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Abstract 

 

An innovative technique is introduced wherein where an unsupervised clustering method using 

as feature the whole spectrum of automatically detected contractions on the EHG (Electrohysterogram) 

is presented as a contribution to the automatic classification of the different uterine contractions, at least 

those that have been most recognized in the literature: Alvarez and Braxton-Hicks. It was expected to 

also be able to cluster the LDBF (Longue Durée Basse Fréquence) components, as these pose a fetal 

risk. The main task was to have the spectral contractions descriptions clustered and linked to the 

respective contraction type. That task was completed with positive identification of the Alvarez and 

Braxton-Hicks. The clustering process also provided clues regarding the missed Alvarez waves in the 

contraction detection algorithm, for which an alternative technique is suggested but not developed in 

this work. Regarding the LDBF they were found in the Braxton-Hicks cluster. It is suggested the LDBF´s 

to be detected based in their most prominent feature: the long duration. It is presented the rationale 

behind the selection of a cost function to be used in the spectral distance’s algorithm. Spectral distances 

have been successfully used in audio recognition and this works represents an application to the EHG 

processing, for which the necessary adjustments have to be implemented. It was found that no single 

cluster pointed to the preterm cases, or indeed to the pre-labor subject recordings. It is hypothesized, 

based on previous studies in uterine electrophysiology, that the initiation of pre-term or term labor 

should be associated with triggering contraction sequences of different types, where the Alvarez waves 

play a major role. Alvarez and Braxton-Hicks, labeled as such, are not typically used in the clinical 

environment despite most of the Tocogram detected contractions being the latter. Alvarez waves are not 

usually detectable by the Tocogram.  Alvarez were firstly detected invasively in the early fifties, and 

Braxton-Hicks in 1872 using routine palpation techniques. The interest in Alvarez components declined 

rapidly since being practically undetectable by the de facto reference in the contraction detection: the 

Tocogram. The EHG capabilities and resolution made it possible to revive the research on the most 

subtle uterine contractions, Alvarez included and this work is a contribution in this research area.  

 

 

Keywords: Electrohysterogram, Uterine Electromyography, Clustering, Hierarchical Clustering, 
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Resumo 

 

Inicialmente a investigação da contratilidade uterina recorria à utilização de dois métodos: o 

tocograma externo e o cateter de pressão intrauterino. Ambos os métodos apresentam limitações ao nível 

da avaliação do risco de parto prematuro e na monitorização da gravidez. O EHG (Electrohisterograma) 

é um método alternativo ao tocograma externo e ao cateter de pressão intrauterino. Este método pode 

ser aplicado de forma invasiva no músculo uterino, ou de forma não invasiva através de elétrodos 

colocados no abdómen. O EHG tem sido considerado uma ferramenta adequada para a monitorização 

da gravidez e do parto. O índice de massa corporal tem um impacto quase impercetível no EHG, sendo 

esta uma das principais características deste método. O EHG pode também ser utilizado para identificar 

as mulheres que vão entrar em trabalho de parto e ainda auxiliar na tomada de decisão médica quanto à 

utilização da terapia tocolítica (antagonista da oxitocina), evitando deste modo a ingestão de medicação 

desnecessária e os consequentes efeitos secundários. 

Na literatura existem apenas cinco casos publicados em que foi realizada uma separação dos 

principais eventos do sinal EHG: contrações, movimentos fetais, ondas Alvarez e ondas LDBF (Longue 

Durée Basse Fréquence). Em três das publicações a separação dos eventos foi feita manualmente e nos 

restantes casos algoritmos, como redes neuronais, foram aplicados ao EHG. As ondas Alvarez e as 

Braxton-Hicks são as mais reconhecidas. As ondas Alvarez foram descritas pela primeira vez nos anos 

cinquenta e as Braxton-Hicks foram descritas pela primeira vez em 1872 sendo detetadas através de 

palpação. As ondas Alvarez são ocasionalmente sentidas pela mulher. Estas ondas estão localizadas 

numa pequena área do tecido uterino sem propagação e podem levar a contrações com maior intensidade 

e, consequentemente, ao parto pré-termo. As Braxton-Hicks são contrações ineficientes registadas a 

partir da 20ª semana de gravidez que se tornam mais frequentes e intensas com o decorrer da gravidez. 

Estas contrações são menos localizadas que as ondas Alvarez e, durante o parto, propagam-se por todo 

o tecido uterino num curto período de tempo. As Braxton-Hicks estão associadas a uma diminuição do 

ritmo cardíaco fetal. As ondas LDBF são contrações de longa duração associadas a hipertonia uterina, 

quando há contração do tecido uterino sem retorno ao relaxamento muscular, o que representa um risco 

na gravidez. 

Neste trabalho foram utilizadas duas bases de dados. Na base de dados da Islândia existem 122 

registos de 45 mulheres, dos quais apenas 4 correspondem a partos pré-termo. Na base de dados TPEHG 

(Term-Preterm EHG) existem 300 registos, dos quais 38 correspondem a partos pré-termo. Neste 

trabalho foram escolhidos canais bipolares, visto que estes reduzem o ruído idêntico, como o ECG 

(Eletrocardiograma) materno ou movimentos respiratórios. Para ambas as bases de dados os sinais 

originais de EHG foram processados e filtrados.  

Na estimação espetral foram considerados dois métodos: paramétricos e não paramétricos. O 

método Welch foi escolhido pois representa um bom compromisso entre ambos. Este método foi 

utilizado para calcular o espectro de cada evento detetado no sinal EHG. Para detetar os eventos no sinal 

EHG foram considerados cinco métodos baseados na energia ou amplitude. O método Wavelet foi o 

escolhido pois após uma inspeção visual, este era o método que delineava melhor as contrações.  

Na base de dados da Islândia foram identificadas 3136 contrações e na TPEHG foram 

encontradas 4622 contrações. O objetivo principal desta tese é obter clusters de contrações detetadas no 

sinal EHG. No entanto, as contrações são séries temporais não estacionárias, e a sua classificação visual 

é inviável a longo termo e também difícil de aplicar na prática clínica. Existem vários parâmetros que
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podem ser extraídos do sinal EHG, mas o espectro das contrações foi o método escolhido visto que este 

representa o sinal EHG e tem sempre a mesma dimensão, independentemente da duração da contração.  

As distâncias espetrais têm sido utilizadas com sucesso no reconhecimento áudio. Neste trabalho 

foi realizada uma aplicação desse método ao processamento do EHG, no qual foram realizados os ajustes 

necessários. Para comparar os espectros foram estudadas 8 distâncias diferentes: Itakura-Saito, COSH, 

Itakura, Itakura simétrica, Kullback-Leibler, Jeffrey, Rényi e Jensen-Rényi. Apenas as distâncias 

simétricas foram selecionadas para um estudo mais detalhado visto que estas são, segundo a literatura, 

as distâncias mais adequadas aquando do clustering. Após comparação das distâncias simétricas, a 

divergência de Jeffrey foi a selecionada para a comparação dos espectros. 

Nesta tese foram avaliados três métodos diferentes de clustering: o linkage, o K-means e o K-

medoids. O linkage é um método hierárquico. Os clusters que resultam do agrupamento hierárquico 

estão organizados numa estrutura chamada dendrograma. No agrupamento hierárquico, não é necessário 

predeterminar o número de clusters, o que torna este um método ideal na exploração dos dados. O K-

means e o K-medoids são métodos de partição, nos quais os dados são separados em k clusters decididos 

previamente. Os clusters são definidos de forma a otimizar a função da distância. No algoritmo K-

means, os clusters baseiam-se na proximidade entre si de acordo com uma distância predeterminada. A 

diferença entre o K-medoids e o K-means é que o K-medoids escolhe pontos de dados como centros, 

chamados de medoides, enquanto K-means usa centróides. Após uma comparação dos diferentes 

métodos de clustering foi escolhido neste trabalho foi o average linkage, visto que este apresentava 

melhores resultados quer na separação dos espectros quer na silhueta. 

É então apresentado um método inovador no qual se utiliza todo o espectro das contrações 

detetadas automaticamente no EHG para o clustering não supervisionado. Esta técnica é uma 

contribuição para a classificação automática das diferentes contrações, especialmente aquelas mais 

reconhecidas na literatura: Alvarez e Braxton-Hicks. Era expectável encontrar um cluster isolado com 

as ondas LDBF, visto que estas representam um risco para o feto. O principal objetivo era juntar num 

cluster os espectros semelhantes das contrações, e relacioná-lo com o respetivo tipo de contração. Essa 

tarefa foi concluída através da identificação positiva de Alvarez e Braxton-Hicks. O clustering forneceu 

ainda algumas pistas sobre ondas Alvarez que não foram encontradas com o algoritmo de deteção de 

contrações, situação para a qual um método alternativo é apresentado. É sugerido que as ondas Alvarez 

sejam detetadas com métodos baseados na frequência, como, por exemplo, a frequência instantânea, no 

entanto este método não foi desenvolvido neste trabalho. Em relação às ondas LDBF, estas foram 

encontradas no cluster das Braxton-Hicks. É sugerido que a deteção das ondas LDBF seja baseada na 

sua caraterística mais distinta: a longa duração. Verificou-se que os casos pré-termo e os registos pré-

parto não ficaram isolados num cluster, não se tendo encontrado uma relação entre a idade gestacional 

e o tipo de contração. Conclui-se que as contrações mais curtas apresentam maior amplitude do que as 

contrações com maior duração. Baseado em estudos anteriores sobre a eletrofisiologia do útero, supõem-

se que o início do trabalho de parto pré-termo e termo esteja associado a sequências específicas de 

diferentes tipos de contrações, nas quais as ondas Alvares desempenham um papel importante. As 

contrações identificadas como Alvarez e Braxton-Hicks não são usadas como tal na prática clínica 

apesar de a maioria das contrações detetadas pelo tocograma serem Braxton-Hicks. O interesse pelas 

ondas Alvarez diminuiu rapidamente visto que estas ondas são praticamente indetetáveis pelo método 

de referência de deteção de contrações: o tocograma. As capacidades e a resolução do EHG levaram à 

renovação do estudo das contrações mais subtis, incluindo as Alvarez. Este trabalho é uma contribuição 

para a investigação nesta área. 

Palavras-chave: Electrohisterograma, Electromiografia Uterina, Clustering, Clustering 

hierárquico, Parto Pré-termo
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Chapter 1 - Introduction 

 

The EHG (Electrohysterogram) has been presented as modern method for pregnancy and labor 

monitoring. External TOCO (Tocography) and IUPC (Intrauterine Pressure Catheter) are the classic 

techniques in pregnancy monitoring. TOCO is widely used in labor monitoring but this method has low 

accuracy and limited conveyed information.1 The golden standard for measuring the uterine pressure is 

the IUPC but this method is invasive can be only used in women with ruptured membranes, so not 

adequate for continuous pregnancy monitoring. The Tocogram acquisition pose a problem for subjects 

with high BMI (Body Mass Index). Both IUPC and TOCO have very limited application in preterm risk 

evaluation. Since the uterine contractibility is electrical triggered in the myometrium tissue, an EMG 

(Electromyography) signal is generated, and named EHG. The EHG signal accurately represents the 

contractile uterine activity and can be non-invasively recorded at the abdominal surface.2 The BMI 

impact on the EHG amplitude is practically negligible, and this feature is one of the flagships of this 

technique.3 

In recent times the EHG has been considered the adequate tool for pregnancy and labor 

monitoring. Research work is progressing regarding the use of this tools for this task as well as preterm 

risk evaluation.1 

Preterm birth, defined as occurring before 37 weeks of gestation, is a major cause of infant 

mortality and morbidity worldwide. According to the World Health Organizations the prevalence of 

preterm birth is 1 in 10 babies, 15 million babies per year, which presents a public health problem.4 

Premature babies have a higher risk for short and long-term complications, like cerebral palsy, breathing 

and hearing problems, development delay and vision difficulties.5 In Portugal, between 2011 and 2016 

the preterm birth rate as increased from 7.4% to 7.8% and in 2015 was registered the highest value, 

8.0%.6  

Labor monitoring may also benefit from the EHG technique. True labor detection may be a 

challenging task and the EHG has been reported as having a positive contribution. It is a technique that 

can be used to identify subjects that will enter the labor phase within 24-72 hours as well as those 

requiring augmentation of labor (oxytocin administration).7  

The EHG can also contribute to improve the medical decision for the administration of tocolytic 

therapy (oxytocin antagonist). In both cases it can be avoided unnecessary drug therapy and its side 

effects. 

Either preterm risk evaluation or labor monitoring using the EHG must deal with the fact that 

this is a complex electrical signal conveying information regarding uterine contractibility characteristics 

namely contraction features. In many instances the EHG has been used as a contraction detector likewise 

the tocogram. However, the signal itself should have embedded the different uterine contractions types 

that are currently accepted to exist, namely Braxton-Hicks and Alvarez. The idea behind this work 

project is to automatic detect these features or possibly additional ones. Ideally these unsupervised 

clustering process could lead to earlier preterm risk and true labor warnings.  

 In this work the EHG signals from the TPEHG database8 and the Icelandic 16-electrode 

database9 will be analyzed. Both databases will be submitted to algorithms of contraction detection and 

spectral analysis. New databases will be created with the features extracted from the EHG signal and 

hierarchical clustering will be implemented. The main goals of this work are: 

• Isolate contractions in the EHG signal;  
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• Distinguish spectra of contractions through the cluster analysis; 

• Determine if there is a relation between contractions, preterm birth and true labor; 

• Contribution to the understanding of uterine electrophysiology mechanisms. 

Regarding the EHG application several electrode applications are being used by the research 

community. Figure 1.110–12 represents just a few of them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

(a) (b) 

(c) 

Figure 1.1: Electrodes localizations in different researches. (a) – Ye-Lin et al.10 (b) – Hayes-Gill et al.11 

(c) – Garfield et al.12 
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1.1 State of the art 

 

The research of uterine contractibility started with two possible ways of recording: external 

measurement with a tocotransducer, that is positioned on the abdominal wall or intrauterine pressure 

measurement by means of a catheter. In 1931 the first EHG signal was recorded with abdominal 

electrodes and internal electrodes.13 

Marque et al. recorded 14 women with electrodes placed in the abdominal wall. The researchers 

concluded that the pregnancy EHG characterized by low frequencies and a long duration and the labor 

EHG presented higher frequencies. The high frequencies in EHG are related to a coordinated labor 

uterine activity.13  

Newman et al. studied the low amplitude high frequency contractions referred by Alvarez and 

Caldeyro. Recordings were made in 142 women with external tocodynamometry, 92 of them were at 

high risk of premature labor. From the 142 women, 136 presented the low amplitude high frequency 

contractions on at least one occasion. The greater prevalence of this type of contraction among the 

women that developed preterm labor and the reduction of this pattern after the initiation of tocolytics 

seems to support the idea that the uterus of these women is predisposed to premature synchronization of 

uterine activity.14 Roberts et al. reached a similar conclusion to Newman stating that women that 

experience uterine irritability have a higher risk of occurrence of preterm birth.15 

Khalil et al. analyzed synthetic EHG signals and EHG signals from 32 women. Experts 

identified four different events: contractions, fetus motions, Alvarez waves and LDBF (Longue Durée 

Basse Fréquence) waves, Figure 1.316. To detect these events Wavelet Transform, Neural Networks and 

Dynamic Cumulative Sum were applied to the EHG signal. The algorithm detection presented 

satisfactory results. This study was the first to classify events in the EHG signal.16 It should be noticed 

that the signals shown from Figure 1.3 to Figure 1.7 do not clearly show the respected time features. An 

effort is being made in this work to show the EHG signals with great detail. This led to eventually being 

able to visually identify the Alvarez components. 

Chendeb, M. analyzed 50 events for each class identified by the experts. The classes were: 

contractions, fetus motions, Alvarez waves, LDBF waves and baseline activity. SVM (Support Vector 

Machines) algorithms were used to perform the classification. An example of Alvarez waves can be 

observed in Figure 1.4.17 

Marque et al. recorded 9 pregnant women for the contraction evaluation and the recordings of 

fetal movements, Figure 1.518, were performed in 8 women. The EHG signal and the ultrasound were 

recorded at the same time. Every time the women felt a contraction or a fetal movement a recording was 

made. These makers serve as a reference during the analysis of the EHG signal as an indicator of the 

presence of a contraction. Only 55 contractions were registered of which 51 were pointed out by the 

women. The bursts associated with contractions from the 23rd week of gestation have a duration longer 

than 2 minutes and the bursts associated with contractions closer to term have a duration inferior to 2 

minutes. The Alvarez waves, Figure 1.6 top18, frequent contractions with low amplitude, were registered 

in 3 women. No relation between the uterine activity and the pregnancy term could be established at the 

time of this study. Two types of spontaneous contractile activities during pregnancy than can be recorded 

by EHG since the 23rd week of pregnancy. The spectral characteristics of the contractions change during 

pregnancy. The fetal movements recorded from pregnancies longer than 28 weeks seem to have different 

characteristics than the contractions recorded at the same time. Typically, the spectrum of the 



4 

contractions is obtained using the PSD (Power Spectral Density) which describes how the power of a 

time series is distributed along the frequency. The units are V2/Hz.18 

Sousa, C. analyzed the EHG signals from the Icelandic 16-electrode EHG database and found 

the following events: Alvarez waves, Contractions, Early and Late Labor Contractions, Fetal 

Movements, LDBF waves, Fetal Hiccups and Basal Uterine Activity. The spectral analysis and power 

estimation were used in the evaluation of events.19 

Chendeb et al. analyzed 100 real events for each class identified by the experts. The classes 

were: contractions, fetus motions, Alvarez waves, LDBF waves and noise. The researchers used Neural 

Networks and SVM algorithms to perform the classification. They reported a success rate of 85%. An 

example of the separated events can be observed in Figure 1.7.20 

Neither of the studies referred above included in their classification Braxton-Hicks contractions, 

reported by Braxton-Hicks21 in 1872. These contractions were the first to be described in literature 

however, most of the studies do not include the classification Braxton-Hicks contractions. 

