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Abstract

Background: Periprostatic adipose tissue (PPAT) has been recognized to associate with prostate cancer (PCa)
aggressiveness and progression. Here, we sought to investigate whether excess adiposity modulates the
methylome of PPAT in PCa patients. DNA methylation profiling was performed in PPAT from obese/overweight
(OB/OW, BMI > 25 kg m−2) and normal weight (NW, BMI < 25 kg m−2) PCa patients. Significant differences in
methylated CpGs between OB/OW and NW groups were inferred by statistical modeling.

Results: Five thousand five hundred twenty-six differentially methylated CpGs were identified between OB/OW and
NW PCa patients with 90.2% hypermethylated. Four hundred eighty-three of these CpGs were found to be located at
both promoters and CpG islands, whereas the representing 412 genes were found to be involved in pluripotency of
stem cells, fatty acid metabolism, and many other biological processes; 14 of these genes, particularly FADS1, MOGAT1,
and PCYT2, with promoter hypermethylation presented with significantly decreased gene expression in matched
samples. Additionally, 38 genes were correlated with antigen processing and presentation of endogenous antigen via
MHC class I, which might result in fatty acid accumulation in PPAT and tumor immune evasion.

Conclusions: Results showed that the whole epigenome methylation profiles of PPAT were significantly different in
OB/OW compared to normal weight PCa patients. The epigenetic variation associated with excess adiposity likely
resulted in altered lipid metabolism and immune dysregulation, contributing towards unfavorable PCa
microenvironment, thus warranting further validation studies in larger samples.
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Background
Prostate cancer (PCa) is one of the most frequent malig-
nancies in men and the second leading cause of cancer-
related death in the North America and most western
European countries [1, 2]. Epidemiological studies support

obesity or excess adiposity as an important environmental
risk factor for PCa, being primarily associated with
advanced disease and death [3]. Periprostatic adipose tissue
(PPAT), a white fat depot surrounding the prostate
capsular-like structure, has been recognized to have the
potential to exert pro-tumoral endocrine and paracrine
influences on prostate cancer cell’s biological phenotypes
[4]. There is now evidence that obesity and overweight
result in excess fat deposit at PPAT [5], altered fatty acid
profile [6], migration of tumor cells [7], secretion of a
variety of adipokines, such as interleukin-1 beta (IL-1b),
osteopontin, leptin, tumor necrosis factor alpha (TNF-a),
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and decreased adiponectin, thus contributing to a tumor
microenvironment that ultimately facilitates PCa aggres-
siveness [7, 8].
DNA methylation is a well-known epigenetic mechan-

ism resulting from the interaction between environmen-
tal factors and the genome [9]. DNA methylation with
variation of CpG sites is associated with tissue-specific
gene modulation and involved in phenotype transmis-
sion and in the development of diseases [10]. Excess
adiposity, as a consequence of environmental factors
such as excessive food consumption or inactive lifestyle,
has been identified as a regulator of epigenetic modifica-
tion in adipose tissue. Recent findings from experimental
studies suggested that modification of DNA methylation
pattern in adipose tissue and adipocytes was related with
development of cancer, type 2 diabetes, and cardiovascu-
lar diseases through influencing metabolism and inflam-
mation [11–13]. Additionally, several studies reported
altered DNA methylation in PCa cells as compared with
adjacent benign tissue, and some significantly methyl-
ated CpG sites and genes were found to be responsible
for the occurrence and progression of PCa [14–16].
Nevertheless, the epigenome-wide DNA methylation
profile of PPAT from excess adiposity PCa patients is
currently unknown despite its potential mechanistic
involvement in obesity association with PCa.
The aim of this study was to perform a epigenetic-

wide association study (EWAS) in order to evaluate
DNA methylation profile of PPAT obtained from obese/
overweight (OB/OW) in comparison with normal weight
(NW) PCa patients and identify differentially methylated
sites. We also explored the consequential potential bio-
logical functions that account for the effect of PPAT
from OB/OW subjects in PCa molecular mechanisms.

Methods
Study samples
This study included ten prostate cancer patients from
the Portuguese Institute of Oncology, Porto Centre. In-
clusion criteria and conditions of this study have been
previously reported, including the procedures for PPAT
collection, handling, and storage [4]. Briefly, PPAT was
collected and immediately processed in the operating
room and transported to the laboratory within 2 h in
appropriate culture media and temperature conditions,
in order to minimize pre-analytical errors. Patients’
signed informed consent and research procedures were
approved by the institute’s ethics committee.
The clinical and pathological characteristics of partici-

pants are presented in Table 1. The ten subjects were
selected from a larger group of patients undergoing
prostate surgery (n = 51) [4, 17] that fitted the strict
inclusion and exclusion criteria, in order to control for
variables that might influence adipose tissue gene

expression or methylation (e.g., anti-diabetic or anti-
dyslipidemia drugs, stage of disease and PSA, concomitant
diseases such as diabetes, other neoplasia or metabolic
syndrome). Subjects were matched for age at diagnosis,
PSA value, Gleason grade, and stage of disease, which
differed in body mass index (BMI). BMI was calculated by
dividing weight in kilograms by the squared height in
meters and categorized using the WHO (World Health
Organization) criteria: normal weight, BMI < 25 kg m−2,
overweight, 25 ≤ BMI < 30 kg m−2, and obese, BMI ≥
30 kg m−2. Obese and overweight were combined into one
excess adiposity group (n = 5, BMI≥25 kg m−2) versus
normal weight group (n = 5, BMI < 25 kg m−2). Therefore,
the two groups were selected to differ only by BMI, in
order to reflect our objective of assessing whether excess
adiposity (BMI) influences PPAT methylation profile.

