic CT scans 

into the form of CBCT scans and showed good results to be used on clinic. Velocity® is simple and 

user-friendly software.  

 Velocity® can be used to make sure if patients who pass through SBRT (which implies the 

prescription of high dose) are receiving the planned dose. If the planned conditions are not achieved, it 

is possible if using Velocity®, to adapt the treatment. Also, it can be used when in doubt of re-planning. 

 

Future work 

 

There are still Velocity® tools which were not explored in this project and can be used on clinic such 

as automated contouring. 

It would be interesting to study DIR in other cancer cases, and to explore if Velocity® can be 

successful performing DIR in other type of scans. 

For future implementation of Adaptative Radiation Therapy on clinical daily practice, Velocity may 

be an adequate software to perform this using DIR.   

About the delivered dose of our study cases, it will be needed more patients, and more follow up 

years, to conclude if this treatment is achieving better results than brachytherapy as it has been 

suggesting. 
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