In the last decades research in this field as grown with the introduction of new methods powered 

by a development of computational power. Ample research using EHG signals has been done, especially 

in the last decade. These studies can be divided in two groups: when the research includes the complete 

EHG signal, presented in Attachment 1, and when the research only includes segmented bursts of the 

EHG signal, presented in Attachment 2. The studies that included spectral features are highlighted in 

grey. 

Nowadays, there is pregnancy monitoring equipment available to the public based in the EHG 

signal.11 These systems have the American Food and Drug administration clearance and European 

Commission mark. Four different devices are already in the market: OB-Tools, Monica Novii monitors 

from Monica Healthcare®, Figure 1.2 left22, PUREtrace from NEMO Healthcare®, Figure 1.2 right23, 

and SureCALL® Labor Monitor®. These systems have been used mainly to detect contractions and 

FECG (Fetal Electrocardiogram). However, they are not wide spread used in the clinical environment. 

The flagship of these systems is being able to monitor the uterine contractions in a subject with a high 

BMI. As far as it has been investigated, none of these systems provide contractions identification. Manly 

they seem to aim to replace the tocogram and perform FECG. 

 

 

  

 

 

Figure 1.2: Pregnancy monitoring devices based on EHG signal. Left: Monica Novii monitors from Monica 

Healthcare® 22; Right: PUREtrace from NEMO Healthcare® 23 
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Figure 1.3: Detection and classification of events in uterine EHG. Label: 1- Background activity, 2 and 

6- Contractions, 4 and 7- Fetus motions, 5- LDBF waves, 3- Alvarez waves.16 

Figure 1.5: Fetal movement detected in the EHG at the 33rd week of gestation. The signal was filtered 

between 0.02 to 6 Hz. The X axis represents the time in minutes and the Y axis represents the amplitude 

scale in arbitrary units.18 

Figure 1.4: EHG signal with detected Alvarez waves. The X axis represents the time in minutes and 

the Y axis represents the amplitude scale in arbitrary units.17 
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Figure 1.7: Classification of events in the uterine EHG. The X axis represents the time in minutes and 

the Y axis represents the amplitude scale in arbitrary units.20 

Figure 1.6: Top: EHG signal in which Alvarez waves are represented. The signal was filtered between 

0.02 to 6 Hz. The X axis represents the time in minutes and the Y axis represents the amplitude scale 

in arbitrary units. Bottom: PSD of the first Alvarez wave represented above. The X axis represents the 

frequency in Hz.18 
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1.2 Thesis organization 

 

The thesis outline is: 

 

• Chapter 1: Introduction of the theme, state of the art and thesis outline. 

 

• Chapter 2: Brief description of uterine anatomy and physiology and definition of preterm birth. 

 

• Chapter 3: Description of the methods used to monitor uterine activity, with emphasis in 

electrohysterography. The EHG signal and its main components are presented. 

 

• Chapter 4: Description of the methods used in the EHG signal processing and filtering. The 

method used in spectral analysis is also contemplated in this chapter. 

 

• Chapter 5:  Contraction detection methods. 

 

• Chapter 6: Theoretical basis of different distances applied to the spectra of the separated 

contractions.  

 

• Chapter 7: Theoretical basis of clustering analysis. 

 

• Chapter 8: Clustering results of the Icelandic and TPEHG databases. 

  

• Chapter 9: Principal conclusions, achievements of this work and proposals for future work. 
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Chapter 2 – Uterus’s anatomy and physiology 

 

2.1 Anatomy of the uterus 

 

The uterus, Figure 2.124, is a pear-shaped organ and is entirely located in the lesser pelvis, 

between the bladder and the rectum. In the non-pregnant state the uterus has 7.5 cm in length, 4 to 5 cm 

in width at its upper portion, 2 to 3 cm in thickness and weights between 30 and 80g.24,25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This complex muscular organ is essential to reproduction since it receives the embryo and 

sustains its development.24 The uterus is composed by the fundus, upper portion of the uterus, the corpus, 

also called body of the uterus, and the cervix, a narrow caudal portion composed of dense fibrous 

connective tissue and muscle cells. The uterus is suspended by several supporting ligaments called 

endopelvic fascia. The uterine wall is part of this organ and is composed of three layers. The perimetrium 

consists of an outer serosal layer, that supports and covers the body of the uterus and part of the cervix. 

The endometrium, the inner mucosal layer, is covered with columnar epithelium and contains tubular 

glands. It is thickness changes throughout the menstrual cycle and it is thickest during the ovulation 

period since is preparing for the implantation of a fertilized egg. The myometrium, the middle muscular 

layer, composed by smooth muscle fibers in longitudinal, circular, and spiral patterns. This layer is 

thickest and during the pregnancy it increases due to hypertrophy of the existing cells and increase of 

the cell number. 25–27 Through the pregnancy the uterus enlarges and no longer stays confined to the 

pelvic cavity, it extends upwards, Figure 2.228. The uterus grows during the pregnancy increasing its 

weight around 1.4kg.29,30 

Figure 2.1: Anatomy of the uterus.24 
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2.2 Physiology of the uterus 

 

 The uterus activity and growth is under hormonal control.30 The physiology of uterine 

contractibility appears to be different in the non-pregnant from pregnant state. Through life uterine 

contractions play an important role in reproduction facilitating the journey of sperm to the fallopian 

tubes and during menstruations, helping expel the shed inner of the endometrium.31 Abdominal surface 

recording of uterine electrical events is representative of the activity generated by the muscle cells of 

the uterus. During term and preterm labor uterine electrical activity and intrauterine pressure achieve 

maximum activity.32 Electrical activity in the myometrium is low and uncoordinated during the early 

stages of pregnancy, but intense and synchronized as delivery approaches.3 

  The myometrium is composed by smooth muscle fibers. Smooth muscle contains actin fibers 

attached to the dense bodies and myosin filaments, represented in Figure 2.329. The contractile process 

of smooth muscle is activated by an increase of intracellular calcium ions prevenient of extracellular 

fluid. The calcium ions bind with calmodulin’s fibers to form the calmodulin-calcium complex. This 

complex connects and activates with a phosphorylating enzyme that phosphorylate one of the light 

chains of the myosin head. The phosphorylated myosin has the capacity of binding with the actin 

filament leading to the contraction of smooth muscle. When the calcium levels start to decrease, the 

phosphate split of the myosin and the contraction ceases. 29,31,33 

This process is extremely important in uterus contractions and birth. Toward the end of 

pregnancy, the uterus becomes progressively more excitable due to hormonal and mechanical changes 

that allow the strong rhythmical contractions during the parturition. The hormonal factors include: the 

increase of the ratio estrogens/progesterone that contributes to a higher uterine contractility; oxytocin 

that stimulates the uterine contractions especially toward the end of gestation by a positive feedback 

mechanism; fetal hormones, such as, oxytocin, cortisol, prostaglandins, that increase the intensity of 

uterine contractions. The mechanical factors are also responsible for the increased contractility of the 

uterus.  The mechanical factors include the mechanical stretch of uterine musculature and the stretch or 

irritation of uterine cervix.29 

An important type of contraction during pregnancy are the Braxton Hicks contractions. These 

contractions are weak and present a slow rhythm but become progressively stronger toward the end of 

pregnancy. Then the Braxton Hicks contractions become extremely strong and start stretching the 

Figure 2.2: Development of the uterus during pregnancy.28 
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cervix. The later force the baby through the birth canal, causing parturition. The mechanism that 

suddenly changes the Braxton Hicks contractions is unknown, but the positive feedback theory has been 

suggested. The positive feedback theory proposes that the stretching of the cervix caused by the fetus’s 

head provokes a strong reflex increasing the contractility of the uterine body. This contractility pushes 

the baby forward, stretching even more the cervix causing more positive feedback to the uterine body. 

The positive feedback theory is represented in Figure 2.429. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Representation of smooth muscle. The actin fibers are attached to the 

dense bodies and relation of myosin filaments to actin filaments is illustrated.29 
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2.3 Preterm birth 

 

Preterm birth is defined as all births before 37th  week of gestation.34 Based on the gestational age it 

is possible to divide pregnancy into the following categories, represented in Attachment 335:  

• Extremely preterm – babies born before the 28th weeks of pregnancy are considered extremely 

preterm. These babies frequently present long-term health problems and disabilities. To avoid 

labor, tocolytics may be administered.36 

• Very preterm – children born between 28 and 32 weeks of gestation. They present higher 

survival rate. Tocolytics can be administered.4 

• Moderate or late preterm – between 33 and 37 weeks of gestation. Moderate preterm babies 

have higher rates of morbidity and mortality when compared to those born at term. Induction or 

caesarean birth should not be planned before 39 completed weeks unless medically indicated.4,37 

• Term – pregnancy lasts between 38 and 42 weeks of gestation. This is considered the normal 

length of pregnancy.38 

• Post-Term – Pregnancy that extents to 43 weeks of gestation and beyond. Post term pregnancies 

are associated with an increased risk of fetal and maternal morbidity. Obesity, hormonal and 

genetic factors have been implicated to be the root of this problem.39 

 

To prevent premature labor tocolytic treatments can be administered, ideally between 24th and 32nd 

week of gestation. Tocolytic drugs delay preterm birth giving the baby the opportunity to develop more 

thus increasing the survival hypothesis.  An example of a tocolytic drug is oxytocin antagonists. Since 

preterm labor is related with an increase of myometrial oxytocin receptors, oxytocin antagonists are 

given to the pregnant woman to inhibit those receptors and decrease myometrial contractility.40,41 

Attachment 319 represents the pregnancy evolution and its main events.

Figure 2.4: Representation of the positive feedback theory.29 
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Chapter 3 - Monitoring uterine activity 

 

As far as uterine contractibility is concerned the most used method in the clinical sector used 

are external TOCO and IUPC. Electrohysterography is also used but it is a new technique found in the 

hospital. 

 

3.1 External Tocography 

 

The common practice to evaluate uterine contractibility is the external TOCO (Tocography). 

TOCO can be used in all stages of pregnancy and labor. This method is non-invasive and is a simple 

measurement technique in which the contractions are recorded by tocodynamometers.1,42 

Tocodynamometers are external pressure measurement devices that are attached to subject’s abdomen 

and held in place with stretch belt, as depicted in Figure 3.143. These devices are used to detect changes 

in abdominal wall as an indication of uterine contractions.44 This method presents low accuracy and 

sensibility, which can affect the estimation accuracy of the contraction. Another disadvantage of TOCO 

is that it only provides a single measure of local uterine pressure.44,45 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Intrauterine Pressure Catheter 

 

The IUPC (Intrauterine Pressure Catheter) is the golden standard for uterine contraction 

monitoring. In this method a catheter is inserted in the uterus as displayed in Figure 3.246. The IUPC 

provides the best information concerning uterine contractions since it provides the exact quantification 

of the mechanical effect of contractions. However the insertion of the catheter in the IUPC requires the 

rupture of membranes which can increase the risk of infection or accidentally induce labor.25,47  

Moreover the IUPC cannot be used in monitoring uterine activity since can only be used when the 

Figure 3.1: Monitoring uterine activity with the external monitor (TOCO).43 
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membranes are ruptured. It is manly used in selected cases, such as when the woman is obese or is 

already in labor.46 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Electrohysterography 

 

Electrohysterography is a promising alternative method to TOCO and IUPC. This method can 

be applied invasively into the uterine muscle or non-invasively through electrodes attached to abdominal 

wall, represented in Figure 3.39.48 The non-invasive method has been widely used since it provides 

quantitative measurement and a topographic characterization of uterine electrical activity. The non-

invasive EHG has a higher correlation with IUPC than TOCO for contraction detection. Recent data 

suggest that non-invasive EHG is as good as IUPC for monitoring uterine contractility and that 

extracting information from EHG signals provide a strong basis to predict and diagnose preterm 

births.1,49 Several studies have shown that the EHG signal, Figure 3.4, may vary depending on whether 

the woman is in true labor or false labor and whether she will have term delivery or preterm delivery.50 

Great efforts are been made in research to differentiate between effective contractions and non-effective 

contractions and between term and preterm EHG signals.8,50 A shift of the energy content toward higher 

frequencies as labor approaches has been identified in the literature.13,51 However the EHG can be 

disturbed by physiologic interferences such as the maternal ECG (Electrocardiogram) or the maternal 

respiration. These artifacts can make the extraction of information from the EHG signal a complex task. 

Therefore this method is not commonly used in the clinic setup.49  

 

Figure 3.2: Monitoring uterine activity with IUPC.46 
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3.4 EHG signal 

  

The EHG signal is composed by the Slow Wave and Fast Wave. The Slow wave is related to skin 

stretching and electrode movement and has a frequency between 0.01 and 0.3 Hz. The Fast Wave 

represent the individual electrical signals firing and its frequency ranges from 0.2 to 3.0 Hz. The Fast 

Wave can be divided in two: FWL (Fast Wave Low) and FWH (Fast Wave High). The FWL is always 

present in uterine electrical recordings and its frequency gets higher along the pregnancy.  The FWH is 

related to efficient labor contractions.16,48,52 The major components in the EHG signal are: 

• Alvarez waves: also referred as uterine irritability or LAHF (Low Amplitude High Frequency) 

were first described by Alvarez and Caldeyro in 1950.53 These waves have low amplitude and short 

duration, occur with a frequency of 1-2 per minute and they are occasionally felt by the woman.52,54 The 

Alvarez waves have the same frequency contents as a contraction, between 0-1 Hz, but the length of a 

contraction is superior than that of an Alvarez wave.20 Alvarez waves are localized in a small part of 

Figure 3.3: Location of abdominal electrodes (in white) from the Icelandic database. 

It is also represented the tocogram belt in black.9 

Figure 3.4: EHG signal from the Icelandic database 
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uterine tissue without propagation and can lead to a development of more synchronous contractions with 

superior intensity and subsequently to preterm birth. 52,54,55 

• Braxton-Hicks contractions: first described by Braxton-Hicks in 187221, this inefficient 

contractions begin around the 20th week of gestation and become more frequent and stronger when term 

approaches. Braxton-Hicks contractions have high amplitude. Researchers present different conclusions 

regarding Braxton-Hicks contractions. Some authors report that a Braxton-Hicks contractions occur 

every 3 or 4 hours56,57 and for others this event is more common, happening at least once in an hour.58 

Braxton-Hicks contractions are less localized than Alvarez waves and at parturition it is considered to 

fully "propagate" to the whole uterus in a short amount of time.52,56,58 More research is needed regarding 

this event. 

• LDBF waves: LDBF waves have long duration and low frequency that ranges from 0 to 1 Hz. 

Their duration is several minutes long. LDBF waves are rare and are associated with uterine hypertonia, 

when there is a contraction of the uterus without the return to muscle relaxation, which pose a pregnancy 

risk.16,20,52,59  

• Contractions: There are several other contractions that may not be included in the above-

mentioned contraction types and that require further investigation. It might represent labor contractions 

or pre-labor contractions or even false labor contractions. The duration of the contractions is inferior to 

the duration of LDBF wave and superior to the amplitude of an Alvarez wave.17 They are good 

candidates to be classified as belonging to the Braxton hicks contraction family. They might also 

represent labor contractions, however, in both reviewed database no records were made during labor. 
20,6061  

• Leman waves: Described only in one study as contractions of low amplitude (Alvarez waves). 

These waves are often overlooked in the detection process due to poor signal-to-noise ratio.17 

As far as research was possible only four illustrations (time series) of these components in the EHG 

signal were found in the bibliography and are presented in the Figure 1.3, Figure 1.4, Figure 1.6 and 

Figure 1.7. One would expect some more representations of these EHG events. A sum of the contractions 

characteristics mentioned above can be found in Attachment 462.  

The EHG can also contain noise from several sources like motion artifacts or physiological 

interferences. The question arises whether these interferences appear in the bandwidth of work which is 

0.1 to 1 Hz. The principal artifacts are: 

• Maternal ECG: its energy content is mostly distributed between 1.38 to 1.5 Hz, so out of our 

work band. It is mostly constant throughout the recording sessions and it’s usually present in all 

channels.52 

• Maternal respiration: the maternal respiration has a frequency within 0.20 and 0.34 Hz. It 

partially overlaps with uterine electrical activity which makes it a very disturbing artefact. In the bipolar 

montages these interferences usually cancelled out to a reasonable degree.10,52 

• Motion artifacts: are unavoidable in the EHG signal since uterine contraction can induce 

movement artifacts due to forced respiration patterns or pain. Motion artifacts typically do not propagate 

and are associated with a rise in energy between 1 and 4 Hz.10,52 

• Fetal ECG: usually detected in the EHG signal despite the electrode location not being optimized 

for this task. This signal has low amplitude and a bandwidth that does not overlap with the work one.52 

• Fetal movements: the EHG signal contains components triggered by the fetal movements. 

Contractions containing fetal movements were eliminated from the analysis. An example of fetal 

movements is presented in Figure 1.518. 
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Chapter 4 – Pre-processing, database and electrode setup  

 

The used platform in this work was MATLAB® (The MathWorks Inc, 2018). 

For this thesis the Icelandic 16-electrode EHG Database9 and the TPEHG database8 were used. 