Epigenome-wide DNA methylation analysis
DNA was isolated from PPAT using Puregene hisalt
extraction method (Qiagen/Gentra). Briefly, the tissue
was minced with scalpels in a sterile petri dish on ice
and then transferred to Puregene Cell Kit for overnight
Proteinase K digest at 55 °C. A second Proteinase K
digest was done the next morning for 5 h. DNA from
the digested tissue was purified using Puregene extrac-
tion protocol (Qiagen/Gentra). Purified DNA was
washed 2× with 70% ethanol and DNA pellet air dried
and rehydrated in TE (10 mM Tris-Cl, 1 mM EDTA
pH 7.5). Epigenome-wide DNA methylation was ana-
lyzed using the Infinium Human Methylation450
(HM450) BeadChip (Illumina, San Diego, CA, USA) in
the Center for Applied Genomics (Toronto). This array

Table 1 Clinicopathological characteristics of PCa patients by
BMI category

Character NW (n = 5) OB/OW (n = 5) P value

Age (years) 65.2 ± 3.8 63.2 ± 2.5 0.67a

BMI (kg/m2) 23.0 ± 0.3 29.0 ± 0.9 0.0003a

Gleason score

< 7 2 (40%) 1 (20%)

≥ 7 3 (60%) 4 (80%) 1.00b

Stage

OCPCa 2 (40%) 2 (40%)

EPCa 3 (60%) 3 (60%) 1.00b

Smoking status

Yes 1 5

No 4 0 0.05b

PSA (ng/ml) 10.7 ± 2.7 12.1 ± 3.23 0.74a

Data are presented as mean ± SD or number (%). Significant difference
between OB/OW and NW was evaluated using at test and bFisher’s exact test
OB/OW obese/overweight, NW normal weight, BMI body mass index; PSA,
prostate specific antigen; PCa, prostate cancer; OCPCa, organ-confined prostate
cancer; EPCa, extra-prostatic PCa
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contains 485,577 probes, which cover 21,231 (99%)
RefSeq genes. Briefly, DNA was bisulfite-converted using
the EZ DNA methylation kit (Zymo Research, Orange,
CA, USA) and then used on the Infinium Assay®
followed by the Infinium HD Assay Methylation Protocol
(Illumina). The imaging data on the BeadChips was
captured by Illumina iScan system.

Data filtering and normalization
Raw methylation level for each probe was represented
by methylation β value, which was calculated based
on β = intensity of the methylated allele/(intensity of
the unmethylated allele + intensity of the methylated
allele + 100). M values were the logit transformation
of β values based on M = log2 (β/(1 − β)), which makes
the data more homoscedastic and appropriate for
further bioinformatic and statistical analysis.
Methylation values were normalized using the func-

tional normalization algorithm implemented in Minfi R
package [18]. Quality control was performed by exclud-
ing CpG probes, which are found by Chen et al. to be
cross-reactive with areas of the genome not at the site of
interest [19], as well as control probes and probes on sex
chromosomes. We analyzed a total of 438,458 CpG sites
from the PPAT of 5 OB/OW PCa patients and 5 NW
PCa patients.

Differential methylation analysis
A statistical linear modeling approach was applied to the
detected differentially methylated CpG sites (DMCs) asso-
ciated with obesity in PPAT using the Bioconductor
“limma” package [20]. Hyper- or hypomethylation was
determined when methylation levels of CpGs increased or
decreased between the OB/OW PCa group and the NW
PCa group based on mean different β > 0 or < 0. False
discovery rate (FDR)-corrected P values were determined
according to the method of Benjamin and Hochberg’s
(BH method) multiple testing procedure [21].
Differentially methylated regions (DMRs) were identified

using the “Bumphunter” method implemented in the
“chAMP” R package with the parameters (B = 1000,
useWeights = TRUE, minProbes = 10, pickCutoff = TRUE,
and other settings with default values) [22].
The proportions of significant hyper- or hypomethy-

lated CpGs were calculated and visualized according to
their relation to the nearest genes or to the CpG islands,
separately. Gene promoter region was defined as 1500
base pairs (bp) and 200 bp upstream of the transcription
start site (TSS) (TSS1500 and TSS200) [23]. Identified
genes were selected when more than two significantly
hypermethylated CpGs were simultaneously located in
the promoter region.

Functions, pathway, and network enrichment analysis
Gene ontology (GO) and KEGG pathway enrichment ana-
lyses were performed to explore the biological functions
of significantly methylated genes using the online bioinfor-
matic tool Enrichr [24]. Protein-protein interaction (PPI)
analysis of all DMC-related genes was performed using
NetworkAnalyst according to STRING database [25].

Association analysis between DNA methylation and
gene expression
We have previously performed gene expression experi-
ment of the PPAT of the 5 OB/OW PCa patients and
the 5 NW PCa patients using the HG-U133 Plus 2.0
Affymetrix GeneChip Array (Affymetrix, Santa Clara,
CA, USA) [4]. Differential gene expression (DGE) ana-
lysis between the OB/OW PCa patients and the NW
PCa patients was re-performed using the Bioconductor
“limma” package as previously described [4]. Spearman’s
rank correlation analysis was performed between the
methylation profiles of the hypermethylated CpGs and
the gene expression profiles of the genes in PPAT.

Results
Clinical characteristics
Clinical characteristics of PCa patients in this study were
stratified according to obesity classification groups and
are presented in Table 1. Mean age, PSA level, Gleason
sum score, and cancer stage in subjects with PCa were
similar (P value > 0.05) between OB/OW and NW
groups. As expected, the mean BMI of the OB/OW
group was significantly higher than that of the NW sub-
jects (P value < 0.01). All the patients in the OB/OW
group are ex-smokers or active smokers, while only one
patient in the NW group is a smoker (P value = 0.05).

Epigenome-wide DNA methylation profiling of PPAT
To study the impact of obesity status on DNA methyla-
tion profiles and to identify differentially methylated CpG
sites in PPAT from OB/OW and NW prostate cancer
patients, we conducted epigenome-wide DNA methyla-
tion analyses. A flowchart of the data analysis is depicted
in Additional file 1: Figure S1. After quality control and
filtering, the Infinium array generated methylation data
for 438,458 CpG sites, from which 5526 were differentially
methylated after FDR control in the PPAT of OB/OW
PCa patients compared to NW (adjusted P value < 0.25;
Additional file 2: Table S1 and Table 2). The unsupervised
hierarchical clustering of DMCs showed differential DNA
methylation patterns in PPAT between OB/OW and NW
samples (Additional file 3: Figure S2). The majority of
DMCs were hypermethylated (n = 4985, 90.2%), with 9.8%
hypomethylated CpG sites (n = 541) in OB/OW versus
NW prostate cancer patients (Fig. 1a, b, c).
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Chromosomal distribution of the DMCs
To further explore the methylation profile, we investi-
gated the chromosome distribution of DMCs. Results
showed that hypermethylated CpG sites were located at
chromosomes 1, 6, 11, and 17 (proportion > 6%, Fig. 1d)
and hypomethylated CpG sites were located at chromo-
somes 1, 2, 6, 7, and 11 (proportion > 6%, Fig. 1e).
Methylation variations of hypermethylated DMCs and

hypomethylated DMCs were found mainly distributed
on chromosomes 1, 6, and 11, suggesting that the DNA

methylation alterations in these chromosomes were
correlated with the body weight changes in prostate
patients. Furthermore, we compared the distribution of
the DMCs (hyper- and hypomethylated, separately) with
the distribution of all evaluated CpG sites based on their
relation to nearest gene regions (Fig. 2f, Additional file 4:
Table S2) or their relation to CpG islands (Fig. 2g,
Additional file 5: Table S3) using χ2 test. The results
showed that hypermethylated CpGs are mainly located at
TSS1500 (transcription start sites 1500), IGR (intergenic

Table 2 Differentially methylated CpG sites in PPAT between obese/overweight PCa patients and normal weight controls

Probe ID Chromosome and coordinate
(GRCh37)

Nearest gene Relation to
gene region

Relation to
CpG island

DNAm β
difference (%)

P value Adjusted P value
(< 0.25)

Hypermethylated CpG sites

cg09476130 chr1:159870086 CCDC19 TSS200 Island 12.1 1.87E−03 0.213

cg21293934 chr18:14748230 ANKRD30B TSS200 Island 11.2 1.83E−03 0.212

cg16925210 chr2:216946718 PECR TSS200 Island 11.2 2.44E−03 0.226

cg11625005 chr5:1295737 TERT TSS1500 Island 11.1 1.38E−03 0.196

cg07039560 chr5:140683681 SLC25A2 TSS200 Island 10.5 2.24E−03 0.222

cg00329447 chr8:145028170 PLEC1 TSS200 Island 10.1 3.41E−03 0.244

cg24463471 chr1:25257978 RUNX3 TSS1500 Island 9.9 3.58E−04 0.155

cg26149485 chr19:2428350 TIMM13 TSS1500 Island 9.7 3.36E−04 0.154

cg05156901 chr22:51016646 CPT1B TSS200 Island 9.3 3.05E−03 0.238

cg18689454 chr21:45705694 AIRE TSS200 Island 9.3 7.33E−04 0.174

cg01454592 chr3:49236800 CCDC36 TSS200 Island 9.3 2.89E−03 0.236

cg24041556 chr19:10736059 SLC44A2 TSS200 Island 9.1 2.15E−05 0.110

cg22257574 chr9:135754383 C9orf98 TSS200 Island 9.0 1.97E−05 0.110

cg23005885 chr15:90543450 ZNF710 TSS1500 Island 8.9 6.20E−04 0.169

cg05726756 chr17:46608288 HOXB1 TSS200 Island 8.6 1.67E−03 0.206

cg12782180 chr7:127880932 LEP TSS1500 Island 8.5 9.78E−04 0.184

cg04675542 chr5:150284416 ZNF300 TSS200 Island 8.4 3.42E−03 0.244

cg10134527 chr6:33283015 TAPBP TSS1500 Island 8.4 3.19E−03 0.241

cg23387569 chr12:58120011 LOC100130776 TSS200 Island 8.4 3.39E−04 0.155

cg17205324 chr14:23835595 EFS TSS1500 Island 8.3 1.46E−04 0.133

cg24402300 chr19:55591437 EPS8L1 TSS1500 Island 8.2 2.02E−03 0.216

cg18081258 chr14:21494161 NDRG2 TSS1500 Island 8.2 1.05E−03 0.187

cg00730561 chr10:102279703 SEC31B TSS200 Island 8.1 4.82E−04 0.162

cg17791651 chr1:38513489 POU3F1 TSS1500 Island 8.0 1.31E−04 0.133

Hypomethylated CpG sites

cg03462171 chr16:1664488 CRAMP1L TSS200 Island − 8.2 2.30E−03 0.223

cg11648730 chr5:92907151 FLJ42709 TSS1500 Island − 6.4 1.72E−03 0.207

cg04558166 chr1:210001279 C1orf107 TSS200 Island − 4.0 1.75E−03 0.209

cg25472897 chr8:145560555 SCRT1 TSS1500 Island − 3.1 1.53E−03 0.201

cg17612948 chr5:110427863 WDR36 TSS200 Island − 3.0 1.70E−03 0.207

cg21665057 chr3:196295764 WDR53 TSS1500 Island − 2.4 2.42E−03 0.225

cg12683173 chr7:69063404 AUTS2 TSS1500 Island − 1.4 3.30E−03 0.242

cg04872557 chr1:76190008 ACADM TSS200 Island − 1.0 1.96E−03 0.215
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region), N-shore, and S-shore, and hypomethylated CpGs
are mostly located at the gene body and open sea.