The databases are available at PhysioNet.9,63 

The Icelandic database has 122 recordings from 45 pregnant women, several of those did more 

than one recording. This database has 4 cases of preterm birth. The recordings were performed in the 

third trimester. The data recorded using 16 electrodes in a 4-by-4 grid, Figure 4.18,9 This database also 

includes annotations and obstetric information on the participants. The women were only admitted to 

the study if they had normal singleton pregnancies and no known risk factors for preterm birth.9   

The TPEHG database has 300 recordings that were clustered into four groups depending to the 

time of recording: 143 records were early term (before the 26th week of gestation), 119 records were 

later term (during or after the 26th week of gestation), 19 records were early preterm (before the 26th 

week of gestation) and 19 records were later preterm (during or after the 26th week of gestation). This 

database has 38 cases of preterm birth. For the recordings four electrodes configuration was used 

resulting in three bipolar channels, Figure 4.2. The records of pregnancies containing no electrical 

activity or containing excessive noise, those ended in C-sections and those ended in induced delivery 

were excluded from the database.8  

  

 

 

 

 

 

 

 

  

 

 

 

To have a better understanding of the data, the Figure 4.2 and Figure 4.3 depict the delivery 

week and the gestational week at recording of the Icelandic and TPEHG databases, respectively. The 

blue line represents the 37th week of gestation, the dots below the line are the preterm cases. It is possible 

to detect in Figure 4.3 that the TPEHG database shows two separated groups, indicating that the 

recordings were not continuous throughout pregnancy. Those two distinct groups of recordings can lead 

to a biased analysis since there is a lack of data between the 26th and 29th week of gestation. The Icelandic 

database also presents an unevenly distributions of records regarding gestational week.

Figure 4.1: On the left: Electrodes placement in the recordings of the Icelandic database in a 4-

by-4 grid.9 On the right: Electrodes placement in the recordings of the TPEHG database. The 

bipolar channels are E2-E1, E2-E3 and E4-E3.8 
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Figure 4.3: TPEHG database: Delivery week vs Gestational week of the recordings. The blue line 

represents the 37th week of gestation. 

Figure 4.2: Icelandic database: Delivery week vs Gestational week of the recordings. The blue line 

represents the 37th week of gestation.  
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4.1 Pre-processing and filtering 

 

In both databases the original EHG was processed and filtered. In the top plot of Figure 4.4 an 

original EHG signal is represented. There is a significant variation in the EHG signal in the beginning 

of the recording due to equipment electronic startup transient. The following baseline fluctuation can be 

explained as a normal response of the skin/electrode interface. The abrupt signal feature present in the 

end of the recording also represents the equipment electronic transient when it is switched off. 

In the Icelandic database 200 samples were removed from the beginning and the end of the 

signal and in the TPEHG database the first 2000 samples and the last 200 samples were removed from 

the original signal. This was to remove the abrupt variations seen at the beginning and the end of the 

signal as depicted in Figure 4.4. Next, the first value of the signal was subtracted to the whole EHG 

signal and decimation was applied. In the Icelandic database the original signal sampling rate of the 

EHG signal was 200 Hz and a decimation factor of 50 was applied resulting in a new sampling rate of 

4 Hz.  In the TPEHG database the original signal sampling was 20 Hz and a decimation factor of 5 was 

applied resulting in a new sampling rate of 4 Hz. The signal was posteriorly filtered between 0.1 Hz to 

1 Hz by a Wavelet filtering method. Figure 4.4 bottom represents the resulted signal without decimation. 

Figure 4.5 bottom shows a detailed zoom of the original signal where the maternal ECG is clearly present 

along with background noise. A flowchart with the pre-processing and filtering is presented in Figure 

4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: On top: Original EHG signal from the subject 7 of the Icelandic database. On bottom: EHG signal after the 

first two steps of pre-processing. 
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Samples removed: 

• Icelandic database: 200 from the beginning and the end of the EHG 

signal 

• TPEHG database: 2000 from the beginning of the EHG signal; 200 

from the end of the EHG signal 

 

Decimation Factor:   

• Icelandic database: 50  

• TPEHG database: 5   

Wavelet filtering between 0.1 to 1 Hz 

First value of the signal is subtracted to 

the complete signal 

 

Figure 4.6: Flow chart of the pre-processing and filtering applied to the Icelandic and the 

TPEHG database 

Figure 4.5: On top: Original EHG signal from the subject 7 of the Icelandic database. On bottom: EHG signal after three 

steps of pre-processing. The blue arrows represent the zoom done in the top plot where maternal ECG and interference is 

clearly seen. 
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(4.1) 

(4.2) 

(4.3) 

4.2 Monopolar vs bipolar channels 

 

 The databases used in this work have different channel configurations: in the Icelandic database 

there is 16 monopolar channels and in the TPEHG database there is 3 bipolar channels.  

Bipolar channels are obtained subtracting two different monopolar channels. Bipolar channels 

have lower spatial resolution (from 16 to 12 channels in the Iceland database). The advantage is reducing 

common noise in the resulted bipolar channel, like the maternal electrocardiogram, electrode 

movements or respiratory movements, as represented below. 

𝑆1 =  𝑆′1 +  𝑟 

𝑆2 =  𝑆′2 +  𝑟 

𝑆𝑏 =  𝑆1 − 𝑆2  

where 𝑆1 𝑎𝑛𝑑 𝑆2 represent monopolar signals, 𝑟 represents the signal noise and 𝑆𝑏 represents 

the bipolar signal. If the noise of the monopolar signals is identical, then in the bipolar signal the noise 

is eliminated. The bipolar recording affects the EHG spectral content and can induce a bias to the 

propagation direction of the EHG signal by forcing the direction of the electrodes chosen. Another effect 

of the bipolar recordings is the high-pass filtering outcome resulting in the elimination of the lower 

frequencies.25,56,58 Most authors chose bipolar channels over monopolar ones.3,56,64 

In this thesis, bipolar channels for both databases were chosen. In the TPEHG database the 

chosen channel was the E2-E3 since the vertical signal presents a higher variation of signal potential, 

and in the Icelandic database the selected channel was the channel 4-channel 13 since it covers all the 

area of the abdomen. An illustration of the chosen channel is represented in Figure 4.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7: The blue arrow represents the channel chosen in this thesis for the Icelandic database9 (left) 

and for the TPEHG database8 (right) 
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4.3 Spectral Analysis 

 

The PSD methods can be divided in two groups: parametric and non-parametric. Parametric 

methods match the signal with a model. If the selected model is wrong, the PSD estimation may contain 

invalid frequency peaks. Non-parametric methods main advantage methods is its robustness, however 

the disadvantage of this method is the use of data windowing, that can lead to a distortion of the 

PSDs.50,65–68  

In this work the following PSD methods were calculated: 

• Wavelet Marginal (non-parametric method); 

• FFT (Fast Fourier Transform) (non-parametric method); 

• FFT Windowed (non-parametric method); 

• Welch (non-parametric method); 

• Covariance (parametric method); 

• Burg (parametric method); 

• Modified Covariance (parametric method); 

• Yuelear (parametric method); 

• AR (parametric method). 

 

The created databases include all the above-mentioned PSD estimations. The FFT method, used 

regularly in literature, was not applied in this work since this PSD estimation has several peaks. In 

contrast, most of the parametric methods present a smooth estimation of the PSD. The Welch method is 

a compromise between the non-parametric methods and the parametric ones being this the reason behind 

the choice of the Welch method. The Wavelet method PSD estimation is quite attractive as far as 

smoothness and resolution is concerned. However, for lack of time it was not used in this work.  

The Welch method, also called average periodogram, is non-parametric and includes the 

periodogram technique. The main steps of the Welch method are represented in Figure 4.9. First this 

method divides the input signal into overlapping segments, as represented in Figure 4.869. A window is 

the applied to each segment, in this work the window chosen was the Hanning window. The next step 

in the Welch method is to apply the FFT to the segments already windowed and then periodograms are 

obtained. The last step is to obtain the average of the periodograms.65,69–71 The Welch method is used to 

determine the power spectral of each burst. The PSD has been used by researchers to analyze the EHG 

signal and to evaluate if changes of the power spectra may indicate premature delivery.72 A study using 

PSD analysis revealed that as labor induction progresses there was a shift of the energy content toward 

higher frequencies.51  
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  Figure 4.9: Flow chart of the Welch method 

Modified periodograms of the segments are 

obtained 

Average of the modified periodograms 

PSD estimation based on Welch method 

Input signal is segmented into multiple overlapping 

segments 

Window is applied to each segment 

FFT is applied to each Windowed segment 

Figure 4.8: Overlapping segments used in welch method. N 

represents the number of samples of the window. The overlap is 

50%.69 
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4.4 Building the Databases 

 

 Since the created data is similar for the Icelandic and the TPEHG databases only the results of 

the Icelandic database will be mentioned. In Figure 4.11 is represented the original format of the data of 

the Icelandic database. The original format contains the original EHG signal in which each row 

represents a signal recorded by one electrode. An application was designed for this purpose. That 

function was updated, tested, debuged and named:   

read_Iceland_Database_v13_append_psd_contract_fm_v9_bipolar, Figure 4.10. 

  

 

 

 

The inputs of the read_Iceland_Database_v13_append_psd_contract_fm_v9_bipolar are: 

• data_folder: string with the folder of the original database; 

• selected_cases: the selected cases to be included in the database, i.e. if {'all'} were selected then 

the database would include all cases available; 

• f_min: minimum frequency for filtering; 

• f_max: maximum frequency for filtering. 

 

 

This function builds and saves in a MATLAB® file the table represented in Figure 4.12. Some of 

the parameters included on the table are: 

• filtered signal; 

• all the information provided in the header files; 

• separated contractions with different detection methods (see Chapter 5). 

 

 

 

 

 

 

 
  

Figure 4.10: Command line of function read_Iceland_Database_v13_append_psd_contract_fm_v9_bipolar 
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Figure 4.11: Original files from the Icelandic 16-Electrode Database available in PhysioNet. Each row represents the 

recording of one channel. 

Figure 4.12: Table with processed (step1) unipolar data from the Icelandic database. Each column represents 

the recording of each pregnancy visit. All the information of the header files was included as well as other 

parameters such as separated contractions and the filtered data. The figure on the right is the continuation of the 

left one. 
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After the table development, Figure 4.12, and since the parameters of contraction detection and 

PSD method were already chosen, new databases were built. To create these new databases the 

functions, create_database_cont_bipolar_v2, and create_database_cont_bipolar_v2_tpehg were used 

for the Icelandic and the TPEHG databases, respectively. 

 

 

 

 

The inputs of these functions are: 

• data folder: string with the folder of the complete database; 

• selected cases: the selected cases to be included in the database, i.e. if {'all'} were selected then 

the database would include all cases available; 

• channel: number between 1 to 10 for the create_database_cont_bipolar_v2 and a number 

between 1 and 3 for the create_database_cont_bipolar_v2_tpehg; 

• method name: selected method for the detection of contractions, i.e. 'wavelet'. 

 

This are the name references of the obtained databases:  

• for the Icelandic database: method_wavelet_channel_ch4-ch13_with_header; 

• for the TPEHG database:  method_wavelet_channel_E2-E3_tpegh. 

The functions built a database of a bipolar channel that contains all the separated contractions, the 

PSD of each burst and also all the information provided in the header files of the original databases. The 

header files of the Icelandic database include9:  

• Participant ID 

• Record number 

• Record type (labor, pregnancy) 

• Age of participant (years) 

• BMI (body mass index) of participant before pregnancy 

• BMI of participant at time of recording 

• Gravidity (number of times participant has been pregnant, including current pregnancy) 

• Parity (previous births after 22 weeks gestation) 

• Previous caesarean (Yes, No) 

• Placental position 

• Gestational age at recording (weeks/days), according to a first trimester ultrasound  

• Gestational age at delivery (weeks/days) 

Figure 4.13: Command line of function create_database_cont_bipolar_v2 and create_database_cont_bipolar_v2_tpehg 
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• Mode of delivery (Vaginal, Vaginal/Induction, Elective caesarean, Emergency caesarean due to 

slow progress, Emergency caesarean due to other than slow progress). Vaginal delivery 

indicates spontaneous onset unless appended with /Induction. 

• Synthetic oxytocin use in labor (Yes, No) 

• Epidural during labor (Yes, No) 

• Comments for recording 

• Comments for delivery 

The header files of the TPEHG database include63:  

• record number; 

• pregnancy duration; 

• gestation duration at the time of 

recording; 

• maternal age; 

• number of previous deliveries (parity); 

• previous abortions; 

• weight at the time of recording;  

• hypertension;  

• diabetes;  

• placental position;  

• bleeding first trimester;  

• bleeding second trimester;  

• funneling;  

• smoker

An example of the output of create_database_cont_bipolar_v2 function is shown in Figure 4.14. 

With these functions two databases were created which contained all the separated contractions, PSD 

methods and all the header information. In the Icelandic database 3136 contractions were detected and 

in the TPEHG database 4622 contractions were identified.  

The database with the separated contractions, Figure 4.14, is the foundation of this work since all 

the posterior analysis will be made from this database. The separated contraction method will be 

explained in the next chapter. Each line represents one contraction, with the 9 PSD estimation methods 

and all the information provided in the subject’s header. A table with the database detailed information 

is presented below, Table 4.1. 

 

Number of the database 

column (Figure 4.14) 
Contents 

1 
Identification of the subject, the visit and the number of the 

contraction 

2 Separated contraction 

3 Index of the contraction in the EHG signal 

4 and 5 Frequency axis 

6 to 14 9 PSD estimation methods 

15 to 29 Header information 

30 Classification of the contraction (not implemented) 

Table 4.1: Table with the information provided in the separated contractions database 
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Figure 4.14: Output of the function create_database_cont_bipolar_v2. This database was constructed from the Icelandic database and contains all the separated contractions and all the subject’s 

information provided in the header files. Bottom figure is the continuation of the top one. 
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Chapter 5 – Contraction Detection 

 

 Contraction detection can be manual or automatic. Most researchers use manual segmentation 

of the EHG signal, however, in this work an automatic detection was performed to avoid the time 

consuming and error prone manual segmentation task. To detect the contractions a method based on 

energy was chosen since in a first instance was considered that contractions would exhibit an energy 

increase. In this work the following methods were calculated: 

• Wavelet Energy; 

• Teager Energy; 

• RMS (Root Mean Square); 

• Squared RMS; 

• Hilbert Envelop. 

 

It is beyond the scope of this work to compare the detection methods. A paper is being 

submitted about this subject. It is also beyond the scope of this work to provide a detailed explanation 

about the above-mentioned methods. 

In the contraction detection algorithm, the first event was always ignored. Contractions with 

amplitude above 0.3 mV were also eliminated since do not represent physiologic activity. 

A visual validation of the contractions was required. For that, an application tool was 

developed to represent the contractions along the EHG signal, the Uterine Inspector. This would 

confirm if the contractions were well defined and perfectly overlapped with the EHG signal. At the same 

time the user could assess the contraction detection accuracy. The user selects the database and the 

recorded visit. The generated table in Figure 5.1 represents the contractions and fetal movements for 

each method and each channel, Table 5.1. In the visual inspection, there was a perfect overlap of the 

contractions and the EHG signal. Under visual inspection by several subjects the contraction detection 

rate was considered very good. The Uterine Inspector software is a tool to be used for expert validation 

of the contraction detector. In Figure 5.2 an output of this application is represented. 

This tool was based in the research of Oliveira et al.73 This work have been further developed, tested 

and debugged. 

 Detection Method 

Wavelet_cont Contractions detected with Wavelet method 

Wavelet_fm Fetal Movements detected with Wavelet method 

Teager_cont Contractions detected with Teager method 

Teager_fm Fetal Movements detected with Teager method 

RMS_cont Contractions detected with RMS method 

RMS_fm Fetal Movements detected with RMS method 

RMS_Squared_cont Contractions detected with Squared RMS method 

RMS_Squared_fm Fetal Movements detected with Squared RMS method 

Hilbert_Envelope_cont Contractions detected with Hilbert Envelop method 

Hilbert_Envelope_fm Fetal Movements detected with Hilbert Envelop method 

PDE_Inst_Freq_cont 
Contractions detected with Phase Difference Instantaneous 

Frequency method. Was not implemented at this stage 

PDE_Inst_Freq_fm 
Fetal Movements detected with Phase Difference Instantaneous 

Frequency method. Was not implemented at this stage 

Table 5.1: Interpretation of table presented in Uterine Inspector, Figure 5.1 
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Figure 5.1: Uterine Inspector software developed in MATLAB® to evaluate the contraction detection. 
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Figure 5.2: Example of an output from the Uterine Inspector. The EHG signal is represented in red. The contractions detected by each method are represented in black and the fetal movements are 

represented in blue. Each plot represents a different method of detection. 
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Chapter 6 – Spectral Distance’s Analysis and Evaluation 

 

 

In this thesis, the main goal is to cluster contractions from EHG signals. However, contractions, 

as represented on Figure 6.1, are non-stationary time series and their visual classification is challenging 

and not viable in long term or in the clinical practice. There are several features that can be extracted 

from the EHG signal but the power spectra of the contractions, Figure 6.2, were chosen since the spectra 

accurately represents the EHG signal and it has the same length independently of the number of samples 

of the contraction. 

 

Power spectra were firstly used by Itakura, F. and Saito, S.74 in the 1968 for speech recognition. 

Speech recognition is being able to identify spoken words and transform it into machine readable format. 

Since the 1970s this field has progressed, mostly due to the advances of digital signal processing and 

the increase of processing speed.75 Nowadays there are several software applications available on the 

market that can differentiate words, recognize speakers, emotions and detect  disordered or pathological 

voices.76 Several researchers have used successfully power spectra for speech recognition. For example, 

researchers are now able to use the Automatic Speech Recognition to recover speech from noisy 

environments.75,77 Power spectra have also been widely used with EHG and contractions analysis. Power 

spectra are used as a feature to choose the best parameters to classify contractions from the EHG signal 

and also to determine the power spectra peaks and the expected frequency band of the EHG.67,78 Studying 

power spectra some researchers found that the amplitude of the power spectrum increased prior to the 

delivery but other studies came to the conclusion that amplitude did not had a substantial relation to the 

gestational age or delivery.32,50,79,80  

So far, EHG researchers have used some features of the PSD estimations such as frequency 

peaks, median frequency and peak amplitudes. It is quite debatable if this is the best procedure for a 

Figure 6.1: Two plots of contractions from EHG signal. The subject was the Ice004 from the Icelandic database. Visually is 

hard to compare the two contractions since the signal is non-stationary. Also, the contractions can have different number of 

samples which present a problem when determining a distance. 
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multicomponent spectrum as those shown in Figure 6.2. So, in this work it was decided to use the whole 

spectrum. This innovative approach has the drawback of higher computational demands. For instance, 

the 4622 (TPEHG database) spectra with 513 samples each and are all fed to the classification algorithm. 

There was a risk of being unable to process this data within a reasonable time span using a common 

computation platform.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To compare the power spectra of the contractions was necessary to use an adequate metric. 

There are many metrics however to it is necessary to understand their proprieties to choose the most 

suitable for clustering. A metric ρ on a set of X, associates to each pair of points in X a non-negative real 

number ρ(𝑥, 𝑦). Metrics should satisfy the following 81,82: 

1. ρ(𝑥, 𝑦) = 0 when 𝑥 = 𝑦 

2. ρ(𝑥, 𝑦) =  ρ(𝑦, 𝑥)  

3. ρ(𝑥, 𝑧) ≤  ρ(𝑥, 𝑦)  + ρ(𝑦, 𝑧)  

The pair (𝑋, ρ) is then called a metric space and the number ρ(𝑥, 𝑦) is called the distance 

between the points 𝑥 and 𝑦. These axioms express that metrics are symmetrical (axiom 2) and satisfy 

the triangle inequality property (axiom 3).81,83,84 Usually these two axioms are not respected. For 

clustering purposes, however, it is more convenient to use the symmetric divergences.85 Gray and 

Markel refer that “true metrics satisfy the triangle inequality in addition to being symmetrical and 

Figure 6.2: Power Spectrum of the two contractions shown in Figure 6.1. The power spectrums 

have the same dimension independently of the number of samples of the contractions making it 

a more suitable feature to work with when calculating a spectral distance. 
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(6.1) 

(6.2) 

(6.4) 

(6.5) 

(6.3) 

positive definite”82 but this designation is not always respected. For example, the Itakura-Saito distance 

and the Itakura distance do not respect axioms 2 and 3 however they are referred in most articles as 

distances. In this thesis, j is the imaginary unit, such that 𝑗2 =− 1. 

 

6.1 Itakura-Saito Distance and COSH Distance 

 

The IS (Itakura-Saito) distance was created by Itakura, F. and Saito, S.74 in 1968 from the 

maximum likelihood estimation of short-time speech spectra under autoregressive modeling. It is 

defined as “a measure of the goodness of fit between two spectra” and is a common measure for 

representing the difference between two signals in frequency domain.74,86 It is represented as43–45: 

 

𝑑𝐼𝑆(𝑋, 𝑌) = ∫ [
 |𝑋(𝜔)|2

|𝑌(𝜔)|2
−  𝑙𝑜𝑔 (

 |𝑋(𝜔)|2

|𝑌(𝜔)|2 ) − 1]
𝑑𝜔

2𝜋

𝜋

−𝜋

 

 

Where 𝑋(𝑤)  and 𝑌(𝜔)  represent the spectral estimations under comparison. For instance |𝑌(𝑤)|2 is 

represented using the following AR model87: 

 |𝑌(𝜔)|2 =  
𝜎2

|1 + 𝑎1𝑒−𝑗𝜔 + 𝑎2𝑒−𝑗2𝜔+. . . +𝑎𝑝𝑒−𝑗𝑝𝜔|2
 

Here σ and 𝑎𝑖  (i=1, ..., p) are, respectively, the gain and the ith prediction coefficient of the 

Linear Predictive Coding (LPC) model of order p. This distance is not symmetric, is mostly concave 

and does not fulfil the triangle inequality.90,91 The IS distance is a Bregman divergence generated from 

a convex function.90,92 The Bregman divergences, named after Bregman, L.M.,93 are a class of distortion 

functions and can be generated from convex functions. The Bregman divergences are not symmetrical 

and do not satisfy the triangle inequality property hence they are not a metric.84,90,94 To calculate this 

distance the function distispf was used. This function can be found in the voicebox toolbox for 

MATLAB® and was created by Brooks,M.95. The cost function from IS distance, Figure 6.3, from 

distispf function is: 

𝐹(𝑥) = 𝑝𝑓1/𝑝𝑓2 −  𝑙𝑜𝑔(𝑝𝑓1/𝑝𝑓2) −  1 

Where 𝑝𝑓1 and 𝑝𝑓2 are the power spectra to be compared. 

 The COSH distance is the symmetric version of the Itakura-Saito distance and is defined82: 

𝑉(𝜃) = 𝑙𝑛 [
𝜎2

|𝑋|2
] − 𝑙𝑛 [

𝜎′2

|𝑌|2
] 

 

Ω = ∫ {𝑐𝑜𝑠ℎ[𝑉(𝜃)] − 1}
𝑑𝜃

2𝜋

𝜋

−𝜋
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(6.6) 

Where 𝜃 is a normalized frequency plane, 
𝜎2

|𝑋|2 and 
𝜎′2

|𝑌|2 represent the spectral models and Ω is the COSH 

distance.82 To calculate this distance the function distchpf from the voicebox toolbox was used.95 The 

cost function from COSH distance, Figure 6.4, from distchpf function is: 

𝐹(𝑥) = (𝑝1/𝑝2 +  𝑝2/𝑝1)/2 –  1 

Where 𝑝1 and 𝑝2 are the power spectra to be compared. 

Figure 6.3 represent the cost function of the IS distance in 2D and 3D.  Both plots show clearly the non-

symmetrical nature of cost function representation. In the 2D plot, the displayed density of the contour 

lines also shows the increasing slope of the cost function towards the low frequencies in both frequency 

axis. Figure 6.4 represents the cost function for COSH distance where symmetricity is clearly displayed.  

 

Figure 6.3: Cost function of Itakura-Saito distance: 2D contour (left) and respective 3D plot (right). 

The contour lines join points of equal value and between the lines there is an equal increment of 

height. 

Figure 6.4: Cost function of COSH distance: 2D contour (left) and respective 3D plot (right). 
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(6.7) 

(6.8) 

(6.9) 

(6.10) 

6.2 Itakura Distance and Symmetrical Itakura Distance 

 

 The Itakura distance96 is a distortion of the Itakura-Saito distance and it was created to minimize 

the gain sensibility. This distance is also known as log likelihood ration distortion87 and is defined by: 

𝑑𝐼(𝑋, 𝑌) = 𝑙𝑜𝑔 (
1

2𝜋
∫  

 |𝑋(𝜔)|2

|𝑌(𝜔)|2
𝑑𝜔

𝜋

−𝜋

) 

where 
𝜎𝑋

2

|𝑋|2 and 
𝜎𝑌

2

|𝑌|2 represent the spectra of the AR models87,89,96. This measure is gain independent and 

is not symmetrical. However we can obtain the symmetrical Itakura distance by doing97: 

𝑑𝑆𝑦𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙 𝐼 (𝑋, 𝑌)  =  
𝑑𝐼(𝑋,𝑌) + 𝑑𝐼(𝑌,𝑋)

2
 

To calculate this distance the function distitpf from the voicebox toolbox was used.95 The cost function 

from Itakura distance, Figure 6.5, from distitpf function is: 

𝐹(𝑥) =  
 |𝑋(𝜔)|2

|𝑌(𝜔)|2
 

Where 𝑋𝜔and 𝑌𝜔 are the power spectra to be compared. It is clearly not symmetrical and with a 

quadratic slope.  

The cost function from the symmetrical Itakura distance, Figure 6.6, is: 

𝐹𝑠(𝑥) = 0.5 × (
 |𝑋(𝜔)|2

|𝑌(𝜔)|2
+  

 |𝑌(𝜔)|2

|𝑋(𝜔)|2 ) 

Although 𝐹𝑠 being a symmetrical function the quadratic slope is obviously present.  
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Figure 6.5: Cost function of Itakura distance: 2D contour (left) and respective 3D plot (right). The 

contour lines join points of equal value and between the lines there is an equal increment of height. 

Figure 6.6: Cost function of the symmetrical Itakura distance: 2D contour (left) and respective 3D 

plot (right). 
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(6.11) 

(6.12) 

(6.13) 

(6.14) 

6.3 Kullback-Leibler Divergence and Jeffrey Divergence 

 

 The KL (Kullback-Leibler) Divergence, also called relative entropy, information gain or I-

divergence is an information theoretic measure of the divergence between two probability distributions. 

The KL divergence is defined 86,98: 

 

𝐷𝐾𝐿 (𝑃||𝑄) =  = ∫ 𝑝(𝑥) 𝑙𝑜𝑔 (
𝑞(𝑥)

𝑝(𝑥)
)

∞

−∞

d𝑥 

for continuous distributions P and Q and where 𝑝 and 𝑞 denote the probability densities of P and Q. This 

measure is non-negative, asymmetrical, convex and does not fulfil the triangle inequality 

property.91,99,100  The KL divergence can also be used as a distance measure between two spectral density 

functions.101,102 The KL divergence is a Bregman divergence generated from a convex function.90,92 A 

typical problem of the KL divergence happens when 𝑝(𝑥) is very low for a particular 𝑥 so the specific 

term 
𝑞(𝑥)

𝑝(𝑥)
 can dominate the result.103  

The Jeffrey divergence is a way of making the KL divergence symmetrical, that can be used for AR 

models and is given by104–106:  

𝑑𝐽𝐷 (𝑃||𝑄)  =  𝑑𝐾𝐿(𝑃||𝑄) +  𝑑𝐾𝐿(𝑄||𝑃) 

To calculate this distance the function KLDiv was used. This function was created by David Fass for 

MATLAB®.107 The cost function from KL divergence, Figure 6.7, from KLDiv function is: 

𝐹𝐾𝐿(𝑥) = 𝑝(𝑥) 𝑙𝑜𝑔 (
𝑞(𝑥)

𝑝(𝑥)
) 

Where 𝑝(𝑥) and 𝑞(𝑥) are the power spectra to be compared. The cost function from Jeffrey divergence, 

Figure 6.8, is: 

𝐹𝐽𝐷(𝑥) = 𝑝(𝑥) 𝑙𝑜𝑔 (
𝑞(𝑥)

𝑝(𝑥)
) + 𝑞(𝑥) 𝑙𝑜𝑔 (

𝑝(𝑥)

𝑞(𝑥)
) 

Figure 6.7 shows that the KL function is not symmetrical and displays a soft slope in the low frequency. 

Figure 6.8 represents the symmetrical nature of the Jeffrey divergence. The slope it is more evenly 

distributed between the bisector frequency line and the limit frequency axis.  
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Figure 6.7: Cost function of KL divergence: 2D contour (left) and respective 3D plot (right). The 

contour lines join points of equal value and between the lines there is an equal increment of height. 

Figure 6.8: Cost function of Jeffrey divergence: 2D contour (left) and respective 3D plot (right). 



39 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

6.4 Rényi Entropy, Rényi Divergence and Jensen-Rényi Divergence 

  

 In 1961 Rényi, A108 introduced the entropy of order 𝛼 of a discrete probability distribution 

{𝑝𝑖}, 𝑖 = 1, …, n:  

𝑑𝑅𝑒 (𝑝) = 
1

1 − 𝛼
 log2 ∑ 𝑝𝑖(𝑥)𝛼

𝑛

𝑖=1 

  

The Rényi Divergence of order 𝛼 is defined as the number of bits by which a mixture of two codes 

can be compressed. The expression of this divergence is109: 

𝐷𝛼 (𝑃||𝑄) = 
1

1 − 𝛼
 log (∫ 𝑝(𝑥)𝛼𝑞(𝑥)1−𝛼 d𝑥) 

 

 
where 𝑃 and 𝑄 are different continuous distributions, with probability densities respectively equal to 

𝑝 and 𝑞 and α ≠ 1. The Rényi divergence is positive and is not symmetrical. The Rényi divergence can 

also be used as a distance measure between two spectral information functions.102,110,111 When 𝛼 = 1 the 

KL Divergence is obtained and when 𝛼 =  
1

2
 the Rényi divergence is symmetrical. 109  The Jensen-Rényi 

divergence is symmetrical version of the Rényi divergence for any positive value of 𝛼 and is given by:  

𝐷𝐽𝑅𝐷 (𝑃, 𝑄) =  𝑑𝑅𝑒 (√𝑃𝑄) −
𝑑𝑅𝑒 (𝑃) +𝑑𝑅𝑒 (𝑄)

2
 

 

where 𝑃 𝑎𝑛𝑑 𝑄 are the power spectra and 𝑑𝑅𝑒 represents the Rényi entropy also defined on the power 

spectra.52–55 To calculate this distance the functions K_q_renyi was used. This function was created by 

Guan Wenye for MATLAB®.116 The cost function from Rényi divergence from K_q_renyi function, 

Figure 6.9 (α=0.45) and Figure 6.11 (α=0.5), is: 

𝐹(𝑥) = 𝑝𝑖(𝑥)𝛼𝑞𝑖(𝑥)1−𝛼 

where 𝑝𝑖(𝑥) and 𝑞𝑖(𝑥) are the power spectra to be compared. 116 The cost function from Jensen-Rényi 

divergence, Figure 6.10 (α=0.45) and Figure 6.12 (α=0.5), is: 

𝐹𝐽𝑅𝐷(𝑥) = 𝑝𝑖(𝑥)𝛼𝑞𝑖(𝑥)1−𝛼  +  𝑞𝑖(𝑥)𝛼𝑝𝑖(𝑥)1−𝛼   

Inspecting the symmetrical cost functions (Figure 6.10, 6.11 and 6.12) the following comments apply: 

Jensen-Rényi with α=0.45 (Figure 6.10) shows a saddle-like zone around the bisector frequency axis 

which represents lower sensitivity in this area which eliminates this cost function in this work. Figure 

6.11 and 6.12 are equivalent and represent the Rényi divergence and the Jensen-Rényi divergence with 

α=0.5. The slope is smother compared to Jeffrey divergence in Figure 6.8. this makes this cost function 

a candidate for this work. 
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Figure 6.9: Cost function of Rényi divergence: 2D contour (left) and respective 3D plot (right) with 

α=0.45. The contour lines join points of equal value and between the lines there is an equal 

increment of height. 

Figure 6.10: Cost function of Jensen-Rényi divergence: 2D contour (left) and respective 3D plot 

(right) with α=0.45 
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Figure 6.11: Cost function of Rényi divergence: 2D contour (left) and respective 3D plot (right) 

with α=0.5. The contour lines join points of equal value and between the lines there is an equal 

increment of height. 

Figure 6.12: Cost function of Jensen-Rényi divergence: 2D contour (left) and respective 3D plot 

(right) with α=0.5. In this case, the Jensen-Rényi divergence is the same as the Rényi divergence 

since the α=0.5 makes the Rényi divergence symmetrical. 
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6.5 Distance Computation 

 

For this purpose, the MATLAB® resident pdist command has been used, with a customized 

option. Four symmetrical distances were considered. The question still remains which of the following 

symmetrical cost functions with smooth slope should be selected: 

• COSH distance, with function distchpf; 

• Symmetrical Itakura distance, with function distitpf 

• Jeffrey divergence, with function KLDiv; 

• Jensen-Rényi divergence, with function K_q_renyi. 

The KLDiv function was adapted in this work since its original version would not allow the 

comparison of one spectrum against a matrix. To solve this problem a new function was created called 

KLDiv_simetric_filipa_v2. The following adaptations were performed: 

• The function returns a symmetrical distance; 

• A loop was added to allow the calculation of a distance between a matrix and a single 

observation. 

 

In order to select one of the four previously mentioned cost functions it has been performed a 

test using a simulated spectrum with two frequency peaks. The spectral distances will be evaluated 

between this spectrum and its own 11 displaced versions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: On top plot: Spectral distances of the four selected cost functions using a simulated spectrum with 

two frequency peaks. On bottom plot: The simulated spectrum is shifted several points forward and compared 

with the blue plot. To each increment a distance is calculated. 
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As seen in the figure on top the symmetrical Itakura distance displays low sensitivity above the 

first increment. The Jensen-Rényi divergence displays a similar behavior until the 6th increment. Both 

the COSH distance and Jeffrey divergence display more increment sensitivity. The COSH distance and 

the Jeffrey divergence produce therefor similar best results. Both distances were applied to the power 

spectra of the contractions obtained in both databases. A histogram of the Jeffrey divergence distances 

and the COSH distances is presented in Figure 6.14 and 6.15, respectively. By analyzing the histograms 

it is possible to conclude that the COSH distance gives distances in a wider range than the Jeffrey 

divergence, meaning that some values obtained with the COSH method are very different from the 

remaining ones. This difference between values could complicate the clustering analysis since these 

extreme values could be assigned to clusters with only a couple of observations. In this respect the 

Jeffrey divergence seems to have more balanced results since it presents a smaller range of values. For 

that reason, the Jeffrey divergence was chosen to be applied in the clustering analysis. 