Functional enrichment analysis of significantly
obesity-associated DMCs
To investigate the potential biological relevance of the sig-
nificant DMCs, we further filtered 483 DMCs (distributed
within 413 genes) from a total of 5526 DMCs according
to their locations at both the gene promoter and CpG

island (Additional file 6: Table S4). Four hundred seventy-
five of the 483 DMCs (representing 404 genes) were
hypermethylated. Functional enrichment analysis of the
hypermethylated genes showed that these genes were
enriched for biological processes, such as pattern
specification process, neuron differentiation, neuron fate
specification, and negative regulation of phosphate
metabolic process (adjusted P value < 0.05, Additional file 7:
Table S5), as well as molecular functions, such as

Fig. 1 Epigenetic profiles of differentially methylated CpGs of PPAT between OB/OW and NW groups. Manhattan plots show epigenetic profiles of all
increased methylated CpGs (a) and all decreased methylated CpGs (b). The X-axis shows chromosomes, and the Y-axis is a −log10 (P value). The black line
represents the threshold of adjusted P value = 0.25. CpGs above the black line are significantly hyper- or hypomethylated. The volcano plot of DNA
methylation (c) shows a significant difference in PPAT between the OB/OW and NW groups. Four thousand nine hundred eighty-five hypermethylated CpGs
are labeled in red, and 541 hypomethylated CpGs are labeled in green (adjusted P value > 0.25). The proportions of hyper- and hypomethylated CpGs on
each chromosome are shown in (d) and (e). The black line indicates if the proportions of hyper- and hypomethylated CpGs on a chromosome are higher
than 6%. The distribution of significant DMCs (hyper- or hypomethylated CpGs) and globe DNA methylation CpGs in locations related to the nearest gene
regions and CpG islands are shown in f and g. Hypermethylated CpGs are mainly located at TSS1500 (transcription start sites 1500), IGR
(intergenic region), N-shore (the 2 kb regions upstream of the CpG island boundaries), and S-shore (the 2 kb regions downstream of the CpG island
boundaries), and hypomethylated CpGs are mostly located at the gene body and open sea. The difference of the proportion of CpGs among the three
CpG groups was calculated based on the χ2 test (*P< 0.05, **P< 0.01, ***P< 0.001, ns not significant). CpG islands were defined as DNA sequences (500
base windows; excluding most repetitive Alu-elements) with a GC base composition greater than 50% and a CpG observed/expected ratio of more than
0.6. The 2 kb regions immediately upstream (N_Shore) and downstream (S_Shore) of the CpG island boundaries were defined as “CpG island shores,” and
the 2 kb regions upstream (N_Shelf) and downstream (S_Shelf) of the CpG island shores were referred as “CpG island shelves.” Open seas were the regions
more than 4 kb from CpG islands
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neuropeptide receptor activity and sequence-specific
DNA-binding RNA polymerase II transcription factor ac-
tivity (adjusted P value < 0.1, Additional file 8: Table S6).
KEGG pathway enrichment analysis showed that hyper-
methylated genes were involved in signaling pathways
regulating pluripotency of stem cells, fatty acid metabol-
ism, basal cell carcinoma, non-alcoholic fatty liver disease
(NAFLD), and AMPK signaling pathway (P value < 0.05,
Additional file 9: Table S7).

We mapped the 404 hypermethylated genes to the
STRING database and generated a protein-protein inter-
action (PPI) network by the NetworkAnalyst. The largest
subnetwork was identified to include 247 nodes (genes)
and 403 edges (Fig. 2a). In the network, the size of the
nodes was based on their degree values and the color of
nodes was based on their P values. This network con-
tained 118 seed genes from the DMCs, and the enrich-
ment pathway analysis showed that the genes of the

Fig. 2 Protein-protein interaction analysis. a A subnetwork composing of 247 nodes and 403 edges was generated using methylated genes. Blue dots
represent the genes involved in prostate cancer; red and pink dots represent the seeds (methylated genes) according to the different P values; the
gray dots represent the proteins which were closely interacted with the seeds, and the circle size represents the node degree. b The pathway
enrichment analysis shows the subnetwork is mainly enriched in cancer pathways (P < 0.0001)
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subnetwork were mostly involved in the pathways of pros-
tate cancer and other cancers (Fig. 2b, Additional file 10:
Table S8, adjusted P value < 0.05). Particularly, the gene
UBC (ubiquitin C) was found to be a hub connecting with
many other nodes in the network, suggesting that the
gene may play important biological roles in the PPAT of
obese PCa patients.

Selected genes with multiple methylated CpG sites
In order to explore repression of genes by DNA methy-
lation modifications, we selected genes which had mul-
tiple hypermethylated CpG sites (the number of
methylated CpG sites ≥ 2, in at least one of the sites with
a mean difference of β > 3% and an adjusted P value < 0.25)
(Additional file 1: Figure S1 and Additional file 11: Table S9).
A total of 38 genes with 100 differentially methylated CpG
sites were selected, which included TAPBP, RUNX3, CPT1B,
CPT1C, MOGAT3, WNT2, and AIRE (Additional file 11:
Table S9). Notably, the promoter region of TAPBP (TAP-
binding protein) had eight hypermethylated CpG sites in the
promoter (Fig. 3a), which were significantly more methylated
in the OB/OW than those in the NW groups (Fig. 3b), with
a mean difference of β value greater than 5%
(Additional file 10: Table S8). Spearman’s rank correlation
showed strong association (r2 = 0.73–0.97) of the eight
hypermethylated CpGs in the TAPBP promoter with their
methylation levels (Fig. 3c). Pathway analysis of these genes
revealed enrichment for fatty acid metabolism, PPAR
signaling pathway, glucagon signaling pathway, AMPK
signaling pathway, glycerolipid metabolism, basal cell
carcinoma, antigen processing and presentation, ECM
receptor interaction, and insulin resistance (adjusted
P value < 0.25) (Additional file 12: Table S10).