The next step of this work will be the clustering operation of the power spectra, which is 

presented in the chapter 7. 
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Figure 6.15: Histogram of the distances relative of the spectrum of contractions from the 

TPEHG database (red) and the Icelandic database (blue), calculated with the COSH 

divergence. 

Figure 6.14: Histogram of the distances relative of the spectrum of contractions from the 

TPEHG database (red) and the Icelandic database (blue), calculated with the Jeffrey 

divergence. 
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(7.1) 

Chapter 7 – Cluster Analysis 

 

Cluster analysis consists in organizing data into groups so that observations within a cluster are 

more similar to each other than they are to objects from other clusters.117 Cluster analysis was introduced 

in 1939 by Tryon, R..118 Since then new algorithms for cluster analysis have been developed and its now 

used in various fields of science.119 Clustering can be divided in two subgroups: hard clustering and soft 

clustering. In hard clustering, data is clustered in an exclusive way, meaning that each point of data 

belongs to only one cluster. In soft clustering each point of data may belong to two or more clusters with 

different likelihoods.120 In this thesis only hard clustering is explored. Cluster analysis methods can be 

divided in several groups but only hierarchical clustering and partitional methods are discussed in this 

work.  

 

7.1 Linkage Clustering 

 

Hierarchical clustering consists in consecutive aggregation or division of the data, depending if 

it is a bottom-up or a top-down approach. In the agglomerative method, or bottom-up approach, each 

observation is assigned to its own cluster and the two most similar cluster are joined and in divisive 

method, or the top-down approach, the observations are all in the same cluster and are divided in the 

two less similar clusters.121 The groups that result from hierarchical clustering are nested and organized 

in a tree-like structure known as dendrogram. A dendrogram shows how the clusters are linked to each 

other. It also displays a numeric value that represents the distance between two clusters.122 In hierarchical 

clustering it is not necessary to determine the number of groups ahead of time which makes this a good 

method to explore the data. One of the problems of hierarchical clustering is that it is not possible to 

split the clusters once they are grouped, meaning that once an object is assigned to one cluster it cannot 

be reassigned to a “better fitting” cluster.117,122  

The function linkage implements the hierarchical clustering in which are presented 8 possible 

methods for linkage criteria. These methods are ward, single, complete, average, Mcquitty, median, 

centroid and custom distance function. Below are the equations of the first 7 methods and a brief 

explanation of each one. Given a cluster A and B, the number of objects in each cluster is given by 𝑛𝐴 

and 𝑛𝐵. 

• Ward linkage 

The Ward linkage, also called Ward’s minimum variance method measures the distance between two 

clusters by how much the variance will increase when we merge them, that is, it links the two clusters 

that lead to the minimum increase of within-cluster variance after merging. The within-cluster variance, 

is defined by84,121,123: 

𝐸𝑆𝑆 = ∑ (𝑥𝑝 − �̅� )2

𝑥𝑝𝜖A

  

where 𝑥𝑝 is the value of the 𝑝-observation and �̅� is the mean of the observations. This method is very 

efficient but can create small size clusters.121 
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(7.2) 

(7.3) 

(7.4) 

(7.5) 

• Single linkage 

The Single linkage, also known as nearest-neighbor linkage or shortest-distance linkage, measures the 

distance between clusters and merges groups based on the minimum distance between them. The 

following equation represents this method84,124–126: 

 

𝑑𝑐(𝐴, 𝐵) = 𝑚𝑖𝑛  {𝑑(𝑥𝐴𝑖 , 𝑥𝐵𝑗)}  

where 𝑑(𝑥𝐴𝑖, 𝑥𝐵𝑗) is distance between the observation i from group A and observation j from group B. 

This distance often presents the changing problem, when clusters are created due to single elements 

being close to each other which could create a cluster with objects that are very distant to each other. 

Still, this method can effortlessly identify outliers, which will be the last to be merged.121,127 

• Complete linkage 

The Complete linkage or maximum linkage joins groups based on the maximum distance between two 

objects in two groups, meaning that the distance between clusters A and B 84,121,126,128,129: 

𝑑𝑐(𝐴, 𝐵) = 𝑚𝑎𝑥  {𝑑(𝑥𝐴𝑖, 𝑥𝐵𝑗)}   

where 𝑑(𝑥𝐴𝑖, 𝑥𝐵𝑗) is distance between the observation i from group A and observation j from group B. 

This method avoids the chaining problem and tends to find compact clusters of equal diameters. 

However, a problem of this distance is when the data has outliers since these prevent close clusters to 

merge together. Nevertheless, complete linkage is not adequate when there is substantial amount of 

noise in the data.121,127 

• Average linkage 

The average linkage, also called UPGMA (Unweighted Pair Group Method with Arithmetic Mean), 

calculates the average of all distances between all pairs of objects that belong to both clusters and is 

defined as84,126,130: 

𝐷(𝐴, 𝐵) =
1

𝑛𝐴 × 𝑛𝐵
∑ ∑ 𝑑(𝑥𝑝, 𝑥𝑞)

𝑥𝑞𝜖𝐵
.

𝑥𝑝𝜖𝐴

 

where 𝑛𝐴 represents the number of objects in the cluster A and 𝑛𝐵 represents the number of objects in 

the cluster B. The average linkage overcomes the limitations of single and complete linkage and offers 

a more precise evaluation of the distance between clusters.127 

• Mcquitty linkage 

The Mcquitty linkage, also called WPGMA (Weighted Pair Group Method with Arithmetic Mean), is 

similar to the average linkage however the distance is calculated as an average. For example, the distance 

between A and B, where B is composed of 𝐵𝑚 and 𝐵𝑛, is84,121,129: 

𝐷((𝐴 ∪ 𝐵), 𝐶) =
𝑑(𝐴, 𝐶) + 𝑑(𝐵, 𝐶)

2
 

This method is recommended when the clusters have different number of objects.84 
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(7.8) 

(7.9) 

(7.6) 

(7.7) 

• Centroid linkage 

Centroid linkage, also called UPGMC (Unweighted Pair Group Method Centroid), uses centroids to 

calculate the distances between a cluster and all remaining clusters. This way, when a new cluster is 

formed a new centroid is assigned. This new centroid is the average of all the objects that constitute it. 

The centroid equation is given by:84,121,128 

𝑐𝐴 =  
1

𝑛𝐴
∑ 𝑥𝑝

𝑥𝑝𝜖𝐴

 

where 𝑛𝐴 represents the number of objects in the cluster A and 𝑐𝐴 is the centroid of the cluster A. The 

distance by two centroids is121: 

𝐷(𝐴, 𝐵) = 𝑑(𝑐𝐴, 𝑐𝐵) 

• Median linkage 

The median linkage, also called WPGMC (Weighted Pair Group Method with Arithmetic Centroid), 

determines the weighted centroid of the cluster as presented 84,121,131:  

𝑤𝐴 =  
1

2
 (𝑤𝑚 + 𝑤𝑛) 

where 𝑤𝑚 𝑎𝑛𝑑 𝑤𝑛 are the weighted centroids of the clusters M and N and the cluster A is composed by 

M and N. The distance is given by121,131: 

𝐷(𝐴, 𝐵) = 𝑑(𝑤𝐴, 𝑤𝐵) 

This method is similar to Centroid Linkage, however the centroid of the newly fused groups is positioned 

at the median between the old group centroids.  

A study has shown that the Ward’s method performs better with the exception where the data contain 

one or two very large groups and a few other very small groups, in that case average linkage presents 

better results. This study has also shown that complete linkage and single linkage should not be used 

when clustering functional data.126 Another study that compared the complete, average and single 

linkage concluded that the average linkage was the natural compromise between single and complete 

linkage since the single linkage is sensible to outliers and the complete linkage is highly influenced by 

outliers.127 Generally average linkage performs well, and it maximizes the cophenetic correlation 

coefficient.119 For those reasons the average linkage was chosen for the clustering analysis. 

 

 7.2 K-means and K-medoids Clustering 

 

Partitional methods, also called optimization methods, were developed to overcome the 

shortcoming presented by the hierarchical clustering. The K-means and the K-medoids methods are two 

examples of partitional methods. In partitioning methods, the data is separated into a k number of clusters 

decided previously, each partition represent a cluster. The main advantages of partitional methods are 

that it only requires the data as input, it is easy to implement and can handle large datasets. However, 

the main disadvantage is that the number of clusters needs to be predetermined. Partitional methods are 

also very sensitive to the initial centers and can lead to empty clusters.117,122 
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In the K-means algorithm groups are based on their closeness to each other according to a pre-

determined distance, i.e. the Euclidean, Manhattan or correlation distance. This method calculates the 

cluster center, called centroid, and assigns each object to minimize the sum of squares of distances 

between the object and the corresponding cluster centroid. The square error sum is defined by132,133: 

𝑄(𝑃) =  ∑ ∑ 𝑑2(𝑥𝑖, 𝑧𝑗)

𝑃𝑖∈𝑃𝑃𝑗∈𝑃

 

where 𝑍 = {𝑧1, . . . , 𝑧𝑛} represent the centers of gravity for the classes 𝑃1, . . . , 𝑃𝑛 and  𝑥𝑖 represents the 

data. 

To initialize this method the centroid is randomly selected from the data.134 The K-means 

algorithm has some disadvantages since it depends on a suitable initialization and  on the number of 

clusters chosen. 132,133 

The K-means algorithm is divided in four key steps: 

1. Select the observation assigned as the initial cluster center. 

2. Create k clusters by assigning each observation to its closest centroid. 

3. Calculate the new centroid’s values. 

4. Repeat step 3 and 4 until convergence.135,136 

The K-medoids algorithm is similar to the K-means algorithm since both search for k representatives 

in the dataset.133 The K-medoids follows parallel steps to the K-means except that in step 3 it calculates 

the medoid of each cluster.121 The difference between these methods is that K-medoids chooses data 

points as centers, called medoids, while K-means uses centroids. Medoids are more robust to outliers 

than the K-means since outliers can affect centroids but hardly affect medoids. 133,134 Studies that 

performed comparisons between K-means and K-medoids and overall report that K-medoids performs 

better than K-means.134,137 For that reason, the K-medoids method was chosen for the clustering analysis. 

 

7.3 Study case 

 

In Chapter 3, the five contraction classes found in literature were addressed. To verify if five is 

an adequate number of clusters the Upper Tail Rule was applied.  

The Upper Tail Rule, also called Elbow method, was developed to determine the number of 

clusters in hierarchical clustering. In this method the percentage of variance explained by the clusters is 

plotted against the number of clusters. The first clusters add plenty information but at some point, the 

marginal gain drops dramatically displaying an angle, called the “Elbow” criteria.122,138 The mojenaplot 

function from the EDA Toolbox139 was used to study the Upper Tail Rule and the results are in the 

Figure 7.1 and Figure 7.2. 

Analyzing Figure 7.1, the elbow in the curve seems to indicate that 4 or 5 clusters could be 

chosen for in the Icelandic database. Analyzing the plot for the TPEHG database, the results are less 

clear. It could be said that 5 or 6 clusters are adequate for this data. Based in the literature and the Upper 

Tail Rule the number of clusters chosen was five.  

(7.10) 



49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Elbow method for the TPEHG database 

Figure 7.1: Elbow method for the Icelandic database 
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To perform cluster analysis of the power spectra the function clustering_dist_pdist_new_v11 

was built, Figure 7.3. This function was used for the power spectra of the separated contractions 

databases of the Icelandic and the TPEHG databases. Upon on evoking this command a pop out menu 

prompts the user to select a database. 

 

 

The inputs of the function clustering_dist_pdist_new_v11 are: 

• psd_method_name: string with the name of the chosen PSD method, i.e. ‘welch’ method; 

• distance_method: string with the name of the chosen distance method, i.e. ‘COSH’ distance or 

‘Jeffrey’ divergence; 

• cluster_method: string with the name of the chosen hierarchical clustering method, i.e. ‘linkage’ 

or ‘k-medoids’; 

• link_method_name: string with the name of the chosen linkage method, i.e. ‘average’ or 

‘complete’; 

• kmeans_method_name: string with the name of the chosen K-means distance, i.e. ‘cityblock’ or 

‘sqeuclidean’; 

• cluster_number: number of clusters desired; 

• number_of_samples_for_ldbf: length of the LDBF wave, in number of samples. 

 

The output of the function clustering_dist_pdist_new_v11 is: 

• clusters_id: cell with length of cluster_number. Each row corresponds to a cluster. In each 

cluster is all the information corresponding to the observations assigned to that cluster, Figure 

7.5; 

• poss_ldbf: cell with similar organization of clusters_id. All the information corresponding to 

the contractions with length superior to number_of_samples_for_ldbf is included, Figure 7.6; 

• visit_clusters: table organized per visit of the subject that shows the clusters in which the 

contractions of the subject were placed in, Figure 7.7; 

• ccoph: value of the cophenetic correlation coefficient, Figure 8.4 and Figure 8.16; 

• mean_silhouette: value of the mean silhouette. 

 

The function clustering_dist_pdist_new_v11 normalizes the power spectra of the chosen PSD 

method, in this case the Welch method and adds 1𝑒−5 to each spectrum. A flowchart of the function is 

displayed in Figure 7.4. 

 

Figure 7.3: Command line of function clustering_dist_pdist_new_v11 
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Figure 7.4: Flowchart of function clustering_dist_pdist_new_v11. In black are inputs of the function are represented and 

in red the outputs of the function are represented. 
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Figure 7.5: clusters_id output of the function clustering_dist_pdist_new_v11 (see text for further explanation) 

Figure 7.6: poss_ldbf output of the function clustering_dist_pdist_new_v11 (see text for further explanation) 

Figure 7.7: visit_clusters output of the function clustering_dist_pdist_new_v1 (see 

text for further explanation) 
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The two chosen clustering methods, average linkage and K-medoids, were then implemented 

for a preliminary analysis of the clusters. To compare the K-medoids and the average linkage an 

exploratory analysis was performed with 3136 separated contractions from the Icelandic database. The 

K-medoids is represented in Figure 7.11 and Figure 7.12 and the average linkage is represented in Figure 

7.13 and Figure 7.14. 

The K-medoids method, Figure 7.11, appears to have a balanced distribution of the number of 

observations in each cluster. Analyzing the power spectra clustering, Figure 7.12, it is possible to 

identify some pattern in the power spectra. In cluster 4 there is a peak around 0.12 Hz followed by a 

decline of the spectrum. In clusters 5, most of the power spectra present a peak between 0.1 and 0.2 Hz. 

However, there is no distinct feature in any of the clusters.  

Analyzing the average linkage method, Figure 7.13, it is possible to observe that this method 

filled the cluster 5 with only one observation. This object has a duration of around 7 seconds, when the 

rest of the contractions last at least 45 seconds. In the linkage average clustering of the power spectra, 

Figure 7.14, the power spectrum of the cluster 5 is significantly different from the others since it only 

has a small peak at 0.85 Hz. This isolated observation was posteriorly compared to fetal movements 

images identified in literature, depicted in Figure 1.5. Since the object in cluster 5 presents a fetal 

movement-like wave form, it was deemed an outlier, and posteriorly removed from the database. For 

that reason, the database of separated contractions from the Icelandic database has now 3135 objects. 

Further analysis of Figure 7.14 leads to an observation of distinct peaks in cluster 1 and 3. In cluster 1 

the peak is around 0.25 Hz and in cluster 3 the peak is around 0.33 Hz. This discrimination between 

power spectra is not visible in the K-medoids clustering. 

To evaluate both clustering options the silhouette plot was also used. The function that allows 

it to be implemented in MATLAB® is the silhouette function. The silhouette allows the estimation of 

the number of clusters. The silhouette width for the 𝑖th observation is defined by122: 

 

𝑠𝑤𝑖  =  
(𝑏𝑖 −𝑎𝑖)

𝑚𝑎𝑥(𝑎𝑖, 𝑏𝑖)
 

 

where a and b represent different clusters. When the silhouette width is large the objects are 

well clustered. The silhouette width varies between -1 and 1. When the silhouette value is close to 1, 

then the data is closer to its own cluster than neighboring one. When the silhouette value is close to -1, 

then the data is not well clustered. When the silhouette value is close to 0, then the object could belong 

to the assigned cluster or to the nearby one. The silhouette plot allows a quick visualization of the cluster 

structure.122,140  

The silhouette plots of K-medoids and average linkage are represented in Figure 7.8 and 7., 

respectively. The K-medoids method, Figure 7.8, appears to distribute an identical the number of 

observations in each cluster. In every cluster there is some observations that, according to the silhouette 

plot, are incorrectly assign to the cluster. Evaluating the Figure 7.9 it is possible to observe that cluster 

2 has most of the observations and the remaining clusters have a smaller number of observations. The 

silhouette plot considers that in cluster 2 there is some observations that are dissimilar to the remaining. 

However, a small part of the observations presents some dissimilarities to the remaining in each cluster. 

(7.11) 
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Figure 7.8: Silhouette plot obtained with k-medoids clustering. Silhouette evaluation of the 

3136 observations obtained from the Icelandic database. 