Differential methylated regions analysis
Ten DMRs were identified (P < 0.01) in obesity PPAT
samples compared to normal weight controls (Table 3).
The size of the DMRs varied from 161 to 1287 bp. Note-
worthy, four out of the ten DMRs were discovered on
chromosome 6. Eight regions were located in genes, and
two were in the intergenic region. Four regions were in
the gene promoter of FAM104A, C17orf80, HOXA4A,
and TAPBP.

Association analysis between DNA methylation and
mRNA expression
Increased DNA methylation of promoter in CpG islands
was obviously linked to gene transcriptional silencing [26].
Therefore, we related hypermethylated CpG sites in PPAT
with genes showed decreased gene expression level from
our previously generated mRNA expression data [4]. DNA
methylation of 16 CpG sites, corresponding to 14 genes,
was associated with significantly decreased transcripts in
OB/OW group (P value < 0.05) (Table 4). The Spearman’s

rank correlation analysis showed that eight of the 14 genes
have significantly negative association (P value < 0.05) be-
tween the methylation profiles and the gene expression
profiles of these genes (Table 4). The repression genes were
mainly involved in metabolic pathways (Additional file 13:
Table S11, adjusted P value < 0.25), such as MOGAT1
(glycerolipid metabolism), FADS1 (fatty acid metabolism
and biosynthesis of unsaturated fatty acids), and PCYT2
(glycerophospholipid metabolism). The mRNA expression
level of FADS1 was significantly decreased in the PPAT of
obese with prostate cancers in our previous study using
qRT-PCR [4]. Besides these, GO enrichment analysis
showed that these genes are functionally related to receptor
binding (neuropeptide receptor binding, dopamine receptor
binding, and insulin receptor binding) and enzyme activity
(acid phosphatase activity, metallocarboxypeptidase
activity, and acylglycerol O-acyltransferase activity)
(Additional file 14: Table S12, adjusted P value < 0.25).

Discussion
This pilot study revealed significant differences of DNA
methylation profiles between the PPATs from OB/OW
versus NW PCa patients. Variations in global DNA
methylation demonstrated that excess adiposity played
an important role in DNA methylation level of PPAT
tissues in prostate cancer patients, which provide an
opportunity to explore the effect of obesity on PPAT
epigenetic modification and subsequently on prostate
cancer. These findings reported for the first time in
PPAT depot are in concordance with previous works
reporting that excess adiposity and BMI activate DNA
methylation in adipose tissue [27–29]. Thus, considering
the present understanding of the potential causal
relationship between excess adiposity and cancer [30],
diabetes [11], and cardiovascular disease [31], our results
provide methylated candidate genes, which might foster
research on the potential biological mechanisms under-
lying epigenetic regulation of PPAT by excess adiposity
and prostate cancer.
Given that DNA methylation of CpGs located at pro-

moters and islands are associated with gene transcrip-
tion silencing, we performed a strict filtering of DMCs
and explored the biological functions of all promoter
hypermethylated genes, aiming to find the critical meth-
ylated CpGs in the PPAT between the obese and normal
weight PCa patients. Bioinformatic analysis showed that
the enriched pathways were mostly involved in meta-
bolic disorders, particularly fatty acid degradation and
glycerolipid and choline metabolism. These pathways are
known to mediate the pro-tumoral effect of white
adipose tissue in tumors, thus contributing to tumori-
genesis and metastasis [32, 33], particularly in prostate
cancer [5]. Findings from other oncological models high-
light excess adiposity-associated impact in methylation
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Fig. 3 Visualization and analysis of hypermethylated CpG sites in TAPBP promoter.a The chromosome positions of hypermethylated CpG sites
show that DMCs are located at chr6 (p21.32), which is in the region of TSS1500 (pink square) of TAPBP and at the location of CpG island 31.
b Methylation levels of eight CpG sites in PPAT from OB/OW and NW PCa patients have shown a significant difference. c Correlation analysis
shows strong correlation (Spearman correlation coefficient r2 0.73~ 0.97) between the eight hypermethylated CpG sites based on the mean
β value difference of individual probes
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markers known to associate with potential effect in the
cancer microenvironment (e.g., aromatase, prostaglandin
E2 receptor in breast cancer) [34, 35]. Obesity has also
been shown to associate with methylation of cancer-
related genes (E-cadherin, p16, and RAR-β(2)) directly in
malignant breast cells [36, 37].
Pathway enrichment analysis showed a strong associ-

ation between promoter hypermethylation of CPT1B,
CPT1C, ACADM, and FADS1, with fatty acid metabol-
ism. CPT1B (carnitine palmitoyltransferase 1B) and
CPT1C (carnitine palmitoyltransferase 1C) genes encode
rate-limiting enzymes in fatty acid degradation and play
critical roles in long-chain fatty acid (LCFA) β-oxidation
by controlling transportation of long-chain fatty acyl-
CoAs from the cytoplasm across the outer mitochondria

membrane [38]. Maple et al. reported that increased
methylation of specific CpGs in the CPT1B promoter
was correlated with decreased CPT1B transcripts in the
skeletal muscle after lipid oversupply in severe obesity,
which resulted in obese individual’s incapacity to
increase fat oxidation, contributing to metabolic inflex-
ibility [39]. Although the biochemical function of CPT1C
has been verified to be necessary for the regulation of
energy homeostasis in CPT1C knockout mouse brain
[40], the study of CPT1C methylation was absent.
CPT1B and CPT1C were previously reported to be
highly expressed in the muscle, brain, and many other
normal tissues including adipocytes [41]. Taken together,
these findings suggest that methylation of specific CpG sites
in the CPT1B and CPT1C promoters likely result in gene