Figure 7.9: Silhouette plot obtained with average linkage clustering. Silhouette evaluation of 

the 3136 observations obtained from the Icelandic database. 
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 The average silhouette width can also be used to evaluate the cluster number. The average 

silhouette width is defined by122:  

𝑠𝑤̅̅̅̅  =  
1

𝑛
 ∑ 𝑠𝑤𝑖

𝑛

𝑖=1

 

where  𝑠𝑤𝑖 is the silhouette width and 𝑛 is the number of observations. When the average 

silhouette width is bigger than 0.5, a reasonable partition of the data was made and when the average 

silhouette width is less than 0.2, the data does not present cluster structure.122 The average silhouette 

width for both clustering methods is presented in Figure 7.10. The average silhouette width obtained 

with average linkage clustering is higher than the one from K-medoids clustering, implicating that the 

average linkage clustering performs better with this data than K-medoids. 

 

 

 

 

 

 

 

 

The average linkage method is more sensible to outliers, since it isolated the suspected fetal 

movement in a cluster. The K-medoids method assigns this observation to cluster 3, which leads to the 

loss of this distinct observation amid the others. Also, by analyzing both plots of the clustering of the 

power spectra for K-medoids and for average linkage, it is possible to determine that average linkage 

identifies power spectra with similar peaks and assigns them to a cluster. In K-medoids the same is not 

so visible. The average linkage also presents a value of average silhouette width of 0.2905, while K-

medoids average silhouette width is 0.1802. According to this method the average linkage would be a 

more suitable clustering method for this data. For its sensibility to outliers, higher average silhouette 

width and isolation of power spectra with similar peaks, the linkage average method was chosen to be 

applied in the clustering analysis.  

 

 

 

 

 

 

(7.12) 

Figure 7.10: Average silhouette width obtained with average linkage clustering (on the left) and average 

silhouette width obtained with K-medoids clustering (on the right). Average silhouette width was calculated 

from the clustering of the 3136 observations obtained from the Icelandic database. 
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Figure 7.11: Output of the function clustering_dist_pdist_new_v11. Clusters of the 3136 separated contractions. The clustering method used was the K-medoids.  
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Figure 7.12: Output of the function clustering_dist_pdist_new_v11. Clustering of the power spectra of the 3136 separated contractions. The clustering method used was the K-medoids.  
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Figure 7.13: Output of the function clustering_dist_pdist_new_v11. Clusters of the 3136 separated contractions. The clustering method used was the average linkage. In cluster 5 there is only 

one observation with a distinct wave form, later identified as a suspected fetal movement. 
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Figure 7.14: Output of the function clustering_dist_pdist_new_v11. Clustering of the power spectra of the 3136 separated contractions. The clustering method used was the average linkage. 

The power spectrum of cluster 5 presents a significant difference from the others since it only has a small peak at 0.85 Hz. 
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Chapter 8 – Results 

 

 The Icelandic and the TPEHG databases clustering analysis results are presented below. 

 

8.1 Icelandic EHG Database Clustering 

 

As it has been mentioned before this are the parameters for the clustering analysis of this database: 

1. Contraction detection method: Wavelet energy; 

2. PSD estimation method: Welch; 

3. Spectral distance method: Jeffrey divergence; 

4. Clustering analysis method: Average Linkage; 

5. Estimated cluster number: 5. 

 

The only visually recognizable contraction type are the Alvarez waves. The time series shows a short 

band well behaved oscillatory pattern to which corresponds a frequency peak well isolates in a range of 

frequencies between 0.2 and 0.4 Hz. Being these components associated with the onset of labor (be it 

pre-term or not), there is an increase interest regarding their detection. 

It has been shown above, that a classification operation with 5 clusters was performed. In the analysis 

of this database, the clustering was performed for 5 and 6 clusters. The waterfall plot for 5 clusters is 

presented in Figure 8.1 and the waterfall plot for 6 clusters is presented in Figure 8.2. The difference 

between the 5 clusters results and the 6 clusters results are a division of the cluster with more 

observations. The observations in Cluster 1 in Figure 8.2 come from Cluster 4 in Figure 8.1. Since there 

was an important separation of this observations from the biggest cluster, the cluster analysis for this 

database was performed with 6 clusters. A migration of 10 observations from the largest cluster form a 

new cluster. This new cluster seems to congregate Alverez waves with a higher main peak frequency 

and increased low frequency component. An experience was made with 7 clusters however the results 

did not show any improvement.  
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Figure 8.1: Output of the function clustering_dist_pdist_new_v11. Clustering of power spectrums with average 

linkage clustering method with waterfall representation for 5 clusters. The black line represents the 0.35 Hz. 

Figure 8.2: Output of the function clustering_dist_pdist_new_v11. Clustering of power spectrums with average 

linkage clustering method with waterfall representation for 6 clusters. The black line represents the 0.35 Hz. 
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The linkage average clustering was applied to the Icelandic database and the following 

dendrogram was obtained. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analyzing the dendrogram it is clear there is some chaining, which was expected since most of 

the observations are gathered in one cluster. In Figure 8.3, the observations on the right side of the 

dendrogram are significantly different from the rest of the data. The dissimilarity reaches the value 8 

when most of the data only present a dissimilarity between 2 and 4.  

The cophenetic correlation coefficient can be used to evaluate hierarchical clustering 

techniques. The cophenetic correlation coefficient determines the distance between two objects as it 

calculates the height of the node at which these two objects are first joined together in the dendrogram.136  

If the value of the coefficient is closer to 1 then the dendrogram faithfully represents the pairwise 

distances between the original data.141 The cophenetic correlation coefficient is defined as141: 

𝑐 =  
∑ (𝑌𝑖𝑗 −  𝑦)(𝑍𝑖𝑗  −  𝑧)𝑖<𝑗

√∑ (𝑌𝑖𝑗 −  𝑦)2
𝑖<𝑗 ∑ (𝑍𝑖𝑗 −  𝑧)2

𝑖<𝑗

  

where 𝑌𝑖𝑗 is the distance between the objects 𝑖 and 𝑗 in Y, 𝑍𝑖𝑗 is the is the cophenetic distance 

between the objects 𝑖 and 𝑗 and 𝑦 and 𝑧 are the average of Y and Z.141 

The cophenetic correlation coefficient was calculated for the Icelandic and TPEHG databases 

for the average linkage clustering with the MATLAB® function cophenet. The result is presented in 

Figure 8.4. The cophenetic correlation coefficient of the Icelandic database for 6 clusters was 0.5939 

which indicates a good performance according to this criterion. 

(8.1) 

Figure 8.3: Dendrogram of the 3135 observations from Icelandic database obtained with average linkage clustering. 

The vertical axis represents the dissimilarity between clusters. 
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Figure 8.6 represents the contractions time series organized cluster wise. The following 

considerations are relevant:  

1. Cluster 2 represents the large majority of the contractions. It is observed that smaller 

contractions have higher amplitude which explains the bell shape in the cluster plot. There is no clear 

scientific explanation for this behavior. As far as energy balance is concerned it makes sense: longer 

contractions should have lower amplitude to keep the energy balance off the myometrium tissue. This 

is a topic that certainly deserves some further research and has not been found in the current literature. 

2. Cluster 2 includes the longer contractions normally associated to uterine hypertonia (LDBF) 

which in this work has been accepted as contractions over 4 minutes. In this way it becomes apparent 

that LDBF waves should be detected using the duration feature as its main characteristic. In a section 

below more considerations will be made about LDBF automatic detection. 

3. It is clear that the contraction time series may not be used for visually classification. The signals 

are non-stationary in nature. 

4. Upon zooming on Cluster 5 and Cluster 6 the smooth oscillatory pattern is recognizable. Cluster 

1 also presents components which visually could be associated with Alvarez waves with heavy low 

frequency (Slow Wave) contamination.  

Figures 8.7 and 8.2 show the spectra clustering results using Welch method. The following 

considerations are relevant: 

1. Cluster 2 (2962 observations) which comprises most of the contractions has in average a spectral 

shape with a frequency peak around 0.15 Hz followed by a consistent decay for the higher frequencies. 

This is of course an average behavior. This cluster should comprise either Braxton-Hicks or Alvarez. 

Being Alvarez low amplitude waves, unlike Braxton-Hicks, this cluster includes therefor the former and 

the latter events. In this respect ideally, the clustering process would be accurate enough to include only 

these events in this cluster. This is not however the case. Closer observation some atypical Alvarez 

waves were found in this cluster. So far it is not known the spectral characteristics of Braxton-Hicks 

contractions. 

2. Given the nature of Alvarez waves, mentioned earlier in this work, one would expect that their 

spectra have a short band frequency peak almost mono component like. Cluster 6 (22 observations) 

shows such a spectrum with a peak frequency consistently around 0.35 Hz. Lower frequency peaks are 

also present which might represent Slow Wave interference. So, in this way, it is here considered that 

this cluster represents the Alvarez contractions. The question rouse why so few (22 observations) were 

actually detected when it is known that Alvarez contractions are very prevalent in EHG recordings. The 

explanation is twofold: the contraction algorithm missed probably most of the Alvarez waves, due to 

lack of energy, and the some of the detected ones fell in cluster number 2. An evident solution for this 

problem will be presented in the further below. 

3. Cluster 5 (20 observations) is similar to cluster 6 with a main peak frequency around 0.25 Hz. 

Comparing with cluster 5 the main peak frequency consistently shows around 0.25 

Hz and the lower frequency peak in average have higher amplitude than the Alvarez waves. This 

clusters seems to comprise Alvarez waves with higher Slow Wave contamination level.  

Figure 8.4: Cophenetic correlation coefficient of the Icelandic database for 6 clusters. 
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4. Cluster 3 (5 observations) stands out as showing the higher frequency peak dominance 

compared to the lower frequency ones. It is actually the cluster with higher frequency with components 

around 0.4 Hz. It is not clear which wave type this cluster refers to.  

5. Cluster 4 (116 observations) represents broad band spectra with apparent no distinct peak 

frequency. 

6. Cluster 1 (10 observations) resembles Cluster 6 however Cluster 1 presents an evident peak 

around 0.1 Hz. Despite this fact, these components seem to belong the Alvarez set, since the costumery 

frequency peak in the interval [ 0.2 - 0.4] Hz is present. Further comments on this will follow below. 

It becomes evident that the clustering operation was able to differentiate, in average, spectrum the 

most evident are cluster 2,5 and 6. 

It will be shown below that Alvarez components were wrongly classified in Cluster 2 and possibly 

Cluster 4. A possible explanation will be provided. In Figure 8.10, an Alvarez wave and its spectrum 

are represented. The Alvarez wave is affected by a Slow Wave component, which affects the PSD 

estimation. The spectrum has two peaks, the first at 0.1 Hz, caused by the Slow Wave, and the second 

at 0.32 Hz. Similar spectra to the one represented can be found in Cluster 2. It is possible that, due to 

the Slow Wave influence, several Alvarez waves were wrongly assigned to Cluster 2.  

Alvarez waves detection was not ideal since these waves have low amplitude. In Figure 8.12 an 

EHG signal from subject 22 is represented. Two Alvarez waves were detected by the Wavelet method 

however, between the detected Alvarez waves is an undetected one. A visual verification was performed 

to assess the extension of this phenomenon and several EHG signals with undetected Alvarez waves 

were found.  

An alternative method to detect Alvarez waves is proposed in Figure 8.5. The Alvarez waves should 

be detected based in a frequency feature, such as Instantaneous Frequency, instead of using an energy-

based method. After the Instantaneous Frequency is calculated for each wave, the main peak of the 

spectrum must be found. The main peak must be between 0.2 to 0.4 Hz. If the main peak is indeed 

between the mentioned frequencies, it should be compared to the second highest peaks of the spectrum. 

If the main peak is two times higher the second highest peak, then an Alvarez wave was detected. 

 

 

 

 

 

 

  

Figure 8.13 (a) represents an EHG signal with an Alvarez wave followed by a Braxton-Hicks 

contraction. Analyzing the PSD of both components, the difference in the spectrum is clear. The Alvarez 

wave has a distinct peak between 0.3 and 0.4 Hz, and 75 % of its energy is between 0.17 and 0.4 Hz. 

The contraction main peak is around 0.1 Hz and 75 % of its energy is between 0.17 and 0.35 Hz. 

Computation of 

Instantaneous 

Frequency 

[Figure 8.20] 

Testing for the 

existence of frequency 

peak: 

• 0.2 to 0.3 Hz 

• 0.3 to 0.4 Hz 

Determine if the peak 

is two times higher the 

second highest peak 

(Slow Wave) 

Figure 8.5: Flowchart of proposed method to detect Alvarez wave. 
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Figure 8.6: Output of the function clustering_dist_pdist_new_v11. Clusters of the 3135 separated contractions from the Icelandic database. Clustering method: average linkage. 
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Figure 8.7: Output of the function clustering_dist_pdist_new_v11. Clustering of power spectra with average linkage clustering method. In cluster 5 and 6 it is possible to identify distinct peaks 

in the power spectra. The power spectra were obtained from the 3135 separated contractions of the Icelandic database. 
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In the next step the scatter plot of the Icelandic Database has been used to be overlapped with the 

cluster subject cases in an attempt to find any recognizable patterns namely the Alvarez components, 

Figure 8.8. The following considerations are pertinent: 

1. Alvarez waves, which are a recognized marker of preterm delivery and labor closeness, seem to 

be distributed over the database scatter with possibly an increased presence in the higher GA’s 

(Gestational Age) which should be expected. However, this might just represent the database 

distribution which favors higher gestational weeks recordings. This should prompt all EHG database 

developers to evenly distribute the acquisitions gestational weeks’ time points, which is not the case in 

the Icelandic database. Moreover, as it has been mentioned before, the Alvarez components are present 

from the 20th GA onwards, so it comes as no surprise that it is found in lower GA’s. However, one 

should expect that, at least the higher GA should contain Alvarez and those being represented in cluster 

6. An explanation for this incongruence has been provided above. 

2. As has been mentioned above, Cluster 2 should represent the Braxton-Hicks contractions that 

are spread throughout pregnancy with possible activity reduction before labor. To be able to detect this 

gap it would be necessary a more comprehensive database, as far as number of recordings is concerned 

and its even distribution over the GA interval. Of course, the building of such database is a significantly 

complex task requiring enough human resources and organization.  

3. Regarding the Alvarez components not predominantly showing in the higher GA in cluster 6 it 

has been anticipated that components could have leaked to Cluster 2. Upon research it was found that 

cluster 2 has a significant number of Alvarez components that show an additional characteristic: a 

relatively high peak frequency (albite below the main peak). This lower frequency component which 

might be an effect of slow wave interference which got the clustering algorithm classification process 

confused leading to a misclassification of a component that should be present in Cluster 6. Figure 8.9 

shows four of these components that were found in Cluster 2 and should be in Cluster 6. In this figure 

it is clearly shown the typical Alvarez peak frequency component at around 0.35 Hz. However, a low 

frequency component with significant energy is also present. It is hypothesized here that these 

components should be alien to the Alvarez wave itself and it is no more than an interference. This is 

represented in Figure 8.10 where a multi component Alvarez is shown on the top as well as is baseline 

feature which was obtained through the application of a low pass filter with a cut-of frequency of 0.2 

Hz. In the bottom plot it is represented the PSD of the Alvarez, where it is clearly shown the low 

frequency peak corresponding to the baseline. 

4. LDBF components are important since they represent uterine hypotonic action as mentioned 

earlier. From the observation of Figure 8.6 it is not clear in which cluster this component ended up. 

Since uterine hypertonic is associated with abnormally longer contractions it is therefore plausible that 

a detection criterion based in this feature should be applied instead, or at least before any clustering 

process. The decision was made to isolate contractions with durations above 4 minutes followed by the 

observation of the respected PSD estimations, which is represented in Figure 8.11 for three different 

LDBF components. It is observed that the PSD spectrum is quite different from the ones that have been 

observed in all clusters. There are abundant peaks periodically spread over the spectrum. Several 

frequency peaks can be detected in the spectrum. The question arises why such a particular spectrum 

was not isolated in a separated cluster. That raised the suspicion the distance function for this clustering 

operation (Jeffrey divergence) might not be ideal for spectra with multicomponent sharp peaks. One has 

to keep in mind that this distance function has been successfully applied in audio processing and is being 

for the first time applied in EHG processing, which are two different phenomena.  
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Figure 8.9: Four observations found in Cluster 2 that were misclassified. Representation of the PSD with the 

waterfall function of MATLAB®. The observations show a peak around 0.35 Hz. 

Figure 8.8: Output of the function clustering_dist_pdist_new_v11. Relation of the Delivery week vs Recording week with 

the average linkage clustering for the Icelandic database. The blue line represents the 37 weeks of gestation. In pink is 

represented the whole database and in green is represented the observations in each cluster. 
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Figure 8.10: On top: Alvarez wave is represented in blue and the low frequency component of the Alvarez wave 

is represented in orange. On Bottom: PSD of the Alvarez wave. The low frequency component is responsible for 

the first peak in the spectrum. 

Figure 8.11: On top: LDBF waves with more than 4 minutes from the Iceland database. On Bottom: 

Respective PSD from the LDBF waves represented above. 
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Figure 8.12: On top: EHG signal from the subject 22 of the Icelandic database with undetected Alvarez waves. The detected Alvarez waves are represented in black. On bottom: 

EHG signal from the subject 553 of the TPEHG database with undetected Alvarez waves. The black arrow represents an undetected Alvarez wave. 
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Figure 8.13: EHG signal from the subject 26 of the Icelandic database with an Alvarez wave and a contraction.  

(a) The Alvarez wave and the Contraction are represented in black and the EHG signal in red. 

(b) Power spectrum of the Alvarez wave. The blue lines represent where 75% of the PSD energy is. The power spectrum the highest peak between 0.3 Hz and 0.4 Hz.  

(c) Power spectrum of the Contraction. The blue lines represent where 75% of the PSD energy is. The contraction’s power spectrum has the highest peak at a lower 

frequency than the Alvarez wave.  

 

(b) (c) 

(a) 
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8.2 TPEHG Database Clustering 

 

As it has been mentioned before this are the parameters for the clustering analysis of this database: 

1. Contraction detection method: Wavelet energy; 

2. PSD estimation method: Welch; 

3. Spectral distance method: Jeffrey divergence; 

4. Clustering analysis method: Average Linkage; 

5. Estimated cluster number: 5; 

 

In the analysis of this database, the clustering was performed for 5 and 6 clusters however the results 

from 6 clusters did not show any improvement, so the chosen cluster number was 5. It is expected that 

similar results to the Icelandic database would be found since all the parameters are equal. In Figure 

8.14 the waterfall representation of the 5 clusters is shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.14: Output of the function clustering_dist_pdist_new_v11. Clustering of power spectrums with average 

linkage clustering method with waterfall representation for 5 clusters. The black line represents the 0.26 Hz. 
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The linkage average clustering was applied to the TPEHG database and the following 

dendrogram was obtained.  

Analyzing the dendrogram, there is some chaining in the TPEHG database, which was expected 

since most of the observations are gathered in one cluster. In Figure 8.15, clustering presents low 

dissimilarity values. On the right side of the dendrogram there is two clear isolated groups of 

observations. The cophenetic correlation coefficient was calculated for TPEHG database for the average 

linkage clustering with the MATLAB® function cophenet. The results are presented in Figure 8.16. The 

cophenetic correlation coefficient of the TPEHG database was 0.5939, which indicates a good 

performance according to this criterion. This value is identical to the Icelandic database. 

 

 

It can be considered that, for Braxton-Hicks and Alvarez waves the clustering results for this 

database are similar to the Icelandic database: Cluster 2 gathers the Braxton-Hicks contractions and the 

Cluster 4 comprises the Alvarez waves. However, a particularity for this case is relevant. Cluster 5 shows 

components with higher frequency around 0.8 Hz which is not expected. One should have in mind that 

the applied filter frequency was 1 Hz. So, the question arises, where is this high energy coming from. 

The only explanation that seems to be reasonable is that this cluster comprises some sort of interference 

noise with no biologic origin. Maybe it is due to the equipment or other external source. 

The results regarding GA, Figure 8.19, for this database are coincident with the ones found in 

the Icelandic database. 

 

Figure 8.16: Cophenetic correlation coefficient of the TPEHG database for 5 clusters  

Figure 8.15: Dendrogram of the 4622 observations from the TPEHG database obtained with average linkage 

clustering. The vertical axis represents the dissimilarity between clusters. 
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Figure 8.17: Output of the function clustering_dist_pdist_new_v11. Clusters of the 4622 separated contractions from the TPEHG database. Clustering method: average linkage. 
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Figure 8.18: Output of the function clustering_dist_pdist_new_v11. Clustering of power spectra with average linkage clustering method. In cluster 3 and 5 it is possible to identify distinct 

peaks in the power spectra. The power spectra were obtained from the 4622 separated contractions of the TPEHG database. 
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Figure 8.19: Output of the function clustering_dist_pdist_new_v11 Relation of the Delivery week vs Recording 

week with the average linkage clustering for the TPEHG database. The blue line represents the 37 weeks of gestation. 

In pink is represented the whole database and in green is represented the observations in each cluster. 

Figure 8.20: (a) – EHG signal from subject 553 from the TPEHG database with Alvarez wave;  

     (b) – Spectrogram of the signal represented in (a);  

     (c) – Instant Frequency of signal represented in (a). 
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Chapter 9 – Conclusions and Future Work 

 

9.1 Conclusions 

 

 The Icelandic and the TPEHG database were used in this work to automatically separate 

contractions. After pre-processing and filtering the EHG signal, four databases were built: 

• Table for each subject of the Icelandic database with function 

read_Iceland_Database_v13_append_psd_contract_fm_v9_bipolar; 

• Table for each subject of the TPEHG database with function 

read_Iceland_Database_v13_append_psd_contract_fm_v9_bipolar; 

• Database with separated contractions for the Icelandic database with function 

create_database_cont_bipolar_v2; 

• Database with separated contractions for the TPEHG database with function 

create_database_cont_bipolar_v2_tpehg; 

The four databases are available for future work. The parameters used in this work are: 

1. Contraction detection method: Wavelet energy; 

2. PSD estimation method: Welch; 

3. Spectral distance method: Jeffrey divergence; 

4. Clustering analysis method: Average Linkage; 

5. Estimated cluster number: 6 for the Icelandic database and 5 for the TPEHG database. 

 

 The cluster analysis was performed over the complete contraction spectra which is an innovative 

method. It was demonstrated that it is computational feasible to use the whole contraction spectra for 

classification, using a common personal computer. Classification has typically been made based on low 

size features such as: entropy, frequency peaks locations and amplitudes. 

It was anticipated that any clustering method would separate at least 3 contraction classes: Braxton-

Hicks, Alvarez waves and LDBF waves. It was demonstrated that the clustering analysis was able to 

separate these classes. However, the following deviant behavior was demonstrated: 

• The Braxton-Hicks contractions were found mostly in one single cluster (#2). However, this 

cluster also displays other events such as the Alvarez components and LDBF. This leakage is due, as 

mentioned before, to the cost function limited differentiation accuracy. 

• Other cluster (#6) exclusive contained recognizable Alvarez waves (22 events in the Icelandic 

database, peak frequency around 0.35 Hz)  

• Other cluster (#5) contained 20 Alvarez waves with a lower frequency peak (around 0.25 Hz) 

• Other cluster (#1) contained what seems to be Alvarez waves with increased Slow wave 

component (10) 

• A cluster (#4) with 116 events contains the components with the higher frequency content above 

0.5 Hz.  

• A cluster (#3) with 5 events also contains higher frequency events, which could represent a 

leakage from cluster #4. 
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• The system was able to successfully cluster the two main events in the EHG (Alvarez and 

Braxton-Hicks). Cluster #3 and #4 contain unidentified events that should be the target of further 

investigation.  

• Regarding the LDBF components, that correspond to pregnancy risks, it has been shown that 

the clustering process was unable to create a separated class for these events despite the typical spectrum. 

This might be explained by the used distance function inability to differentiate these pluri-component 

spectra with sharp peaks. So, the path is open to try other distance functions or perhaps to detect using 

their most outstanding feature, the time duration which leads to a straight forward detection process. 

• 52 Alvarez waves were clustered in the Icelandic database and 5 in the TPEHG database. Surely 

the number of the events present in these databases is much higher. As explained, this is explained by 

the used energy-based contraction detector having massively missed to detect this low energy event. 

Thus, a recommendation is made to detect these events using the instantaneous frequency feature. The 

other culprit is the misclassification in the clustering process due to the Alvarez wave contamination 

with Slow Wave. This reinforces the recommendation of using the instantaneous frequency feature of 

these contractions for detection, exclusively. 

Other conclusions of this work are: 

• No relation was found between the contractions and the GA; 

• The shorter contractions have higher amplitude than longer ones; 

• The Alvarez waves can be periodic and have similar spectrum features; 

• Most of the Alvarez waves’ spectrum has values close to zero. It is possible that the distance 

cost function chosen in this work is not the more adequate to deal with this factor, which is illustrated 

in the silhouette plots; 

• In the distance calculation, the proximity of the PSD to zero and the constant added to avoid 

this problem have a significant impact in the obtained results.  

It has been demonstrated that any work to establish standards in the EHG cluster analysis 

requires a comprehensive database which should include the following features: 

• The GA recording should be evenly distributed along the pregnancy period and begin as early 

as 20 weeks of gestation for which only a certain type of contraction event would exist, in normal cases;  

• A representative number of preterm cases should exist to be able to investigate the EHG as a 

preterm risk evaluation tool; 

• A representative number of pre-labor cases should exist in order to be able to investigate the 

EHG as a marker of impending labor; 

• The subject’s perception as far as contraction discomfort and intensity is concerned, should also 

be registered by the database operator. This annotation will contribute for the evaluation of the 

contraction classification used methodology. The Icelandic database contains this annotation, using a 

two-scale grade: strong and weak. Basically, the subject perception of the Braxton-Hicks, Alvarez and 

Fetal Movements will contribute to the assessment of the automatic classification method. The decision 

should be made as whether the subject is allowed to drowse/sleep. 

 

Despite the two databases used in this project being excellent research data tools that have been 

used and validated by the EHG research community, thus providing an important contribution in this 

research field, the above-mentioned topics are somehow an improvement that other prospective EHG 

database developers could follow. The Maternidade Alfredo da Costa database that is under 

development, addresses these subjects.  
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Regarding pre-term risk evaluation, using the databases scatter plot (Delivery Week versus 

Recording week) it was found that no cluster was assigned to the preterm cases, namely in the TPEHG 

database which contains a larger number of preterm cases. It should not be concluded that this clustering 

operation is not the adequate tool for this task since it is demonstrated that significantly number of 

Alverez events are not present in the target database because the contraction detector algorithm missed 

them. It is reasonable to assume that hundreds of these events are missing if it is taken in consideration 

that they are the most common event along with Braxton-Hicks, and only about 52 (5) are present in the 

Icelandic (TPEHG) databases. 

 

As far as this thesis work plan is concerned, if there was a previous knowledge of this fact, it 

would have been made a provision for the development of the adequate algorithms for the Alvarez waves 

based on the instantaneous frequency. The mentioned constraint was only evident after the clustering 

process was complete. The idea was to develop an unsupervised classification methodology. 

The clustering process heavily relies on code development and optimization. A great deal of 

coding was necessary to reach the proposed goals. This system is open source code that may be used for 

future implementations, for instance trying new distance functions, different PSD method or other 

clustering parameters. The main strategy is therefor in place for future work in the Uterine Explorer 

project. Code optimization is always a matter of improvement however it has been found that the 

developed code is reasonably optimized. For instance, a clustering process of 3135 contractions takes 6 

minutes with a computer with the following specifications: Windows 10, Intel Core i5 (3.1 GHz) and 8 

Gb of RAM. It should be noticed however that the database feeding the clustering algorithm may have 

higher developing times. In this work the contraction database was developed for further use with all 

the contractions spectra and respective headers. The databases were made for bipolar channels using the 

wavelet method as a contraction detector. This process depends directly on the contraction detection 

accuracy which is part of an ongoing work. The selected contraction detector method produced good 

results but was unable to detect properly the Alvarez events, for which has been presented a solution. 

The work presented in this project is the first step for the EHG contractions sequencing that will 

eventually lead to an accurate preterm risk evaluation and term time prediction. The contractions 

sequencing method is essential to understand if there is specific sequence of contractions conductive to 

labor triggering. In this method the following features should be considered: contraction type and time 

gap between the considered contractions. A statistic algorithm could be applied to differentiate 

contractions sequences. In fact, references54 pointed out for this possible uterine electrophysiological 

behavior. Warkentin, B.142 referred that Alvarez waves represent 70 to 80% of all the contractions and 

Creasy, R.55 concluded that Alvarez waves lead to contractions of higher intensity, which could induce 

labor. The high occurrence rate of the Alvarez waves probably is not the root of preterm birth since the 

low amplitude of these waves can only contribute to larger contractions that can trigger labor. 

 

9.2 Future Work 

 

For future work the following suggestions are made: 

• Apply different methods of energy estimation of the EHG signal to increase the accuracy of the 

contraction detector; 

• Being the EHG a known non-stationary signal the contraction delineation (onset/off set) cannot 

be clearly determined even by the expert visual classification, unlike the Electrocardiography signal 
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case. It is expected some inter-expert definition variation in this matter. Perhaps some common ground 

decision maker rules should be set. In one case only some general rules were lay down about this subject, 

but the criteria are too vague.3 However one should keep in mind that the delineation accuracy of the 

contraction is not critical within reasonable limits; 

• The Alvarez waves detection must be performed with frequency features; 

• Use other non-parametric as well as parametric methods of PSD;  

• Explore different distance functions less influenced by zero proximity; 

• Different cluster analysis methods can be applied to the power spectra or other features such as 

main peak frequency or median frequency; 

• Database improvements regarding including annotations of the subject perceptions regarding 

the contractions. Fetal ECG detection that would contribute to Braxton-Hicks contraction detection, 
since the fetal heart rate decreases when these event happen57; 

• Contraction sequencing is the next step of in the EHG research since it would help determining 

a relation between different types of contractions and preterm and term pregnancies. 
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Attachment 1 – Publications with complete EHG signal 

Document Research purpose Used data 

 

Band-pass 

and Fs 

Methods and features Results 

Fele-Zorz 

et al., 20088 

Separate term and pre-term 

deliveries using linear and 

non-linear EMG signals  

TPEHG dataset: 300 

EHG signals (262 

term and 38 preterm) 

Band-pass: 

- 0.08 to 4 Hz 

- 0.3 to 4 Hz 

- 0.3 to 3 Hz 

Fs: 20 Hz 

- RMS (Root Mean Square) 

- Peak Frequency  

- Median Frequency 

- Autocorrelation zero-crossing 

- Maximal Lyapunov exponent 

- Correlation dimension 

- SE (Sample Entropy) 

Median Frequency: 

- before the 26th week (p 

value=0.03) 

- between all term and all 

preterm delivery records (p 

value=0.012) 

SE: 

- before the 26th week (p 

value=0.035) 

- between all term and all 

preterm delivery records (p 

value=0.011) 

Rabotti et 

al., 200845 

Estimation of IUP 

(Intrauterine Pressure) 

through EHG 

signal analysis 

- Bipolar signals 

- 9 women during labor 

- Anti-aliasing 

filtering at 5 

Hz 

Fs: 1000 Hz 

- RMS 

- Optimal linear filtering 

- WT (Wavelet Transform) 

- Time–Frequency Distribution 

- Polynomial model 

Correlation coefficient: 

- Optimal linear filtering: 

0.5 ± 0.16 

- RMS: 0.36 ± 0.16 

- Polynomial model: 0.73 ± 

0.11 

Lucovnik 

et al., 

201180 

Compare EMG power 

spectrum and EMG 

propagation velocity 

against current methods to 

predict preterm delivery 

EMG was recorded in 

116 patients (20 preterm 

labor, 68 preterm 

nonlabor, 22 term labor, 

6 term nonlabor) 

Band-pass: 

- 0.34 to1.00 

Hz 

Fs: 100 Hz 

- Peak Frequency  

- Median Frequency 

- Propagation velocity 

- ROC (Receiver Operating 

Characteristic) curves 

Combined propagation 

velocity and PS peak 

frequency predicted preterm 

delivery within 7 days with 

AUC (Area Under Curve) of 

0.96 

Fergus et 

al., 201350 

EHG classification to 

determine whether delivery 

will be preterm or 

TPEHG dataset: 300 

EHG signals (262 

term and 38 preterm) 

Band-pass: 

- 0.34 to 1 Hz 

Fs: 20 Hz 

- SMOTE (Synthetic Minority Over-

sampling Technique) 

- WT and FT (Fourier Transform) 

Polynomial Classifier: 

- Sensitivity: 96.67% 

- Specificity: 90.00% 
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Document Research purpose Used data 

 

Band-pass 

and Fs 

Methods and features Results 

term Features: 

- RMS; Median Frequency 

- SE; Peak Frequency  

- AUC: 0.95 

- Global error: 8% 

Ye-Lin et 

al., 201410 

Develop an automatic 

system of segmenting EHG 

recordings to distinguish 

between uterine 

contractions and artifacts 

Twelve women in first 

stages of labor 

(277 EHG artifacts and 

422 non-artifacts) 

- Only the segments in 

which the classification 

of both experts agreed 

were included in the 

design and test of the 

automatic classifier  

- Bipolar signals 

Band-pass: 

- 0.1 to 4 Hz 

Fs: 4 Hz 

- LDA (Linear Discriminant 

Analysis) 

- Quadratic Discriminant Analysis 

- SVM using RBF (Radial Basis 

Function) 

Features: 

- Standard Deviation; Relative 

Amplitude 

- Normalized Maximum Derivative 

- TR (Time Reversibility); Kurtosis 

Quadratic Discriminant 

Analysis: 

- Sensitivity: 84.3% 

- Specificity: 97.0% 

- Positive predictive value: 

94.8 % 

- Negative Predictive Value: 

90.6% 

 

Naeem et 

al., 2014143 

Compare linear parameters 

and non-linear parameters 

with neural networks 

TPEHG database: 300 

records of 

pregnant subjects (262 

term and 38 preterm) 

Band-pass:    

 - 0.3 to 3 Hz 

- Mean power frequency 

- RMS 

- Peak and median frequencies of the 

power spectrum 

- Time reversibility 

- Approximate entropy 

-  Correlation dimension 

- ANN (Artificial Neural Network) 

With ANN features the non-

linear parameters present a 

better performance than the 

linear ones 

Fergus et 

al., 2015144 

Detect 

preterm births through EHG 

signals 

TPEHG database: 300 

records of 

pregnant subjects (262 

term and 38 preterm) 

 

Band-pass: 

- 0.34 to 1 Hz. 