Table 3 Differentially methylated regions (DMR) in PPAT of obese/overweight PCa patients compared to normal weight controls

DMR Chr Start–end (bp) Size (bp) P value FDR Located gene DMCs* Relation to CpG island

1 6 30,038,791–30,039,801 1010 5.11E−05 2.07E−02 RNF39 37(0) Island

2 6 29,648,161–29,649,084 923 1.54E−03 2.08E−01 ZFP57# 22(0) Open sea

3 17 71,228,123–71,228,832 709 3.10E−03 2.86E−01 FAM104A 4(3) Island

4 17 71,228,123–71,228,832 709 3.10E−03 2.86E−01 C17orf80 10(8) Island

5 12 42,720,006–42,720,167 161 5.56E−03 2.86E−01 PPHLN1 4(0) Island

6 6 31,650,735–31,651,158 423 5.59E−03 2.86E−01 MIR4646# 16(0) Island

7 7 27,169,674–27,170,961 1287 5.66E−03 2.86E−01 HOXA4 17(11) Island

8 6 33,282,736–33,283,145 409 5.87E−03 2.86E−01 TAPBP 18(18) Island

9 20 57,463,763–57,464,129 366 6.74E−03 2.86E−01 GNAS 15(0) Island

10 16 86,546,938–86,547,322 384 7.03E−03 2.86E−01 FOXF1 4(0) Shore

#The DMR is located at the intergenic region
Chr chromosome
*The number in the bracket is the quantities of DMCs located at the promoter (TSS200 and TSS1500) regions

Table 4 Genes hypermethylated in promoters with significantly decreased gene expression

Gene symbol DNA methylation Gene expression Correlation analysis

Probe ID DNAm β
diff. (%)

Adjusted P value
(< 0.25)

Probe ID FC P value (< 0.05) Spearman’s rank
correlation coefficient

P value (< 0.05)

UCN cg20442078 5.6 0.17 8051061 − 1.12 3.61E−02 − 8.42E−01 2.23E−03

CCHCR1 cg00160818 1.9 0.17 8124868 − 1.14 1.73E−02 − 7.45E−01 9.21E−03

CRB3 cg14782015 4.3 0.20 8025041 − 1.13 1.84E−02 − 7.21E−01 1.21E−02

AGBL4 cg21834207 3.2 0.13 7915971 − 1.17 1.29E−02 − 6.73E−01 1.97E−02

INSL3 cg10174482 4.2 0.13 8035345 − 1.13 4.94E−02 − 6.36E−01 2.72E−02

ANKRD30B cg21293934 11.2 0.21 8069499 − 1.17 2.24E−02 − 6.08E−01 3.11E−02

FADS1 cg16213375 3.6 0.16 7948612 − 1.8 9.55E−04 − 5.88E−01 4.01E−02

PAPL cg18481683 2.3 0.24 8028570 − 1.19 1.45E−02 − 5.52E−01 5.21E−02

MOGAT1 cg12678667 4 0.15 8048725 − 1.28 3.87E−02 − 4.67E−01 8.91E−02

PPP1R1B cg09762778 5 0.12 8006865 − 1.27 4.74E−02 − 4.67E−01 8.91E−02

PRUNE2 cg00390775 4.4 0.15 8161884 − 1.31 1.91E−02 − 3.82E−01 1.39E−01

CIDEA cg18309817 1.8 0.18 8020211 − 1.32 3.21E−02 − 2.97E−01 2.03E−01

PCYT2 cg19583655 6.2 0.21 8019280 − 1.26 6.38E−04 − 1.88E−01 3.04E−01

SCUBE1 cg07697597 1.7 0.23 8076586 − 1.23 9.03E−03 − 4.24E−02 4.59E−01

FC fold change, DNAm β diff. DNAm β difference
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expression silencing, thus consequently contributing to
fatty acid accumulation in adipocytes by decreasing long-
chain fatty acid β-oxidation in the mitochondria (Fig. 4).
LCFA and ACADM genes (aliases MCAD, medium-

chain acyl-CoA dehydrogenase) coding for metabolic
enzymes presented increased methylation in the PPAT
of the OB/OW group. ACADM is the critical enzyme of
the initial step of β-oxidation and controls the medium-
chain fatty acid (MCFA) metabolism by catalyzing the

dehydrogenation of medium-chain Acyl-CoA, which is
the common middle product of MCFA and LCFA, in the
mitochondria. Mutations in ACADM cause MCAD defi-
ciency, which resulted in fatty acid oxidation disorder
leading to disease or infantile death [42–44]. Greco et al.
[45] reported inverse association between ACADM tran-
script abundance with fat content in the human liver.
Our findings suggest that the hypermethylated ACADM
found in the PPAT of OB/OW PCa patients might fail to

Fig. 4 Proposed mechanisms with differentially methylated genes from PPAT of OB/OW prostate cancer patients. Hypermethylated genes in periprostatic
adipose tissue of patients with increased adiposity might contribute towards the modulation of prostate tumor microenvironment. The genes that might be
related to tumor microenvironment include choline transporter-like protein 2 (CTL2, which was a rate-limiting step of choline metabolism by transporting
extracellular choline into cell and mitochondria), carnitine palmitoyltransferase 1B and 1C (CPT1B and CPT1C, which encode the rate-limiting
enzymes of long-chain fatty acid β-oxidation by controlling transportation of long-chain fatty acyl-CoAs from cytoplasm across outer mitochondria
membrane), medium-chain-specific acyl-CoA dehydrogenase (ACADM, which catalyzes the initial step of medium-chain fatty acid β-oxidation in
mitochondria), fatty acid desaturase 1 (FADS1, which was correlated with fatty acid metabolism by catalyzing polyunsaturated fatty acid biosynthesis),
monoacylglycerol O-acyltransferases 1 and 3 (MOGAT1 and MOGAT3, which catalyze the formation of diacylglycerol by transferring fatty acyl-CoA to 2-
monoacylglycerol), which contributes to metabolic disorder in adipose tissue by regulating the metabolism of lipid, choline, and glycerolipid. Another
gene with hypermethylated promoter, TAPBP (transporter associated with antigen processing (TAP) transport protein), could influence tumor supervi-
sion of immune cells in PPAT by altering tumor antigen presentation process from TAP to MHC class I in endoplasmic reticulum and result in tumor
metastasis and cancer progression. The black downward arrows represent the promoter hypermethylated genes (in blue containers), and the red arrows
represent the possible consequence of these methylated genes. LCFA long-chain fatty acid, MCFA media-chain fatty acid, PUFA polyunsaturated fatty acid,
HUFA high unsaturated fatty acid, MAG monoacylglycerol, DAG dionoacylglycerol
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generate medium-chain acyl-CoA β-oxidation and result
in MCFA and LCFA accumulation in adipose tissue, pro-
viding a favorable tumor microenvironment for PCa cell
aggressiveness (Fig. 4). Additional functional studies are
required to confirm this assumption.
The hypermethylation of the FADS1 (fatty acid desatur-

ase 1) promoter, whose transcriptional activity was signifi-
cantly decreased in OB/OW PCa patients in agreement
with our previous study [4], has been described as corre-
lated with polyunsaturated fatty acid (PUFA) metabolism
by catalyzing the biosynthesis of highly unsaturated fatty
acids (HUFA) from the catalysis of dihomo-gamma-linoleic
acid (DGLA, 20:3 n-6) and eicosatetraenoic acid (ETA, 20:4
n-3) desaturation, in order to generate arachidonic acid
(AA, 20:4 n-6) and eicosapentaenoic acid (EPA, 20:5 n-3)
[46]. Genetic variants in the FADS1 and FADS2 gene
clusters have been associated with altered (n-6) and (n-3)
PUFA metabolism [47, 48], whereas metabolic disorder in
PUFA exerted effects on PCa by mediating the formation
of eicosanoid inflammatory mediators (prostaglandins,
leukotrienes, thromboxanes, and lipoxins), angiogenesis,
immune cell regulation, and membrane structure and
function [49, 50]. These results illustrated that the epigen-
etic modifications of FADS1 may play important roles in
the regulation of fatty acid metabolic genes on PPAT in
response to excess adiposity (Fig. 4).
Besides abnormal fatty acid metabolism, DMC-related

genes identified in our study were also correlated with gly-
cerolipid metabolism. MOGAT1 and MOGAT3 encode the
monoacylglycerol O-acyltransferase (MOGAT) and catalyze
the formation of diacylglycerol (DAG) from monoacylgly-
cerol (MAG), which is the precursor of phosphatidylcholine,
phosphatidylethanolamine, and triacylglycerol (TAG), by
transferring fatty acyl-CoA to 2-monoacylglycerol [51].
While human MGAT1 (aliases for MOGAT1) is involved in
intestinal dietary fat absorption and TAG synthesis in the
liver, its function in adipose tissue has yet to be elucidated.
The expression ofMGAT1 was increased in the liver of diet-
induced obese mice with nonalcoholic fatty liver disease
(NAFLD), but, interestingly, there was increased DAG accu-
mulation and no inflammatory injury reduction in hepato-
cytes after MGAT1 knockdown. Similarly, MOGAT3 was
mostly expressed in the human intestine and liver and main-
tained a significant DGAT (diacylglycerol O-acyltransferase)
activity. Although results indicate that the metabolic mech-
anism of lipid regulation by MGAT1 and MOGAT3 was
altered, evidence of association between lipid metabolic dis-
orders caused by aberrant expression of MGAT1/MOGAT3
and PCa are lacking. Our data indicate the methylation of
MOGAT1 and 3 genes in PPAT may play important roles in
response to excess adiposity by modulating glycerolipid
metabolism (Fig. 4).
Choline metabolic disorder might be caused by

epigenetic regulation of SLC44A2 (solute carrier family

44 member 2), which encodes choline transporter-like
protein 2 (CTL2) and is mainly expressed on blood
plasma and mitochondrial membrane of different organ-
isms and cell types. This transporter is a rate-limiting step
in choline metabolism by transporting extracellular
choline into cell and mitochondria. Choline is essential for
synthesizing membrane phospholipid and neurotransmit-
ter acetylcholine and used as a donor of methyl groups via
choline oxidized in mitochondria [52]. The choline
transporter has been associated with choline metabolic
disorders, thus playing an important role in regulating im-
mune response, inflammation, and oxidation [53, 54].
Concordantly, abnormal choline metabolism emerged as a
metabolic hallmark, associated with oncogenesis and
tumor progression in prostate cancer and other malignan-
cies [55–57]. The increased uptake of choline by the
cancer cell was important to meet the needs of phosphat-
idylcholine synthesis [58]. We hypothesize that hyper-
methylated SLC44A2 in adipocytes might be associated
with lower uptake and oxidation of extracellular choline,
resulting in choline accumulation in PPAT extracellular
media (Fig. 4) and increasing the availability of choline for
PCa cell metabolism.
Besides metabolic modifications, altered immune regu-