Fs: 20 Hz 

- SMOTE 

- Radial Basis Function Neural 

Network, using Linear Discriminant 

Analysis Forward 

Features: 

- SE; Waveform Length 

Radial Basis Function 

Neural Network: 

- 85% sensitivity 

- 80% specificity 

- 90% AUC 

- 17% mean error rate 
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Document Research purpose Used data 

 

Band-pass 

and Fs 

Methods and features Results 

- Log Detector; Variance 

Smrdel et 

al., 201572 

Estimate EHG signal with 

AAR (Adaptive 

Autoregressive) method 

 

TPEHG dataset: 300 

EHG signals (262 

term and 38 preterm) 

Band-pass: 

- 0.08 to4 Hz; - 

0.3 to 4 Hz 

- 0.3 to 3 Hz;  

- 0.34 to 1 Hz 

Fs: 20 Hz 

- AAR 

- Mean power spectrum 

- Median frequency 

Accuracy: 86 % for all 

records 

Lemancew

icz et al., 

2016145 

Compare results from FFT 

(Fast Fourier Transform), 

WT and AR 

(Autoregressive modeling) 

60 patients between the 

24th and 34th week of 

pregnancy 

 

Band-pass: 

- 0.24 to 4 Hz 

Fs: 200 Hz 

- FFT  

- WT 

- AR 

- Peak Frequency 

Features: 

- Approximate Entropy 

- Lempel–Ziv complexity measure 

Dominant frequencies: 

  - FFT: 0.359 – 0.886 Hz 

  - WT: 0.317 – 0.824 Hz 

  - AR: 0.317 - 0.824 Hz 

Acharya et 

al.,  2017146 

Predict preterm births using 

EMG signals 

TPEHG dataset: 300 

EHG signals (262 term 

and 38 

preterm) 

Band-pass: 

- 0.3 to 3 Hz 

- first and last 

180 s length of 

signals were 

removed 

Fs: 20 Hz 

Empirical Mode Decomposition and 

Wavelet Packet Decomposition  

  - SMOTE 

 - SVM using RBF 

  - Adaptive Synthetic Sampling 

Approach for Imbalanced Learning 

Features:  

- Mean Absolute Deviation 

- Mean Energy 

- Mean Teager-Kaiser Energy 

- SE; Standard Deviation  

SVM RBF Classifier: 

  - Accuracy: 96.25% 

  - Sensitivity: 95.08% 

  - Specificity: 97.33% 

  - AUC: 0.962 

Borowska 

et al., 

2017147 

- Evaluating the 

performance 

20 patients between the 

24th and the 28th week 

No pre-

processing 

Fs: 500 Hz 

- Recurrence Quantification 

Analysis  

Recurrence Quantification 

Analysis  

 with SVM: 
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Document Research purpose Used data 

 

Band-pass 

and Fs 

Methods and features Results 

 Of Recurrence 

Quantification Analysis to 

predict the risk of 

threatening preterm birth 

- Finding a feature extractor 

that generates a feature 

vector from the EHG signals 

- Applying PCA to map the 

data set to a feature set 

of pregnancy with 

threatened preterm labor 

- PCA (Principal Component 

Analysis) 

- SVM classifications (multiclass 

SVM) 

- Mann-Whitney test 

  - Accuracy: 79.27% 

PCA-SVM: 

  - Accuracy: 83.32% 

Altini et 

al., 2017148 

Detect labor combining 

EHG and HR (Heart Rate) 

data 

 

37 women (19 labor and 

18 non-labor) 

Band-pass: 

- 0.1 to 4 Hz 

Fs: 128 Hz 

- Random forests 

Features: 

- RMS 

- Mean of EHG and HR 

- Power of EHG signal 

- GA (Gestational Age) 

Accuracy: 

  - With EHG, GA and HR 

data: 87 % 

  - EHG features: 71 % 

  - HR features: 71 % 

  - EHG and HR features: 82 

% 

 

 

 



94 

Attachment 2 – Publications with contractions signals 

Document Research purpose Used data 

 

Band-pass 

and Fs 

Methods and features Contractions 

detection method 

Results 

Diab et al., 

2009 149 

Unsupervised classification 

method applied to the EMG 

signal of uterine contractions 

for the detection of preterm 

birth 

102 contractions 

from 25 women: 

7 with term 

deliveries and 18 

with preterm 

deliveries 

Band-pass: 

- 0.2 to 8 Hz 

Fs: 16 Hz 

- Wavelet decomposition 

- USCM (Unsupervised 

Statistical Classification 

Method) 

- Competitive Neural 

Network Method 

- Fisher’s test 

Wavelet 

decomposition 

USCM: 

  - 83.3% of separation 

between preterm deliveries 

and term deliveries 

Hassan et 

al., 2010150 

Analyze the synchronization 

of uterine electrical activity 

by using the “wavelet 

coherence” method 

3 women in 

labor 

- Bipolar signal 

Band-pass: 

-low pass 

cut-off 

frequency 

of 100 Hz. 

Fs: 200 Hz 

- Wavelet coherence method 

- Multiple Window Time 

Frequency Analysis 

- Frequency-dependent 

correlation coefficient 

- Time Varying Causal 

Coherence Function based on 

the multivariate 

autoregressive model 

Manual 

segmentation 

Wavelet coherence 

successfully detected the 

correlations of EHG activity 

and separated them from the 

uncorrelated 

baseline noise recorded 

between bursts 

Moslem et 

al., 201164 

Classification of 

multichannel EMG 

32 women: 

  - 22 during 

pregnancy 

  - 7 during labor 

  - 3 during both 

pregnancy and 

labor 

- Vertical 

bipolar signals   

Band-pass: 

- 0.1 to 3 Hz 

- Signals 

were 

normalized 

into same 

amplitude 

Fs: 200 Hz 

- ANN (Artificial Neural 

Network) based on RBF 

Features: 

- Power of the contraction  

- Median Frequency 

 

Manual 

segmentation 

Overall classification 

accuracy: 82.65 % 

Correct Classification Rate: 

 - Pregnancy contractions: 

93% 

  - Labor contractions: 72.3% 
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Document Research purpose Used data 

 

Band-pass 

and Fs 

Methods and features Contractions 

detection method 

Results 

Diab et al., 

201261 

Study of sensitivity analyses 

and robustness of non-

linearity measures 

49 women: 

- 36 during 

pregnancy 

- 13 during labor 

 

Fs: 200 Hz 

(signals 

from 

Iceland) 

and 256 Hz 

(signals 

from 

France) 

- TR 

- SE 

- Lyapunov Exponents 

- Delay Vector Variance 

Manual 

segmentation 

(115 labor bursts 

and 174 

pregnancy 

bursts) 

TR: 

  - AUC: 0.842 

  - Specificity: 0.721 

  - Sensitivity: 0.860 

Diab et al., 

201260 

Detect labor by classifying 

EMG signals into 2 classes: 

pregnancy 

and labor 

213 uterine 

EMG signals 

(137 pregnancy 

and 76 labor 

signals) 

Band-pass: 

- 0.1 to 3 Hz 

Fs: 200 Hz 

- Normalized Wavelet 

Packets Energies 

- Wavelet Packet Transform 

- PCA 

- ANN with a Gaussian RBF 

kernel 

Manual 

segmentation 

Correct Classification Rate: 

  - Pregnancy contractions: 

96.3% 

  - Labor contractions: 71.0 % 

  - All contractions: 87.3 % 

Alberola-

Rubio et 

al., 20133 

- Study the signal quality 

obtained from monopolar, 

bipolar and Laplacian 

techniques in EHG recordings 

- Assess the ability to detect 

uterine contractions 

22 recordings on 

women 

hospitalized for 

spontaneous or 

induced labor  

- Bipolar signals 

 

Band-pass: 

- 0.05 to 35 

Hz 

Fs: 500 Hz 

- Contraction Consistency 

Index 

- Signal-to-noise ratio 

- Rules of manual 

segmentation: 

- Significant rise in signal 

amplitude with respect to the 

basal period. 

  - Duration longer than 30 s. 

  - Signal morphology typical 

of electrophysiological 

changes. 

Manual 

segmentation 

   

 

Contraction Consistency 

Index: 

  - TOCO: 63.77% 

  - Monopolar EHG 

recordings (M1): 93.39% 

  - Laplacian EHG recordings: 

89.3% 

Signal-to-noise ratio: 

  - Mean values: 5.1-7.6 dB 
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Document Research purpose Used data 

 

Band-pass 

and Fs 

Methods and features Contractions 

detection method 

Results 

Alamedine 

et al., 

2013151 

Reduce 

the number of features in the 

contraction’s classification 

48 women:  

  - 32 during 

pregnancy 

  - 16 during 

labor 

- Vertical 

bipolar signals 

(Only Vb7 was 

used) 

Band-pass: 

- 0.16 to 3 

Hz 

Fs: 200 Hz 

- LDA 

- QDA (Quadratic 

Discriminant Analysis) 

- SFS (Sequential Forward 

Selection) 

- Binary Particle Swarm 

Optimization 

- K-Nearest Neighbors 

Manual 

segmentation 

based on the 

tocodynamometer 

signal recorded 

simultaneously 

(133 contractions 

bursts and 133 

labor bursts) 

Correct classification using 

LDA: 

- SFS with QDA: 84.96% 

- SFS with K-Nearest 

Neighbors: 84.96% 

Correct classification using 

QDA: 

- BPSO with QDA: 87.47% 

Alamedine 

et al., 

201467 

Selection method  

to choose the best parameters 

to classify contractions 

EHG signal for 

the detection of preterm labor 

27 women: 

  - 16 during 

pregnancy 

  - 11 during 

labor 

- Vertical 

bipolar signals 

 

Band-pass: 

- 0 to 3.125 

Hz 

Fs: 200 Hz 

- Wavelet packet 

decomposition 

- Jeffrey divergence 

- Time reversibility 

- SE 

- H2 (Nonlinear Correlation 

coefficient) 

- Lyapunov Exponents 

- VarEn (Variance entropy) 

Manual 

segmentation 

(106 contractions 

bursts and 106 

labor bursts) 

- Mean: 0.1852 

- Standard deviation: 0.1055 

Methods selected: 

- Threshold1: H2, SE, VarnEn 

and decile 1 

- Threshold2: VarEn 

Diab et al., 

2015152 

Effects 

of signal filtering on the 

sensitivity of TR, SE, LE and 

DVV 

49 women 

- Vertical 

bipolar signal 

Band-pass: 

- 0.1 to 0.3 

Hz 

- 0.3 to 1 Hz 

- 0.3 to 3 Hz 

Fs: 200 Hz 

 

- TR 

- SE 

- LE (Lyapunov Exponents) 

- DVV (Delay Vector 

Variance) 

Manual 

segmentation 

(174 contractions 

bursts and 155 

labor bursts) 

AUC: 

No filtering: 

  - TR: 0.862; 

  - SE: 0.481 

  - LE: 0.757;  

  - DVV: 0.632 

Band-pass [0.1-0.3 Hz]: 

  - TR: 0.874; 

  - SE: 0.780 

  - LE: 0.603; 

  - DVV: 0.725 
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Document Research purpose Used data 

 

Band-pass 

and Fs 

Methods and features Contractions 

detection method 

Results 

Bajlekov et 

al., 201542 

Improve the reliability of 

contraction detection 

9 women (Data 

from two 

patients were 

discarded due to 

artifacts in the 

EHG or IUP 

measurements) 

Fs: 20 Hz - Gaussian likelihood 

function 

- Template-matching 

algorithm 

- Teager energy 

Manual 

segmentation 

Krippendorff’s α coefficient:  

α = 0.999 

 

Chen et al., 

2017153 

Method for feature extraction 

and classification of EHG 

between pregnancy and labor 

group 

Icelandic 16-

electrode EHG 

Database: 122 

EHG recordings 

(112 pregnancy 

recordings and 

10 labor 

recordings) 

Band-pass: 

- 0.1 to 3 Hz 

Fs: 200 Hz 

- HHT (Hilbert-Huang 

Transform) 

- Extreme learning machine 

- Intrinsic Mode Functions 

Features: 

- Maximum amplitude 

 

Manual 

segmentation 

(150 contractions 

bursts and 150 

labor bursts) 

Extreme learning machine 

with Intrinsic Mode 

Functions: 

- Accuracy: 88.00% 

- Sensitivity: 91.30% 

- Specificity: 85.19% 

- ROC: 0.88 

Altini et 

al., 2017148 

Detect labor combining 

EHG and HR data 

 

37 women (19 

labor and 18 

non-labor) 

Band-pass: 

- 0.1 to 4 Hz 

Fs: 128 Hz 

- Random forests 

Features: 

- RMS 

- Mean of EHG and HR 

- Power of EG signal 

- GA 

Features 

representative  

of labor (windows 

of 20 minutes) 

Accuracy: 

- With EHG, GA and HR 

data: 87 % 

- EHG features: 71 % 

- HR features: 71 % 

- EHG and HR features: 82 % 

Benalcazar 

Parra et 

al., 201751 

Characterize and compare the 

response of uterine 

myoelectrical activity to labor 

induction drugs for different 

labor induction outcomes 

72 women Band-pass: 

- 0.1 to 4 Hz 

Fs: 20 Hz 

- Welch PSD in the range of 

0.2 to 1 Hz 

Manual 

segmentation 

Shift of the EHG-Bursts 

energy content toward higher 

frequencies was identified 

vaginal delivery and cesarean 

section after achieving active 

phase of labor groups for all 

deciles 
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Attachment 3 – Evolution of pregnancy throughout the gestational weeks. Survival rate of preterm infants and birth classification according to GA 

(Miscarriage, Extremely preterm, Very preterm, Late preterm, term and Post-term)19 
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Attachment 4 – Table of uterine contractions characteristics adapted from AMBOSS62. The text highlighted in grey is not part of the original table 

 
Occurrence Characteristics 

Uterine 

contractions 

during 

pregnancy 

Alvarez waves 
Physiological; occurs after 

20 weeks of pregnancy 

• Low intensity, high occurrence rate 

• As the frequency of the Braxton-Hicks contractions increases, the 

Alvarez waves between them decrease 

• Occurrence: 1 or 2 per minute 

• Localized in the tissue focus where it was generated 

• Difficult to detect using TOCO53 

• Associated with normal uterine activity and uterine hyperactivity18 

Braxton Hicks 

contractions 

• Physiological; occur after 20 

weeks of pregnancy  

• High intensity 

• Tetanic (sustained muscle contraction) in nature 

• Diffuse abdominal tightening 

• Last for 1 minute at the most 

• Occurrence: typically ≤ 2 times / hour; may become more frequent 

near term (false labor)  

• May occur unnoticed and are usually not painful  

• Usually considered as myometrium training for labor 

• May be induced by physical and sexual activity, touch, fetal 

movements 

• Associated with a decrease in the fetal hear rate57 

LDBF waves 
Physiological; occur after 20 

weeks of pregnancy 

• Long duration (> 4 minutes) 

• Low occurrence rate 

• Associated with uterine hypertonia 

• Uterine hypoxia inductor56 

Leman waves Unknown 

• Frequency spectrum similar to the contractions but with lower 

amplitude 

• Normally ignored in the EHG studies17 

https://www.amboss.com/us/knowledge/Pregnancy#Zeba6f488931dd463917047bb9c5f18f4
https://www.amboss.com/us/knowledge/Pregnancy#Zeba6f488931dd463917047bb9c5f18f4
https://www.amboss.com/us/knowledge/Pregnancy#Zeba6f488931dd463917047bb9c5f18f4
https://www.amboss.com/us/knowledge/Childbirth#Z27e4d3f7433e257154614330eb6ea7cf
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False labor 3–4 weeks before birth 

• Uncoordinated uterine contractions of moderate intensity (helps with 

fetal positioning) 

• Cervical changes are absent 

• Contractions do not increase in occurrence, intensity, or duration  

• Easily relieved with analgesia  

Pre-labor 3–4 days before birth 

• Irregular contractions of high intensity, which occur every 5–10 min 

shortly before phase 1 begins. They are responsible for correctly 

positioning the fetal head in the pelvis.  

Labor 

Stage 1: cervical 

dilation and 

effacement 

• Onset of normal childbirth. 

• Coordinated, regular, rhythmic contractions of high intensity; occur 

approximately every 10 minutes. Shortly before stage 2, they occur 

every 2–3 min. These contractions are responsible for cervical 

dilation.  

Stage 2: fetal 

expulsion 

After complete cervical 

dilation and effacement 

• Coordinated and regular contractions of high intensity; occur 

approximately every 4–10 min and are responsible for fetal 

expulsion. Towards the end of the stage, they occur very often (every 

2–3 minutes) and are of higher intensity (pressure greater than 200 

mm Hg).  

Stage 3: placental expulsion or 

afterbirth 

Several minutes after 

childbirth 

• Irregular contractions of very low intensity, which force the placenta 

through the vaginal canal within 30 min after fetal expulsion  

Afterpains • Several days after childbirth 
• Irregular contractions of varying intensity, which cause uterine 

involution and bleeding cessation  

https://www.amboss.com/us/knowledge/Pelvis_and_hip_joint#Z685e51c9692bf65a25454fee9890caf3
https://www.amboss.com/us/knowledge/Male_reproductive_organs#Z8249b911d45548ba927943b15558738d
https://www.amboss.com/us/knowledge/Male_reproductive_organs#Z8249b911d45548ba927943b15558738d
https://www.amboss.com/us/knowledge/The_placenta%2C_umbilical_cord%2C_and_amniotic_sac#Z414c23d8bf8265247dd2e1e7e9b0d89c
https://www.amboss.com/us/knowledge/Male_reproductive_organs#Z8249b911d45548ba927943b15558738d
https://www.amboss.com/us/knowledge/The_placenta%2C_umbilical_cord%2C_and_amniotic_sac#Z414c23d8bf8265247dd2e1e7e9b0d89c
https://www.amboss.com/us/knowledge/Male_reproductive_organs#Z8249b911d45548ba927943b15558738d
https://www.amboss.com/us/knowledge/Postpartum_period#Za304bbbfe55f81aa48acf4aace78c947
https://www.amboss.com/us/knowledge/Postpartum_period#Za304bbbfe55f81aa48acf4aace78c947