lation pathways were also enriched in DMC-related
genes. TAPBP (alias tapasin) encodes a transmembrane
glycoprotein, which mediates the interaction between
MHC class I molecules and a transport protein TAP
(transporter associated with antigen processing), being
responsible for antigen processing and presentation. This
mechanism occurs via mediating TAP to translocate
endo/exogenous antigen peptides from the cytoplasm
into the endoplasmic reticulum and deliver the antigen
peptides to MHC class I molecules. The cancer cell’s
survival depends on successful escape to immune
surveillance. Loss of MHC class I has been described as
a major immune evasion strategy for cancer cells. Down-
regulation of antigen-presenting MHC class I pathway in
tumor cells was a common mechanism for tumor cells
escaped from specific immune responses, which can be
associated with coordinated silencing of antigen-
presenting machinery genes, such as TAPBP [59]. Cross-
presentation is the ability of certain antigen-presenting
cells to take up, process, and present extracellular anti-
gens with MHC class I molecules to CD8+ T cells. This
process is necessary for immunity against most tumors.
Recent studies revealed that TAPBP is a major target for
cancer immune evasion mechanisms and decreased
TAPBP expression in cancer was associated with
reduced CD8+ T cell-mediated killing of the tumor cells,
lowered immune responses, and enhanced tumor metas-
tases via downregulation of antigen presentation the
MHC class I pathway [60, 61]. Our results showed that
TAPBP promoter hypermethylation in the PPAT of
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obese PCa subjects likely reduced the expression or ac-
tivity of TAPBP, downregulating tumor cell’s antigen
presentation of immune cells in PPAT, leading to
impaired CD8+ T cell activation (Fig. 4). This indicates that
methylation of TAPBP might be a mechanism by which
prostate cancer cells escape the immune surveillance and
provide an appropriate microenvironment for tumor
aggressiveness, allowing prostatic cancer cells’ transfer,
spread, and growth. The significant DMR identified with
eight DMCs located in the TAPBP promoter further
supported its role in prostate cancer.
From the PPI analysis, the network which was con-

nected through ubiquitin C is characterized, suggesting
UBC played a significant biological function with the
methylated genes in PPAT between OB/OW and NW
patients and somehow was correlated with the methyla-
tion. Ubiquitin is much known with the functions
including roles in protein degradation, DNA repair, cell
cycle regulation, kinase modification, and cell signaling
pathways [62]. Recent reports expressed that the
ubiquitin-proteasome system was associated with the
progression and metastasis of prostate cancers [63, 64].
And long-term silencing of the UBC was found to be
correlated with DNA methylation at the promoters [65].
Additional studies are needed to clarify whether the pro-
tein network for methylated genes impacts prostate can-
cer and if this difference is associated with ubiquitin C.
Although we present the first report on periprostatic

adipose tissue methylation profile in association with
excess adiposity measured by BMI, our results should be
interpreted in the context of several potential limita-
tions. This study is limited by small sample size, even
though representative groups of OB/OW and NW are
likely to be selected following the strict inclusion/exclusion
criteria and between-group match by clinicopathological
and demographic variables. Although we matched patients
by clinicopathological characteristics between adiposity
groups, tobacco smoking was more frequent among OB/
OW compared with NW patients. Actually, albeit we can-
not exclude an effect of smoking status on the presumably
adiposity-associated findings presented herein, due to a
known effect of tobacco on overall DNA methylation, data
from previous reports indicate that methylation profiles are
tissue-specific [66, 67] and that adiposity-associated DNA
methylation occurs independently of tobacco smoking
[68, 69]. Future studies will benefit from the confirmation
of these results in larger sample sizes, determination of
correspondence to matched prostate tumor methylation
patterns, investigation of interactome at the interface
between tumor and PPAT, and prospective investigations
on the value of PPAT epigenetic modifications on cancer
recurrence and survival. Future validation and replication
are important to establish the accuracy and generalizability
of the reported associations.

In summary, we observed differences in PPAT methyla-
tion between NW and OB individuals at several loci known
to be involved in the metabolism of choline (SLC44A2),
fatty acids (CPT1B, CPT1C, ACADM, FADS1), and glycero-
lipid (MOGAT1, MOGAT3) and in the regulation of
exogenous tumor antigen presentation (TAPBP). These
findings suggest a relationship of adiposity status with the
methylation profile, which ultimately modulates tumor
microenvironment and may influence PCa behavior.

Conclusions
In this preliminary study, we report DNA methylation
changes in PPAT underlying the association between excess
adiposity and PCa. Whole epigenome methylation profiling
of PPAT of PCa patients revealed significant differences in
OB/OW versus normal weight subjects. Epigenetic imprint-
ing in association with excess adiposity expressed the meth-
ylated modifications in genes functionally related with lipid
metabolism and immune function, which could ultimately
contribute to an unfavorable tumor microenvironment and
decreased immune surveillance for prostate tumors. This
association analyses provided us novel insights into how
prostate cancer patients with excess adiposity differ from
those of patients with normal weight in epigenome.
Findings from this study warrant confirmation in PPAT
samples from larger number of patients.
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Additional file 1: Figure S1. Research flowchart. Whole research
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regions, Limma linear models for microarray and RNA-seq analysis data
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Additional file 2: Table S1. Differentially methylated CpG sites in PPAT
between obese/overweight PCa patients and normal weight controls.
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“Limma” method. (XLSX 663 kb)

Additional file 3: Figure S2. Heatmap of differentially methylated CpG
sites between the PPAT of OB/OW PCa and NW PCa patients. The
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normal weight group larger than 10%. (JPEG 1797 kb)

Additional file 4: Table S2. Distribution of differentially methylated
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